xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_recv.c (revision 071ab5a1f3cbfd29c8fbec27f7e619418adaf074)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
26  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
27  * Copyright 2014 HybridCluster. All rights reserved.
28  * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
29  * Copyright (c) 2019, 2024, Klara, Inc.
30  * Copyright (c) 2019, Allan Jude
31  * Copyright (c) 2019 Datto Inc.
32  * Copyright (c) 2022 Axcient.
33  * Copyright (c) 2025, Rob Norris <robn@despairlabs.com>
34  */
35 
36 #include <sys/arc.h>
37 #include <sys/spa_impl.h>
38 #include <sys/dmu.h>
39 #include <sys/dmu_impl.h>
40 #include <sys/dmu_send.h>
41 #include <sys/dmu_recv.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/dbuf.h>
44 #include <sys/dnode.h>
45 #include <sys/zfs_context.h>
46 #include <sys/dmu_objset.h>
47 #include <sys/dmu_traverse.h>
48 #include <sys/dsl_dataset.h>
49 #include <sys/dsl_dir.h>
50 #include <sys/dsl_prop.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_synctask.h>
53 #include <sys/zfs_ioctl.h>
54 #include <sys/zap.h>
55 #include <sys/zvol.h>
56 #include <sys/zio_checksum.h>
57 #include <sys/zfs_znode.h>
58 #include <zfs_fletcher.h>
59 #include <sys/avl.h>
60 #include <sys/ddt.h>
61 #include <sys/zfs_onexit.h>
62 #include <sys/dsl_destroy.h>
63 #include <sys/blkptr.h>
64 #include <sys/dsl_bookmark.h>
65 #include <sys/zfeature.h>
66 #include <sys/bqueue.h>
67 #include <sys/objlist.h>
68 #ifdef _KERNEL
69 #include <sys/zfs_vfsops.h>
70 #endif
71 #include <sys/zfs_file.h>
72 #include <sys/cred.h>
73 
74 static uint_t zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
75 static uint_t zfs_recv_queue_ff = 20;
76 static uint_t zfs_recv_write_batch_size = 1024 * 1024;
77 static int zfs_recv_best_effort_corrective = 0;
78 
79 static const void *const dmu_recv_tag = "dmu_recv_tag";
80 const char *const recv_clone_name = "%recv";
81 
82 typedef enum {
83 	ORNS_NO,
84 	ORNS_YES,
85 	ORNS_MAYBE
86 } or_need_sync_t;
87 
88 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
89     void *buf);
90 
91 struct receive_record_arg {
92 	dmu_replay_record_t header;
93 	void *payload; /* Pointer to a buffer containing the payload */
94 	/*
95 	 * If the record is a WRITE or SPILL, pointer to the abd containing the
96 	 * payload.
97 	 */
98 	abd_t *abd;
99 	int payload_size;
100 	uint64_t bytes_read; /* bytes read from stream when record created */
101 	boolean_t eos_marker; /* Marks the end of the stream */
102 	bqueue_node_t node;
103 };
104 
105 struct receive_writer_arg {
106 	objset_t *os;
107 	boolean_t byteswap;
108 	bqueue_t q;
109 
110 	/*
111 	 * These three members are used to signal to the main thread when
112 	 * we're done.
113 	 */
114 	kmutex_t mutex;
115 	kcondvar_t cv;
116 	boolean_t done;
117 
118 	int err;
119 	const char *tofs;
120 	boolean_t heal;
121 	boolean_t resumable;
122 	boolean_t raw;   /* DMU_BACKUP_FEATURE_RAW set */
123 	boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
124 	boolean_t full;  /* this is a full send stream */
125 	uint64_t last_object;
126 	uint64_t last_offset;
127 	uint64_t max_object; /* highest object ID referenced in stream */
128 	uint64_t bytes_read; /* bytes read when current record created */
129 
130 	list_t write_batch;
131 
132 	/* Encryption parameters for the last received DRR_OBJECT_RANGE */
133 	boolean_t or_crypt_params_present;
134 	uint64_t or_firstobj;
135 	uint64_t or_numslots;
136 	uint8_t or_salt[ZIO_DATA_SALT_LEN];
137 	uint8_t or_iv[ZIO_DATA_IV_LEN];
138 	uint8_t or_mac[ZIO_DATA_MAC_LEN];
139 	boolean_t or_byteorder;
140 	zio_t *heal_pio;
141 
142 	/* Keep track of DRR_FREEOBJECTS right after DRR_OBJECT_RANGE */
143 	or_need_sync_t or_need_sync;
144 };
145 
146 typedef struct dmu_recv_begin_arg {
147 	const char *drba_origin;
148 	dmu_recv_cookie_t *drba_cookie;
149 	cred_t *drba_cred;
150 	dsl_crypto_params_t *drba_dcp;
151 } dmu_recv_begin_arg_t;
152 
153 static void
byteswap_record(dmu_replay_record_t * drr)154 byteswap_record(dmu_replay_record_t *drr)
155 {
156 #define	DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
157 #define	DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
158 	drr->drr_type = BSWAP_32(drr->drr_type);
159 	drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
160 
161 	switch (drr->drr_type) {
162 	case DRR_BEGIN:
163 		DO64(drr_begin.drr_magic);
164 		DO64(drr_begin.drr_versioninfo);
165 		DO64(drr_begin.drr_creation_time);
166 		DO32(drr_begin.drr_type);
167 		DO32(drr_begin.drr_flags);
168 		DO64(drr_begin.drr_toguid);
169 		DO64(drr_begin.drr_fromguid);
170 		break;
171 	case DRR_OBJECT:
172 		DO64(drr_object.drr_object);
173 		DO32(drr_object.drr_type);
174 		DO32(drr_object.drr_bonustype);
175 		DO32(drr_object.drr_blksz);
176 		DO32(drr_object.drr_bonuslen);
177 		DO32(drr_object.drr_raw_bonuslen);
178 		DO64(drr_object.drr_toguid);
179 		DO64(drr_object.drr_maxblkid);
180 		break;
181 	case DRR_FREEOBJECTS:
182 		DO64(drr_freeobjects.drr_firstobj);
183 		DO64(drr_freeobjects.drr_numobjs);
184 		DO64(drr_freeobjects.drr_toguid);
185 		break;
186 	case DRR_WRITE:
187 		DO64(drr_write.drr_object);
188 		DO32(drr_write.drr_type);
189 		DO64(drr_write.drr_offset);
190 		DO64(drr_write.drr_logical_size);
191 		DO64(drr_write.drr_toguid);
192 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
193 		DO64(drr_write.drr_key.ddk_prop);
194 		DO64(drr_write.drr_compressed_size);
195 		break;
196 	case DRR_WRITE_EMBEDDED:
197 		DO64(drr_write_embedded.drr_object);
198 		DO64(drr_write_embedded.drr_offset);
199 		DO64(drr_write_embedded.drr_length);
200 		DO64(drr_write_embedded.drr_toguid);
201 		DO32(drr_write_embedded.drr_lsize);
202 		DO32(drr_write_embedded.drr_psize);
203 		break;
204 	case DRR_FREE:
205 		DO64(drr_free.drr_object);
206 		DO64(drr_free.drr_offset);
207 		DO64(drr_free.drr_length);
208 		DO64(drr_free.drr_toguid);
209 		break;
210 	case DRR_SPILL:
211 		DO64(drr_spill.drr_object);
212 		DO64(drr_spill.drr_length);
213 		DO64(drr_spill.drr_toguid);
214 		DO64(drr_spill.drr_compressed_size);
215 		DO32(drr_spill.drr_type);
216 		break;
217 	case DRR_OBJECT_RANGE:
218 		DO64(drr_object_range.drr_firstobj);
219 		DO64(drr_object_range.drr_numslots);
220 		DO64(drr_object_range.drr_toguid);
221 		break;
222 	case DRR_REDACT:
223 		DO64(drr_redact.drr_object);
224 		DO64(drr_redact.drr_offset);
225 		DO64(drr_redact.drr_length);
226 		DO64(drr_redact.drr_toguid);
227 		break;
228 	case DRR_END:
229 		DO64(drr_end.drr_toguid);
230 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
231 		break;
232 	default:
233 		break;
234 	}
235 
236 	if (drr->drr_type != DRR_BEGIN) {
237 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
238 	}
239 
240 #undef DO64
241 #undef DO32
242 }
243 
244 static boolean_t
redact_snaps_contains(uint64_t * snaps,uint64_t num_snaps,uint64_t guid)245 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
246 {
247 	for (int i = 0; i < num_snaps; i++) {
248 		if (snaps[i] == guid)
249 			return (B_TRUE);
250 	}
251 	return (B_FALSE);
252 }
253 
254 /*
255  * Check that the new stream we're trying to receive is redacted with respect to
256  * a subset of the snapshots that the origin was redacted with respect to.  For
257  * the reasons behind this, see the man page on redacted zfs sends and receives.
258  */
259 static boolean_t
compatible_redact_snaps(uint64_t * origin_snaps,uint64_t origin_num_snaps,uint64_t * redact_snaps,uint64_t num_redact_snaps)260 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
261     uint64_t *redact_snaps, uint64_t num_redact_snaps)
262 {
263 	/*
264 	 * Short circuit the comparison; if we are redacted with respect to
265 	 * more snapshots than the origin, we can't be redacted with respect
266 	 * to a subset.
267 	 */
268 	if (num_redact_snaps > origin_num_snaps) {
269 		return (B_FALSE);
270 	}
271 
272 	for (int i = 0; i < num_redact_snaps; i++) {
273 		if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
274 		    redact_snaps[i])) {
275 			return (B_FALSE);
276 		}
277 	}
278 	return (B_TRUE);
279 }
280 
281 static boolean_t
redact_check(dmu_recv_begin_arg_t * drba,dsl_dataset_t * origin)282 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
283 {
284 	uint64_t *origin_snaps;
285 	uint64_t origin_num_snaps;
286 	dmu_recv_cookie_t *drc = drba->drba_cookie;
287 	struct drr_begin *drrb = drc->drc_drrb;
288 	int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
289 	int err = 0;
290 	boolean_t ret = B_TRUE;
291 	uint64_t *redact_snaps;
292 	uint_t numredactsnaps;
293 
294 	/*
295 	 * If this is a full send stream, we're safe no matter what.
296 	 */
297 	if (drrb->drr_fromguid == 0)
298 		return (ret);
299 
300 	VERIFY(dsl_dataset_get_uint64_array_feature(origin,
301 	    SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
302 
303 	if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
304 	    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
305 	    0) {
306 		/*
307 		 * If the send stream was sent from the redaction bookmark or
308 		 * the redacted version of the dataset, then we're safe.  Verify
309 		 * that this is from the a compatible redaction bookmark or
310 		 * redacted dataset.
311 		 */
312 		if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
313 		    redact_snaps, numredactsnaps)) {
314 			err = EINVAL;
315 		}
316 	} else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
317 		/*
318 		 * If the stream is redacted, it must be redacted with respect
319 		 * to a subset of what the origin is redacted with respect to.
320 		 * See case number 2 in the zfs man page section on redacted zfs
321 		 * send.
322 		 */
323 		err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
324 		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
325 
326 		if (err != 0 || !compatible_redact_snaps(origin_snaps,
327 		    origin_num_snaps, redact_snaps, numredactsnaps)) {
328 			err = EINVAL;
329 		}
330 	} else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
331 	    drrb->drr_toguid)) {
332 		/*
333 		 * If the stream isn't redacted but the origin is, this must be
334 		 * one of the snapshots the origin is redacted with respect to.
335 		 * See case number 1 in the zfs man page section on redacted zfs
336 		 * send.
337 		 */
338 		err = EINVAL;
339 	}
340 
341 	if (err != 0)
342 		ret = B_FALSE;
343 	return (ret);
344 }
345 
346 /*
347  * If we previously received a stream with --large-block, we don't support
348  * receiving an incremental on top of it without --large-block.  This avoids
349  * forcing a read-modify-write or trying to re-aggregate a string of WRITE
350  * records.
351  */
352 static int
recv_check_large_blocks(dsl_dataset_t * ds,uint64_t featureflags)353 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
354 {
355 	if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
356 	    !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
357 		return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
358 	return (0);
359 }
360 
361 static int
recv_begin_check_existing_impl(dmu_recv_begin_arg_t * drba,dsl_dataset_t * ds,uint64_t fromguid,uint64_t featureflags)362 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
363     uint64_t fromguid, uint64_t featureflags)
364 {
365 	uint64_t obj;
366 	uint64_t children;
367 	int error;
368 	dsl_dataset_t *snap;
369 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
370 	boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
371 	boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
372 	boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
373 
374 	/* Temporary clone name must not exist. */
375 	error = zap_lookup(dp->dp_meta_objset,
376 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
377 	    8, 1, &obj);
378 	if (error != ENOENT)
379 		return (error == 0 ? SET_ERROR(EBUSY) : error);
380 
381 	/* Resume state must not be set. */
382 	if (dsl_dataset_has_resume_receive_state(ds))
383 		return (SET_ERROR(EBUSY));
384 
385 	/* New snapshot name must not exist if we're not healing it. */
386 	error = zap_lookup(dp->dp_meta_objset,
387 	    dsl_dataset_phys(ds)->ds_snapnames_zapobj,
388 	    drba->drba_cookie->drc_tosnap, 8, 1, &obj);
389 	if (drba->drba_cookie->drc_heal) {
390 		if (error != 0)
391 			return (error);
392 	} else if (error != ENOENT) {
393 		return (error == 0 ? SET_ERROR(EEXIST) : error);
394 	}
395 
396 	/* Must not have children if receiving a ZVOL. */
397 	error = zap_count(dp->dp_meta_objset,
398 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
399 	if (error != 0)
400 		return (error);
401 	if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
402 	    children > 0)
403 		return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
404 
405 	/*
406 	 * Check snapshot limit before receiving. We'll recheck again at the
407 	 * end, but might as well abort before receiving if we're already over
408 	 * the limit.
409 	 *
410 	 * Note that we do not check the file system limit with
411 	 * dsl_dir_fscount_check because the temporary %clones don't count
412 	 * against that limit.
413 	 */
414 	error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
415 	    NULL, drba->drba_cred);
416 	if (error != 0)
417 		return (error);
418 
419 	if (drba->drba_cookie->drc_heal) {
420 		/* Encryption is incompatible with embedded data. */
421 		if (encrypted && embed)
422 			return (SET_ERROR(EINVAL));
423 
424 		/* Healing is not supported when in 'force' mode. */
425 		if (drba->drba_cookie->drc_force)
426 			return (SET_ERROR(EINVAL));
427 
428 		/* Must have keys loaded if doing encrypted non-raw recv. */
429 		if (encrypted && !raw) {
430 			if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object,
431 			    NULL, NULL) != 0)
432 				return (SET_ERROR(EACCES));
433 		}
434 
435 		error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap);
436 		if (error != 0)
437 			return (error);
438 
439 		/*
440 		 * When not doing best effort corrective recv healing can only
441 		 * be done if the send stream is for the same snapshot as the
442 		 * one we are trying to heal.
443 		 */
444 		if (zfs_recv_best_effort_corrective == 0 &&
445 		    drba->drba_cookie->drc_drrb->drr_toguid !=
446 		    dsl_dataset_phys(snap)->ds_guid) {
447 			dsl_dataset_rele(snap, FTAG);
448 			return (SET_ERROR(ENOTSUP));
449 		}
450 		dsl_dataset_rele(snap, FTAG);
451 	} else if (fromguid != 0) {
452 		/* Sanity check the incremental recv */
453 		uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
454 
455 		/* Can't perform a raw receive on top of a non-raw receive */
456 		if (!encrypted && raw)
457 			return (SET_ERROR(EINVAL));
458 
459 		/* Encryption is incompatible with embedded data */
460 		if (encrypted && embed)
461 			return (SET_ERROR(EINVAL));
462 
463 		/* Find snapshot in this dir that matches fromguid. */
464 		while (obj != 0) {
465 			error = dsl_dataset_hold_obj(dp, obj, FTAG,
466 			    &snap);
467 			if (error != 0)
468 				return (SET_ERROR(ENODEV));
469 			if (snap->ds_dir != ds->ds_dir) {
470 				dsl_dataset_rele(snap, FTAG);
471 				return (SET_ERROR(ENODEV));
472 			}
473 			if (dsl_dataset_phys(snap)->ds_guid == fromguid)
474 				break;
475 			obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
476 			dsl_dataset_rele(snap, FTAG);
477 		}
478 		if (obj == 0)
479 			return (SET_ERROR(ENODEV));
480 
481 		if (drba->drba_cookie->drc_force) {
482 			drba->drba_cookie->drc_fromsnapobj = obj;
483 		} else {
484 			/*
485 			 * If we are not forcing, there must be no
486 			 * changes since fromsnap. Raw sends have an
487 			 * additional constraint that requires that
488 			 * no "noop" snapshots exist between fromsnap
489 			 * and tosnap for the IVset checking code to
490 			 * work properly.
491 			 */
492 			if (dsl_dataset_modified_since_snap(ds, snap) ||
493 			    (raw &&
494 			    dsl_dataset_phys(ds)->ds_prev_snap_obj !=
495 			    snap->ds_object)) {
496 				dsl_dataset_rele(snap, FTAG);
497 				return (SET_ERROR(ETXTBSY));
498 			}
499 			drba->drba_cookie->drc_fromsnapobj =
500 			    ds->ds_prev->ds_object;
501 		}
502 
503 		if (dsl_dataset_feature_is_active(snap,
504 		    SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
505 		    snap)) {
506 			dsl_dataset_rele(snap, FTAG);
507 			return (SET_ERROR(EINVAL));
508 		}
509 
510 		error = recv_check_large_blocks(snap, featureflags);
511 		if (error != 0) {
512 			dsl_dataset_rele(snap, FTAG);
513 			return (error);
514 		}
515 
516 		dsl_dataset_rele(snap, FTAG);
517 	} else {
518 		/* If full and not healing then must be forced. */
519 		if (!drba->drba_cookie->drc_force)
520 			return (SET_ERROR(EEXIST));
521 
522 		/*
523 		 * We don't support using zfs recv -F to blow away
524 		 * encrypted filesystems. This would require the
525 		 * dsl dir to point to the old encryption key and
526 		 * the new one at the same time during the receive.
527 		 */
528 		if ((!encrypted && raw) || encrypted)
529 			return (SET_ERROR(EINVAL));
530 
531 		/*
532 		 * Perform the same encryption checks we would if
533 		 * we were creating a new dataset from scratch.
534 		 */
535 		if (!raw) {
536 			boolean_t will_encrypt;
537 
538 			error = dmu_objset_create_crypt_check(
539 			    ds->ds_dir->dd_parent, drba->drba_dcp,
540 			    &will_encrypt);
541 			if (error != 0)
542 				return (error);
543 
544 			if (will_encrypt && embed)
545 				return (SET_ERROR(EINVAL));
546 		}
547 	}
548 
549 	return (0);
550 }
551 
552 /*
553  * Check that any feature flags used in the data stream we're receiving are
554  * supported by the pool we are receiving into.
555  *
556  * Note that some of the features we explicitly check here have additional
557  * (implicit) features they depend on, but those dependencies are enforced
558  * through the zfeature_register() calls declaring the features that we
559  * explicitly check.
560  */
561 static int
recv_begin_check_feature_flags_impl(uint64_t featureflags,spa_t * spa)562 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
563 {
564 	/*
565 	 * Check if there are any unsupported feature flags.
566 	 */
567 	if (!DMU_STREAM_SUPPORTED(featureflags)) {
568 		return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
569 	}
570 
571 	/* Verify pool version supports SA if SA_SPILL feature set */
572 	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
573 	    spa_version(spa) < SPA_VERSION_SA)
574 		return (SET_ERROR(ENOTSUP));
575 
576 	/*
577 	 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
578 	 * and large_dnodes in the stream can only be used if those pool
579 	 * features are enabled because we don't attempt to decompress /
580 	 * un-embed / un-mooch / split up the blocks / dnodes during the
581 	 * receive process.
582 	 */
583 	if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
584 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
585 		return (SET_ERROR(ENOTSUP));
586 	if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
587 	    !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
588 		return (SET_ERROR(ENOTSUP));
589 	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
590 	    !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
591 		return (SET_ERROR(ENOTSUP));
592 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
593 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
594 		return (SET_ERROR(ENOTSUP));
595 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
596 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
597 		return (SET_ERROR(ENOTSUP));
598 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_MICROZAP) &&
599 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_MICROZAP))
600 		return (SET_ERROR(ENOTSUP));
601 
602 	/*
603 	 * Receiving redacted streams requires that redacted datasets are
604 	 * enabled.
605 	 */
606 	if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
607 	    !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
608 		return (SET_ERROR(ENOTSUP));
609 
610 	/*
611 	 * If the LONGNAME is not enabled on the target, fail that request.
612 	 */
613 	if ((featureflags & DMU_BACKUP_FEATURE_LONGNAME) &&
614 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LONGNAME))
615 		return (SET_ERROR(ENOTSUP));
616 
617 	return (0);
618 }
619 
620 static int
dmu_recv_begin_check(void * arg,dmu_tx_t * tx)621 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
622 {
623 	dmu_recv_begin_arg_t *drba = arg;
624 	dsl_pool_t *dp = dmu_tx_pool(tx);
625 	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
626 	uint64_t fromguid = drrb->drr_fromguid;
627 	int flags = drrb->drr_flags;
628 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
629 	int error;
630 	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
631 	dsl_dataset_t *ds;
632 	const char *tofs = drba->drba_cookie->drc_tofs;
633 
634 	/* already checked */
635 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
636 	ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
637 
638 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
639 	    DMU_COMPOUNDSTREAM ||
640 	    drrb->drr_type >= DMU_OST_NUMTYPES ||
641 	    ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
642 		return (SET_ERROR(EINVAL));
643 
644 	error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
645 	if (error != 0)
646 		return (error);
647 
648 	/* Resumable receives require extensible datasets */
649 	if (drba->drba_cookie->drc_resumable &&
650 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
651 		return (SET_ERROR(ENOTSUP));
652 
653 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
654 		/* raw receives require the encryption feature */
655 		if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
656 			return (SET_ERROR(ENOTSUP));
657 
658 		/* embedded data is incompatible with encryption and raw recv */
659 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
660 			return (SET_ERROR(EINVAL));
661 
662 		/* raw receives require spill block allocation flag */
663 		if (!(flags & DRR_FLAG_SPILL_BLOCK))
664 			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
665 	} else {
666 		/*
667 		 * We support unencrypted datasets below encrypted ones now,
668 		 * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing
669 		 * with a dataset we may encrypt.
670 		 */
671 		if (drba->drba_dcp == NULL ||
672 		    drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) {
673 			dsflags |= DS_HOLD_FLAG_DECRYPT;
674 		}
675 	}
676 
677 	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
678 	if (error == 0) {
679 		/* target fs already exists; recv into temp clone */
680 
681 		/* Can't recv a clone into an existing fs */
682 		if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
683 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
684 			return (SET_ERROR(EINVAL));
685 		}
686 
687 		error = recv_begin_check_existing_impl(drba, ds, fromguid,
688 		    featureflags);
689 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
690 	} else if (error == ENOENT) {
691 		/* target fs does not exist; must be a full backup or clone */
692 		char buf[ZFS_MAX_DATASET_NAME_LEN];
693 		objset_t *os;
694 
695 		/* healing recv must be done "into" an existing snapshot */
696 		if (drba->drba_cookie->drc_heal == B_TRUE)
697 			return (SET_ERROR(ENOTSUP));
698 
699 		/*
700 		 * If it's a non-clone incremental, we are missing the
701 		 * target fs, so fail the recv.
702 		 */
703 		if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
704 		    drba->drba_origin))
705 			return (SET_ERROR(ENOENT));
706 
707 		/*
708 		 * If we're receiving a full send as a clone, and it doesn't
709 		 * contain all the necessary free records and freeobject
710 		 * records, reject it.
711 		 */
712 		if (fromguid == 0 && drba->drba_origin != NULL &&
713 		    !(flags & DRR_FLAG_FREERECORDS))
714 			return (SET_ERROR(EINVAL));
715 
716 		/* Open the parent of tofs */
717 		ASSERT3U(strlen(tofs), <, sizeof (buf));
718 		(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
719 		error = dsl_dataset_hold(dp, buf, FTAG, &ds);
720 		if (error != 0)
721 			return (error);
722 
723 		if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
724 		    drba->drba_origin == NULL) {
725 			boolean_t will_encrypt;
726 
727 			/*
728 			 * Check that we aren't breaking any encryption rules
729 			 * and that we have all the parameters we need to
730 			 * create an encrypted dataset if necessary. If we are
731 			 * making an encrypted dataset the stream can't have
732 			 * embedded data.
733 			 */
734 			error = dmu_objset_create_crypt_check(ds->ds_dir,
735 			    drba->drba_dcp, &will_encrypt);
736 			if (error != 0) {
737 				dsl_dataset_rele(ds, FTAG);
738 				return (error);
739 			}
740 
741 			if (will_encrypt &&
742 			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
743 				dsl_dataset_rele(ds, FTAG);
744 				return (SET_ERROR(EINVAL));
745 			}
746 		}
747 
748 		/*
749 		 * Check filesystem and snapshot limits before receiving. We'll
750 		 * recheck snapshot limits again at the end (we create the
751 		 * filesystems and increment those counts during begin_sync).
752 		 */
753 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
754 		    ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
755 		if (error != 0) {
756 			dsl_dataset_rele(ds, FTAG);
757 			return (error);
758 		}
759 
760 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
761 		    ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
762 		if (error != 0) {
763 			dsl_dataset_rele(ds, FTAG);
764 			return (error);
765 		}
766 
767 		/* can't recv below anything but filesystems (eg. no ZVOLs) */
768 		error = dmu_objset_from_ds(ds, &os);
769 		if (error != 0) {
770 			dsl_dataset_rele(ds, FTAG);
771 			return (error);
772 		}
773 		if (dmu_objset_type(os) != DMU_OST_ZFS) {
774 			dsl_dataset_rele(ds, FTAG);
775 			return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
776 		}
777 
778 		if (drba->drba_origin != NULL) {
779 			dsl_dataset_t *origin;
780 			error = dsl_dataset_hold_flags(dp, drba->drba_origin,
781 			    dsflags, FTAG, &origin);
782 			if (error != 0) {
783 				dsl_dataset_rele(ds, FTAG);
784 				return (error);
785 			}
786 			if (!origin->ds_is_snapshot) {
787 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
788 				dsl_dataset_rele(ds, FTAG);
789 				return (SET_ERROR(EINVAL));
790 			}
791 			if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
792 			    fromguid != 0) {
793 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
794 				dsl_dataset_rele(ds, FTAG);
795 				return (SET_ERROR(ENODEV));
796 			}
797 
798 			if (origin->ds_dir->dd_crypto_obj != 0 &&
799 			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
800 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
801 				dsl_dataset_rele(ds, FTAG);
802 				return (SET_ERROR(EINVAL));
803 			}
804 
805 			/*
806 			 * If the origin is redacted we need to verify that this
807 			 * send stream can safely be received on top of the
808 			 * origin.
809 			 */
810 			if (dsl_dataset_feature_is_active(origin,
811 			    SPA_FEATURE_REDACTED_DATASETS)) {
812 				if (!redact_check(drba, origin)) {
813 					dsl_dataset_rele_flags(origin, dsflags,
814 					    FTAG);
815 					dsl_dataset_rele_flags(ds, dsflags,
816 					    FTAG);
817 					return (SET_ERROR(EINVAL));
818 				}
819 			}
820 
821 			error = recv_check_large_blocks(ds, featureflags);
822 			if (error != 0) {
823 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
824 				dsl_dataset_rele_flags(ds, dsflags, FTAG);
825 				return (error);
826 			}
827 
828 			dsl_dataset_rele_flags(origin, dsflags, FTAG);
829 		}
830 
831 		dsl_dataset_rele(ds, FTAG);
832 		error = 0;
833 	}
834 	return (error);
835 }
836 
837 static void
dmu_recv_begin_sync(void * arg,dmu_tx_t * tx)838 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
839 {
840 	dmu_recv_begin_arg_t *drba = arg;
841 	dsl_pool_t *dp = dmu_tx_pool(tx);
842 	objset_t *mos = dp->dp_meta_objset;
843 	dmu_recv_cookie_t *drc = drba->drba_cookie;
844 	struct drr_begin *drrb = drc->drc_drrb;
845 	const char *tofs = drc->drc_tofs;
846 	uint64_t featureflags = drc->drc_featureflags;
847 	dsl_dataset_t *ds, *newds;
848 	objset_t *os;
849 	uint64_t dsobj;
850 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
851 	int error;
852 	uint64_t crflags = 0;
853 	dsl_crypto_params_t dummy_dcp = { 0 };
854 	dsl_crypto_params_t *dcp = drba->drba_dcp;
855 
856 	if (drrb->drr_flags & DRR_FLAG_CI_DATA)
857 		crflags |= DS_FLAG_CI_DATASET;
858 
859 	if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
860 		dsflags |= DS_HOLD_FLAG_DECRYPT;
861 
862 	/*
863 	 * Raw, non-incremental recvs always use a dummy dcp with
864 	 * the raw cmd set. Raw incremental recvs do not use a dcp
865 	 * since the encryption parameters are already set in stone.
866 	 */
867 	if (dcp == NULL && drrb->drr_fromguid == 0 &&
868 	    drba->drba_origin == NULL) {
869 		ASSERT3P(dcp, ==, NULL);
870 		dcp = &dummy_dcp;
871 
872 		if (featureflags & DMU_BACKUP_FEATURE_RAW)
873 			dcp->cp_cmd = DCP_CMD_RAW_RECV;
874 	}
875 
876 	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
877 	if (error == 0) {
878 		/* Create temporary clone unless we're doing corrective recv */
879 		dsl_dataset_t *snap = NULL;
880 
881 		if (drba->drba_cookie->drc_fromsnapobj != 0) {
882 			VERIFY0(dsl_dataset_hold_obj(dp,
883 			    drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
884 			ASSERT3P(dcp, ==, NULL);
885 		}
886 		if (drc->drc_heal) {
887 			/* When healing we want to use the provided snapshot */
888 			VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap,
889 			    &dsobj));
890 		} else {
891 			dsobj = dsl_dataset_create_sync(ds->ds_dir,
892 			    recv_clone_name, snap, crflags, drba->drba_cred,
893 			    dcp, tx);
894 		}
895 		if (drba->drba_cookie->drc_fromsnapobj != 0)
896 			dsl_dataset_rele(snap, FTAG);
897 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
898 	} else {
899 		dsl_dir_t *dd;
900 		const char *tail;
901 		dsl_dataset_t *origin = NULL;
902 
903 		VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
904 
905 		if (drba->drba_origin != NULL) {
906 			VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
907 			    FTAG, &origin));
908 			ASSERT3P(dcp, ==, NULL);
909 		}
910 
911 		/* Create new dataset. */
912 		dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
913 		    origin, crflags, drba->drba_cred, dcp, tx);
914 		if (origin != NULL)
915 			dsl_dataset_rele(origin, FTAG);
916 		dsl_dir_rele(dd, FTAG);
917 		drc->drc_newfs = B_TRUE;
918 	}
919 	VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
920 	    &newds));
921 	if (dsl_dataset_feature_is_active(newds,
922 	    SPA_FEATURE_REDACTED_DATASETS)) {
923 		/*
924 		 * If the origin dataset is redacted, the child will be redacted
925 		 * when we create it.  We clear the new dataset's
926 		 * redaction info; if it should be redacted, we'll fill
927 		 * in its information later.
928 		 */
929 		dsl_dataset_deactivate_feature(newds,
930 		    SPA_FEATURE_REDACTED_DATASETS, tx);
931 	}
932 	VERIFY0(dmu_objset_from_ds(newds, &os));
933 
934 	if (drc->drc_resumable) {
935 		dsl_dataset_zapify(newds, tx);
936 		if (drrb->drr_fromguid != 0) {
937 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
938 			    8, 1, &drrb->drr_fromguid, tx));
939 		}
940 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
941 		    8, 1, &drrb->drr_toguid, tx));
942 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
943 		    1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
944 		uint64_t one = 1;
945 		uint64_t zero = 0;
946 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
947 		    8, 1, &one, tx));
948 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
949 		    8, 1, &zero, tx));
950 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
951 		    8, 1, &zero, tx));
952 		if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
953 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
954 			    8, 1, &one, tx));
955 		}
956 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
957 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
958 			    8, 1, &one, tx));
959 		}
960 		if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
961 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
962 			    8, 1, &one, tx));
963 		}
964 		if (featureflags & DMU_BACKUP_FEATURE_RAW) {
965 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
966 			    8, 1, &one, tx));
967 		}
968 
969 		uint64_t *redact_snaps;
970 		uint_t numredactsnaps;
971 		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
972 		    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
973 		    &numredactsnaps) == 0) {
974 			VERIFY0(zap_add(mos, dsobj,
975 			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
976 			    sizeof (*redact_snaps), numredactsnaps,
977 			    redact_snaps, tx));
978 		}
979 	}
980 
981 	/*
982 	 * Usually the os->os_encrypted value is tied to the presence of a
983 	 * DSL Crypto Key object in the dd. However, that will not be received
984 	 * until dmu_recv_stream(), so we set the value manually for now.
985 	 */
986 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
987 		os->os_encrypted = B_TRUE;
988 		drba->drba_cookie->drc_raw = B_TRUE;
989 	}
990 
991 	if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
992 		uint64_t *redact_snaps;
993 		uint_t numredactsnaps;
994 		VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
995 		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
996 		dsl_dataset_activate_redaction(newds, redact_snaps,
997 		    numredactsnaps, tx);
998 	}
999 
1000 	if (featureflags & DMU_BACKUP_FEATURE_LARGE_MICROZAP) {
1001 		/*
1002 		 * The source has seen a large microzap at least once in its
1003 		 * life, so we activate the feature here to match. It's not
1004 		 * strictly necessary since a large microzap is usable without
1005 		 * the feature active, but if that object is sent on from here,
1006 		 * we need this info to know to add the stream feature.
1007 		 *
1008 		 * There may be no large microzap in the incoming stream, or
1009 		 * ever again, but this is a very niche feature and its very
1010 		 * difficult to spot a large microzap in the stream, so its
1011 		 * not worth the effort of trying harder to activate the
1012 		 * feature at first use.
1013 		 */
1014 		dsl_dataset_activate_feature(dsobj, SPA_FEATURE_LARGE_MICROZAP,
1015 		    (void *)B_TRUE, tx);
1016 	}
1017 
1018 	dmu_buf_will_dirty(newds->ds_dbuf, tx);
1019 	dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
1020 
1021 	/*
1022 	 * Activate longname feature if received
1023 	 */
1024 	if (featureflags & DMU_BACKUP_FEATURE_LONGNAME &&
1025 	    !dsl_dataset_feature_is_active(newds, SPA_FEATURE_LONGNAME)) {
1026 		dsl_dataset_activate_feature(newds->ds_object,
1027 		    SPA_FEATURE_LONGNAME, (void *)B_TRUE, tx);
1028 		newds->ds_feature[SPA_FEATURE_LONGNAME] = (void *)B_TRUE;
1029 	}
1030 
1031 	/*
1032 	 * If we actually created a non-clone, we need to create the objset
1033 	 * in our new dataset. If this is a raw send we postpone this until
1034 	 * dmu_recv_stream() so that we can allocate the metadnode with the
1035 	 * properties from the DRR_BEGIN payload.
1036 	 */
1037 	rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
1038 	if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
1039 	    (featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
1040 	    !drc->drc_heal) {
1041 		(void) dmu_objset_create_impl(dp->dp_spa,
1042 		    newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1043 	}
1044 	rrw_exit(&newds->ds_bp_rwlock, FTAG);
1045 
1046 	drba->drba_cookie->drc_ds = newds;
1047 	drba->drba_cookie->drc_os = os;
1048 
1049 	spa_history_log_internal_ds(newds, "receive", tx, " ");
1050 }
1051 
1052 static int
dmu_recv_resume_begin_check(void * arg,dmu_tx_t * tx)1053 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1054 {
1055 	dmu_recv_begin_arg_t *drba = arg;
1056 	dmu_recv_cookie_t *drc = drba->drba_cookie;
1057 	dsl_pool_t *dp = dmu_tx_pool(tx);
1058 	struct drr_begin *drrb = drc->drc_drrb;
1059 	int error;
1060 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1061 	dsl_dataset_t *ds;
1062 	const char *tofs = drc->drc_tofs;
1063 
1064 	/* already checked */
1065 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1066 	ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
1067 
1068 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1069 	    DMU_COMPOUNDSTREAM ||
1070 	    drrb->drr_type >= DMU_OST_NUMTYPES)
1071 		return (SET_ERROR(EINVAL));
1072 
1073 	/*
1074 	 * This is mostly a sanity check since we should have already done these
1075 	 * checks during a previous attempt to receive the data.
1076 	 */
1077 	error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
1078 	    dp->dp_spa);
1079 	if (error != 0)
1080 		return (error);
1081 
1082 	/* 6 extra bytes for /%recv */
1083 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1084 
1085 	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
1086 	    tofs, recv_clone_name);
1087 
1088 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
1089 		/* raw receives require spill block allocation flag */
1090 		if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
1091 			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
1092 	} else {
1093 		dsflags |= DS_HOLD_FLAG_DECRYPT;
1094 	}
1095 
1096 	boolean_t recvexist = B_TRUE;
1097 	if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
1098 		/* %recv does not exist; continue in tofs */
1099 		recvexist = B_FALSE;
1100 		error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
1101 		if (error != 0)
1102 			return (error);
1103 	}
1104 
1105 	/*
1106 	 * Resume of full/newfs recv on existing dataset should be done with
1107 	 * force flag
1108 	 */
1109 	if (recvexist && drrb->drr_fromguid == 0 && !drc->drc_force) {
1110 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1111 		return (SET_ERROR(ZFS_ERR_RESUME_EXISTS));
1112 	}
1113 
1114 	/* check that ds is marked inconsistent */
1115 	if (!DS_IS_INCONSISTENT(ds)) {
1116 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1117 		return (SET_ERROR(EINVAL));
1118 	}
1119 
1120 	/* check that there is resuming data, and that the toguid matches */
1121 	if (!dsl_dataset_is_zapified(ds)) {
1122 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1123 		return (SET_ERROR(EINVAL));
1124 	}
1125 	uint64_t val;
1126 	error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1127 	    DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1128 	if (error != 0 || drrb->drr_toguid != val) {
1129 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1130 		return (SET_ERROR(EINVAL));
1131 	}
1132 
1133 	/*
1134 	 * Check if the receive is still running.  If so, it will be owned.
1135 	 * Note that nothing else can own the dataset (e.g. after the receive
1136 	 * fails) because it will be marked inconsistent.
1137 	 */
1138 	if (dsl_dataset_has_owner(ds)) {
1139 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1140 		return (SET_ERROR(EBUSY));
1141 	}
1142 
1143 	/* There should not be any snapshots of this fs yet. */
1144 	if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1145 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1146 		return (SET_ERROR(EINVAL));
1147 	}
1148 
1149 	/*
1150 	 * Note: resume point will be checked when we process the first WRITE
1151 	 * record.
1152 	 */
1153 
1154 	/* check that the origin matches */
1155 	val = 0;
1156 	(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1157 	    DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1158 	if (drrb->drr_fromguid != val) {
1159 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1160 		return (SET_ERROR(EINVAL));
1161 	}
1162 
1163 	if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
1164 		drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1165 
1166 	/*
1167 	 * If we're resuming, and the send is redacted, then the original send
1168 	 * must have been redacted, and must have been redacted with respect to
1169 	 * the same snapshots.
1170 	 */
1171 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1172 		uint64_t num_ds_redact_snaps;
1173 		uint64_t *ds_redact_snaps;
1174 
1175 		uint_t num_stream_redact_snaps;
1176 		uint64_t *stream_redact_snaps;
1177 
1178 		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1179 		    BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1180 		    &num_stream_redact_snaps) != 0) {
1181 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
1182 			return (SET_ERROR(EINVAL));
1183 		}
1184 
1185 		if (!dsl_dataset_get_uint64_array_feature(ds,
1186 		    SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1187 		    &ds_redact_snaps)) {
1188 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
1189 			return (SET_ERROR(EINVAL));
1190 		}
1191 
1192 		for (int i = 0; i < num_ds_redact_snaps; i++) {
1193 			if (!redact_snaps_contains(ds_redact_snaps,
1194 			    num_ds_redact_snaps, stream_redact_snaps[i])) {
1195 				dsl_dataset_rele_flags(ds, dsflags, FTAG);
1196 				return (SET_ERROR(EINVAL));
1197 			}
1198 		}
1199 	}
1200 
1201 	error = recv_check_large_blocks(ds, drc->drc_featureflags);
1202 	if (error != 0) {
1203 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1204 		return (error);
1205 	}
1206 
1207 	dsl_dataset_rele_flags(ds, dsflags, FTAG);
1208 	return (0);
1209 }
1210 
1211 static void
dmu_recv_resume_begin_sync(void * arg,dmu_tx_t * tx)1212 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1213 {
1214 	dmu_recv_begin_arg_t *drba = arg;
1215 	dsl_pool_t *dp = dmu_tx_pool(tx);
1216 	const char *tofs = drba->drba_cookie->drc_tofs;
1217 	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
1218 	dsl_dataset_t *ds;
1219 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1220 	/* 6 extra bytes for /%recv */
1221 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1222 
1223 	(void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1224 	    recv_clone_name);
1225 
1226 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1227 		drba->drba_cookie->drc_raw = B_TRUE;
1228 	} else {
1229 		dsflags |= DS_HOLD_FLAG_DECRYPT;
1230 	}
1231 
1232 	if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1233 	    != 0) {
1234 		/* %recv does not exist; continue in tofs */
1235 		VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1236 		    &ds));
1237 		drba->drba_cookie->drc_newfs = B_TRUE;
1238 	}
1239 
1240 	ASSERT(DS_IS_INCONSISTENT(ds));
1241 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1242 	ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1243 	    drba->drba_cookie->drc_raw);
1244 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
1245 
1246 	drba->drba_cookie->drc_ds = ds;
1247 	VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
1248 	drba->drba_cookie->drc_should_save = B_TRUE;
1249 
1250 	spa_history_log_internal_ds(ds, "resume receive", tx, " ");
1251 }
1252 
1253 /*
1254  * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1255  * succeeds; otherwise we will leak the holds on the datasets.
1256  */
1257 int
dmu_recv_begin(const char * tofs,const char * tosnap,dmu_replay_record_t * drr_begin,boolean_t force,boolean_t heal,boolean_t resumable,nvlist_t * localprops,nvlist_t * hidden_args,const char * origin,dmu_recv_cookie_t * drc,zfs_file_t * fp,offset_t * voffp)1258 dmu_recv_begin(const char *tofs, const char *tosnap,
1259     dmu_replay_record_t *drr_begin, boolean_t force, boolean_t heal,
1260     boolean_t resumable, nvlist_t *localprops, nvlist_t *hidden_args,
1261     const char *origin, dmu_recv_cookie_t *drc, zfs_file_t *fp,
1262     offset_t *voffp)
1263 {
1264 	dmu_recv_begin_arg_t drba = { 0 };
1265 	int err = 0;
1266 
1267 	cred_t *cr = CRED();
1268 	crhold(cr);
1269 
1270 	memset(drc, 0, sizeof (dmu_recv_cookie_t));
1271 	drc->drc_drr_begin = drr_begin;
1272 	drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1273 	drc->drc_tosnap = tosnap;
1274 	drc->drc_tofs = tofs;
1275 	drc->drc_force = force;
1276 	drc->drc_heal = heal;
1277 	drc->drc_resumable = resumable;
1278 	drc->drc_cred = cr;
1279 	drc->drc_clone = (origin != NULL);
1280 
1281 	if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1282 		drc->drc_byteswap = B_TRUE;
1283 		(void) fletcher_4_incremental_byteswap(drr_begin,
1284 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1285 		byteswap_record(drr_begin);
1286 	} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1287 		(void) fletcher_4_incremental_native(drr_begin,
1288 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1289 	} else {
1290 		crfree(cr);
1291 		drc->drc_cred = NULL;
1292 		return (SET_ERROR(EINVAL));
1293 	}
1294 
1295 	drc->drc_fp = fp;
1296 	drc->drc_voff = *voffp;
1297 	drc->drc_featureflags =
1298 	    DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1299 
1300 	uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
1301 
1302 	/*
1303 	 * Since OpenZFS 2.0.0, we have enforced a 64MB limit in userspace
1304 	 * configurable via ZFS_SENDRECV_MAX_NVLIST. We enforce 256MB as a hard
1305 	 * upper limit. Systems with less than 1GB of RAM will see a lower
1306 	 * limit from `arc_all_memory() / 4`.
1307 	 */
1308 	if (payloadlen > (MIN((1U << 28), arc_all_memory() / 4))) {
1309 		crfree(cr);
1310 		drc->drc_cred = NULL;
1311 		return (SET_ERROR(E2BIG));
1312 	}
1313 
1314 	if (payloadlen != 0) {
1315 		void *payload = vmem_alloc(payloadlen, KM_SLEEP);
1316 		/*
1317 		 * For compatibility with recursive send streams, we don't do
1318 		 * this here if the stream could be part of a package. Instead,
1319 		 * we'll do it in dmu_recv_stream. If we pull the next header
1320 		 * too early, and it's the END record, we break the `recv_skip`
1321 		 * logic.
1322 		 */
1323 
1324 		err = receive_read_payload_and_next_header(drc, payloadlen,
1325 		    payload);
1326 		if (err != 0) {
1327 			vmem_free(payload, payloadlen);
1328 			crfree(cr);
1329 			drc->drc_cred = NULL;
1330 			return (err);
1331 		}
1332 		err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1333 		    KM_SLEEP);
1334 		vmem_free(payload, payloadlen);
1335 		if (err != 0) {
1336 			kmem_free(drc->drc_next_rrd,
1337 			    sizeof (*drc->drc_next_rrd));
1338 			crfree(cr);
1339 			drc->drc_cred = NULL;
1340 			return (err);
1341 		}
1342 	}
1343 
1344 	if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1345 		drc->drc_spill = B_TRUE;
1346 
1347 	drba.drba_origin = origin;
1348 	drba.drba_cookie = drc;
1349 	drba.drba_cred = drc->drc_cred;
1350 
1351 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1352 		err = dsl_sync_task(tofs,
1353 		    dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1354 		    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1355 	} else {
1356 		/*
1357 		 * For non-raw, non-incremental, non-resuming receives the
1358 		 * user can specify encryption parameters on the command line
1359 		 * with "zfs recv -o". For these receives we create a dcp and
1360 		 * pass it to the sync task. Creating the dcp will implicitly
1361 		 * remove the encryption params from the localprops nvlist,
1362 		 * which avoids errors when trying to set these normally
1363 		 * read-only properties. Any other kind of receive that
1364 		 * attempts to set these properties will fail as a result.
1365 		 */
1366 		if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1367 		    DMU_BACKUP_FEATURE_RAW) == 0 &&
1368 		    origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1369 			err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1370 			    localprops, hidden_args, &drba.drba_dcp);
1371 		}
1372 
1373 		if (err == 0) {
1374 			err = dsl_sync_task(tofs,
1375 			    dmu_recv_begin_check, dmu_recv_begin_sync,
1376 			    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1377 			dsl_crypto_params_free(drba.drba_dcp, !!err);
1378 		}
1379 	}
1380 
1381 	if (err != 0) {
1382 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1383 		nvlist_free(drc->drc_begin_nvl);
1384 		crfree(cr);
1385 		drc->drc_cred = NULL;
1386 	}
1387 	return (err);
1388 }
1389 
1390 /*
1391  * Holds data need for corrective recv callback
1392  */
1393 typedef struct cr_cb_data {
1394 	uint64_t size;
1395 	zbookmark_phys_t zb;
1396 	spa_t *spa;
1397 } cr_cb_data_t;
1398 
1399 static void
corrective_read_done(zio_t * zio)1400 corrective_read_done(zio_t *zio)
1401 {
1402 	cr_cb_data_t *data = zio->io_private;
1403 	/* Corruption corrected; update error log if needed */
1404 	if (zio->io_error == 0) {
1405 		spa_remove_error(data->spa, &data->zb,
1406 		    BP_GET_LOGICAL_BIRTH(zio->io_bp));
1407 	}
1408 	kmem_free(data, sizeof (cr_cb_data_t));
1409 	abd_free(zio->io_abd);
1410 }
1411 
1412 /*
1413  * zio_rewrite the data pointed to by bp with the data from the rrd's abd.
1414  */
1415 static int
do_corrective_recv(struct receive_writer_arg * rwa,struct drr_write * drrw,struct receive_record_arg * rrd,blkptr_t * bp)1416 do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw,
1417     struct receive_record_arg *rrd, blkptr_t *bp)
1418 {
1419 	int err;
1420 	zio_t *io;
1421 	zbookmark_phys_t zb;
1422 	dnode_t *dn;
1423 	abd_t *abd = rrd->abd;
1424 	zio_cksum_t bp_cksum = bp->blk_cksum;
1425 	zio_flag_t flags = ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_RETRY |
1426 	    ZIO_FLAG_CANFAIL;
1427 
1428 	if (rwa->raw)
1429 		flags |= ZIO_FLAG_RAW;
1430 
1431 	err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn);
1432 	if (err != 0)
1433 		return (err);
1434 	SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0,
1435 	    dbuf_whichblock(dn, 0, drrw->drr_offset));
1436 	dnode_rele(dn, FTAG);
1437 
1438 	if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) {
1439 		/* Decompress the stream data */
1440 		abd_t *dabd = abd_alloc_linear(
1441 		    drrw->drr_logical_size, B_FALSE);
1442 		err = zio_decompress_data(drrw->drr_compressiontype,
1443 		    abd, dabd, abd_get_size(abd),
1444 		    abd_get_size(dabd), NULL);
1445 
1446 		if (err != 0) {
1447 			abd_free(dabd);
1448 			return (err);
1449 		}
1450 		/* Swap in the newly decompressed data into the abd */
1451 		abd_free(abd);
1452 		abd = dabd;
1453 	}
1454 
1455 	if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
1456 		/* Recompress the data */
1457 		abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp),
1458 		    B_FALSE);
1459 		uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp),
1460 		    abd, &cabd, abd_get_size(abd), BP_GET_PSIZE(bp),
1461 		    rwa->os->os_complevel);
1462 		abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize);
1463 		/* Swap in newly compressed data into the abd */
1464 		abd_free(abd);
1465 		abd = cabd;
1466 		flags |= ZIO_FLAG_RAW_COMPRESS;
1467 	}
1468 
1469 	/*
1470 	 * The stream is not encrypted but the data on-disk is.
1471 	 * We need to re-encrypt the buf using the same
1472 	 * encryption type, salt, iv, and mac that was used to encrypt
1473 	 * the block previosly.
1474 	 */
1475 	if (!rwa->raw && BP_USES_CRYPT(bp)) {
1476 		dsl_dataset_t *ds;
1477 		dsl_crypto_key_t *dck = NULL;
1478 		uint8_t salt[ZIO_DATA_SALT_LEN];
1479 		uint8_t iv[ZIO_DATA_IV_LEN];
1480 		uint8_t mac[ZIO_DATA_MAC_LEN];
1481 		boolean_t no_crypt = B_FALSE;
1482 		dsl_pool_t *dp = dmu_objset_pool(rwa->os);
1483 		abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE);
1484 
1485 		zio_crypt_decode_params_bp(bp, salt, iv);
1486 		zio_crypt_decode_mac_bp(bp, mac);
1487 
1488 		dsl_pool_config_enter(dp, FTAG);
1489 		err = dsl_dataset_hold_flags(dp, rwa->tofs,
1490 		    DS_HOLD_FLAG_DECRYPT, FTAG, &ds);
1491 		if (err != 0) {
1492 			dsl_pool_config_exit(dp, FTAG);
1493 			abd_free(eabd);
1494 			return (SET_ERROR(EACCES));
1495 		}
1496 
1497 		/* Look up the key from the spa's keystore */
1498 		err = spa_keystore_lookup_key(rwa->os->os_spa,
1499 		    zb.zb_objset, FTAG, &dck);
1500 		if (err != 0) {
1501 			dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT,
1502 			    FTAG);
1503 			dsl_pool_config_exit(dp, FTAG);
1504 			abd_free(eabd);
1505 			return (SET_ERROR(EACCES));
1506 		}
1507 
1508 		err = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
1509 		    BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv,
1510 		    mac, abd_get_size(abd), abd, eabd, &no_crypt);
1511 
1512 		spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG);
1513 		dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
1514 		dsl_pool_config_exit(dp, FTAG);
1515 
1516 		ASSERT0(no_crypt);
1517 		if (err != 0) {
1518 			abd_free(eabd);
1519 			return (err);
1520 		}
1521 		/* Swap in the newly encrypted data into the abd */
1522 		abd_free(abd);
1523 		abd = eabd;
1524 
1525 		/*
1526 		 * We want to prevent zio_rewrite() from trying to
1527 		 * encrypt the data again
1528 		 */
1529 		flags |= ZIO_FLAG_RAW_ENCRYPT;
1530 	}
1531 	rrd->abd = abd;
1532 
1533 	io = zio_rewrite(NULL, rwa->os->os_spa, BP_GET_LOGICAL_BIRTH(bp), bp,
1534 	    abd, BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags,
1535 	    &zb);
1536 
1537 	ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) ||
1538 	    abd_get_size(abd) == BP_GET_PSIZE(bp));
1539 
1540 	/* compute new bp checksum value and make sure it matches the old one */
1541 	zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd));
1542 	if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) {
1543 		zio_destroy(io);
1544 		if (zfs_recv_best_effort_corrective != 0)
1545 			return (0);
1546 		return (SET_ERROR(ECKSUM));
1547 	}
1548 
1549 	/* Correct the corruption in place */
1550 	err = zio_wait(io);
1551 	if (err == 0) {
1552 		cr_cb_data_t *cb_data =
1553 		    kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP);
1554 		cb_data->spa = rwa->os->os_spa;
1555 		cb_data->size = drrw->drr_logical_size;
1556 		cb_data->zb = zb;
1557 		/* Test if healing worked by re-reading the bp */
1558 		err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp,
1559 		    abd_alloc_for_io(drrw->drr_logical_size, B_FALSE),
1560 		    drrw->drr_logical_size, corrective_read_done,
1561 		    cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL));
1562 	}
1563 	if (err != 0 && zfs_recv_best_effort_corrective != 0)
1564 		err = 0;
1565 
1566 	return (err);
1567 }
1568 
1569 static int
receive_read(dmu_recv_cookie_t * drc,int len,void * buf)1570 receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
1571 {
1572 	int done = 0;
1573 
1574 	/*
1575 	 * The code doesn't rely on this (lengths being multiples of 8).  See
1576 	 * comment in dump_bytes.
1577 	 */
1578 	ASSERT(len % 8 == 0 ||
1579 	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
1580 
1581 	while (done < len) {
1582 		ssize_t resid = len - done;
1583 		zfs_file_t *fp = drc->drc_fp;
1584 		int err = zfs_file_read(fp, (char *)buf + done,
1585 		    len - done, &resid);
1586 		if (err == 0 && resid == len - done) {
1587 			/*
1588 			 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1589 			 * that the receive was interrupted and can
1590 			 * potentially be resumed.
1591 			 */
1592 			err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
1593 		}
1594 		drc->drc_voff += len - done - resid;
1595 		done = len - resid;
1596 		if (err != 0)
1597 			return (err);
1598 	}
1599 
1600 	drc->drc_bytes_read += len;
1601 
1602 	ASSERT3U(done, ==, len);
1603 	return (0);
1604 }
1605 
1606 static inline uint8_t
deduce_nblkptr(dmu_object_type_t bonus_type,uint64_t bonus_size)1607 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1608 {
1609 	if (bonus_type == DMU_OT_SA) {
1610 		return (1);
1611 	} else {
1612 		return (1 +
1613 		    ((DN_OLD_MAX_BONUSLEN -
1614 		    MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1615 	}
1616 }
1617 
1618 static void
save_resume_state(struct receive_writer_arg * rwa,uint64_t object,uint64_t offset,dmu_tx_t * tx)1619 save_resume_state(struct receive_writer_arg *rwa,
1620     uint64_t object, uint64_t offset, dmu_tx_t *tx)
1621 {
1622 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1623 
1624 	if (!rwa->resumable)
1625 		return;
1626 
1627 	/*
1628 	 * We use ds_resume_bytes[] != 0 to indicate that we need to
1629 	 * update this on disk, so it must not be 0.
1630 	 */
1631 	ASSERT(rwa->bytes_read != 0);
1632 
1633 	/*
1634 	 * We only resume from write records, which have a valid
1635 	 * (non-meta-dnode) object number.
1636 	 */
1637 	ASSERT(object != 0);
1638 
1639 	/*
1640 	 * For resuming to work correctly, we must receive records in order,
1641 	 * sorted by object,offset.  This is checked by the callers, but
1642 	 * assert it here for good measure.
1643 	 */
1644 	ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1645 	ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1646 	    offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1647 	ASSERT3U(rwa->bytes_read, >=,
1648 	    rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1649 
1650 	rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1651 	rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1652 	rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1653 }
1654 
1655 static int
receive_object_is_same_generation(objset_t * os,uint64_t object,dmu_object_type_t old_bonus_type,dmu_object_type_t new_bonus_type,const void * new_bonus,boolean_t * samegenp)1656 receive_object_is_same_generation(objset_t *os, uint64_t object,
1657     dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1658     const void *new_bonus, boolean_t *samegenp)
1659 {
1660 	zfs_file_info_t zoi;
1661 	int err;
1662 
1663 	dmu_buf_t *old_bonus_dbuf;
1664 	err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1665 	if (err != 0)
1666 		return (err);
1667 	err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1668 	    &zoi);
1669 	dmu_buf_rele(old_bonus_dbuf, FTAG);
1670 	if (err != 0)
1671 		return (err);
1672 	uint64_t old_gen = zoi.zfi_generation;
1673 
1674 	err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1675 	if (err != 0)
1676 		return (err);
1677 	uint64_t new_gen = zoi.zfi_generation;
1678 
1679 	*samegenp = (old_gen == new_gen);
1680 	return (0);
1681 }
1682 
1683 static int
receive_handle_existing_object(const struct receive_writer_arg * rwa,const struct drr_object * drro,const dmu_object_info_t * doi,const void * bonus_data,uint64_t * object_to_hold,uint32_t * new_blksz)1684 receive_handle_existing_object(const struct receive_writer_arg *rwa,
1685     const struct drr_object *drro, const dmu_object_info_t *doi,
1686     const void *bonus_data,
1687     uint64_t *object_to_hold, uint32_t *new_blksz)
1688 {
1689 	uint32_t indblksz = drro->drr_indblkshift ?
1690 	    1ULL << drro->drr_indblkshift : 0;
1691 	int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1692 	    drro->drr_bonuslen);
1693 	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1694 	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
1695 	boolean_t do_free_range = B_FALSE;
1696 	int err;
1697 
1698 	*object_to_hold = drro->drr_object;
1699 
1700 	/* nblkptr should be bounded by the bonus size and type */
1701 	if (rwa->raw && nblkptr != drro->drr_nblkptr)
1702 		return (SET_ERROR(EINVAL));
1703 
1704 	/*
1705 	 * After the previous send stream, the sending system may
1706 	 * have freed this object, and then happened to re-allocate
1707 	 * this object number in a later txg. In this case, we are
1708 	 * receiving a different logical file, and the block size may
1709 	 * appear to be different.  i.e. we may have a different
1710 	 * block size for this object than what the send stream says.
1711 	 * In this case we need to remove the object's contents,
1712 	 * so that its structure can be changed and then its contents
1713 	 * entirely replaced by subsequent WRITE records.
1714 	 *
1715 	 * If this is a -L (--large-block) incremental stream, and
1716 	 * the previous stream was not -L, the block size may appear
1717 	 * to increase.  i.e. we may have a smaller block size for
1718 	 * this object than what the send stream says.  In this case
1719 	 * we need to keep the object's contents and block size
1720 	 * intact, so that we don't lose parts of the object's
1721 	 * contents that are not changed by this incremental send
1722 	 * stream.
1723 	 *
1724 	 * We can distinguish between the two above cases by using
1725 	 * the ZPL's generation number (see
1726 	 * receive_object_is_same_generation()).  However, we only
1727 	 * want to rely on the generation number when absolutely
1728 	 * necessary, because with raw receives, the generation is
1729 	 * encrypted.  We also want to minimize dependence on the
1730 	 * ZPL, so that other types of datasets can also be received
1731 	 * (e.g. ZVOLs, although note that ZVOLS currently do not
1732 	 * reallocate their objects or change their structure).
1733 	 * Therefore, we check a number of different cases where we
1734 	 * know it is safe to discard the object's contents, before
1735 	 * using the ZPL's generation number to make the above
1736 	 * distinction.
1737 	 */
1738 	if (drro->drr_blksz != doi->doi_data_block_size) {
1739 		if (rwa->raw) {
1740 			/*
1741 			 * RAW streams always have large blocks, so
1742 			 * we are sure that the data is not needed
1743 			 * due to changing --large-block to be on.
1744 			 * Which is fortunate since the bonus buffer
1745 			 * (which contains the ZPL generation) is
1746 			 * encrypted, and the key might not be
1747 			 * loaded.
1748 			 */
1749 			do_free_range = B_TRUE;
1750 		} else if (rwa->full) {
1751 			/*
1752 			 * This is a full send stream, so it always
1753 			 * replaces what we have.  Even if the
1754 			 * generation numbers happen to match, this
1755 			 * can not actually be the same logical file.
1756 			 * This is relevant when receiving a full
1757 			 * send as a clone.
1758 			 */
1759 			do_free_range = B_TRUE;
1760 		} else if (drro->drr_type !=
1761 		    DMU_OT_PLAIN_FILE_CONTENTS ||
1762 		    doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1763 			/*
1764 			 * PLAIN_FILE_CONTENTS are the only type of
1765 			 * objects that have ever been stored with
1766 			 * large blocks, so we don't need the special
1767 			 * logic below.  ZAP blocks can shrink (when
1768 			 * there's only one block), so we don't want
1769 			 * to hit the error below about block size
1770 			 * only increasing.
1771 			 */
1772 			do_free_range = B_TRUE;
1773 		} else if (doi->doi_max_offset <=
1774 		    doi->doi_data_block_size) {
1775 			/*
1776 			 * There is only one block.  We can free it,
1777 			 * because its contents will be replaced by a
1778 			 * WRITE record.  This can not be the no-L ->
1779 			 * -L case, because the no-L case would have
1780 			 * resulted in multiple blocks.  If we
1781 			 * supported -L -> no-L, it would not be safe
1782 			 * to free the file's contents.  Fortunately,
1783 			 * that is not allowed (see
1784 			 * recv_check_large_blocks()).
1785 			 */
1786 			do_free_range = B_TRUE;
1787 		} else {
1788 			boolean_t is_same_gen;
1789 			err = receive_object_is_same_generation(rwa->os,
1790 			    drro->drr_object, doi->doi_bonus_type,
1791 			    drro->drr_bonustype, bonus_data, &is_same_gen);
1792 			if (err != 0)
1793 				return (SET_ERROR(EINVAL));
1794 
1795 			if (is_same_gen) {
1796 				/*
1797 				 * This is the same logical file, and
1798 				 * the block size must be increasing.
1799 				 * It could only decrease if
1800 				 * --large-block was changed to be
1801 				 * off, which is checked in
1802 				 * recv_check_large_blocks().
1803 				 */
1804 				if (drro->drr_blksz <=
1805 				    doi->doi_data_block_size)
1806 					return (SET_ERROR(EINVAL));
1807 				/*
1808 				 * We keep the existing blocksize and
1809 				 * contents.
1810 				 */
1811 				*new_blksz =
1812 				    doi->doi_data_block_size;
1813 			} else {
1814 				do_free_range = B_TRUE;
1815 			}
1816 		}
1817 	}
1818 
1819 	/* nblkptr can only decrease if the object was reallocated */
1820 	if (nblkptr < doi->doi_nblkptr)
1821 		do_free_range = B_TRUE;
1822 
1823 	/* number of slots can only change on reallocation */
1824 	if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1825 		do_free_range = B_TRUE;
1826 
1827 	/*
1828 	 * For raw sends we also check a few other fields to
1829 	 * ensure we are preserving the objset structure exactly
1830 	 * as it was on the receive side:
1831 	 *     - A changed indirect block size
1832 	 *     - A smaller nlevels
1833 	 */
1834 	if (rwa->raw) {
1835 		if (indblksz != doi->doi_metadata_block_size)
1836 			do_free_range = B_TRUE;
1837 		if (drro->drr_nlevels < doi->doi_indirection)
1838 			do_free_range = B_TRUE;
1839 	}
1840 
1841 	if (do_free_range) {
1842 		err = dmu_free_long_range(rwa->os, drro->drr_object,
1843 		    0, DMU_OBJECT_END);
1844 		if (err != 0)
1845 			return (SET_ERROR(EINVAL));
1846 	}
1847 
1848 	/*
1849 	 * The dmu does not currently support decreasing nlevels or changing
1850 	 * indirect block size if there is already one, same as changing the
1851 	 * number of of dnode slots on an object.  For non-raw sends this
1852 	 * does not matter and the new object can just use the previous one's
1853 	 * parameters.  For raw sends, however, the structure of the received
1854 	 * dnode (including indirects and dnode slots) must match that of the
1855 	 * send side.  Therefore, instead of using dmu_object_reclaim(), we
1856 	 * must free the object completely and call dmu_object_claim_dnsize()
1857 	 * instead.
1858 	 */
1859 	if ((rwa->raw && ((doi->doi_indirection > 1 &&
1860 	    indblksz != doi->doi_metadata_block_size) ||
1861 	    drro->drr_nlevels < doi->doi_indirection)) ||
1862 	    dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1863 		err = dmu_free_long_object(rwa->os, drro->drr_object);
1864 		if (err != 0)
1865 			return (SET_ERROR(EINVAL));
1866 
1867 		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1868 		*object_to_hold = DMU_NEW_OBJECT;
1869 	}
1870 
1871 	/*
1872 	 * For raw receives, free everything beyond the new incoming
1873 	 * maxblkid. Normally this would be done with a DRR_FREE
1874 	 * record that would come after this DRR_OBJECT record is
1875 	 * processed. However, for raw receives we manually set the
1876 	 * maxblkid from the drr_maxblkid and so we must first free
1877 	 * everything above that blkid to ensure the DMU is always
1878 	 * consistent with itself. We will never free the first block
1879 	 * of the object here because a maxblkid of 0 could indicate
1880 	 * an object with a single block or one with no blocks. This
1881 	 * free may be skipped when dmu_free_long_range() was called
1882 	 * above since it covers the entire object's contents.
1883 	 */
1884 	if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1885 		err = dmu_free_long_range(rwa->os, drro->drr_object,
1886 		    (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1887 		    DMU_OBJECT_END);
1888 		if (err != 0)
1889 			return (SET_ERROR(EINVAL));
1890 	}
1891 	return (0);
1892 }
1893 
1894 noinline static int
receive_object(struct receive_writer_arg * rwa,struct drr_object * drro,void * data)1895 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1896     void *data)
1897 {
1898 	dmu_object_info_t doi;
1899 	dmu_tx_t *tx;
1900 	int err;
1901 	uint32_t new_blksz = drro->drr_blksz;
1902 	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1903 	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
1904 
1905 	if (drro->drr_type == DMU_OT_NONE ||
1906 	    !DMU_OT_IS_VALID(drro->drr_type) ||
1907 	    !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1908 	    drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1909 	    drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1910 	    P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1911 	    drro->drr_blksz < SPA_MINBLOCKSIZE ||
1912 	    drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1913 	    drro->drr_bonuslen >
1914 	    DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1915 	    dn_slots >
1916 	    (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
1917 		return (SET_ERROR(EINVAL));
1918 	}
1919 
1920 	if (rwa->raw) {
1921 		/*
1922 		 * We should have received a DRR_OBJECT_RANGE record
1923 		 * containing this block and stored it in rwa.
1924 		 */
1925 		if (drro->drr_object < rwa->or_firstobj ||
1926 		    drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1927 		    drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1928 		    drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1929 		    drro->drr_nlevels > DN_MAX_LEVELS ||
1930 		    drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1931 		    DN_SLOTS_TO_BONUSLEN(dn_slots) <
1932 		    drro->drr_raw_bonuslen)
1933 			return (SET_ERROR(EINVAL));
1934 	} else {
1935 		/*
1936 		 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1937 		 * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1938 		 */
1939 		if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1940 		    (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1941 			return (SET_ERROR(EINVAL));
1942 		}
1943 
1944 		if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1945 		    drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
1946 			return (SET_ERROR(EINVAL));
1947 		}
1948 	}
1949 
1950 	err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1951 
1952 	if (err != 0 && err != ENOENT && err != EEXIST)
1953 		return (SET_ERROR(EINVAL));
1954 
1955 	if (drro->drr_object > rwa->max_object)
1956 		rwa->max_object = drro->drr_object;
1957 
1958 	/*
1959 	 * If we are losing blkptrs or changing the block size this must
1960 	 * be a new file instance.  We must clear out the previous file
1961 	 * contents before we can change this type of metadata in the dnode.
1962 	 * Raw receives will also check that the indirect structure of the
1963 	 * dnode hasn't changed.
1964 	 */
1965 	uint64_t object_to_hold;
1966 	if (err == 0) {
1967 		err = receive_handle_existing_object(rwa, drro, &doi, data,
1968 		    &object_to_hold, &new_blksz);
1969 		if (err != 0)
1970 			return (err);
1971 	} else if (err == EEXIST) {
1972 		/*
1973 		 * The object requested is currently an interior slot of a
1974 		 * multi-slot dnode. This will be resolved when the next txg
1975 		 * is synced out, since the send stream will have told us
1976 		 * to free this slot when we freed the associated dnode
1977 		 * earlier in the stream.
1978 		 */
1979 		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1980 
1981 		if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1982 			return (SET_ERROR(EINVAL));
1983 
1984 		/* object was freed and we are about to allocate a new one */
1985 		object_to_hold = DMU_NEW_OBJECT;
1986 	} else {
1987 		/*
1988 		 * If the only record in this range so far was DRR_FREEOBJECTS
1989 		 * with at least one actually freed object, it's possible that
1990 		 * the block will now be converted to a hole. We need to wait
1991 		 * for the txg to sync to prevent races.
1992 		 */
1993 		if (rwa->or_need_sync == ORNS_YES)
1994 			txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1995 
1996 		/* object is free and we are about to allocate a new one */
1997 		object_to_hold = DMU_NEW_OBJECT;
1998 	}
1999 
2000 	/* Only relevant for the first object in the range */
2001 	rwa->or_need_sync = ORNS_NO;
2002 
2003 	/*
2004 	 * If this is a multi-slot dnode there is a chance that this
2005 	 * object will expand into a slot that is already used by
2006 	 * another object from the previous snapshot. We must free
2007 	 * these objects before we attempt to allocate the new dnode.
2008 	 */
2009 	if (dn_slots > 1) {
2010 		boolean_t need_sync = B_FALSE;
2011 
2012 		for (uint64_t slot = drro->drr_object + 1;
2013 		    slot < drro->drr_object + dn_slots;
2014 		    slot++) {
2015 			dmu_object_info_t slot_doi;
2016 
2017 			err = dmu_object_info(rwa->os, slot, &slot_doi);
2018 			if (err == ENOENT || err == EEXIST)
2019 				continue;
2020 			else if (err != 0)
2021 				return (err);
2022 
2023 			err = dmu_free_long_object(rwa->os, slot);
2024 			if (err != 0)
2025 				return (err);
2026 
2027 			need_sync = B_TRUE;
2028 		}
2029 
2030 		if (need_sync)
2031 			txg_wait_synced(dmu_objset_pool(rwa->os), 0);
2032 	}
2033 
2034 	tx = dmu_tx_create(rwa->os);
2035 	dmu_tx_hold_bonus(tx, object_to_hold);
2036 	dmu_tx_hold_write(tx, object_to_hold, 0, 0);
2037 	err = dmu_tx_assign(tx, DMU_TX_WAIT);
2038 	if (err != 0) {
2039 		dmu_tx_abort(tx);
2040 		return (err);
2041 	}
2042 
2043 	if (object_to_hold == DMU_NEW_OBJECT) {
2044 		/* Currently free, wants to be allocated */
2045 		err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
2046 		    drro->drr_type, new_blksz,
2047 		    drro->drr_bonustype, drro->drr_bonuslen,
2048 		    dn_slots << DNODE_SHIFT, tx);
2049 	} else if (drro->drr_type != doi.doi_type ||
2050 	    new_blksz != doi.doi_data_block_size ||
2051 	    drro->drr_bonustype != doi.doi_bonus_type ||
2052 	    drro->drr_bonuslen != doi.doi_bonus_size) {
2053 		/* Currently allocated, but with different properties */
2054 		err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
2055 		    drro->drr_type, new_blksz,
2056 		    drro->drr_bonustype, drro->drr_bonuslen,
2057 		    dn_slots << DNODE_SHIFT, rwa->spill ?
2058 		    DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
2059 	} else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
2060 		/*
2061 		 * Currently allocated, the existing version of this object
2062 		 * may reference a spill block that is no longer allocated
2063 		 * at the source and needs to be freed.
2064 		 */
2065 		err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
2066 	}
2067 
2068 	if (err != 0) {
2069 		dmu_tx_commit(tx);
2070 		return (SET_ERROR(EINVAL));
2071 	}
2072 
2073 	if (rwa->or_crypt_params_present) {
2074 		/*
2075 		 * Set the crypt params for the buffer associated with this
2076 		 * range of dnodes.  This causes the blkptr_t to have the
2077 		 * same crypt params (byteorder, salt, iv, mac) as on the
2078 		 * sending side.
2079 		 *
2080 		 * Since we are committing this tx now, it is possible for
2081 		 * the dnode block to end up on-disk with the incorrect MAC,
2082 		 * if subsequent objects in this block are received in a
2083 		 * different txg.  However, since the dataset is marked as
2084 		 * inconsistent, no code paths will do a non-raw read (or
2085 		 * decrypt the block / verify the MAC). The receive code and
2086 		 * scrub code can safely do raw reads and verify the
2087 		 * checksum.  They don't need to verify the MAC.
2088 		 */
2089 		dmu_buf_t *db = NULL;
2090 		uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
2091 
2092 		err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
2093 		    offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
2094 		if (err != 0) {
2095 			dmu_tx_commit(tx);
2096 			return (SET_ERROR(EINVAL));
2097 		}
2098 
2099 		dmu_buf_set_crypt_params(db, rwa->or_byteorder,
2100 		    rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
2101 
2102 		dmu_buf_rele(db, FTAG);
2103 
2104 		rwa->or_crypt_params_present = B_FALSE;
2105 	}
2106 
2107 	dmu_object_set_checksum(rwa->os, drro->drr_object,
2108 	    drro->drr_checksumtype, tx);
2109 	dmu_object_set_compress(rwa->os, drro->drr_object,
2110 	    drro->drr_compress, tx);
2111 
2112 	/* handle more restrictive dnode structuring for raw recvs */
2113 	if (rwa->raw) {
2114 		/*
2115 		 * Set the indirect block size, block shift, nlevels.
2116 		 * This will not fail because we ensured all of the
2117 		 * blocks were freed earlier if this is a new object.
2118 		 * For non-new objects block size and indirect block
2119 		 * shift cannot change and nlevels can only increase.
2120 		 */
2121 		ASSERT3U(new_blksz, ==, drro->drr_blksz);
2122 		VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
2123 		    drro->drr_blksz, drro->drr_indblkshift, tx));
2124 		VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
2125 		    drro->drr_nlevels, tx));
2126 
2127 		/*
2128 		 * Set the maxblkid. This will always succeed because
2129 		 * we freed all blocks beyond the new maxblkid above.
2130 		 */
2131 		VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
2132 		    drro->drr_maxblkid, tx));
2133 	}
2134 
2135 	if (data != NULL) {
2136 		dmu_buf_t *db;
2137 		dnode_t *dn;
2138 		uint32_t flags = DMU_READ_NO_PREFETCH;
2139 
2140 		if (rwa->raw)
2141 			flags |= DMU_READ_NO_DECRYPT;
2142 
2143 		VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
2144 		VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
2145 
2146 		dmu_buf_will_dirty(db, tx);
2147 
2148 		ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2149 		memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro));
2150 
2151 		/*
2152 		 * Raw bonus buffers have their byteorder determined by the
2153 		 * DRR_OBJECT_RANGE record.
2154 		 */
2155 		if (rwa->byteswap && !rwa->raw) {
2156 			dmu_object_byteswap_t byteswap =
2157 			    DMU_OT_BYTESWAP(drro->drr_bonustype);
2158 			dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2159 			    DRR_OBJECT_PAYLOAD_SIZE(drro));
2160 		}
2161 		dmu_buf_rele(db, FTAG);
2162 		dnode_rele(dn, FTAG);
2163 	}
2164 
2165 	/*
2166 	 * If the receive fails, we want the resume stream to start with the
2167 	 * same record that we last successfully received. There is no way to
2168 	 * request resume from the object record, but we can benefit from the
2169 	 * fact that sender always sends object record before anything else,
2170 	 * after which it will "resend" data at offset 0 and resume normally.
2171 	 */
2172 	save_resume_state(rwa, drro->drr_object, 0, tx);
2173 
2174 	dmu_tx_commit(tx);
2175 
2176 	return (0);
2177 }
2178 
2179 noinline static int
receive_freeobjects(struct receive_writer_arg * rwa,struct drr_freeobjects * drrfo)2180 receive_freeobjects(struct receive_writer_arg *rwa,
2181     struct drr_freeobjects *drrfo)
2182 {
2183 	uint64_t obj;
2184 	int next_err = 0;
2185 
2186 	if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2187 		return (SET_ERROR(EINVAL));
2188 
2189 	for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
2190 	    obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
2191 	    obj < DN_MAX_OBJECT && next_err == 0;
2192 	    next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2193 		dmu_object_info_t doi;
2194 		int err;
2195 
2196 		err = dmu_object_info(rwa->os, obj, &doi);
2197 		if (err == ENOENT)
2198 			continue;
2199 		else if (err != 0)
2200 			return (err);
2201 
2202 		err = dmu_free_long_object(rwa->os, obj);
2203 
2204 		if (err != 0)
2205 			return (err);
2206 
2207 		if (rwa->or_need_sync == ORNS_MAYBE)
2208 			rwa->or_need_sync = ORNS_YES;
2209 	}
2210 	if (next_err != ESRCH)
2211 		return (next_err);
2212 	return (0);
2213 }
2214 
2215 /*
2216  * Note: if this fails, the caller will clean up any records left on the
2217  * rwa->write_batch list.
2218  */
2219 static int
flush_write_batch_impl(struct receive_writer_arg * rwa)2220 flush_write_batch_impl(struct receive_writer_arg *rwa)
2221 {
2222 	dnode_t *dn;
2223 	int err;
2224 
2225 	if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
2226 		return (SET_ERROR(EINVAL));
2227 
2228 	struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
2229 	struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
2230 
2231 	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2232 	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2233 
2234 	ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
2235 	ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
2236 
2237 	dmu_tx_t *tx = dmu_tx_create(rwa->os);
2238 	dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
2239 	    last_drrw->drr_offset - first_drrw->drr_offset +
2240 	    last_drrw->drr_logical_size);
2241 	err = dmu_tx_assign(tx, DMU_TX_WAIT);
2242 	if (err != 0) {
2243 		dmu_tx_abort(tx);
2244 		dnode_rele(dn, FTAG);
2245 		return (err);
2246 	}
2247 
2248 	struct receive_record_arg *rrd;
2249 	while ((rrd = list_head(&rwa->write_batch)) != NULL) {
2250 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2251 		abd_t *abd = rrd->abd;
2252 
2253 		ASSERT3U(drrw->drr_object, ==, rwa->last_object);
2254 
2255 		if (drrw->drr_logical_size != dn->dn_datablksz) {
2256 			/*
2257 			 * The WRITE record is larger than the object's block
2258 			 * size.  We must be receiving an incremental
2259 			 * large-block stream into a dataset that previously did
2260 			 * a non-large-block receive.  Lightweight writes must
2261 			 * be exactly one block, so we need to decompress the
2262 			 * data (if compressed) and do a normal dmu_write().
2263 			 */
2264 			ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
2265 			if (DRR_WRITE_COMPRESSED(drrw)) {
2266 				abd_t *decomp_abd =
2267 				    abd_alloc_linear(drrw->drr_logical_size,
2268 				    B_FALSE);
2269 
2270 				err = zio_decompress_data(
2271 				    drrw->drr_compressiontype,
2272 				    abd, decomp_abd,
2273 				    abd_get_size(abd),
2274 				    abd_get_size(decomp_abd), NULL);
2275 
2276 				if (err == 0) {
2277 					dmu_write_by_dnode(dn,
2278 					    drrw->drr_offset,
2279 					    drrw->drr_logical_size,
2280 					    abd_to_buf(decomp_abd), tx);
2281 				}
2282 				abd_free(decomp_abd);
2283 			} else {
2284 				dmu_write_by_dnode(dn,
2285 				    drrw->drr_offset,
2286 				    drrw->drr_logical_size,
2287 				    abd_to_buf(abd), tx);
2288 			}
2289 			if (err == 0)
2290 				abd_free(abd);
2291 		} else {
2292 			zio_prop_t zp = {0};
2293 			dmu_write_policy(rwa->os, dn, 0, 0, &zp);
2294 
2295 			zio_flag_t zio_flags = 0;
2296 
2297 			if (rwa->raw) {
2298 				zp.zp_encrypt = B_TRUE;
2299 				zp.zp_compress = drrw->drr_compressiontype;
2300 				zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
2301 				    !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
2302 				    rwa->byteswap;
2303 				memcpy(zp.zp_salt, drrw->drr_salt,
2304 				    ZIO_DATA_SALT_LEN);
2305 				memcpy(zp.zp_iv, drrw->drr_iv,
2306 				    ZIO_DATA_IV_LEN);
2307 				memcpy(zp.zp_mac, drrw->drr_mac,
2308 				    ZIO_DATA_MAC_LEN);
2309 				if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
2310 					zp.zp_nopwrite = B_FALSE;
2311 					zp.zp_copies = MIN(zp.zp_copies,
2312 					    SPA_DVAS_PER_BP - 1);
2313 					zp.zp_gang_copies =
2314 					    MIN(zp.zp_gang_copies,
2315 					    SPA_DVAS_PER_BP - 1);
2316 				}
2317 				zio_flags |= ZIO_FLAG_RAW;
2318 			} else if (DRR_WRITE_COMPRESSED(drrw)) {
2319 				ASSERT3U(drrw->drr_compressed_size, >, 0);
2320 				ASSERT3U(drrw->drr_logical_size, >=,
2321 				    drrw->drr_compressed_size);
2322 				zp.zp_compress = drrw->drr_compressiontype;
2323 				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
2324 			} else if (rwa->byteswap) {
2325 				/*
2326 				 * Note: compressed blocks never need to be
2327 				 * byteswapped, because WRITE records for
2328 				 * metadata blocks are never compressed. The
2329 				 * exception is raw streams, which are written
2330 				 * in the original byteorder, and the byteorder
2331 				 * bit is preserved in the BP by setting
2332 				 * zp_byteorder above.
2333 				 */
2334 				dmu_object_byteswap_t byteswap =
2335 				    DMU_OT_BYTESWAP(drrw->drr_type);
2336 				dmu_ot_byteswap[byteswap].ob_func(
2337 				    abd_to_buf(abd),
2338 				    DRR_WRITE_PAYLOAD_SIZE(drrw));
2339 			}
2340 
2341 			/*
2342 			 * Since this data can't be read until the receive
2343 			 * completes, we can do a "lightweight" write for
2344 			 * improved performance.
2345 			 */
2346 			err = dmu_lightweight_write_by_dnode(dn,
2347 			    drrw->drr_offset, abd, &zp, zio_flags, tx);
2348 		}
2349 
2350 		if (err != 0) {
2351 			/*
2352 			 * This rrd is left on the list, so the caller will
2353 			 * free it (and the abd).
2354 			 */
2355 			break;
2356 		}
2357 
2358 		/*
2359 		 * Note: If the receive fails, we want the resume stream to
2360 		 * start with the same record that we last successfully
2361 		 * received (as opposed to the next record), so that we can
2362 		 * verify that we are resuming from the correct location.
2363 		 */
2364 		save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2365 
2366 		list_remove(&rwa->write_batch, rrd);
2367 		kmem_free(rrd, sizeof (*rrd));
2368 	}
2369 
2370 	dmu_tx_commit(tx);
2371 	dnode_rele(dn, FTAG);
2372 	return (err);
2373 }
2374 
2375 noinline static int
flush_write_batch(struct receive_writer_arg * rwa)2376 flush_write_batch(struct receive_writer_arg *rwa)
2377 {
2378 	if (list_is_empty(&rwa->write_batch))
2379 		return (0);
2380 	int err = rwa->err;
2381 	if (err == 0)
2382 		err = flush_write_batch_impl(rwa);
2383 	if (err != 0) {
2384 		struct receive_record_arg *rrd;
2385 		while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
2386 			abd_free(rrd->abd);
2387 			kmem_free(rrd, sizeof (*rrd));
2388 		}
2389 	}
2390 	ASSERT(list_is_empty(&rwa->write_batch));
2391 	return (err);
2392 }
2393 
2394 noinline static int
receive_process_write_record(struct receive_writer_arg * rwa,struct receive_record_arg * rrd)2395 receive_process_write_record(struct receive_writer_arg *rwa,
2396     struct receive_record_arg *rrd)
2397 {
2398 	int err = 0;
2399 
2400 	ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2401 	struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2402 
2403 	if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2404 	    !DMU_OT_IS_VALID(drrw->drr_type))
2405 		return (SET_ERROR(EINVAL));
2406 
2407 	if (rwa->heal) {
2408 		blkptr_t *bp;
2409 		dmu_buf_t *dbp;
2410 		int flags = DB_RF_CANFAIL;
2411 
2412 		if (rwa->raw)
2413 			flags |= DB_RF_NO_DECRYPT;
2414 
2415 		if (rwa->byteswap) {
2416 			dmu_object_byteswap_t byteswap =
2417 			    DMU_OT_BYTESWAP(drrw->drr_type);
2418 			dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd),
2419 			    DRR_WRITE_PAYLOAD_SIZE(drrw));
2420 		}
2421 
2422 		err = dmu_buf_hold_noread(rwa->os, drrw->drr_object,
2423 		    drrw->drr_offset, FTAG, &dbp);
2424 		if (err != 0)
2425 			return (err);
2426 
2427 		/* Try to read the object to see if it needs healing */
2428 		err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags);
2429 		/*
2430 		 * We only try to heal when dbuf_read() returns a ECKSUMs.
2431 		 * Other errors (even EIO) get returned to caller.
2432 		 * EIO indicates that the device is not present/accessible,
2433 		 * so writing to it will likely fail.
2434 		 * If the block is healthy, we don't want to overwrite it
2435 		 * unnecessarily.
2436 		 */
2437 		if (err != ECKSUM) {
2438 			dmu_buf_rele(dbp, FTAG);
2439 			return (err);
2440 		}
2441 		/* Make sure the on-disk block and recv record sizes match */
2442 		if (drrw->drr_logical_size != dbp->db_size) {
2443 			err = ENOTSUP;
2444 			dmu_buf_rele(dbp, FTAG);
2445 			return (err);
2446 		}
2447 		/* Get the block pointer for the corrupted block */
2448 		bp = dmu_buf_get_blkptr(dbp);
2449 		err = do_corrective_recv(rwa, drrw, rrd, bp);
2450 		dmu_buf_rele(dbp, FTAG);
2451 		return (err);
2452 	}
2453 
2454 	/*
2455 	 * For resuming to work, records must be in increasing order
2456 	 * by (object, offset).
2457 	 */
2458 	if (drrw->drr_object < rwa->last_object ||
2459 	    (drrw->drr_object == rwa->last_object &&
2460 	    drrw->drr_offset < rwa->last_offset)) {
2461 		return (SET_ERROR(EINVAL));
2462 	}
2463 
2464 	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2465 	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2466 	uint64_t batch_size =
2467 	    MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2468 	if (first_rrd != NULL &&
2469 	    (drrw->drr_object != first_drrw->drr_object ||
2470 	    drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2471 		err = flush_write_batch(rwa);
2472 		if (err != 0)
2473 			return (err);
2474 	}
2475 
2476 	rwa->last_object = drrw->drr_object;
2477 	rwa->last_offset = drrw->drr_offset;
2478 
2479 	if (rwa->last_object > rwa->max_object)
2480 		rwa->max_object = rwa->last_object;
2481 
2482 	list_insert_tail(&rwa->write_batch, rrd);
2483 	/*
2484 	 * Return EAGAIN to indicate that we will use this rrd again,
2485 	 * so the caller should not free it
2486 	 */
2487 	return (EAGAIN);
2488 }
2489 
2490 static int
receive_write_embedded(struct receive_writer_arg * rwa,struct drr_write_embedded * drrwe,void * data)2491 receive_write_embedded(struct receive_writer_arg *rwa,
2492     struct drr_write_embedded *drrwe, void *data)
2493 {
2494 	dmu_tx_t *tx;
2495 	int err;
2496 
2497 	if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2498 		return (SET_ERROR(EINVAL));
2499 
2500 	if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2501 		return (SET_ERROR(EINVAL));
2502 
2503 	if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2504 		return (SET_ERROR(EINVAL));
2505 	if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2506 		return (SET_ERROR(EINVAL));
2507 	if (rwa->raw)
2508 		return (SET_ERROR(EINVAL));
2509 
2510 	if (drrwe->drr_object > rwa->max_object)
2511 		rwa->max_object = drrwe->drr_object;
2512 
2513 	tx = dmu_tx_create(rwa->os);
2514 
2515 	dmu_tx_hold_write(tx, drrwe->drr_object,
2516 	    drrwe->drr_offset, drrwe->drr_length);
2517 	err = dmu_tx_assign(tx, DMU_TX_WAIT);
2518 	if (err != 0) {
2519 		dmu_tx_abort(tx);
2520 		return (err);
2521 	}
2522 
2523 	dmu_write_embedded(rwa->os, drrwe->drr_object,
2524 	    drrwe->drr_offset, data, drrwe->drr_etype,
2525 	    drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2526 	    rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2527 
2528 	/* See comment in restore_write. */
2529 	save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2530 	dmu_tx_commit(tx);
2531 	return (0);
2532 }
2533 
2534 static int
receive_spill(struct receive_writer_arg * rwa,struct drr_spill * drrs,abd_t * abd)2535 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2536     abd_t *abd)
2537 {
2538 	dmu_buf_t *db, *db_spill;
2539 	int err;
2540 
2541 	if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2542 	    drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2543 		return (SET_ERROR(EINVAL));
2544 
2545 	/*
2546 	 * This is an unmodified spill block which was added to the stream
2547 	 * to resolve an issue with incorrectly removing spill blocks.  It
2548 	 * should be ignored by current versions of the code which support
2549 	 * the DRR_FLAG_SPILL_BLOCK flag.
2550 	 */
2551 	if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
2552 		abd_free(abd);
2553 		return (0);
2554 	}
2555 
2556 	if (rwa->raw) {
2557 		if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2558 		    drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2559 		    drrs->drr_compressed_size == 0)
2560 			return (SET_ERROR(EINVAL));
2561 	}
2562 
2563 	if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2564 		return (SET_ERROR(EINVAL));
2565 
2566 	if (drrs->drr_object > rwa->max_object)
2567 		rwa->max_object = drrs->drr_object;
2568 
2569 	VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2570 	if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2571 	    &db_spill)) != 0) {
2572 		dmu_buf_rele(db, FTAG);
2573 		return (err);
2574 	}
2575 
2576 	dmu_tx_t *tx = dmu_tx_create(rwa->os);
2577 
2578 	dmu_tx_hold_spill(tx, db->db_object);
2579 
2580 	err = dmu_tx_assign(tx, DMU_TX_WAIT);
2581 	if (err != 0) {
2582 		dmu_buf_rele(db, FTAG);
2583 		dmu_buf_rele(db_spill, FTAG);
2584 		dmu_tx_abort(tx);
2585 		return (err);
2586 	}
2587 
2588 	/*
2589 	 * Spill blocks may both grow and shrink.  When a change in size
2590 	 * occurs any existing dbuf must be updated to match the logical
2591 	 * size of the provided arc_buf_t.
2592 	 */
2593 	if (db_spill->db_size != drrs->drr_length) {
2594 		dmu_buf_will_fill(db_spill, tx, B_FALSE);
2595 		VERIFY0(dbuf_spill_set_blksz(db_spill,
2596 		    drrs->drr_length, tx));
2597 	}
2598 
2599 	arc_buf_t *abuf;
2600 	if (rwa->raw) {
2601 		boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2602 		    !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2603 		    rwa->byteswap;
2604 
2605 		abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
2606 		    drrs->drr_object, byteorder, drrs->drr_salt,
2607 		    drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2608 		    drrs->drr_compressed_size, drrs->drr_length,
2609 		    drrs->drr_compressiontype, 0);
2610 	} else {
2611 		abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
2612 		    DMU_OT_IS_METADATA(drrs->drr_type),
2613 		    drrs->drr_length);
2614 		if (rwa->byteswap) {
2615 			dmu_object_byteswap_t byteswap =
2616 			    DMU_OT_BYTESWAP(drrs->drr_type);
2617 			dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
2618 			    DRR_SPILL_PAYLOAD_SIZE(drrs));
2619 		}
2620 	}
2621 
2622 	memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs));
2623 	abd_free(abd);
2624 	dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2625 
2626 	dmu_buf_rele(db, FTAG);
2627 	dmu_buf_rele(db_spill, FTAG);
2628 
2629 	dmu_tx_commit(tx);
2630 	return (0);
2631 }
2632 
2633 noinline static int
receive_free(struct receive_writer_arg * rwa,struct drr_free * drrf)2634 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2635 {
2636 	int err;
2637 
2638 	if (drrf->drr_length != -1ULL &&
2639 	    drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2640 		return (SET_ERROR(EINVAL));
2641 
2642 	if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2643 		return (SET_ERROR(EINVAL));
2644 
2645 	if (drrf->drr_object > rwa->max_object)
2646 		rwa->max_object = drrf->drr_object;
2647 
2648 	err = dmu_free_long_range(rwa->os, drrf->drr_object,
2649 	    drrf->drr_offset, drrf->drr_length);
2650 
2651 	return (err);
2652 }
2653 
2654 static int
receive_object_range(struct receive_writer_arg * rwa,struct drr_object_range * drror)2655 receive_object_range(struct receive_writer_arg *rwa,
2656     struct drr_object_range *drror)
2657 {
2658 	/*
2659 	 * By default, we assume this block is in our native format
2660 	 * (ZFS_HOST_BYTEORDER). We then take into account whether
2661 	 * the send stream is byteswapped (rwa->byteswap). Finally,
2662 	 * we need to byteswap again if this particular block was
2663 	 * in non-native format on the send side.
2664 	 */
2665 	boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2666 	    !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2667 
2668 	/*
2669 	 * Since dnode block sizes are constant, we should not need to worry
2670 	 * about making sure that the dnode block size is the same on the
2671 	 * sending and receiving sides for the time being. For non-raw sends,
2672 	 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2673 	 * record at all). Raw sends require this record type because the
2674 	 * encryption parameters are used to protect an entire block of bonus
2675 	 * buffers. If the size of dnode blocks ever becomes variable,
2676 	 * handling will need to be added to ensure that dnode block sizes
2677 	 * match on the sending and receiving side.
2678 	 */
2679 	if (drror->drr_numslots != DNODES_PER_BLOCK ||
2680 	    P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2681 	    !rwa->raw)
2682 		return (SET_ERROR(EINVAL));
2683 
2684 	if (drror->drr_firstobj > rwa->max_object)
2685 		rwa->max_object = drror->drr_firstobj;
2686 
2687 	/*
2688 	 * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2689 	 * so that the block of dnodes is not written out when it's empty,
2690 	 * and converted to a HOLE BP.
2691 	 */
2692 	rwa->or_crypt_params_present = B_TRUE;
2693 	rwa->or_firstobj = drror->drr_firstobj;
2694 	rwa->or_numslots = drror->drr_numslots;
2695 	memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN);
2696 	memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN);
2697 	memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN);
2698 	rwa->or_byteorder = byteorder;
2699 
2700 	rwa->or_need_sync = ORNS_MAYBE;
2701 
2702 	return (0);
2703 }
2704 
2705 /*
2706  * Until we have the ability to redact large ranges of data efficiently, we
2707  * process these records as frees.
2708  */
2709 noinline static int
receive_redact(struct receive_writer_arg * rwa,struct drr_redact * drrr)2710 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2711 {
2712 	struct drr_free drrf = {0};
2713 	drrf.drr_length = drrr->drr_length;
2714 	drrf.drr_object = drrr->drr_object;
2715 	drrf.drr_offset = drrr->drr_offset;
2716 	drrf.drr_toguid = drrr->drr_toguid;
2717 	return (receive_free(rwa, &drrf));
2718 }
2719 
2720 /* used to destroy the drc_ds on error */
2721 static void
dmu_recv_cleanup_ds(dmu_recv_cookie_t * drc)2722 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2723 {
2724 	dsl_dataset_t *ds = drc->drc_ds;
2725 	ds_hold_flags_t dsflags;
2726 
2727 	dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2728 	/*
2729 	 * Wait for the txg sync before cleaning up the receive. For
2730 	 * resumable receives, this ensures that our resume state has
2731 	 * been written out to disk. For raw receives, this ensures
2732 	 * that the user accounting code will not attempt to do anything
2733 	 * after we stopped receiving the dataset.
2734 	 */
2735 	txg_wait_synced(ds->ds_dir->dd_pool, 0);
2736 	ds->ds_objset->os_raw_receive = B_FALSE;
2737 
2738 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2739 	if (drc->drc_resumable && drc->drc_should_save &&
2740 	    !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
2741 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
2742 		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2743 	} else {
2744 		char name[ZFS_MAX_DATASET_NAME_LEN];
2745 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
2746 		dsl_dataset_name(ds, name);
2747 		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2748 		if (!drc->drc_heal)
2749 			(void) dsl_destroy_head(name);
2750 	}
2751 }
2752 
2753 static void
receive_cksum(dmu_recv_cookie_t * drc,int len,void * buf)2754 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
2755 {
2756 	if (drc->drc_byteswap) {
2757 		(void) fletcher_4_incremental_byteswap(buf, len,
2758 		    &drc->drc_cksum);
2759 	} else {
2760 		(void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
2761 	}
2762 }
2763 
2764 /*
2765  * Read the payload into a buffer of size len, and update the current record's
2766  * payload field.
2767  * Allocate drc->drc_next_rrd and read the next record's header into
2768  * drc->drc_next_rrd->header.
2769  * Verify checksum of payload and next record.
2770  */
2771 static int
receive_read_payload_and_next_header(dmu_recv_cookie_t * drc,int len,void * buf)2772 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
2773 {
2774 	int err;
2775 
2776 	if (len != 0) {
2777 		ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2778 		err = receive_read(drc, len, buf);
2779 		if (err != 0)
2780 			return (err);
2781 		receive_cksum(drc, len, buf);
2782 
2783 		/* note: rrd is NULL when reading the begin record's payload */
2784 		if (drc->drc_rrd != NULL) {
2785 			drc->drc_rrd->payload = buf;
2786 			drc->drc_rrd->payload_size = len;
2787 			drc->drc_rrd->bytes_read = drc->drc_bytes_read;
2788 		}
2789 	} else {
2790 		ASSERT3P(buf, ==, NULL);
2791 	}
2792 
2793 	drc->drc_prev_cksum = drc->drc_cksum;
2794 
2795 	drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2796 	err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2797 	    &drc->drc_next_rrd->header);
2798 	drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
2799 
2800 	if (err != 0) {
2801 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2802 		drc->drc_next_rrd = NULL;
2803 		return (err);
2804 	}
2805 	if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2806 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2807 		drc->drc_next_rrd = NULL;
2808 		return (SET_ERROR(EINVAL));
2809 	}
2810 
2811 	/*
2812 	 * Note: checksum is of everything up to but not including the
2813 	 * checksum itself.
2814 	 */
2815 	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2816 	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2817 	receive_cksum(drc,
2818 	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2819 	    &drc->drc_next_rrd->header);
2820 
2821 	zio_cksum_t cksum_orig =
2822 	    drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2823 	zio_cksum_t *cksump =
2824 	    &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2825 
2826 	if (drc->drc_byteswap)
2827 		byteswap_record(&drc->drc_next_rrd->header);
2828 
2829 	if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2830 	    !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2831 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2832 		drc->drc_next_rrd = NULL;
2833 		return (SET_ERROR(ECKSUM));
2834 	}
2835 
2836 	receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
2837 
2838 	return (0);
2839 }
2840 
2841 /*
2842  * Issue the prefetch reads for any necessary indirect blocks.
2843  *
2844  * We use the object ignore list to tell us whether or not to issue prefetches
2845  * for a given object.  We do this for both correctness (in case the blocksize
2846  * of an object has changed) and performance (if the object doesn't exist, don't
2847  * needlessly try to issue prefetches).  We also trim the list as we go through
2848  * the stream to prevent it from growing to an unbounded size.
2849  *
2850  * The object numbers within will always be in sorted order, and any write
2851  * records we see will also be in sorted order, but they're not sorted with
2852  * respect to each other (i.e. we can get several object records before
2853  * receiving each object's write records).  As a result, once we've reached a
2854  * given object number, we can safely remove any reference to lower object
2855  * numbers in the ignore list. In practice, we receive up to 32 object records
2856  * before receiving write records, so the list can have up to 32 nodes in it.
2857  */
2858 static void
receive_read_prefetch(dmu_recv_cookie_t * drc,uint64_t object,uint64_t offset,uint64_t length)2859 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2860     uint64_t length)
2861 {
2862 	if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2863 		dmu_prefetch(drc->drc_os, object, 1, offset, length,
2864 		    ZIO_PRIORITY_SYNC_READ);
2865 	}
2866 }
2867 
2868 /*
2869  * Read records off the stream, issuing any necessary prefetches.
2870  */
2871 static int
receive_read_record(dmu_recv_cookie_t * drc)2872 receive_read_record(dmu_recv_cookie_t *drc)
2873 {
2874 	int err;
2875 
2876 	switch (drc->drc_rrd->header.drr_type) {
2877 	case DRR_OBJECT:
2878 	{
2879 		struct drr_object *drro =
2880 		    &drc->drc_rrd->header.drr_u.drr_object;
2881 		uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
2882 		void *buf = NULL;
2883 		dmu_object_info_t doi;
2884 
2885 		if (size != 0)
2886 			buf = kmem_zalloc(size, KM_SLEEP);
2887 
2888 		err = receive_read_payload_and_next_header(drc, size, buf);
2889 		if (err != 0) {
2890 			kmem_free(buf, size);
2891 			return (err);
2892 		}
2893 		err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
2894 		/*
2895 		 * See receive_read_prefetch for an explanation why we're
2896 		 * storing this object in the ignore_obj_list.
2897 		 */
2898 		if (err == ENOENT || err == EEXIST ||
2899 		    (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2900 			objlist_insert(drc->drc_ignore_objlist,
2901 			    drro->drr_object);
2902 			err = 0;
2903 		}
2904 		return (err);
2905 	}
2906 	case DRR_FREEOBJECTS:
2907 	{
2908 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2909 		return (err);
2910 	}
2911 	case DRR_WRITE:
2912 	{
2913 		struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
2914 		int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
2915 		abd_t *abd = abd_alloc_linear(size, B_FALSE);
2916 		err = receive_read_payload_and_next_header(drc, size,
2917 		    abd_to_buf(abd));
2918 		if (err != 0) {
2919 			abd_free(abd);
2920 			return (err);
2921 		}
2922 		drc->drc_rrd->abd = abd;
2923 		receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
2924 		    drrw->drr_logical_size);
2925 		return (err);
2926 	}
2927 	case DRR_WRITE_EMBEDDED:
2928 	{
2929 		struct drr_write_embedded *drrwe =
2930 		    &drc->drc_rrd->header.drr_u.drr_write_embedded;
2931 		uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2932 		void *buf = kmem_zalloc(size, KM_SLEEP);
2933 
2934 		err = receive_read_payload_and_next_header(drc, size, buf);
2935 		if (err != 0) {
2936 			kmem_free(buf, size);
2937 			return (err);
2938 		}
2939 
2940 		receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
2941 		    drrwe->drr_length);
2942 		return (err);
2943 	}
2944 	case DRR_FREE:
2945 	case DRR_REDACT:
2946 	{
2947 		/*
2948 		 * It might be beneficial to prefetch indirect blocks here, but
2949 		 * we don't really have the data to decide for sure.
2950 		 */
2951 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2952 		return (err);
2953 	}
2954 	case DRR_END:
2955 	{
2956 		struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2957 		if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2958 		    drre->drr_checksum))
2959 			return (SET_ERROR(ECKSUM));
2960 		return (0);
2961 	}
2962 	case DRR_SPILL:
2963 	{
2964 		struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
2965 		int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
2966 		abd_t *abd = abd_alloc_linear(size, B_FALSE);
2967 		err = receive_read_payload_and_next_header(drc, size,
2968 		    abd_to_buf(abd));
2969 		if (err != 0)
2970 			abd_free(abd);
2971 		else
2972 			drc->drc_rrd->abd = abd;
2973 		return (err);
2974 	}
2975 	case DRR_OBJECT_RANGE:
2976 	{
2977 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2978 		return (err);
2979 
2980 	}
2981 	default:
2982 		return (SET_ERROR(EINVAL));
2983 	}
2984 }
2985 
2986 
2987 
2988 static void
dprintf_drr(struct receive_record_arg * rrd,int err)2989 dprintf_drr(struct receive_record_arg *rrd, int err)
2990 {
2991 #ifdef ZFS_DEBUG
2992 	switch (rrd->header.drr_type) {
2993 	case DRR_OBJECT:
2994 	{
2995 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
2996 		dprintf("drr_type = OBJECT obj = %llu type = %u "
2997 		    "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2998 		    "compress = %u dn_slots = %u err = %d\n",
2999 		    (u_longlong_t)drro->drr_object, drro->drr_type,
3000 		    drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
3001 		    drro->drr_checksumtype, drro->drr_compress,
3002 		    drro->drr_dn_slots, err);
3003 		break;
3004 	}
3005 	case DRR_FREEOBJECTS:
3006 	{
3007 		struct drr_freeobjects *drrfo =
3008 		    &rrd->header.drr_u.drr_freeobjects;
3009 		dprintf("drr_type = FREEOBJECTS firstobj = %llu "
3010 		    "numobjs = %llu err = %d\n",
3011 		    (u_longlong_t)drrfo->drr_firstobj,
3012 		    (u_longlong_t)drrfo->drr_numobjs, err);
3013 		break;
3014 	}
3015 	case DRR_WRITE:
3016 	{
3017 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
3018 		dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
3019 		    "lsize = %llu cksumtype = %u flags = %u "
3020 		    "compress = %u psize = %llu err = %d\n",
3021 		    (u_longlong_t)drrw->drr_object, drrw->drr_type,
3022 		    (u_longlong_t)drrw->drr_offset,
3023 		    (u_longlong_t)drrw->drr_logical_size,
3024 		    drrw->drr_checksumtype, drrw->drr_flags,
3025 		    drrw->drr_compressiontype,
3026 		    (u_longlong_t)drrw->drr_compressed_size, err);
3027 		break;
3028 	}
3029 	case DRR_WRITE_BYREF:
3030 	{
3031 		struct drr_write_byref *drrwbr =
3032 		    &rrd->header.drr_u.drr_write_byref;
3033 		dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
3034 		    "length = %llu toguid = %llx refguid = %llx "
3035 		    "refobject = %llu refoffset = %llu cksumtype = %u "
3036 		    "flags = %u err = %d\n",
3037 		    (u_longlong_t)drrwbr->drr_object,
3038 		    (u_longlong_t)drrwbr->drr_offset,
3039 		    (u_longlong_t)drrwbr->drr_length,
3040 		    (u_longlong_t)drrwbr->drr_toguid,
3041 		    (u_longlong_t)drrwbr->drr_refguid,
3042 		    (u_longlong_t)drrwbr->drr_refobject,
3043 		    (u_longlong_t)drrwbr->drr_refoffset,
3044 		    drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
3045 		break;
3046 	}
3047 	case DRR_WRITE_EMBEDDED:
3048 	{
3049 		struct drr_write_embedded *drrwe =
3050 		    &rrd->header.drr_u.drr_write_embedded;
3051 		dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
3052 		    "length = %llu compress = %u etype = %u lsize = %u "
3053 		    "psize = %u err = %d\n",
3054 		    (u_longlong_t)drrwe->drr_object,
3055 		    (u_longlong_t)drrwe->drr_offset,
3056 		    (u_longlong_t)drrwe->drr_length,
3057 		    drrwe->drr_compression, drrwe->drr_etype,
3058 		    drrwe->drr_lsize, drrwe->drr_psize, err);
3059 		break;
3060 	}
3061 	case DRR_FREE:
3062 	{
3063 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3064 		dprintf("drr_type = FREE obj = %llu offset = %llu "
3065 		    "length = %lld err = %d\n",
3066 		    (u_longlong_t)drrf->drr_object,
3067 		    (u_longlong_t)drrf->drr_offset,
3068 		    (longlong_t)drrf->drr_length,
3069 		    err);
3070 		break;
3071 	}
3072 	case DRR_SPILL:
3073 	{
3074 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3075 		dprintf("drr_type = SPILL obj = %llu length = %llu "
3076 		    "err = %d\n", (u_longlong_t)drrs->drr_object,
3077 		    (u_longlong_t)drrs->drr_length, err);
3078 		break;
3079 	}
3080 	case DRR_OBJECT_RANGE:
3081 	{
3082 		struct drr_object_range *drror =
3083 		    &rrd->header.drr_u.drr_object_range;
3084 		dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
3085 		    "numslots = %llu flags = %u err = %d\n",
3086 		    (u_longlong_t)drror->drr_firstobj,
3087 		    (u_longlong_t)drror->drr_numslots,
3088 		    drror->drr_flags, err);
3089 		break;
3090 	}
3091 	default:
3092 		return;
3093 	}
3094 #endif
3095 }
3096 
3097 /*
3098  * Commit the records to the pool.
3099  */
3100 static int
receive_process_record(struct receive_writer_arg * rwa,struct receive_record_arg * rrd)3101 receive_process_record(struct receive_writer_arg *rwa,
3102     struct receive_record_arg *rrd)
3103 {
3104 	int err;
3105 
3106 	/* Processing in order, therefore bytes_read should be increasing. */
3107 	ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
3108 	rwa->bytes_read = rrd->bytes_read;
3109 
3110 	/* We can only heal write records; other ones get ignored */
3111 	if (rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3112 		if (rrd->abd != NULL) {
3113 			abd_free(rrd->abd);
3114 			rrd->abd = NULL;
3115 		} else if (rrd->payload != NULL) {
3116 			kmem_free(rrd->payload, rrd->payload_size);
3117 			rrd->payload = NULL;
3118 		}
3119 		return (0);
3120 	}
3121 
3122 	if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3123 		err = flush_write_batch(rwa);
3124 		if (err != 0) {
3125 			if (rrd->abd != NULL) {
3126 				abd_free(rrd->abd);
3127 				rrd->abd = NULL;
3128 				rrd->payload = NULL;
3129 			} else if (rrd->payload != NULL) {
3130 				kmem_free(rrd->payload, rrd->payload_size);
3131 				rrd->payload = NULL;
3132 			}
3133 
3134 			return (err);
3135 		}
3136 	}
3137 
3138 	switch (rrd->header.drr_type) {
3139 	case DRR_OBJECT:
3140 	{
3141 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
3142 		err = receive_object(rwa, drro, rrd->payload);
3143 		kmem_free(rrd->payload, rrd->payload_size);
3144 		rrd->payload = NULL;
3145 		break;
3146 	}
3147 	case DRR_FREEOBJECTS:
3148 	{
3149 		struct drr_freeobjects *drrfo =
3150 		    &rrd->header.drr_u.drr_freeobjects;
3151 		err = receive_freeobjects(rwa, drrfo);
3152 		break;
3153 	}
3154 	case DRR_WRITE:
3155 	{
3156 		err = receive_process_write_record(rwa, rrd);
3157 		if (rwa->heal) {
3158 			/*
3159 			 * If healing - always free the abd after processing
3160 			 */
3161 			abd_free(rrd->abd);
3162 			rrd->abd = NULL;
3163 		} else if (err != EAGAIN) {
3164 			/*
3165 			 * On success, a non-healing
3166 			 * receive_process_write_record() returns
3167 			 * EAGAIN to indicate that we do not want to free
3168 			 * the rrd or arc_buf.
3169 			 */
3170 			ASSERT(err != 0);
3171 			abd_free(rrd->abd);
3172 			rrd->abd = NULL;
3173 		}
3174 		break;
3175 	}
3176 	case DRR_WRITE_EMBEDDED:
3177 	{
3178 		struct drr_write_embedded *drrwe =
3179 		    &rrd->header.drr_u.drr_write_embedded;
3180 		err = receive_write_embedded(rwa, drrwe, rrd->payload);
3181 		kmem_free(rrd->payload, rrd->payload_size);
3182 		rrd->payload = NULL;
3183 		break;
3184 	}
3185 	case DRR_FREE:
3186 	{
3187 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3188 		err = receive_free(rwa, drrf);
3189 		break;
3190 	}
3191 	case DRR_SPILL:
3192 	{
3193 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3194 		err = receive_spill(rwa, drrs, rrd->abd);
3195 		if (err != 0)
3196 			abd_free(rrd->abd);
3197 		rrd->abd = NULL;
3198 		rrd->payload = NULL;
3199 		break;
3200 	}
3201 	case DRR_OBJECT_RANGE:
3202 	{
3203 		struct drr_object_range *drror =
3204 		    &rrd->header.drr_u.drr_object_range;
3205 		err = receive_object_range(rwa, drror);
3206 		break;
3207 	}
3208 	case DRR_REDACT:
3209 	{
3210 		struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
3211 		err = receive_redact(rwa, drrr);
3212 		break;
3213 	}
3214 	default:
3215 		err = (SET_ERROR(EINVAL));
3216 	}
3217 
3218 	if (err != 0)
3219 		dprintf_drr(rrd, err);
3220 
3221 	return (err);
3222 }
3223 
3224 /*
3225  * dmu_recv_stream's worker thread; pull records off the queue, and then call
3226  * receive_process_record  When we're done, signal the main thread and exit.
3227  */
3228 static __attribute__((noreturn)) void
receive_writer_thread(void * arg)3229 receive_writer_thread(void *arg)
3230 {
3231 	struct receive_writer_arg *rwa = arg;
3232 	struct receive_record_arg *rrd;
3233 	fstrans_cookie_t cookie = spl_fstrans_mark();
3234 
3235 	for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
3236 	    rrd = bqueue_dequeue(&rwa->q)) {
3237 		/*
3238 		 * If there's an error, the main thread will stop putting things
3239 		 * on the queue, but we need to clear everything in it before we
3240 		 * can exit.
3241 		 */
3242 		int err = 0;
3243 		if (rwa->err == 0) {
3244 			err = receive_process_record(rwa, rrd);
3245 		} else if (rrd->abd != NULL) {
3246 			abd_free(rrd->abd);
3247 			rrd->abd = NULL;
3248 			rrd->payload = NULL;
3249 		} else if (rrd->payload != NULL) {
3250 			kmem_free(rrd->payload, rrd->payload_size);
3251 			rrd->payload = NULL;
3252 		}
3253 		/*
3254 		 * EAGAIN indicates that this record has been saved (on
3255 		 * raw->write_batch), and will be used again, so we don't
3256 		 * free it.
3257 		 * When healing data we always need to free the record.
3258 		 */
3259 		if (err != EAGAIN || rwa->heal) {
3260 			if (rwa->err == 0)
3261 				rwa->err = err;
3262 			kmem_free(rrd, sizeof (*rrd));
3263 		}
3264 	}
3265 	kmem_free(rrd, sizeof (*rrd));
3266 
3267 	if (rwa->heal) {
3268 		zio_wait(rwa->heal_pio);
3269 	} else {
3270 		int err = flush_write_batch(rwa);
3271 		if (rwa->err == 0)
3272 			rwa->err = err;
3273 	}
3274 	mutex_enter(&rwa->mutex);
3275 	rwa->done = B_TRUE;
3276 	cv_signal(&rwa->cv);
3277 	mutex_exit(&rwa->mutex);
3278 	spl_fstrans_unmark(cookie);
3279 	thread_exit();
3280 }
3281 
3282 static int
resume_check(dmu_recv_cookie_t * drc,nvlist_t * begin_nvl)3283 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
3284 {
3285 	uint64_t val;
3286 	objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
3287 	uint64_t dsobj = dmu_objset_id(drc->drc_os);
3288 	uint64_t resume_obj, resume_off;
3289 
3290 	if (nvlist_lookup_uint64(begin_nvl,
3291 	    "resume_object", &resume_obj) != 0 ||
3292 	    nvlist_lookup_uint64(begin_nvl,
3293 	    "resume_offset", &resume_off) != 0) {
3294 		return (SET_ERROR(EINVAL));
3295 	}
3296 	VERIFY0(zap_lookup(mos, dsobj,
3297 	    DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
3298 	if (resume_obj != val)
3299 		return (SET_ERROR(EINVAL));
3300 	VERIFY0(zap_lookup(mos, dsobj,
3301 	    DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
3302 	if (resume_off != val)
3303 		return (SET_ERROR(EINVAL));
3304 
3305 	return (0);
3306 }
3307 
3308 /*
3309  * Read in the stream's records, one by one, and apply them to the pool.  There
3310  * are two threads involved; the thread that calls this function will spin up a
3311  * worker thread, read the records off the stream one by one, and issue
3312  * prefetches for any necessary indirect blocks.  It will then push the records
3313  * onto an internal blocking queue.  The worker thread will pull the records off
3314  * the queue, and actually write the data into the DMU.  This way, the worker
3315  * thread doesn't have to wait for reads to complete, since everything it needs
3316  * (the indirect blocks) will be prefetched.
3317  *
3318  * NB: callers *must* call dmu_recv_end() if this succeeds.
3319  */
3320 int
dmu_recv_stream(dmu_recv_cookie_t * drc,offset_t * voffp)3321 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
3322 {
3323 	int err = 0;
3324 	struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
3325 
3326 	if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
3327 		uint64_t bytes = 0;
3328 		(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
3329 		    drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
3330 		    sizeof (bytes), 1, &bytes);
3331 		drc->drc_bytes_read += bytes;
3332 	}
3333 
3334 	drc->drc_ignore_objlist = objlist_create();
3335 
3336 	/* these were verified in dmu_recv_begin */
3337 	ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
3338 	    DMU_SUBSTREAM);
3339 	ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
3340 
3341 	ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
3342 	ASSERT0(drc->drc_os->os_encrypted &&
3343 	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
3344 
3345 	/* handle DSL encryption key payload */
3346 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
3347 		nvlist_t *keynvl = NULL;
3348 
3349 		ASSERT(drc->drc_os->os_encrypted);
3350 		ASSERT(drc->drc_raw);
3351 
3352 		err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
3353 		    &keynvl);
3354 		if (err != 0)
3355 			goto out;
3356 
3357 		if (!drc->drc_heal) {
3358 			/*
3359 			 * If this is a new dataset we set the key immediately.
3360 			 * Otherwise we don't want to change the key until we
3361 			 * are sure the rest of the receive succeeded so we
3362 			 * stash the keynvl away until then.
3363 			 */
3364 			err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
3365 			    drc->drc_ds->ds_object, drc->drc_fromsnapobj,
3366 			    drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
3367 			if (err != 0)
3368 				goto out;
3369 		}
3370 
3371 		/* see comment in dmu_recv_end_sync() */
3372 		drc->drc_ivset_guid = 0;
3373 		(void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
3374 		    &drc->drc_ivset_guid);
3375 
3376 		if (!drc->drc_newfs)
3377 			drc->drc_keynvl = fnvlist_dup(keynvl);
3378 	}
3379 
3380 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
3381 		err = resume_check(drc, drc->drc_begin_nvl);
3382 		if (err != 0)
3383 			goto out;
3384 	}
3385 
3386 	/*
3387 	 * For compatibility with recursive send streams, we do this here,
3388 	 * rather than in dmu_recv_begin. If we pull the next header too
3389 	 * early, and it's the END record, we break the `recv_skip` logic.
3390 	 */
3391 	if (drc->drc_drr_begin->drr_payloadlen == 0) {
3392 		err = receive_read_payload_and_next_header(drc, 0, NULL);
3393 		if (err != 0)
3394 			goto out;
3395 	}
3396 
3397 	/*
3398 	 * If we failed before this point we will clean up any new resume
3399 	 * state that was created. Now that we've gotten past the initial
3400 	 * checks we are ok to retain that resume state.
3401 	 */
3402 	drc->drc_should_save = B_TRUE;
3403 
3404 	(void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
3405 	    MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
3406 	    offsetof(struct receive_record_arg, node));
3407 	cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
3408 	mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
3409 	rwa->os = drc->drc_os;
3410 	rwa->byteswap = drc->drc_byteswap;
3411 	rwa->heal = drc->drc_heal;
3412 	rwa->tofs = drc->drc_tofs;
3413 	rwa->resumable = drc->drc_resumable;
3414 	rwa->raw = drc->drc_raw;
3415 	rwa->spill = drc->drc_spill;
3416 	rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
3417 	rwa->os->os_raw_receive = drc->drc_raw;
3418 	if (drc->drc_heal) {
3419 		rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL,
3420 		    ZIO_FLAG_GODFATHER);
3421 	}
3422 	list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
3423 	    offsetof(struct receive_record_arg, node.bqn_node));
3424 
3425 	(void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
3426 	    TS_RUN, minclsyspri);
3427 	/*
3428 	 * We're reading rwa->err without locks, which is safe since we are the
3429 	 * only reader, and the worker thread is the only writer.  It's ok if we
3430 	 * miss a write for an iteration or two of the loop, since the writer
3431 	 * thread will keep freeing records we send it until we send it an eos
3432 	 * marker.
3433 	 *
3434 	 * We can leave this loop in 3 ways:  First, if rwa->err is
3435 	 * non-zero.  In that case, the writer thread will free the rrd we just
3436 	 * pushed.  Second, if  we're interrupted; in that case, either it's the
3437 	 * first loop and drc->drc_rrd was never allocated, or it's later, and
3438 	 * drc->drc_rrd has been handed off to the writer thread who will free
3439 	 * it.  Finally, if receive_read_record fails or we're at the end of the
3440 	 * stream, then we free drc->drc_rrd and exit.
3441 	 */
3442 	while (rwa->err == 0) {
3443 		if (issig()) {
3444 			err = SET_ERROR(EINTR);
3445 			break;
3446 		}
3447 
3448 		ASSERT3P(drc->drc_rrd, ==, NULL);
3449 		drc->drc_rrd = drc->drc_next_rrd;
3450 		drc->drc_next_rrd = NULL;
3451 		/* Allocates and loads header into drc->drc_next_rrd */
3452 		err = receive_read_record(drc);
3453 
3454 		if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
3455 			kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
3456 			drc->drc_rrd = NULL;
3457 			break;
3458 		}
3459 
3460 		bqueue_enqueue(&rwa->q, drc->drc_rrd,
3461 		    sizeof (struct receive_record_arg) +
3462 		    drc->drc_rrd->payload_size);
3463 		drc->drc_rrd = NULL;
3464 	}
3465 
3466 	ASSERT3P(drc->drc_rrd, ==, NULL);
3467 	drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3468 	drc->drc_rrd->eos_marker = B_TRUE;
3469 	bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
3470 
3471 	mutex_enter(&rwa->mutex);
3472 	while (!rwa->done) {
3473 		/*
3474 		 * We need to use cv_wait_sig() so that any process that may
3475 		 * be sleeping here can still fork.
3476 		 */
3477 		(void) cv_wait_sig(&rwa->cv, &rwa->mutex);
3478 	}
3479 	mutex_exit(&rwa->mutex);
3480 
3481 	/*
3482 	 * If we are receiving a full stream as a clone, all object IDs which
3483 	 * are greater than the maximum ID referenced in the stream are
3484 	 * by definition unused and must be freed.
3485 	 */
3486 	if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3487 		uint64_t obj = rwa->max_object + 1;
3488 		int free_err = 0;
3489 		int next_err = 0;
3490 
3491 		while (next_err == 0) {
3492 			free_err = dmu_free_long_object(rwa->os, obj);
3493 			if (free_err != 0 && free_err != ENOENT)
3494 				break;
3495 
3496 			next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3497 		}
3498 
3499 		if (err == 0) {
3500 			if (free_err != 0 && free_err != ENOENT)
3501 				err = free_err;
3502 			else if (next_err != ESRCH)
3503 				err = next_err;
3504 		}
3505 	}
3506 
3507 	cv_destroy(&rwa->cv);
3508 	mutex_destroy(&rwa->mutex);
3509 	bqueue_destroy(&rwa->q);
3510 	list_destroy(&rwa->write_batch);
3511 	if (err == 0)
3512 		err = rwa->err;
3513 
3514 out:
3515 	/*
3516 	 * If we hit an error before we started the receive_writer_thread
3517 	 * we need to clean up the next_rrd we create by processing the
3518 	 * DRR_BEGIN record.
3519 	 */
3520 	if (drc->drc_next_rrd != NULL)
3521 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
3522 
3523 	/*
3524 	 * The objset will be invalidated by dmu_recv_end() when we do
3525 	 * dsl_dataset_clone_swap_sync_impl().
3526 	 */
3527 	drc->drc_os = NULL;
3528 
3529 	kmem_free(rwa, sizeof (*rwa));
3530 	nvlist_free(drc->drc_begin_nvl);
3531 
3532 	if (err != 0) {
3533 		/*
3534 		 * Clean up references. If receive is not resumable,
3535 		 * destroy what we created, so we don't leave it in
3536 		 * the inconsistent state.
3537 		 */
3538 		dmu_recv_cleanup_ds(drc);
3539 		nvlist_free(drc->drc_keynvl);
3540 		crfree(drc->drc_cred);
3541 		drc->drc_cred = NULL;
3542 	}
3543 
3544 	objlist_destroy(drc->drc_ignore_objlist);
3545 	drc->drc_ignore_objlist = NULL;
3546 	*voffp = drc->drc_voff;
3547 	return (err);
3548 }
3549 
3550 static int
dmu_recv_end_check(void * arg,dmu_tx_t * tx)3551 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3552 {
3553 	dmu_recv_cookie_t *drc = arg;
3554 	dsl_pool_t *dp = dmu_tx_pool(tx);
3555 	int error;
3556 
3557 	ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3558 
3559 	if (drc->drc_heal) {
3560 		error = 0;
3561 	} else if (!drc->drc_newfs) {
3562 		dsl_dataset_t *origin_head;
3563 
3564 		error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3565 		if (error != 0)
3566 			return (error);
3567 		if (drc->drc_force) {
3568 			/*
3569 			 * We will destroy any snapshots in tofs (i.e. before
3570 			 * origin_head) that are after the origin (which is
3571 			 * the snap before drc_ds, because drc_ds can not
3572 			 * have any snaps of its own).
3573 			 */
3574 			uint64_t obj;
3575 
3576 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3577 			while (obj !=
3578 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3579 				dsl_dataset_t *snap;
3580 				error = dsl_dataset_hold_obj(dp, obj, FTAG,
3581 				    &snap);
3582 				if (error != 0)
3583 					break;
3584 				if (snap->ds_dir != origin_head->ds_dir)
3585 					error = SET_ERROR(EINVAL);
3586 				if (error == 0)  {
3587 					error = dsl_destroy_snapshot_check_impl(
3588 					    snap, B_FALSE);
3589 				}
3590 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3591 				dsl_dataset_rele(snap, FTAG);
3592 				if (error != 0)
3593 					break;
3594 			}
3595 			if (error != 0) {
3596 				dsl_dataset_rele(origin_head, FTAG);
3597 				return (error);
3598 			}
3599 		}
3600 		if (drc->drc_keynvl != NULL) {
3601 			error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3602 			    drc->drc_keynvl, tx);
3603 			if (error != 0) {
3604 				dsl_dataset_rele(origin_head, FTAG);
3605 				return (error);
3606 			}
3607 		}
3608 
3609 		error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3610 		    origin_head, drc->drc_force, drc->drc_owner, tx);
3611 		if (error != 0) {
3612 			dsl_dataset_rele(origin_head, FTAG);
3613 			return (error);
3614 		}
3615 		error = dsl_dataset_snapshot_check_impl(origin_head,
3616 		    drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
3617 		dsl_dataset_rele(origin_head, FTAG);
3618 		if (error != 0)
3619 			return (error);
3620 
3621 		error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3622 	} else {
3623 		error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3624 		    drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
3625 	}
3626 	return (error);
3627 }
3628 
3629 static void
dmu_recv_end_sync(void * arg,dmu_tx_t * tx)3630 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3631 {
3632 	dmu_recv_cookie_t *drc = arg;
3633 	dsl_pool_t *dp = dmu_tx_pool(tx);
3634 	boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
3635 	uint64_t newsnapobj = 0;
3636 
3637 	spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3638 	    tx, "snap=%s", drc->drc_tosnap);
3639 	drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3640 
3641 	if (drc->drc_heal) {
3642 		if (drc->drc_keynvl != NULL) {
3643 			nvlist_free(drc->drc_keynvl);
3644 			drc->drc_keynvl = NULL;
3645 		}
3646 	} else if (!drc->drc_newfs) {
3647 		dsl_dataset_t *origin_head;
3648 
3649 		VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3650 		    &origin_head));
3651 
3652 		if (drc->drc_force) {
3653 			/*
3654 			 * Destroy any snapshots of drc_tofs (origin_head)
3655 			 * after the origin (the snap before drc_ds).
3656 			 */
3657 			uint64_t obj;
3658 
3659 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3660 			while (obj !=
3661 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3662 				dsl_dataset_t *snap;
3663 				VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3664 				    &snap));
3665 				ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3666 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3667 				dsl_destroy_snapshot_sync_impl(snap,
3668 				    B_FALSE, tx);
3669 				dsl_dataset_rele(snap, FTAG);
3670 			}
3671 		}
3672 		if (drc->drc_keynvl != NULL) {
3673 			dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3674 			    drc->drc_keynvl, tx);
3675 			nvlist_free(drc->drc_keynvl);
3676 			drc->drc_keynvl = NULL;
3677 		}
3678 
3679 		VERIFY3P(drc->drc_ds->ds_prev, ==,
3680 		    origin_head->ds_prev);
3681 
3682 		dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3683 		    origin_head, tx);
3684 		/*
3685 		 * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3686 		 * so drc_os is no longer valid.
3687 		 */
3688 		drc->drc_os = NULL;
3689 
3690 		dsl_dataset_snapshot_sync_impl(origin_head,
3691 		    drc->drc_tosnap, tx);
3692 
3693 		/* set snapshot's creation time and guid */
3694 		dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3695 		dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3696 		    drc->drc_drrb->drr_creation_time;
3697 		dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3698 		    drc->drc_drrb->drr_toguid;
3699 		dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3700 		    ~DS_FLAG_INCONSISTENT;
3701 
3702 		dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3703 		dsl_dataset_phys(origin_head)->ds_flags &=
3704 		    ~DS_FLAG_INCONSISTENT;
3705 
3706 		newsnapobj =
3707 		    dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3708 
3709 		dsl_dataset_rele(origin_head, FTAG);
3710 		dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3711 
3712 		if (drc->drc_owner != NULL)
3713 			VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3714 	} else {
3715 		dsl_dataset_t *ds = drc->drc_ds;
3716 
3717 		dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3718 
3719 		/* set snapshot's creation time and guid */
3720 		dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3721 		dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3722 		    drc->drc_drrb->drr_creation_time;
3723 		dsl_dataset_phys(ds->ds_prev)->ds_guid =
3724 		    drc->drc_drrb->drr_toguid;
3725 		dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3726 		    ~DS_FLAG_INCONSISTENT;
3727 
3728 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
3729 		dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3730 		if (dsl_dataset_has_resume_receive_state(ds)) {
3731 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3732 			    DS_FIELD_RESUME_FROMGUID, tx);
3733 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3734 			    DS_FIELD_RESUME_OBJECT, tx);
3735 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3736 			    DS_FIELD_RESUME_OFFSET, tx);
3737 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3738 			    DS_FIELD_RESUME_BYTES, tx);
3739 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3740 			    DS_FIELD_RESUME_TOGUID, tx);
3741 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3742 			    DS_FIELD_RESUME_TONAME, tx);
3743 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3744 			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
3745 		}
3746 		newsnapobj =
3747 		    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3748 	}
3749 
3750 	/*
3751 	 * If this is a raw receive, the crypt_keydata nvlist will include
3752 	 * a to_ivset_guid for us to set on the new snapshot. This value
3753 	 * will override the value generated by the snapshot code. However,
3754 	 * this value may not be present, because older implementations of
3755 	 * the raw send code did not include this value, and we are still
3756 	 * allowed to receive them if the zfs_disable_ivset_guid_check
3757 	 * tunable is set, in which case we will leave the newly-generated
3758 	 * value.
3759 	 */
3760 	if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) {
3761 		dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
3762 		    DMU_OT_DSL_DATASET, tx);
3763 		VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
3764 		    DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3765 		    &drc->drc_ivset_guid, tx));
3766 	}
3767 
3768 	/*
3769 	 * Release the hold from dmu_recv_begin.  This must be done before
3770 	 * we return to open context, so that when we free the dataset's dnode
3771 	 * we can evict its bonus buffer. Since the dataset may be destroyed
3772 	 * at this point (and therefore won't have a valid pointer to the spa)
3773 	 * we release the key mapping manually here while we do have a valid
3774 	 * pointer, if it exists.
3775 	 */
3776 	if (!drc->drc_raw && encrypted) {
3777 		(void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3778 		    drc->drc_ds->ds_object, drc->drc_ds);
3779 	}
3780 	dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3781 	drc->drc_ds = NULL;
3782 }
3783 
3784 static int dmu_recv_end_modified_blocks = 3;
3785 
3786 static int
dmu_recv_existing_end(dmu_recv_cookie_t * drc)3787 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3788 {
3789 #ifdef _KERNEL
3790 	/*
3791 	 * We will be destroying the ds; make sure its origin is unmounted if
3792 	 * necessary.
3793 	 */
3794 	char name[ZFS_MAX_DATASET_NAME_LEN];
3795 	dsl_dataset_name(drc->drc_ds, name);
3796 	zfs_destroy_unmount_origin(name);
3797 #endif
3798 
3799 	return (dsl_sync_task(drc->drc_tofs,
3800 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3801 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3802 }
3803 
3804 static int
dmu_recv_new_end(dmu_recv_cookie_t * drc)3805 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3806 {
3807 	return (dsl_sync_task(drc->drc_tofs,
3808 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3809 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3810 }
3811 
3812 int
dmu_recv_end(dmu_recv_cookie_t * drc,void * owner)3813 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3814 {
3815 	int error;
3816 
3817 	drc->drc_owner = owner;
3818 
3819 	if (drc->drc_newfs)
3820 		error = dmu_recv_new_end(drc);
3821 	else
3822 		error = dmu_recv_existing_end(drc);
3823 
3824 	if (error != 0) {
3825 		dmu_recv_cleanup_ds(drc);
3826 		nvlist_free(drc->drc_keynvl);
3827 	} else if (!drc->drc_heal) {
3828 		if (drc->drc_newfs) {
3829 			zvol_create_minor(drc->drc_tofs);
3830 		}
3831 		char *snapname = kmem_asprintf("%s@%s",
3832 		    drc->drc_tofs, drc->drc_tosnap);
3833 		zvol_create_minor(snapname);
3834 		kmem_strfree(snapname);
3835 	}
3836 
3837 	crfree(drc->drc_cred);
3838 	drc->drc_cred = NULL;
3839 
3840 	return (error);
3841 }
3842 
3843 /*
3844  * Return TRUE if this objset is currently being received into.
3845  */
3846 boolean_t
dmu_objset_is_receiving(objset_t * os)3847 dmu_objset_is_receiving(objset_t *os)
3848 {
3849 	return (os->os_dsl_dataset != NULL &&
3850 	    os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3851 }
3852 
3853 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, UINT, ZMOD_RW,
3854 	"Maximum receive queue length");
3855 
3856 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, UINT, ZMOD_RW,
3857 	"Receive queue fill fraction");
3858 
3859 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, UINT, ZMOD_RW,
3860 	"Maximum amount of writes to batch into one transaction");
3861 
3862 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW,
3863 	"Ignore errors during corrective receive");
3864