1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Joyent, Inc.
28 * Copyright (c) 2017, Intel Corporation.
29 * Copyright 2017 RackTop Systems.
30 */
31
32 /*
33 * The objective of this program is to provide a DMU/ZAP/SPA stress test
34 * that runs entirely in userland, is easy to use, and easy to extend.
35 *
36 * The overall design of the ztest program is as follows:
37 *
38 * (1) For each major functional area (e.g. adding vdevs to a pool,
39 * creating and destroying datasets, reading and writing objects, etc)
40 * we have a simple routine to test that functionality. These
41 * individual routines do not have to do anything "stressful".
42 *
43 * (2) We turn these simple functionality tests into a stress test by
44 * running them all in parallel, with as many threads as desired,
45 * and spread across as many datasets, objects, and vdevs as desired.
46 *
47 * (3) While all this is happening, we inject faults into the pool to
48 * verify that self-healing data really works.
49 *
50 * (4) Every time we open a dataset, we change its checksum and compression
51 * functions. Thus even individual objects vary from block to block
52 * in which checksum they use and whether they're compressed.
53 *
54 * (5) To verify that we never lose on-disk consistency after a crash,
55 * we run the entire test in a child of the main process.
56 * At random times, the child self-immolates with a SIGKILL.
57 * This is the software equivalent of pulling the power cord.
58 * The parent then runs the test again, using the existing
59 * storage pool, as many times as desired. If backwards compatibility
60 * testing is enabled ztest will sometimes run the "older" version
61 * of ztest after a SIGKILL.
62 *
63 * (6) To verify that we don't have future leaks or temporal incursions,
64 * many of the functional tests record the transaction group number
65 * as part of their data. When reading old data, they verify that
66 * the transaction group number is less than the current, open txg.
67 * If you add a new test, please do this if applicable.
68 *
69 * When run with no arguments, ztest runs for about five minutes and
70 * produces no output if successful. To get a little bit of information,
71 * specify -V. To get more information, specify -VV, and so on.
72 *
73 * To turn this into an overnight stress test, use -T to specify run time.
74 *
75 * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
76 * to increase the pool capacity, fanout, and overall stress level.
77 *
78 * Use the -k option to set the desired frequency of kills.
79 *
80 * When ztest invokes itself it passes all relevant information through a
81 * temporary file which is mmap-ed in the child process. This allows shared
82 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
83 * stored at offset 0 of this file and contains information on the size and
84 * number of shared structures in the file. The information stored in this file
85 * must remain backwards compatible with older versions of ztest so that
86 * ztest can invoke them during backwards compatibility testing (-B).
87 */
88
89 #include <sys/zfs_context.h>
90 #include <sys/spa.h>
91 #include <sys/dmu.h>
92 #include <sys/txg.h>
93 #include <sys/dbuf.h>
94 #include <sys/zap.h>
95 #include <sys/dmu_objset.h>
96 #include <sys/poll.h>
97 #include <sys/stat.h>
98 #include <sys/time.h>
99 #include <sys/wait.h>
100 #include <sys/mman.h>
101 #include <sys/resource.h>
102 #include <sys/zio.h>
103 #include <sys/zil.h>
104 #include <sys/zil_impl.h>
105 #include <sys/vdev_impl.h>
106 #include <sys/vdev_file.h>
107 #include <sys/vdev_initialize.h>
108 #include <sys/vdev_trim.h>
109 #include <sys/spa_impl.h>
110 #include <sys/metaslab_impl.h>
111 #include <sys/dsl_prop.h>
112 #include <sys/dsl_dataset.h>
113 #include <sys/dsl_destroy.h>
114 #include <sys/dsl_scan.h>
115 #include <sys/zio_checksum.h>
116 #include <sys/refcount.h>
117 #include <sys/zfeature.h>
118 #include <sys/dsl_userhold.h>
119 #include <sys/abd.h>
120 #include <stdio.h>
121 #include <stdio_ext.h>
122 #include <stdlib.h>
123 #include <unistd.h>
124 #include <signal.h>
125 #include <umem.h>
126 #include <dlfcn.h>
127 #include <ctype.h>
128 #include <math.h>
129 #include <sys/fs/zfs.h>
130 #include <zfs_fletcher.h>
131 #include <libnvpair.h>
132 #include <libzutil.h>
133 #include <libcmdutils.h>
134
135 static int ztest_fd_data = -1;
136 static int ztest_fd_rand = -1;
137
138 typedef struct ztest_shared_hdr {
139 uint64_t zh_hdr_size;
140 uint64_t zh_opts_size;
141 uint64_t zh_size;
142 uint64_t zh_stats_size;
143 uint64_t zh_stats_count;
144 uint64_t zh_ds_size;
145 uint64_t zh_ds_count;
146 } ztest_shared_hdr_t;
147
148 static ztest_shared_hdr_t *ztest_shared_hdr;
149
150 enum ztest_class_state {
151 ZTEST_VDEV_CLASS_OFF,
152 ZTEST_VDEV_CLASS_ON,
153 ZTEST_VDEV_CLASS_RND
154 };
155
156 typedef struct ztest_shared_opts {
157 char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
158 char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
159 char zo_alt_ztest[MAXNAMELEN];
160 char zo_alt_libpath[MAXNAMELEN];
161 uint64_t zo_vdevs;
162 uint64_t zo_vdevtime;
163 size_t zo_vdev_size;
164 int zo_ashift;
165 int zo_mirrors;
166 int zo_raidz;
167 int zo_raidz_parity;
168 int zo_datasets;
169 int zo_threads;
170 uint64_t zo_passtime;
171 uint64_t zo_killrate;
172 int zo_verbose;
173 int zo_init;
174 uint64_t zo_time;
175 uint64_t zo_maxloops;
176 uint64_t zo_metaslab_force_ganging;
177 int zo_mmp_test;
178 int zo_special_vdevs;
179 } ztest_shared_opts_t;
180
181 static const ztest_shared_opts_t ztest_opts_defaults = {
182 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
183 .zo_dir = { '/', 't', 'm', 'p', '\0' },
184 .zo_alt_ztest = { '\0' },
185 .zo_alt_libpath = { '\0' },
186 .zo_vdevs = 5,
187 .zo_ashift = SPA_MINBLOCKSHIFT,
188 .zo_mirrors = 2,
189 .zo_raidz = 4,
190 .zo_raidz_parity = 1,
191 .zo_vdev_size = SPA_MINDEVSIZE * 4, /* 256m default size */
192 .zo_datasets = 7,
193 .zo_threads = 23,
194 .zo_passtime = 60, /* 60 seconds */
195 .zo_killrate = 70, /* 70% kill rate */
196 .zo_verbose = 0,
197 .zo_mmp_test = 0,
198 .zo_init = 1,
199 .zo_time = 300, /* 5 minutes */
200 .zo_maxloops = 50, /* max loops during spa_freeze() */
201 .zo_metaslab_force_ganging = 32 << 10,
202 .zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
203 };
204
205 extern uint64_t metaslab_force_ganging;
206 extern uint64_t metaslab_df_alloc_threshold;
207 extern uint64_t zfs_deadman_synctime_ms;
208 extern int metaslab_preload_limit;
209 extern boolean_t zfs_compressed_arc_enabled;
210 extern boolean_t zfs_abd_scatter_enabled;
211 extern int dmu_object_alloc_chunk_shift;
212 extern boolean_t zfs_force_some_double_word_sm_entries;
213 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
214
215 static ztest_shared_opts_t *ztest_shared_opts;
216 static ztest_shared_opts_t ztest_opts;
217 static char *ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
218
219 typedef struct ztest_shared_ds {
220 uint64_t zd_seq;
221 } ztest_shared_ds_t;
222
223 static ztest_shared_ds_t *ztest_shared_ds;
224 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
225
226 #define BT_MAGIC 0x123456789abcdefULL
227 #define MAXFAULTS() \
228 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
229
230 enum ztest_io_type {
231 ZTEST_IO_WRITE_TAG,
232 ZTEST_IO_WRITE_PATTERN,
233 ZTEST_IO_WRITE_ZEROES,
234 ZTEST_IO_TRUNCATE,
235 ZTEST_IO_SETATTR,
236 ZTEST_IO_REWRITE,
237 ZTEST_IO_TYPES
238 };
239
240 typedef struct ztest_block_tag {
241 uint64_t bt_magic;
242 uint64_t bt_objset;
243 uint64_t bt_object;
244 uint64_t bt_dnodesize;
245 uint64_t bt_offset;
246 uint64_t bt_gen;
247 uint64_t bt_txg;
248 uint64_t bt_crtxg;
249 } ztest_block_tag_t;
250
251 typedef struct bufwad {
252 uint64_t bw_index;
253 uint64_t bw_txg;
254 uint64_t bw_data;
255 } bufwad_t;
256
257 /*
258 * It would be better to use a rangelock_t per object. Unfortunately
259 * the rangelock_t is not a drop-in replacement for rl_t, because we
260 * still need to map from object ID to rangelock_t.
261 */
262 typedef enum {
263 RL_READER,
264 RL_WRITER,
265 RL_APPEND
266 } rl_type_t;
267
268 typedef struct rll {
269 void *rll_writer;
270 int rll_readers;
271 kmutex_t rll_lock;
272 kcondvar_t rll_cv;
273 } rll_t;
274
275 typedef struct rl {
276 uint64_t rl_object;
277 uint64_t rl_offset;
278 uint64_t rl_size;
279 rll_t *rl_lock;
280 } rl_t;
281
282 #define ZTEST_RANGE_LOCKS 64
283 #define ZTEST_OBJECT_LOCKS 64
284
285 /*
286 * Object descriptor. Used as a template for object lookup/create/remove.
287 */
288 typedef struct ztest_od {
289 uint64_t od_dir;
290 uint64_t od_object;
291 dmu_object_type_t od_type;
292 dmu_object_type_t od_crtype;
293 uint64_t od_blocksize;
294 uint64_t od_crblocksize;
295 uint64_t od_crdnodesize;
296 uint64_t od_gen;
297 uint64_t od_crgen;
298 char od_name[ZFS_MAX_DATASET_NAME_LEN];
299 } ztest_od_t;
300
301 /*
302 * Per-dataset state.
303 */
304 typedef struct ztest_ds {
305 ztest_shared_ds_t *zd_shared;
306 objset_t *zd_os;
307 krwlock_t zd_zilog_lock;
308 zilog_t *zd_zilog;
309 ztest_od_t *zd_od; /* debugging aid */
310 char zd_name[ZFS_MAX_DATASET_NAME_LEN];
311 kmutex_t zd_dirobj_lock;
312 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
313 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
314 } ztest_ds_t;
315
316 /*
317 * Per-iteration state.
318 */
319 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
320
321 typedef struct ztest_info {
322 ztest_func_t *zi_func; /* test function */
323 uint64_t zi_iters; /* iterations per execution */
324 uint64_t *zi_interval; /* execute every <interval> seconds */
325 } ztest_info_t;
326
327 typedef struct ztest_shared_callstate {
328 uint64_t zc_count; /* per-pass count */
329 uint64_t zc_time; /* per-pass time */
330 uint64_t zc_next; /* next time to call this function */
331 } ztest_shared_callstate_t;
332
333 static ztest_shared_callstate_t *ztest_shared_callstate;
334 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
335
336 /*
337 * Note: these aren't static because we want dladdr() to work.
338 */
339 ztest_func_t ztest_dmu_read_write;
340 ztest_func_t ztest_dmu_write_parallel;
341 ztest_func_t ztest_dmu_object_alloc_free;
342 ztest_func_t ztest_dmu_object_next_chunk;
343 ztest_func_t ztest_dmu_commit_callbacks;
344 ztest_func_t ztest_zap;
345 ztest_func_t ztest_zap_parallel;
346 ztest_func_t ztest_zil_commit;
347 ztest_func_t ztest_zil_remount;
348 ztest_func_t ztest_dmu_read_write_zcopy;
349 ztest_func_t ztest_dmu_objset_create_destroy;
350 ztest_func_t ztest_dmu_prealloc;
351 ztest_func_t ztest_fzap;
352 ztest_func_t ztest_dmu_snapshot_create_destroy;
353 ztest_func_t ztest_dsl_prop_get_set;
354 ztest_func_t ztest_spa_prop_get_set;
355 ztest_func_t ztest_spa_create_destroy;
356 ztest_func_t ztest_fault_inject;
357 ztest_func_t ztest_ddt_repair;
358 ztest_func_t ztest_dmu_snapshot_hold;
359 ztest_func_t ztest_mmp_enable_disable;
360 ztest_func_t ztest_scrub;
361 ztest_func_t ztest_dsl_dataset_promote_busy;
362 ztest_func_t ztest_vdev_attach_detach;
363 ztest_func_t ztest_vdev_LUN_growth;
364 ztest_func_t ztest_vdev_add_remove;
365 ztest_func_t ztest_vdev_class_add;
366 ztest_func_t ztest_vdev_aux_add_remove;
367 ztest_func_t ztest_split_pool;
368 ztest_func_t ztest_reguid;
369 ztest_func_t ztest_spa_upgrade;
370 ztest_func_t ztest_fletcher;
371 ztest_func_t ztest_fletcher_incr;
372 ztest_func_t ztest_device_removal;
373 ztest_func_t ztest_remap_blocks;
374 ztest_func_t ztest_spa_checkpoint_create_discard;
375 ztest_func_t ztest_initialize;
376 ztest_func_t ztest_trim;
377 ztest_func_t ztest_verify_dnode_bt;
378
379 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
380 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
381 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
382 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
383 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
384
385 ztest_info_t ztest_info[] = {
386 { ztest_dmu_read_write, 1, &zopt_always },
387 { ztest_dmu_write_parallel, 10, &zopt_always },
388 { ztest_dmu_object_alloc_free, 1, &zopt_always },
389 { ztest_dmu_object_next_chunk, 1, &zopt_sometimes },
390 { ztest_dmu_commit_callbacks, 1, &zopt_always },
391 { ztest_zap, 30, &zopt_always },
392 { ztest_zap_parallel, 100, &zopt_always },
393 { ztest_split_pool, 1, &zopt_always },
394 { ztest_zil_commit, 1, &zopt_incessant },
395 { ztest_zil_remount, 1, &zopt_sometimes },
396 { ztest_dmu_read_write_zcopy, 1, &zopt_often },
397 { ztest_dmu_objset_create_destroy, 1, &zopt_often },
398 { ztest_dsl_prop_get_set, 1, &zopt_often },
399 { ztest_spa_prop_get_set, 1, &zopt_sometimes },
400 #if 0
401 { ztest_dmu_prealloc, 1, &zopt_sometimes },
402 #endif
403 { ztest_fzap, 1, &zopt_sometimes },
404 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes },
405 { ztest_spa_create_destroy, 1, &zopt_sometimes },
406 { ztest_fault_inject, 1, &zopt_incessant },
407 { ztest_ddt_repair, 1, &zopt_sometimes },
408 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes },
409 { ztest_mmp_enable_disable, 1, &zopt_sometimes },
410 { ztest_reguid, 1, &zopt_rarely },
411 { ztest_scrub, 1, &zopt_often },
412 { ztest_spa_upgrade, 1, &zopt_rarely },
413 { ztest_fletcher, 1, &zopt_rarely },
414 { ztest_fletcher_incr, 1, &zopt_rarely },
415 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely },
416 { ztest_vdev_attach_detach, 1, &zopt_incessant },
417 { ztest_vdev_LUN_growth, 1, &zopt_rarely },
418 { ztest_vdev_add_remove, 1,
419 &ztest_opts.zo_vdevtime },
420 { ztest_vdev_class_add, 1,
421 &ztest_opts.zo_vdevtime },
422 { ztest_vdev_aux_add_remove, 1,
423 &ztest_opts.zo_vdevtime },
424 { ztest_device_removal, 1, &zopt_sometimes },
425 { ztest_remap_blocks, 1, &zopt_sometimes },
426 { ztest_spa_checkpoint_create_discard, 1, &zopt_rarely },
427 { ztest_initialize, 1, &zopt_sometimes },
428 { ztest_trim, 1, &zopt_sometimes },
429 { ztest_verify_dnode_bt, 1, &zopt_sometimes }
430 };
431
432 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
433
434 /*
435 * The following struct is used to hold a list of uncalled commit callbacks.
436 * The callbacks are ordered by txg number.
437 */
438 typedef struct ztest_cb_list {
439 kmutex_t zcl_callbacks_lock;
440 list_t zcl_callbacks;
441 } ztest_cb_list_t;
442
443 /*
444 * Stuff we need to share writably between parent and child.
445 */
446 typedef struct ztest_shared {
447 boolean_t zs_do_init;
448 hrtime_t zs_proc_start;
449 hrtime_t zs_proc_stop;
450 hrtime_t zs_thread_start;
451 hrtime_t zs_thread_stop;
452 hrtime_t zs_thread_kill;
453 uint64_t zs_enospc_count;
454 uint64_t zs_vdev_next_leaf;
455 uint64_t zs_vdev_aux;
456 uint64_t zs_alloc;
457 uint64_t zs_space;
458 uint64_t zs_splits;
459 uint64_t zs_mirrors;
460 uint64_t zs_metaslab_sz;
461 uint64_t zs_metaslab_df_alloc_threshold;
462 uint64_t zs_guid;
463 } ztest_shared_t;
464
465 #define ID_PARALLEL -1ULL
466
467 static char ztest_dev_template[] = "%s/%s.%llua";
468 static char ztest_aux_template[] = "%s/%s.%s.%llu";
469 ztest_shared_t *ztest_shared;
470
471 static spa_t *ztest_spa = NULL;
472 static ztest_ds_t *ztest_ds;
473
474 static kmutex_t ztest_vdev_lock;
475 static boolean_t ztest_device_removal_active = B_FALSE;
476 static kmutex_t ztest_checkpoint_lock;
477
478 /*
479 * The ztest_name_lock protects the pool and dataset namespace used by
480 * the individual tests. To modify the namespace, consumers must grab
481 * this lock as writer. Grabbing the lock as reader will ensure that the
482 * namespace does not change while the lock is held.
483 */
484 static krwlock_t ztest_name_lock;
485
486 static boolean_t ztest_dump_core = B_TRUE;
487 static boolean_t ztest_exiting;
488
489 /* Global commit callback list */
490 static ztest_cb_list_t zcl;
491
492 enum ztest_object {
493 ZTEST_META_DNODE = 0,
494 ZTEST_DIROBJ,
495 ZTEST_OBJECTS
496 };
497
498 static void usage(boolean_t) __NORETURN;
499
500 /*
501 * These libumem hooks provide a reasonable set of defaults for the allocator's
502 * debugging facilities.
503 */
504 const char *
_umem_debug_init()505 _umem_debug_init()
506 {
507 return ("default,verbose"); /* $UMEM_DEBUG setting */
508 }
509
510 const char *
_umem_logging_init(void)511 _umem_logging_init(void)
512 {
513 return ("fail,contents"); /* $UMEM_LOGGING setting */
514 }
515
516 #define FATAL_MSG_SZ 1024
517
518 char *fatal_msg;
519
520 static void
fatal(int do_perror,char * message,...)521 fatal(int do_perror, char *message, ...)
522 {
523 va_list args;
524 int save_errno = errno;
525 char buf[FATAL_MSG_SZ];
526
527 (void) fflush(stdout);
528
529 va_start(args, message);
530 (void) sprintf(buf, "ztest: ");
531 /* LINTED */
532 (void) vsprintf(buf + strlen(buf), message, args);
533 va_end(args);
534 if (do_perror) {
535 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
536 ": %s", strerror(save_errno));
537 }
538 (void) fprintf(stderr, "%s\n", buf);
539 fatal_msg = buf; /* to ease debugging */
540 if (ztest_dump_core)
541 abort();
542 exit(3);
543 }
544
545 static int
str2shift(const char * buf)546 str2shift(const char *buf)
547 {
548 const char *ends = "BKMGTPEZ";
549 int i;
550
551 if (buf[0] == '\0')
552 return (0);
553 for (i = 0; i < strlen(ends); i++) {
554 if (toupper(buf[0]) == ends[i])
555 break;
556 }
557 if (i == strlen(ends)) {
558 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
559 buf);
560 usage(B_FALSE);
561 }
562 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
563 return (10*i);
564 }
565 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
566 usage(B_FALSE);
567 /* NOTREACHED */
568 }
569
570 static uint64_t
nicenumtoull(const char * buf)571 nicenumtoull(const char *buf)
572 {
573 char *end;
574 uint64_t val;
575
576 val = strtoull(buf, &end, 0);
577 if (end == buf) {
578 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
579 usage(B_FALSE);
580 } else if (end[0] == '.') {
581 double fval = strtod(buf, &end);
582 fval *= pow(2, str2shift(end));
583 if (fval > UINT64_MAX) {
584 (void) fprintf(stderr, "ztest: value too large: %s\n",
585 buf);
586 usage(B_FALSE);
587 }
588 val = (uint64_t)fval;
589 } else {
590 int shift = str2shift(end);
591 if (shift >= 64 || (val << shift) >> shift != val) {
592 (void) fprintf(stderr, "ztest: value too large: %s\n",
593 buf);
594 usage(B_FALSE);
595 }
596 val <<= shift;
597 }
598 return (val);
599 }
600
601 static void
usage(boolean_t requested)602 usage(boolean_t requested)
603 {
604 const ztest_shared_opts_t *zo = &ztest_opts_defaults;
605
606 char nice_vdev_size[NN_NUMBUF_SZ];
607 char nice_force_ganging[NN_NUMBUF_SZ];
608 FILE *fp = requested ? stdout : stderr;
609
610 nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size));
611 nicenum(zo->zo_metaslab_force_ganging, nice_force_ganging,
612 sizeof (nice_force_ganging));
613
614 (void) fprintf(fp, "Usage: %s\n"
615 "\t[-v vdevs (default: %llu)]\n"
616 "\t[-s size_of_each_vdev (default: %s)]\n"
617 "\t[-a alignment_shift (default: %d)] use 0 for random\n"
618 "\t[-m mirror_copies (default: %d)]\n"
619 "\t[-r raidz_disks (default: %d)]\n"
620 "\t[-R raidz_parity (default: %d)]\n"
621 "\t[-d datasets (default: %d)]\n"
622 "\t[-t threads (default: %d)]\n"
623 "\t[-g gang_block_threshold (default: %s)]\n"
624 "\t[-i init_count (default: %d)] initialize pool i times\n"
625 "\t[-k kill_percentage (default: %llu%%)]\n"
626 "\t[-p pool_name (default: %s)]\n"
627 "\t[-f dir (default: %s)] file directory for vdev files\n"
628 "\t[-M] Multi-host simulate pool imported on remote host\n"
629 "\t[-V] verbose (use multiple times for ever more blather)\n"
630 "\t[-E] use existing pool instead of creating new one\n"
631 "\t[-T time (default: %llu sec)] total run time\n"
632 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
633 "\t[-P passtime (default: %llu sec)] time per pass\n"
634 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
635 "\t[-C vdev class state (default: random)] special=on|off|random\n"
636 "\t[-o variable=value] ... set global variable to an unsigned\n"
637 "\t 32-bit integer value\n"
638 "\t[-h] (print help)\n"
639 "",
640 zo->zo_pool,
641 (u_longlong_t)zo->zo_vdevs, /* -v */
642 nice_vdev_size, /* -s */
643 zo->zo_ashift, /* -a */
644 zo->zo_mirrors, /* -m */
645 zo->zo_raidz, /* -r */
646 zo->zo_raidz_parity, /* -R */
647 zo->zo_datasets, /* -d */
648 zo->zo_threads, /* -t */
649 nice_force_ganging, /* -g */
650 zo->zo_init, /* -i */
651 (u_longlong_t)zo->zo_killrate, /* -k */
652 zo->zo_pool, /* -p */
653 zo->zo_dir, /* -f */
654 (u_longlong_t)zo->zo_time, /* -T */
655 (u_longlong_t)zo->zo_maxloops, /* -F */
656 (u_longlong_t)zo->zo_passtime);
657 exit(requested ? 0 : 1);
658 }
659
660
661 static void
ztest_parse_name_value(const char * input,ztest_shared_opts_t * zo)662 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
663 {
664 char name[32];
665 char *value;
666 int state = ZTEST_VDEV_CLASS_RND;
667
668 (void) strlcpy(name, input, sizeof (name));
669
670 value = strchr(name, '=');
671 if (value == NULL) {
672 (void) fprintf(stderr, "missing value in property=value "
673 "'-C' argument (%s)\n", input);
674 usage(B_FALSE);
675 }
676 *(value) = '\0';
677 value++;
678
679 if (strcmp(value, "on") == 0) {
680 state = ZTEST_VDEV_CLASS_ON;
681 } else if (strcmp(value, "off") == 0) {
682 state = ZTEST_VDEV_CLASS_OFF;
683 } else if (strcmp(value, "random") == 0) {
684 state = ZTEST_VDEV_CLASS_RND;
685 } else {
686 (void) fprintf(stderr, "invalid property value '%s'\n", value);
687 usage(B_FALSE);
688 }
689
690 if (strcmp(name, "special") == 0) {
691 zo->zo_special_vdevs = state;
692 } else {
693 (void) fprintf(stderr, "invalid property name '%s'\n", name);
694 usage(B_FALSE);
695 }
696 if (zo->zo_verbose >= 3)
697 (void) printf("%s vdev state is '%s'\n", name, value);
698 }
699
700 static void
process_options(int argc,char ** argv)701 process_options(int argc, char **argv)
702 {
703 char *path;
704 ztest_shared_opts_t *zo = &ztest_opts;
705
706 int opt;
707 uint64_t value;
708 char altdir[MAXNAMELEN] = { 0 };
709
710 bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
711
712 while ((opt = getopt(argc, argv,
713 "v:s:a:m:r:R:d:t:g:i:k:p:f:MVET:P:hF:B:C:o:")) != EOF) {
714 value = 0;
715 switch (opt) {
716 case 'v':
717 case 's':
718 case 'a':
719 case 'm':
720 case 'r':
721 case 'R':
722 case 'd':
723 case 't':
724 case 'g':
725 case 'i':
726 case 'k':
727 case 'T':
728 case 'P':
729 case 'F':
730 value = nicenumtoull(optarg);
731 }
732 switch (opt) {
733 case 'v':
734 zo->zo_vdevs = value;
735 break;
736 case 's':
737 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
738 break;
739 case 'a':
740 zo->zo_ashift = value;
741 break;
742 case 'm':
743 zo->zo_mirrors = value;
744 break;
745 case 'r':
746 zo->zo_raidz = MAX(1, value);
747 break;
748 case 'R':
749 zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
750 break;
751 case 'd':
752 zo->zo_datasets = MAX(1, value);
753 break;
754 case 't':
755 zo->zo_threads = MAX(1, value);
756 break;
757 case 'g':
758 zo->zo_metaslab_force_ganging =
759 MAX(SPA_MINBLOCKSIZE << 1, value);
760 break;
761 case 'i':
762 zo->zo_init = value;
763 break;
764 case 'k':
765 zo->zo_killrate = value;
766 break;
767 case 'p':
768 (void) strlcpy(zo->zo_pool, optarg,
769 sizeof (zo->zo_pool));
770 break;
771 case 'f':
772 path = realpath(optarg, NULL);
773 if (path == NULL) {
774 (void) fprintf(stderr, "error: %s: %s\n",
775 optarg, strerror(errno));
776 usage(B_FALSE);
777 } else {
778 (void) strlcpy(zo->zo_dir, path,
779 sizeof (zo->zo_dir));
780 }
781 break;
782 case 'M':
783 zo->zo_mmp_test = 1;
784 break;
785 case 'V':
786 zo->zo_verbose++;
787 break;
788 case 'E':
789 zo->zo_init = 0;
790 break;
791 case 'T':
792 zo->zo_time = value;
793 break;
794 case 'P':
795 zo->zo_passtime = MAX(1, value);
796 break;
797 case 'F':
798 zo->zo_maxloops = MAX(1, value);
799 break;
800 case 'B':
801 (void) strlcpy(altdir, optarg, sizeof (altdir));
802 break;
803 case 'C':
804 ztest_parse_name_value(optarg, zo);
805 break;
806 case 'o':
807 if (set_global_var(optarg) != 0)
808 usage(B_FALSE);
809 break;
810 case 'h':
811 usage(B_TRUE);
812 break;
813 case '?':
814 default:
815 usage(B_FALSE);
816 break;
817 }
818 }
819
820 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
821
822 zo->zo_vdevtime =
823 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
824 UINT64_MAX >> 2);
825
826 if (strlen(altdir) > 0) {
827 char *cmd;
828 char *realaltdir;
829 char *bin;
830 char *ztest;
831 char *isa;
832 int isalen;
833
834 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
835 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
836
837 VERIFY(NULL != realpath(getexecname(), cmd));
838 if (0 != access(altdir, F_OK)) {
839 ztest_dump_core = B_FALSE;
840 fatal(B_TRUE, "invalid alternate ztest path: %s",
841 altdir);
842 }
843 VERIFY(NULL != realpath(altdir, realaltdir));
844
845 /*
846 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
847 * We want to extract <isa> to determine if we should use
848 * 32 or 64 bit binaries.
849 */
850 bin = strstr(cmd, "/usr/bin/");
851 ztest = strstr(bin, "/ztest");
852 isa = bin + 9;
853 isalen = ztest - isa;
854 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
855 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
856 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
857 "%s/usr/lib/%.*s", realaltdir, isalen, isa);
858
859 if (0 != access(zo->zo_alt_ztest, X_OK)) {
860 ztest_dump_core = B_FALSE;
861 fatal(B_TRUE, "invalid alternate ztest: %s",
862 zo->zo_alt_ztest);
863 } else if (0 != access(zo->zo_alt_libpath, X_OK)) {
864 ztest_dump_core = B_FALSE;
865 fatal(B_TRUE, "invalid alternate lib directory %s",
866 zo->zo_alt_libpath);
867 }
868
869 umem_free(cmd, MAXPATHLEN);
870 umem_free(realaltdir, MAXPATHLEN);
871 }
872 }
873
874 static void
ztest_kill(ztest_shared_t * zs)875 ztest_kill(ztest_shared_t *zs)
876 {
877 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
878 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
879
880 /*
881 * Before we kill off ztest, make sure that the config is updated.
882 * See comment above spa_write_cachefile().
883 */
884 mutex_enter(&spa_namespace_lock);
885 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE);
886 mutex_exit(&spa_namespace_lock);
887
888 zfs_dbgmsg_print(FTAG);
889 (void) kill(getpid(), SIGKILL);
890 }
891
892 static uint64_t
ztest_random(uint64_t range)893 ztest_random(uint64_t range)
894 {
895 uint64_t r;
896
897 ASSERT3S(ztest_fd_rand, >=, 0);
898
899 if (range == 0)
900 return (0);
901
902 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
903 fatal(1, "short read from /dev/urandom");
904
905 return (r % range);
906 }
907
908 /* ARGSUSED */
909 static void
ztest_record_enospc(const char * s)910 ztest_record_enospc(const char *s)
911 {
912 ztest_shared->zs_enospc_count++;
913 }
914
915 static uint64_t
ztest_get_ashift(void)916 ztest_get_ashift(void)
917 {
918 if (ztest_opts.zo_ashift == 0)
919 return (SPA_MINBLOCKSHIFT + ztest_random(5));
920 return (ztest_opts.zo_ashift);
921 }
922
923 static nvlist_t *
make_vdev_file(char * path,char * aux,char * pool,size_t size,uint64_t ashift)924 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
925 {
926 char pathbuf[MAXPATHLEN];
927 uint64_t vdev;
928 nvlist_t *file;
929
930 if (ashift == 0)
931 ashift = ztest_get_ashift();
932
933 if (path == NULL) {
934 path = pathbuf;
935
936 if (aux != NULL) {
937 vdev = ztest_shared->zs_vdev_aux;
938 (void) snprintf(path, sizeof (pathbuf),
939 ztest_aux_template, ztest_opts.zo_dir,
940 pool == NULL ? ztest_opts.zo_pool : pool,
941 aux, vdev);
942 } else {
943 vdev = ztest_shared->zs_vdev_next_leaf++;
944 (void) snprintf(path, sizeof (pathbuf),
945 ztest_dev_template, ztest_opts.zo_dir,
946 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
947 }
948 }
949
950 if (size != 0) {
951 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
952 if (fd == -1)
953 fatal(1, "can't open %s", path);
954 if (ftruncate(fd, size) != 0)
955 fatal(1, "can't ftruncate %s", path);
956 (void) close(fd);
957 }
958
959 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
960 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
961 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
962 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
963
964 return (file);
965 }
966
967 static nvlist_t *
make_vdev_raidz(char * path,char * aux,char * pool,size_t size,uint64_t ashift,int r)968 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
969 uint64_t ashift, int r)
970 {
971 nvlist_t *raidz, **child;
972 int c;
973
974 if (r < 2)
975 return (make_vdev_file(path, aux, pool, size, ashift));
976 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
977
978 for (c = 0; c < r; c++)
979 child[c] = make_vdev_file(path, aux, pool, size, ashift);
980
981 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
982 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
983 VDEV_TYPE_RAIDZ) == 0);
984 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
985 ztest_opts.zo_raidz_parity) == 0);
986 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
987 child, r) == 0);
988
989 for (c = 0; c < r; c++)
990 nvlist_free(child[c]);
991
992 umem_free(child, r * sizeof (nvlist_t *));
993
994 return (raidz);
995 }
996
997 static nvlist_t *
make_vdev_mirror(char * path,char * aux,char * pool,size_t size,uint64_t ashift,int r,int m)998 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
999 uint64_t ashift, int r, int m)
1000 {
1001 nvlist_t *mirror, **child;
1002 int c;
1003
1004 if (m < 1)
1005 return (make_vdev_raidz(path, aux, pool, size, ashift, r));
1006
1007 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1008
1009 for (c = 0; c < m; c++)
1010 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
1011
1012 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
1013 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
1014 VDEV_TYPE_MIRROR) == 0);
1015 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
1016 child, m) == 0);
1017
1018 for (c = 0; c < m; c++)
1019 nvlist_free(child[c]);
1020
1021 umem_free(child, m * sizeof (nvlist_t *));
1022
1023 return (mirror);
1024 }
1025
1026 static nvlist_t *
make_vdev_root(char * path,char * aux,char * pool,size_t size,uint64_t ashift,const char * class,int r,int m,int t)1027 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
1028 const char *class, int r, int m, int t)
1029 {
1030 nvlist_t *root, **child;
1031 int c;
1032 boolean_t log;
1033
1034 ASSERT(t > 0);
1035
1036 log = (class != NULL && strcmp(class, "log") == 0);
1037
1038 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1039
1040 for (c = 0; c < t; c++) {
1041 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1042 r, m);
1043 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
1044 log) == 0);
1045
1046 if (class != NULL && class[0] != '\0') {
1047 ASSERT(m > 1 || log); /* expecting a mirror */
1048 VERIFY(nvlist_add_string(child[c],
1049 ZPOOL_CONFIG_ALLOCATION_BIAS, class) == 0);
1050 }
1051 }
1052
1053 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
1054 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
1055 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1056 child, t) == 0);
1057
1058 for (c = 0; c < t; c++)
1059 nvlist_free(child[c]);
1060
1061 umem_free(child, t * sizeof (nvlist_t *));
1062
1063 return (root);
1064 }
1065
1066 /*
1067 * Find a random spa version. Returns back a random spa version in the
1068 * range [initial_version, SPA_VERSION_FEATURES].
1069 */
1070 static uint64_t
ztest_random_spa_version(uint64_t initial_version)1071 ztest_random_spa_version(uint64_t initial_version)
1072 {
1073 uint64_t version = initial_version;
1074
1075 if (version <= SPA_VERSION_BEFORE_FEATURES) {
1076 version = version +
1077 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1078 }
1079
1080 if (version > SPA_VERSION_BEFORE_FEATURES)
1081 version = SPA_VERSION_FEATURES;
1082
1083 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1084 return (version);
1085 }
1086
1087 static int
ztest_random_blocksize(void)1088 ztest_random_blocksize(void)
1089 {
1090 uint64_t block_shift;
1091
1092 ASSERT(ztest_spa->spa_max_ashift != 0);
1093
1094 /*
1095 * Choose a block size >= the ashift.
1096 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1097 */
1098 int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1099 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1100 maxbs = 20;
1101 block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1102 return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1103 }
1104
1105 static int
ztest_random_dnodesize(void)1106 ztest_random_dnodesize(void)
1107 {
1108 int slots;
1109 int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1110
1111 if (max_slots == DNODE_MIN_SLOTS)
1112 return (DNODE_MIN_SIZE);
1113
1114 /*
1115 * Weight the random distribution more heavily toward smaller
1116 * dnode sizes since that is more likely to reflect real-world
1117 * usage.
1118 */
1119 ASSERT3U(max_slots, >, 4);
1120 switch (ztest_random(10)) {
1121 case 0:
1122 slots = 5 + ztest_random(max_slots - 4);
1123 break;
1124 case 1 ... 4:
1125 slots = 2 + ztest_random(3);
1126 break;
1127 default:
1128 slots = 1;
1129 break;
1130 }
1131
1132 return (slots << DNODE_SHIFT);
1133 }
1134
1135 static int
ztest_random_ibshift(void)1136 ztest_random_ibshift(void)
1137 {
1138 return (DN_MIN_INDBLKSHIFT +
1139 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1140 }
1141
1142 static uint64_t
ztest_random_vdev_top(spa_t * spa,boolean_t log_ok)1143 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1144 {
1145 uint64_t top;
1146 vdev_t *rvd = spa->spa_root_vdev;
1147 vdev_t *tvd;
1148
1149 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1150
1151 do {
1152 top = ztest_random(rvd->vdev_children);
1153 tvd = rvd->vdev_child[top];
1154 } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1155 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1156
1157 return (top);
1158 }
1159
1160 static uint64_t
ztest_random_dsl_prop(zfs_prop_t prop)1161 ztest_random_dsl_prop(zfs_prop_t prop)
1162 {
1163 uint64_t value;
1164
1165 do {
1166 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1167 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1168
1169 return (value);
1170 }
1171
1172 static int
ztest_dsl_prop_set_uint64(char * osname,zfs_prop_t prop,uint64_t value,boolean_t inherit)1173 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1174 boolean_t inherit)
1175 {
1176 const char *propname = zfs_prop_to_name(prop);
1177 const char *valname;
1178 char setpoint[MAXPATHLEN];
1179 uint64_t curval;
1180 int error;
1181
1182 error = dsl_prop_set_int(osname, propname,
1183 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1184
1185 if (error == ENOSPC) {
1186 ztest_record_enospc(FTAG);
1187 return (error);
1188 }
1189 ASSERT0(error);
1190
1191 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1192
1193 if (ztest_opts.zo_verbose >= 6) {
1194 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
1195 (void) printf("%s %s = %s at '%s'\n",
1196 osname, propname, valname, setpoint);
1197 }
1198
1199 return (error);
1200 }
1201
1202 static int
ztest_spa_prop_set_uint64(zpool_prop_t prop,uint64_t value)1203 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1204 {
1205 spa_t *spa = ztest_spa;
1206 nvlist_t *props = NULL;
1207 int error;
1208
1209 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1210 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1211
1212 error = spa_prop_set(spa, props);
1213
1214 nvlist_free(props);
1215
1216 if (error == ENOSPC) {
1217 ztest_record_enospc(FTAG);
1218 return (error);
1219 }
1220 ASSERT0(error);
1221
1222 return (error);
1223 }
1224
1225 static int
ztest_dmu_objset_own(const char * name,dmu_objset_type_t type,boolean_t readonly,boolean_t decrypt,void * tag,objset_t ** osp)1226 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1227 boolean_t readonly, boolean_t decrypt, void *tag, objset_t **osp)
1228 {
1229 int err;
1230
1231 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1232 if (decrypt && err == EACCES) {
1233 char ddname[ZFS_MAX_DATASET_NAME_LEN];
1234 dsl_crypto_params_t *dcp;
1235 nvlist_t *crypto_args = fnvlist_alloc();
1236 char *cp = NULL;
1237
1238 /* spa_keystore_load_wkey() expects a dsl dir name */
1239 (void) strcpy(ddname, name);
1240 cp = strchr(ddname, '@');
1241 if (cp != NULL)
1242 *cp = '\0';
1243
1244 fnvlist_add_uint8_array(crypto_args, "wkeydata",
1245 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1246 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1247 crypto_args, &dcp));
1248 err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1249 dsl_crypto_params_free(dcp, B_FALSE);
1250 fnvlist_free(crypto_args);
1251
1252 if (err != 0)
1253 return (err);
1254
1255 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1256 }
1257
1258 return (err);
1259 }
1260
1261 static void
ztest_rll_init(rll_t * rll)1262 ztest_rll_init(rll_t *rll)
1263 {
1264 rll->rll_writer = NULL;
1265 rll->rll_readers = 0;
1266 mutex_init(&rll->rll_lock, NULL, USYNC_THREAD, NULL);
1267 cv_init(&rll->rll_cv, NULL, USYNC_THREAD, NULL);
1268 }
1269
1270 static void
ztest_rll_destroy(rll_t * rll)1271 ztest_rll_destroy(rll_t *rll)
1272 {
1273 ASSERT(rll->rll_writer == NULL);
1274 ASSERT(rll->rll_readers == 0);
1275 mutex_destroy(&rll->rll_lock);
1276 cv_destroy(&rll->rll_cv);
1277 }
1278
1279 static void
ztest_rll_lock(rll_t * rll,rl_type_t type)1280 ztest_rll_lock(rll_t *rll, rl_type_t type)
1281 {
1282 mutex_enter(&rll->rll_lock);
1283
1284 if (type == RL_READER) {
1285 while (rll->rll_writer != NULL)
1286 cv_wait(&rll->rll_cv, &rll->rll_lock);
1287 rll->rll_readers++;
1288 } else {
1289 while (rll->rll_writer != NULL || rll->rll_readers)
1290 cv_wait(&rll->rll_cv, &rll->rll_lock);
1291 rll->rll_writer = curthread;
1292 }
1293
1294 mutex_exit(&rll->rll_lock);
1295 }
1296
1297 static void
ztest_rll_unlock(rll_t * rll)1298 ztest_rll_unlock(rll_t *rll)
1299 {
1300 mutex_enter(&rll->rll_lock);
1301
1302 if (rll->rll_writer) {
1303 ASSERT(rll->rll_readers == 0);
1304 rll->rll_writer = NULL;
1305 } else {
1306 ASSERT(rll->rll_readers != 0);
1307 ASSERT(rll->rll_writer == NULL);
1308 rll->rll_readers--;
1309 }
1310
1311 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1312 cv_broadcast(&rll->rll_cv);
1313
1314 mutex_exit(&rll->rll_lock);
1315 }
1316
1317 static void
ztest_object_lock(ztest_ds_t * zd,uint64_t object,rl_type_t type)1318 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1319 {
1320 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1321
1322 ztest_rll_lock(rll, type);
1323 }
1324
1325 static void
ztest_object_unlock(ztest_ds_t * zd,uint64_t object)1326 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1327 {
1328 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1329
1330 ztest_rll_unlock(rll);
1331 }
1332
1333 static rl_t *
ztest_range_lock(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size,rl_type_t type)1334 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1335 uint64_t size, rl_type_t type)
1336 {
1337 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1338 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1339 rl_t *rl;
1340
1341 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1342 rl->rl_object = object;
1343 rl->rl_offset = offset;
1344 rl->rl_size = size;
1345 rl->rl_lock = rll;
1346
1347 ztest_rll_lock(rll, type);
1348
1349 return (rl);
1350 }
1351
1352 static void
ztest_range_unlock(rl_t * rl)1353 ztest_range_unlock(rl_t *rl)
1354 {
1355 rll_t *rll = rl->rl_lock;
1356
1357 ztest_rll_unlock(rll);
1358
1359 umem_free(rl, sizeof (*rl));
1360 }
1361
1362 static void
ztest_zd_init(ztest_ds_t * zd,ztest_shared_ds_t * szd,objset_t * os)1363 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1364 {
1365 zd->zd_os = os;
1366 zd->zd_zilog = dmu_objset_zil(os);
1367 zd->zd_shared = szd;
1368 dmu_objset_name(os, zd->zd_name);
1369
1370 if (zd->zd_shared != NULL)
1371 zd->zd_shared->zd_seq = 0;
1372
1373 rw_init(&zd->zd_zilog_lock, NULL, USYNC_THREAD, NULL);
1374 mutex_init(&zd->zd_dirobj_lock, NULL, USYNC_THREAD, NULL);
1375
1376 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1377 ztest_rll_init(&zd->zd_object_lock[l]);
1378
1379 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1380 ztest_rll_init(&zd->zd_range_lock[l]);
1381 }
1382
1383 static void
ztest_zd_fini(ztest_ds_t * zd)1384 ztest_zd_fini(ztest_ds_t *zd)
1385 {
1386 mutex_destroy(&zd->zd_dirobj_lock);
1387
1388 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1389 ztest_rll_destroy(&zd->zd_object_lock[l]);
1390
1391 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1392 ztest_rll_destroy(&zd->zd_range_lock[l]);
1393 }
1394
1395 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1396
1397 static uint64_t
ztest_tx_assign(dmu_tx_t * tx,uint64_t txg_how,const char * tag)1398 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1399 {
1400 uint64_t txg;
1401 int error;
1402
1403 /*
1404 * Attempt to assign tx to some transaction group.
1405 */
1406 error = dmu_tx_assign(tx, txg_how);
1407 if (error) {
1408 if (error == ERESTART) {
1409 ASSERT(txg_how == TXG_NOWAIT);
1410 dmu_tx_wait(tx);
1411 } else {
1412 ASSERT3U(error, ==, ENOSPC);
1413 ztest_record_enospc(tag);
1414 }
1415 dmu_tx_abort(tx);
1416 return (0);
1417 }
1418 txg = dmu_tx_get_txg(tx);
1419 ASSERT(txg != 0);
1420 return (txg);
1421 }
1422
1423 static void
ztest_pattern_set(void * buf,uint64_t size,uint64_t value)1424 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1425 {
1426 uint64_t *ip = buf;
1427 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1428
1429 while (ip < ip_end)
1430 *ip++ = value;
1431 }
1432
1433 static boolean_t
ztest_pattern_match(void * buf,uint64_t size,uint64_t value)1434 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1435 {
1436 uint64_t *ip = buf;
1437 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1438 uint64_t diff = 0;
1439
1440 while (ip < ip_end)
1441 diff |= (value - *ip++);
1442
1443 return (diff == 0);
1444 }
1445
1446 static void
ztest_bt_generate(ztest_block_tag_t * bt,objset_t * os,uint64_t object,uint64_t dnodesize,uint64_t offset,uint64_t gen,uint64_t txg,uint64_t crtxg)1447 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1448 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1449 uint64_t crtxg)
1450 {
1451 bt->bt_magic = BT_MAGIC;
1452 bt->bt_objset = dmu_objset_id(os);
1453 bt->bt_object = object;
1454 bt->bt_dnodesize = dnodesize;
1455 bt->bt_offset = offset;
1456 bt->bt_gen = gen;
1457 bt->bt_txg = txg;
1458 bt->bt_crtxg = crtxg;
1459 }
1460
1461 static void
ztest_bt_verify(ztest_block_tag_t * bt,objset_t * os,uint64_t object,uint64_t dnodesize,uint64_t offset,uint64_t gen,uint64_t txg,uint64_t crtxg)1462 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1463 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1464 uint64_t crtxg)
1465 {
1466 ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1467 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1468 ASSERT3U(bt->bt_object, ==, object);
1469 ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1470 ASSERT3U(bt->bt_offset, ==, offset);
1471 ASSERT3U(bt->bt_gen, <=, gen);
1472 ASSERT3U(bt->bt_txg, <=, txg);
1473 ASSERT3U(bt->bt_crtxg, ==, crtxg);
1474 }
1475
1476 static ztest_block_tag_t *
ztest_bt_bonus(dmu_buf_t * db)1477 ztest_bt_bonus(dmu_buf_t *db)
1478 {
1479 dmu_object_info_t doi;
1480 ztest_block_tag_t *bt;
1481
1482 dmu_object_info_from_db(db, &doi);
1483 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1484 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1485 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1486
1487 return (bt);
1488 }
1489
1490 /*
1491 * Generate a token to fill up unused bonus buffer space. Try to make
1492 * it unique to the object, generation, and offset to verify that data
1493 * is not getting overwritten by data from other dnodes.
1494 */
1495 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1496 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1497
1498 /*
1499 * Fill up the unused bonus buffer region before the block tag with a
1500 * verifiable pattern. Filling the whole bonus area with non-zero data
1501 * helps ensure that all dnode traversal code properly skips the
1502 * interior regions of large dnodes.
1503 */
1504 void
ztest_fill_unused_bonus(dmu_buf_t * db,void * end,uint64_t obj,objset_t * os,uint64_t gen)1505 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1506 objset_t *os, uint64_t gen)
1507 {
1508 uint64_t *bonusp;
1509
1510 ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1511
1512 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1513 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1514 gen, bonusp - (uint64_t *)db->db_data);
1515 *bonusp = token;
1516 }
1517 }
1518
1519 /*
1520 * Verify that the unused area of a bonus buffer is filled with the
1521 * expected tokens.
1522 */
1523 void
ztest_verify_unused_bonus(dmu_buf_t * db,void * end,uint64_t obj,objset_t * os,uint64_t gen)1524 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1525 objset_t *os, uint64_t gen)
1526 {
1527 uint64_t *bonusp;
1528
1529 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1530 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1531 gen, bonusp - (uint64_t *)db->db_data);
1532 VERIFY3U(*bonusp, ==, token);
1533 }
1534 }
1535
1536 /*
1537 * ZIL logging ops
1538 */
1539
1540 #define lrz_type lr_mode
1541 #define lrz_blocksize lr_uid
1542 #define lrz_ibshift lr_gid
1543 #define lrz_bonustype lr_rdev
1544 #define lrz_dnodesize lr_crtime[1]
1545
1546 static void
ztest_log_create(ztest_ds_t * zd,dmu_tx_t * tx,lr_create_t * lr)1547 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1548 {
1549 char *name = (void *)(lr + 1); /* name follows lr */
1550 size_t namesize = strlen(name) + 1;
1551 itx_t *itx;
1552
1553 if (zil_replaying(zd->zd_zilog, tx))
1554 return;
1555
1556 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1557 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1558 sizeof (*lr) + namesize - sizeof (lr_t));
1559
1560 zil_itx_assign(zd->zd_zilog, itx, tx);
1561 }
1562
1563 static void
ztest_log_remove(ztest_ds_t * zd,dmu_tx_t * tx,lr_remove_t * lr,uint64_t object)1564 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1565 {
1566 char *name = (void *)(lr + 1); /* name follows lr */
1567 size_t namesize = strlen(name) + 1;
1568 itx_t *itx;
1569
1570 if (zil_replaying(zd->zd_zilog, tx))
1571 return;
1572
1573 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1574 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1575 sizeof (*lr) + namesize - sizeof (lr_t));
1576
1577 itx->itx_oid = object;
1578 zil_itx_assign(zd->zd_zilog, itx, tx);
1579 }
1580
1581 static void
ztest_log_write(ztest_ds_t * zd,dmu_tx_t * tx,lr_write_t * lr)1582 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1583 {
1584 itx_t *itx;
1585 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1586
1587 if (zil_replaying(zd->zd_zilog, tx))
1588 return;
1589
1590 if (lr->lr_length > ZIL_MAX_LOG_DATA)
1591 write_state = WR_INDIRECT;
1592
1593 itx = zil_itx_create(TX_WRITE,
1594 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1595
1596 if (write_state == WR_COPIED &&
1597 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1598 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1599 zil_itx_destroy(itx);
1600 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1601 write_state = WR_NEED_COPY;
1602 }
1603 itx->itx_private = zd;
1604 itx->itx_wr_state = write_state;
1605 itx->itx_sync = (ztest_random(8) == 0);
1606
1607 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1608 sizeof (*lr) - sizeof (lr_t));
1609
1610 zil_itx_assign(zd->zd_zilog, itx, tx);
1611 }
1612
1613 static void
ztest_log_truncate(ztest_ds_t * zd,dmu_tx_t * tx,lr_truncate_t * lr)1614 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1615 {
1616 itx_t *itx;
1617
1618 if (zil_replaying(zd->zd_zilog, tx))
1619 return;
1620
1621 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1622 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1623 sizeof (*lr) - sizeof (lr_t));
1624
1625 itx->itx_sync = B_FALSE;
1626 zil_itx_assign(zd->zd_zilog, itx, tx);
1627 }
1628
1629 static void
ztest_log_setattr(ztest_ds_t * zd,dmu_tx_t * tx,lr_setattr_t * lr)1630 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1631 {
1632 itx_t *itx;
1633
1634 if (zil_replaying(zd->zd_zilog, tx))
1635 return;
1636
1637 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1638 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1639 sizeof (*lr) - sizeof (lr_t));
1640
1641 itx->itx_sync = B_FALSE;
1642 zil_itx_assign(zd->zd_zilog, itx, tx);
1643 }
1644
1645 /*
1646 * ZIL replay ops
1647 */
1648 static int
ztest_replay_create(void * arg1,void * arg2,boolean_t byteswap)1649 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
1650 {
1651 ztest_ds_t *zd = arg1;
1652 lr_create_t *lr = arg2;
1653 char *name = (void *)(lr + 1); /* name follows lr */
1654 objset_t *os = zd->zd_os;
1655 ztest_block_tag_t *bbt;
1656 dmu_buf_t *db;
1657 dmu_tx_t *tx;
1658 uint64_t txg;
1659 int error = 0;
1660 int bonuslen;
1661
1662 if (byteswap)
1663 byteswap_uint64_array(lr, sizeof (*lr));
1664
1665 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1666 ASSERT(name[0] != '\0');
1667
1668 tx = dmu_tx_create(os);
1669
1670 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1671
1672 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1673 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1674 } else {
1675 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1676 }
1677
1678 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1679 if (txg == 0)
1680 return (ENOSPC);
1681
1682 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1683 bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
1684
1685 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1686 if (lr->lr_foid == 0) {
1687 lr->lr_foid = zap_create_dnsize(os,
1688 lr->lrz_type, lr->lrz_bonustype,
1689 bonuslen, lr->lrz_dnodesize, tx);
1690 } else {
1691 error = zap_create_claim_dnsize(os, lr->lr_foid,
1692 lr->lrz_type, lr->lrz_bonustype,
1693 bonuslen, lr->lrz_dnodesize, tx);
1694 }
1695 } else {
1696 if (lr->lr_foid == 0) {
1697 lr->lr_foid = dmu_object_alloc_dnsize(os,
1698 lr->lrz_type, 0, lr->lrz_bonustype,
1699 bonuslen, lr->lrz_dnodesize, tx);
1700 } else {
1701 error = dmu_object_claim_dnsize(os, lr->lr_foid,
1702 lr->lrz_type, 0, lr->lrz_bonustype,
1703 bonuslen, lr->lrz_dnodesize, tx);
1704 }
1705 }
1706
1707 if (error) {
1708 ASSERT3U(error, ==, EEXIST);
1709 ASSERT(zd->zd_zilog->zl_replay);
1710 dmu_tx_commit(tx);
1711 return (error);
1712 }
1713
1714 ASSERT(lr->lr_foid != 0);
1715
1716 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1717 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1718 lr->lrz_blocksize, lr->lrz_ibshift, tx));
1719
1720 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1721 bbt = ztest_bt_bonus(db);
1722 dmu_buf_will_dirty(db, tx);
1723 ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
1724 lr->lr_gen, txg, txg);
1725 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
1726 dmu_buf_rele(db, FTAG);
1727
1728 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1729 &lr->lr_foid, tx));
1730
1731 (void) ztest_log_create(zd, tx, lr);
1732
1733 dmu_tx_commit(tx);
1734
1735 return (0);
1736 }
1737
1738 static int
ztest_replay_remove(void * arg1,void * arg2,boolean_t byteswap)1739 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
1740 {
1741 ztest_ds_t *zd = arg1;
1742 lr_remove_t *lr = arg2;
1743 char *name = (void *)(lr + 1); /* name follows lr */
1744 objset_t *os = zd->zd_os;
1745 dmu_object_info_t doi;
1746 dmu_tx_t *tx;
1747 uint64_t object, txg;
1748
1749 if (byteswap)
1750 byteswap_uint64_array(lr, sizeof (*lr));
1751
1752 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1753 ASSERT(name[0] != '\0');
1754
1755 VERIFY3U(0, ==,
1756 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1757 ASSERT(object != 0);
1758
1759 ztest_object_lock(zd, object, RL_WRITER);
1760
1761 VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1762
1763 tx = dmu_tx_create(os);
1764
1765 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1766 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1767
1768 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1769 if (txg == 0) {
1770 ztest_object_unlock(zd, object);
1771 return (ENOSPC);
1772 }
1773
1774 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1775 VERIFY3U(0, ==, zap_destroy(os, object, tx));
1776 } else {
1777 VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1778 }
1779
1780 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1781
1782 (void) ztest_log_remove(zd, tx, lr, object);
1783
1784 dmu_tx_commit(tx);
1785
1786 ztest_object_unlock(zd, object);
1787
1788 return (0);
1789 }
1790
1791 static int
ztest_replay_write(void * arg1,void * arg2,boolean_t byteswap)1792 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
1793 {
1794 ztest_ds_t *zd = arg1;
1795 lr_write_t *lr = arg2;
1796 objset_t *os = zd->zd_os;
1797 void *data = lr + 1; /* data follows lr */
1798 uint64_t offset, length;
1799 ztest_block_tag_t *bt = data;
1800 ztest_block_tag_t *bbt;
1801 uint64_t gen, txg, lrtxg, crtxg;
1802 dmu_object_info_t doi;
1803 dmu_tx_t *tx;
1804 dmu_buf_t *db;
1805 arc_buf_t *abuf = NULL;
1806 rl_t *rl;
1807
1808 if (byteswap)
1809 byteswap_uint64_array(lr, sizeof (*lr));
1810
1811 offset = lr->lr_offset;
1812 length = lr->lr_length;
1813
1814 /* If it's a dmu_sync() block, write the whole block */
1815 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1816 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1817 if (length < blocksize) {
1818 offset -= offset % blocksize;
1819 length = blocksize;
1820 }
1821 }
1822
1823 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1824 byteswap_uint64_array(bt, sizeof (*bt));
1825
1826 if (bt->bt_magic != BT_MAGIC)
1827 bt = NULL;
1828
1829 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1830 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1831
1832 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1833
1834 dmu_object_info_from_db(db, &doi);
1835
1836 bbt = ztest_bt_bonus(db);
1837 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1838 gen = bbt->bt_gen;
1839 crtxg = bbt->bt_crtxg;
1840 lrtxg = lr->lr_common.lrc_txg;
1841
1842 tx = dmu_tx_create(os);
1843
1844 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1845
1846 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1847 P2PHASE(offset, length) == 0)
1848 abuf = dmu_request_arcbuf(db, length);
1849
1850 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1851 if (txg == 0) {
1852 if (abuf != NULL)
1853 dmu_return_arcbuf(abuf);
1854 dmu_buf_rele(db, FTAG);
1855 ztest_range_unlock(rl);
1856 ztest_object_unlock(zd, lr->lr_foid);
1857 return (ENOSPC);
1858 }
1859
1860 if (bt != NULL) {
1861 /*
1862 * Usually, verify the old data before writing new data --
1863 * but not always, because we also want to verify correct
1864 * behavior when the data was not recently read into cache.
1865 */
1866 ASSERT(offset % doi.doi_data_block_size == 0);
1867 if (ztest_random(4) != 0) {
1868 int prefetch = ztest_random(2) ?
1869 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1870 ztest_block_tag_t rbt;
1871
1872 VERIFY(dmu_read(os, lr->lr_foid, offset,
1873 sizeof (rbt), &rbt, prefetch) == 0);
1874 if (rbt.bt_magic == BT_MAGIC) {
1875 ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
1876 offset, gen, txg, crtxg);
1877 }
1878 }
1879
1880 /*
1881 * Writes can appear to be newer than the bonus buffer because
1882 * the ztest_get_data() callback does a dmu_read() of the
1883 * open-context data, which may be different than the data
1884 * as it was when the write was generated.
1885 */
1886 if (zd->zd_zilog->zl_replay) {
1887 ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
1888 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1889 bt->bt_crtxg);
1890 }
1891
1892 /*
1893 * Set the bt's gen/txg to the bonus buffer's gen/txg
1894 * so that all of the usual ASSERTs will work.
1895 */
1896 ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
1897 crtxg);
1898 }
1899
1900 if (abuf == NULL) {
1901 dmu_write(os, lr->lr_foid, offset, length, data, tx);
1902 } else {
1903 bcopy(data, abuf->b_data, length);
1904 dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx);
1905 }
1906
1907 (void) ztest_log_write(zd, tx, lr);
1908
1909 dmu_buf_rele(db, FTAG);
1910
1911 dmu_tx_commit(tx);
1912
1913 ztest_range_unlock(rl);
1914 ztest_object_unlock(zd, lr->lr_foid);
1915
1916 return (0);
1917 }
1918
1919 static int
ztest_replay_truncate(void * arg1,void * arg2,boolean_t byteswap)1920 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
1921 {
1922 ztest_ds_t *zd = arg1;
1923 lr_truncate_t *lr = arg2;
1924 objset_t *os = zd->zd_os;
1925 dmu_tx_t *tx;
1926 uint64_t txg;
1927 rl_t *rl;
1928
1929 if (byteswap)
1930 byteswap_uint64_array(lr, sizeof (*lr));
1931
1932 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1933 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1934 RL_WRITER);
1935
1936 tx = dmu_tx_create(os);
1937
1938 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1939
1940 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1941 if (txg == 0) {
1942 ztest_range_unlock(rl);
1943 ztest_object_unlock(zd, lr->lr_foid);
1944 return (ENOSPC);
1945 }
1946
1947 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1948 lr->lr_length, tx) == 0);
1949
1950 (void) ztest_log_truncate(zd, tx, lr);
1951
1952 dmu_tx_commit(tx);
1953
1954 ztest_range_unlock(rl);
1955 ztest_object_unlock(zd, lr->lr_foid);
1956
1957 return (0);
1958 }
1959
1960 static int
ztest_replay_setattr(void * arg1,void * arg2,boolean_t byteswap)1961 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
1962 {
1963 ztest_ds_t *zd = arg1;
1964 lr_setattr_t *lr = arg2;
1965 objset_t *os = zd->zd_os;
1966 dmu_tx_t *tx;
1967 dmu_buf_t *db;
1968 ztest_block_tag_t *bbt;
1969 uint64_t txg, lrtxg, crtxg, dnodesize;
1970
1971 if (byteswap)
1972 byteswap_uint64_array(lr, sizeof (*lr));
1973
1974 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1975
1976 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1977
1978 tx = dmu_tx_create(os);
1979 dmu_tx_hold_bonus(tx, lr->lr_foid);
1980
1981 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1982 if (txg == 0) {
1983 dmu_buf_rele(db, FTAG);
1984 ztest_object_unlock(zd, lr->lr_foid);
1985 return (ENOSPC);
1986 }
1987
1988 bbt = ztest_bt_bonus(db);
1989 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1990 crtxg = bbt->bt_crtxg;
1991 lrtxg = lr->lr_common.lrc_txg;
1992 dnodesize = bbt->bt_dnodesize;
1993
1994 if (zd->zd_zilog->zl_replay) {
1995 ASSERT(lr->lr_size != 0);
1996 ASSERT(lr->lr_mode != 0);
1997 ASSERT(lrtxg != 0);
1998 } else {
1999 /*
2000 * Randomly change the size and increment the generation.
2001 */
2002 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2003 sizeof (*bbt);
2004 lr->lr_mode = bbt->bt_gen + 1;
2005 ASSERT(lrtxg == 0);
2006 }
2007
2008 /*
2009 * Verify that the current bonus buffer is not newer than our txg.
2010 */
2011 ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2012 MAX(txg, lrtxg), crtxg);
2013
2014 dmu_buf_will_dirty(db, tx);
2015
2016 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2017 ASSERT3U(lr->lr_size, <=, db->db_size);
2018 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2019 bbt = ztest_bt_bonus(db);
2020
2021 ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2022 txg, crtxg);
2023 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2024
2025 dmu_buf_rele(db, FTAG);
2026
2027 (void) ztest_log_setattr(zd, tx, lr);
2028
2029 dmu_tx_commit(tx);
2030
2031 ztest_object_unlock(zd, lr->lr_foid);
2032
2033 return (0);
2034 }
2035
2036 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2037 NULL, /* 0 no such transaction type */
2038 ztest_replay_create, /* TX_CREATE */
2039 NULL, /* TX_MKDIR */
2040 NULL, /* TX_MKXATTR */
2041 NULL, /* TX_SYMLINK */
2042 ztest_replay_remove, /* TX_REMOVE */
2043 NULL, /* TX_RMDIR */
2044 NULL, /* TX_LINK */
2045 NULL, /* TX_RENAME */
2046 ztest_replay_write, /* TX_WRITE */
2047 ztest_replay_truncate, /* TX_TRUNCATE */
2048 ztest_replay_setattr, /* TX_SETATTR */
2049 NULL, /* TX_ACL */
2050 NULL, /* TX_CREATE_ACL */
2051 NULL, /* TX_CREATE_ATTR */
2052 NULL, /* TX_CREATE_ACL_ATTR */
2053 NULL, /* TX_MKDIR_ACL */
2054 NULL, /* TX_MKDIR_ATTR */
2055 NULL, /* TX_MKDIR_ACL_ATTR */
2056 NULL, /* TX_WRITE2 */
2057 };
2058
2059 /*
2060 * ZIL get_data callbacks
2061 */
2062
2063 /* ARGSUSED */
2064 static void
ztest_get_done(zgd_t * zgd,int error)2065 ztest_get_done(zgd_t *zgd, int error)
2066 {
2067 ztest_ds_t *zd = zgd->zgd_private;
2068 uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2069
2070 if (zgd->zgd_db)
2071 dmu_buf_rele(zgd->zgd_db, zgd);
2072
2073 ztest_range_unlock((rl_t *)zgd->zgd_lr);
2074 ztest_object_unlock(zd, object);
2075
2076 umem_free(zgd, sizeof (*zgd));
2077 }
2078
2079 static int
ztest_get_data(void * arg,lr_write_t * lr,char * buf,struct lwb * lwb,zio_t * zio)2080 ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb,
2081 zio_t *zio)
2082 {
2083 ztest_ds_t *zd = arg;
2084 objset_t *os = zd->zd_os;
2085 uint64_t object = lr->lr_foid;
2086 uint64_t offset = lr->lr_offset;
2087 uint64_t size = lr->lr_length;
2088 uint64_t txg = lr->lr_common.lrc_txg;
2089 uint64_t crtxg;
2090 dmu_object_info_t doi;
2091 dmu_buf_t *db;
2092 zgd_t *zgd;
2093 int error;
2094
2095 ASSERT3P(lwb, !=, NULL);
2096 ASSERT3P(zio, !=, NULL);
2097 ASSERT3U(size, !=, 0);
2098
2099 ztest_object_lock(zd, object, RL_READER);
2100 error = dmu_bonus_hold(os, object, FTAG, &db);
2101 if (error) {
2102 ztest_object_unlock(zd, object);
2103 return (error);
2104 }
2105
2106 crtxg = ztest_bt_bonus(db)->bt_crtxg;
2107
2108 if (crtxg == 0 || crtxg > txg) {
2109 dmu_buf_rele(db, FTAG);
2110 ztest_object_unlock(zd, object);
2111 return (ENOENT);
2112 }
2113
2114 dmu_object_info_from_db(db, &doi);
2115 dmu_buf_rele(db, FTAG);
2116 db = NULL;
2117
2118 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2119 zgd->zgd_lwb = lwb;
2120 zgd->zgd_private = zd;
2121
2122 if (buf != NULL) { /* immediate write */
2123 zgd->zgd_lr = (struct locked_range *)ztest_range_lock(zd,
2124 object, offset, size, RL_READER);
2125
2126 error = dmu_read(os, object, offset, size, buf,
2127 DMU_READ_NO_PREFETCH);
2128 ASSERT(error == 0);
2129 } else {
2130 size = doi.doi_data_block_size;
2131 if (ISP2(size)) {
2132 offset = P2ALIGN(offset, size);
2133 } else {
2134 ASSERT(offset < size);
2135 offset = 0;
2136 }
2137
2138 zgd->zgd_lr = (struct locked_range *)ztest_range_lock(zd,
2139 object, offset, size, RL_READER);
2140
2141 error = dmu_buf_hold(os, object, offset, zgd, &db,
2142 DMU_READ_NO_PREFETCH);
2143
2144 if (error == 0) {
2145 blkptr_t *bp = &lr->lr_blkptr;
2146
2147 zgd->zgd_db = db;
2148 zgd->zgd_bp = bp;
2149
2150 ASSERT(db->db_offset == offset);
2151 ASSERT(db->db_size == size);
2152
2153 error = dmu_sync(zio, lr->lr_common.lrc_txg,
2154 ztest_get_done, zgd);
2155
2156 if (error == 0)
2157 return (0);
2158 }
2159 }
2160
2161 ztest_get_done(zgd, error);
2162
2163 return (error);
2164 }
2165
2166 static void *
ztest_lr_alloc(size_t lrsize,char * name)2167 ztest_lr_alloc(size_t lrsize, char *name)
2168 {
2169 char *lr;
2170 size_t namesize = name ? strlen(name) + 1 : 0;
2171
2172 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2173
2174 if (name)
2175 bcopy(name, lr + lrsize, namesize);
2176
2177 return (lr);
2178 }
2179
2180 void
ztest_lr_free(void * lr,size_t lrsize,char * name)2181 ztest_lr_free(void *lr, size_t lrsize, char *name)
2182 {
2183 size_t namesize = name ? strlen(name) + 1 : 0;
2184
2185 umem_free(lr, lrsize + namesize);
2186 }
2187
2188 /*
2189 * Lookup a bunch of objects. Returns the number of objects not found.
2190 */
2191 static int
ztest_lookup(ztest_ds_t * zd,ztest_od_t * od,int count)2192 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2193 {
2194 int missing = 0;
2195 int error;
2196
2197 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2198
2199 for (int i = 0; i < count; i++, od++) {
2200 od->od_object = 0;
2201 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2202 sizeof (uint64_t), 1, &od->od_object);
2203 if (error) {
2204 ASSERT(error == ENOENT);
2205 ASSERT(od->od_object == 0);
2206 missing++;
2207 } else {
2208 dmu_buf_t *db;
2209 ztest_block_tag_t *bbt;
2210 dmu_object_info_t doi;
2211
2212 ASSERT(od->od_object != 0);
2213 ASSERT(missing == 0); /* there should be no gaps */
2214
2215 ztest_object_lock(zd, od->od_object, RL_READER);
2216 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
2217 od->od_object, FTAG, &db));
2218 dmu_object_info_from_db(db, &doi);
2219 bbt = ztest_bt_bonus(db);
2220 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2221 od->od_type = doi.doi_type;
2222 od->od_blocksize = doi.doi_data_block_size;
2223 od->od_gen = bbt->bt_gen;
2224 dmu_buf_rele(db, FTAG);
2225 ztest_object_unlock(zd, od->od_object);
2226 }
2227 }
2228
2229 return (missing);
2230 }
2231
2232 static int
ztest_create(ztest_ds_t * zd,ztest_od_t * od,int count)2233 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2234 {
2235 int missing = 0;
2236
2237 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2238
2239 for (int i = 0; i < count; i++, od++) {
2240 if (missing) {
2241 od->od_object = 0;
2242 missing++;
2243 continue;
2244 }
2245
2246 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2247
2248 lr->lr_doid = od->od_dir;
2249 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
2250 lr->lrz_type = od->od_crtype;
2251 lr->lrz_blocksize = od->od_crblocksize;
2252 lr->lrz_ibshift = ztest_random_ibshift();
2253 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2254 lr->lrz_dnodesize = od->od_crdnodesize;
2255 lr->lr_gen = od->od_crgen;
2256 lr->lr_crtime[0] = time(NULL);
2257
2258 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2259 ASSERT(missing == 0);
2260 od->od_object = 0;
2261 missing++;
2262 } else {
2263 od->od_object = lr->lr_foid;
2264 od->od_type = od->od_crtype;
2265 od->od_blocksize = od->od_crblocksize;
2266 od->od_gen = od->od_crgen;
2267 ASSERT(od->od_object != 0);
2268 }
2269
2270 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2271 }
2272
2273 return (missing);
2274 }
2275
2276 static int
ztest_remove(ztest_ds_t * zd,ztest_od_t * od,int count)2277 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2278 {
2279 int missing = 0;
2280 int error;
2281
2282 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2283
2284 od += count - 1;
2285
2286 for (int i = count - 1; i >= 0; i--, od--) {
2287 if (missing) {
2288 missing++;
2289 continue;
2290 }
2291
2292 /*
2293 * No object was found.
2294 */
2295 if (od->od_object == 0)
2296 continue;
2297
2298 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2299
2300 lr->lr_doid = od->od_dir;
2301
2302 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2303 ASSERT3U(error, ==, ENOSPC);
2304 missing++;
2305 } else {
2306 od->od_object = 0;
2307 }
2308 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2309 }
2310
2311 return (missing);
2312 }
2313
2314 static int
ztest_write(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size,void * data)2315 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2316 void *data)
2317 {
2318 lr_write_t *lr;
2319 int error;
2320
2321 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2322
2323 lr->lr_foid = object;
2324 lr->lr_offset = offset;
2325 lr->lr_length = size;
2326 lr->lr_blkoff = 0;
2327 BP_ZERO(&lr->lr_blkptr);
2328
2329 bcopy(data, lr + 1, size);
2330
2331 error = ztest_replay_write(zd, lr, B_FALSE);
2332
2333 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2334
2335 return (error);
2336 }
2337
2338 static int
ztest_truncate(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size)2339 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2340 {
2341 lr_truncate_t *lr;
2342 int error;
2343
2344 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2345
2346 lr->lr_foid = object;
2347 lr->lr_offset = offset;
2348 lr->lr_length = size;
2349
2350 error = ztest_replay_truncate(zd, lr, B_FALSE);
2351
2352 ztest_lr_free(lr, sizeof (*lr), NULL);
2353
2354 return (error);
2355 }
2356
2357 static int
ztest_setattr(ztest_ds_t * zd,uint64_t object)2358 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2359 {
2360 lr_setattr_t *lr;
2361 int error;
2362
2363 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2364
2365 lr->lr_foid = object;
2366 lr->lr_size = 0;
2367 lr->lr_mode = 0;
2368
2369 error = ztest_replay_setattr(zd, lr, B_FALSE);
2370
2371 ztest_lr_free(lr, sizeof (*lr), NULL);
2372
2373 return (error);
2374 }
2375
2376 static void
ztest_prealloc(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size)2377 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2378 {
2379 objset_t *os = zd->zd_os;
2380 dmu_tx_t *tx;
2381 uint64_t txg;
2382 rl_t *rl;
2383
2384 txg_wait_synced(dmu_objset_pool(os), 0);
2385
2386 ztest_object_lock(zd, object, RL_READER);
2387 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2388
2389 tx = dmu_tx_create(os);
2390
2391 dmu_tx_hold_write(tx, object, offset, size);
2392
2393 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2394
2395 if (txg != 0) {
2396 dmu_prealloc(os, object, offset, size, tx);
2397 dmu_tx_commit(tx);
2398 txg_wait_synced(dmu_objset_pool(os), txg);
2399 } else {
2400 (void) dmu_free_long_range(os, object, offset, size);
2401 }
2402
2403 ztest_range_unlock(rl);
2404 ztest_object_unlock(zd, object);
2405 }
2406
2407 static void
ztest_io(ztest_ds_t * zd,uint64_t object,uint64_t offset)2408 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2409 {
2410 int err;
2411 ztest_block_tag_t wbt;
2412 dmu_object_info_t doi;
2413 enum ztest_io_type io_type;
2414 uint64_t blocksize;
2415 void *data;
2416
2417 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2418 blocksize = doi.doi_data_block_size;
2419 data = umem_alloc(blocksize, UMEM_NOFAIL);
2420
2421 /*
2422 * Pick an i/o type at random, biased toward writing block tags.
2423 */
2424 io_type = ztest_random(ZTEST_IO_TYPES);
2425 if (ztest_random(2) == 0)
2426 io_type = ZTEST_IO_WRITE_TAG;
2427
2428 rw_enter(&zd->zd_zilog_lock, RW_READER);
2429
2430 switch (io_type) {
2431
2432 case ZTEST_IO_WRITE_TAG:
2433 ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2434 offset, 0, 0, 0);
2435 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2436 break;
2437
2438 case ZTEST_IO_WRITE_PATTERN:
2439 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2440 if (ztest_random(2) == 0) {
2441 /*
2442 * Induce fletcher2 collisions to ensure that
2443 * zio_ddt_collision() detects and resolves them
2444 * when using fletcher2-verify for deduplication.
2445 */
2446 ((uint64_t *)data)[0] ^= 1ULL << 63;
2447 ((uint64_t *)data)[4] ^= 1ULL << 63;
2448 }
2449 (void) ztest_write(zd, object, offset, blocksize, data);
2450 break;
2451
2452 case ZTEST_IO_WRITE_ZEROES:
2453 bzero(data, blocksize);
2454 (void) ztest_write(zd, object, offset, blocksize, data);
2455 break;
2456
2457 case ZTEST_IO_TRUNCATE:
2458 (void) ztest_truncate(zd, object, offset, blocksize);
2459 break;
2460
2461 case ZTEST_IO_SETATTR:
2462 (void) ztest_setattr(zd, object);
2463 break;
2464
2465 case ZTEST_IO_REWRITE:
2466 rw_enter(&ztest_name_lock, RW_READER);
2467 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2468 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2469 B_FALSE);
2470 VERIFY(err == 0 || err == ENOSPC);
2471 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2472 ZFS_PROP_COMPRESSION,
2473 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2474 B_FALSE);
2475 VERIFY(err == 0 || err == ENOSPC);
2476 rw_exit(&ztest_name_lock);
2477
2478 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2479 DMU_READ_NO_PREFETCH));
2480
2481 (void) ztest_write(zd, object, offset, blocksize, data);
2482 break;
2483 }
2484
2485 rw_exit(&zd->zd_zilog_lock);
2486
2487 umem_free(data, blocksize);
2488 }
2489
2490 /*
2491 * Initialize an object description template.
2492 */
2493 static void
ztest_od_init(ztest_od_t * od,uint64_t id,char * tag,uint64_t index,dmu_object_type_t type,uint64_t blocksize,uint64_t dnodesize,uint64_t gen)2494 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2495 dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2496 uint64_t gen)
2497 {
2498 od->od_dir = ZTEST_DIROBJ;
2499 od->od_object = 0;
2500
2501 od->od_crtype = type;
2502 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2503 od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2504 od->od_crgen = gen;
2505
2506 od->od_type = DMU_OT_NONE;
2507 od->od_blocksize = 0;
2508 od->od_gen = 0;
2509
2510 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2511 tag, (int64_t)id, index);
2512 }
2513
2514 /*
2515 * Lookup or create the objects for a test using the od template.
2516 * If the objects do not all exist, or if 'remove' is specified,
2517 * remove any existing objects and create new ones. Otherwise,
2518 * use the existing objects.
2519 */
2520 static int
ztest_object_init(ztest_ds_t * zd,ztest_od_t * od,size_t size,boolean_t remove)2521 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2522 {
2523 int count = size / sizeof (*od);
2524 int rv = 0;
2525
2526 mutex_enter(&zd->zd_dirobj_lock);
2527 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2528 (ztest_remove(zd, od, count) != 0 ||
2529 ztest_create(zd, od, count) != 0))
2530 rv = -1;
2531 zd->zd_od = od;
2532 mutex_exit(&zd->zd_dirobj_lock);
2533
2534 return (rv);
2535 }
2536
2537 /* ARGSUSED */
2538 void
ztest_zil_commit(ztest_ds_t * zd,uint64_t id)2539 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2540 {
2541 zilog_t *zilog = zd->zd_zilog;
2542
2543 rw_enter(&zd->zd_zilog_lock, RW_READER);
2544
2545 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2546
2547 /*
2548 * Remember the committed values in zd, which is in parent/child
2549 * shared memory. If we die, the next iteration of ztest_run()
2550 * will verify that the log really does contain this record.
2551 */
2552 mutex_enter(&zilog->zl_lock);
2553 ASSERT(zd->zd_shared != NULL);
2554 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2555 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2556 mutex_exit(&zilog->zl_lock);
2557
2558 rw_exit(&zd->zd_zilog_lock);
2559 }
2560
2561 /*
2562 * This function is designed to simulate the operations that occur during a
2563 * mount/unmount operation. We hold the dataset across these operations in an
2564 * attempt to expose any implicit assumptions about ZIL management.
2565 */
2566 /* ARGSUSED */
2567 void
ztest_zil_remount(ztest_ds_t * zd,uint64_t id)2568 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2569 {
2570 objset_t *os = zd->zd_os;
2571
2572 /*
2573 * We grab the zd_dirobj_lock to ensure that no other thread is
2574 * updating the zil (i.e. adding in-memory log records) and the
2575 * zd_zilog_lock to block any I/O.
2576 */
2577 mutex_enter(&zd->zd_dirobj_lock);
2578 rw_enter(&zd->zd_zilog_lock, RW_WRITER);
2579
2580 /* zfsvfs_teardown() */
2581 zil_close(zd->zd_zilog);
2582
2583 /* zfsvfs_setup() */
2584 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2585 zil_replay(os, zd, ztest_replay_vector);
2586
2587 rw_exit(&zd->zd_zilog_lock);
2588 mutex_exit(&zd->zd_dirobj_lock);
2589 }
2590
2591 /*
2592 * Verify that we can't destroy an active pool, create an existing pool,
2593 * or create a pool with a bad vdev spec.
2594 */
2595 /* ARGSUSED */
2596 void
ztest_spa_create_destroy(ztest_ds_t * zd,uint64_t id)2597 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2598 {
2599 ztest_shared_opts_t *zo = &ztest_opts;
2600 spa_t *spa;
2601 nvlist_t *nvroot;
2602
2603 if (zo->zo_mmp_test)
2604 return;
2605
2606 /*
2607 * Attempt to create using a bad file.
2608 */
2609 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2610 VERIFY3U(ENOENT, ==,
2611 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
2612 nvlist_free(nvroot);
2613
2614 /*
2615 * Attempt to create using a bad mirror.
2616 */
2617 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
2618 VERIFY3U(ENOENT, ==,
2619 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
2620 nvlist_free(nvroot);
2621
2622 /*
2623 * Attempt to create an existing pool. It shouldn't matter
2624 * what's in the nvroot; we should fail with EEXIST.
2625 */
2626 rw_enter(&ztest_name_lock, RW_READER);
2627 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2628 VERIFY3U(EEXIST, ==,
2629 spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
2630 nvlist_free(nvroot);
2631 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2632 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2633 spa_close(spa, FTAG);
2634
2635 rw_exit(&ztest_name_lock);
2636 }
2637
2638 /*
2639 * Start and then stop the MMP threads to ensure the startup and shutdown code
2640 * works properly. Actual protection and property-related code tested via ZTS.
2641 */
2642 /* ARGSUSED */
2643 void
ztest_mmp_enable_disable(ztest_ds_t * zd,uint64_t id)2644 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
2645 {
2646 ztest_shared_opts_t *zo = &ztest_opts;
2647 spa_t *spa = ztest_spa;
2648
2649 if (zo->zo_mmp_test)
2650 return;
2651
2652 /*
2653 * Since enabling MMP involves setting a property, it could not be done
2654 * while the pool is suspended.
2655 */
2656 if (spa_suspended(spa))
2657 return;
2658
2659 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2660 mutex_enter(&spa->spa_props_lock);
2661
2662 zfs_multihost_fail_intervals = 0;
2663
2664 if (!spa_multihost(spa)) {
2665 spa->spa_multihost = B_TRUE;
2666 mmp_thread_start(spa);
2667 }
2668
2669 mutex_exit(&spa->spa_props_lock);
2670 spa_config_exit(spa, SCL_CONFIG, FTAG);
2671
2672 txg_wait_synced(spa_get_dsl(spa), 0);
2673 mmp_signal_all_threads();
2674 txg_wait_synced(spa_get_dsl(spa), 0);
2675
2676 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2677 mutex_enter(&spa->spa_props_lock);
2678
2679 if (spa_multihost(spa)) {
2680 mmp_thread_stop(spa);
2681 spa->spa_multihost = B_FALSE;
2682 }
2683
2684 mutex_exit(&spa->spa_props_lock);
2685 spa_config_exit(spa, SCL_CONFIG, FTAG);
2686 }
2687
2688 /* ARGSUSED */
2689 void
ztest_spa_upgrade(ztest_ds_t * zd,uint64_t id)2690 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2691 {
2692 spa_t *spa;
2693 uint64_t initial_version = SPA_VERSION_INITIAL;
2694 uint64_t version, newversion;
2695 nvlist_t *nvroot, *props;
2696 char *name;
2697
2698 if (ztest_opts.zo_mmp_test)
2699 return;
2700
2701 mutex_enter(&ztest_vdev_lock);
2702 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2703
2704 /*
2705 * Clean up from previous runs.
2706 */
2707 (void) spa_destroy(name);
2708
2709 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2710 NULL, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2711
2712 /*
2713 * If we're configuring a RAIDZ device then make sure that the
2714 * the initial version is capable of supporting that feature.
2715 */
2716 switch (ztest_opts.zo_raidz_parity) {
2717 case 0:
2718 case 1:
2719 initial_version = SPA_VERSION_INITIAL;
2720 break;
2721 case 2:
2722 initial_version = SPA_VERSION_RAIDZ2;
2723 break;
2724 case 3:
2725 initial_version = SPA_VERSION_RAIDZ3;
2726 break;
2727 }
2728
2729 /*
2730 * Create a pool with a spa version that can be upgraded. Pick
2731 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2732 */
2733 do {
2734 version = ztest_random_spa_version(initial_version);
2735 } while (version > SPA_VERSION_BEFORE_FEATURES);
2736
2737 props = fnvlist_alloc();
2738 fnvlist_add_uint64(props,
2739 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2740 VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
2741 fnvlist_free(nvroot);
2742 fnvlist_free(props);
2743
2744 VERIFY0(spa_open(name, &spa, FTAG));
2745 VERIFY3U(spa_version(spa), ==, version);
2746 newversion = ztest_random_spa_version(version + 1);
2747
2748 if (ztest_opts.zo_verbose >= 4) {
2749 (void) printf("upgrading spa version from %llu to %llu\n",
2750 (u_longlong_t)version, (u_longlong_t)newversion);
2751 }
2752
2753 spa_upgrade(spa, newversion);
2754 VERIFY3U(spa_version(spa), >, version);
2755 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2756 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2757 spa_close(spa, FTAG);
2758
2759 strfree(name);
2760 mutex_exit(&ztest_vdev_lock);
2761 }
2762
2763 static void
ztest_spa_checkpoint(spa_t * spa)2764 ztest_spa_checkpoint(spa_t *spa)
2765 {
2766 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
2767
2768 int error = spa_checkpoint(spa->spa_name);
2769
2770 switch (error) {
2771 case 0:
2772 case ZFS_ERR_DEVRM_IN_PROGRESS:
2773 case ZFS_ERR_DISCARDING_CHECKPOINT:
2774 case ZFS_ERR_CHECKPOINT_EXISTS:
2775 break;
2776 case ENOSPC:
2777 ztest_record_enospc(FTAG);
2778 break;
2779 default:
2780 fatal(0, "spa_checkpoint(%s) = %d", spa->spa_name, error);
2781 }
2782 }
2783
2784 static void
ztest_spa_discard_checkpoint(spa_t * spa)2785 ztest_spa_discard_checkpoint(spa_t *spa)
2786 {
2787 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
2788
2789 int error = spa_checkpoint_discard(spa->spa_name);
2790
2791 switch (error) {
2792 case 0:
2793 case ZFS_ERR_DISCARDING_CHECKPOINT:
2794 case ZFS_ERR_NO_CHECKPOINT:
2795 break;
2796 default:
2797 fatal(0, "spa_discard_checkpoint(%s) = %d",
2798 spa->spa_name, error);
2799 }
2800
2801 }
2802
2803 /* ARGSUSED */
2804 void
ztest_spa_checkpoint_create_discard(ztest_ds_t * zd,uint64_t id)2805 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
2806 {
2807 spa_t *spa = ztest_spa;
2808
2809 mutex_enter(&ztest_checkpoint_lock);
2810 if (ztest_random(2) == 0) {
2811 ztest_spa_checkpoint(spa);
2812 } else {
2813 ztest_spa_discard_checkpoint(spa);
2814 }
2815 mutex_exit(&ztest_checkpoint_lock);
2816 }
2817
2818
2819 static vdev_t *
vdev_lookup_by_path(vdev_t * vd,const char * path)2820 vdev_lookup_by_path(vdev_t *vd, const char *path)
2821 {
2822 vdev_t *mvd;
2823
2824 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2825 return (vd);
2826
2827 for (int c = 0; c < vd->vdev_children; c++)
2828 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2829 NULL)
2830 return (mvd);
2831
2832 return (NULL);
2833 }
2834
2835 static int
spa_num_top_vdevs(spa_t * spa)2836 spa_num_top_vdevs(spa_t *spa)
2837 {
2838 vdev_t *rvd = spa->spa_root_vdev;
2839 ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
2840 return (rvd->vdev_children);
2841 }
2842
2843 /*
2844 * Verify that vdev_add() works as expected.
2845 */
2846 /* ARGSUSED */
2847 void
ztest_vdev_add_remove(ztest_ds_t * zd,uint64_t id)2848 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2849 {
2850 ztest_shared_t *zs = ztest_shared;
2851 spa_t *spa = ztest_spa;
2852 uint64_t leaves;
2853 uint64_t guid;
2854 nvlist_t *nvroot;
2855 int error;
2856
2857 if (ztest_opts.zo_mmp_test)
2858 return;
2859
2860 mutex_enter(&ztest_vdev_lock);
2861 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2862
2863 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2864
2865 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
2866
2867 /*
2868 * If we have slogs then remove them 1/4 of the time.
2869 */
2870 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2871 metaslab_group_t *mg;
2872
2873 /*
2874 * find the first real slog in log allocation class
2875 */
2876 mg = spa_log_class(spa)->mc_rotor;
2877 while (!mg->mg_vd->vdev_islog)
2878 mg = mg->mg_next;
2879
2880 guid = mg->mg_vd->vdev_guid;
2881
2882 spa_config_exit(spa, SCL_VDEV, FTAG);
2883
2884 /*
2885 * We have to grab the zs_name_lock as writer to
2886 * prevent a race between removing a slog (dmu_objset_find)
2887 * and destroying a dataset. Removing the slog will
2888 * grab a reference on the dataset which may cause
2889 * dmu_objset_destroy() to fail with EBUSY thus
2890 * leaving the dataset in an inconsistent state.
2891 */
2892 rw_enter(&ztest_name_lock, RW_WRITER);
2893 error = spa_vdev_remove(spa, guid, B_FALSE);
2894 rw_exit(&ztest_name_lock);
2895
2896 switch (error) {
2897 case 0:
2898 case EEXIST:
2899 case ZFS_ERR_CHECKPOINT_EXISTS:
2900 case ZFS_ERR_DISCARDING_CHECKPOINT:
2901 break;
2902 default:
2903 fatal(0, "spa_vdev_remove() = %d", error);
2904 }
2905 } else {
2906 spa_config_exit(spa, SCL_VDEV, FTAG);
2907
2908 /*
2909 * Make 1/4 of the devices be log devices
2910 */
2911 nvroot = make_vdev_root(NULL, NULL, NULL,
2912 ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
2913 "log" : NULL, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
2914
2915 error = spa_vdev_add(spa, nvroot);
2916 nvlist_free(nvroot);
2917
2918 switch (error) {
2919 case 0:
2920 break;
2921 case ENOSPC:
2922 ztest_record_enospc("spa_vdev_add");
2923 break;
2924 default:
2925 fatal(0, "spa_vdev_add() = %d", error);
2926 }
2927 }
2928
2929 mutex_exit(&ztest_vdev_lock);
2930 }
2931
2932 /* ARGSUSED */
2933 void
ztest_vdev_class_add(ztest_ds_t * zd,uint64_t id)2934 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
2935 {
2936 ztest_shared_t *zs = ztest_shared;
2937 spa_t *spa = ztest_spa;
2938 uint64_t leaves;
2939 nvlist_t *nvroot;
2940 const char *class = (ztest_random(2) == 0) ?
2941 VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
2942 int error;
2943
2944 /*
2945 * By default add a special vdev 50% of the time
2946 */
2947 if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
2948 (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
2949 ztest_random(2) == 0)) {
2950 return;
2951 }
2952
2953 mutex_enter(&ztest_vdev_lock);
2954
2955 /* Only test with mirrors */
2956 if (zs->zs_mirrors < 2) {
2957 mutex_exit(&ztest_vdev_lock);
2958 return;
2959 }
2960
2961 /* requires feature@allocation_classes */
2962 if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
2963 mutex_exit(&ztest_vdev_lock);
2964 return;
2965 }
2966
2967 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2968
2969 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2970 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
2971 spa_config_exit(spa, SCL_VDEV, FTAG);
2972
2973 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
2974 class, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
2975
2976 error = spa_vdev_add(spa, nvroot);
2977 nvlist_free(nvroot);
2978
2979 if (error == ENOSPC)
2980 ztest_record_enospc("spa_vdev_add");
2981 else if (error != 0)
2982 fatal(0, "spa_vdev_add() = %d", error);
2983
2984 /*
2985 * 50% of the time allow small blocks in the special class
2986 */
2987 if (error == 0 &&
2988 spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
2989 if (ztest_opts.zo_verbose >= 3)
2990 (void) printf("Enabling special VDEV small blocks\n");
2991 (void) ztest_dsl_prop_set_uint64(zd->zd_name,
2992 ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
2993 }
2994
2995 mutex_exit(&ztest_vdev_lock);
2996
2997 if (ztest_opts.zo_verbose >= 3) {
2998 metaslab_class_t *mc;
2999
3000 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3001 mc = spa_special_class(spa);
3002 else
3003 mc = spa_dedup_class(spa);
3004 (void) printf("Added a %s mirrored vdev (of %d)\n",
3005 class, (int)mc->mc_groups);
3006 }
3007 }
3008
3009 /*
3010 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3011 */
3012 /* ARGSUSED */
3013 void
ztest_vdev_aux_add_remove(ztest_ds_t * zd,uint64_t id)3014 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3015 {
3016 ztest_shared_t *zs = ztest_shared;
3017 spa_t *spa = ztest_spa;
3018 vdev_t *rvd = spa->spa_root_vdev;
3019 spa_aux_vdev_t *sav;
3020 char *aux;
3021 uint64_t guid = 0;
3022 int error;
3023
3024 if (ztest_opts.zo_mmp_test)
3025 return;
3026
3027 if (ztest_random(2) == 0) {
3028 sav = &spa->spa_spares;
3029 aux = ZPOOL_CONFIG_SPARES;
3030 } else {
3031 sav = &spa->spa_l2cache;
3032 aux = ZPOOL_CONFIG_L2CACHE;
3033 }
3034
3035 mutex_enter(&ztest_vdev_lock);
3036
3037 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3038
3039 if (sav->sav_count != 0 && ztest_random(4) == 0) {
3040 /*
3041 * Pick a random device to remove.
3042 */
3043 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
3044 } else {
3045 /*
3046 * Find an unused device we can add.
3047 */
3048 zs->zs_vdev_aux = 0;
3049 for (;;) {
3050 char path[MAXPATHLEN];
3051 int c;
3052 (void) snprintf(path, sizeof (path), ztest_aux_template,
3053 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3054 zs->zs_vdev_aux);
3055 for (c = 0; c < sav->sav_count; c++)
3056 if (strcmp(sav->sav_vdevs[c]->vdev_path,
3057 path) == 0)
3058 break;
3059 if (c == sav->sav_count &&
3060 vdev_lookup_by_path(rvd, path) == NULL)
3061 break;
3062 zs->zs_vdev_aux++;
3063 }
3064 }
3065
3066 spa_config_exit(spa, SCL_VDEV, FTAG);
3067
3068 if (guid == 0) {
3069 /*
3070 * Add a new device.
3071 */
3072 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3073 (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3074 error = spa_vdev_add(spa, nvroot);
3075
3076 switch (error) {
3077 case 0:
3078 break;
3079 default:
3080 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
3081 }
3082 nvlist_free(nvroot);
3083 } else {
3084 /*
3085 * Remove an existing device. Sometimes, dirty its
3086 * vdev state first to make sure we handle removal
3087 * of devices that have pending state changes.
3088 */
3089 if (ztest_random(2) == 0)
3090 (void) vdev_online(spa, guid, 0, NULL);
3091
3092 error = spa_vdev_remove(spa, guid, B_FALSE);
3093
3094 switch (error) {
3095 case 0:
3096 case EBUSY:
3097 case ZFS_ERR_CHECKPOINT_EXISTS:
3098 case ZFS_ERR_DISCARDING_CHECKPOINT:
3099 break;
3100 default:
3101 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
3102 }
3103 }
3104
3105 mutex_exit(&ztest_vdev_lock);
3106 }
3107
3108 /*
3109 * split a pool if it has mirror tlvdevs
3110 */
3111 /* ARGSUSED */
3112 void
ztest_split_pool(ztest_ds_t * zd,uint64_t id)3113 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3114 {
3115 ztest_shared_t *zs = ztest_shared;
3116 spa_t *spa = ztest_spa;
3117 vdev_t *rvd = spa->spa_root_vdev;
3118 nvlist_t *tree, **child, *config, *split, **schild;
3119 uint_t c, children, schildren = 0, lastlogid = 0;
3120 int error = 0;
3121
3122 if (ztest_opts.zo_mmp_test)
3123 return;
3124
3125 mutex_enter(&ztest_vdev_lock);
3126
3127 /* ensure we have a useable config; mirrors of raidz aren't supported */
3128 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
3129 mutex_exit(&ztest_vdev_lock);
3130 return;
3131 }
3132
3133 /* clean up the old pool, if any */
3134 (void) spa_destroy("splitp");
3135
3136 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3137
3138 /* generate a config from the existing config */
3139 mutex_enter(&spa->spa_props_lock);
3140 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
3141 &tree) == 0);
3142 mutex_exit(&spa->spa_props_lock);
3143
3144 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
3145 &children) == 0);
3146
3147 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
3148 for (c = 0; c < children; c++) {
3149 vdev_t *tvd = rvd->vdev_child[c];
3150 nvlist_t **mchild;
3151 uint_t mchildren;
3152
3153 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3154 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
3155 0) == 0);
3156 VERIFY(nvlist_add_string(schild[schildren],
3157 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
3158 VERIFY(nvlist_add_uint64(schild[schildren],
3159 ZPOOL_CONFIG_IS_HOLE, 1) == 0);
3160 if (lastlogid == 0)
3161 lastlogid = schildren;
3162 ++schildren;
3163 continue;
3164 }
3165 lastlogid = 0;
3166 VERIFY(nvlist_lookup_nvlist_array(child[c],
3167 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
3168 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
3169 }
3170
3171 /* OK, create a config that can be used to split */
3172 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
3173 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
3174 VDEV_TYPE_ROOT) == 0);
3175 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
3176 lastlogid != 0 ? lastlogid : schildren) == 0);
3177
3178 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
3179 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
3180
3181 for (c = 0; c < schildren; c++)
3182 nvlist_free(schild[c]);
3183 free(schild);
3184 nvlist_free(split);
3185
3186 spa_config_exit(spa, SCL_VDEV, FTAG);
3187
3188 rw_enter(&ztest_name_lock, RW_WRITER);
3189 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3190 rw_exit(&ztest_name_lock);
3191
3192 nvlist_free(config);
3193
3194 if (error == 0) {
3195 (void) printf("successful split - results:\n");
3196 mutex_enter(&spa_namespace_lock);
3197 show_pool_stats(spa);
3198 show_pool_stats(spa_lookup("splitp"));
3199 mutex_exit(&spa_namespace_lock);
3200 ++zs->zs_splits;
3201 --zs->zs_mirrors;
3202 }
3203 mutex_exit(&ztest_vdev_lock);
3204 }
3205
3206 /*
3207 * Verify that we can attach and detach devices.
3208 */
3209 /* ARGSUSED */
3210 void
ztest_vdev_attach_detach(ztest_ds_t * zd,uint64_t id)3211 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3212 {
3213 ztest_shared_t *zs = ztest_shared;
3214 spa_t *spa = ztest_spa;
3215 spa_aux_vdev_t *sav = &spa->spa_spares;
3216 vdev_t *rvd = spa->spa_root_vdev;
3217 vdev_t *oldvd, *newvd, *pvd;
3218 nvlist_t *root;
3219 uint64_t leaves;
3220 uint64_t leaf, top;
3221 uint64_t ashift = ztest_get_ashift();
3222 uint64_t oldguid, pguid;
3223 uint64_t oldsize, newsize;
3224 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
3225 int replacing;
3226 int oldvd_has_siblings = B_FALSE;
3227 int newvd_is_spare = B_FALSE;
3228 int oldvd_is_log;
3229 int error, expected_error;
3230
3231 if (ztest_opts.zo_mmp_test)
3232 return;
3233
3234 mutex_enter(&ztest_vdev_lock);
3235 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
3236
3237 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3238
3239 /*
3240 * If a vdev is in the process of being removed, its removal may
3241 * finish while we are in progress, leading to an unexpected error
3242 * value. Don't bother trying to attach while we are in the middle
3243 * of removal.
3244 */
3245 if (ztest_device_removal_active) {
3246 spa_config_exit(spa, SCL_ALL, FTAG);
3247 mutex_exit(&ztest_vdev_lock);
3248 return;
3249 }
3250
3251 /*
3252 * Decide whether to do an attach or a replace.
3253 */
3254 replacing = ztest_random(2);
3255
3256 /*
3257 * Pick a random top-level vdev.
3258 */
3259 top = ztest_random_vdev_top(spa, B_TRUE);
3260
3261 /*
3262 * Pick a random leaf within it.
3263 */
3264 leaf = ztest_random(leaves);
3265
3266 /*
3267 * Locate this vdev.
3268 */
3269 oldvd = rvd->vdev_child[top];
3270
3271 /* pick a child from the mirror */
3272 if (zs->zs_mirrors >= 1) {
3273 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
3274 ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
3275 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
3276 }
3277
3278 /* pick a child out of the raidz group */
3279 if (ztest_opts.zo_raidz > 1) {
3280 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
3281 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
3282 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
3283 }
3284
3285 /*
3286 * If we're already doing an attach or replace, oldvd may be a
3287 * mirror vdev -- in which case, pick a random child.
3288 */
3289 while (oldvd->vdev_children != 0) {
3290 oldvd_has_siblings = B_TRUE;
3291 ASSERT(oldvd->vdev_children >= 2);
3292 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3293 }
3294
3295 oldguid = oldvd->vdev_guid;
3296 oldsize = vdev_get_min_asize(oldvd);
3297 oldvd_is_log = oldvd->vdev_top->vdev_islog;
3298 (void) strcpy(oldpath, oldvd->vdev_path);
3299 pvd = oldvd->vdev_parent;
3300 pguid = pvd->vdev_guid;
3301
3302 /*
3303 * If oldvd has siblings, then half of the time, detach it.
3304 */
3305 if (oldvd_has_siblings && ztest_random(2) == 0) {
3306 spa_config_exit(spa, SCL_ALL, FTAG);
3307 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3308 if (error != 0 && error != ENODEV && error != EBUSY &&
3309 error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3310 error != ZFS_ERR_DISCARDING_CHECKPOINT)
3311 fatal(0, "detach (%s) returned %d", oldpath, error);
3312 mutex_exit(&ztest_vdev_lock);
3313 return;
3314 }
3315
3316 /*
3317 * For the new vdev, choose with equal probability between the two
3318 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3319 */
3320 if (sav->sav_count != 0 && ztest_random(3) == 0) {
3321 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3322 newvd_is_spare = B_TRUE;
3323 (void) strcpy(newpath, newvd->vdev_path);
3324 } else {
3325 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
3326 ztest_opts.zo_dir, ztest_opts.zo_pool,
3327 top * leaves + leaf);
3328 if (ztest_random(2) == 0)
3329 newpath[strlen(newpath) - 1] = 'b';
3330 newvd = vdev_lookup_by_path(rvd, newpath);
3331 }
3332
3333 if (newvd) {
3334 /*
3335 * Reopen to ensure the vdev's asize field isn't stale.
3336 */
3337 vdev_reopen(newvd);
3338 newsize = vdev_get_min_asize(newvd);
3339 } else {
3340 /*
3341 * Make newsize a little bigger or smaller than oldsize.
3342 * If it's smaller, the attach should fail.
3343 * If it's larger, and we're doing a replace,
3344 * we should get dynamic LUN growth when we're done.
3345 */
3346 newsize = 10 * oldsize / (9 + ztest_random(3));
3347 }
3348
3349 /*
3350 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3351 * unless it's a replace; in that case any non-replacing parent is OK.
3352 *
3353 * If newvd is already part of the pool, it should fail with EBUSY.
3354 *
3355 * If newvd is too small, it should fail with EOVERFLOW.
3356 */
3357 if (pvd->vdev_ops != &vdev_mirror_ops &&
3358 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3359 pvd->vdev_ops == &vdev_replacing_ops ||
3360 pvd->vdev_ops == &vdev_spare_ops))
3361 expected_error = ENOTSUP;
3362 else if (newvd_is_spare && (!replacing || oldvd_is_log))
3363 expected_error = ENOTSUP;
3364 else if (newvd == oldvd)
3365 expected_error = replacing ? 0 : EBUSY;
3366 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3367 expected_error = EBUSY;
3368 else if (newsize < oldsize)
3369 expected_error = EOVERFLOW;
3370 else if (ashift > oldvd->vdev_top->vdev_ashift)
3371 expected_error = EDOM;
3372 else
3373 expected_error = 0;
3374
3375 spa_config_exit(spa, SCL_ALL, FTAG);
3376
3377 /*
3378 * Build the nvlist describing newpath.
3379 */
3380 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3381 ashift, NULL, 0, 0, 1);
3382
3383 error = spa_vdev_attach(spa, oldguid, root, replacing);
3384
3385 nvlist_free(root);
3386
3387 /*
3388 * If our parent was the replacing vdev, but the replace completed,
3389 * then instead of failing with ENOTSUP we may either succeed,
3390 * fail with ENODEV, or fail with EOVERFLOW.
3391 */
3392 if (expected_error == ENOTSUP &&
3393 (error == 0 || error == ENODEV || error == EOVERFLOW))
3394 expected_error = error;
3395
3396 /*
3397 * If someone grew the LUN, the replacement may be too small.
3398 */
3399 if (error == EOVERFLOW || error == EBUSY)
3400 expected_error = error;
3401
3402 if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3403 error == ZFS_ERR_DISCARDING_CHECKPOINT)
3404 expected_error = error;
3405
3406 /* XXX workaround 6690467 */
3407 if (error != expected_error && expected_error != EBUSY) {
3408 fatal(0, "attach (%s %llu, %s %llu, %d) "
3409 "returned %d, expected %d",
3410 oldpath, oldsize, newpath,
3411 newsize, replacing, error, expected_error);
3412 }
3413
3414 mutex_exit(&ztest_vdev_lock);
3415 }
3416
3417 /* ARGSUSED */
3418 void
ztest_device_removal(ztest_ds_t * zd,uint64_t id)3419 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
3420 {
3421 spa_t *spa = ztest_spa;
3422 vdev_t *vd;
3423 uint64_t guid;
3424 int error;
3425
3426 mutex_enter(&ztest_vdev_lock);
3427
3428 if (ztest_device_removal_active) {
3429 mutex_exit(&ztest_vdev_lock);
3430 return;
3431 }
3432
3433 /*
3434 * Remove a random top-level vdev and wait for removal to finish.
3435 */
3436 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3437 vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
3438 guid = vd->vdev_guid;
3439 spa_config_exit(spa, SCL_VDEV, FTAG);
3440
3441 error = spa_vdev_remove(spa, guid, B_FALSE);
3442 if (error == 0) {
3443 ztest_device_removal_active = B_TRUE;
3444 mutex_exit(&ztest_vdev_lock);
3445
3446 while (spa->spa_vdev_removal != NULL)
3447 txg_wait_synced(spa_get_dsl(spa), 0);
3448 } else {
3449 mutex_exit(&ztest_vdev_lock);
3450 return;
3451 }
3452
3453 /*
3454 * The pool needs to be scrubbed after completing device removal.
3455 * Failure to do so may result in checksum errors due to the
3456 * strategy employed by ztest_fault_inject() when selecting which
3457 * offset are redundant and can be damaged.
3458 */
3459 error = spa_scan(spa, POOL_SCAN_SCRUB);
3460 if (error == 0) {
3461 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
3462 txg_wait_synced(spa_get_dsl(spa), 0);
3463 }
3464
3465 mutex_enter(&ztest_vdev_lock);
3466 ztest_device_removal_active = B_FALSE;
3467 mutex_exit(&ztest_vdev_lock);
3468 }
3469
3470 /*
3471 * Callback function which expands the physical size of the vdev.
3472 */
3473 vdev_t *
grow_vdev(vdev_t * vd,void * arg)3474 grow_vdev(vdev_t *vd, void *arg)
3475 {
3476 spa_t *spa = vd->vdev_spa;
3477 size_t *newsize = arg;
3478 size_t fsize;
3479 int fd;
3480
3481 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3482 ASSERT(vd->vdev_ops->vdev_op_leaf);
3483
3484 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
3485 return (vd);
3486
3487 fsize = lseek(fd, 0, SEEK_END);
3488 (void) ftruncate(fd, *newsize);
3489
3490 if (ztest_opts.zo_verbose >= 6) {
3491 (void) printf("%s grew from %lu to %lu bytes\n",
3492 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3493 }
3494 (void) close(fd);
3495 return (NULL);
3496 }
3497
3498 /*
3499 * Callback function which expands a given vdev by calling vdev_online().
3500 */
3501 /* ARGSUSED */
3502 vdev_t *
online_vdev(vdev_t * vd,void * arg)3503 online_vdev(vdev_t *vd, void *arg)
3504 {
3505 spa_t *spa = vd->vdev_spa;
3506 vdev_t *tvd = vd->vdev_top;
3507 uint64_t guid = vd->vdev_guid;
3508 uint64_t generation = spa->spa_config_generation + 1;
3509 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3510 int error;
3511
3512 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3513 ASSERT(vd->vdev_ops->vdev_op_leaf);
3514
3515 /* Calling vdev_online will initialize the new metaslabs */
3516 spa_config_exit(spa, SCL_STATE, spa);
3517 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3518 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3519
3520 /*
3521 * If vdev_online returned an error or the underlying vdev_open
3522 * failed then we abort the expand. The only way to know that
3523 * vdev_open fails is by checking the returned newstate.
3524 */
3525 if (error || newstate != VDEV_STATE_HEALTHY) {
3526 if (ztest_opts.zo_verbose >= 5) {
3527 (void) printf("Unable to expand vdev, state %llu, "
3528 "error %d\n", (u_longlong_t)newstate, error);
3529 }
3530 return (vd);
3531 }
3532 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3533
3534 /*
3535 * Since we dropped the lock we need to ensure that we're
3536 * still talking to the original vdev. It's possible this
3537 * vdev may have been detached/replaced while we were
3538 * trying to online it.
3539 */
3540 if (generation != spa->spa_config_generation) {
3541 if (ztest_opts.zo_verbose >= 5) {
3542 (void) printf("vdev configuration has changed, "
3543 "guid %llu, state %llu, expected gen %llu, "
3544 "got gen %llu\n",
3545 (u_longlong_t)guid,
3546 (u_longlong_t)tvd->vdev_state,
3547 (u_longlong_t)generation,
3548 (u_longlong_t)spa->spa_config_generation);
3549 }
3550 return (vd);
3551 }
3552 return (NULL);
3553 }
3554
3555 /*
3556 * Traverse the vdev tree calling the supplied function.
3557 * We continue to walk the tree until we either have walked all
3558 * children or we receive a non-NULL return from the callback.
3559 * If a NULL callback is passed, then we just return back the first
3560 * leaf vdev we encounter.
3561 */
3562 vdev_t *
vdev_walk_tree(vdev_t * vd,vdev_t * (* func)(vdev_t *,void *),void * arg)3563 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3564 {
3565 if (vd->vdev_ops->vdev_op_leaf) {
3566 if (func == NULL)
3567 return (vd);
3568 else
3569 return (func(vd, arg));
3570 }
3571
3572 for (uint_t c = 0; c < vd->vdev_children; c++) {
3573 vdev_t *cvd = vd->vdev_child[c];
3574 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3575 return (cvd);
3576 }
3577 return (NULL);
3578 }
3579
3580 /*
3581 * Verify that dynamic LUN growth works as expected.
3582 */
3583 /* ARGSUSED */
3584 void
ztest_vdev_LUN_growth(ztest_ds_t * zd,uint64_t id)3585 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3586 {
3587 spa_t *spa = ztest_spa;
3588 vdev_t *vd, *tvd;
3589 metaslab_class_t *mc;
3590 metaslab_group_t *mg;
3591 size_t psize, newsize;
3592 uint64_t top;
3593 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3594
3595 mutex_enter(&ztest_checkpoint_lock);
3596 mutex_enter(&ztest_vdev_lock);
3597 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3598
3599 /*
3600 * If there is a vdev removal in progress, it could complete while
3601 * we are running, in which case we would not be able to verify
3602 * that the metaslab_class space increased (because it decreases
3603 * when the device removal completes).
3604 */
3605 if (ztest_device_removal_active) {
3606 spa_config_exit(spa, SCL_STATE, spa);
3607 mutex_exit(&ztest_vdev_lock);
3608 mutex_exit(&ztest_checkpoint_lock);
3609 return;
3610 }
3611
3612 top = ztest_random_vdev_top(spa, B_TRUE);
3613
3614 tvd = spa->spa_root_vdev->vdev_child[top];
3615 mg = tvd->vdev_mg;
3616 mc = mg->mg_class;
3617 old_ms_count = tvd->vdev_ms_count;
3618 old_class_space = metaslab_class_get_space(mc);
3619
3620 /*
3621 * Determine the size of the first leaf vdev associated with
3622 * our top-level device.
3623 */
3624 vd = vdev_walk_tree(tvd, NULL, NULL);
3625 ASSERT3P(vd, !=, NULL);
3626 ASSERT(vd->vdev_ops->vdev_op_leaf);
3627
3628 psize = vd->vdev_psize;
3629
3630 /*
3631 * We only try to expand the vdev if it's healthy, less than 4x its
3632 * original size, and it has a valid psize.
3633 */
3634 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3635 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3636 spa_config_exit(spa, SCL_STATE, spa);
3637 mutex_exit(&ztest_vdev_lock);
3638 mutex_exit(&ztest_checkpoint_lock);
3639 return;
3640 }
3641 ASSERT(psize > 0);
3642 newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
3643 ASSERT3U(newsize, >, psize);
3644
3645 if (ztest_opts.zo_verbose >= 6) {
3646 (void) printf("Expanding LUN %s from %lu to %lu\n",
3647 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3648 }
3649
3650 /*
3651 * Growing the vdev is a two step process:
3652 * 1). expand the physical size (i.e. relabel)
3653 * 2). online the vdev to create the new metaslabs
3654 */
3655 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3656 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3657 tvd->vdev_state != VDEV_STATE_HEALTHY) {
3658 if (ztest_opts.zo_verbose >= 5) {
3659 (void) printf("Could not expand LUN because "
3660 "the vdev configuration changed.\n");
3661 }
3662 spa_config_exit(spa, SCL_STATE, spa);
3663 mutex_exit(&ztest_vdev_lock);
3664 mutex_exit(&ztest_checkpoint_lock);
3665 return;
3666 }
3667
3668 spa_config_exit(spa, SCL_STATE, spa);
3669
3670 /*
3671 * Expanding the LUN will update the config asynchronously,
3672 * thus we must wait for the async thread to complete any
3673 * pending tasks before proceeding.
3674 */
3675 for (;;) {
3676 boolean_t done;
3677 mutex_enter(&spa->spa_async_lock);
3678 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3679 mutex_exit(&spa->spa_async_lock);
3680 if (done)
3681 break;
3682 txg_wait_synced(spa_get_dsl(spa), 0);
3683 (void) poll(NULL, 0, 100);
3684 }
3685
3686 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3687
3688 tvd = spa->spa_root_vdev->vdev_child[top];
3689 new_ms_count = tvd->vdev_ms_count;
3690 new_class_space = metaslab_class_get_space(mc);
3691
3692 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3693 if (ztest_opts.zo_verbose >= 5) {
3694 (void) printf("Could not verify LUN expansion due to "
3695 "intervening vdev offline or remove.\n");
3696 }
3697 spa_config_exit(spa, SCL_STATE, spa);
3698 mutex_exit(&ztest_vdev_lock);
3699 mutex_exit(&ztest_checkpoint_lock);
3700 return;
3701 }
3702
3703 /*
3704 * Make sure we were able to grow the vdev.
3705 */
3706 if (new_ms_count <= old_ms_count) {
3707 fatal(0, "LUN expansion failed: ms_count %llu < %llu\n",
3708 old_ms_count, new_ms_count);
3709 }
3710
3711 /*
3712 * Make sure we were able to grow the pool.
3713 */
3714 if (new_class_space <= old_class_space) {
3715 fatal(0, "LUN expansion failed: class_space %llu < %llu\n",
3716 old_class_space, new_class_space);
3717 }
3718
3719 if (ztest_opts.zo_verbose >= 5) {
3720 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
3721
3722 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
3723 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
3724 (void) printf("%s grew from %s to %s\n",
3725 spa->spa_name, oldnumbuf, newnumbuf);
3726 }
3727
3728 spa_config_exit(spa, SCL_STATE, spa);
3729 mutex_exit(&ztest_vdev_lock);
3730 mutex_exit(&ztest_checkpoint_lock);
3731 }
3732
3733 /*
3734 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3735 */
3736 /* ARGSUSED */
3737 static void
ztest_objset_create_cb(objset_t * os,void * arg,cred_t * cr,dmu_tx_t * tx)3738 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3739 {
3740 /*
3741 * Create the objects common to all ztest datasets.
3742 */
3743 VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3744 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3745 }
3746
3747 static int
ztest_dataset_create(char * dsname)3748 ztest_dataset_create(char *dsname)
3749 {
3750 int err;
3751 uint64_t rand;
3752 dsl_crypto_params_t *dcp = NULL;
3753
3754 /*
3755 * 50% of the time, we create encrypted datasets
3756 * using a random cipher suite and a hard-coded
3757 * wrapping key.
3758 */
3759 #ifdef WITHCRYPTO
3760 /*
3761 * Until the crypto framework is compiled in userland, the ztest using
3762 * crypto will not work.
3763 */
3764 rand = ztest_random(2);
3765 #else
3766 rand = 0;
3767 #endif
3768 if (rand != 0) {
3769 nvlist_t *crypto_args = fnvlist_alloc();
3770 nvlist_t *props = fnvlist_alloc();
3771
3772 /* slight bias towards the default cipher suite */
3773 rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
3774 if (rand < ZIO_CRYPT_AES_128_CCM)
3775 rand = ZIO_CRYPT_ON;
3776
3777 fnvlist_add_uint64(props,
3778 zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
3779 fnvlist_add_uint8_array(crypto_args, "wkeydata",
3780 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
3781
3782 /*
3783 * These parameters aren't really used by the kernel. They
3784 * are simply stored so that userspace knows how to load
3785 * the wrapping key.
3786 */
3787 fnvlist_add_uint64(props,
3788 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
3789 fnvlist_add_string(props,
3790 zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
3791 fnvlist_add_uint64(props,
3792 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
3793 fnvlist_add_uint64(props,
3794 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
3795
3796 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
3797 crypto_args, &dcp));
3798
3799 fnvlist_free(crypto_args);
3800 fnvlist_free(props);
3801 }
3802
3803 err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
3804 ztest_objset_create_cb, NULL);
3805 dsl_crypto_params_free(dcp, !!err);
3806
3807 rand = ztest_random(100);
3808 if (err || rand < 80)
3809 return (err);
3810
3811 if (ztest_opts.zo_verbose >= 6)
3812 (void) printf("Setting dataset %s to sync always\n", dsname);
3813 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3814 ZFS_SYNC_ALWAYS, B_FALSE));
3815 }
3816
3817 /* ARGSUSED */
3818 static int
ztest_objset_destroy_cb(const char * name,void * arg)3819 ztest_objset_destroy_cb(const char *name, void *arg)
3820 {
3821 objset_t *os;
3822 dmu_object_info_t doi;
3823 int error;
3824
3825 /*
3826 * Verify that the dataset contains a directory object.
3827 */
3828 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3829 B_TRUE, FTAG, &os));
3830 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3831 if (error != ENOENT) {
3832 /* We could have crashed in the middle of destroying it */
3833 ASSERT0(error);
3834 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3835 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3836 }
3837 dmu_objset_disown(os, B_TRUE, FTAG);
3838
3839 /*
3840 * Destroy the dataset.
3841 */
3842 if (strchr(name, '@') != NULL) {
3843 VERIFY0(dsl_destroy_snapshot(name, B_TRUE));
3844 } else {
3845 error = dsl_destroy_head(name);
3846 /* There could be a hold on this dataset */
3847 if (error != EBUSY)
3848 ASSERT0(error);
3849 }
3850 return (0);
3851 }
3852
3853 static boolean_t
ztest_snapshot_create(char * osname,uint64_t id)3854 ztest_snapshot_create(char *osname, uint64_t id)
3855 {
3856 char snapname[ZFS_MAX_DATASET_NAME_LEN];
3857 int error;
3858
3859 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3860
3861 error = dmu_objset_snapshot_one(osname, snapname);
3862 if (error == ENOSPC) {
3863 ztest_record_enospc(FTAG);
3864 return (B_FALSE);
3865 }
3866 if (error != 0 && error != EEXIST) {
3867 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3868 snapname, error);
3869 }
3870 return (B_TRUE);
3871 }
3872
3873 static boolean_t
ztest_snapshot_destroy(char * osname,uint64_t id)3874 ztest_snapshot_destroy(char *osname, uint64_t id)
3875 {
3876 char snapname[ZFS_MAX_DATASET_NAME_LEN];
3877 int error;
3878
3879 (void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
3880 (u_longlong_t)id);
3881
3882 error = dsl_destroy_snapshot(snapname, B_FALSE);
3883 if (error != 0 && error != ENOENT)
3884 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3885 return (B_TRUE);
3886 }
3887
3888 /* ARGSUSED */
3889 void
ztest_dmu_objset_create_destroy(ztest_ds_t * zd,uint64_t id)3890 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3891 {
3892 ztest_ds_t zdtmp;
3893 int iters;
3894 int error;
3895 objset_t *os, *os2;
3896 char name[ZFS_MAX_DATASET_NAME_LEN];
3897 zilog_t *zilog;
3898
3899 rw_enter(&ztest_name_lock, RW_READER);
3900
3901 (void) snprintf(name, sizeof (name), "%s/temp_%llu",
3902 ztest_opts.zo_pool, (u_longlong_t)id);
3903
3904 /*
3905 * If this dataset exists from a previous run, process its replay log
3906 * half of the time. If we don't replay it, then dmu_objset_destroy()
3907 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3908 */
3909 if (ztest_random(2) == 0 &&
3910 ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
3911 B_TRUE, FTAG, &os) == 0) {
3912 ztest_zd_init(&zdtmp, NULL, os);
3913 zil_replay(os, &zdtmp, ztest_replay_vector);
3914 ztest_zd_fini(&zdtmp);
3915 dmu_objset_disown(os, B_TRUE, FTAG);
3916 }
3917
3918 /*
3919 * There may be an old instance of the dataset we're about to
3920 * create lying around from a previous run. If so, destroy it
3921 * and all of its snapshots.
3922 */
3923 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3924 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3925
3926 /*
3927 * Verify that the destroyed dataset is no longer in the namespace.
3928 */
3929 VERIFY3U(ENOENT, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3930 B_TRUE, FTAG, &os));
3931
3932 /*
3933 * Verify that we can create a new dataset.
3934 */
3935 error = ztest_dataset_create(name);
3936 if (error) {
3937 if (error == ENOSPC) {
3938 ztest_record_enospc(FTAG);
3939 rw_exit(&ztest_name_lock);
3940 return;
3941 }
3942 fatal(0, "dmu_objset_create(%s) = %d", name, error);
3943 }
3944
3945 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
3946 FTAG, &os));
3947
3948 ztest_zd_init(&zdtmp, NULL, os);
3949
3950 /*
3951 * Open the intent log for it.
3952 */
3953 zilog = zil_open(os, ztest_get_data);
3954
3955 /*
3956 * Put some objects in there, do a little I/O to them,
3957 * and randomly take a couple of snapshots along the way.
3958 */
3959 iters = ztest_random(5);
3960 for (int i = 0; i < iters; i++) {
3961 ztest_dmu_object_alloc_free(&zdtmp, id);
3962 if (ztest_random(iters) == 0)
3963 (void) ztest_snapshot_create(name, i);
3964 }
3965
3966 /*
3967 * Verify that we cannot create an existing dataset.
3968 */
3969 VERIFY3U(EEXIST, ==,
3970 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
3971
3972 /*
3973 * Verify that we can hold an objset that is also owned.
3974 */
3975 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3976 dmu_objset_rele(os2, FTAG);
3977
3978 /*
3979 * Verify that we cannot own an objset that is already owned.
3980 */
3981 VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
3982 B_FALSE, B_TRUE, FTAG, &os2));
3983
3984 zil_close(zilog);
3985 dmu_objset_disown(os, B_TRUE, FTAG);
3986 ztest_zd_fini(&zdtmp);
3987
3988 rw_exit(&ztest_name_lock);
3989 }
3990
3991 /*
3992 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3993 */
3994 void
ztest_dmu_snapshot_create_destroy(ztest_ds_t * zd,uint64_t id)3995 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3996 {
3997 rw_enter(&ztest_name_lock, RW_READER);
3998 (void) ztest_snapshot_destroy(zd->zd_name, id);
3999 (void) ztest_snapshot_create(zd->zd_name, id);
4000 rw_exit(&ztest_name_lock);
4001 }
4002
4003 /*
4004 * Cleanup non-standard snapshots and clones.
4005 */
4006 void
ztest_dsl_dataset_cleanup(char * osname,uint64_t id)4007 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4008 {
4009 char snap1name[ZFS_MAX_DATASET_NAME_LEN];
4010 char clone1name[ZFS_MAX_DATASET_NAME_LEN];
4011 char snap2name[ZFS_MAX_DATASET_NAME_LEN];
4012 char clone2name[ZFS_MAX_DATASET_NAME_LEN];
4013 char snap3name[ZFS_MAX_DATASET_NAME_LEN];
4014 int error;
4015
4016 (void) snprintf(snap1name, sizeof (snap1name),
4017 "%s@s1_%llu", osname, id);
4018 (void) snprintf(clone1name, sizeof (clone1name),
4019 "%s/c1_%llu", osname, id);
4020 (void) snprintf(snap2name, sizeof (snap2name),
4021 "%s@s2_%llu", clone1name, id);
4022 (void) snprintf(clone2name, sizeof (clone2name),
4023 "%s/c2_%llu", osname, id);
4024 (void) snprintf(snap3name, sizeof (snap3name),
4025 "%s@s3_%llu", clone1name, id);
4026
4027 error = dsl_destroy_head(clone2name);
4028 if (error && error != ENOENT)
4029 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
4030 error = dsl_destroy_snapshot(snap3name, B_FALSE);
4031 if (error && error != ENOENT)
4032 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
4033 error = dsl_destroy_snapshot(snap2name, B_FALSE);
4034 if (error && error != ENOENT)
4035 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
4036 error = dsl_destroy_head(clone1name);
4037 if (error && error != ENOENT)
4038 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
4039 error = dsl_destroy_snapshot(snap1name, B_FALSE);
4040 if (error && error != ENOENT)
4041 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
4042 }
4043
4044 /*
4045 * Verify dsl_dataset_promote handles EBUSY
4046 */
4047 void
ztest_dsl_dataset_promote_busy(ztest_ds_t * zd,uint64_t id)4048 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4049 {
4050 objset_t *os;
4051 char snap1name[ZFS_MAX_DATASET_NAME_LEN];
4052 char clone1name[ZFS_MAX_DATASET_NAME_LEN];
4053 char snap2name[ZFS_MAX_DATASET_NAME_LEN];
4054 char clone2name[ZFS_MAX_DATASET_NAME_LEN];
4055 char snap3name[ZFS_MAX_DATASET_NAME_LEN];
4056 char *osname = zd->zd_name;
4057 int error;
4058
4059 rw_enter(&ztest_name_lock, RW_READER);
4060
4061 ztest_dsl_dataset_cleanup(osname, id);
4062
4063 (void) snprintf(snap1name, sizeof (snap1name),
4064 "%s@s1_%llu", osname, id);
4065 (void) snprintf(clone1name, sizeof (clone1name),
4066 "%s/c1_%llu", osname, id);
4067 (void) snprintf(snap2name, sizeof (snap2name),
4068 "%s@s2_%llu", clone1name, id);
4069 (void) snprintf(clone2name, sizeof (clone2name),
4070 "%s/c2_%llu", osname, id);
4071 (void) snprintf(snap3name, sizeof (snap3name),
4072 "%s@s3_%llu", clone1name, id);
4073
4074 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4075 if (error && error != EEXIST) {
4076 if (error == ENOSPC) {
4077 ztest_record_enospc(FTAG);
4078 goto out;
4079 }
4080 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
4081 }
4082
4083 error = dmu_objset_clone(clone1name, snap1name);
4084 if (error) {
4085 if (error == ENOSPC) {
4086 ztest_record_enospc(FTAG);
4087 goto out;
4088 }
4089 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
4090 }
4091
4092 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4093 if (error && error != EEXIST) {
4094 if (error == ENOSPC) {
4095 ztest_record_enospc(FTAG);
4096 goto out;
4097 }
4098 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
4099 }
4100
4101 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4102 if (error && error != EEXIST) {
4103 if (error == ENOSPC) {
4104 ztest_record_enospc(FTAG);
4105 goto out;
4106 }
4107 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
4108 }
4109
4110 error = dmu_objset_clone(clone2name, snap3name);
4111 if (error) {
4112 if (error == ENOSPC) {
4113 ztest_record_enospc(FTAG);
4114 goto out;
4115 }
4116 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
4117 }
4118
4119 error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4120 FTAG, &os);
4121 if (error)
4122 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
4123 error = dsl_dataset_promote(clone2name, NULL);
4124 if (error == ENOSPC) {
4125 dmu_objset_disown(os, B_TRUE, FTAG);
4126 ztest_record_enospc(FTAG);
4127 goto out;
4128 }
4129 if (error != EBUSY)
4130 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
4131 error);
4132 dmu_objset_disown(os, B_TRUE, FTAG);
4133
4134 out:
4135 ztest_dsl_dataset_cleanup(osname, id);
4136
4137 rw_exit(&ztest_name_lock);
4138 }
4139
4140 /*
4141 * Verify that dmu_object_{alloc,free} work as expected.
4142 */
4143 void
ztest_dmu_object_alloc_free(ztest_ds_t * zd,uint64_t id)4144 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4145 {
4146 ztest_od_t od[4];
4147 int batchsize = sizeof (od) / sizeof (od[0]);
4148
4149 for (int b = 0; b < batchsize; b++) {
4150 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER,
4151 0, 0, 0);
4152 }
4153
4154 /*
4155 * Destroy the previous batch of objects, create a new batch,
4156 * and do some I/O on the new objects.
4157 */
4158 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0)
4159 return;
4160
4161 while (ztest_random(4 * batchsize) != 0)
4162 ztest_io(zd, od[ztest_random(batchsize)].od_object,
4163 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4164 }
4165
4166 /*
4167 * Rewind the global allocator to verify object allocation backfilling.
4168 */
4169 void
ztest_dmu_object_next_chunk(ztest_ds_t * zd,uint64_t id)4170 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
4171 {
4172 objset_t *os = zd->zd_os;
4173 int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
4174 uint64_t object;
4175
4176 /*
4177 * Rewind the global allocator randomly back to a lower object number
4178 * to force backfilling and reclamation of recently freed dnodes.
4179 */
4180 mutex_enter(&os->os_obj_lock);
4181 object = ztest_random(os->os_obj_next_chunk);
4182 os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk);
4183 mutex_exit(&os->os_obj_lock);
4184 }
4185
4186 /*
4187 * Verify that dmu_{read,write} work as expected.
4188 */
4189 void
ztest_dmu_read_write(ztest_ds_t * zd,uint64_t id)4190 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
4191 {
4192 objset_t *os = zd->zd_os;
4193 ztest_od_t od[2];
4194 dmu_tx_t *tx;
4195 int i, freeit, error;
4196 uint64_t n, s, txg;
4197 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
4198 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4199 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
4200 uint64_t regions = 997;
4201 uint64_t stride = 123456789ULL;
4202 uint64_t width = 40;
4203 int free_percent = 5;
4204
4205 /*
4206 * This test uses two objects, packobj and bigobj, that are always
4207 * updated together (i.e. in the same tx) so that their contents are
4208 * in sync and can be compared. Their contents relate to each other
4209 * in a simple way: packobj is a dense array of 'bufwad' structures,
4210 * while bigobj is a sparse array of the same bufwads. Specifically,
4211 * for any index n, there are three bufwads that should be identical:
4212 *
4213 * packobj, at offset n * sizeof (bufwad_t)
4214 * bigobj, at the head of the nth chunk
4215 * bigobj, at the tail of the nth chunk
4216 *
4217 * The chunk size is arbitrary. It doesn't have to be a power of two,
4218 * and it doesn't have any relation to the object blocksize.
4219 * The only requirement is that it can hold at least two bufwads.
4220 *
4221 * Normally, we write the bufwad to each of these locations.
4222 * However, free_percent of the time we instead write zeroes to
4223 * packobj and perform a dmu_free_range() on bigobj. By comparing
4224 * bigobj to packobj, we can verify that the DMU is correctly
4225 * tracking which parts of an object are allocated and free,
4226 * and that the contents of the allocated blocks are correct.
4227 */
4228
4229 /*
4230 * Read the directory info. If it's the first time, set things up.
4231 */
4232 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0,
4233 chunksize);
4234 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4235 chunksize);
4236
4237 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4238 return;
4239
4240 bigobj = od[0].od_object;
4241 packobj = od[1].od_object;
4242 chunksize = od[0].od_gen;
4243 ASSERT(chunksize == od[1].od_gen);
4244
4245 /*
4246 * Prefetch a random chunk of the big object.
4247 * Our aim here is to get some async reads in flight
4248 * for blocks that we may free below; the DMU should
4249 * handle this race correctly.
4250 */
4251 n = ztest_random(regions) * stride + ztest_random(width);
4252 s = 1 + ztest_random(2 * width - 1);
4253 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
4254 ZIO_PRIORITY_SYNC_READ);
4255
4256 /*
4257 * Pick a random index and compute the offsets into packobj and bigobj.
4258 */
4259 n = ztest_random(regions) * stride + ztest_random(width);
4260 s = 1 + ztest_random(width - 1);
4261
4262 packoff = n * sizeof (bufwad_t);
4263 packsize = s * sizeof (bufwad_t);
4264
4265 bigoff = n * chunksize;
4266 bigsize = s * chunksize;
4267
4268 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
4269 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
4270
4271 /*
4272 * free_percent of the time, free a range of bigobj rather than
4273 * overwriting it.
4274 */
4275 freeit = (ztest_random(100) < free_percent);
4276
4277 /*
4278 * Read the current contents of our objects.
4279 */
4280 error = dmu_read(os, packobj, packoff, packsize, packbuf,
4281 DMU_READ_PREFETCH);
4282 ASSERT0(error);
4283 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
4284 DMU_READ_PREFETCH);
4285 ASSERT0(error);
4286
4287 /*
4288 * Get a tx for the mods to both packobj and bigobj.
4289 */
4290 tx = dmu_tx_create(os);
4291
4292 dmu_tx_hold_write(tx, packobj, packoff, packsize);
4293
4294 if (freeit)
4295 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
4296 else
4297 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4298
4299 /* This accounts for setting the checksum/compression. */
4300 dmu_tx_hold_bonus(tx, bigobj);
4301
4302 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4303 if (txg == 0) {
4304 umem_free(packbuf, packsize);
4305 umem_free(bigbuf, bigsize);
4306 return;
4307 }
4308
4309 enum zio_checksum cksum;
4310 do {
4311 cksum = (enum zio_checksum)
4312 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
4313 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
4314 dmu_object_set_checksum(os, bigobj, cksum, tx);
4315
4316 enum zio_compress comp;
4317 do {
4318 comp = (enum zio_compress)
4319 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
4320 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
4321 dmu_object_set_compress(os, bigobj, comp, tx);
4322
4323 /*
4324 * For each index from n to n + s, verify that the existing bufwad
4325 * in packobj matches the bufwads at the head and tail of the
4326 * corresponding chunk in bigobj. Then update all three bufwads
4327 * with the new values we want to write out.
4328 */
4329 for (i = 0; i < s; i++) {
4330 /* LINTED */
4331 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4332 /* LINTED */
4333 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4334 /* LINTED */
4335 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4336
4337 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
4338 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
4339
4340 if (pack->bw_txg > txg)
4341 fatal(0, "future leak: got %llx, open txg is %llx",
4342 pack->bw_txg, txg);
4343
4344 if (pack->bw_data != 0 && pack->bw_index != n + i)
4345 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4346 pack->bw_index, n, i);
4347
4348 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4349 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4350
4351 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4352 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4353
4354 if (freeit) {
4355 bzero(pack, sizeof (bufwad_t));
4356 } else {
4357 pack->bw_index = n + i;
4358 pack->bw_txg = txg;
4359 pack->bw_data = 1 + ztest_random(-2ULL);
4360 }
4361 *bigH = *pack;
4362 *bigT = *pack;
4363 }
4364
4365 /*
4366 * We've verified all the old bufwads, and made new ones.
4367 * Now write them out.
4368 */
4369 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4370
4371 if (freeit) {
4372 if (ztest_opts.zo_verbose >= 7) {
4373 (void) printf("freeing offset %llx size %llx"
4374 " txg %llx\n",
4375 (u_longlong_t)bigoff,
4376 (u_longlong_t)bigsize,
4377 (u_longlong_t)txg);
4378 }
4379 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
4380 } else {
4381 if (ztest_opts.zo_verbose >= 7) {
4382 (void) printf("writing offset %llx size %llx"
4383 " txg %llx\n",
4384 (u_longlong_t)bigoff,
4385 (u_longlong_t)bigsize,
4386 (u_longlong_t)txg);
4387 }
4388 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
4389 }
4390
4391 dmu_tx_commit(tx);
4392
4393 /*
4394 * Sanity check the stuff we just wrote.
4395 */
4396 {
4397 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4398 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4399
4400 VERIFY(0 == dmu_read(os, packobj, packoff,
4401 packsize, packcheck, DMU_READ_PREFETCH));
4402 VERIFY(0 == dmu_read(os, bigobj, bigoff,
4403 bigsize, bigcheck, DMU_READ_PREFETCH));
4404
4405 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4406 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4407
4408 umem_free(packcheck, packsize);
4409 umem_free(bigcheck, bigsize);
4410 }
4411
4412 umem_free(packbuf, packsize);
4413 umem_free(bigbuf, bigsize);
4414 }
4415
4416 void
compare_and_update_pbbufs(uint64_t s,bufwad_t * packbuf,bufwad_t * bigbuf,uint64_t bigsize,uint64_t n,uint64_t chunksize,uint64_t txg)4417 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
4418 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
4419 {
4420 uint64_t i;
4421 bufwad_t *pack;
4422 bufwad_t *bigH;
4423 bufwad_t *bigT;
4424
4425 /*
4426 * For each index from n to n + s, verify that the existing bufwad
4427 * in packobj matches the bufwads at the head and tail of the
4428 * corresponding chunk in bigobj. Then update all three bufwads
4429 * with the new values we want to write out.
4430 */
4431 for (i = 0; i < s; i++) {
4432 /* LINTED */
4433 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4434 /* LINTED */
4435 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4436 /* LINTED */
4437 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4438
4439 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
4440 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
4441
4442 if (pack->bw_txg > txg)
4443 fatal(0, "future leak: got %llx, open txg is %llx",
4444 pack->bw_txg, txg);
4445
4446 if (pack->bw_data != 0 && pack->bw_index != n + i)
4447 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4448 pack->bw_index, n, i);
4449
4450 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4451 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4452
4453 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4454 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4455
4456 pack->bw_index = n + i;
4457 pack->bw_txg = txg;
4458 pack->bw_data = 1 + ztest_random(-2ULL);
4459
4460 *bigH = *pack;
4461 *bigT = *pack;
4462 }
4463 }
4464
4465 void
ztest_dmu_read_write_zcopy(ztest_ds_t * zd,uint64_t id)4466 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
4467 {
4468 objset_t *os = zd->zd_os;
4469 ztest_od_t od[2];
4470 dmu_tx_t *tx;
4471 uint64_t i;
4472 int error;
4473 uint64_t n, s, txg;
4474 bufwad_t *packbuf, *bigbuf;
4475 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4476 uint64_t blocksize = ztest_random_blocksize();
4477 uint64_t chunksize = blocksize;
4478 uint64_t regions = 997;
4479 uint64_t stride = 123456789ULL;
4480 uint64_t width = 9;
4481 dmu_buf_t *bonus_db;
4482 arc_buf_t **bigbuf_arcbufs;
4483 dmu_object_info_t doi;
4484
4485 /*
4486 * This test uses two objects, packobj and bigobj, that are always
4487 * updated together (i.e. in the same tx) so that their contents are
4488 * in sync and can be compared. Their contents relate to each other
4489 * in a simple way: packobj is a dense array of 'bufwad' structures,
4490 * while bigobj is a sparse array of the same bufwads. Specifically,
4491 * for any index n, there are three bufwads that should be identical:
4492 *
4493 * packobj, at offset n * sizeof (bufwad_t)
4494 * bigobj, at the head of the nth chunk
4495 * bigobj, at the tail of the nth chunk
4496 *
4497 * The chunk size is set equal to bigobj block size so that
4498 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
4499 */
4500
4501 /*
4502 * Read the directory info. If it's the first time, set things up.
4503 */
4504 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize,
4505 0, 0);
4506 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4507 chunksize);
4508
4509 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4510 return;
4511
4512 bigobj = od[0].od_object;
4513 packobj = od[1].od_object;
4514 blocksize = od[0].od_blocksize;
4515 chunksize = blocksize;
4516 ASSERT(chunksize == od[1].od_gen);
4517
4518 VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
4519 VERIFY(ISP2(doi.doi_data_block_size));
4520 VERIFY(chunksize == doi.doi_data_block_size);
4521 VERIFY(chunksize >= 2 * sizeof (bufwad_t));
4522
4523 /*
4524 * Pick a random index and compute the offsets into packobj and bigobj.
4525 */
4526 n = ztest_random(regions) * stride + ztest_random(width);
4527 s = 1 + ztest_random(width - 1);
4528
4529 packoff = n * sizeof (bufwad_t);
4530 packsize = s * sizeof (bufwad_t);
4531
4532 bigoff = n * chunksize;
4533 bigsize = s * chunksize;
4534
4535 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
4536 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
4537
4538 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
4539
4540 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
4541
4542 /*
4543 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
4544 * Iteration 1 test zcopy to already referenced dbufs.
4545 * Iteration 2 test zcopy to dirty dbuf in the same txg.
4546 * Iteration 3 test zcopy to dbuf dirty in previous txg.
4547 * Iteration 4 test zcopy when dbuf is no longer dirty.
4548 * Iteration 5 test zcopy when it can't be done.
4549 * Iteration 6 one more zcopy write.
4550 */
4551 for (i = 0; i < 7; i++) {
4552 uint64_t j;
4553 uint64_t off;
4554
4555 /*
4556 * In iteration 5 (i == 5) use arcbufs
4557 * that don't match bigobj blksz to test
4558 * dmu_assign_arcbuf_by_dbuf() when it can't directly
4559 * assign an arcbuf to a dbuf.
4560 */
4561 for (j = 0; j < s; j++) {
4562 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4563 bigbuf_arcbufs[j] =
4564 dmu_request_arcbuf(bonus_db, chunksize);
4565 } else {
4566 bigbuf_arcbufs[2 * j] =
4567 dmu_request_arcbuf(bonus_db, chunksize / 2);
4568 bigbuf_arcbufs[2 * j + 1] =
4569 dmu_request_arcbuf(bonus_db, chunksize / 2);
4570 }
4571 }
4572
4573 /*
4574 * Get a tx for the mods to both packobj and bigobj.
4575 */
4576 tx = dmu_tx_create(os);
4577
4578 dmu_tx_hold_write(tx, packobj, packoff, packsize);
4579 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4580
4581 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4582 if (txg == 0) {
4583 umem_free(packbuf, packsize);
4584 umem_free(bigbuf, bigsize);
4585 for (j = 0; j < s; j++) {
4586 if (i != 5 ||
4587 chunksize < (SPA_MINBLOCKSIZE * 2)) {
4588 dmu_return_arcbuf(bigbuf_arcbufs[j]);
4589 } else {
4590 dmu_return_arcbuf(
4591 bigbuf_arcbufs[2 * j]);
4592 dmu_return_arcbuf(
4593 bigbuf_arcbufs[2 * j + 1]);
4594 }
4595 }
4596 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4597 dmu_buf_rele(bonus_db, FTAG);
4598 return;
4599 }
4600
4601 /*
4602 * 50% of the time don't read objects in the 1st iteration to
4603 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
4604 * no existing dbufs for the specified offsets.
4605 */
4606 if (i != 0 || ztest_random(2) != 0) {
4607 error = dmu_read(os, packobj, packoff,
4608 packsize, packbuf, DMU_READ_PREFETCH);
4609 ASSERT0(error);
4610 error = dmu_read(os, bigobj, bigoff, bigsize,
4611 bigbuf, DMU_READ_PREFETCH);
4612 ASSERT0(error);
4613 }
4614 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
4615 n, chunksize, txg);
4616
4617 /*
4618 * We've verified all the old bufwads, and made new ones.
4619 * Now write them out.
4620 */
4621 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4622 if (ztest_opts.zo_verbose >= 7) {
4623 (void) printf("writing offset %llx size %llx"
4624 " txg %llx\n",
4625 (u_longlong_t)bigoff,
4626 (u_longlong_t)bigsize,
4627 (u_longlong_t)txg);
4628 }
4629 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
4630 dmu_buf_t *dbt;
4631 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4632 bcopy((caddr_t)bigbuf + (off - bigoff),
4633 bigbuf_arcbufs[j]->b_data, chunksize);
4634 } else {
4635 bcopy((caddr_t)bigbuf + (off - bigoff),
4636 bigbuf_arcbufs[2 * j]->b_data,
4637 chunksize / 2);
4638 bcopy((caddr_t)bigbuf + (off - bigoff) +
4639 chunksize / 2,
4640 bigbuf_arcbufs[2 * j + 1]->b_data,
4641 chunksize / 2);
4642 }
4643
4644 if (i == 1) {
4645 VERIFY(dmu_buf_hold(os, bigobj, off,
4646 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
4647 }
4648 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4649 dmu_assign_arcbuf_by_dbuf(bonus_db, off,
4650 bigbuf_arcbufs[j], tx);
4651 } else {
4652 dmu_assign_arcbuf_by_dbuf(bonus_db, off,
4653 bigbuf_arcbufs[2 * j], tx);
4654 dmu_assign_arcbuf_by_dbuf(bonus_db,
4655 off + chunksize / 2,
4656 bigbuf_arcbufs[2 * j + 1], tx);
4657 }
4658 if (i == 1) {
4659 dmu_buf_rele(dbt, FTAG);
4660 }
4661 }
4662 dmu_tx_commit(tx);
4663
4664 /*
4665 * Sanity check the stuff we just wrote.
4666 */
4667 {
4668 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4669 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4670
4671 VERIFY(0 == dmu_read(os, packobj, packoff,
4672 packsize, packcheck, DMU_READ_PREFETCH));
4673 VERIFY(0 == dmu_read(os, bigobj, bigoff,
4674 bigsize, bigcheck, DMU_READ_PREFETCH));
4675
4676 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4677 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4678
4679 umem_free(packcheck, packsize);
4680 umem_free(bigcheck, bigsize);
4681 }
4682 if (i == 2) {
4683 txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
4684 } else if (i == 3) {
4685 txg_wait_synced(dmu_objset_pool(os), 0);
4686 }
4687 }
4688
4689 dmu_buf_rele(bonus_db, FTAG);
4690 umem_free(packbuf, packsize);
4691 umem_free(bigbuf, bigsize);
4692 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4693 }
4694
4695 /* ARGSUSED */
4696 void
ztest_dmu_write_parallel(ztest_ds_t * zd,uint64_t id)4697 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
4698 {
4699 ztest_od_t od[1];
4700 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
4701 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4702
4703 /*
4704 * Have multiple threads write to large offsets in an object
4705 * to verify that parallel writes to an object -- even to the
4706 * same blocks within the object -- doesn't cause any trouble.
4707 */
4708 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER,
4709 0, 0, 0);
4710
4711 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4712 return;
4713
4714 while (ztest_random(10) != 0)
4715 ztest_io(zd, od[0].od_object, offset);
4716 }
4717
4718 void
ztest_dmu_prealloc(ztest_ds_t * zd,uint64_t id)4719 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4720 {
4721 ztest_od_t od[1];
4722 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4723 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4724 uint64_t count = ztest_random(20) + 1;
4725 uint64_t blocksize = ztest_random_blocksize();
4726 void *data;
4727
4728 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize,
4729 0, 0);
4730
4731 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4732 return;
4733
4734 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0)
4735 return;
4736
4737 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize);
4738
4739 data = umem_zalloc(blocksize, UMEM_NOFAIL);
4740
4741 while (ztest_random(count) != 0) {
4742 uint64_t randoff = offset + (ztest_random(count) * blocksize);
4743 if (ztest_write(zd, od[0].od_object, randoff, blocksize,
4744 data) != 0)
4745 break;
4746 while (ztest_random(4) != 0)
4747 ztest_io(zd, od[0].od_object, randoff);
4748 }
4749
4750 umem_free(data, blocksize);
4751 }
4752
4753 /*
4754 * Verify that zap_{create,destroy,add,remove,update} work as expected.
4755 */
4756 #define ZTEST_ZAP_MIN_INTS 1
4757 #define ZTEST_ZAP_MAX_INTS 4
4758 #define ZTEST_ZAP_MAX_PROPS 1000
4759
4760 void
ztest_zap(ztest_ds_t * zd,uint64_t id)4761 ztest_zap(ztest_ds_t *zd, uint64_t id)
4762 {
4763 objset_t *os = zd->zd_os;
4764 ztest_od_t od[1];
4765 uint64_t object;
4766 uint64_t txg, last_txg;
4767 uint64_t value[ZTEST_ZAP_MAX_INTS];
4768 uint64_t zl_ints, zl_intsize, prop;
4769 int i, ints;
4770 dmu_tx_t *tx;
4771 char propname[100], txgname[100];
4772 int error;
4773 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4774
4775 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
4776
4777 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4778 return;
4779
4780 object = od[0].od_object;
4781
4782 /*
4783 * Generate a known hash collision, and verify that
4784 * we can lookup and remove both entries.
4785 */
4786 tx = dmu_tx_create(os);
4787 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4788 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4789 if (txg == 0)
4790 return;
4791 for (i = 0; i < 2; i++) {
4792 value[i] = i;
4793 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4794 1, &value[i], tx));
4795 }
4796 for (i = 0; i < 2; i++) {
4797 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4798 sizeof (uint64_t), 1, &value[i], tx));
4799 VERIFY3U(0, ==,
4800 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4801 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4802 ASSERT3U(zl_ints, ==, 1);
4803 }
4804 for (i = 0; i < 2; i++) {
4805 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4806 }
4807 dmu_tx_commit(tx);
4808
4809 /*
4810 * Generate a buch of random entries.
4811 */
4812 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4813
4814 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4815 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4816 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4817 bzero(value, sizeof (value));
4818 last_txg = 0;
4819
4820 /*
4821 * If these zap entries already exist, validate their contents.
4822 */
4823 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4824 if (error == 0) {
4825 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4826 ASSERT3U(zl_ints, ==, 1);
4827
4828 VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4829 zl_ints, &last_txg) == 0);
4830
4831 VERIFY(zap_length(os, object, propname, &zl_intsize,
4832 &zl_ints) == 0);
4833
4834 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4835 ASSERT3U(zl_ints, ==, ints);
4836
4837 VERIFY(zap_lookup(os, object, propname, zl_intsize,
4838 zl_ints, value) == 0);
4839
4840 for (i = 0; i < ints; i++) {
4841 ASSERT3U(value[i], ==, last_txg + object + i);
4842 }
4843 } else {
4844 ASSERT3U(error, ==, ENOENT);
4845 }
4846
4847 /*
4848 * Atomically update two entries in our zap object.
4849 * The first is named txg_%llu, and contains the txg
4850 * in which the property was last updated. The second
4851 * is named prop_%llu, and the nth element of its value
4852 * should be txg + object + n.
4853 */
4854 tx = dmu_tx_create(os);
4855 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4856 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4857 if (txg == 0)
4858 return;
4859
4860 if (last_txg > txg)
4861 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4862
4863 for (i = 0; i < ints; i++)
4864 value[i] = txg + object + i;
4865
4866 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4867 1, &txg, tx));
4868 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4869 ints, value, tx));
4870
4871 dmu_tx_commit(tx);
4872
4873 /*
4874 * Remove a random pair of entries.
4875 */
4876 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4877 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4878 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4879
4880 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4881
4882 if (error == ENOENT)
4883 return;
4884
4885 ASSERT0(error);
4886
4887 tx = dmu_tx_create(os);
4888 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4889 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4890 if (txg == 0)
4891 return;
4892 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4893 VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4894 dmu_tx_commit(tx);
4895 }
4896
4897 /*
4898 * Testcase to test the upgrading of a microzap to fatzap.
4899 */
4900 void
ztest_fzap(ztest_ds_t * zd,uint64_t id)4901 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4902 {
4903 objset_t *os = zd->zd_os;
4904 ztest_od_t od[1];
4905 uint64_t object, txg;
4906
4907 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
4908
4909 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4910 return;
4911
4912 object = od[0].od_object;
4913
4914 /*
4915 * Add entries to this ZAP and make sure it spills over
4916 * and gets upgraded to a fatzap. Also, since we are adding
4917 * 2050 entries we should see ptrtbl growth and leaf-block split.
4918 */
4919 for (int i = 0; i < 2050; i++) {
4920 char name[ZFS_MAX_DATASET_NAME_LEN];
4921 uint64_t value = i;
4922 dmu_tx_t *tx;
4923 int error;
4924
4925 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4926 id, value);
4927
4928 tx = dmu_tx_create(os);
4929 dmu_tx_hold_zap(tx, object, B_TRUE, name);
4930 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4931 if (txg == 0)
4932 return;
4933 error = zap_add(os, object, name, sizeof (uint64_t), 1,
4934 &value, tx);
4935 ASSERT(error == 0 || error == EEXIST);
4936 dmu_tx_commit(tx);
4937 }
4938 }
4939
4940 /* ARGSUSED */
4941 void
ztest_zap_parallel(ztest_ds_t * zd,uint64_t id)4942 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4943 {
4944 objset_t *os = zd->zd_os;
4945 ztest_od_t od[1];
4946 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4947 dmu_tx_t *tx;
4948 int i, namelen, error;
4949 int micro = ztest_random(2);
4950 char name[20], string_value[20];
4951 void *data;
4952
4953 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER,
4954 0, 0, 0);
4955
4956 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4957 return;
4958
4959 object = od[0].od_object;
4960
4961 /*
4962 * Generate a random name of the form 'xxx.....' where each
4963 * x is a random printable character and the dots are dots.
4964 * There are 94 such characters, and the name length goes from
4965 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4966 */
4967 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4968
4969 for (i = 0; i < 3; i++)
4970 name[i] = '!' + ztest_random('~' - '!' + 1);
4971 for (; i < namelen - 1; i++)
4972 name[i] = '.';
4973 name[i] = '\0';
4974
4975 if ((namelen & 1) || micro) {
4976 wsize = sizeof (txg);
4977 wc = 1;
4978 data = &txg;
4979 } else {
4980 wsize = 1;
4981 wc = namelen;
4982 data = string_value;
4983 }
4984
4985 count = -1ULL;
4986 VERIFY0(zap_count(os, object, &count));
4987 ASSERT(count != -1ULL);
4988
4989 /*
4990 * Select an operation: length, lookup, add, update, remove.
4991 */
4992 i = ztest_random(5);
4993
4994 if (i >= 2) {
4995 tx = dmu_tx_create(os);
4996 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4997 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4998 if (txg == 0)
4999 return;
5000 bcopy(name, string_value, namelen);
5001 } else {
5002 tx = NULL;
5003 txg = 0;
5004 bzero(string_value, namelen);
5005 }
5006
5007 switch (i) {
5008
5009 case 0:
5010 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5011 if (error == 0) {
5012 ASSERT3U(wsize, ==, zl_wsize);
5013 ASSERT3U(wc, ==, zl_wc);
5014 } else {
5015 ASSERT3U(error, ==, ENOENT);
5016 }
5017 break;
5018
5019 case 1:
5020 error = zap_lookup(os, object, name, wsize, wc, data);
5021 if (error == 0) {
5022 if (data == string_value &&
5023 bcmp(name, data, namelen) != 0)
5024 fatal(0, "name '%s' != val '%s' len %d",
5025 name, data, namelen);
5026 } else {
5027 ASSERT3U(error, ==, ENOENT);
5028 }
5029 break;
5030
5031 case 2:
5032 error = zap_add(os, object, name, wsize, wc, data, tx);
5033 ASSERT(error == 0 || error == EEXIST);
5034 break;
5035
5036 case 3:
5037 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
5038 break;
5039
5040 case 4:
5041 error = zap_remove(os, object, name, tx);
5042 ASSERT(error == 0 || error == ENOENT);
5043 break;
5044 }
5045
5046 if (tx != NULL)
5047 dmu_tx_commit(tx);
5048 }
5049
5050 /*
5051 * Commit callback data.
5052 */
5053 typedef struct ztest_cb_data {
5054 list_node_t zcd_node;
5055 uint64_t zcd_txg;
5056 int zcd_expected_err;
5057 boolean_t zcd_added;
5058 boolean_t zcd_called;
5059 spa_t *zcd_spa;
5060 } ztest_cb_data_t;
5061
5062 /* This is the actual commit callback function */
5063 static void
ztest_commit_callback(void * arg,int error)5064 ztest_commit_callback(void *arg, int error)
5065 {
5066 ztest_cb_data_t *data = arg;
5067 uint64_t synced_txg;
5068
5069 VERIFY(data != NULL);
5070 VERIFY3S(data->zcd_expected_err, ==, error);
5071 VERIFY(!data->zcd_called);
5072
5073 synced_txg = spa_last_synced_txg(data->zcd_spa);
5074 if (data->zcd_txg > synced_txg)
5075 fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
5076 ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
5077 synced_txg);
5078
5079 data->zcd_called = B_TRUE;
5080
5081 if (error == ECANCELED) {
5082 ASSERT0(data->zcd_txg);
5083 ASSERT(!data->zcd_added);
5084
5085 /*
5086 * The private callback data should be destroyed here, but
5087 * since we are going to check the zcd_called field after
5088 * dmu_tx_abort(), we will destroy it there.
5089 */
5090 return;
5091 }
5092
5093 /* Was this callback added to the global callback list? */
5094 if (!data->zcd_added)
5095 goto out;
5096
5097 ASSERT3U(data->zcd_txg, !=, 0);
5098
5099 /* Remove our callback from the list */
5100 mutex_enter(&zcl.zcl_callbacks_lock);
5101 list_remove(&zcl.zcl_callbacks, data);
5102 mutex_exit(&zcl.zcl_callbacks_lock);
5103
5104 out:
5105 umem_free(data, sizeof (ztest_cb_data_t));
5106 }
5107
5108 /* Allocate and initialize callback data structure */
5109 static ztest_cb_data_t *
ztest_create_cb_data(objset_t * os,uint64_t txg)5110 ztest_create_cb_data(objset_t *os, uint64_t txg)
5111 {
5112 ztest_cb_data_t *cb_data;
5113
5114 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
5115
5116 cb_data->zcd_txg = txg;
5117 cb_data->zcd_spa = dmu_objset_spa(os);
5118
5119 return (cb_data);
5120 }
5121
5122 /*
5123 * If a number of txgs equal to this threshold have been created after a commit
5124 * callback has been registered but not called, then we assume there is an
5125 * implementation bug.
5126 */
5127 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2)
5128
5129 /*
5130 * Commit callback test.
5131 */
5132 void
ztest_dmu_commit_callbacks(ztest_ds_t * zd,uint64_t id)5133 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
5134 {
5135 objset_t *os = zd->zd_os;
5136 ztest_od_t od[1];
5137 dmu_tx_t *tx;
5138 ztest_cb_data_t *cb_data[3], *tmp_cb;
5139 uint64_t old_txg, txg;
5140 int i, error;
5141
5142 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5143
5144 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
5145 return;
5146
5147 tx = dmu_tx_create(os);
5148
5149 cb_data[0] = ztest_create_cb_data(os, 0);
5150 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
5151
5152 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t));
5153
5154 /* Every once in a while, abort the transaction on purpose */
5155 if (ztest_random(100) == 0)
5156 error = -1;
5157
5158 if (!error)
5159 error = dmu_tx_assign(tx, TXG_NOWAIT);
5160
5161 txg = error ? 0 : dmu_tx_get_txg(tx);
5162
5163 cb_data[0]->zcd_txg = txg;
5164 cb_data[1] = ztest_create_cb_data(os, txg);
5165 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
5166
5167 if (error) {
5168 /*
5169 * It's not a strict requirement to call the registered
5170 * callbacks from inside dmu_tx_abort(), but that's what
5171 * it's supposed to happen in the current implementation
5172 * so we will check for that.
5173 */
5174 for (i = 0; i < 2; i++) {
5175 cb_data[i]->zcd_expected_err = ECANCELED;
5176 VERIFY(!cb_data[i]->zcd_called);
5177 }
5178
5179 dmu_tx_abort(tx);
5180
5181 for (i = 0; i < 2; i++) {
5182 VERIFY(cb_data[i]->zcd_called);
5183 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
5184 }
5185
5186 return;
5187 }
5188
5189 cb_data[2] = ztest_create_cb_data(os, txg);
5190 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
5191
5192 /*
5193 * Read existing data to make sure there isn't a future leak.
5194 */
5195 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t),
5196 &old_txg, DMU_READ_PREFETCH));
5197
5198 if (old_txg > txg)
5199 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
5200 old_txg, txg);
5201
5202 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx);
5203
5204 mutex_enter(&zcl.zcl_callbacks_lock);
5205
5206 /*
5207 * Since commit callbacks don't have any ordering requirement and since
5208 * it is theoretically possible for a commit callback to be called
5209 * after an arbitrary amount of time has elapsed since its txg has been
5210 * synced, it is difficult to reliably determine whether a commit
5211 * callback hasn't been called due to high load or due to a flawed
5212 * implementation.
5213 *
5214 * In practice, we will assume that if after a certain number of txgs a
5215 * commit callback hasn't been called, then most likely there's an
5216 * implementation bug..
5217 */
5218 tmp_cb = list_head(&zcl.zcl_callbacks);
5219 if (tmp_cb != NULL &&
5220 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) {
5221 fatal(0, "Commit callback threshold exceeded, oldest txg: %"
5222 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
5223 }
5224
5225 /*
5226 * Let's find the place to insert our callbacks.
5227 *
5228 * Even though the list is ordered by txg, it is possible for the
5229 * insertion point to not be the end because our txg may already be
5230 * quiescing at this point and other callbacks in the open txg
5231 * (from other objsets) may have sneaked in.
5232 */
5233 tmp_cb = list_tail(&zcl.zcl_callbacks);
5234 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
5235 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
5236
5237 /* Add the 3 callbacks to the list */
5238 for (i = 0; i < 3; i++) {
5239 if (tmp_cb == NULL)
5240 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
5241 else
5242 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
5243 cb_data[i]);
5244
5245 cb_data[i]->zcd_added = B_TRUE;
5246 VERIFY(!cb_data[i]->zcd_called);
5247
5248 tmp_cb = cb_data[i];
5249 }
5250
5251 mutex_exit(&zcl.zcl_callbacks_lock);
5252
5253 dmu_tx_commit(tx);
5254 }
5255
5256 /*
5257 * Visit each object in the dataset. Verify that its properties
5258 * are consistent what was stored in the block tag when it was created,
5259 * and that its unused bonus buffer space has not been overwritten.
5260 */
5261 void
ztest_verify_dnode_bt(ztest_ds_t * zd,uint64_t id)5262 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
5263 {
5264 objset_t *os = zd->zd_os;
5265 uint64_t obj;
5266 int err = 0;
5267
5268 for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
5269 ztest_block_tag_t *bt = NULL;
5270 dmu_object_info_t doi;
5271 dmu_buf_t *db;
5272
5273 if (dmu_bonus_hold(os, obj, FTAG, &db) != 0)
5274 continue;
5275
5276 dmu_object_info_from_db(db, &doi);
5277 if (doi.doi_bonus_size >= sizeof (*bt))
5278 bt = ztest_bt_bonus(db);
5279
5280 if (bt && bt->bt_magic == BT_MAGIC) {
5281 ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
5282 bt->bt_offset, bt->bt_gen, bt->bt_txg,
5283 bt->bt_crtxg);
5284 ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
5285 }
5286
5287 dmu_buf_rele(db, FTAG);
5288 }
5289 }
5290
5291 /* ARGSUSED */
5292 void
ztest_dsl_prop_get_set(ztest_ds_t * zd,uint64_t id)5293 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
5294 {
5295 zfs_prop_t proplist[] = {
5296 ZFS_PROP_CHECKSUM,
5297 ZFS_PROP_COMPRESSION,
5298 ZFS_PROP_COPIES,
5299 ZFS_PROP_DEDUP
5300 };
5301
5302 rw_enter(&ztest_name_lock, RW_READER);
5303
5304 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
5305 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
5306 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
5307
5308 rw_exit(&ztest_name_lock);
5309 }
5310
5311 /* ARGSUSED */
5312 void
ztest_remap_blocks(ztest_ds_t * zd,uint64_t id)5313 ztest_remap_blocks(ztest_ds_t *zd, uint64_t id)
5314 {
5315 rw_enter(&ztest_name_lock, RW_READER);
5316
5317 int error = dmu_objset_remap_indirects(zd->zd_name);
5318 if (error == ENOSPC)
5319 error = 0;
5320 ASSERT0(error);
5321
5322 rw_exit(&ztest_name_lock);
5323 }
5324
5325 /* ARGSUSED */
5326 void
ztest_spa_prop_get_set(ztest_ds_t * zd,uint64_t id)5327 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
5328 {
5329 nvlist_t *props = NULL;
5330
5331 rw_enter(&ztest_name_lock, RW_READER);
5332
5333 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
5334 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
5335
5336 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
5337
5338 VERIFY0(spa_prop_get(ztest_spa, &props));
5339
5340 if (ztest_opts.zo_verbose >= 6)
5341 dump_nvlist(props, 4);
5342
5343 nvlist_free(props);
5344
5345 rw_exit(&ztest_name_lock);
5346 }
5347
5348 void
ztest_fletcher(ztest_ds_t * zd,uint64_t id)5349 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
5350 {
5351 hrtime_t end = gethrtime() + NANOSEC;
5352
5353 while (gethrtime() <= end) {
5354 int run_count = 100;
5355 void *buf;
5356 struct abd *abd_data, *abd_meta;
5357 uint32_t size;
5358 uint_t *ptr;
5359 int i;
5360 zio_cksum_t zc_ref;
5361 zio_cksum_t zc_ref_byteswap;
5362
5363 size = ztest_random_blocksize();
5364
5365 buf = umem_alloc(size, UMEM_NOFAIL);
5366 abd_data = abd_alloc(size, B_FALSE);
5367 abd_meta = abd_alloc(size, B_TRUE);
5368
5369 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
5370 *ptr = ztest_random(UINT_MAX);
5371
5372 abd_copy_from_buf_off(abd_data, buf, 0, size);
5373 abd_copy_from_buf_off(abd_meta, buf, 0, size);
5374
5375 VERIFY0(fletcher_4_impl_set("scalar"));
5376 fletcher_4_native(buf, size, NULL, &zc_ref);
5377 fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
5378
5379 VERIFY0(fletcher_4_impl_set("cycle"));
5380 while (run_count-- > 0) {
5381 zio_cksum_t zc;
5382 zio_cksum_t zc_byteswap;
5383
5384 fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
5385 fletcher_4_native(buf, size, NULL, &zc);
5386
5387 VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
5388 VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
5389 sizeof (zc_byteswap)));
5390
5391 /* Test ABD - data */
5392 abd_fletcher_4_byteswap(abd_data, size, NULL,
5393 &zc_byteswap);
5394 abd_fletcher_4_native(abd_data, size, NULL, &zc);
5395
5396 VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
5397 VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
5398 sizeof (zc_byteswap)));
5399
5400 /* Test ABD - metadata */
5401 abd_fletcher_4_byteswap(abd_meta, size, NULL,
5402 &zc_byteswap);
5403 abd_fletcher_4_native(abd_meta, size, NULL, &zc);
5404
5405 VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
5406 VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
5407 sizeof (zc_byteswap)));
5408
5409 }
5410
5411 umem_free(buf, size);
5412 abd_free(abd_data);
5413 abd_free(abd_meta);
5414 }
5415 }
5416
5417 void
ztest_fletcher_incr(ztest_ds_t * zd,uint64_t id)5418 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
5419 {
5420 void *buf;
5421 size_t size;
5422 uint_t *ptr;
5423 int i;
5424 zio_cksum_t zc_ref;
5425 zio_cksum_t zc_ref_bswap;
5426
5427 hrtime_t end = gethrtime() + NANOSEC;
5428
5429 while (gethrtime() <= end) {
5430 int run_count = 100;
5431
5432 size = ztest_random_blocksize();
5433 buf = umem_alloc(size, UMEM_NOFAIL);
5434
5435 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
5436 *ptr = ztest_random(UINT_MAX);
5437
5438 VERIFY0(fletcher_4_impl_set("scalar"));
5439 fletcher_4_native(buf, size, NULL, &zc_ref);
5440 fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
5441
5442 VERIFY0(fletcher_4_impl_set("cycle"));
5443
5444 while (run_count-- > 0) {
5445 zio_cksum_t zc;
5446 zio_cksum_t zc_bswap;
5447 size_t pos = 0;
5448
5449 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
5450 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
5451
5452 while (pos < size) {
5453 size_t inc = 64 * ztest_random(size / 67);
5454 /* sometimes add few bytes to test non-simd */
5455 if (ztest_random(100) < 10)
5456 inc += P2ALIGN(ztest_random(64),
5457 sizeof (uint32_t));
5458
5459 if (inc > (size - pos))
5460 inc = size - pos;
5461
5462 fletcher_4_incremental_native(buf + pos, inc,
5463 &zc);
5464 fletcher_4_incremental_byteswap(buf + pos, inc,
5465 &zc_bswap);
5466
5467 pos += inc;
5468 }
5469
5470 VERIFY3U(pos, ==, size);
5471
5472 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
5473 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
5474
5475 /*
5476 * verify if incremental on the whole buffer is
5477 * equivalent to non-incremental version
5478 */
5479 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
5480 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
5481
5482 fletcher_4_incremental_native(buf, size, &zc);
5483 fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
5484
5485 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
5486 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
5487 }
5488
5489 umem_free(buf, size);
5490 }
5491 }
5492
5493 static int
user_release_one(const char * snapname,const char * holdname)5494 user_release_one(const char *snapname, const char *holdname)
5495 {
5496 nvlist_t *snaps, *holds;
5497 int error;
5498
5499 snaps = fnvlist_alloc();
5500 holds = fnvlist_alloc();
5501 fnvlist_add_boolean(holds, holdname);
5502 fnvlist_add_nvlist(snaps, snapname, holds);
5503 fnvlist_free(holds);
5504 error = dsl_dataset_user_release(snaps, NULL);
5505 fnvlist_free(snaps);
5506 return (error);
5507 }
5508
5509 /*
5510 * Test snapshot hold/release and deferred destroy.
5511 */
5512 void
ztest_dmu_snapshot_hold(ztest_ds_t * zd,uint64_t id)5513 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
5514 {
5515 int error;
5516 objset_t *os = zd->zd_os;
5517 objset_t *origin;
5518 char snapname[100];
5519 char fullname[100];
5520 char clonename[100];
5521 char tag[100];
5522 char osname[ZFS_MAX_DATASET_NAME_LEN];
5523 nvlist_t *holds;
5524
5525 rw_enter(&ztest_name_lock, RW_READER);
5526
5527 dmu_objset_name(os, osname);
5528
5529 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id);
5530 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
5531 (void) snprintf(clonename, sizeof (clonename),
5532 "%s/ch1_%llu", osname, id);
5533 (void) snprintf(tag, sizeof (tag), "tag_%llu", id);
5534
5535 /*
5536 * Clean up from any previous run.
5537 */
5538 error = dsl_destroy_head(clonename);
5539 if (error != ENOENT)
5540 ASSERT0(error);
5541 error = user_release_one(fullname, tag);
5542 if (error != ESRCH && error != ENOENT)
5543 ASSERT0(error);
5544 error = dsl_destroy_snapshot(fullname, B_FALSE);
5545 if (error != ENOENT)
5546 ASSERT0(error);
5547
5548 /*
5549 * Create snapshot, clone it, mark snap for deferred destroy,
5550 * destroy clone, verify snap was also destroyed.
5551 */
5552 error = dmu_objset_snapshot_one(osname, snapname);
5553 if (error) {
5554 if (error == ENOSPC) {
5555 ztest_record_enospc("dmu_objset_snapshot");
5556 goto out;
5557 }
5558 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5559 }
5560
5561 error = dmu_objset_clone(clonename, fullname);
5562 if (error) {
5563 if (error == ENOSPC) {
5564 ztest_record_enospc("dmu_objset_clone");
5565 goto out;
5566 }
5567 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
5568 }
5569
5570 error = dsl_destroy_snapshot(fullname, B_TRUE);
5571 if (error) {
5572 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5573 fullname, error);
5574 }
5575
5576 error = dsl_destroy_head(clonename);
5577 if (error)
5578 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
5579
5580 error = dmu_objset_hold(fullname, FTAG, &origin);
5581 if (error != ENOENT)
5582 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
5583
5584 /*
5585 * Create snapshot, add temporary hold, verify that we can't
5586 * destroy a held snapshot, mark for deferred destroy,
5587 * release hold, verify snapshot was destroyed.
5588 */
5589 error = dmu_objset_snapshot_one(osname, snapname);
5590 if (error) {
5591 if (error == ENOSPC) {
5592 ztest_record_enospc("dmu_objset_snapshot");
5593 goto out;
5594 }
5595 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5596 }
5597
5598 holds = fnvlist_alloc();
5599 fnvlist_add_string(holds, fullname, tag);
5600 error = dsl_dataset_user_hold(holds, 0, NULL);
5601 fnvlist_free(holds);
5602
5603 if (error == ENOSPC) {
5604 ztest_record_enospc("dsl_dataset_user_hold");
5605 goto out;
5606 } else if (error) {
5607 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
5608 fullname, tag, error);
5609 }
5610
5611 error = dsl_destroy_snapshot(fullname, B_FALSE);
5612 if (error != EBUSY) {
5613 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
5614 fullname, error);
5615 }
5616
5617 error = dsl_destroy_snapshot(fullname, B_TRUE);
5618 if (error) {
5619 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5620 fullname, error);
5621 }
5622
5623 error = user_release_one(fullname, tag);
5624 if (error)
5625 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
5626
5627 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
5628
5629 out:
5630 rw_exit(&ztest_name_lock);
5631 }
5632
5633 /*
5634 * Inject random faults into the on-disk data.
5635 */
5636 /* ARGSUSED */
5637 void
ztest_fault_inject(ztest_ds_t * zd,uint64_t id)5638 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
5639 {
5640 ztest_shared_t *zs = ztest_shared;
5641 spa_t *spa = ztest_spa;
5642 int fd;
5643 uint64_t offset;
5644 uint64_t leaves;
5645 uint64_t bad = 0x1990c0ffeedecade;
5646 uint64_t top, leaf;
5647 char path0[MAXPATHLEN];
5648 char pathrand[MAXPATHLEN];
5649 size_t fsize;
5650 int bshift = SPA_MAXBLOCKSHIFT + 2;
5651 int iters = 1000;
5652 int maxfaults;
5653 int mirror_save;
5654 vdev_t *vd0 = NULL;
5655 uint64_t guid0 = 0;
5656 boolean_t islog = B_FALSE;
5657
5658 mutex_enter(&ztest_vdev_lock);
5659
5660 /*
5661 * Device removal is in progress, fault injection must be disabled
5662 * until it completes and the pool is scrubbed. The fault injection
5663 * strategy for damaging blocks does not take in to account evacuated
5664 * blocks which may have already been damaged.
5665 */
5666 if (ztest_device_removal_active) {
5667 mutex_exit(&ztest_vdev_lock);
5668 return;
5669 }
5670
5671 maxfaults = MAXFAULTS();
5672 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
5673 mirror_save = zs->zs_mirrors;
5674 mutex_exit(&ztest_vdev_lock);
5675
5676 ASSERT(leaves >= 1);
5677
5678 /*
5679 * Grab the name lock as reader. There are some operations
5680 * which don't like to have their vdevs changed while
5681 * they are in progress (i.e. spa_change_guid). Those
5682 * operations will have grabbed the name lock as writer.
5683 */
5684 rw_enter(&ztest_name_lock, RW_READER);
5685
5686 /*
5687 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
5688 */
5689 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5690
5691 if (ztest_random(2) == 0) {
5692 /*
5693 * Inject errors on a normal data device or slog device.
5694 */
5695 top = ztest_random_vdev_top(spa, B_TRUE);
5696 leaf = ztest_random(leaves) + zs->zs_splits;
5697
5698 /*
5699 * Generate paths to the first leaf in this top-level vdev,
5700 * and to the random leaf we selected. We'll induce transient
5701 * write failures and random online/offline activity on leaf 0,
5702 * and we'll write random garbage to the randomly chosen leaf.
5703 */
5704 (void) snprintf(path0, sizeof (path0), ztest_dev_template,
5705 ztest_opts.zo_dir, ztest_opts.zo_pool,
5706 top * leaves + zs->zs_splits);
5707 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
5708 ztest_opts.zo_dir, ztest_opts.zo_pool,
5709 top * leaves + leaf);
5710
5711 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
5712 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
5713 islog = B_TRUE;
5714
5715 /*
5716 * If the top-level vdev needs to be resilvered
5717 * then we only allow faults on the device that is
5718 * resilvering.
5719 */
5720 if (vd0 != NULL && maxfaults != 1 &&
5721 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
5722 vd0->vdev_resilver_txg != 0)) {
5723 /*
5724 * Make vd0 explicitly claim to be unreadable,
5725 * or unwriteable, or reach behind its back
5726 * and close the underlying fd. We can do this if
5727 * maxfaults == 0 because we'll fail and reexecute,
5728 * and we can do it if maxfaults >= 2 because we'll
5729 * have enough redundancy. If maxfaults == 1, the
5730 * combination of this with injection of random data
5731 * corruption below exceeds the pool's fault tolerance.
5732 */
5733 vdev_file_t *vf = vd0->vdev_tsd;
5734
5735 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
5736 (long long)vd0->vdev_id, (int)maxfaults);
5737
5738 if (vf != NULL && ztest_random(3) == 0) {
5739 (void) close(vf->vf_vnode->v_fd);
5740 vf->vf_vnode->v_fd = -1;
5741 } else if (ztest_random(2) == 0) {
5742 vd0->vdev_cant_read = B_TRUE;
5743 } else {
5744 vd0->vdev_cant_write = B_TRUE;
5745 }
5746 guid0 = vd0->vdev_guid;
5747 }
5748 } else {
5749 /*
5750 * Inject errors on an l2cache device.
5751 */
5752 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5753
5754 if (sav->sav_count == 0) {
5755 spa_config_exit(spa, SCL_STATE, FTAG);
5756 rw_exit(&ztest_name_lock);
5757 return;
5758 }
5759 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
5760 guid0 = vd0->vdev_guid;
5761 (void) strcpy(path0, vd0->vdev_path);
5762 (void) strcpy(pathrand, vd0->vdev_path);
5763
5764 leaf = 0;
5765 leaves = 1;
5766 maxfaults = INT_MAX; /* no limit on cache devices */
5767 }
5768
5769 spa_config_exit(spa, SCL_STATE, FTAG);
5770 rw_exit(&ztest_name_lock);
5771
5772 /*
5773 * If we can tolerate two or more faults, or we're dealing
5774 * with a slog, randomly online/offline vd0.
5775 */
5776 if ((maxfaults >= 2 || islog) && guid0 != 0) {
5777 if (ztest_random(10) < 6) {
5778 int flags = (ztest_random(2) == 0 ?
5779 ZFS_OFFLINE_TEMPORARY : 0);
5780
5781 /*
5782 * We have to grab the zs_name_lock as writer to
5783 * prevent a race between offlining a slog and
5784 * destroying a dataset. Offlining the slog will
5785 * grab a reference on the dataset which may cause
5786 * dmu_objset_destroy() to fail with EBUSY thus
5787 * leaving the dataset in an inconsistent state.
5788 */
5789 if (islog)
5790 rw_enter(&ztest_name_lock, RW_WRITER);
5791
5792 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
5793
5794 if (islog)
5795 rw_exit(&ztest_name_lock);
5796 } else {
5797 /*
5798 * Ideally we would like to be able to randomly
5799 * call vdev_[on|off]line without holding locks
5800 * to force unpredictable failures but the side
5801 * effects of vdev_[on|off]line prevent us from
5802 * doing so. We grab the ztest_vdev_lock here to
5803 * prevent a race between injection testing and
5804 * aux_vdev removal.
5805 */
5806 mutex_enter(&ztest_vdev_lock);
5807 (void) vdev_online(spa, guid0, 0, NULL);
5808 mutex_exit(&ztest_vdev_lock);
5809 }
5810 }
5811
5812 if (maxfaults == 0)
5813 return;
5814
5815 /*
5816 * We have at least single-fault tolerance, so inject data corruption.
5817 */
5818 fd = open(pathrand, O_RDWR);
5819
5820 if (fd == -1) /* we hit a gap in the device namespace */
5821 return;
5822
5823 fsize = lseek(fd, 0, SEEK_END);
5824
5825 while (--iters != 0) {
5826 /*
5827 * The offset must be chosen carefully to ensure that
5828 * we do not inject a given logical block with errors
5829 * on two different leaf devices, because ZFS can not
5830 * tolerate that (if maxfaults==1).
5831 *
5832 * We divide each leaf into chunks of size
5833 * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk
5834 * there is a series of ranges to which we can inject errors.
5835 * Each range can accept errors on only a single leaf vdev.
5836 * The error injection ranges are separated by ranges
5837 * which we will not inject errors on any device (DMZs).
5838 * Each DMZ must be large enough such that a single block
5839 * can not straddle it, so that a single block can not be
5840 * a target in two different injection ranges (on different
5841 * leaf vdevs).
5842 *
5843 * For example, with 3 leaves, each chunk looks like:
5844 * 0 to 32M: injection range for leaf 0
5845 * 32M to 64M: DMZ - no injection allowed
5846 * 64M to 96M: injection range for leaf 1
5847 * 96M to 128M: DMZ - no injection allowed
5848 * 128M to 160M: injection range for leaf 2
5849 * 160M to 192M: DMZ - no injection allowed
5850 */
5851 offset = ztest_random(fsize / (leaves << bshift)) *
5852 (leaves << bshift) + (leaf << bshift) +
5853 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
5854
5855 /*
5856 * Only allow damage to the labels at one end of the vdev.
5857 *
5858 * If all labels are damaged, the device will be totally
5859 * inaccessible, which will result in loss of data,
5860 * because we also damage (parts of) the other side of
5861 * the mirror/raidz.
5862 *
5863 * Additionally, we will always have both an even and an
5864 * odd label, so that we can handle crashes in the
5865 * middle of vdev_config_sync().
5866 */
5867 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
5868 continue;
5869
5870 /*
5871 * The two end labels are stored at the "end" of the disk, but
5872 * the end of the disk (vdev_psize) is aligned to
5873 * sizeof (vdev_label_t).
5874 */
5875 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
5876 if ((leaf & 1) == 1 &&
5877 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
5878 continue;
5879
5880 mutex_enter(&ztest_vdev_lock);
5881 if (mirror_save != zs->zs_mirrors) {
5882 mutex_exit(&ztest_vdev_lock);
5883 (void) close(fd);
5884 return;
5885 }
5886
5887 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
5888 fatal(1, "can't inject bad word at 0x%llx in %s",
5889 offset, pathrand);
5890
5891 mutex_exit(&ztest_vdev_lock);
5892
5893 if (ztest_opts.zo_verbose >= 7)
5894 (void) printf("injected bad word into %s,"
5895 " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
5896 }
5897
5898 (void) close(fd);
5899 }
5900
5901 /*
5902 * Verify that DDT repair works as expected.
5903 */
5904 void
ztest_ddt_repair(ztest_ds_t * zd,uint64_t id)5905 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
5906 {
5907 ztest_shared_t *zs = ztest_shared;
5908 spa_t *spa = ztest_spa;
5909 objset_t *os = zd->zd_os;
5910 ztest_od_t od[1];
5911 uint64_t object, blocksize, txg, pattern, psize;
5912 enum zio_checksum checksum = spa_dedup_checksum(spa);
5913 dmu_buf_t *db;
5914 dmu_tx_t *tx;
5915 abd_t *abd;
5916 blkptr_t blk;
5917 int copies = 2 * ZIO_DEDUPDITTO_MIN;
5918
5919 blocksize = ztest_random_blocksize();
5920 blocksize = MIN(blocksize, 2048); /* because we write so many */
5921
5922 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize,
5923 0, 0);
5924
5925 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
5926 return;
5927
5928 /*
5929 * Take the name lock as writer to prevent anyone else from changing
5930 * the pool and dataset properies we need to maintain during this test.
5931 */
5932 rw_enter(&ztest_name_lock, RW_WRITER);
5933
5934 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
5935 B_FALSE) != 0 ||
5936 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
5937 B_FALSE) != 0) {
5938 rw_exit(&ztest_name_lock);
5939 return;
5940 }
5941
5942 dmu_objset_stats_t dds;
5943 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5944 dmu_objset_fast_stat(os, &dds);
5945 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5946
5947 object = od[0].od_object;
5948 blocksize = od[0].od_blocksize;
5949 pattern = zs->zs_guid ^ dds.dds_guid;
5950
5951 ASSERT(object != 0);
5952
5953 tx = dmu_tx_create(os);
5954 dmu_tx_hold_write(tx, object, 0, copies * blocksize);
5955 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
5956 if (txg == 0) {
5957 rw_exit(&ztest_name_lock);
5958 return;
5959 }
5960
5961 /*
5962 * Write all the copies of our block.
5963 */
5964 for (int i = 0; i < copies; i++) {
5965 uint64_t offset = i * blocksize;
5966 int error = dmu_buf_hold(os, object, offset, FTAG, &db,
5967 DMU_READ_NO_PREFETCH);
5968 if (error != 0) {
5969 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
5970 os, (long long)object, (long long) offset, error);
5971 }
5972 ASSERT(db->db_offset == offset);
5973 ASSERT(db->db_size == blocksize);
5974 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
5975 ztest_pattern_match(db->db_data, db->db_size, 0ULL));
5976 dmu_buf_will_fill(db, tx);
5977 ztest_pattern_set(db->db_data, db->db_size, pattern);
5978 dmu_buf_rele(db, FTAG);
5979 }
5980
5981 dmu_tx_commit(tx);
5982 txg_wait_synced(spa_get_dsl(spa), txg);
5983
5984 /*
5985 * Find out what block we got.
5986 */
5987 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
5988 DMU_READ_NO_PREFETCH));
5989 blk = *((dmu_buf_impl_t *)db)->db_blkptr;
5990 dmu_buf_rele(db, FTAG);
5991
5992 /*
5993 * Damage the block. Dedup-ditto will save us when we read it later.
5994 */
5995 psize = BP_GET_PSIZE(&blk);
5996 abd = abd_alloc_linear(psize, B_TRUE);
5997 ztest_pattern_set(abd_to_buf(abd), psize, ~pattern);
5998
5999 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
6000 abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
6001 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
6002
6003 abd_free(abd);
6004
6005 rw_exit(&ztest_name_lock);
6006 }
6007
6008 /*
6009 * Scrub the pool.
6010 */
6011 /* ARGSUSED */
6012 void
ztest_scrub(ztest_ds_t * zd,uint64_t id)6013 ztest_scrub(ztest_ds_t *zd, uint64_t id)
6014 {
6015 spa_t *spa = ztest_spa;
6016
6017 /*
6018 * Scrub in progress by device removal.
6019 */
6020 if (ztest_device_removal_active)
6021 return;
6022
6023 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6024 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
6025 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6026 }
6027
6028 /*
6029 * Change the guid for the pool.
6030 */
6031 /* ARGSUSED */
6032 void
ztest_reguid(ztest_ds_t * zd,uint64_t id)6033 ztest_reguid(ztest_ds_t *zd, uint64_t id)
6034 {
6035 spa_t *spa = ztest_spa;
6036 uint64_t orig, load;
6037 int error;
6038
6039 if (ztest_opts.zo_mmp_test)
6040 return;
6041
6042 orig = spa_guid(spa);
6043 load = spa_load_guid(spa);
6044
6045 rw_enter(&ztest_name_lock, RW_WRITER);
6046 error = spa_change_guid(spa);
6047 rw_exit(&ztest_name_lock);
6048
6049 if (error != 0)
6050 return;
6051
6052 if (ztest_opts.zo_verbose >= 4) {
6053 (void) printf("Changed guid old %llu -> %llu\n",
6054 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
6055 }
6056
6057 VERIFY3U(orig, !=, spa_guid(spa));
6058 VERIFY3U(load, ==, spa_load_guid(spa));
6059 }
6060
6061 static vdev_t *
ztest_random_concrete_vdev_leaf(vdev_t * vd)6062 ztest_random_concrete_vdev_leaf(vdev_t *vd)
6063 {
6064 if (vd == NULL)
6065 return (NULL);
6066
6067 if (vd->vdev_children == 0)
6068 return (vd);
6069
6070 vdev_t *eligible[vd->vdev_children];
6071 int eligible_idx = 0, i;
6072 for (i = 0; i < vd->vdev_children; i++) {
6073 vdev_t *cvd = vd->vdev_child[i];
6074 if (cvd->vdev_top->vdev_removing)
6075 continue;
6076 if (cvd->vdev_children > 0 ||
6077 (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
6078 eligible[eligible_idx++] = cvd;
6079 }
6080 }
6081 VERIFY(eligible_idx > 0);
6082
6083 uint64_t child_no = ztest_random(eligible_idx);
6084 return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
6085 }
6086
6087 /* ARGSUSED */
6088 void
ztest_initialize(ztest_ds_t * zd,uint64_t id)6089 ztest_initialize(ztest_ds_t *zd, uint64_t id)
6090 {
6091 spa_t *spa = ztest_spa;
6092 int error = 0;
6093
6094 mutex_enter(&ztest_vdev_lock);
6095
6096 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6097
6098 /* Random leaf vdev */
6099 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
6100 if (rand_vd == NULL) {
6101 spa_config_exit(spa, SCL_VDEV, FTAG);
6102 mutex_exit(&ztest_vdev_lock);
6103 return;
6104 }
6105
6106 /*
6107 * The random vdev we've selected may change as soon as we
6108 * drop the spa_config_lock. We create local copies of things
6109 * we're interested in.
6110 */
6111 uint64_t guid = rand_vd->vdev_guid;
6112 char *path = strdup(rand_vd->vdev_path);
6113 boolean_t active = rand_vd->vdev_initialize_thread != NULL;
6114
6115 zfs_dbgmsg("vd %p, guid %llu", rand_vd, guid);
6116 spa_config_exit(spa, SCL_VDEV, FTAG);
6117
6118 uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
6119
6120 nvlist_t *vdev_guids = fnvlist_alloc();
6121 nvlist_t *vdev_errlist = fnvlist_alloc();
6122 fnvlist_add_uint64(vdev_guids, path, guid);
6123 error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
6124 fnvlist_free(vdev_guids);
6125 fnvlist_free(vdev_errlist);
6126
6127 switch (cmd) {
6128 case POOL_INITIALIZE_CANCEL:
6129 if (ztest_opts.zo_verbose >= 4) {
6130 (void) printf("Cancel initialize %s", path);
6131 if (!active)
6132 (void) printf(" failed (no initialize active)");
6133 (void) printf("\n");
6134 }
6135 break;
6136 case POOL_INITIALIZE_START:
6137 if (ztest_opts.zo_verbose >= 4) {
6138 (void) printf("Start initialize %s", path);
6139 if (active && error == 0)
6140 (void) printf(" failed (already active)");
6141 else if (error != 0)
6142 (void) printf(" failed (error %d)", error);
6143 (void) printf("\n");
6144 }
6145 break;
6146 case POOL_INITIALIZE_SUSPEND:
6147 if (ztest_opts.zo_verbose >= 4) {
6148 (void) printf("Suspend initialize %s", path);
6149 if (!active)
6150 (void) printf(" failed (no initialize active)");
6151 (void) printf("\n");
6152 }
6153 break;
6154 }
6155 free(path);
6156 mutex_exit(&ztest_vdev_lock);
6157 }
6158
6159 /* ARGSUSED */
6160 void
ztest_trim(ztest_ds_t * zd,uint64_t id)6161 ztest_trim(ztest_ds_t *zd, uint64_t id)
6162 {
6163 spa_t *spa = ztest_spa;
6164 int error = 0;
6165
6166 mutex_enter(&ztest_vdev_lock);
6167
6168 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6169
6170 /* Random leaf vdev */
6171 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
6172 if (rand_vd == NULL) {
6173 spa_config_exit(spa, SCL_VDEV, FTAG);
6174 mutex_exit(&ztest_vdev_lock);
6175 return;
6176 }
6177
6178 /*
6179 * The random vdev we've selected may change as soon as we
6180 * drop the spa_config_lock. We create local copies of things
6181 * we're interested in.
6182 */
6183 uint64_t guid = rand_vd->vdev_guid;
6184 char *path = strdup(rand_vd->vdev_path);
6185 boolean_t active = rand_vd->vdev_trim_thread != NULL;
6186
6187 zfs_dbgmsg("vd %p, guid %llu", rand_vd, guid);
6188 spa_config_exit(spa, SCL_VDEV, FTAG);
6189
6190 uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
6191 uint64_t rate = 1 << ztest_random(30);
6192 boolean_t partial = (ztest_random(5) > 0);
6193 boolean_t secure = (ztest_random(5) > 0);
6194
6195 nvlist_t *vdev_guids = fnvlist_alloc();
6196 nvlist_t *vdev_errlist = fnvlist_alloc();
6197 fnvlist_add_uint64(vdev_guids, path, guid);
6198 error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
6199 secure, vdev_errlist);
6200 fnvlist_free(vdev_guids);
6201 fnvlist_free(vdev_errlist);
6202
6203 switch (cmd) {
6204 case POOL_TRIM_CANCEL:
6205 if (ztest_opts.zo_verbose >= 4) {
6206 (void) printf("Cancel TRIM %s", path);
6207 if (!active)
6208 (void) printf(" failed (no TRIM active)");
6209 (void) printf("\n");
6210 }
6211 break;
6212 case POOL_TRIM_START:
6213 if (ztest_opts.zo_verbose >= 4) {
6214 (void) printf("Start TRIM %s", path);
6215 if (active && error == 0)
6216 (void) printf(" failed (already active)");
6217 else if (error != 0)
6218 (void) printf(" failed (error %d)", error);
6219 (void) printf("\n");
6220 }
6221 break;
6222 case POOL_TRIM_SUSPEND:
6223 if (ztest_opts.zo_verbose >= 4) {
6224 (void) printf("Suspend TRIM %s", path);
6225 if (!active)
6226 (void) printf(" failed (no TRIM active)");
6227 (void) printf("\n");
6228 }
6229 break;
6230 }
6231 free(path);
6232 mutex_exit(&ztest_vdev_lock);
6233 }
6234
6235 /*
6236 * Verify pool integrity by running zdb.
6237 */
6238 static void
ztest_run_zdb(char * pool)6239 ztest_run_zdb(char *pool)
6240 {
6241 int status;
6242 char zdb[MAXPATHLEN + MAXNAMELEN + 20];
6243 char zbuf[1024];
6244 FILE *fp;
6245
6246 (void) snprintf(zdb, sizeof (zdb),
6247 "/usr/sbin/zdb -bcc%s%s -G -d -U %s "
6248 "-o zfs_reconstruct_indirect_combinations_max=65536 %s",
6249 ztest_opts.zo_verbose >= 3 ? "s" : "",
6250 ztest_opts.zo_verbose >= 4 ? "v" : "",
6251 spa_config_path,
6252 pool);
6253
6254 if (ztest_opts.zo_verbose >= 5)
6255 (void) printf("Executing %s\n", strstr(zdb, "zdb "));
6256
6257 fp = popen(zdb, "r");
6258
6259 while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
6260 if (ztest_opts.zo_verbose >= 3)
6261 (void) printf("%s", zbuf);
6262
6263 status = pclose(fp);
6264
6265 if (status == 0)
6266 return;
6267
6268 ztest_dump_core = 0;
6269 if (WIFEXITED(status))
6270 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
6271 else
6272 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
6273 }
6274
6275 static void
ztest_walk_pool_directory(char * header)6276 ztest_walk_pool_directory(char *header)
6277 {
6278 spa_t *spa = NULL;
6279
6280 if (ztest_opts.zo_verbose >= 6)
6281 (void) printf("%s\n", header);
6282
6283 mutex_enter(&spa_namespace_lock);
6284 while ((spa = spa_next(spa)) != NULL)
6285 if (ztest_opts.zo_verbose >= 6)
6286 (void) printf("\t%s\n", spa_name(spa));
6287 mutex_exit(&spa_namespace_lock);
6288 }
6289
6290 static void
ztest_spa_import_export(char * oldname,char * newname)6291 ztest_spa_import_export(char *oldname, char *newname)
6292 {
6293 nvlist_t *config, *newconfig;
6294 uint64_t pool_guid;
6295 spa_t *spa;
6296 int error;
6297
6298 if (ztest_opts.zo_verbose >= 4) {
6299 (void) printf("import/export: old = %s, new = %s\n",
6300 oldname, newname);
6301 }
6302
6303 /*
6304 * Clean up from previous runs.
6305 */
6306 (void) spa_destroy(newname);
6307
6308 /*
6309 * Get the pool's configuration and guid.
6310 */
6311 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
6312
6313 /*
6314 * Kick off a scrub to tickle scrub/export races.
6315 */
6316 if (ztest_random(2) == 0)
6317 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6318
6319 pool_guid = spa_guid(spa);
6320 spa_close(spa, FTAG);
6321
6322 ztest_walk_pool_directory("pools before export");
6323
6324 /*
6325 * Export it.
6326 */
6327 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
6328
6329 ztest_walk_pool_directory("pools after export");
6330
6331 /*
6332 * Try to import it.
6333 */
6334 newconfig = spa_tryimport(config);
6335 ASSERT(newconfig != NULL);
6336 nvlist_free(newconfig);
6337
6338 /*
6339 * Import it under the new name.
6340 */
6341 error = spa_import(newname, config, NULL, 0);
6342 if (error != 0) {
6343 dump_nvlist(config, 0);
6344 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
6345 oldname, newname, error);
6346 }
6347
6348 ztest_walk_pool_directory("pools after import");
6349
6350 /*
6351 * Try to import it again -- should fail with EEXIST.
6352 */
6353 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
6354
6355 /*
6356 * Try to import it under a different name -- should fail with EEXIST.
6357 */
6358 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
6359
6360 /*
6361 * Verify that the pool is no longer visible under the old name.
6362 */
6363 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
6364
6365 /*
6366 * Verify that we can open and close the pool using the new name.
6367 */
6368 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
6369 ASSERT(pool_guid == spa_guid(spa));
6370 spa_close(spa, FTAG);
6371
6372 nvlist_free(config);
6373 }
6374
6375 static void
ztest_resume(spa_t * spa)6376 ztest_resume(spa_t *spa)
6377 {
6378 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
6379 (void) printf("resuming from suspended state\n");
6380 spa_vdev_state_enter(spa, SCL_NONE);
6381 vdev_clear(spa, NULL);
6382 (void) spa_vdev_state_exit(spa, NULL, 0);
6383 (void) zio_resume(spa);
6384 }
6385
6386 static void *
ztest_resume_thread(void * arg)6387 ztest_resume_thread(void *arg)
6388 {
6389 spa_t *spa = arg;
6390
6391 while (!ztest_exiting) {
6392 if (spa_suspended(spa))
6393 ztest_resume(spa);
6394 (void) poll(NULL, 0, 100);
6395
6396 /*
6397 * Periodically change the zfs_compressed_arc_enabled setting.
6398 */
6399 if (ztest_random(10) == 0)
6400 zfs_compressed_arc_enabled = ztest_random(2);
6401
6402 /*
6403 * Periodically change the zfs_abd_scatter_enabled setting.
6404 */
6405 if (ztest_random(10) == 0)
6406 zfs_abd_scatter_enabled = ztest_random(2);
6407 }
6408 return (NULL);
6409 }
6410
6411 static void *
ztest_deadman_thread(void * arg)6412 ztest_deadman_thread(void *arg)
6413 {
6414 ztest_shared_t *zs = arg;
6415 spa_t *spa = ztest_spa;
6416 hrtime_t delta, total = 0;
6417
6418 for (;;) {
6419 delta = zs->zs_thread_stop - zs->zs_thread_start +
6420 MSEC2NSEC(zfs_deadman_synctime_ms);
6421
6422 (void) poll(NULL, 0, (int)NSEC2MSEC(delta));
6423
6424 /*
6425 * If the pool is suspended then fail immediately. Otherwise,
6426 * check to see if the pool is making any progress. If
6427 * vdev_deadman() discovers that there hasn't been any recent
6428 * I/Os then it will end up aborting the tests.
6429 */
6430 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
6431 fatal(0, "aborting test after %llu seconds because "
6432 "pool has transitioned to a suspended state.",
6433 zfs_deadman_synctime_ms / 1000);
6434 return (NULL);
6435 }
6436 vdev_deadman(spa->spa_root_vdev);
6437
6438 total += zfs_deadman_synctime_ms/1000;
6439 (void) printf("ztest has been running for %lld seconds\n",
6440 total);
6441 }
6442 }
6443
6444 static void
ztest_execute(int test,ztest_info_t * zi,uint64_t id)6445 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
6446 {
6447 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
6448 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
6449 hrtime_t functime = gethrtime();
6450
6451 for (int i = 0; i < zi->zi_iters; i++)
6452 zi->zi_func(zd, id);
6453
6454 functime = gethrtime() - functime;
6455
6456 atomic_add_64(&zc->zc_count, 1);
6457 atomic_add_64(&zc->zc_time, functime);
6458
6459 if (ztest_opts.zo_verbose >= 4) {
6460 Dl_info dli;
6461 (void) dladdr((void *)zi->zi_func, &dli);
6462 (void) printf("%6.2f sec in %s\n",
6463 (double)functime / NANOSEC, dli.dli_sname);
6464 }
6465 }
6466
6467 static void *
ztest_thread(void * arg)6468 ztest_thread(void *arg)
6469 {
6470 int rand;
6471 uint64_t id = (uintptr_t)arg;
6472 ztest_shared_t *zs = ztest_shared;
6473 uint64_t call_next;
6474 hrtime_t now;
6475 ztest_info_t *zi;
6476 ztest_shared_callstate_t *zc;
6477
6478 while ((now = gethrtime()) < zs->zs_thread_stop) {
6479 /*
6480 * See if it's time to force a crash.
6481 */
6482 if (now > zs->zs_thread_kill)
6483 ztest_kill(zs);
6484
6485 /*
6486 * If we're getting ENOSPC with some regularity, stop.
6487 */
6488 if (zs->zs_enospc_count > 10)
6489 break;
6490
6491 /*
6492 * Pick a random function to execute.
6493 */
6494 rand = ztest_random(ZTEST_FUNCS);
6495 zi = &ztest_info[rand];
6496 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
6497 call_next = zc->zc_next;
6498
6499 if (now >= call_next &&
6500 atomic_cas_64(&zc->zc_next, call_next, call_next +
6501 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
6502 ztest_execute(rand, zi, id);
6503 }
6504 }
6505
6506 return (NULL);
6507 }
6508
6509 static void
ztest_dataset_name(char * dsname,char * pool,int d)6510 ztest_dataset_name(char *dsname, char *pool, int d)
6511 {
6512 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
6513 }
6514
6515 static void
ztest_dataset_destroy(int d)6516 ztest_dataset_destroy(int d)
6517 {
6518 char name[ZFS_MAX_DATASET_NAME_LEN];
6519
6520 ztest_dataset_name(name, ztest_opts.zo_pool, d);
6521
6522 if (ztest_opts.zo_verbose >= 3)
6523 (void) printf("Destroying %s to free up space\n", name);
6524
6525 /*
6526 * Cleanup any non-standard clones and snapshots. In general,
6527 * ztest thread t operates on dataset (t % zopt_datasets),
6528 * so there may be more than one thing to clean up.
6529 */
6530 for (int t = d; t < ztest_opts.zo_threads;
6531 t += ztest_opts.zo_datasets) {
6532 ztest_dsl_dataset_cleanup(name, t);
6533 }
6534
6535 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
6536 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
6537 }
6538
6539 static void
ztest_dataset_dirobj_verify(ztest_ds_t * zd)6540 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
6541 {
6542 uint64_t usedobjs, dirobjs, scratch;
6543
6544 /*
6545 * ZTEST_DIROBJ is the object directory for the entire dataset.
6546 * Therefore, the number of objects in use should equal the
6547 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
6548 * If not, we have an object leak.
6549 *
6550 * Note that we can only check this in ztest_dataset_open(),
6551 * when the open-context and syncing-context values agree.
6552 * That's because zap_count() returns the open-context value,
6553 * while dmu_objset_space() returns the rootbp fill count.
6554 */
6555 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
6556 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
6557 ASSERT3U(dirobjs + 1, ==, usedobjs);
6558 }
6559
6560 static int
ztest_dataset_open(int d)6561 ztest_dataset_open(int d)
6562 {
6563 ztest_ds_t *zd = &ztest_ds[d];
6564 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
6565 objset_t *os;
6566 zilog_t *zilog;
6567 char name[ZFS_MAX_DATASET_NAME_LEN];
6568 int error;
6569
6570 ztest_dataset_name(name, ztest_opts.zo_pool, d);
6571
6572 rw_enter(&ztest_name_lock, RW_READER);
6573
6574 error = ztest_dataset_create(name);
6575 if (error == ENOSPC) {
6576 rw_exit(&ztest_name_lock);
6577 ztest_record_enospc(FTAG);
6578 return (error);
6579 }
6580 ASSERT(error == 0 || error == EEXIST);
6581
6582 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
6583 B_TRUE, zd, &os));
6584 rw_exit(&ztest_name_lock);
6585
6586 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
6587
6588 zilog = zd->zd_zilog;
6589
6590 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
6591 zilog->zl_header->zh_claim_lr_seq < committed_seq)
6592 fatal(0, "missing log records: claimed %llu < committed %llu",
6593 zilog->zl_header->zh_claim_lr_seq, committed_seq);
6594
6595 ztest_dataset_dirobj_verify(zd);
6596
6597 zil_replay(os, zd, ztest_replay_vector);
6598
6599 ztest_dataset_dirobj_verify(zd);
6600
6601 if (ztest_opts.zo_verbose >= 6)
6602 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
6603 zd->zd_name,
6604 (u_longlong_t)zilog->zl_parse_blk_count,
6605 (u_longlong_t)zilog->zl_parse_lr_count,
6606 (u_longlong_t)zilog->zl_replaying_seq);
6607
6608 zilog = zil_open(os, ztest_get_data);
6609
6610 if (zilog->zl_replaying_seq != 0 &&
6611 zilog->zl_replaying_seq < committed_seq)
6612 fatal(0, "missing log records: replayed %llu < committed %llu",
6613 zilog->zl_replaying_seq, committed_seq);
6614
6615 return (0);
6616 }
6617
6618 static void
ztest_dataset_close(int d)6619 ztest_dataset_close(int d)
6620 {
6621 ztest_ds_t *zd = &ztest_ds[d];
6622
6623 zil_close(zd->zd_zilog);
6624 dmu_objset_disown(zd->zd_os, B_TRUE, zd);
6625
6626 ztest_zd_fini(zd);
6627 }
6628
6629 /*
6630 * Kick off threads to run tests on all datasets in parallel.
6631 */
6632 static void
ztest_run(ztest_shared_t * zs)6633 ztest_run(ztest_shared_t *zs)
6634 {
6635 thread_t *tid;
6636 spa_t *spa;
6637 objset_t *os;
6638 thread_t resume_tid;
6639 int error;
6640
6641 ztest_exiting = B_FALSE;
6642
6643 /*
6644 * Initialize parent/child shared state.
6645 */
6646 mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL);
6647 mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL);
6648 rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL);
6649
6650 zs->zs_thread_start = gethrtime();
6651 zs->zs_thread_stop =
6652 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
6653 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
6654 zs->zs_thread_kill = zs->zs_thread_stop;
6655 if (ztest_random(100) < ztest_opts.zo_killrate) {
6656 zs->zs_thread_kill -=
6657 ztest_random(ztest_opts.zo_passtime * NANOSEC);
6658 }
6659
6660 mutex_init(&zcl.zcl_callbacks_lock, NULL, USYNC_THREAD, NULL);
6661
6662 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
6663 offsetof(ztest_cb_data_t, zcd_node));
6664
6665 /*
6666 * Open our pool.
6667 */
6668 kernel_init(FREAD | FWRITE);
6669 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
6670 metaslab_preload_limit = ztest_random(20) + 1;
6671 ztest_spa = spa;
6672
6673 dmu_objset_stats_t dds;
6674 VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
6675 DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
6676 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
6677 dmu_objset_fast_stat(os, &dds);
6678 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
6679 zs->zs_guid = dds.dds_guid;
6680 dmu_objset_disown(os, B_TRUE, FTAG);
6681
6682 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
6683
6684 /*
6685 * We don't expect the pool to suspend unless maxfaults == 0,
6686 * in which case ztest_fault_inject() temporarily takes away
6687 * the only valid replica.
6688 */
6689 if (MAXFAULTS() == 0)
6690 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
6691 else
6692 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
6693
6694 /*
6695 * Create a thread to periodically resume suspended I/O.
6696 */
6697 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
6698 &resume_tid) == 0);
6699
6700 /*
6701 * Create a deadman thread to abort() if we hang.
6702 */
6703 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND,
6704 NULL) == 0);
6705
6706 /*
6707 * Verify that we can safely inquire about any object,
6708 * whether it's allocated or not. To make it interesting,
6709 * we probe a 5-wide window around each power of two.
6710 * This hits all edge cases, including zero and the max.
6711 */
6712 for (int t = 0; t < 64; t++) {
6713 for (int d = -5; d <= 5; d++) {
6714 error = dmu_object_info(spa->spa_meta_objset,
6715 (1ULL << t) + d, NULL);
6716 ASSERT(error == 0 || error == ENOENT ||
6717 error == EINVAL);
6718 }
6719 }
6720
6721 /*
6722 * If we got any ENOSPC errors on the previous run, destroy something.
6723 */
6724 if (zs->zs_enospc_count != 0) {
6725 int d = ztest_random(ztest_opts.zo_datasets);
6726 ztest_dataset_destroy(d);
6727 }
6728 zs->zs_enospc_count = 0;
6729
6730 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t),
6731 UMEM_NOFAIL);
6732
6733 if (ztest_opts.zo_verbose >= 4)
6734 (void) printf("starting main threads...\n");
6735
6736 /*
6737 * Kick off all the tests that run in parallel.
6738 */
6739 for (int t = 0; t < ztest_opts.zo_threads; t++) {
6740 if (t < ztest_opts.zo_datasets &&
6741 ztest_dataset_open(t) != 0)
6742 return;
6743 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t,
6744 THR_BOUND, &tid[t]) == 0);
6745 }
6746
6747 /*
6748 * Wait for all of the tests to complete. We go in reverse order
6749 * so we don't close datasets while threads are still using them.
6750 */
6751 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) {
6752 VERIFY(thr_join(tid[t], NULL, NULL) == 0);
6753 if (t < ztest_opts.zo_datasets)
6754 ztest_dataset_close(t);
6755 }
6756
6757 txg_wait_synced(spa_get_dsl(spa), 0);
6758
6759 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
6760 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
6761 zfs_dbgmsg_print(FTAG);
6762
6763 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t));
6764
6765 /* Kill the resume thread */
6766 ztest_exiting = B_TRUE;
6767 VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
6768 ztest_resume(spa);
6769
6770 /*
6771 * Right before closing the pool, kick off a bunch of async I/O;
6772 * spa_close() should wait for it to complete.
6773 */
6774 for (uint64_t object = 1; object < 50; object++) {
6775 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
6776 ZIO_PRIORITY_SYNC_READ);
6777 }
6778
6779 spa_close(spa, FTAG);
6780
6781 /*
6782 * Verify that we can loop over all pools.
6783 */
6784 mutex_enter(&spa_namespace_lock);
6785 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
6786 if (ztest_opts.zo_verbose > 3)
6787 (void) printf("spa_next: found %s\n", spa_name(spa));
6788 mutex_exit(&spa_namespace_lock);
6789
6790 /*
6791 * Verify that we can export the pool and reimport it under a
6792 * different name.
6793 */
6794 if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
6795 char name[ZFS_MAX_DATASET_NAME_LEN];
6796 (void) snprintf(name, sizeof (name), "%s_import",
6797 ztest_opts.zo_pool);
6798 ztest_spa_import_export(ztest_opts.zo_pool, name);
6799 ztest_spa_import_export(name, ztest_opts.zo_pool);
6800 }
6801
6802 kernel_fini();
6803
6804 list_destroy(&zcl.zcl_callbacks);
6805
6806 mutex_destroy(&zcl.zcl_callbacks_lock);
6807
6808 rw_destroy(&ztest_name_lock);
6809 mutex_destroy(&ztest_vdev_lock);
6810 mutex_destroy(&ztest_checkpoint_lock);
6811 }
6812
6813 static void
ztest_freeze(void)6814 ztest_freeze(void)
6815 {
6816 ztest_ds_t *zd = &ztest_ds[0];
6817 spa_t *spa;
6818 int numloops = 0;
6819
6820 if (ztest_opts.zo_verbose >= 3)
6821 (void) printf("testing spa_freeze()...\n");
6822
6823 kernel_init(FREAD | FWRITE);
6824 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6825 VERIFY3U(0, ==, ztest_dataset_open(0));
6826 ztest_spa = spa;
6827
6828 /*
6829 * Force the first log block to be transactionally allocated.
6830 * We have to do this before we freeze the pool -- otherwise
6831 * the log chain won't be anchored.
6832 */
6833 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
6834 ztest_dmu_object_alloc_free(zd, 0);
6835 zil_commit(zd->zd_zilog, 0);
6836 }
6837
6838 txg_wait_synced(spa_get_dsl(spa), 0);
6839
6840 /*
6841 * Freeze the pool. This stops spa_sync() from doing anything,
6842 * so that the only way to record changes from now on is the ZIL.
6843 */
6844 spa_freeze(spa);
6845
6846 /*
6847 * Because it is hard to predict how much space a write will actually
6848 * require beforehand, we leave ourselves some fudge space to write over
6849 * capacity.
6850 */
6851 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
6852
6853 /*
6854 * Run tests that generate log records but don't alter the pool config
6855 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
6856 * We do a txg_wait_synced() after each iteration to force the txg
6857 * to increase well beyond the last synced value in the uberblock.
6858 * The ZIL should be OK with that.
6859 *
6860 * Run a random number of times less than zo_maxloops and ensure we do
6861 * not run out of space on the pool.
6862 */
6863 while (ztest_random(10) != 0 &&
6864 numloops++ < ztest_opts.zo_maxloops &&
6865 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
6866 ztest_od_t od;
6867 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
6868 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
6869 ztest_io(zd, od.od_object,
6870 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
6871 txg_wait_synced(spa_get_dsl(spa), 0);
6872 }
6873
6874 /*
6875 * Commit all of the changes we just generated.
6876 */
6877 zil_commit(zd->zd_zilog, 0);
6878 txg_wait_synced(spa_get_dsl(spa), 0);
6879
6880 /*
6881 * Close our dataset and close the pool.
6882 */
6883 ztest_dataset_close(0);
6884 spa_close(spa, FTAG);
6885 kernel_fini();
6886
6887 /*
6888 * Open and close the pool and dataset to induce log replay.
6889 */
6890 kernel_init(FREAD | FWRITE);
6891 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6892 ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
6893 VERIFY3U(0, ==, ztest_dataset_open(0));
6894 ztest_spa = spa;
6895 txg_wait_synced(spa_get_dsl(spa), 0);
6896 ztest_dataset_close(0);
6897 ztest_reguid(NULL, 0);
6898
6899 spa_close(spa, FTAG);
6900 kernel_fini();
6901 }
6902
6903 void
print_time(hrtime_t t,char * timebuf)6904 print_time(hrtime_t t, char *timebuf)
6905 {
6906 hrtime_t s = t / NANOSEC;
6907 hrtime_t m = s / 60;
6908 hrtime_t h = m / 60;
6909 hrtime_t d = h / 24;
6910
6911 s -= m * 60;
6912 m -= h * 60;
6913 h -= d * 24;
6914
6915 timebuf[0] = '\0';
6916
6917 if (d)
6918 (void) sprintf(timebuf,
6919 "%llud%02lluh%02llum%02llus", d, h, m, s);
6920 else if (h)
6921 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
6922 else if (m)
6923 (void) sprintf(timebuf, "%llum%02llus", m, s);
6924 else
6925 (void) sprintf(timebuf, "%llus", s);
6926 }
6927
6928 static nvlist_t *
make_random_props()6929 make_random_props()
6930 {
6931 nvlist_t *props;
6932
6933 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
6934
6935 if (ztest_random(2) == 0)
6936 return (props);
6937 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
6938
6939 return (props);
6940 }
6941
6942 /*
6943 * Import a storage pool with the given name.
6944 */
6945 static void
ztest_import(ztest_shared_t * zs)6946 ztest_import(ztest_shared_t *zs)
6947 {
6948 importargs_t args = { 0 };
6949 spa_t *spa;
6950 nvlist_t *cfg = NULL;
6951 int nsearch = 1;
6952 char *searchdirs[nsearch];
6953 char *name = ztest_opts.zo_pool;
6954 int flags = ZFS_IMPORT_MISSING_LOG;
6955 int error;
6956
6957 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
6958 rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL);
6959
6960 kernel_init(FREAD | FWRITE);
6961
6962 searchdirs[0] = ztest_opts.zo_dir;
6963 args.paths = nsearch;
6964 args.path = searchdirs;
6965 args.can_be_active = B_FALSE;
6966
6967 error = zpool_find_config(NULL, name, &cfg, &args,
6968 &libzpool_config_ops);
6969 if (error)
6970 (void) fatal(0, "No pools found\n");
6971
6972 VERIFY0(spa_import(name, cfg, NULL, flags));
6973 VERIFY0(spa_open(name, &spa, FTAG));
6974 zs->zs_metaslab_sz =
6975 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
6976 spa_close(spa, FTAG);
6977
6978 kernel_fini();
6979
6980 if (!ztest_opts.zo_mmp_test) {
6981 ztest_run_zdb(ztest_opts.zo_pool);
6982 ztest_freeze();
6983 ztest_run_zdb(ztest_opts.zo_pool);
6984 }
6985
6986 rw_destroy(&ztest_name_lock);
6987 mutex_destroy(&ztest_vdev_lock);
6988 }
6989
6990 /*
6991 * Create a storage pool with the given name and initial vdev size.
6992 * Then test spa_freeze() functionality.
6993 */
6994 static void
ztest_init(ztest_shared_t * zs)6995 ztest_init(ztest_shared_t *zs)
6996 {
6997 spa_t *spa;
6998 nvlist_t *nvroot, *props;
6999
7000 mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL);
7001 mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL);
7002 rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL);
7003
7004 kernel_init(FREAD | FWRITE);
7005
7006 /*
7007 * Create the storage pool.
7008 */
7009 (void) spa_destroy(ztest_opts.zo_pool);
7010 ztest_shared->zs_vdev_next_leaf = 0;
7011 zs->zs_splits = 0;
7012 zs->zs_mirrors = ztest_opts.zo_mirrors;
7013 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
7014 NULL, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
7015 props = make_random_props();
7016 for (int i = 0; i < SPA_FEATURES; i++) {
7017 char buf[1024];
7018
7019 /*
7020 * 75% chance of using the log space map feature. We want ztest
7021 * to exercise both the code paths that use the log space map
7022 * feature and the ones that don't.
7023 */
7024 if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
7025 continue;
7026
7027 (void) snprintf(buf, sizeof (buf), "feature@%s",
7028 spa_feature_table[i].fi_uname);
7029 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
7030 }
7031 VERIFY3U(0, ==,
7032 spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
7033 nvlist_free(nvroot);
7034 nvlist_free(props);
7035
7036 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
7037 zs->zs_metaslab_sz =
7038 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7039
7040 spa_close(spa, FTAG);
7041
7042 kernel_fini();
7043
7044 if (!ztest_opts.zo_mmp_test) {
7045 ztest_run_zdb(ztest_opts.zo_pool);
7046 ztest_freeze();
7047 ztest_run_zdb(ztest_opts.zo_pool);
7048 }
7049
7050 rw_destroy(&ztest_name_lock);
7051 mutex_destroy(&ztest_vdev_lock);
7052 mutex_destroy(&ztest_checkpoint_lock);
7053 }
7054
7055 static void
setup_data_fd(void)7056 setup_data_fd(void)
7057 {
7058 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
7059
7060 ztest_fd_data = mkstemp(ztest_name_data);
7061 ASSERT3S(ztest_fd_data, >=, 0);
7062 (void) unlink(ztest_name_data);
7063 }
7064
7065 static int
shared_data_size(ztest_shared_hdr_t * hdr)7066 shared_data_size(ztest_shared_hdr_t *hdr)
7067 {
7068 int size;
7069
7070 size = hdr->zh_hdr_size;
7071 size += hdr->zh_opts_size;
7072 size += hdr->zh_size;
7073 size += hdr->zh_stats_size * hdr->zh_stats_count;
7074 size += hdr->zh_ds_size * hdr->zh_ds_count;
7075
7076 return (size);
7077 }
7078
7079 static void
setup_hdr(void)7080 setup_hdr(void)
7081 {
7082 int size;
7083 ztest_shared_hdr_t *hdr;
7084
7085 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7086 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7087 ASSERT(hdr != MAP_FAILED);
7088
7089 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
7090
7091 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
7092 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
7093 hdr->zh_size = sizeof (ztest_shared_t);
7094 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
7095 hdr->zh_stats_count = ZTEST_FUNCS;
7096 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
7097 hdr->zh_ds_count = ztest_opts.zo_datasets;
7098
7099 size = shared_data_size(hdr);
7100 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
7101
7102 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7103 }
7104
7105 static void
setup_data(void)7106 setup_data(void)
7107 {
7108 int size, offset;
7109 ztest_shared_hdr_t *hdr;
7110 uint8_t *buf;
7111
7112 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7113 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
7114 ASSERT(hdr != MAP_FAILED);
7115
7116 size = shared_data_size(hdr);
7117
7118 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7119 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
7120 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7121 ASSERT(hdr != MAP_FAILED);
7122 buf = (uint8_t *)hdr;
7123
7124 offset = hdr->zh_hdr_size;
7125 ztest_shared_opts = (void *)&buf[offset];
7126 offset += hdr->zh_opts_size;
7127 ztest_shared = (void *)&buf[offset];
7128 offset += hdr->zh_size;
7129 ztest_shared_callstate = (void *)&buf[offset];
7130 offset += hdr->zh_stats_size * hdr->zh_stats_count;
7131 ztest_shared_ds = (void *)&buf[offset];
7132 }
7133
7134 static boolean_t
exec_child(char * cmd,char * libpath,boolean_t ignorekill,int * statusp)7135 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
7136 {
7137 pid_t pid;
7138 int status;
7139 char *cmdbuf = NULL;
7140
7141 pid = fork();
7142
7143 if (cmd == NULL) {
7144 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
7145 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
7146 cmd = cmdbuf;
7147 }
7148
7149 if (pid == -1)
7150 fatal(1, "fork failed");
7151
7152 if (pid == 0) { /* child */
7153 char *emptyargv[2] = { cmd, NULL };
7154 char fd_data_str[12];
7155
7156 struct rlimit rl = { 1024, 1024 };
7157 (void) setrlimit(RLIMIT_NOFILE, &rl);
7158
7159 (void) close(ztest_fd_rand);
7160 VERIFY3U(11, >=,
7161 snprintf(fd_data_str, 12, "%d", ztest_fd_data));
7162 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
7163
7164 (void) enable_extended_FILE_stdio(-1, -1);
7165 if (libpath != NULL)
7166 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
7167 (void) execv(cmd, emptyargv);
7168 ztest_dump_core = B_FALSE;
7169 fatal(B_TRUE, "exec failed: %s", cmd);
7170 }
7171
7172 if (cmdbuf != NULL) {
7173 umem_free(cmdbuf, MAXPATHLEN);
7174 cmd = NULL;
7175 }
7176
7177 while (waitpid(pid, &status, 0) != pid)
7178 continue;
7179 if (statusp != NULL)
7180 *statusp = status;
7181
7182 if (WIFEXITED(status)) {
7183 if (WEXITSTATUS(status) != 0) {
7184 (void) fprintf(stderr, "child exited with code %d\n",
7185 WEXITSTATUS(status));
7186 exit(2);
7187 }
7188 return (B_FALSE);
7189 } else if (WIFSIGNALED(status)) {
7190 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
7191 (void) fprintf(stderr, "child died with signal %d\n",
7192 WTERMSIG(status));
7193 exit(3);
7194 }
7195 return (B_TRUE);
7196 } else {
7197 (void) fprintf(stderr, "something strange happened to child\n");
7198 exit(4);
7199 /* NOTREACHED */
7200 }
7201 }
7202
7203 static void
ztest_run_init(void)7204 ztest_run_init(void)
7205 {
7206 ztest_shared_t *zs = ztest_shared;
7207
7208 /*
7209 * Blow away any existing copy of zpool.cache
7210 */
7211 (void) remove(spa_config_path);
7212
7213 if (ztest_opts.zo_init == 0) {
7214 if (ztest_opts.zo_verbose >= 1)
7215 (void) printf("Importing pool %s\n",
7216 ztest_opts.zo_pool);
7217 ztest_import(zs);
7218 return;
7219 }
7220
7221 /*
7222 * Create and initialize our storage pool.
7223 */
7224 for (int i = 1; i <= ztest_opts.zo_init; i++) {
7225 bzero(zs, sizeof (ztest_shared_t));
7226 if (ztest_opts.zo_verbose >= 3 &&
7227 ztest_opts.zo_init != 1) {
7228 (void) printf("ztest_init(), pass %d\n", i);
7229 }
7230 ztest_init(zs);
7231 }
7232 }
7233
7234 int
main(int argc,char ** argv)7235 main(int argc, char **argv)
7236 {
7237 int kills = 0;
7238 int iters = 0;
7239 int older = 0;
7240 int newer = 0;
7241 ztest_shared_t *zs;
7242 ztest_info_t *zi;
7243 ztest_shared_callstate_t *zc;
7244 char timebuf[100];
7245 char numbuf[NN_NUMBUF_SZ];
7246 char *cmd;
7247 boolean_t hasalt;
7248 char *fd_data_str = getenv("ZTEST_FD_DATA");
7249
7250 (void) setvbuf(stdout, NULL, _IOLBF, 0);
7251
7252 dprintf_setup(&argc, argv);
7253 zfs_deadman_synctime_ms = 300000;
7254 /*
7255 * As two-word space map entries may not come up often (especially
7256 * if pool and vdev sizes are small) we want to force at least some
7257 * of them so the feature get tested.
7258 */
7259 zfs_force_some_double_word_sm_entries = B_TRUE;
7260
7261 /*
7262 * Verify that even extensively damaged split blocks with many
7263 * segments can be reconstructed in a reasonable amount of time
7264 * when reconstruction is known to be possible.
7265 */
7266 zfs_reconstruct_indirect_damage_fraction = 4;
7267
7268 ztest_fd_rand = open("/dev/urandom", O_RDONLY);
7269 ASSERT3S(ztest_fd_rand, >=, 0);
7270
7271 if (!fd_data_str) {
7272 process_options(argc, argv);
7273
7274 setup_data_fd();
7275 setup_hdr();
7276 setup_data();
7277 bcopy(&ztest_opts, ztest_shared_opts,
7278 sizeof (*ztest_shared_opts));
7279 } else {
7280 ztest_fd_data = atoi(fd_data_str);
7281 setup_data();
7282 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
7283 }
7284 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
7285
7286 /* Override location of zpool.cache */
7287 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache",
7288 ztest_opts.zo_dir), !=, -1);
7289
7290 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
7291 UMEM_NOFAIL);
7292 zs = ztest_shared;
7293
7294 if (fd_data_str) {
7295 metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
7296 metaslab_df_alloc_threshold =
7297 zs->zs_metaslab_df_alloc_threshold;
7298
7299 if (zs->zs_do_init)
7300 ztest_run_init();
7301 else
7302 ztest_run(zs);
7303 exit(0);
7304 }
7305
7306 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
7307
7308 if (ztest_opts.zo_verbose >= 1) {
7309 (void) printf("%llu vdevs, %d datasets, %d threads,"
7310 " %llu seconds...\n",
7311 (u_longlong_t)ztest_opts.zo_vdevs,
7312 ztest_opts.zo_datasets,
7313 ztest_opts.zo_threads,
7314 (u_longlong_t)ztest_opts.zo_time);
7315 }
7316
7317 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
7318 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
7319
7320 zs->zs_do_init = B_TRUE;
7321 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
7322 if (ztest_opts.zo_verbose >= 1) {
7323 (void) printf("Executing older ztest for "
7324 "initialization: %s\n", ztest_opts.zo_alt_ztest);
7325 }
7326 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
7327 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
7328 } else {
7329 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
7330 }
7331 zs->zs_do_init = B_FALSE;
7332
7333 zs->zs_proc_start = gethrtime();
7334 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
7335
7336 for (int f = 0; f < ZTEST_FUNCS; f++) {
7337 zi = &ztest_info[f];
7338 zc = ZTEST_GET_SHARED_CALLSTATE(f);
7339 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
7340 zc->zc_next = UINT64_MAX;
7341 else
7342 zc->zc_next = zs->zs_proc_start +
7343 ztest_random(2 * zi->zi_interval[0] + 1);
7344 }
7345
7346 /*
7347 * Run the tests in a loop. These tests include fault injection
7348 * to verify that self-healing data works, and forced crashes
7349 * to verify that we never lose on-disk consistency.
7350 */
7351 while (gethrtime() < zs->zs_proc_stop) {
7352 int status;
7353 boolean_t killed;
7354
7355 /*
7356 * Initialize the workload counters for each function.
7357 */
7358 for (int f = 0; f < ZTEST_FUNCS; f++) {
7359 zc = ZTEST_GET_SHARED_CALLSTATE(f);
7360 zc->zc_count = 0;
7361 zc->zc_time = 0;
7362 }
7363
7364 /* Set the allocation switch size */
7365 zs->zs_metaslab_df_alloc_threshold =
7366 ztest_random(zs->zs_metaslab_sz / 4) + 1;
7367
7368 if (!hasalt || ztest_random(2) == 0) {
7369 if (hasalt && ztest_opts.zo_verbose >= 1) {
7370 (void) printf("Executing newer ztest: %s\n",
7371 cmd);
7372 }
7373 newer++;
7374 killed = exec_child(cmd, NULL, B_TRUE, &status);
7375 } else {
7376 if (hasalt && ztest_opts.zo_verbose >= 1) {
7377 (void) printf("Executing older ztest: %s\n",
7378 ztest_opts.zo_alt_ztest);
7379 }
7380 older++;
7381 killed = exec_child(ztest_opts.zo_alt_ztest,
7382 ztest_opts.zo_alt_libpath, B_TRUE, &status);
7383 }
7384
7385 if (killed)
7386 kills++;
7387 iters++;
7388
7389 if (ztest_opts.zo_verbose >= 1) {
7390 hrtime_t now = gethrtime();
7391
7392 now = MIN(now, zs->zs_proc_stop);
7393 print_time(zs->zs_proc_stop - now, timebuf);
7394 nicenum(zs->zs_space, numbuf, sizeof (numbuf));
7395
7396 (void) printf("Pass %3d, %8s, %3llu ENOSPC, "
7397 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
7398 iters,
7399 WIFEXITED(status) ? "Complete" : "SIGKILL",
7400 (u_longlong_t)zs->zs_enospc_count,
7401 100.0 * zs->zs_alloc / zs->zs_space,
7402 numbuf,
7403 100.0 * (now - zs->zs_proc_start) /
7404 (ztest_opts.zo_time * NANOSEC), timebuf);
7405 }
7406
7407 if (ztest_opts.zo_verbose >= 2) {
7408 (void) printf("\nWorkload summary:\n\n");
7409 (void) printf("%7s %9s %s\n",
7410 "Calls", "Time", "Function");
7411 (void) printf("%7s %9s %s\n",
7412 "-----", "----", "--------");
7413 for (int f = 0; f < ZTEST_FUNCS; f++) {
7414 Dl_info dli;
7415
7416 zi = &ztest_info[f];
7417 zc = ZTEST_GET_SHARED_CALLSTATE(f);
7418 print_time(zc->zc_time, timebuf);
7419 (void) dladdr((void *)zi->zi_func, &dli);
7420 (void) printf("%7llu %9s %s\n",
7421 (u_longlong_t)zc->zc_count, timebuf,
7422 dli.dli_sname);
7423 }
7424 (void) printf("\n");
7425 }
7426
7427 if (!ztest_opts.zo_mmp_test)
7428 ztest_run_zdb(ztest_opts.zo_pool);
7429 }
7430
7431 if (ztest_opts.zo_verbose >= 1) {
7432 if (hasalt) {
7433 (void) printf("%d runs of older ztest: %s\n", older,
7434 ztest_opts.zo_alt_ztest);
7435 (void) printf("%d runs of newer ztest: %s\n", newer,
7436 cmd);
7437 }
7438 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
7439 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
7440 }
7441
7442 umem_free(cmd, MAXNAMELEN);
7443
7444 return (0);
7445 }
7446