xref: /linux/drivers/nvme/host/fc.c (revision 8a61cb6e150ea907b580a1b5e705decb0a3ffc86)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12 #include <linux/blk-cgroup.h>
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "fc.h"
18 #include <scsi/scsi_transport_fc.h>
19 
20 /* *************************** Data Structures/Defines ****************** */
21 
22 
23 enum nvme_fc_queue_flags {
24 	NVME_FC_Q_CONNECTED = 0,
25 	NVME_FC_Q_LIVE,
26 };
27 
28 #define NVME_FC_DEFAULT_DEV_LOSS_TMO	60	/* seconds */
29 #define NVME_FC_DEFAULT_RECONNECT_TMO	2	/* delay between reconnects
30 						 * when connected and a
31 						 * connection failure.
32 						 */
33 
34 struct nvme_fc_queue {
35 	struct nvme_fc_ctrl	*ctrl;
36 	struct device		*dev;
37 	struct blk_mq_hw_ctx	*hctx;
38 	void			*lldd_handle;
39 	size_t			cmnd_capsule_len;
40 	u32			qnum;
41 	u32			rqcnt;
42 	u32			seqno;
43 
44 	u64			connection_id;
45 	atomic_t		csn;
46 
47 	unsigned long		flags;
48 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
49 
50 enum nvme_fcop_flags {
51 	FCOP_FLAGS_TERMIO	= (1 << 0),
52 	FCOP_FLAGS_AEN		= (1 << 1),
53 };
54 
55 struct nvmefc_ls_req_op {
56 	struct nvmefc_ls_req	ls_req;
57 
58 	struct nvme_fc_rport	*rport;
59 	struct nvme_fc_queue	*queue;
60 	struct request		*rq;
61 	u32			flags;
62 
63 	int			ls_error;
64 	struct completion	ls_done;
65 	struct list_head	lsreq_list;	/* rport->ls_req_list */
66 	bool			req_queued;
67 };
68 
69 struct nvmefc_ls_rcv_op {
70 	struct nvme_fc_rport		*rport;
71 	struct nvmefc_ls_rsp		*lsrsp;
72 	union nvmefc_ls_requests	*rqstbuf;
73 	union nvmefc_ls_responses	*rspbuf;
74 	u16				rqstdatalen;
75 	bool				handled;
76 	dma_addr_t			rspdma;
77 	struct list_head		lsrcv_list;	/* rport->ls_rcv_list */
78 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
79 
80 enum nvme_fcpop_state {
81 	FCPOP_STATE_UNINIT	= 0,
82 	FCPOP_STATE_IDLE	= 1,
83 	FCPOP_STATE_ACTIVE	= 2,
84 	FCPOP_STATE_ABORTED	= 3,
85 	FCPOP_STATE_COMPLETE	= 4,
86 };
87 
88 struct nvme_fc_fcp_op {
89 	struct nvme_request	nreq;		/*
90 						 * nvme/host/core.c
91 						 * requires this to be
92 						 * the 1st element in the
93 						 * private structure
94 						 * associated with the
95 						 * request.
96 						 */
97 	struct nvmefc_fcp_req	fcp_req;
98 
99 	struct nvme_fc_ctrl	*ctrl;
100 	struct nvme_fc_queue	*queue;
101 	struct request		*rq;
102 
103 	atomic_t		state;
104 	u32			flags;
105 	u32			rqno;
106 	u32			nents;
107 
108 	struct nvme_fc_cmd_iu	cmd_iu;
109 	struct nvme_fc_ersp_iu	rsp_iu;
110 };
111 
112 struct nvme_fcp_op_w_sgl {
113 	struct nvme_fc_fcp_op	op;
114 	struct scatterlist	sgl[NVME_INLINE_SG_CNT];
115 	uint8_t			priv[];
116 };
117 
118 struct nvme_fc_lport {
119 	struct nvme_fc_local_port	localport;
120 
121 	struct ida			endp_cnt;
122 	struct list_head		port_list;	/* nvme_fc_port_list */
123 	struct list_head		endp_list;
124 	struct device			*dev;	/* physical device for dma */
125 	struct nvme_fc_port_template	*ops;
126 	struct kref			ref;
127 	atomic_t                        act_rport_cnt;
128 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
129 
130 struct nvme_fc_rport {
131 	struct nvme_fc_remote_port	remoteport;
132 
133 	struct list_head		endp_list; /* for lport->endp_list */
134 	struct list_head		ctrl_list;
135 	struct list_head		ls_req_list;
136 	struct list_head		ls_rcv_list;
137 	struct list_head		disc_list;
138 	struct device			*dev;	/* physical device for dma */
139 	struct nvme_fc_lport		*lport;
140 	spinlock_t			lock;
141 	struct kref			ref;
142 	atomic_t                        act_ctrl_cnt;
143 	unsigned long			dev_loss_end;
144 	struct work_struct		lsrcv_work;
145 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
146 
147 /* fc_ctrl flags values - specified as bit positions */
148 #define ASSOC_ACTIVE		0
149 #define ASSOC_FAILED		1
150 #define FCCTRL_TERMIO		2
151 
152 struct nvme_fc_ctrl {
153 	spinlock_t		lock;
154 	struct nvme_fc_queue	*queues;
155 	struct device		*dev;
156 	struct nvme_fc_lport	*lport;
157 	struct nvme_fc_rport	*rport;
158 	u32			cnum;
159 
160 	bool			ioq_live;
161 	u64			association_id;
162 	struct nvmefc_ls_rcv_op	*rcv_disconn;
163 
164 	struct list_head	ctrl_list;	/* rport->ctrl_list */
165 
166 	struct blk_mq_tag_set	admin_tag_set;
167 	struct blk_mq_tag_set	tag_set;
168 
169 	struct work_struct	ioerr_work;
170 	struct delayed_work	connect_work;
171 
172 	struct kref		ref;
173 	unsigned long		flags;
174 	u32			iocnt;
175 	wait_queue_head_t	ioabort_wait;
176 
177 	struct nvme_fc_fcp_op	aen_ops[NVME_NR_AEN_COMMANDS];
178 
179 	struct nvme_ctrl	ctrl;
180 };
181 
182 static inline struct nvme_fc_ctrl *
to_fc_ctrl(struct nvme_ctrl * ctrl)183 to_fc_ctrl(struct nvme_ctrl *ctrl)
184 {
185 	return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
186 }
187 
188 static inline struct nvme_fc_lport *
localport_to_lport(struct nvme_fc_local_port * portptr)189 localport_to_lport(struct nvme_fc_local_port *portptr)
190 {
191 	return container_of(portptr, struct nvme_fc_lport, localport);
192 }
193 
194 static inline struct nvme_fc_rport *
remoteport_to_rport(struct nvme_fc_remote_port * portptr)195 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
196 {
197 	return container_of(portptr, struct nvme_fc_rport, remoteport);
198 }
199 
200 static inline struct nvmefc_ls_req_op *
ls_req_to_lsop(struct nvmefc_ls_req * lsreq)201 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
202 {
203 	return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
204 }
205 
206 static inline struct nvme_fc_fcp_op *
fcp_req_to_fcp_op(struct nvmefc_fcp_req * fcpreq)207 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
208 {
209 	return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
210 }
211 
212 
213 
214 /* *************************** Globals **************************** */
215 
216 
217 static DEFINE_SPINLOCK(nvme_fc_lock);
218 
219 static LIST_HEAD(nvme_fc_lport_list);
220 static DEFINE_IDA(nvme_fc_local_port_cnt);
221 static DEFINE_IDA(nvme_fc_ctrl_cnt);
222 
223 /*
224  * These items are short-term. They will eventually be moved into
225  * a generic FC class. See comments in module init.
226  */
227 static struct device *fc_udev_device;
228 
229 static void nvme_fc_complete_rq(struct request *rq);
230 
231 /* *********************** FC-NVME Port Management ************************ */
232 
233 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
234 			struct nvme_fc_queue *, unsigned int);
235 
236 static void nvme_fc_handle_ls_rqst_work(struct work_struct *work);
237 
238 
239 static void
nvme_fc_free_lport(struct kref * ref)240 nvme_fc_free_lport(struct kref *ref)
241 {
242 	struct nvme_fc_lport *lport =
243 		container_of(ref, struct nvme_fc_lport, ref);
244 	unsigned long flags;
245 
246 	WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
247 	WARN_ON(!list_empty(&lport->endp_list));
248 
249 	/* remove from transport list */
250 	spin_lock_irqsave(&nvme_fc_lock, flags);
251 	list_del(&lport->port_list);
252 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
253 
254 	ida_free(&nvme_fc_local_port_cnt, lport->localport.port_num);
255 	ida_destroy(&lport->endp_cnt);
256 
257 	put_device(lport->dev);
258 
259 	kfree(lport);
260 }
261 
262 static void
nvme_fc_lport_put(struct nvme_fc_lport * lport)263 nvme_fc_lport_put(struct nvme_fc_lport *lport)
264 {
265 	kref_put(&lport->ref, nvme_fc_free_lport);
266 }
267 
268 static int
nvme_fc_lport_get(struct nvme_fc_lport * lport)269 nvme_fc_lport_get(struct nvme_fc_lport *lport)
270 {
271 	return kref_get_unless_zero(&lport->ref);
272 }
273 
274 
275 static struct nvme_fc_lport *
nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info * pinfo,struct nvme_fc_port_template * ops,struct device * dev)276 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
277 			struct nvme_fc_port_template *ops,
278 			struct device *dev)
279 {
280 	struct nvme_fc_lport *lport;
281 	unsigned long flags;
282 
283 	spin_lock_irqsave(&nvme_fc_lock, flags);
284 
285 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
286 		if (lport->localport.node_name != pinfo->node_name ||
287 		    lport->localport.port_name != pinfo->port_name)
288 			continue;
289 
290 		if (lport->dev != dev) {
291 			lport = ERR_PTR(-EXDEV);
292 			goto out_done;
293 		}
294 
295 		if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
296 			lport = ERR_PTR(-EEXIST);
297 			goto out_done;
298 		}
299 
300 		if (!nvme_fc_lport_get(lport)) {
301 			/*
302 			 * fails if ref cnt already 0. If so,
303 			 * act as if lport already deleted
304 			 */
305 			lport = NULL;
306 			goto out_done;
307 		}
308 
309 		/* resume the lport */
310 
311 		lport->ops = ops;
312 		lport->localport.port_role = pinfo->port_role;
313 		lport->localport.port_id = pinfo->port_id;
314 		lport->localport.port_state = FC_OBJSTATE_ONLINE;
315 
316 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
317 
318 		return lport;
319 	}
320 
321 	lport = NULL;
322 
323 out_done:
324 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
325 
326 	return lport;
327 }
328 
329 /**
330  * nvme_fc_register_localport - transport entry point called by an
331  *                              LLDD to register the existence of a NVME
332  *                              host FC port.
333  * @pinfo:     pointer to information about the port to be registered
334  * @template:  LLDD entrypoints and operational parameters for the port
335  * @dev:       physical hardware device node port corresponds to. Will be
336  *             used for DMA mappings
337  * @portptr:   pointer to a local port pointer. Upon success, the routine
338  *             will allocate a nvme_fc_local_port structure and place its
339  *             address in the local port pointer. Upon failure, local port
340  *             pointer will be set to 0.
341  *
342  * Returns:
343  * a completion status. Must be 0 upon success; a negative errno
344  * (ex: -ENXIO) upon failure.
345  */
346 int
nvme_fc_register_localport(struct nvme_fc_port_info * pinfo,struct nvme_fc_port_template * template,struct device * dev,struct nvme_fc_local_port ** portptr)347 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
348 			struct nvme_fc_port_template *template,
349 			struct device *dev,
350 			struct nvme_fc_local_port **portptr)
351 {
352 	struct nvme_fc_lport *newrec;
353 	unsigned long flags;
354 	int ret, idx;
355 
356 	if (!template->localport_delete || !template->remoteport_delete ||
357 	    !template->ls_req || !template->fcp_io ||
358 	    !template->ls_abort || !template->fcp_abort ||
359 	    !template->max_hw_queues || !template->max_sgl_segments ||
360 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
361 		ret = -EINVAL;
362 		goto out_reghost_failed;
363 	}
364 
365 	/*
366 	 * look to see if there is already a localport that had been
367 	 * deregistered and in the process of waiting for all the
368 	 * references to fully be removed.  If the references haven't
369 	 * expired, we can simply re-enable the localport. Remoteports
370 	 * and controller reconnections should resume naturally.
371 	 */
372 	newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
373 
374 	/* found an lport, but something about its state is bad */
375 	if (IS_ERR(newrec)) {
376 		ret = PTR_ERR(newrec);
377 		goto out_reghost_failed;
378 
379 	/* found existing lport, which was resumed */
380 	} else if (newrec) {
381 		*portptr = &newrec->localport;
382 		return 0;
383 	}
384 
385 	/* nothing found - allocate a new localport struct */
386 
387 	newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
388 			 GFP_KERNEL);
389 	if (!newrec) {
390 		ret = -ENOMEM;
391 		goto out_reghost_failed;
392 	}
393 
394 	idx = ida_alloc(&nvme_fc_local_port_cnt, GFP_KERNEL);
395 	if (idx < 0) {
396 		ret = -ENOSPC;
397 		goto out_fail_kfree;
398 	}
399 
400 	if (!get_device(dev) && dev) {
401 		ret = -ENODEV;
402 		goto out_ida_put;
403 	}
404 
405 	INIT_LIST_HEAD(&newrec->port_list);
406 	INIT_LIST_HEAD(&newrec->endp_list);
407 	kref_init(&newrec->ref);
408 	atomic_set(&newrec->act_rport_cnt, 0);
409 	newrec->ops = template;
410 	newrec->dev = dev;
411 	ida_init(&newrec->endp_cnt);
412 	if (template->local_priv_sz)
413 		newrec->localport.private = &newrec[1];
414 	else
415 		newrec->localport.private = NULL;
416 	newrec->localport.node_name = pinfo->node_name;
417 	newrec->localport.port_name = pinfo->port_name;
418 	newrec->localport.port_role = pinfo->port_role;
419 	newrec->localport.port_id = pinfo->port_id;
420 	newrec->localport.port_state = FC_OBJSTATE_ONLINE;
421 	newrec->localport.port_num = idx;
422 
423 	spin_lock_irqsave(&nvme_fc_lock, flags);
424 	list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
425 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
426 
427 	if (dev)
428 		dma_set_seg_boundary(dev, template->dma_boundary);
429 
430 	*portptr = &newrec->localport;
431 	return 0;
432 
433 out_ida_put:
434 	ida_free(&nvme_fc_local_port_cnt, idx);
435 out_fail_kfree:
436 	kfree(newrec);
437 out_reghost_failed:
438 	*portptr = NULL;
439 
440 	return ret;
441 }
442 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
443 
444 /**
445  * nvme_fc_unregister_localport - transport entry point called by an
446  *                              LLDD to deregister/remove a previously
447  *                              registered a NVME host FC port.
448  * @portptr: pointer to the (registered) local port that is to be deregistered.
449  *
450  * Returns:
451  * a completion status. Must be 0 upon success; a negative errno
452  * (ex: -ENXIO) upon failure.
453  */
454 int
nvme_fc_unregister_localport(struct nvme_fc_local_port * portptr)455 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
456 {
457 	struct nvme_fc_lport *lport = localport_to_lport(portptr);
458 	unsigned long flags;
459 
460 	if (!portptr)
461 		return -EINVAL;
462 
463 	spin_lock_irqsave(&nvme_fc_lock, flags);
464 
465 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
466 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
467 		return -EINVAL;
468 	}
469 	portptr->port_state = FC_OBJSTATE_DELETED;
470 
471 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
472 
473 	if (atomic_read(&lport->act_rport_cnt) == 0)
474 		lport->ops->localport_delete(&lport->localport);
475 
476 	nvme_fc_lport_put(lport);
477 
478 	return 0;
479 }
480 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
481 
482 /*
483  * TRADDR strings, per FC-NVME are fixed format:
484  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
485  * udev event will only differ by prefix of what field is
486  * being specified:
487  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
488  *  19 + 43 + null_fudge = 64 characters
489  */
490 #define FCNVME_TRADDR_LENGTH		64
491 
492 static void
nvme_fc_signal_discovery_scan(struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)493 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
494 		struct nvme_fc_rport *rport)
495 {
496 	char hostaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_HOST_TRADDR=...*/
497 	char tgtaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_TRADDR=...*/
498 	char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
499 
500 	if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
501 		return;
502 
503 	snprintf(hostaddr, sizeof(hostaddr),
504 		"NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
505 		lport->localport.node_name, lport->localport.port_name);
506 	snprintf(tgtaddr, sizeof(tgtaddr),
507 		"NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
508 		rport->remoteport.node_name, rport->remoteport.port_name);
509 	kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
510 }
511 
512 static void
nvme_fc_free_rport(struct kref * ref)513 nvme_fc_free_rport(struct kref *ref)
514 {
515 	struct nvme_fc_rport *rport =
516 		container_of(ref, struct nvme_fc_rport, ref);
517 	struct nvme_fc_lport *lport =
518 			localport_to_lport(rport->remoteport.localport);
519 	unsigned long flags;
520 
521 	WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
522 	WARN_ON(!list_empty(&rport->ctrl_list));
523 
524 	/* remove from lport list */
525 	spin_lock_irqsave(&nvme_fc_lock, flags);
526 	list_del(&rport->endp_list);
527 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
528 
529 	WARN_ON(!list_empty(&rport->disc_list));
530 	ida_free(&lport->endp_cnt, rport->remoteport.port_num);
531 
532 	kfree(rport);
533 
534 	nvme_fc_lport_put(lport);
535 }
536 
537 static void
nvme_fc_rport_put(struct nvme_fc_rport * rport)538 nvme_fc_rport_put(struct nvme_fc_rport *rport)
539 {
540 	kref_put(&rport->ref, nvme_fc_free_rport);
541 }
542 
543 static int
nvme_fc_rport_get(struct nvme_fc_rport * rport)544 nvme_fc_rport_get(struct nvme_fc_rport *rport)
545 {
546 	return kref_get_unless_zero(&rport->ref);
547 }
548 
549 static void
nvme_fc_resume_controller(struct nvme_fc_ctrl * ctrl)550 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
551 {
552 	switch (nvme_ctrl_state(&ctrl->ctrl)) {
553 	case NVME_CTRL_NEW:
554 	case NVME_CTRL_CONNECTING:
555 		/*
556 		 * As all reconnects were suppressed, schedule a
557 		 * connect.
558 		 */
559 		dev_info(ctrl->ctrl.device,
560 			"NVME-FC{%d}: connectivity re-established. "
561 			"Attempting reconnect\n", ctrl->cnum);
562 
563 		queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
564 		break;
565 
566 	case NVME_CTRL_RESETTING:
567 		/*
568 		 * Controller is already in the process of terminating the
569 		 * association. No need to do anything further. The reconnect
570 		 * step will naturally occur after the reset completes.
571 		 */
572 		break;
573 
574 	default:
575 		/* no action to take - let it delete */
576 		break;
577 	}
578 }
579 
580 static struct nvme_fc_rport *
nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport * lport,struct nvme_fc_port_info * pinfo)581 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
582 				struct nvme_fc_port_info *pinfo)
583 {
584 	struct nvme_fc_rport *rport;
585 	struct nvme_fc_ctrl *ctrl;
586 	unsigned long flags;
587 
588 	spin_lock_irqsave(&nvme_fc_lock, flags);
589 
590 	list_for_each_entry(rport, &lport->endp_list, endp_list) {
591 		if (rport->remoteport.node_name != pinfo->node_name ||
592 		    rport->remoteport.port_name != pinfo->port_name)
593 			continue;
594 
595 		if (!nvme_fc_rport_get(rport)) {
596 			rport = ERR_PTR(-ENOLCK);
597 			goto out_done;
598 		}
599 
600 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
601 
602 		spin_lock_irqsave(&rport->lock, flags);
603 
604 		/* has it been unregistered */
605 		if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
606 			/* means lldd called us twice */
607 			spin_unlock_irqrestore(&rport->lock, flags);
608 			nvme_fc_rport_put(rport);
609 			return ERR_PTR(-ESTALE);
610 		}
611 
612 		rport->remoteport.port_role = pinfo->port_role;
613 		rport->remoteport.port_id = pinfo->port_id;
614 		rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
615 		rport->dev_loss_end = 0;
616 
617 		/*
618 		 * kick off a reconnect attempt on all associations to the
619 		 * remote port. A successful reconnects will resume i/o.
620 		 */
621 		list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
622 			nvme_fc_resume_controller(ctrl);
623 
624 		spin_unlock_irqrestore(&rport->lock, flags);
625 
626 		return rport;
627 	}
628 
629 	rport = NULL;
630 
631 out_done:
632 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
633 
634 	return rport;
635 }
636 
637 static inline void
__nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport * rport,struct nvme_fc_port_info * pinfo)638 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
639 			struct nvme_fc_port_info *pinfo)
640 {
641 	if (pinfo->dev_loss_tmo)
642 		rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
643 	else
644 		rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
645 }
646 
647 /**
648  * nvme_fc_register_remoteport - transport entry point called by an
649  *                              LLDD to register the existence of a NVME
650  *                              subsystem FC port on its fabric.
651  * @localport: pointer to the (registered) local port that the remote
652  *             subsystem port is connected to.
653  * @pinfo:     pointer to information about the port to be registered
654  * @portptr:   pointer to a remote port pointer. Upon success, the routine
655  *             will allocate a nvme_fc_remote_port structure and place its
656  *             address in the remote port pointer. Upon failure, remote port
657  *             pointer will be set to 0.
658  *
659  * Returns:
660  * a completion status. Must be 0 upon success; a negative errno
661  * (ex: -ENXIO) upon failure.
662  */
663 int
nvme_fc_register_remoteport(struct nvme_fc_local_port * localport,struct nvme_fc_port_info * pinfo,struct nvme_fc_remote_port ** portptr)664 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
665 				struct nvme_fc_port_info *pinfo,
666 				struct nvme_fc_remote_port **portptr)
667 {
668 	struct nvme_fc_lport *lport = localport_to_lport(localport);
669 	struct nvme_fc_rport *newrec;
670 	unsigned long flags;
671 	int ret, idx;
672 
673 	if (!nvme_fc_lport_get(lport)) {
674 		ret = -ESHUTDOWN;
675 		goto out_reghost_failed;
676 	}
677 
678 	/*
679 	 * look to see if there is already a remoteport that is waiting
680 	 * for a reconnect (within dev_loss_tmo) with the same WWN's.
681 	 * If so, transition to it and reconnect.
682 	 */
683 	newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
684 
685 	/* found an rport, but something about its state is bad */
686 	if (IS_ERR(newrec)) {
687 		ret = PTR_ERR(newrec);
688 		goto out_lport_put;
689 
690 	/* found existing rport, which was resumed */
691 	} else if (newrec) {
692 		nvme_fc_lport_put(lport);
693 		__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
694 		nvme_fc_signal_discovery_scan(lport, newrec);
695 		*portptr = &newrec->remoteport;
696 		return 0;
697 	}
698 
699 	/* nothing found - allocate a new remoteport struct */
700 
701 	newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
702 			 GFP_KERNEL);
703 	if (!newrec) {
704 		ret = -ENOMEM;
705 		goto out_lport_put;
706 	}
707 
708 	idx = ida_alloc(&lport->endp_cnt, GFP_KERNEL);
709 	if (idx < 0) {
710 		ret = -ENOSPC;
711 		goto out_kfree_rport;
712 	}
713 
714 	INIT_LIST_HEAD(&newrec->endp_list);
715 	INIT_LIST_HEAD(&newrec->ctrl_list);
716 	INIT_LIST_HEAD(&newrec->ls_req_list);
717 	INIT_LIST_HEAD(&newrec->disc_list);
718 	kref_init(&newrec->ref);
719 	atomic_set(&newrec->act_ctrl_cnt, 0);
720 	spin_lock_init(&newrec->lock);
721 	newrec->remoteport.localport = &lport->localport;
722 	INIT_LIST_HEAD(&newrec->ls_rcv_list);
723 	newrec->dev = lport->dev;
724 	newrec->lport = lport;
725 	if (lport->ops->remote_priv_sz)
726 		newrec->remoteport.private = &newrec[1];
727 	else
728 		newrec->remoteport.private = NULL;
729 	newrec->remoteport.port_role = pinfo->port_role;
730 	newrec->remoteport.node_name = pinfo->node_name;
731 	newrec->remoteport.port_name = pinfo->port_name;
732 	newrec->remoteport.port_id = pinfo->port_id;
733 	newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
734 	newrec->remoteport.port_num = idx;
735 	__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
736 	INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work);
737 
738 	spin_lock_irqsave(&nvme_fc_lock, flags);
739 	list_add_tail(&newrec->endp_list, &lport->endp_list);
740 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
741 
742 	nvme_fc_signal_discovery_scan(lport, newrec);
743 
744 	*portptr = &newrec->remoteport;
745 	return 0;
746 
747 out_kfree_rport:
748 	kfree(newrec);
749 out_lport_put:
750 	nvme_fc_lport_put(lport);
751 out_reghost_failed:
752 	*portptr = NULL;
753 	return ret;
754 }
755 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
756 
757 static int
nvme_fc_abort_lsops(struct nvme_fc_rport * rport)758 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
759 {
760 	struct nvmefc_ls_req_op *lsop;
761 	unsigned long flags;
762 
763 restart:
764 	spin_lock_irqsave(&rport->lock, flags);
765 
766 	list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
767 		if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
768 			lsop->flags |= FCOP_FLAGS_TERMIO;
769 			spin_unlock_irqrestore(&rport->lock, flags);
770 			rport->lport->ops->ls_abort(&rport->lport->localport,
771 						&rport->remoteport,
772 						&lsop->ls_req);
773 			goto restart;
774 		}
775 	}
776 	spin_unlock_irqrestore(&rport->lock, flags);
777 
778 	return 0;
779 }
780 
781 static void
nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl * ctrl)782 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
783 {
784 	dev_info(ctrl->ctrl.device,
785 		"NVME-FC{%d}: controller connectivity lost. Awaiting "
786 		"Reconnect", ctrl->cnum);
787 
788 	set_bit(ASSOC_FAILED, &ctrl->flags);
789 	nvme_reset_ctrl(&ctrl->ctrl);
790 }
791 
792 /**
793  * nvme_fc_unregister_remoteport - transport entry point called by an
794  *                              LLDD to deregister/remove a previously
795  *                              registered a NVME subsystem FC port.
796  * @portptr: pointer to the (registered) remote port that is to be
797  *           deregistered.
798  *
799  * Returns:
800  * a completion status. Must be 0 upon success; a negative errno
801  * (ex: -ENXIO) upon failure.
802  */
803 int
nvme_fc_unregister_remoteport(struct nvme_fc_remote_port * portptr)804 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
805 {
806 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
807 	struct nvme_fc_ctrl *ctrl;
808 	unsigned long flags;
809 
810 	if (!portptr)
811 		return -EINVAL;
812 
813 	spin_lock_irqsave(&rport->lock, flags);
814 
815 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
816 		spin_unlock_irqrestore(&rport->lock, flags);
817 		return -EINVAL;
818 	}
819 	portptr->port_state = FC_OBJSTATE_DELETED;
820 
821 	rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
822 
823 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
824 		/* if dev_loss_tmo==0, dev loss is immediate */
825 		if (!portptr->dev_loss_tmo) {
826 			dev_warn(ctrl->ctrl.device,
827 				"NVME-FC{%d}: controller connectivity lost.\n",
828 				ctrl->cnum);
829 			nvme_delete_ctrl(&ctrl->ctrl);
830 		} else
831 			nvme_fc_ctrl_connectivity_loss(ctrl);
832 	}
833 
834 	spin_unlock_irqrestore(&rport->lock, flags);
835 
836 	nvme_fc_abort_lsops(rport);
837 
838 	if (atomic_read(&rport->act_ctrl_cnt) == 0)
839 		rport->lport->ops->remoteport_delete(portptr);
840 
841 	/*
842 	 * release the reference, which will allow, if all controllers
843 	 * go away, which should only occur after dev_loss_tmo occurs,
844 	 * for the rport to be torn down.
845 	 */
846 	nvme_fc_rport_put(rport);
847 
848 	return 0;
849 }
850 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
851 
852 /**
853  * nvme_fc_rescan_remoteport - transport entry point called by an
854  *                              LLDD to request a nvme device rescan.
855  * @remoteport: pointer to the (registered) remote port that is to be
856  *              rescanned.
857  *
858  * Returns: N/A
859  */
860 void
nvme_fc_rescan_remoteport(struct nvme_fc_remote_port * remoteport)861 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
862 {
863 	struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
864 
865 	nvme_fc_signal_discovery_scan(rport->lport, rport);
866 }
867 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
868 
869 int
nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port * portptr,u32 dev_loss_tmo)870 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
871 			u32 dev_loss_tmo)
872 {
873 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
874 	unsigned long flags;
875 
876 	spin_lock_irqsave(&rport->lock, flags);
877 
878 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
879 		spin_unlock_irqrestore(&rport->lock, flags);
880 		return -EINVAL;
881 	}
882 
883 	/* a dev_loss_tmo of 0 (immediate) is allowed to be set */
884 	rport->remoteport.dev_loss_tmo = dev_loss_tmo;
885 
886 	spin_unlock_irqrestore(&rport->lock, flags);
887 
888 	return 0;
889 }
890 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
891 
892 
893 /* *********************** FC-NVME DMA Handling **************************** */
894 
895 /*
896  * The fcloop device passes in a NULL device pointer. Real LLD's will
897  * pass in a valid device pointer. If NULL is passed to the dma mapping
898  * routines, depending on the platform, it may or may not succeed, and
899  * may crash.
900  *
901  * As such:
902  * Wrapper all the dma routines and check the dev pointer.
903  *
904  * If simple mappings (return just a dma address, we'll noop them,
905  * returning a dma address of 0.
906  *
907  * On more complex mappings (dma_map_sg), a pseudo routine fills
908  * in the scatter list, setting all dma addresses to 0.
909  */
910 
911 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)912 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
913 		enum dma_data_direction dir)
914 {
915 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
916 }
917 
918 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)919 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
920 {
921 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
922 }
923 
924 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)925 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
926 	enum dma_data_direction dir)
927 {
928 	if (dev)
929 		dma_unmap_single(dev, addr, size, dir);
930 }
931 
932 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)933 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
934 		enum dma_data_direction dir)
935 {
936 	if (dev)
937 		dma_sync_single_for_cpu(dev, addr, size, dir);
938 }
939 
940 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)941 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
942 		enum dma_data_direction dir)
943 {
944 	if (dev)
945 		dma_sync_single_for_device(dev, addr, size, dir);
946 }
947 
948 /* pseudo dma_map_sg call */
949 static int
fc_map_sg(struct scatterlist * sg,int nents)950 fc_map_sg(struct scatterlist *sg, int nents)
951 {
952 	struct scatterlist *s;
953 	int i;
954 
955 	WARN_ON(nents == 0 || sg[0].length == 0);
956 
957 	for_each_sg(sg, s, nents, i) {
958 		s->dma_address = 0L;
959 #ifdef CONFIG_NEED_SG_DMA_LENGTH
960 		s->dma_length = s->length;
961 #endif
962 	}
963 	return nents;
964 }
965 
966 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)967 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
968 		enum dma_data_direction dir)
969 {
970 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
971 }
972 
973 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)974 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
975 		enum dma_data_direction dir)
976 {
977 	if (dev)
978 		dma_unmap_sg(dev, sg, nents, dir);
979 }
980 
981 /* *********************** FC-NVME LS Handling **************************** */
982 
983 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
984 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
985 
986 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
987 
988 static void
__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op * lsop)989 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
990 {
991 	struct nvme_fc_rport *rport = lsop->rport;
992 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
993 	unsigned long flags;
994 
995 	spin_lock_irqsave(&rport->lock, flags);
996 
997 	if (!lsop->req_queued) {
998 		spin_unlock_irqrestore(&rport->lock, flags);
999 		return;
1000 	}
1001 
1002 	list_del(&lsop->lsreq_list);
1003 
1004 	lsop->req_queued = false;
1005 
1006 	spin_unlock_irqrestore(&rport->lock, flags);
1007 
1008 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1009 				  (lsreq->rqstlen + lsreq->rsplen),
1010 				  DMA_BIDIRECTIONAL);
1011 
1012 	nvme_fc_rport_put(rport);
1013 }
1014 
1015 static int
__nvme_fc_send_ls_req(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))1016 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1017 		struct nvmefc_ls_req_op *lsop,
1018 		void (*done)(struct nvmefc_ls_req *req, int status))
1019 {
1020 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1021 	unsigned long flags;
1022 	int ret = 0;
1023 
1024 	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1025 		return -ECONNREFUSED;
1026 
1027 	if (!nvme_fc_rport_get(rport))
1028 		return -ESHUTDOWN;
1029 
1030 	lsreq->done = done;
1031 	lsop->rport = rport;
1032 	lsop->req_queued = false;
1033 	INIT_LIST_HEAD(&lsop->lsreq_list);
1034 	init_completion(&lsop->ls_done);
1035 
1036 	lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1037 				  lsreq->rqstlen + lsreq->rsplen,
1038 				  DMA_BIDIRECTIONAL);
1039 	if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1040 		ret = -EFAULT;
1041 		goto out_putrport;
1042 	}
1043 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1044 
1045 	spin_lock_irqsave(&rport->lock, flags);
1046 
1047 	list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1048 
1049 	lsop->req_queued = true;
1050 
1051 	spin_unlock_irqrestore(&rport->lock, flags);
1052 
1053 	ret = rport->lport->ops->ls_req(&rport->lport->localport,
1054 					&rport->remoteport, lsreq);
1055 	if (ret)
1056 		goto out_unlink;
1057 
1058 	return 0;
1059 
1060 out_unlink:
1061 	lsop->ls_error = ret;
1062 	spin_lock_irqsave(&rport->lock, flags);
1063 	lsop->req_queued = false;
1064 	list_del(&lsop->lsreq_list);
1065 	spin_unlock_irqrestore(&rport->lock, flags);
1066 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1067 				  (lsreq->rqstlen + lsreq->rsplen),
1068 				  DMA_BIDIRECTIONAL);
1069 out_putrport:
1070 	nvme_fc_rport_put(rport);
1071 
1072 	return ret;
1073 }
1074 
1075 static void
nvme_fc_send_ls_req_done(struct nvmefc_ls_req * lsreq,int status)1076 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1077 {
1078 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1079 
1080 	lsop->ls_error = status;
1081 	complete(&lsop->ls_done);
1082 }
1083 
1084 static int
nvme_fc_send_ls_req(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop)1085 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1086 {
1087 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1088 	struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1089 	int ret;
1090 
1091 	ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1092 
1093 	if (!ret) {
1094 		/*
1095 		 * No timeout/not interruptible as we need the struct
1096 		 * to exist until the lldd calls us back. Thus mandate
1097 		 * wait until driver calls back. lldd responsible for
1098 		 * the timeout action
1099 		 */
1100 		wait_for_completion(&lsop->ls_done);
1101 
1102 		__nvme_fc_finish_ls_req(lsop);
1103 
1104 		ret = lsop->ls_error;
1105 	}
1106 
1107 	if (ret)
1108 		return ret;
1109 
1110 	/* ACC or RJT payload ? */
1111 	if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1112 		return -ENXIO;
1113 
1114 	return 0;
1115 }
1116 
1117 static int
nvme_fc_send_ls_req_async(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))1118 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1119 		struct nvmefc_ls_req_op *lsop,
1120 		void (*done)(struct nvmefc_ls_req *req, int status))
1121 {
1122 	/* don't wait for completion */
1123 
1124 	return __nvme_fc_send_ls_req(rport, lsop, done);
1125 }
1126 
1127 static int
nvme_fc_connect_admin_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,u16 qsize,u16 ersp_ratio)1128 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1129 	struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1130 {
1131 	struct nvmefc_ls_req_op *lsop;
1132 	struct nvmefc_ls_req *lsreq;
1133 	struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1134 	struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1135 	unsigned long flags;
1136 	int ret, fcret = 0;
1137 
1138 	lsop = kzalloc((sizeof(*lsop) +
1139 			 sizeof(*assoc_rqst) + sizeof(*assoc_acc) +
1140 			 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1141 	if (!lsop) {
1142 		dev_info(ctrl->ctrl.device,
1143 			"NVME-FC{%d}: send Create Association failed: ENOMEM\n",
1144 			ctrl->cnum);
1145 		ret = -ENOMEM;
1146 		goto out_no_memory;
1147 	}
1148 
1149 	assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1];
1150 	assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1151 	lsreq = &lsop->ls_req;
1152 	if (ctrl->lport->ops->lsrqst_priv_sz)
1153 		lsreq->private = &assoc_acc[1];
1154 	else
1155 		lsreq->private = NULL;
1156 
1157 	assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1158 	assoc_rqst->desc_list_len =
1159 			cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1160 
1161 	assoc_rqst->assoc_cmd.desc_tag =
1162 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1163 	assoc_rqst->assoc_cmd.desc_len =
1164 			fcnvme_lsdesc_len(
1165 				sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1166 
1167 	assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1168 	assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1169 	/* Linux supports only Dynamic controllers */
1170 	assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1171 	uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1172 	strscpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1173 		sizeof(assoc_rqst->assoc_cmd.hostnqn));
1174 	strscpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1175 		sizeof(assoc_rqst->assoc_cmd.subnqn));
1176 
1177 	lsop->queue = queue;
1178 	lsreq->rqstaddr = assoc_rqst;
1179 	lsreq->rqstlen = sizeof(*assoc_rqst);
1180 	lsreq->rspaddr = assoc_acc;
1181 	lsreq->rsplen = sizeof(*assoc_acc);
1182 	lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1183 
1184 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1185 	if (ret)
1186 		goto out_free_buffer;
1187 
1188 	/* process connect LS completion */
1189 
1190 	/* validate the ACC response */
1191 	if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1192 		fcret = VERR_LSACC;
1193 	else if (assoc_acc->hdr.desc_list_len !=
1194 			fcnvme_lsdesc_len(
1195 				sizeof(struct fcnvme_ls_cr_assoc_acc)))
1196 		fcret = VERR_CR_ASSOC_ACC_LEN;
1197 	else if (assoc_acc->hdr.rqst.desc_tag !=
1198 			cpu_to_be32(FCNVME_LSDESC_RQST))
1199 		fcret = VERR_LSDESC_RQST;
1200 	else if (assoc_acc->hdr.rqst.desc_len !=
1201 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1202 		fcret = VERR_LSDESC_RQST_LEN;
1203 	else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1204 		fcret = VERR_CR_ASSOC;
1205 	else if (assoc_acc->associd.desc_tag !=
1206 			cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1207 		fcret = VERR_ASSOC_ID;
1208 	else if (assoc_acc->associd.desc_len !=
1209 			fcnvme_lsdesc_len(
1210 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1211 		fcret = VERR_ASSOC_ID_LEN;
1212 	else if (assoc_acc->connectid.desc_tag !=
1213 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1214 		fcret = VERR_CONN_ID;
1215 	else if (assoc_acc->connectid.desc_len !=
1216 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1217 		fcret = VERR_CONN_ID_LEN;
1218 
1219 	if (fcret) {
1220 		ret = -EBADF;
1221 		dev_err(ctrl->dev,
1222 			"q %d Create Association LS failed: %s\n",
1223 			queue->qnum, validation_errors[fcret]);
1224 	} else {
1225 		spin_lock_irqsave(&ctrl->lock, flags);
1226 		ctrl->association_id =
1227 			be64_to_cpu(assoc_acc->associd.association_id);
1228 		queue->connection_id =
1229 			be64_to_cpu(assoc_acc->connectid.connection_id);
1230 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1231 		spin_unlock_irqrestore(&ctrl->lock, flags);
1232 	}
1233 
1234 out_free_buffer:
1235 	kfree(lsop);
1236 out_no_memory:
1237 	if (ret)
1238 		dev_err(ctrl->dev,
1239 			"queue %d connect admin queue failed (%d).\n",
1240 			queue->qnum, ret);
1241 	return ret;
1242 }
1243 
1244 static int
nvme_fc_connect_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,u16 qsize,u16 ersp_ratio)1245 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1246 			u16 qsize, u16 ersp_ratio)
1247 {
1248 	struct nvmefc_ls_req_op *lsop;
1249 	struct nvmefc_ls_req *lsreq;
1250 	struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1251 	struct fcnvme_ls_cr_conn_acc *conn_acc;
1252 	int ret, fcret = 0;
1253 
1254 	lsop = kzalloc((sizeof(*lsop) +
1255 			 sizeof(*conn_rqst) + sizeof(*conn_acc) +
1256 			 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1257 	if (!lsop) {
1258 		dev_info(ctrl->ctrl.device,
1259 			"NVME-FC{%d}: send Create Connection failed: ENOMEM\n",
1260 			ctrl->cnum);
1261 		ret = -ENOMEM;
1262 		goto out_no_memory;
1263 	}
1264 
1265 	conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1];
1266 	conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1267 	lsreq = &lsop->ls_req;
1268 	if (ctrl->lport->ops->lsrqst_priv_sz)
1269 		lsreq->private = (void *)&conn_acc[1];
1270 	else
1271 		lsreq->private = NULL;
1272 
1273 	conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1274 	conn_rqst->desc_list_len = cpu_to_be32(
1275 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1276 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1277 
1278 	conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1279 	conn_rqst->associd.desc_len =
1280 			fcnvme_lsdesc_len(
1281 				sizeof(struct fcnvme_lsdesc_assoc_id));
1282 	conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1283 	conn_rqst->connect_cmd.desc_tag =
1284 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1285 	conn_rqst->connect_cmd.desc_len =
1286 			fcnvme_lsdesc_len(
1287 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1288 	conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1289 	conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1290 	conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1291 
1292 	lsop->queue = queue;
1293 	lsreq->rqstaddr = conn_rqst;
1294 	lsreq->rqstlen = sizeof(*conn_rqst);
1295 	lsreq->rspaddr = conn_acc;
1296 	lsreq->rsplen = sizeof(*conn_acc);
1297 	lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1298 
1299 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1300 	if (ret)
1301 		goto out_free_buffer;
1302 
1303 	/* process connect LS completion */
1304 
1305 	/* validate the ACC response */
1306 	if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1307 		fcret = VERR_LSACC;
1308 	else if (conn_acc->hdr.desc_list_len !=
1309 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1310 		fcret = VERR_CR_CONN_ACC_LEN;
1311 	else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1312 		fcret = VERR_LSDESC_RQST;
1313 	else if (conn_acc->hdr.rqst.desc_len !=
1314 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1315 		fcret = VERR_LSDESC_RQST_LEN;
1316 	else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1317 		fcret = VERR_CR_CONN;
1318 	else if (conn_acc->connectid.desc_tag !=
1319 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1320 		fcret = VERR_CONN_ID;
1321 	else if (conn_acc->connectid.desc_len !=
1322 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1323 		fcret = VERR_CONN_ID_LEN;
1324 
1325 	if (fcret) {
1326 		ret = -EBADF;
1327 		dev_err(ctrl->dev,
1328 			"q %d Create I/O Connection LS failed: %s\n",
1329 			queue->qnum, validation_errors[fcret]);
1330 	} else {
1331 		queue->connection_id =
1332 			be64_to_cpu(conn_acc->connectid.connection_id);
1333 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1334 	}
1335 
1336 out_free_buffer:
1337 	kfree(lsop);
1338 out_no_memory:
1339 	if (ret)
1340 		dev_err(ctrl->dev,
1341 			"queue %d connect I/O queue failed (%d).\n",
1342 			queue->qnum, ret);
1343 	return ret;
1344 }
1345 
1346 static void
nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)1347 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1348 {
1349 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1350 
1351 	__nvme_fc_finish_ls_req(lsop);
1352 
1353 	/* fc-nvme initiator doesn't care about success or failure of cmd */
1354 
1355 	kfree(lsop);
1356 }
1357 
1358 /*
1359  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1360  * the FC-NVME Association.  Terminating the association also
1361  * terminates the FC-NVME connections (per queue, both admin and io
1362  * queues) that are part of the association. E.g. things are torn
1363  * down, and the related FC-NVME Association ID and Connection IDs
1364  * become invalid.
1365  *
1366  * The behavior of the fc-nvme initiator is such that it's
1367  * understanding of the association and connections will implicitly
1368  * be torn down. The action is implicit as it may be due to a loss of
1369  * connectivity with the fc-nvme target, so you may never get a
1370  * response even if you tried.  As such, the action of this routine
1371  * is to asynchronously send the LS, ignore any results of the LS, and
1372  * continue on with terminating the association. If the fc-nvme target
1373  * is present and receives the LS, it too can tear down.
1374  */
1375 static void
nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl * ctrl)1376 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1377 {
1378 	struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1379 	struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1380 	struct nvmefc_ls_req_op *lsop;
1381 	struct nvmefc_ls_req *lsreq;
1382 	int ret;
1383 
1384 	lsop = kzalloc((sizeof(*lsop) +
1385 			sizeof(*discon_rqst) + sizeof(*discon_acc) +
1386 			ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1387 	if (!lsop) {
1388 		dev_info(ctrl->ctrl.device,
1389 			"NVME-FC{%d}: send Disconnect Association "
1390 			"failed: ENOMEM\n",
1391 			ctrl->cnum);
1392 		return;
1393 	}
1394 
1395 	discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
1396 	discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1397 	lsreq = &lsop->ls_req;
1398 	if (ctrl->lport->ops->lsrqst_priv_sz)
1399 		lsreq->private = (void *)&discon_acc[1];
1400 	else
1401 		lsreq->private = NULL;
1402 
1403 	nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
1404 				ctrl->association_id);
1405 
1406 	ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1407 				nvme_fc_disconnect_assoc_done);
1408 	if (ret)
1409 		kfree(lsop);
1410 }
1411 
1412 static void
nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp * lsrsp)1413 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1414 {
1415 	struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private;
1416 	struct nvme_fc_rport *rport = lsop->rport;
1417 	struct nvme_fc_lport *lport = rport->lport;
1418 	unsigned long flags;
1419 
1420 	spin_lock_irqsave(&rport->lock, flags);
1421 	list_del(&lsop->lsrcv_list);
1422 	spin_unlock_irqrestore(&rport->lock, flags);
1423 
1424 	fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma,
1425 				sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1426 	fc_dma_unmap_single(lport->dev, lsop->rspdma,
1427 			sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1428 
1429 	kfree(lsop->rspbuf);
1430 	kfree(lsop->rqstbuf);
1431 	kfree(lsop);
1432 
1433 	nvme_fc_rport_put(rport);
1434 }
1435 
1436 static void
nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op * lsop)1437 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop)
1438 {
1439 	struct nvme_fc_rport *rport = lsop->rport;
1440 	struct nvme_fc_lport *lport = rport->lport;
1441 	struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1442 	int ret;
1443 
1444 	fc_dma_sync_single_for_device(lport->dev, lsop->rspdma,
1445 				  sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1446 
1447 	ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport,
1448 				     lsop->lsrsp);
1449 	if (ret) {
1450 		dev_warn(lport->dev,
1451 			"LLDD rejected LS RSP xmt: LS %d status %d\n",
1452 			w0->ls_cmd, ret);
1453 		nvme_fc_xmt_ls_rsp_done(lsop->lsrsp);
1454 		return;
1455 	}
1456 }
1457 
1458 static struct nvme_fc_ctrl *
nvme_fc_match_disconn_ls(struct nvme_fc_rport * rport,struct nvmefc_ls_rcv_op * lsop)1459 nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport,
1460 		      struct nvmefc_ls_rcv_op *lsop)
1461 {
1462 	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1463 					&lsop->rqstbuf->rq_dis_assoc;
1464 	struct nvme_fc_ctrl *ctrl, *ret = NULL;
1465 	struct nvmefc_ls_rcv_op *oldls = NULL;
1466 	u64 association_id = be64_to_cpu(rqst->associd.association_id);
1467 	unsigned long flags;
1468 
1469 	spin_lock_irqsave(&rport->lock, flags);
1470 
1471 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
1472 		if (!nvme_fc_ctrl_get(ctrl))
1473 			continue;
1474 		spin_lock(&ctrl->lock);
1475 		if (association_id == ctrl->association_id) {
1476 			oldls = ctrl->rcv_disconn;
1477 			ctrl->rcv_disconn = lsop;
1478 			ret = ctrl;
1479 		}
1480 		spin_unlock(&ctrl->lock);
1481 		if (ret)
1482 			/* leave the ctrl get reference */
1483 			break;
1484 		nvme_fc_ctrl_put(ctrl);
1485 	}
1486 
1487 	spin_unlock_irqrestore(&rport->lock, flags);
1488 
1489 	/* transmit a response for anything that was pending */
1490 	if (oldls) {
1491 		dev_info(rport->lport->dev,
1492 			"NVME-FC{%d}: Multiple Disconnect Association "
1493 			"LS's received\n", ctrl->cnum);
1494 		/* overwrite good response with bogus failure */
1495 		oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1496 						sizeof(*oldls->rspbuf),
1497 						rqst->w0.ls_cmd,
1498 						FCNVME_RJT_RC_UNAB,
1499 						FCNVME_RJT_EXP_NONE, 0);
1500 		nvme_fc_xmt_ls_rsp(oldls);
1501 	}
1502 
1503 	return ret;
1504 }
1505 
1506 /*
1507  * returns true to mean LS handled and ls_rsp can be sent
1508  * returns false to defer ls_rsp xmt (will be done as part of
1509  *     association termination)
1510  */
1511 static bool
nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op * lsop)1512 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop)
1513 {
1514 	struct nvme_fc_rport *rport = lsop->rport;
1515 	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1516 					&lsop->rqstbuf->rq_dis_assoc;
1517 	struct fcnvme_ls_disconnect_assoc_acc *acc =
1518 					&lsop->rspbuf->rsp_dis_assoc;
1519 	struct nvme_fc_ctrl *ctrl = NULL;
1520 	int ret = 0;
1521 
1522 	memset(acc, 0, sizeof(*acc));
1523 
1524 	ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst);
1525 	if (!ret) {
1526 		/* match an active association */
1527 		ctrl = nvme_fc_match_disconn_ls(rport, lsop);
1528 		if (!ctrl)
1529 			ret = VERR_NO_ASSOC;
1530 	}
1531 
1532 	if (ret) {
1533 		dev_info(rport->lport->dev,
1534 			"Disconnect LS failed: %s\n",
1535 			validation_errors[ret]);
1536 		lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1537 					sizeof(*acc), rqst->w0.ls_cmd,
1538 					(ret == VERR_NO_ASSOC) ?
1539 						FCNVME_RJT_RC_INV_ASSOC :
1540 						FCNVME_RJT_RC_LOGIC,
1541 					FCNVME_RJT_EXP_NONE, 0);
1542 		return true;
1543 	}
1544 
1545 	/* format an ACCept response */
1546 
1547 	lsop->lsrsp->rsplen = sizeof(*acc);
1548 
1549 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1550 			fcnvme_lsdesc_len(
1551 				sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1552 			FCNVME_LS_DISCONNECT_ASSOC);
1553 
1554 	/*
1555 	 * the transmit of the response will occur after the exchanges
1556 	 * for the association have been ABTS'd by
1557 	 * nvme_fc_delete_association().
1558 	 */
1559 
1560 	/* fail the association */
1561 	nvme_fc_error_recovery(ctrl, "Disconnect Association LS received");
1562 
1563 	/* release the reference taken by nvme_fc_match_disconn_ls() */
1564 	nvme_fc_ctrl_put(ctrl);
1565 
1566 	return false;
1567 }
1568 
1569 /*
1570  * Actual Processing routine for received FC-NVME LS Requests from the LLD
1571  * returns true if a response should be sent afterward, false if rsp will
1572  * be sent asynchronously.
1573  */
1574 static bool
nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op * lsop)1575 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop)
1576 {
1577 	struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1578 	bool ret = true;
1579 
1580 	lsop->lsrsp->nvme_fc_private = lsop;
1581 	lsop->lsrsp->rspbuf = lsop->rspbuf;
1582 	lsop->lsrsp->rspdma = lsop->rspdma;
1583 	lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done;
1584 	/* Be preventative. handlers will later set to valid length */
1585 	lsop->lsrsp->rsplen = 0;
1586 
1587 	/*
1588 	 * handlers:
1589 	 *   parse request input, execute the request, and format the
1590 	 *   LS response
1591 	 */
1592 	switch (w0->ls_cmd) {
1593 	case FCNVME_LS_DISCONNECT_ASSOC:
1594 		ret = nvme_fc_ls_disconnect_assoc(lsop);
1595 		break;
1596 	case FCNVME_LS_DISCONNECT_CONN:
1597 		lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1598 				sizeof(*lsop->rspbuf), w0->ls_cmd,
1599 				FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0);
1600 		break;
1601 	case FCNVME_LS_CREATE_ASSOCIATION:
1602 	case FCNVME_LS_CREATE_CONNECTION:
1603 		lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1604 				sizeof(*lsop->rspbuf), w0->ls_cmd,
1605 				FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0);
1606 		break;
1607 	default:
1608 		lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1609 				sizeof(*lsop->rspbuf), w0->ls_cmd,
1610 				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1611 		break;
1612 	}
1613 
1614 	return(ret);
1615 }
1616 
1617 static void
nvme_fc_handle_ls_rqst_work(struct work_struct * work)1618 nvme_fc_handle_ls_rqst_work(struct work_struct *work)
1619 {
1620 	struct nvme_fc_rport *rport =
1621 		container_of(work, struct nvme_fc_rport, lsrcv_work);
1622 	struct fcnvme_ls_rqst_w0 *w0;
1623 	struct nvmefc_ls_rcv_op *lsop;
1624 	unsigned long flags;
1625 	bool sendrsp;
1626 
1627 restart:
1628 	sendrsp = true;
1629 	spin_lock_irqsave(&rport->lock, flags);
1630 	list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) {
1631 		if (lsop->handled)
1632 			continue;
1633 
1634 		lsop->handled = true;
1635 		if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
1636 			spin_unlock_irqrestore(&rport->lock, flags);
1637 			sendrsp = nvme_fc_handle_ls_rqst(lsop);
1638 		} else {
1639 			spin_unlock_irqrestore(&rport->lock, flags);
1640 			w0 = &lsop->rqstbuf->w0;
1641 			lsop->lsrsp->rsplen = nvme_fc_format_rjt(
1642 						lsop->rspbuf,
1643 						sizeof(*lsop->rspbuf),
1644 						w0->ls_cmd,
1645 						FCNVME_RJT_RC_UNAB,
1646 						FCNVME_RJT_EXP_NONE, 0);
1647 		}
1648 		if (sendrsp)
1649 			nvme_fc_xmt_ls_rsp(lsop);
1650 		goto restart;
1651 	}
1652 	spin_unlock_irqrestore(&rport->lock, flags);
1653 }
1654 
1655 static
nvme_fc_rcv_ls_req_err_msg(struct nvme_fc_lport * lport,struct fcnvme_ls_rqst_w0 * w0)1656 void nvme_fc_rcv_ls_req_err_msg(struct nvme_fc_lport *lport,
1657 				struct fcnvme_ls_rqst_w0 *w0)
1658 {
1659 	dev_info(lport->dev, "RCV %s LS failed: No memory\n",
1660 		(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1661 			nvmefc_ls_names[w0->ls_cmd] : "");
1662 }
1663 
1664 /**
1665  * nvme_fc_rcv_ls_req - transport entry point called by an LLDD
1666  *                       upon the reception of a NVME LS request.
1667  *
1668  * The nvme-fc layer will copy payload to an internal structure for
1669  * processing.  As such, upon completion of the routine, the LLDD may
1670  * immediately free/reuse the LS request buffer passed in the call.
1671  *
1672  * If this routine returns error, the LLDD should abort the exchange.
1673  *
1674  * @portptr:    pointer to the (registered) remote port that the LS
1675  *              was received from. The remoteport is associated with
1676  *              a specific localport.
1677  * @lsrsp:      pointer to a nvmefc_ls_rsp response structure to be
1678  *              used to reference the exchange corresponding to the LS
1679  *              when issuing an ls response.
1680  * @lsreqbuf:   pointer to the buffer containing the LS Request
1681  * @lsreqbuf_len: length, in bytes, of the received LS request
1682  */
1683 int
nvme_fc_rcv_ls_req(struct nvme_fc_remote_port * portptr,struct nvmefc_ls_rsp * lsrsp,void * lsreqbuf,u32 lsreqbuf_len)1684 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr,
1685 			struct nvmefc_ls_rsp *lsrsp,
1686 			void *lsreqbuf, u32 lsreqbuf_len)
1687 {
1688 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
1689 	struct nvme_fc_lport *lport = rport->lport;
1690 	struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
1691 	struct nvmefc_ls_rcv_op *lsop;
1692 	unsigned long flags;
1693 	int ret;
1694 
1695 	nvme_fc_rport_get(rport);
1696 
1697 	/* validate there's a routine to transmit a response */
1698 	if (!lport->ops->xmt_ls_rsp) {
1699 		dev_info(lport->dev,
1700 			"RCV %s LS failed: no LLDD xmt_ls_rsp\n",
1701 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1702 				nvmefc_ls_names[w0->ls_cmd] : "");
1703 		ret = -EINVAL;
1704 		goto out_put;
1705 	}
1706 
1707 	if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
1708 		dev_info(lport->dev,
1709 			"RCV %s LS failed: payload too large\n",
1710 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1711 				nvmefc_ls_names[w0->ls_cmd] : "");
1712 		ret = -E2BIG;
1713 		goto out_put;
1714 	}
1715 
1716 	lsop = kzalloc(sizeof(*lsop), GFP_KERNEL);
1717 	if (!lsop) {
1718 		nvme_fc_rcv_ls_req_err_msg(lport, w0);
1719 		ret = -ENOMEM;
1720 		goto out_put;
1721 	}
1722 
1723 	lsop->rqstbuf = kzalloc(sizeof(*lsop->rqstbuf), GFP_KERNEL);
1724 	lsop->rspbuf = kzalloc(sizeof(*lsop->rspbuf), GFP_KERNEL);
1725 	if (!lsop->rqstbuf || !lsop->rspbuf) {
1726 		nvme_fc_rcv_ls_req_err_msg(lport, w0);
1727 		ret = -ENOMEM;
1728 		goto out_free;
1729 	}
1730 
1731 	lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf,
1732 					sizeof(*lsop->rspbuf),
1733 					DMA_TO_DEVICE);
1734 	if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) {
1735 		dev_info(lport->dev,
1736 			"RCV %s LS failed: DMA mapping failure\n",
1737 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1738 				nvmefc_ls_names[w0->ls_cmd] : "");
1739 		ret = -EFAULT;
1740 		goto out_free;
1741 	}
1742 
1743 	lsop->rport = rport;
1744 	lsop->lsrsp = lsrsp;
1745 
1746 	memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len);
1747 	lsop->rqstdatalen = lsreqbuf_len;
1748 
1749 	spin_lock_irqsave(&rport->lock, flags);
1750 	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) {
1751 		spin_unlock_irqrestore(&rport->lock, flags);
1752 		ret = -ENOTCONN;
1753 		goto out_unmap;
1754 	}
1755 	list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list);
1756 	spin_unlock_irqrestore(&rport->lock, flags);
1757 
1758 	schedule_work(&rport->lsrcv_work);
1759 
1760 	return 0;
1761 
1762 out_unmap:
1763 	fc_dma_unmap_single(lport->dev, lsop->rspdma,
1764 			sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1765 out_free:
1766 	kfree(lsop->rspbuf);
1767 	kfree(lsop->rqstbuf);
1768 	kfree(lsop);
1769 out_put:
1770 	nvme_fc_rport_put(rport);
1771 	return ret;
1772 }
1773 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req);
1774 
1775 
1776 /* *********************** NVME Ctrl Routines **************************** */
1777 
1778 static void
__nvme_fc_exit_request(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op)1779 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1780 		struct nvme_fc_fcp_op *op)
1781 {
1782 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1783 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1784 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1785 				sizeof(op->cmd_iu), DMA_TO_DEVICE);
1786 
1787 	atomic_set(&op->state, FCPOP_STATE_UNINIT);
1788 }
1789 
1790 static void
nvme_fc_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1791 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1792 		unsigned int hctx_idx)
1793 {
1794 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1795 
1796 	return __nvme_fc_exit_request(to_fc_ctrl(set->driver_data), op);
1797 }
1798 
1799 static int
__nvme_fc_abort_op(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op)1800 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1801 {
1802 	unsigned long flags;
1803 	int opstate;
1804 
1805 	spin_lock_irqsave(&ctrl->lock, flags);
1806 	opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1807 	if (opstate != FCPOP_STATE_ACTIVE)
1808 		atomic_set(&op->state, opstate);
1809 	else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) {
1810 		op->flags |= FCOP_FLAGS_TERMIO;
1811 		ctrl->iocnt++;
1812 	}
1813 	spin_unlock_irqrestore(&ctrl->lock, flags);
1814 
1815 	if (opstate != FCPOP_STATE_ACTIVE)
1816 		return -ECANCELED;
1817 
1818 	ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1819 					&ctrl->rport->remoteport,
1820 					op->queue->lldd_handle,
1821 					&op->fcp_req);
1822 
1823 	return 0;
1824 }
1825 
1826 static void
nvme_fc_abort_aen_ops(struct nvme_fc_ctrl * ctrl)1827 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1828 {
1829 	struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1830 	int i;
1831 
1832 	/* ensure we've initialized the ops once */
1833 	if (!(aen_op->flags & FCOP_FLAGS_AEN))
1834 		return;
1835 
1836 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1837 		__nvme_fc_abort_op(ctrl, aen_op);
1838 }
1839 
1840 static inline void
__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op,int opstate)1841 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1842 		struct nvme_fc_fcp_op *op, int opstate)
1843 {
1844 	unsigned long flags;
1845 
1846 	if (opstate == FCPOP_STATE_ABORTED) {
1847 		spin_lock_irqsave(&ctrl->lock, flags);
1848 		if (test_bit(FCCTRL_TERMIO, &ctrl->flags) &&
1849 		    op->flags & FCOP_FLAGS_TERMIO) {
1850 			if (!--ctrl->iocnt)
1851 				wake_up(&ctrl->ioabort_wait);
1852 		}
1853 		spin_unlock_irqrestore(&ctrl->lock, flags);
1854 	}
1855 }
1856 
1857 static void
nvme_fc_ctrl_ioerr_work(struct work_struct * work)1858 nvme_fc_ctrl_ioerr_work(struct work_struct *work)
1859 {
1860 	struct nvme_fc_ctrl *ctrl =
1861 			container_of(work, struct nvme_fc_ctrl, ioerr_work);
1862 
1863 	nvme_fc_error_recovery(ctrl, "transport detected io error");
1864 }
1865 
1866 /*
1867  * nvme_fc_io_getuuid - Routine called to get the appid field
1868  * associated with request by the lldd
1869  * @req:IO request from nvme fc to driver
1870  * Returns: UUID if there is an appid associated with VM or
1871  * NULL if the user/libvirt has not set the appid to VM
1872  */
nvme_fc_io_getuuid(struct nvmefc_fcp_req * req)1873 char *nvme_fc_io_getuuid(struct nvmefc_fcp_req *req)
1874 {
1875 	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1876 	struct request *rq = op->rq;
1877 
1878 	if (!IS_ENABLED(CONFIG_BLK_CGROUP_FC_APPID) || !rq || !rq->bio)
1879 		return NULL;
1880 	return blkcg_get_fc_appid(rq->bio);
1881 }
1882 EXPORT_SYMBOL_GPL(nvme_fc_io_getuuid);
1883 
1884 static void
nvme_fc_fcpio_done(struct nvmefc_fcp_req * req)1885 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1886 {
1887 	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1888 	struct request *rq = op->rq;
1889 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1890 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1891 	struct nvme_fc_queue *queue = op->queue;
1892 	struct nvme_completion *cqe = &op->rsp_iu.cqe;
1893 	struct nvme_command *sqe = &op->cmd_iu.sqe;
1894 	__le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1895 	union nvme_result result;
1896 	bool terminate_assoc = true;
1897 	int opstate;
1898 
1899 	/*
1900 	 * WARNING:
1901 	 * The current linux implementation of a nvme controller
1902 	 * allocates a single tag set for all io queues and sizes
1903 	 * the io queues to fully hold all possible tags. Thus, the
1904 	 * implementation does not reference or care about the sqhd
1905 	 * value as it never needs to use the sqhd/sqtail pointers
1906 	 * for submission pacing.
1907 	 *
1908 	 * This affects the FC-NVME implementation in two ways:
1909 	 * 1) As the value doesn't matter, we don't need to waste
1910 	 *    cycles extracting it from ERSPs and stamping it in the
1911 	 *    cases where the transport fabricates CQEs on successful
1912 	 *    completions.
1913 	 * 2) The FC-NVME implementation requires that delivery of
1914 	 *    ERSP completions are to go back to the nvme layer in order
1915 	 *    relative to the rsn, such that the sqhd value will always
1916 	 *    be "in order" for the nvme layer. As the nvme layer in
1917 	 *    linux doesn't care about sqhd, there's no need to return
1918 	 *    them in order.
1919 	 *
1920 	 * Additionally:
1921 	 * As the core nvme layer in linux currently does not look at
1922 	 * every field in the cqe - in cases where the FC transport must
1923 	 * fabricate a CQE, the following fields will not be set as they
1924 	 * are not referenced:
1925 	 *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1926 	 *
1927 	 * Failure or error of an individual i/o, in a transport
1928 	 * detected fashion unrelated to the nvme completion status,
1929 	 * potentially cause the initiator and target sides to get out
1930 	 * of sync on SQ head/tail (aka outstanding io count allowed).
1931 	 * Per FC-NVME spec, failure of an individual command requires
1932 	 * the connection to be terminated, which in turn requires the
1933 	 * association to be terminated.
1934 	 */
1935 
1936 	opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1937 
1938 	fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1939 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1940 
1941 	if (opstate == FCPOP_STATE_ABORTED)
1942 		status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1);
1943 	else if (freq->status) {
1944 		status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1945 		dev_info(ctrl->ctrl.device,
1946 			"NVME-FC{%d}: io failed due to lldd error %d\n",
1947 			ctrl->cnum, freq->status);
1948 	}
1949 
1950 	/*
1951 	 * For the linux implementation, if we have an unsuccesful
1952 	 * status, they blk-mq layer can typically be called with the
1953 	 * non-zero status and the content of the cqe isn't important.
1954 	 */
1955 	if (status)
1956 		goto done;
1957 
1958 	/*
1959 	 * command completed successfully relative to the wire
1960 	 * protocol. However, validate anything received and
1961 	 * extract the status and result from the cqe (create it
1962 	 * where necessary).
1963 	 */
1964 
1965 	switch (freq->rcv_rsplen) {
1966 
1967 	case 0:
1968 	case NVME_FC_SIZEOF_ZEROS_RSP:
1969 		/*
1970 		 * No response payload or 12 bytes of payload (which
1971 		 * should all be zeros) are considered successful and
1972 		 * no payload in the CQE by the transport.
1973 		 */
1974 		if (freq->transferred_length !=
1975 		    be32_to_cpu(op->cmd_iu.data_len)) {
1976 			status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1977 			dev_info(ctrl->ctrl.device,
1978 				"NVME-FC{%d}: io failed due to bad transfer "
1979 				"length: %d vs expected %d\n",
1980 				ctrl->cnum, freq->transferred_length,
1981 				be32_to_cpu(op->cmd_iu.data_len));
1982 			goto done;
1983 		}
1984 		result.u64 = 0;
1985 		break;
1986 
1987 	case sizeof(struct nvme_fc_ersp_iu):
1988 		/*
1989 		 * The ERSP IU contains a full completion with CQE.
1990 		 * Validate ERSP IU and look at cqe.
1991 		 */
1992 		if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1993 					(freq->rcv_rsplen / 4) ||
1994 			     be32_to_cpu(op->rsp_iu.xfrd_len) !=
1995 					freq->transferred_length ||
1996 			     op->rsp_iu.ersp_result ||
1997 			     sqe->common.command_id != cqe->command_id)) {
1998 			status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1999 			dev_info(ctrl->ctrl.device,
2000 				"NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
2001 				"iu len %d, xfr len %d vs %d, status code "
2002 				"%d, cmdid %d vs %d\n",
2003 				ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
2004 				be32_to_cpu(op->rsp_iu.xfrd_len),
2005 				freq->transferred_length,
2006 				op->rsp_iu.ersp_result,
2007 				sqe->common.command_id,
2008 				cqe->command_id);
2009 			goto done;
2010 		}
2011 		result = cqe->result;
2012 		status = cqe->status;
2013 		break;
2014 
2015 	default:
2016 		status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2017 		dev_info(ctrl->ctrl.device,
2018 			"NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
2019 			"len %d\n",
2020 			ctrl->cnum, freq->rcv_rsplen);
2021 		goto done;
2022 	}
2023 
2024 	terminate_assoc = false;
2025 
2026 done:
2027 	if (op->flags & FCOP_FLAGS_AEN) {
2028 		nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
2029 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2030 		atomic_set(&op->state, FCPOP_STATE_IDLE);
2031 		op->flags = FCOP_FLAGS_AEN;	/* clear other flags */
2032 		nvme_fc_ctrl_put(ctrl);
2033 		goto check_error;
2034 	}
2035 
2036 	__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2037 	if (!nvme_try_complete_req(rq, status, result))
2038 		nvme_fc_complete_rq(rq);
2039 
2040 check_error:
2041 	if (terminate_assoc &&
2042 	    nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_RESETTING)
2043 		queue_work(nvme_reset_wq, &ctrl->ioerr_work);
2044 }
2045 
2046 static int
__nvme_fc_init_request(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,struct nvme_fc_fcp_op * op,struct request * rq,u32 rqno)2047 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
2048 		struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
2049 		struct request *rq, u32 rqno)
2050 {
2051 	struct nvme_fcp_op_w_sgl *op_w_sgl =
2052 		container_of(op, typeof(*op_w_sgl), op);
2053 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2054 	int ret = 0;
2055 
2056 	memset(op, 0, sizeof(*op));
2057 	op->fcp_req.cmdaddr = &op->cmd_iu;
2058 	op->fcp_req.cmdlen = sizeof(op->cmd_iu);
2059 	op->fcp_req.rspaddr = &op->rsp_iu;
2060 	op->fcp_req.rsplen = sizeof(op->rsp_iu);
2061 	op->fcp_req.done = nvme_fc_fcpio_done;
2062 	op->ctrl = ctrl;
2063 	op->queue = queue;
2064 	op->rq = rq;
2065 	op->rqno = rqno;
2066 
2067 	cmdiu->format_id = NVME_CMD_FORMAT_ID;
2068 	cmdiu->fc_id = NVME_CMD_FC_ID;
2069 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
2070 	if (queue->qnum)
2071 		cmdiu->rsv_cat = fccmnd_set_cat_css(0,
2072 					(NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
2073 	else
2074 		cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
2075 
2076 	op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
2077 				&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
2078 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
2079 		dev_err(ctrl->dev,
2080 			"FCP Op failed - cmdiu dma mapping failed.\n");
2081 		ret = -EFAULT;
2082 		goto out_on_error;
2083 	}
2084 
2085 	op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
2086 				&op->rsp_iu, sizeof(op->rsp_iu),
2087 				DMA_FROM_DEVICE);
2088 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
2089 		dev_err(ctrl->dev,
2090 			"FCP Op failed - rspiu dma mapping failed.\n");
2091 		ret = -EFAULT;
2092 	}
2093 
2094 	atomic_set(&op->state, FCPOP_STATE_IDLE);
2095 out_on_error:
2096 	return ret;
2097 }
2098 
2099 static int
nvme_fc_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)2100 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
2101 		unsigned int hctx_idx, unsigned int numa_node)
2102 {
2103 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data);
2104 	struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
2105 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
2106 	struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
2107 	int res;
2108 
2109 	res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
2110 	if (res)
2111 		return res;
2112 	op->op.fcp_req.first_sgl = op->sgl;
2113 	op->op.fcp_req.private = &op->priv[0];
2114 	nvme_req(rq)->ctrl = &ctrl->ctrl;
2115 	nvme_req(rq)->cmd = &op->op.cmd_iu.sqe;
2116 	return res;
2117 }
2118 
2119 static int
nvme_fc_init_aen_ops(struct nvme_fc_ctrl * ctrl)2120 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
2121 {
2122 	struct nvme_fc_fcp_op *aen_op;
2123 	struct nvme_fc_cmd_iu *cmdiu;
2124 	struct nvme_command *sqe;
2125 	void *private = NULL;
2126 	int i, ret;
2127 
2128 	aen_op = ctrl->aen_ops;
2129 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2130 		if (ctrl->lport->ops->fcprqst_priv_sz) {
2131 			private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
2132 						GFP_KERNEL);
2133 			if (!private)
2134 				return -ENOMEM;
2135 		}
2136 
2137 		cmdiu = &aen_op->cmd_iu;
2138 		sqe = &cmdiu->sqe;
2139 		ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
2140 				aen_op, (struct request *)NULL,
2141 				(NVME_AQ_BLK_MQ_DEPTH + i));
2142 		if (ret) {
2143 			kfree(private);
2144 			return ret;
2145 		}
2146 
2147 		aen_op->flags = FCOP_FLAGS_AEN;
2148 		aen_op->fcp_req.private = private;
2149 
2150 		memset(sqe, 0, sizeof(*sqe));
2151 		sqe->common.opcode = nvme_admin_async_event;
2152 		/* Note: core layer may overwrite the sqe.command_id value */
2153 		sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
2154 	}
2155 	return 0;
2156 }
2157 
2158 static void
nvme_fc_term_aen_ops(struct nvme_fc_ctrl * ctrl)2159 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
2160 {
2161 	struct nvme_fc_fcp_op *aen_op;
2162 	int i;
2163 
2164 	cancel_work_sync(&ctrl->ctrl.async_event_work);
2165 	aen_op = ctrl->aen_ops;
2166 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2167 		__nvme_fc_exit_request(ctrl, aen_op);
2168 
2169 		kfree(aen_op->fcp_req.private);
2170 		aen_op->fcp_req.private = NULL;
2171 	}
2172 }
2173 
2174 static inline int
__nvme_fc_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int qidx)2175 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int qidx)
2176 {
2177 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(data);
2178 	struct nvme_fc_queue *queue = &ctrl->queues[qidx];
2179 
2180 	hctx->driver_data = queue;
2181 	queue->hctx = hctx;
2182 	return 0;
2183 }
2184 
2185 static int
nvme_fc_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)2186 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx)
2187 {
2188 	return __nvme_fc_init_hctx(hctx, data, hctx_idx + 1);
2189 }
2190 
2191 static int
nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)2192 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2193 		unsigned int hctx_idx)
2194 {
2195 	return __nvme_fc_init_hctx(hctx, data, hctx_idx);
2196 }
2197 
2198 static void
nvme_fc_init_queue(struct nvme_fc_ctrl * ctrl,int idx)2199 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
2200 {
2201 	struct nvme_fc_queue *queue;
2202 
2203 	queue = &ctrl->queues[idx];
2204 	memset(queue, 0, sizeof(*queue));
2205 	queue->ctrl = ctrl;
2206 	queue->qnum = idx;
2207 	atomic_set(&queue->csn, 0);
2208 	queue->dev = ctrl->dev;
2209 
2210 	if (idx > 0)
2211 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
2212 	else
2213 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
2214 
2215 	/*
2216 	 * Considered whether we should allocate buffers for all SQEs
2217 	 * and CQEs and dma map them - mapping their respective entries
2218 	 * into the request structures (kernel vm addr and dma address)
2219 	 * thus the driver could use the buffers/mappings directly.
2220 	 * It only makes sense if the LLDD would use them for its
2221 	 * messaging api. It's very unlikely most adapter api's would use
2222 	 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
2223 	 * structures were used instead.
2224 	 */
2225 }
2226 
2227 /*
2228  * This routine terminates a queue at the transport level.
2229  * The transport has already ensured that all outstanding ios on
2230  * the queue have been terminated.
2231  * The transport will send a Disconnect LS request to terminate
2232  * the queue's connection. Termination of the admin queue will also
2233  * terminate the association at the target.
2234  */
2235 static void
nvme_fc_free_queue(struct nvme_fc_queue * queue)2236 nvme_fc_free_queue(struct nvme_fc_queue *queue)
2237 {
2238 	if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
2239 		return;
2240 
2241 	clear_bit(NVME_FC_Q_LIVE, &queue->flags);
2242 	/*
2243 	 * Current implementation never disconnects a single queue.
2244 	 * It always terminates a whole association. So there is never
2245 	 * a disconnect(queue) LS sent to the target.
2246 	 */
2247 
2248 	queue->connection_id = 0;
2249 	atomic_set(&queue->csn, 0);
2250 }
2251 
2252 static void
__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,unsigned int qidx)2253 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
2254 	struct nvme_fc_queue *queue, unsigned int qidx)
2255 {
2256 	if (ctrl->lport->ops->delete_queue)
2257 		ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
2258 				queue->lldd_handle);
2259 	queue->lldd_handle = NULL;
2260 }
2261 
2262 static void
nvme_fc_free_io_queues(struct nvme_fc_ctrl * ctrl)2263 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
2264 {
2265 	int i;
2266 
2267 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
2268 		nvme_fc_free_queue(&ctrl->queues[i]);
2269 }
2270 
2271 static int
__nvme_fc_create_hw_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,unsigned int qidx,u16 qsize)2272 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
2273 	struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
2274 {
2275 	int ret = 0;
2276 
2277 	queue->lldd_handle = NULL;
2278 	if (ctrl->lport->ops->create_queue)
2279 		ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
2280 				qidx, qsize, &queue->lldd_handle);
2281 
2282 	return ret;
2283 }
2284 
2285 static void
nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl * ctrl)2286 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
2287 {
2288 	struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
2289 	int i;
2290 
2291 	for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
2292 		__nvme_fc_delete_hw_queue(ctrl, queue, i);
2293 }
2294 
2295 static int
nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl * ctrl,u16 qsize)2296 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2297 {
2298 	struct nvme_fc_queue *queue = &ctrl->queues[1];
2299 	int i, ret;
2300 
2301 	for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
2302 		ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
2303 		if (ret)
2304 			goto delete_queues;
2305 	}
2306 
2307 	return 0;
2308 
2309 delete_queues:
2310 	for (; i > 0; i--)
2311 		__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2312 	return ret;
2313 }
2314 
2315 static int
nvme_fc_connect_io_queues(struct nvme_fc_ctrl * ctrl,u16 qsize)2316 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2317 {
2318 	int i, ret = 0;
2319 
2320 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2321 		ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2322 					(qsize / 5));
2323 		if (ret)
2324 			break;
2325 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
2326 		if (ret)
2327 			break;
2328 
2329 		set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2330 	}
2331 
2332 	return ret;
2333 }
2334 
2335 static void
nvme_fc_init_io_queues(struct nvme_fc_ctrl * ctrl)2336 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2337 {
2338 	int i;
2339 
2340 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
2341 		nvme_fc_init_queue(ctrl, i);
2342 }
2343 
2344 static void
nvme_fc_ctrl_free(struct kref * ref)2345 nvme_fc_ctrl_free(struct kref *ref)
2346 {
2347 	struct nvme_fc_ctrl *ctrl =
2348 		container_of(ref, struct nvme_fc_ctrl, ref);
2349 	unsigned long flags;
2350 
2351 	if (ctrl->ctrl.tagset)
2352 		nvme_remove_io_tag_set(&ctrl->ctrl);
2353 
2354 	/* remove from rport list */
2355 	spin_lock_irqsave(&ctrl->rport->lock, flags);
2356 	list_del(&ctrl->ctrl_list);
2357 	spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2358 
2359 	nvme_unquiesce_admin_queue(&ctrl->ctrl);
2360 	nvme_remove_admin_tag_set(&ctrl->ctrl);
2361 
2362 	kfree(ctrl->queues);
2363 
2364 	put_device(ctrl->dev);
2365 	nvme_fc_rport_put(ctrl->rport);
2366 
2367 	ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
2368 	if (ctrl->ctrl.opts)
2369 		nvmf_free_options(ctrl->ctrl.opts);
2370 	kfree(ctrl);
2371 }
2372 
2373 static void
nvme_fc_ctrl_put(struct nvme_fc_ctrl * ctrl)2374 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2375 {
2376 	kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2377 }
2378 
2379 static int
nvme_fc_ctrl_get(struct nvme_fc_ctrl * ctrl)2380 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2381 {
2382 	return kref_get_unless_zero(&ctrl->ref);
2383 }
2384 
2385 /*
2386  * All accesses from nvme core layer done - can now free the
2387  * controller. Called after last nvme_put_ctrl() call
2388  */
2389 static void
nvme_fc_free_ctrl(struct nvme_ctrl * nctrl)2390 nvme_fc_free_ctrl(struct nvme_ctrl *nctrl)
2391 {
2392 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2393 
2394 	WARN_ON(nctrl != &ctrl->ctrl);
2395 
2396 	nvme_fc_ctrl_put(ctrl);
2397 }
2398 
2399 /*
2400  * This routine is used by the transport when it needs to find active
2401  * io on a queue that is to be terminated. The transport uses
2402  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2403  * this routine to kill them on a 1 by 1 basis.
2404  *
2405  * As FC allocates FC exchange for each io, the transport must contact
2406  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2407  * After terminating the exchange the LLDD will call the transport's
2408  * normal io done path for the request, but it will have an aborted
2409  * status. The done path will return the io request back to the block
2410  * layer with an error status.
2411  */
nvme_fc_terminate_exchange(struct request * req,void * data)2412 static bool nvme_fc_terminate_exchange(struct request *req, void *data)
2413 {
2414 	struct nvme_ctrl *nctrl = data;
2415 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2416 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2417 
2418 	op->nreq.flags |= NVME_REQ_CANCELLED;
2419 	__nvme_fc_abort_op(ctrl, op);
2420 	return true;
2421 }
2422 
2423 /*
2424  * This routine runs through all outstanding commands on the association
2425  * and aborts them.  This routine is typically be called by the
2426  * delete_association routine. It is also called due to an error during
2427  * reconnect. In that scenario, it is most likely a command that initializes
2428  * the controller, including fabric Connect commands on io queues, that
2429  * may have timed out or failed thus the io must be killed for the connect
2430  * thread to see the error.
2431  */
2432 static void
__nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl * ctrl,bool start_queues)2433 __nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues)
2434 {
2435 	int q;
2436 
2437 	/*
2438 	 * if aborting io, the queues are no longer good, mark them
2439 	 * all as not live.
2440 	 */
2441 	if (ctrl->ctrl.queue_count > 1) {
2442 		for (q = 1; q < ctrl->ctrl.queue_count; q++)
2443 			clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags);
2444 	}
2445 	clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2446 
2447 	/*
2448 	 * If io queues are present, stop them and terminate all outstanding
2449 	 * ios on them. As FC allocates FC exchange for each io, the
2450 	 * transport must contact the LLDD to terminate the exchange,
2451 	 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2452 	 * to tell us what io's are busy and invoke a transport routine
2453 	 * to kill them with the LLDD.  After terminating the exchange
2454 	 * the LLDD will call the transport's normal io done path, but it
2455 	 * will have an aborted status. The done path will return the
2456 	 * io requests back to the block layer as part of normal completions
2457 	 * (but with error status).
2458 	 */
2459 	if (ctrl->ctrl.queue_count > 1) {
2460 		nvme_quiesce_io_queues(&ctrl->ctrl);
2461 		nvme_sync_io_queues(&ctrl->ctrl);
2462 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
2463 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2464 		blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2465 		if (start_queues)
2466 			nvme_unquiesce_io_queues(&ctrl->ctrl);
2467 	}
2468 
2469 	/*
2470 	 * Other transports, which don't have link-level contexts bound
2471 	 * to sqe's, would try to gracefully shutdown the controller by
2472 	 * writing the registers for shutdown and polling (call
2473 	 * nvme_disable_ctrl()). Given a bunch of i/o was potentially
2474 	 * just aborted and we will wait on those contexts, and given
2475 	 * there was no indication of how live the controlelr is on the
2476 	 * link, don't send more io to create more contexts for the
2477 	 * shutdown. Let the controller fail via keepalive failure if
2478 	 * its still present.
2479 	 */
2480 
2481 	/*
2482 	 * clean up the admin queue. Same thing as above.
2483 	 */
2484 	nvme_quiesce_admin_queue(&ctrl->ctrl);
2485 	blk_sync_queue(ctrl->ctrl.admin_q);
2486 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2487 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2488 	blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2489 	if (start_queues)
2490 		nvme_unquiesce_admin_queue(&ctrl->ctrl);
2491 }
2492 
2493 static void
nvme_fc_error_recovery(struct nvme_fc_ctrl * ctrl,char * errmsg)2494 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2495 {
2496 	enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
2497 
2498 	/*
2499 	 * if an error (io timeout, etc) while (re)connecting, the remote
2500 	 * port requested terminating of the association (disconnect_ls)
2501 	 * or an error (timeout or abort) occurred on an io while creating
2502 	 * the controller.  Abort any ios on the association and let the
2503 	 * create_association error path resolve things.
2504 	 */
2505 	if (state == NVME_CTRL_CONNECTING) {
2506 		__nvme_fc_abort_outstanding_ios(ctrl, true);
2507 		dev_warn(ctrl->ctrl.device,
2508 			"NVME-FC{%d}: transport error during (re)connect\n",
2509 			ctrl->cnum);
2510 		return;
2511 	}
2512 
2513 	/* Otherwise, only proceed if in LIVE state - e.g. on first error */
2514 	if (state != NVME_CTRL_LIVE)
2515 		return;
2516 
2517 	dev_warn(ctrl->ctrl.device,
2518 		"NVME-FC{%d}: transport association event: %s\n",
2519 		ctrl->cnum, errmsg);
2520 	dev_warn(ctrl->ctrl.device,
2521 		"NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2522 
2523 	nvme_reset_ctrl(&ctrl->ctrl);
2524 }
2525 
nvme_fc_timeout(struct request * rq)2526 static enum blk_eh_timer_return nvme_fc_timeout(struct request *rq)
2527 {
2528 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2529 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2530 	u16 qnum = op->queue->qnum;
2531 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2532 	struct nvme_command *sqe = &cmdiu->sqe;
2533 
2534 	/*
2535 	 * Attempt to abort the offending command. Command completion
2536 	 * will detect the aborted io and will fail the connection.
2537 	 */
2538 	dev_info(ctrl->ctrl.device,
2539 		"NVME-FC{%d.%d}: io timeout: opcode %d fctype %d (%s) w10/11: "
2540 		"x%08x/x%08x\n",
2541 		ctrl->cnum, qnum, sqe->common.opcode, sqe->fabrics.fctype,
2542 		nvme_fabrics_opcode_str(qnum, sqe),
2543 		sqe->common.cdw10, sqe->common.cdw11);
2544 	if (__nvme_fc_abort_op(ctrl, op))
2545 		nvme_fc_error_recovery(ctrl, "io timeout abort failed");
2546 
2547 	/*
2548 	 * the io abort has been initiated. Have the reset timer
2549 	 * restarted and the abort completion will complete the io
2550 	 * shortly. Avoids a synchronous wait while the abort finishes.
2551 	 */
2552 	return BLK_EH_RESET_TIMER;
2553 }
2554 
2555 static int
nvme_fc_map_data(struct nvme_fc_ctrl * ctrl,struct request * rq,struct nvme_fc_fcp_op * op)2556 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2557 		struct nvme_fc_fcp_op *op)
2558 {
2559 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2560 	int ret;
2561 
2562 	freq->sg_cnt = 0;
2563 
2564 	if (!blk_rq_nr_phys_segments(rq))
2565 		return 0;
2566 
2567 	freq->sg_table.sgl = freq->first_sgl;
2568 	ret = sg_alloc_table_chained(&freq->sg_table,
2569 			blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2570 			NVME_INLINE_SG_CNT);
2571 	if (ret)
2572 		return -ENOMEM;
2573 
2574 	op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2575 	WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2576 	freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2577 				op->nents, rq_dma_dir(rq));
2578 	if (unlikely(freq->sg_cnt <= 0)) {
2579 		sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2580 		freq->sg_cnt = 0;
2581 		return -EFAULT;
2582 	}
2583 
2584 	/*
2585 	 * TODO: blk_integrity_rq(rq)  for DIF
2586 	 */
2587 	return 0;
2588 }
2589 
2590 static void
nvme_fc_unmap_data(struct nvme_fc_ctrl * ctrl,struct request * rq,struct nvme_fc_fcp_op * op)2591 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2592 		struct nvme_fc_fcp_op *op)
2593 {
2594 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2595 
2596 	if (!freq->sg_cnt)
2597 		return;
2598 
2599 	fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2600 			rq_dma_dir(rq));
2601 
2602 	sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2603 
2604 	freq->sg_cnt = 0;
2605 }
2606 
2607 /*
2608  * In FC, the queue is a logical thing. At transport connect, the target
2609  * creates its "queue" and returns a handle that is to be given to the
2610  * target whenever it posts something to the corresponding SQ.  When an
2611  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2612  * command contained within the SQE, an io, and assigns a FC exchange
2613  * to it. The SQE and the associated SQ handle are sent in the initial
2614  * CMD IU sents on the exchange. All transfers relative to the io occur
2615  * as part of the exchange.  The CQE is the last thing for the io,
2616  * which is transferred (explicitly or implicitly) with the RSP IU
2617  * sent on the exchange. After the CQE is received, the FC exchange is
2618  * terminaed and the Exchange may be used on a different io.
2619  *
2620  * The transport to LLDD api has the transport making a request for a
2621  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2622  * resource and transfers the command. The LLDD will then process all
2623  * steps to complete the io. Upon completion, the transport done routine
2624  * is called.
2625  *
2626  * So - while the operation is outstanding to the LLDD, there is a link
2627  * level FC exchange resource that is also outstanding. This must be
2628  * considered in all cleanup operations.
2629  */
2630 static blk_status_t
nvme_fc_start_fcp_op(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,struct nvme_fc_fcp_op * op,u32 data_len,enum nvmefc_fcp_datadir io_dir)2631 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2632 	struct nvme_fc_fcp_op *op, u32 data_len,
2633 	enum nvmefc_fcp_datadir	io_dir)
2634 {
2635 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2636 	struct nvme_command *sqe = &cmdiu->sqe;
2637 	int ret, opstate;
2638 
2639 	/*
2640 	 * before attempting to send the io, check to see if we believe
2641 	 * the target device is present
2642 	 */
2643 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2644 		return BLK_STS_RESOURCE;
2645 
2646 	if (!nvme_fc_ctrl_get(ctrl))
2647 		return BLK_STS_IOERR;
2648 
2649 	/* format the FC-NVME CMD IU and fcp_req */
2650 	cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2651 	cmdiu->data_len = cpu_to_be32(data_len);
2652 	switch (io_dir) {
2653 	case NVMEFC_FCP_WRITE:
2654 		cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2655 		break;
2656 	case NVMEFC_FCP_READ:
2657 		cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2658 		break;
2659 	case NVMEFC_FCP_NODATA:
2660 		cmdiu->flags = 0;
2661 		break;
2662 	}
2663 	op->fcp_req.payload_length = data_len;
2664 	op->fcp_req.io_dir = io_dir;
2665 	op->fcp_req.transferred_length = 0;
2666 	op->fcp_req.rcv_rsplen = 0;
2667 	op->fcp_req.status = NVME_SC_SUCCESS;
2668 	op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2669 
2670 	/*
2671 	 * validate per fabric rules, set fields mandated by fabric spec
2672 	 * as well as those by FC-NVME spec.
2673 	 */
2674 	WARN_ON_ONCE(sqe->common.metadata);
2675 	sqe->common.flags |= NVME_CMD_SGL_METABUF;
2676 
2677 	/*
2678 	 * format SQE DPTR field per FC-NVME rules:
2679 	 *    type=0x5     Transport SGL Data Block Descriptor
2680 	 *    subtype=0xA  Transport-specific value
2681 	 *    address=0
2682 	 *    length=length of the data series
2683 	 */
2684 	sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2685 					NVME_SGL_FMT_TRANSPORT_A;
2686 	sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2687 	sqe->rw.dptr.sgl.addr = 0;
2688 
2689 	if (!(op->flags & FCOP_FLAGS_AEN)) {
2690 		ret = nvme_fc_map_data(ctrl, op->rq, op);
2691 		if (ret < 0) {
2692 			nvme_cleanup_cmd(op->rq);
2693 			nvme_fc_ctrl_put(ctrl);
2694 			if (ret == -ENOMEM || ret == -EAGAIN)
2695 				return BLK_STS_RESOURCE;
2696 			return BLK_STS_IOERR;
2697 		}
2698 	}
2699 
2700 	fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2701 				  sizeof(op->cmd_iu), DMA_TO_DEVICE);
2702 
2703 	atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2704 
2705 	if (!(op->flags & FCOP_FLAGS_AEN))
2706 		nvme_start_request(op->rq);
2707 
2708 	cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2709 	ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2710 					&ctrl->rport->remoteport,
2711 					queue->lldd_handle, &op->fcp_req);
2712 
2713 	if (ret) {
2714 		/*
2715 		 * If the lld fails to send the command is there an issue with
2716 		 * the csn value?  If the command that fails is the Connect,
2717 		 * no - as the connection won't be live.  If it is a command
2718 		 * post-connect, it's possible a gap in csn may be created.
2719 		 * Does this matter?  As Linux initiators don't send fused
2720 		 * commands, no.  The gap would exist, but as there's nothing
2721 		 * that depends on csn order to be delivered on the target
2722 		 * side, it shouldn't hurt.  It would be difficult for a
2723 		 * target to even detect the csn gap as it has no idea when the
2724 		 * cmd with the csn was supposed to arrive.
2725 		 */
2726 		opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2727 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2728 
2729 		if (!(op->flags & FCOP_FLAGS_AEN)) {
2730 			nvme_fc_unmap_data(ctrl, op->rq, op);
2731 			nvme_cleanup_cmd(op->rq);
2732 		}
2733 
2734 		nvme_fc_ctrl_put(ctrl);
2735 
2736 		if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2737 				ret != -EBUSY)
2738 			return BLK_STS_IOERR;
2739 
2740 		return BLK_STS_RESOURCE;
2741 	}
2742 
2743 	return BLK_STS_OK;
2744 }
2745 
2746 static blk_status_t
nvme_fc_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2747 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2748 			const struct blk_mq_queue_data *bd)
2749 {
2750 	struct nvme_ns *ns = hctx->queue->queuedata;
2751 	struct nvme_fc_queue *queue = hctx->driver_data;
2752 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2753 	struct request *rq = bd->rq;
2754 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2755 	enum nvmefc_fcp_datadir	io_dir;
2756 	bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2757 	u32 data_len;
2758 	blk_status_t ret;
2759 
2760 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2761 	    !nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2762 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2763 
2764 	ret = nvme_setup_cmd(ns, rq);
2765 	if (ret)
2766 		return ret;
2767 
2768 	/*
2769 	 * nvme core doesn't quite treat the rq opaquely. Commands such
2770 	 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2771 	 * there is no actual payload to be transferred.
2772 	 * To get it right, key data transmission on there being 1 or
2773 	 * more physical segments in the sg list. If there is no
2774 	 * physical segments, there is no payload.
2775 	 */
2776 	if (blk_rq_nr_phys_segments(rq)) {
2777 		data_len = blk_rq_payload_bytes(rq);
2778 		io_dir = ((rq_data_dir(rq) == WRITE) ?
2779 					NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2780 	} else {
2781 		data_len = 0;
2782 		io_dir = NVMEFC_FCP_NODATA;
2783 	}
2784 
2785 
2786 	return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2787 }
2788 
2789 static void
nvme_fc_submit_async_event(struct nvme_ctrl * arg)2790 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2791 {
2792 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2793 	struct nvme_fc_fcp_op *aen_op;
2794 	blk_status_t ret;
2795 
2796 	if (test_bit(FCCTRL_TERMIO, &ctrl->flags))
2797 		return;
2798 
2799 	aen_op = &ctrl->aen_ops[0];
2800 
2801 	ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2802 					NVMEFC_FCP_NODATA);
2803 	if (ret)
2804 		dev_err(ctrl->ctrl.device,
2805 			"failed async event work\n");
2806 }
2807 
2808 static void
nvme_fc_complete_rq(struct request * rq)2809 nvme_fc_complete_rq(struct request *rq)
2810 {
2811 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2812 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2813 
2814 	atomic_set(&op->state, FCPOP_STATE_IDLE);
2815 	op->flags &= ~FCOP_FLAGS_TERMIO;
2816 
2817 	nvme_fc_unmap_data(ctrl, rq, op);
2818 	nvme_complete_rq(rq);
2819 	nvme_fc_ctrl_put(ctrl);
2820 }
2821 
nvme_fc_map_queues(struct blk_mq_tag_set * set)2822 static void nvme_fc_map_queues(struct blk_mq_tag_set *set)
2823 {
2824 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data);
2825 	int i;
2826 
2827 	for (i = 0; i < set->nr_maps; i++) {
2828 		struct blk_mq_queue_map *map = &set->map[i];
2829 
2830 		if (!map->nr_queues) {
2831 			WARN_ON(i == HCTX_TYPE_DEFAULT);
2832 			continue;
2833 		}
2834 
2835 		/* Call LLDD map queue functionality if defined */
2836 		if (ctrl->lport->ops->map_queues)
2837 			ctrl->lport->ops->map_queues(&ctrl->lport->localport,
2838 						     map);
2839 		else
2840 			blk_mq_map_queues(map);
2841 	}
2842 }
2843 
2844 static const struct blk_mq_ops nvme_fc_mq_ops = {
2845 	.queue_rq	= nvme_fc_queue_rq,
2846 	.complete	= nvme_fc_complete_rq,
2847 	.init_request	= nvme_fc_init_request,
2848 	.exit_request	= nvme_fc_exit_request,
2849 	.init_hctx	= nvme_fc_init_hctx,
2850 	.timeout	= nvme_fc_timeout,
2851 	.map_queues	= nvme_fc_map_queues,
2852 };
2853 
2854 static int
nvme_fc_create_io_queues(struct nvme_fc_ctrl * ctrl)2855 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2856 {
2857 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2858 	unsigned int nr_io_queues;
2859 	int ret;
2860 
2861 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2862 				ctrl->lport->ops->max_hw_queues);
2863 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2864 	if (ret) {
2865 		dev_info(ctrl->ctrl.device,
2866 			"set_queue_count failed: %d\n", ret);
2867 		return ret;
2868 	}
2869 
2870 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2871 	if (!nr_io_queues)
2872 		return 0;
2873 
2874 	nvme_fc_init_io_queues(ctrl);
2875 
2876 	ret = nvme_alloc_io_tag_set(&ctrl->ctrl, &ctrl->tag_set,
2877 			&nvme_fc_mq_ops, 1,
2878 			struct_size_t(struct nvme_fcp_op_w_sgl, priv,
2879 				      ctrl->lport->ops->fcprqst_priv_sz));
2880 	if (ret)
2881 		return ret;
2882 
2883 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2884 	if (ret)
2885 		goto out_cleanup_tagset;
2886 
2887 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2888 	if (ret)
2889 		goto out_delete_hw_queues;
2890 
2891 	ctrl->ioq_live = true;
2892 
2893 	return 0;
2894 
2895 out_delete_hw_queues:
2896 	nvme_fc_delete_hw_io_queues(ctrl);
2897 out_cleanup_tagset:
2898 	nvme_remove_io_tag_set(&ctrl->ctrl);
2899 	nvme_fc_free_io_queues(ctrl);
2900 
2901 	/* force put free routine to ignore io queues */
2902 	ctrl->ctrl.tagset = NULL;
2903 
2904 	return ret;
2905 }
2906 
2907 static int
nvme_fc_recreate_io_queues(struct nvme_fc_ctrl * ctrl)2908 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2909 {
2910 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2911 	u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2912 	unsigned int nr_io_queues;
2913 	int ret;
2914 
2915 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2916 				ctrl->lport->ops->max_hw_queues);
2917 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2918 	if (ret) {
2919 		dev_info(ctrl->ctrl.device,
2920 			"set_queue_count failed: %d\n", ret);
2921 		return ret;
2922 	}
2923 
2924 	if (!nr_io_queues && prior_ioq_cnt) {
2925 		dev_info(ctrl->ctrl.device,
2926 			"Fail Reconnect: At least 1 io queue "
2927 			"required (was %d)\n", prior_ioq_cnt);
2928 		return -ENOSPC;
2929 	}
2930 
2931 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2932 	/* check for io queues existing */
2933 	if (ctrl->ctrl.queue_count == 1)
2934 		return 0;
2935 
2936 	if (prior_ioq_cnt != nr_io_queues) {
2937 		dev_info(ctrl->ctrl.device,
2938 			"reconnect: revising io queue count from %d to %d\n",
2939 			prior_ioq_cnt, nr_io_queues);
2940 		blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2941 	}
2942 
2943 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2944 	if (ret)
2945 		goto out_free_io_queues;
2946 
2947 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2948 	if (ret)
2949 		goto out_delete_hw_queues;
2950 
2951 	return 0;
2952 
2953 out_delete_hw_queues:
2954 	nvme_fc_delete_hw_io_queues(ctrl);
2955 out_free_io_queues:
2956 	nvme_fc_free_io_queues(ctrl);
2957 	return ret;
2958 }
2959 
2960 static void
nvme_fc_rport_active_on_lport(struct nvme_fc_rport * rport)2961 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2962 {
2963 	struct nvme_fc_lport *lport = rport->lport;
2964 
2965 	atomic_inc(&lport->act_rport_cnt);
2966 }
2967 
2968 static void
nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport * rport)2969 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2970 {
2971 	struct nvme_fc_lport *lport = rport->lport;
2972 	u32 cnt;
2973 
2974 	cnt = atomic_dec_return(&lport->act_rport_cnt);
2975 	if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2976 		lport->ops->localport_delete(&lport->localport);
2977 }
2978 
2979 static int
nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl * ctrl)2980 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2981 {
2982 	struct nvme_fc_rport *rport = ctrl->rport;
2983 	u32 cnt;
2984 
2985 	if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags))
2986 		return 1;
2987 
2988 	cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2989 	if (cnt == 1)
2990 		nvme_fc_rport_active_on_lport(rport);
2991 
2992 	return 0;
2993 }
2994 
2995 static int
nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl * ctrl)2996 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2997 {
2998 	struct nvme_fc_rport *rport = ctrl->rport;
2999 	struct nvme_fc_lport *lport = rport->lport;
3000 	u32 cnt;
3001 
3002 	/* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */
3003 
3004 	cnt = atomic_dec_return(&rport->act_ctrl_cnt);
3005 	if (cnt == 0) {
3006 		if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
3007 			lport->ops->remoteport_delete(&rport->remoteport);
3008 		nvme_fc_rport_inactive_on_lport(rport);
3009 	}
3010 
3011 	return 0;
3012 }
3013 
3014 /*
3015  * This routine restarts the controller on the host side, and
3016  * on the link side, recreates the controller association.
3017  */
3018 static int
nvme_fc_create_association(struct nvme_fc_ctrl * ctrl)3019 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
3020 {
3021 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
3022 	struct nvmefc_ls_rcv_op *disls = NULL;
3023 	unsigned long flags;
3024 	int ret;
3025 
3026 	++ctrl->ctrl.nr_reconnects;
3027 
3028 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3029 		return -ENODEV;
3030 
3031 	if (nvme_fc_ctlr_active_on_rport(ctrl))
3032 		return -ENOTUNIQ;
3033 
3034 	dev_info(ctrl->ctrl.device,
3035 		"NVME-FC{%d}: create association : host wwpn 0x%016llx "
3036 		" rport wwpn 0x%016llx: NQN \"%s\"\n",
3037 		ctrl->cnum, ctrl->lport->localport.port_name,
3038 		ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
3039 
3040 	clear_bit(ASSOC_FAILED, &ctrl->flags);
3041 
3042 	/*
3043 	 * Create the admin queue
3044 	 */
3045 
3046 	ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
3047 				NVME_AQ_DEPTH);
3048 	if (ret)
3049 		goto out_free_queue;
3050 
3051 	ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
3052 				NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
3053 	if (ret)
3054 		goto out_delete_hw_queue;
3055 
3056 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
3057 	if (ret)
3058 		goto out_disconnect_admin_queue;
3059 
3060 	set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
3061 
3062 	/*
3063 	 * Check controller capabilities
3064 	 *
3065 	 * todo:- add code to check if ctrl attributes changed from
3066 	 * prior connection values
3067 	 */
3068 
3069 	ret = nvme_enable_ctrl(&ctrl->ctrl);
3070 	if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags))
3071 		ret = -EIO;
3072 	if (ret)
3073 		goto out_disconnect_admin_queue;
3074 
3075 	ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments;
3076 	ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments <<
3077 						(ilog2(SZ_4K) - 9);
3078 
3079 	nvme_unquiesce_admin_queue(&ctrl->ctrl);
3080 
3081 	ret = nvme_init_ctrl_finish(&ctrl->ctrl, false);
3082 	if (ret)
3083 		goto out_disconnect_admin_queue;
3084 	if (test_bit(ASSOC_FAILED, &ctrl->flags)) {
3085 		ret = -EIO;
3086 		goto out_stop_keep_alive;
3087 	}
3088 	/* sanity checks */
3089 
3090 	/* FC-NVME does not have other data in the capsule */
3091 	if (ctrl->ctrl.icdoff) {
3092 		dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
3093 				ctrl->ctrl.icdoff);
3094 		ret = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
3095 		goto out_stop_keep_alive;
3096 	}
3097 
3098 	/* FC-NVME supports normal SGL Data Block Descriptors */
3099 	if (!nvme_ctrl_sgl_supported(&ctrl->ctrl)) {
3100 		dev_err(ctrl->ctrl.device,
3101 			"Mandatory sgls are not supported!\n");
3102 		ret = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
3103 		goto out_stop_keep_alive;
3104 	}
3105 
3106 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
3107 		/* warn if maxcmd is lower than queue_size */
3108 		dev_warn(ctrl->ctrl.device,
3109 			"queue_size %zu > ctrl maxcmd %u, reducing "
3110 			"to maxcmd\n",
3111 			opts->queue_size, ctrl->ctrl.maxcmd);
3112 		opts->queue_size = ctrl->ctrl.maxcmd;
3113 		ctrl->ctrl.sqsize = opts->queue_size - 1;
3114 	}
3115 
3116 	ret = nvme_fc_init_aen_ops(ctrl);
3117 	if (ret)
3118 		goto out_term_aen_ops;
3119 
3120 	/*
3121 	 * Create the io queues
3122 	 */
3123 
3124 	if (ctrl->ctrl.queue_count > 1) {
3125 		if (!ctrl->ioq_live)
3126 			ret = nvme_fc_create_io_queues(ctrl);
3127 		else
3128 			ret = nvme_fc_recreate_io_queues(ctrl);
3129 	}
3130 	if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags))
3131 		ret = -EIO;
3132 	if (ret)
3133 		goto out_term_aen_ops;
3134 
3135 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE)) {
3136 		ret = -EIO;
3137 		goto out_term_aen_ops;
3138 	}
3139 
3140 	ctrl->ctrl.nr_reconnects = 0;
3141 	nvme_start_ctrl(&ctrl->ctrl);
3142 
3143 	return 0;	/* Success */
3144 
3145 out_term_aen_ops:
3146 	nvme_fc_term_aen_ops(ctrl);
3147 out_stop_keep_alive:
3148 	nvme_stop_keep_alive(&ctrl->ctrl);
3149 out_disconnect_admin_queue:
3150 	dev_warn(ctrl->ctrl.device,
3151 		"NVME-FC{%d}: create_assoc failed, assoc_id %llx ret %d\n",
3152 		ctrl->cnum, ctrl->association_id, ret);
3153 	/* send a Disconnect(association) LS to fc-nvme target */
3154 	nvme_fc_xmt_disconnect_assoc(ctrl);
3155 	spin_lock_irqsave(&ctrl->lock, flags);
3156 	ctrl->association_id = 0;
3157 	disls = ctrl->rcv_disconn;
3158 	ctrl->rcv_disconn = NULL;
3159 	spin_unlock_irqrestore(&ctrl->lock, flags);
3160 	if (disls)
3161 		nvme_fc_xmt_ls_rsp(disls);
3162 out_delete_hw_queue:
3163 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3164 out_free_queue:
3165 	nvme_fc_free_queue(&ctrl->queues[0]);
3166 	clear_bit(ASSOC_ACTIVE, &ctrl->flags);
3167 	nvme_fc_ctlr_inactive_on_rport(ctrl);
3168 
3169 	return ret;
3170 }
3171 
3172 
3173 /*
3174  * This routine stops operation of the controller on the host side.
3175  * On the host os stack side: Admin and IO queues are stopped,
3176  *   outstanding ios on them terminated via FC ABTS.
3177  * On the link side: the association is terminated.
3178  */
3179 static void
nvme_fc_delete_association(struct nvme_fc_ctrl * ctrl)3180 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
3181 {
3182 	struct nvmefc_ls_rcv_op *disls = NULL;
3183 	unsigned long flags;
3184 
3185 	if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags))
3186 		return;
3187 
3188 	spin_lock_irqsave(&ctrl->lock, flags);
3189 	set_bit(FCCTRL_TERMIO, &ctrl->flags);
3190 	ctrl->iocnt = 0;
3191 	spin_unlock_irqrestore(&ctrl->lock, flags);
3192 
3193 	__nvme_fc_abort_outstanding_ios(ctrl, false);
3194 
3195 	/* kill the aens as they are a separate path */
3196 	nvme_fc_abort_aen_ops(ctrl);
3197 
3198 	/* wait for all io that had to be aborted */
3199 	spin_lock_irq(&ctrl->lock);
3200 	wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
3201 	clear_bit(FCCTRL_TERMIO, &ctrl->flags);
3202 	spin_unlock_irq(&ctrl->lock);
3203 
3204 	nvme_fc_term_aen_ops(ctrl);
3205 
3206 	/*
3207 	 * send a Disconnect(association) LS to fc-nvme target
3208 	 * Note: could have been sent at top of process, but
3209 	 * cleaner on link traffic if after the aborts complete.
3210 	 * Note: if association doesn't exist, association_id will be 0
3211 	 */
3212 	if (ctrl->association_id)
3213 		nvme_fc_xmt_disconnect_assoc(ctrl);
3214 
3215 	spin_lock_irqsave(&ctrl->lock, flags);
3216 	ctrl->association_id = 0;
3217 	disls = ctrl->rcv_disconn;
3218 	ctrl->rcv_disconn = NULL;
3219 	spin_unlock_irqrestore(&ctrl->lock, flags);
3220 	if (disls)
3221 		/*
3222 		 * if a Disconnect Request was waiting for a response, send
3223 		 * now that all ABTS's have been issued (and are complete).
3224 		 */
3225 		nvme_fc_xmt_ls_rsp(disls);
3226 
3227 	if (ctrl->ctrl.tagset) {
3228 		nvme_fc_delete_hw_io_queues(ctrl);
3229 		nvme_fc_free_io_queues(ctrl);
3230 	}
3231 
3232 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3233 	nvme_fc_free_queue(&ctrl->queues[0]);
3234 
3235 	/* re-enable the admin_q so anything new can fast fail */
3236 	nvme_unquiesce_admin_queue(&ctrl->ctrl);
3237 
3238 	/* resume the io queues so that things will fast fail */
3239 	nvme_unquiesce_io_queues(&ctrl->ctrl);
3240 
3241 	nvme_fc_ctlr_inactive_on_rport(ctrl);
3242 }
3243 
3244 static void
nvme_fc_delete_ctrl(struct nvme_ctrl * nctrl)3245 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
3246 {
3247 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
3248 
3249 	cancel_work_sync(&ctrl->ioerr_work);
3250 	cancel_delayed_work_sync(&ctrl->connect_work);
3251 	/*
3252 	 * kill the association on the link side.  this will block
3253 	 * waiting for io to terminate
3254 	 */
3255 	nvme_fc_delete_association(ctrl);
3256 }
3257 
3258 static void
nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl * ctrl,int status)3259 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
3260 {
3261 	struct nvme_fc_rport *rport = ctrl->rport;
3262 	struct nvme_fc_remote_port *portptr = &rport->remoteport;
3263 	unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
3264 	bool recon = true;
3265 
3266 	if (nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_CONNECTING)
3267 		return;
3268 
3269 	if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3270 		dev_info(ctrl->ctrl.device,
3271 			"NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
3272 			ctrl->cnum, status);
3273 	} else if (time_after_eq(jiffies, rport->dev_loss_end))
3274 		recon = false;
3275 
3276 	if (recon && nvmf_should_reconnect(&ctrl->ctrl, status)) {
3277 		if (portptr->port_state == FC_OBJSTATE_ONLINE)
3278 			dev_info(ctrl->ctrl.device,
3279 				"NVME-FC{%d}: Reconnect attempt in %ld "
3280 				"seconds\n",
3281 				ctrl->cnum, recon_delay / HZ);
3282 		else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
3283 			recon_delay = rport->dev_loss_end - jiffies;
3284 
3285 		queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
3286 	} else {
3287 		if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3288 			if (status > 0 && (status & NVME_STATUS_DNR))
3289 				dev_warn(ctrl->ctrl.device,
3290 					 "NVME-FC{%d}: reconnect failure\n",
3291 					 ctrl->cnum);
3292 			else
3293 				dev_warn(ctrl->ctrl.device,
3294 					 "NVME-FC{%d}: Max reconnect attempts "
3295 					 "(%d) reached.\n",
3296 					 ctrl->cnum, ctrl->ctrl.nr_reconnects);
3297 		} else
3298 			dev_warn(ctrl->ctrl.device,
3299 				"NVME-FC{%d}: dev_loss_tmo (%d) expired "
3300 				"while waiting for remoteport connectivity.\n",
3301 				ctrl->cnum, min_t(int, portptr->dev_loss_tmo,
3302 					(ctrl->ctrl.opts->max_reconnects *
3303 					 ctrl->ctrl.opts->reconnect_delay)));
3304 		WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
3305 	}
3306 }
3307 
3308 static void
nvme_fc_reset_ctrl_work(struct work_struct * work)3309 nvme_fc_reset_ctrl_work(struct work_struct *work)
3310 {
3311 	struct nvme_fc_ctrl *ctrl =
3312 		container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
3313 
3314 	nvme_stop_ctrl(&ctrl->ctrl);
3315 
3316 	/* will block will waiting for io to terminate */
3317 	nvme_fc_delete_association(ctrl);
3318 
3319 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
3320 		dev_err(ctrl->ctrl.device,
3321 			"NVME-FC{%d}: error_recovery: Couldn't change state "
3322 			"to CONNECTING\n", ctrl->cnum);
3323 
3324 	if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
3325 		if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3326 			dev_err(ctrl->ctrl.device,
3327 				"NVME-FC{%d}: failed to schedule connect "
3328 				"after reset\n", ctrl->cnum);
3329 		} else {
3330 			flush_delayed_work(&ctrl->connect_work);
3331 		}
3332 	} else {
3333 		nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN);
3334 	}
3335 }
3336 
3337 
3338 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3339 	.name			= "fc",
3340 	.module			= THIS_MODULE,
3341 	.flags			= NVME_F_FABRICS,
3342 	.reg_read32		= nvmf_reg_read32,
3343 	.reg_read64		= nvmf_reg_read64,
3344 	.reg_write32		= nvmf_reg_write32,
3345 	.subsystem_reset	= nvmf_subsystem_reset,
3346 	.free_ctrl		= nvme_fc_free_ctrl,
3347 	.submit_async_event	= nvme_fc_submit_async_event,
3348 	.delete_ctrl		= nvme_fc_delete_ctrl,
3349 	.get_address		= nvmf_get_address,
3350 };
3351 
3352 static void
nvme_fc_connect_ctrl_work(struct work_struct * work)3353 nvme_fc_connect_ctrl_work(struct work_struct *work)
3354 {
3355 	int ret;
3356 
3357 	struct nvme_fc_ctrl *ctrl =
3358 			container_of(to_delayed_work(work),
3359 				struct nvme_fc_ctrl, connect_work);
3360 
3361 	ret = nvme_fc_create_association(ctrl);
3362 	if (ret)
3363 		nvme_fc_reconnect_or_delete(ctrl, ret);
3364 	else
3365 		dev_info(ctrl->ctrl.device,
3366 			"NVME-FC{%d}: controller connect complete\n",
3367 			ctrl->cnum);
3368 }
3369 
3370 
3371 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3372 	.queue_rq	= nvme_fc_queue_rq,
3373 	.complete	= nvme_fc_complete_rq,
3374 	.init_request	= nvme_fc_init_request,
3375 	.exit_request	= nvme_fc_exit_request,
3376 	.init_hctx	= nvme_fc_init_admin_hctx,
3377 	.timeout	= nvme_fc_timeout,
3378 };
3379 
3380 
3381 /*
3382  * Fails a controller request if it matches an existing controller
3383  * (association) with the same tuple:
3384  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3385  *
3386  * The ports don't need to be compared as they are intrinsically
3387  * already matched by the port pointers supplied.
3388  */
3389 static bool
nvme_fc_existing_controller(struct nvme_fc_rport * rport,struct nvmf_ctrl_options * opts)3390 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3391 		struct nvmf_ctrl_options *opts)
3392 {
3393 	struct nvme_fc_ctrl *ctrl;
3394 	unsigned long flags;
3395 	bool found = false;
3396 
3397 	spin_lock_irqsave(&rport->lock, flags);
3398 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3399 		found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3400 		if (found)
3401 			break;
3402 	}
3403 	spin_unlock_irqrestore(&rport->lock, flags);
3404 
3405 	return found;
3406 }
3407 
3408 static struct nvme_fc_ctrl *
nvme_fc_alloc_ctrl(struct device * dev,struct nvmf_ctrl_options * opts,struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)3409 nvme_fc_alloc_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3410 	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3411 {
3412 	struct nvme_fc_ctrl *ctrl;
3413 	int ret, idx, ctrl_loss_tmo;
3414 
3415 	if (!(rport->remoteport.port_role &
3416 	    (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3417 		ret = -EBADR;
3418 		goto out_fail;
3419 	}
3420 
3421 	if (!opts->duplicate_connect &&
3422 	    nvme_fc_existing_controller(rport, opts)) {
3423 		ret = -EALREADY;
3424 		goto out_fail;
3425 	}
3426 
3427 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3428 	if (!ctrl) {
3429 		ret = -ENOMEM;
3430 		goto out_fail;
3431 	}
3432 
3433 	idx = ida_alloc(&nvme_fc_ctrl_cnt, GFP_KERNEL);
3434 	if (idx < 0) {
3435 		ret = -ENOSPC;
3436 		goto out_free_ctrl;
3437 	}
3438 
3439 	/*
3440 	 * if ctrl_loss_tmo is being enforced and the default reconnect delay
3441 	 * is being used, change to a shorter reconnect delay for FC.
3442 	 */
3443 	if (opts->max_reconnects != -1 &&
3444 	    opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY &&
3445 	    opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) {
3446 		ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay;
3447 		opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO;
3448 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3449 						opts->reconnect_delay);
3450 	}
3451 
3452 	ctrl->ctrl.opts = opts;
3453 	ctrl->ctrl.nr_reconnects = 0;
3454 	INIT_LIST_HEAD(&ctrl->ctrl_list);
3455 	ctrl->lport = lport;
3456 	ctrl->rport = rport;
3457 	ctrl->dev = lport->dev;
3458 	ctrl->cnum = idx;
3459 	ctrl->ioq_live = false;
3460 	init_waitqueue_head(&ctrl->ioabort_wait);
3461 
3462 	get_device(ctrl->dev);
3463 	kref_init(&ctrl->ref);
3464 
3465 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3466 	INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3467 	INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work);
3468 	spin_lock_init(&ctrl->lock);
3469 
3470 	/* io queue count */
3471 	ctrl->ctrl.queue_count = min_t(unsigned int,
3472 				opts->nr_io_queues,
3473 				lport->ops->max_hw_queues);
3474 	ctrl->ctrl.queue_count++;	/* +1 for admin queue */
3475 
3476 	ctrl->ctrl.sqsize = opts->queue_size - 1;
3477 	ctrl->ctrl.kato = opts->kato;
3478 	ctrl->ctrl.cntlid = 0xffff;
3479 
3480 	ret = -ENOMEM;
3481 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3482 				sizeof(struct nvme_fc_queue), GFP_KERNEL);
3483 	if (!ctrl->queues)
3484 		goto out_free_ida;
3485 
3486 	nvme_fc_init_queue(ctrl, 0);
3487 
3488 	/*
3489 	 * Would have been nice to init io queues tag set as well.
3490 	 * However, we require interaction from the controller
3491 	 * for max io queue count before we can do so.
3492 	 * Defer this to the connect path.
3493 	 */
3494 
3495 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3496 	if (ret)
3497 		goto out_free_queues;
3498 	if (lport->dev)
3499 		ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3500 
3501 	return ctrl;
3502 
3503 out_free_queues:
3504 	kfree(ctrl->queues);
3505 out_free_ida:
3506 	put_device(ctrl->dev);
3507 	ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
3508 out_free_ctrl:
3509 	kfree(ctrl);
3510 out_fail:
3511 	/* exit via here doesn't follow ctlr ref points */
3512 	return ERR_PTR(ret);
3513 }
3514 
3515 static struct nvme_ctrl *
nvme_fc_init_ctrl(struct device * dev,struct nvmf_ctrl_options * opts,struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)3516 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3517 	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3518 {
3519 	struct nvme_fc_ctrl *ctrl;
3520 	unsigned long flags;
3521 	int ret;
3522 
3523 	ctrl = nvme_fc_alloc_ctrl(dev, opts, lport, rport);
3524 	if (IS_ERR(ctrl))
3525 		return ERR_CAST(ctrl);
3526 
3527 	ret = nvme_add_ctrl(&ctrl->ctrl);
3528 	if (ret)
3529 		goto out_put_ctrl;
3530 
3531 	ret = nvme_alloc_admin_tag_set(&ctrl->ctrl, &ctrl->admin_tag_set,
3532 			&nvme_fc_admin_mq_ops,
3533 			struct_size_t(struct nvme_fcp_op_w_sgl, priv,
3534 				      ctrl->lport->ops->fcprqst_priv_sz));
3535 	if (ret)
3536 		goto fail_ctrl;
3537 
3538 	spin_lock_irqsave(&rport->lock, flags);
3539 	list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3540 	spin_unlock_irqrestore(&rport->lock, flags);
3541 
3542 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3543 		dev_err(ctrl->ctrl.device,
3544 			"NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3545 		goto fail_ctrl;
3546 	}
3547 
3548 	if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3549 		dev_err(ctrl->ctrl.device,
3550 			"NVME-FC{%d}: failed to schedule initial connect\n",
3551 			ctrl->cnum);
3552 		goto fail_ctrl;
3553 	}
3554 
3555 	flush_delayed_work(&ctrl->connect_work);
3556 
3557 	dev_info(ctrl->ctrl.device,
3558 		"NVME-FC{%d}: new ctrl: NQN \"%s\", hostnqn: %s\n",
3559 		ctrl->cnum, nvmf_ctrl_subsysnqn(&ctrl->ctrl), opts->host->nqn);
3560 
3561 	return &ctrl->ctrl;
3562 
3563 fail_ctrl:
3564 	nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3565 	cancel_work_sync(&ctrl->ioerr_work);
3566 	cancel_work_sync(&ctrl->ctrl.reset_work);
3567 	cancel_delayed_work_sync(&ctrl->connect_work);
3568 
3569 	ctrl->ctrl.opts = NULL;
3570 
3571 	/* initiate nvme ctrl ref counting teardown */
3572 	nvme_uninit_ctrl(&ctrl->ctrl);
3573 
3574 out_put_ctrl:
3575 	/* Remove core ctrl ref. */
3576 	nvme_put_ctrl(&ctrl->ctrl);
3577 
3578 	/* as we're past the point where we transition to the ref
3579 	 * counting teardown path, if we return a bad pointer here,
3580 	 * the calling routine, thinking it's prior to the
3581 	 * transition, will do an rport put. Since the teardown
3582 	 * path also does a rport put, we do an extra get here to
3583 	 * so proper order/teardown happens.
3584 	 */
3585 	nvme_fc_rport_get(rport);
3586 
3587 	return ERR_PTR(-EIO);
3588 }
3589 
3590 struct nvmet_fc_traddr {
3591 	u64	nn;
3592 	u64	pn;
3593 };
3594 
3595 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)3596 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3597 {
3598 	u64 token64;
3599 
3600 	if (match_u64(sstr, &token64))
3601 		return -EINVAL;
3602 	*val = token64;
3603 
3604 	return 0;
3605 }
3606 
3607 /*
3608  * This routine validates and extracts the WWN's from the TRADDR string.
3609  * As kernel parsers need the 0x to determine number base, universally
3610  * build string to parse with 0x prefix before parsing name strings.
3611  */
3612 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)3613 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3614 {
3615 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3616 	substring_t wwn = { name, &name[sizeof(name)-1] };
3617 	int nnoffset, pnoffset;
3618 
3619 	/* validate if string is one of the 2 allowed formats */
3620 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3621 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3622 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3623 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3624 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
3625 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3626 						NVME_FC_TRADDR_OXNNLEN;
3627 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3628 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3629 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3630 				"pn-", NVME_FC_TRADDR_NNLEN))) {
3631 		nnoffset = NVME_FC_TRADDR_NNLEN;
3632 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3633 	} else
3634 		goto out_einval;
3635 
3636 	name[0] = '0';
3637 	name[1] = 'x';
3638 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3639 
3640 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3641 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3642 		goto out_einval;
3643 
3644 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3645 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3646 		goto out_einval;
3647 
3648 	return 0;
3649 
3650 out_einval:
3651 	pr_warn("%s: bad traddr string\n", __func__);
3652 	return -EINVAL;
3653 }
3654 
3655 static struct nvme_ctrl *
nvme_fc_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)3656 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3657 {
3658 	struct nvme_fc_lport *lport;
3659 	struct nvme_fc_rport *rport;
3660 	struct nvme_ctrl *ctrl;
3661 	struct nvmet_fc_traddr laddr = { 0L, 0L };
3662 	struct nvmet_fc_traddr raddr = { 0L, 0L };
3663 	unsigned long flags;
3664 	int ret;
3665 
3666 	ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3667 	if (ret || !raddr.nn || !raddr.pn)
3668 		return ERR_PTR(-EINVAL);
3669 
3670 	ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3671 	if (ret || !laddr.nn || !laddr.pn)
3672 		return ERR_PTR(-EINVAL);
3673 
3674 	/* find the host and remote ports to connect together */
3675 	spin_lock_irqsave(&nvme_fc_lock, flags);
3676 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3677 		if (lport->localport.node_name != laddr.nn ||
3678 		    lport->localport.port_name != laddr.pn ||
3679 		    lport->localport.port_state != FC_OBJSTATE_ONLINE)
3680 			continue;
3681 
3682 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3683 			if (rport->remoteport.node_name != raddr.nn ||
3684 			    rport->remoteport.port_name != raddr.pn ||
3685 			    rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3686 				continue;
3687 
3688 			/* if fail to get reference fall through. Will error */
3689 			if (!nvme_fc_rport_get(rport))
3690 				break;
3691 
3692 			spin_unlock_irqrestore(&nvme_fc_lock, flags);
3693 
3694 			ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3695 			if (IS_ERR(ctrl))
3696 				nvme_fc_rport_put(rport);
3697 			return ctrl;
3698 		}
3699 	}
3700 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3701 
3702 	pr_warn("%s: %s - %s combination not found\n",
3703 		__func__, opts->traddr, opts->host_traddr);
3704 	return ERR_PTR(-ENOENT);
3705 }
3706 
3707 
3708 static struct nvmf_transport_ops nvme_fc_transport = {
3709 	.name		= "fc",
3710 	.module		= THIS_MODULE,
3711 	.required_opts	= NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3712 	.allowed_opts	= NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3713 	.create_ctrl	= nvme_fc_create_ctrl,
3714 };
3715 
3716 /* Arbitrary successive failures max. With lots of subsystems could be high */
3717 #define DISCOVERY_MAX_FAIL	20
3718 
nvme_fc_nvme_discovery_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3719 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3720 		struct device_attribute *attr, const char *buf, size_t count)
3721 {
3722 	unsigned long flags;
3723 	LIST_HEAD(local_disc_list);
3724 	struct nvme_fc_lport *lport;
3725 	struct nvme_fc_rport *rport;
3726 	int failcnt = 0;
3727 
3728 	spin_lock_irqsave(&nvme_fc_lock, flags);
3729 restart:
3730 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3731 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3732 			if (!nvme_fc_lport_get(lport))
3733 				continue;
3734 			if (!nvme_fc_rport_get(rport)) {
3735 				/*
3736 				 * This is a temporary condition. Upon restart
3737 				 * this rport will be gone from the list.
3738 				 *
3739 				 * Revert the lport put and retry.  Anything
3740 				 * added to the list already will be skipped (as
3741 				 * they are no longer list_empty).  Loops should
3742 				 * resume at rports that were not yet seen.
3743 				 */
3744 				nvme_fc_lport_put(lport);
3745 
3746 				if (failcnt++ < DISCOVERY_MAX_FAIL)
3747 					goto restart;
3748 
3749 				pr_err("nvme_discovery: too many reference "
3750 				       "failures\n");
3751 				goto process_local_list;
3752 			}
3753 			if (list_empty(&rport->disc_list))
3754 				list_add_tail(&rport->disc_list,
3755 					      &local_disc_list);
3756 		}
3757 	}
3758 
3759 process_local_list:
3760 	while (!list_empty(&local_disc_list)) {
3761 		rport = list_first_entry(&local_disc_list,
3762 					 struct nvme_fc_rport, disc_list);
3763 		list_del_init(&rport->disc_list);
3764 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
3765 
3766 		lport = rport->lport;
3767 		/* signal discovery. Won't hurt if it repeats */
3768 		nvme_fc_signal_discovery_scan(lport, rport);
3769 		nvme_fc_rport_put(rport);
3770 		nvme_fc_lport_put(lport);
3771 
3772 		spin_lock_irqsave(&nvme_fc_lock, flags);
3773 	}
3774 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3775 
3776 	return count;
3777 }
3778 
3779 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3780 
3781 #ifdef CONFIG_BLK_CGROUP_FC_APPID
3782 /* Parse the cgroup id from a buf and return the length of cgrpid */
fc_parse_cgrpid(const char * buf,u64 * id)3783 static int fc_parse_cgrpid(const char *buf, u64 *id)
3784 {
3785 	char cgrp_id[16+1];
3786 	int cgrpid_len, j;
3787 
3788 	memset(cgrp_id, 0x0, sizeof(cgrp_id));
3789 	for (cgrpid_len = 0, j = 0; cgrpid_len < 17; cgrpid_len++) {
3790 		if (buf[cgrpid_len] != ':')
3791 			cgrp_id[cgrpid_len] = buf[cgrpid_len];
3792 		else {
3793 			j = 1;
3794 			break;
3795 		}
3796 	}
3797 	if (!j)
3798 		return -EINVAL;
3799 	if (kstrtou64(cgrp_id, 16, id) < 0)
3800 		return -EINVAL;
3801 	return cgrpid_len;
3802 }
3803 
3804 /*
3805  * Parse and update the appid in the blkcg associated with the cgroupid.
3806  */
fc_appid_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3807 static ssize_t fc_appid_store(struct device *dev,
3808 		struct device_attribute *attr, const char *buf, size_t count)
3809 {
3810 	size_t orig_count = count;
3811 	u64 cgrp_id;
3812 	int appid_len = 0;
3813 	int cgrpid_len = 0;
3814 	char app_id[FC_APPID_LEN];
3815 	int ret = 0;
3816 
3817 	if (buf[count-1] == '\n')
3818 		count--;
3819 
3820 	if ((count > (16+1+FC_APPID_LEN)) || (!strchr(buf, ':')))
3821 		return -EINVAL;
3822 
3823 	cgrpid_len = fc_parse_cgrpid(buf, &cgrp_id);
3824 	if (cgrpid_len < 0)
3825 		return -EINVAL;
3826 	appid_len = count - cgrpid_len - 1;
3827 	if (appid_len > FC_APPID_LEN)
3828 		return -EINVAL;
3829 
3830 	memset(app_id, 0x0, sizeof(app_id));
3831 	memcpy(app_id, &buf[cgrpid_len+1], appid_len);
3832 	ret = blkcg_set_fc_appid(app_id, cgrp_id, sizeof(app_id));
3833 	if (ret < 0)
3834 		return ret;
3835 	return orig_count;
3836 }
3837 static DEVICE_ATTR(appid_store, 0200, NULL, fc_appid_store);
3838 #endif /* CONFIG_BLK_CGROUP_FC_APPID */
3839 
3840 static struct attribute *nvme_fc_attrs[] = {
3841 	&dev_attr_nvme_discovery.attr,
3842 #ifdef CONFIG_BLK_CGROUP_FC_APPID
3843 	&dev_attr_appid_store.attr,
3844 #endif
3845 	NULL
3846 };
3847 
3848 static const struct attribute_group nvme_fc_attr_group = {
3849 	.attrs = nvme_fc_attrs,
3850 };
3851 
3852 static const struct attribute_group *nvme_fc_attr_groups[] = {
3853 	&nvme_fc_attr_group,
3854 	NULL
3855 };
3856 
3857 static struct class fc_class = {
3858 	.name = "fc",
3859 	.dev_groups = nvme_fc_attr_groups,
3860 };
3861 
nvme_fc_init_module(void)3862 static int __init nvme_fc_init_module(void)
3863 {
3864 	int ret;
3865 
3866 	/*
3867 	 * NOTE:
3868 	 * It is expected that in the future the kernel will combine
3869 	 * the FC-isms that are currently under scsi and now being
3870 	 * added to by NVME into a new standalone FC class. The SCSI
3871 	 * and NVME protocols and their devices would be under this
3872 	 * new FC class.
3873 	 *
3874 	 * As we need something to post FC-specific udev events to,
3875 	 * specifically for nvme probe events, start by creating the
3876 	 * new device class.  When the new standalone FC class is
3877 	 * put in place, this code will move to a more generic
3878 	 * location for the class.
3879 	 */
3880 	ret = class_register(&fc_class);
3881 	if (ret) {
3882 		pr_err("couldn't register class fc\n");
3883 		return ret;
3884 	}
3885 
3886 	/*
3887 	 * Create a device for the FC-centric udev events
3888 	 */
3889 	fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3890 				"fc_udev_device");
3891 	if (IS_ERR(fc_udev_device)) {
3892 		pr_err("couldn't create fc_udev device!\n");
3893 		ret = PTR_ERR(fc_udev_device);
3894 		goto out_destroy_class;
3895 	}
3896 
3897 	ret = nvmf_register_transport(&nvme_fc_transport);
3898 	if (ret)
3899 		goto out_destroy_device;
3900 
3901 	return 0;
3902 
3903 out_destroy_device:
3904 	device_destroy(&fc_class, MKDEV(0, 0));
3905 out_destroy_class:
3906 	class_unregister(&fc_class);
3907 
3908 	return ret;
3909 }
3910 
3911 static void
nvme_fc_delete_controllers(struct nvme_fc_rport * rport)3912 nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3913 {
3914 	struct nvme_fc_ctrl *ctrl;
3915 
3916 	spin_lock(&rport->lock);
3917 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3918 		dev_warn(ctrl->ctrl.device,
3919 			"NVME-FC{%d}: transport unloading: deleting ctrl\n",
3920 			ctrl->cnum);
3921 		nvme_delete_ctrl(&ctrl->ctrl);
3922 	}
3923 	spin_unlock(&rport->lock);
3924 }
3925 
nvme_fc_exit_module(void)3926 static void __exit nvme_fc_exit_module(void)
3927 {
3928 	struct nvme_fc_lport *lport;
3929 	struct nvme_fc_rport *rport;
3930 	unsigned long flags;
3931 
3932 	spin_lock_irqsave(&nvme_fc_lock, flags);
3933 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list)
3934 		list_for_each_entry(rport, &lport->endp_list, endp_list)
3935 			nvme_fc_delete_controllers(rport);
3936 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3937 	flush_workqueue(nvme_delete_wq);
3938 
3939 	nvmf_unregister_transport(&nvme_fc_transport);
3940 
3941 	device_destroy(&fc_class, MKDEV(0, 0));
3942 	class_unregister(&fc_class);
3943 }
3944 
3945 module_init(nvme_fc_init_module);
3946 module_exit(nvme_fc_exit_module);
3947 
3948 MODULE_DESCRIPTION("NVMe host FC transport driver");
3949 MODULE_LICENSE("GPL v2");
3950