1 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
2 // See https://llvm.org/LICENSE.txt for license information.
3 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
4
5 #include "../int_math.h"
6 #include "DD.h"
7 // Use DOUBLE_PRECISION because the soft-fp method we use is logb (on the upper
8 // half of the long doubles), even though this file defines complex division for
9 // 128-bit floats.
10 #define DOUBLE_PRECISION
11 #include "../fp_lib.h"
12
13 #if !defined(CRT_INFINITY) && defined(HUGE_VAL)
14 #define CRT_INFINITY HUGE_VAL
15 #endif // CRT_INFINITY
16
17 #define makeFinite(x) \
18 { \
19 (x).s.hi = crt_copysign(crt_isinf((x).s.hi) ? 1.0 : 0.0, (x).s.hi); \
20 (x).s.lo = 0.0; \
21 }
22
__divtc3(long double a,long double b,long double c,long double d)23 long double _Complex __divtc3(long double a, long double b, long double c,
24 long double d) {
25 DD cDD = {.ld = c};
26 DD dDD = {.ld = d};
27
28 int ilogbw = 0;
29 const double logbw =
30 __compiler_rt_logb(__compiler_rt_fmax(crt_fabs(cDD.s.hi),
31 crt_fabs(dDD.s.hi)));
32
33 if (crt_isfinite(logbw)) {
34 ilogbw = (int)logbw;
35
36 cDD.s.hi = __compiler_rt_scalbn(cDD.s.hi, -ilogbw);
37 cDD.s.lo = __compiler_rt_scalbn(cDD.s.lo, -ilogbw);
38 dDD.s.hi = __compiler_rt_scalbn(dDD.s.hi, -ilogbw);
39 dDD.s.lo = __compiler_rt_scalbn(dDD.s.lo, -ilogbw);
40 }
41
42 const long double denom =
43 __gcc_qadd(__gcc_qmul(cDD.ld, cDD.ld), __gcc_qmul(dDD.ld, dDD.ld));
44 const long double realNumerator =
45 __gcc_qadd(__gcc_qmul(a, cDD.ld), __gcc_qmul(b, dDD.ld));
46 const long double imagNumerator =
47 __gcc_qsub(__gcc_qmul(b, cDD.ld), __gcc_qmul(a, dDD.ld));
48
49 DD real = {.ld = __gcc_qdiv(realNumerator, denom)};
50 DD imag = {.ld = __gcc_qdiv(imagNumerator, denom)};
51
52 real.s.hi = __compiler_rt_scalbn(real.s.hi, -ilogbw);
53 real.s.lo = __compiler_rt_scalbn(real.s.lo, -ilogbw);
54 imag.s.hi = __compiler_rt_scalbn(imag.s.hi, -ilogbw);
55 imag.s.lo = __compiler_rt_scalbn(imag.s.lo, -ilogbw);
56
57 if (crt_isnan(real.s.hi) && crt_isnan(imag.s.hi)) {
58 DD aDD = {.ld = a};
59 DD bDD = {.ld = b};
60 DD rDD = {.ld = denom};
61
62 if ((rDD.s.hi == 0.0) && (!crt_isnan(aDD.s.hi) || !crt_isnan(bDD.s.hi))) {
63 real.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * aDD.s.hi;
64 real.s.lo = 0.0;
65 imag.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * bDD.s.hi;
66 imag.s.lo = 0.0;
67 }
68
69 else if ((crt_isinf(aDD.s.hi) || crt_isinf(bDD.s.hi)) &&
70 crt_isfinite(cDD.s.hi) && crt_isfinite(dDD.s.hi)) {
71 makeFinite(aDD);
72 makeFinite(bDD);
73 real.s.hi = CRT_INFINITY * (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi);
74 real.s.lo = 0.0;
75 imag.s.hi = CRT_INFINITY * (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi);
76 imag.s.lo = 0.0;
77 }
78
79 else if ((crt_isinf(cDD.s.hi) || crt_isinf(dDD.s.hi)) &&
80 crt_isfinite(aDD.s.hi) && crt_isfinite(bDD.s.hi)) {
81 makeFinite(cDD);
82 makeFinite(dDD);
83 real.s.hi =
84 crt_copysign(0.0, (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi));
85 real.s.lo = 0.0;
86 imag.s.hi =
87 crt_copysign(0.0, (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi));
88 imag.s.lo = 0.0;
89 }
90 }
91
92 long double _Complex z;
93 __real__ z = real.ld;
94 __imag__ z = imag.ld;
95
96 return z;
97 }
98