1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "RegAllocGreedy.h"
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "RegAllocBase.h"
18 #include "RegAllocEvictionAdvisor.h"
19 #include "RegAllocPriorityAdvisor.h"
20 #include "SpillPlacement.h"
21 #include "SplitKit.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/IndexedMap.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/CodeGen/CalcSpillWeights.h"
32 #include "llvm/CodeGen/EdgeBundles.h"
33 #include "llvm/CodeGen/LiveDebugVariables.h"
34 #include "llvm/CodeGen/LiveInterval.h"
35 #include "llvm/CodeGen/LiveIntervalUnion.h"
36 #include "llvm/CodeGen/LiveIntervals.h"
37 #include "llvm/CodeGen/LiveRangeEdit.h"
38 #include "llvm/CodeGen/LiveRegMatrix.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineLoopInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/RegAllocRegistry.h"
52 #include "llvm/CodeGen/RegisterClassInfo.h"
53 #include "llvm/CodeGen/SlotIndexes.h"
54 #include "llvm/CodeGen/Spiller.h"
55 #include "llvm/CodeGen/TargetInstrInfo.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/CodeGen/VirtRegMap.h"
59 #include "llvm/IR/DebugInfoMetadata.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/InitializePasses.h"
63 #include "llvm/MC/MCRegisterInfo.h"
64 #include "llvm/Pass.h"
65 #include "llvm/Support/BlockFrequency.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/Timer.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <utility>
76
77 using namespace llvm;
78
79 #define DEBUG_TYPE "regalloc"
80
81 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
82 STATISTIC(NumLocalSplits, "Number of split local live ranges");
83 STATISTIC(NumEvicted, "Number of interferences evicted");
84
85 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
86 "split-spill-mode", cl::Hidden,
87 cl::desc("Spill mode for splitting live ranges"),
88 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
89 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
90 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
91 cl::init(SplitEditor::SM_Speed));
92
93 static cl::opt<unsigned>
94 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
95 cl::desc("Last chance recoloring max depth"),
96 cl::init(5));
97
98 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
99 "lcr-max-interf", cl::Hidden,
100 cl::desc("Last chance recoloring maximum number of considered"
101 " interference at a time"),
102 cl::init(8));
103
104 static cl::opt<bool> ExhaustiveSearch(
105 "exhaustive-register-search", cl::NotHidden,
106 cl::desc("Exhaustive Search for registers bypassing the depth "
107 "and interference cutoffs of last chance recoloring"),
108 cl::Hidden);
109
110 static cl::opt<bool> EnableDeferredSpilling(
111 "enable-deferred-spilling", cl::Hidden,
112 cl::desc("Instead of spilling a variable right away, defer the actual "
113 "code insertion to the end of the allocation. That way the "
114 "allocator might still find a suitable coloring for this "
115 "variable because of other evicted variables."),
116 cl::init(false));
117
118 // FIXME: Find a good default for this flag and remove the flag.
119 static cl::opt<unsigned>
120 CSRFirstTimeCost("regalloc-csr-first-time-cost",
121 cl::desc("Cost for first time use of callee-saved register."),
122 cl::init(0), cl::Hidden);
123
124 static cl::opt<unsigned long> GrowRegionComplexityBudget(
125 "grow-region-complexity-budget",
126 cl::desc("growRegion() does not scale with the number of BB edges, so "
127 "limit its budget and bail out once we reach the limit."),
128 cl::init(10000), cl::Hidden);
129
130 static cl::opt<bool> GreedyRegClassPriorityTrumpsGlobalness(
131 "greedy-regclass-priority-trumps-globalness",
132 cl::desc("Change the greedy register allocator's live range priority "
133 "calculation to make the AllocationPriority of the register class "
134 "more important then whether the range is global"),
135 cl::Hidden);
136
137 static cl::opt<bool> GreedyReverseLocalAssignment(
138 "greedy-reverse-local-assignment",
139 cl::desc("Reverse allocation order of local live ranges, such that "
140 "shorter local live ranges will tend to be allocated first"),
141 cl::Hidden);
142
143 static cl::opt<unsigned> SplitThresholdForRegWithHint(
144 "split-threshold-for-reg-with-hint",
145 cl::desc("The threshold for splitting a virtual register with a hint, in "
146 "percentate"),
147 cl::init(75), cl::Hidden);
148
149 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
150 createGreedyRegisterAllocator);
151
152 char RAGreedy::ID = 0;
153 char &llvm::RAGreedyID = RAGreedy::ID;
154
155 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
156 "Greedy Register Allocator", false, false)
157 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
158 INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass)
159 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass)
160 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
161 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
162 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
163 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
164 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
165 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
166 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
167 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
168 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
169 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
170 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis)
171 INITIALIZE_PASS_DEPENDENCY(RegAllocPriorityAdvisorAnalysis)
172 INITIALIZE_PASS_END(RAGreedy, "greedy",
173 "Greedy Register Allocator", false, false)
174
175 #ifndef NDEBUG
176 const char *const RAGreedy::StageName[] = {
177 "RS_New",
178 "RS_Assign",
179 "RS_Split",
180 "RS_Split2",
181 "RS_Spill",
182 "RS_Memory",
183 "RS_Done"
184 };
185 #endif
186
187 // Hysteresis to use when comparing floats.
188 // This helps stabilize decisions based on float comparisons.
189 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
190
createGreedyRegisterAllocator()191 FunctionPass* llvm::createGreedyRegisterAllocator() {
192 return new RAGreedy();
193 }
194
createGreedyRegisterAllocator(RegAllocFilterFunc Ftor)195 FunctionPass *llvm::createGreedyRegisterAllocator(RegAllocFilterFunc Ftor) {
196 return new RAGreedy(Ftor);
197 }
198
RAGreedy(RegAllocFilterFunc F)199 RAGreedy::RAGreedy(RegAllocFilterFunc F)
200 : MachineFunctionPass(ID), RegAllocBase(F) {}
201
getAnalysisUsage(AnalysisUsage & AU) const202 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
203 AU.setPreservesCFG();
204 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>();
205 AU.addPreserved<MachineBlockFrequencyInfoWrapperPass>();
206 AU.addRequired<LiveIntervalsWrapperPass>();
207 AU.addPreserved<LiveIntervalsWrapperPass>();
208 AU.addRequired<SlotIndexesWrapperPass>();
209 AU.addPreserved<SlotIndexesWrapperPass>();
210 AU.addRequired<LiveDebugVariables>();
211 AU.addPreserved<LiveDebugVariables>();
212 AU.addRequired<LiveStacks>();
213 AU.addPreserved<LiveStacks>();
214 AU.addRequired<MachineDominatorTreeWrapperPass>();
215 AU.addPreserved<MachineDominatorTreeWrapperPass>();
216 AU.addRequired<MachineLoopInfoWrapperPass>();
217 AU.addPreserved<MachineLoopInfoWrapperPass>();
218 AU.addRequired<VirtRegMap>();
219 AU.addPreserved<VirtRegMap>();
220 AU.addRequired<LiveRegMatrix>();
221 AU.addPreserved<LiveRegMatrix>();
222 AU.addRequired<EdgeBundles>();
223 AU.addRequired<SpillPlacement>();
224 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
225 AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
226 AU.addRequired<RegAllocPriorityAdvisorAnalysis>();
227 MachineFunctionPass::getAnalysisUsage(AU);
228 }
229
230 //===----------------------------------------------------------------------===//
231 // LiveRangeEdit delegate methods
232 //===----------------------------------------------------------------------===//
233
LRE_CanEraseVirtReg(Register VirtReg)234 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
235 LiveInterval &LI = LIS->getInterval(VirtReg);
236 if (VRM->hasPhys(VirtReg)) {
237 Matrix->unassign(LI);
238 aboutToRemoveInterval(LI);
239 return true;
240 }
241 // Unassigned virtreg is probably in the priority queue.
242 // RegAllocBase will erase it after dequeueing.
243 // Nonetheless, clear the live-range so that the debug
244 // dump will show the right state for that VirtReg.
245 LI.clear();
246 return false;
247 }
248
LRE_WillShrinkVirtReg(Register VirtReg)249 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
250 if (!VRM->hasPhys(VirtReg))
251 return;
252
253 // Register is assigned, put it back on the queue for reassignment.
254 LiveInterval &LI = LIS->getInterval(VirtReg);
255 Matrix->unassign(LI);
256 RegAllocBase::enqueue(&LI);
257 }
258
LRE_DidCloneVirtReg(Register New,Register Old)259 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
260 ExtraInfo->LRE_DidCloneVirtReg(New, Old);
261 }
262
LRE_DidCloneVirtReg(Register New,Register Old)263 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) {
264 // Cloning a register we haven't even heard about yet? Just ignore it.
265 if (!Info.inBounds(Old))
266 return;
267
268 // LRE may clone a virtual register because dead code elimination causes it to
269 // be split into connected components. The new components are much smaller
270 // than the original, so they should get a new chance at being assigned.
271 // same stage as the parent.
272 Info[Old].Stage = RS_Assign;
273 Info.grow(New.id());
274 Info[New] = Info[Old];
275 }
276
releaseMemory()277 void RAGreedy::releaseMemory() {
278 SpillerInstance.reset();
279 GlobalCand.clear();
280 }
281
enqueueImpl(const LiveInterval * LI)282 void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); }
283
enqueue(PQueue & CurQueue,const LiveInterval * LI)284 void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) {
285 // Prioritize live ranges by size, assigning larger ranges first.
286 // The queue holds (size, reg) pairs.
287 const Register Reg = LI->reg();
288 assert(Reg.isVirtual() && "Can only enqueue virtual registers");
289
290 auto Stage = ExtraInfo->getOrInitStage(Reg);
291 if (Stage == RS_New) {
292 Stage = RS_Assign;
293 ExtraInfo->setStage(Reg, Stage);
294 }
295
296 unsigned Ret = PriorityAdvisor->getPriority(*LI);
297
298 // The virtual register number is a tie breaker for same-sized ranges.
299 // Give lower vreg numbers higher priority to assign them first.
300 CurQueue.push(std::make_pair(Ret, ~Reg));
301 }
302
getPriority(const LiveInterval & LI) const303 unsigned DefaultPriorityAdvisor::getPriority(const LiveInterval &LI) const {
304 const unsigned Size = LI.getSize();
305 const Register Reg = LI.reg();
306 unsigned Prio;
307 LiveRangeStage Stage = RA.getExtraInfo().getStage(LI);
308
309 if (Stage == RS_Split) {
310 // Unsplit ranges that couldn't be allocated immediately are deferred until
311 // everything else has been allocated.
312 Prio = Size;
313 } else if (Stage == RS_Memory) {
314 // Memory operand should be considered last.
315 // Change the priority such that Memory operand are assigned in
316 // the reverse order that they came in.
317 // TODO: Make this a member variable and probably do something about hints.
318 static unsigned MemOp = 0;
319 Prio = MemOp++;
320 } else {
321 // Giant live ranges fall back to the global assignment heuristic, which
322 // prevents excessive spilling in pathological cases.
323 const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
324 bool ForceGlobal = RC.GlobalPriority ||
325 (!ReverseLocalAssignment &&
326 (Size / SlotIndex::InstrDist) >
327 (2 * RegClassInfo.getNumAllocatableRegs(&RC)));
328 unsigned GlobalBit = 0;
329
330 if (Stage == RS_Assign && !ForceGlobal && !LI.empty() &&
331 LIS->intervalIsInOneMBB(LI)) {
332 // Allocate original local ranges in linear instruction order. Since they
333 // are singly defined, this produces optimal coloring in the absence of
334 // global interference and other constraints.
335 if (!ReverseLocalAssignment)
336 Prio = LI.beginIndex().getApproxInstrDistance(Indexes->getLastIndex());
337 else {
338 // Allocating bottom up may allow many short LRGs to be assigned first
339 // to one of the cheap registers. This could be much faster for very
340 // large blocks on targets with many physical registers.
341 Prio = Indexes->getZeroIndex().getApproxInstrDistance(LI.endIndex());
342 }
343 } else {
344 // Allocate global and split ranges in long->short order. Long ranges that
345 // don't fit should be spilled (or split) ASAP so they don't create
346 // interference. Mark a bit to prioritize global above local ranges.
347 Prio = Size;
348 GlobalBit = 1;
349 }
350
351 // Priority bit layout:
352 // 31 RS_Assign priority
353 // 30 Preference priority
354 // if (RegClassPriorityTrumpsGlobalness)
355 // 29-25 AllocPriority
356 // 24 GlobalBit
357 // else
358 // 29 Global bit
359 // 28-24 AllocPriority
360 // 0-23 Size/Instr distance
361
362 // Clamp the size to fit with the priority masking scheme
363 Prio = std::min(Prio, (unsigned)maxUIntN(24));
364 assert(isUInt<5>(RC.AllocationPriority) && "allocation priority overflow");
365
366 if (RegClassPriorityTrumpsGlobalness)
367 Prio |= RC.AllocationPriority << 25 | GlobalBit << 24;
368 else
369 Prio |= GlobalBit << 29 | RC.AllocationPriority << 24;
370
371 // Mark a higher bit to prioritize global and local above RS_Split.
372 Prio |= (1u << 31);
373
374 // Boost ranges that have a physical register hint.
375 if (VRM->hasKnownPreference(Reg))
376 Prio |= (1u << 30);
377 }
378
379 return Prio;
380 }
381
dequeue()382 const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
383
dequeue(PQueue & CurQueue)384 const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
385 if (CurQueue.empty())
386 return nullptr;
387 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
388 CurQueue.pop();
389 return LI;
390 }
391
392 //===----------------------------------------------------------------------===//
393 // Direct Assignment
394 //===----------------------------------------------------------------------===//
395
396 /// tryAssign - Try to assign VirtReg to an available register.
tryAssign(const LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<Register> & NewVRegs,const SmallVirtRegSet & FixedRegisters)397 MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg,
398 AllocationOrder &Order,
399 SmallVectorImpl<Register> &NewVRegs,
400 const SmallVirtRegSet &FixedRegisters) {
401 MCRegister PhysReg;
402 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
403 assert(*I);
404 if (!Matrix->checkInterference(VirtReg, *I)) {
405 if (I.isHint())
406 return *I;
407 else
408 PhysReg = *I;
409 }
410 }
411 if (!PhysReg.isValid())
412 return PhysReg;
413
414 // PhysReg is available, but there may be a better choice.
415
416 // If we missed a simple hint, try to cheaply evict interference from the
417 // preferred register.
418 if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
419 if (Order.isHint(Hint)) {
420 MCRegister PhysHint = Hint.asMCReg();
421 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
422
423 if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint,
424 FixedRegisters)) {
425 evictInterference(VirtReg, PhysHint, NewVRegs);
426 return PhysHint;
427 }
428
429 // We can also split the virtual register in cold blocks.
430 if (trySplitAroundHintReg(PhysHint, VirtReg, NewVRegs, Order))
431 return 0;
432
433 // Record the missed hint, we may be able to recover
434 // at the end if the surrounding allocation changed.
435 SetOfBrokenHints.insert(&VirtReg);
436 }
437
438 // Try to evict interference from a cheaper alternative.
439 uint8_t Cost = RegCosts[PhysReg];
440
441 // Most registers have 0 additional cost.
442 if (!Cost)
443 return PhysReg;
444
445 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
446 << (unsigned)Cost << '\n');
447 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
448 return CheapReg ? CheapReg : PhysReg;
449 }
450
451 //===----------------------------------------------------------------------===//
452 // Interference eviction
453 //===----------------------------------------------------------------------===//
454
canReassign(const LiveInterval & VirtReg,MCRegister FromReg) const455 bool RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg,
456 MCRegister FromReg) const {
457 auto HasRegUnitInterference = [&](MCRegUnit Unit) {
458 // Instantiate a "subquery", not to be confused with the Queries array.
459 LiveIntervalUnion::Query SubQ(VirtReg, Matrix->getLiveUnions()[Unit]);
460 return SubQ.checkInterference();
461 };
462
463 for (MCRegister Reg :
464 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix)) {
465 if (Reg == FromReg)
466 continue;
467 // If no units have interference, reassignment is possible.
468 if (none_of(TRI->regunits(Reg), HasRegUnitInterference)) {
469 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
470 << printReg(FromReg, TRI) << " to "
471 << printReg(Reg, TRI) << '\n');
472 return true;
473 }
474 }
475 return false;
476 }
477
478 /// evictInterference - Evict any interferring registers that prevent VirtReg
479 /// from being assigned to Physreg. This assumes that canEvictInterference
480 /// returned true.
evictInterference(const LiveInterval & VirtReg,MCRegister PhysReg,SmallVectorImpl<Register> & NewVRegs)481 void RAGreedy::evictInterference(const LiveInterval &VirtReg,
482 MCRegister PhysReg,
483 SmallVectorImpl<Register> &NewVRegs) {
484 // Make sure that VirtReg has a cascade number, and assign that cascade
485 // number to every evicted register. These live ranges than then only be
486 // evicted by a newer cascade, preventing infinite loops.
487 unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg());
488
489 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
490 << " interference: Cascade " << Cascade << '\n');
491
492 // Collect all interfering virtregs first.
493 SmallVector<const LiveInterval *, 8> Intfs;
494 for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
495 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit);
496 // We usually have the interfering VRegs cached so collectInterferingVRegs()
497 // should be fast, we may need to recalculate if when different physregs
498 // overlap the same register unit so we had different SubRanges queried
499 // against it.
500 ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs();
501 Intfs.append(IVR.begin(), IVR.end());
502 }
503
504 // Evict them second. This will invalidate the queries.
505 for (const LiveInterval *Intf : Intfs) {
506 // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
507 if (!VRM->hasPhys(Intf->reg()))
508 continue;
509
510 Matrix->unassign(*Intf);
511 assert((ExtraInfo->getCascade(Intf->reg()) < Cascade ||
512 VirtReg.isSpillable() < Intf->isSpillable()) &&
513 "Cannot decrease cascade number, illegal eviction");
514 ExtraInfo->setCascade(Intf->reg(), Cascade);
515 ++NumEvicted;
516 NewVRegs.push_back(Intf->reg());
517 }
518 }
519
520 /// Returns true if the given \p PhysReg is a callee saved register and has not
521 /// been used for allocation yet.
isUnusedCalleeSavedReg(MCRegister PhysReg) const522 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
523 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
524 if (!CSR)
525 return false;
526
527 return !Matrix->isPhysRegUsed(PhysReg);
528 }
529
530 std::optional<unsigned>
getOrderLimit(const LiveInterval & VirtReg,const AllocationOrder & Order,unsigned CostPerUseLimit) const531 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg,
532 const AllocationOrder &Order,
533 unsigned CostPerUseLimit) const {
534 unsigned OrderLimit = Order.getOrder().size();
535
536 if (CostPerUseLimit < uint8_t(~0u)) {
537 // Check of any registers in RC are below CostPerUseLimit.
538 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
539 uint8_t MinCost = RegClassInfo.getMinCost(RC);
540 if (MinCost >= CostPerUseLimit) {
541 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
542 << MinCost << ", no cheaper registers to be found.\n");
543 return std::nullopt;
544 }
545
546 // It is normal for register classes to have a long tail of registers with
547 // the same cost. We don't need to look at them if they're too expensive.
548 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
549 OrderLimit = RegClassInfo.getLastCostChange(RC);
550 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
551 << " regs.\n");
552 }
553 }
554 return OrderLimit;
555 }
556
canAllocatePhysReg(unsigned CostPerUseLimit,MCRegister PhysReg) const557 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit,
558 MCRegister PhysReg) const {
559 if (RegCosts[PhysReg] >= CostPerUseLimit)
560 return false;
561 // The first use of a callee-saved register in a function has cost 1.
562 // Don't start using a CSR when the CostPerUseLimit is low.
563 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
564 LLVM_DEBUG(
565 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
566 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
567 << '\n');
568 return false;
569 }
570 return true;
571 }
572
573 /// tryEvict - Try to evict all interferences for a physreg.
574 /// @param VirtReg Currently unassigned virtual register.
575 /// @param Order Physregs to try.
576 /// @return Physreg to assign VirtReg, or 0.
tryEvict(const LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<Register> & NewVRegs,uint8_t CostPerUseLimit,const SmallVirtRegSet & FixedRegisters)577 MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg,
578 AllocationOrder &Order,
579 SmallVectorImpl<Register> &NewVRegs,
580 uint8_t CostPerUseLimit,
581 const SmallVirtRegSet &FixedRegisters) {
582 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
583 TimePassesIsEnabled);
584
585 MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate(
586 VirtReg, Order, CostPerUseLimit, FixedRegisters);
587 if (BestPhys.isValid())
588 evictInterference(VirtReg, BestPhys, NewVRegs);
589 return BestPhys;
590 }
591
592 //===----------------------------------------------------------------------===//
593 // Region Splitting
594 //===----------------------------------------------------------------------===//
595
596 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
597 /// interference pattern in Physreg and its aliases. Add the constraints to
598 /// SpillPlacement and return the static cost of this split in Cost, assuming
599 /// that all preferences in SplitConstraints are met.
600 /// Return false if there are no bundles with positive bias.
addSplitConstraints(InterferenceCache::Cursor Intf,BlockFrequency & Cost)601 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
602 BlockFrequency &Cost) {
603 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
604
605 // Reset interference dependent info.
606 SplitConstraints.resize(UseBlocks.size());
607 BlockFrequency StaticCost = BlockFrequency(0);
608 for (unsigned I = 0; I != UseBlocks.size(); ++I) {
609 const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
610 SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
611
612 BC.Number = BI.MBB->getNumber();
613 Intf.moveToBlock(BC.Number);
614 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
615 BC.Exit = (BI.LiveOut &&
616 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
617 ? SpillPlacement::PrefReg
618 : SpillPlacement::DontCare;
619 BC.ChangesValue = BI.FirstDef.isValid();
620
621 if (!Intf.hasInterference())
622 continue;
623
624 // Number of spill code instructions to insert.
625 unsigned Ins = 0;
626
627 // Interference for the live-in value.
628 if (BI.LiveIn) {
629 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
630 BC.Entry = SpillPlacement::MustSpill;
631 ++Ins;
632 } else if (Intf.first() < BI.FirstInstr) {
633 BC.Entry = SpillPlacement::PrefSpill;
634 ++Ins;
635 } else if (Intf.first() < BI.LastInstr) {
636 ++Ins;
637 }
638
639 // Abort if the spill cannot be inserted at the MBB' start
640 if (((BC.Entry == SpillPlacement::MustSpill) ||
641 (BC.Entry == SpillPlacement::PrefSpill)) &&
642 SlotIndex::isEarlierInstr(BI.FirstInstr,
643 SA->getFirstSplitPoint(BC.Number)))
644 return false;
645 }
646
647 // Interference for the live-out value.
648 if (BI.LiveOut) {
649 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
650 BC.Exit = SpillPlacement::MustSpill;
651 ++Ins;
652 } else if (Intf.last() > BI.LastInstr) {
653 BC.Exit = SpillPlacement::PrefSpill;
654 ++Ins;
655 } else if (Intf.last() > BI.FirstInstr) {
656 ++Ins;
657 }
658 }
659
660 // Accumulate the total frequency of inserted spill code.
661 while (Ins--)
662 StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
663 }
664 Cost = StaticCost;
665
666 // Add constraints for use-blocks. Note that these are the only constraints
667 // that may add a positive bias, it is downhill from here.
668 SpillPlacer->addConstraints(SplitConstraints);
669 return SpillPlacer->scanActiveBundles();
670 }
671
672 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
673 /// live-through blocks in Blocks.
addThroughConstraints(InterferenceCache::Cursor Intf,ArrayRef<unsigned> Blocks)674 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
675 ArrayRef<unsigned> Blocks) {
676 const unsigned GroupSize = 8;
677 SpillPlacement::BlockConstraint BCS[GroupSize];
678 unsigned TBS[GroupSize];
679 unsigned B = 0, T = 0;
680
681 for (unsigned Number : Blocks) {
682 Intf.moveToBlock(Number);
683
684 if (!Intf.hasInterference()) {
685 assert(T < GroupSize && "Array overflow");
686 TBS[T] = Number;
687 if (++T == GroupSize) {
688 SpillPlacer->addLinks(ArrayRef(TBS, T));
689 T = 0;
690 }
691 continue;
692 }
693
694 assert(B < GroupSize && "Array overflow");
695 BCS[B].Number = Number;
696
697 // Abort if the spill cannot be inserted at the MBB' start
698 MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
699 auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
700 if (FirstNonDebugInstr != MBB->end() &&
701 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
702 SA->getFirstSplitPoint(Number)))
703 return false;
704 // Interference for the live-in value.
705 if (Intf.first() <= Indexes->getMBBStartIdx(Number))
706 BCS[B].Entry = SpillPlacement::MustSpill;
707 else
708 BCS[B].Entry = SpillPlacement::PrefSpill;
709
710 // Interference for the live-out value.
711 if (Intf.last() >= SA->getLastSplitPoint(Number))
712 BCS[B].Exit = SpillPlacement::MustSpill;
713 else
714 BCS[B].Exit = SpillPlacement::PrefSpill;
715
716 if (++B == GroupSize) {
717 SpillPlacer->addConstraints(ArrayRef(BCS, B));
718 B = 0;
719 }
720 }
721
722 SpillPlacer->addConstraints(ArrayRef(BCS, B));
723 SpillPlacer->addLinks(ArrayRef(TBS, T));
724 return true;
725 }
726
growRegion(GlobalSplitCandidate & Cand)727 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
728 // Keep track of through blocks that have not been added to SpillPlacer.
729 BitVector Todo = SA->getThroughBlocks();
730 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
731 unsigned AddedTo = 0;
732 #ifndef NDEBUG
733 unsigned Visited = 0;
734 #endif
735
736 unsigned long Budget = GrowRegionComplexityBudget;
737 while (true) {
738 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
739 // Find new through blocks in the periphery of PrefRegBundles.
740 for (unsigned Bundle : NewBundles) {
741 // Look at all blocks connected to Bundle in the full graph.
742 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
743 // Limit compilation time by bailing out after we use all our budget.
744 if (Blocks.size() >= Budget)
745 return false;
746 Budget -= Blocks.size();
747 for (unsigned Block : Blocks) {
748 if (!Todo.test(Block))
749 continue;
750 Todo.reset(Block);
751 // This is a new through block. Add it to SpillPlacer later.
752 ActiveBlocks.push_back(Block);
753 #ifndef NDEBUG
754 ++Visited;
755 #endif
756 }
757 }
758 // Any new blocks to add?
759 if (ActiveBlocks.size() == AddedTo)
760 break;
761
762 // Compute through constraints from the interference, or assume that all
763 // through blocks prefer spilling when forming compact regions.
764 auto NewBlocks = ArrayRef(ActiveBlocks).slice(AddedTo);
765 if (Cand.PhysReg) {
766 if (!addThroughConstraints(Cand.Intf, NewBlocks))
767 return false;
768 } else {
769 // Providing that the variable being spilled does not look like a loop
770 // induction variable, which is expensive to spill around and better
771 // pushed into a condition inside the loop if possible, provide a strong
772 // negative bias on through blocks to prevent unwanted liveness on loop
773 // backedges.
774 bool PrefSpill = true;
775 if (SA->looksLikeLoopIV() && NewBlocks.size() >= 2) {
776 // Check that the current bundle is adding a Header + start+end of
777 // loop-internal blocks. If the block is indeed a header, don't make
778 // the NewBlocks as PrefSpill to allow the variable to be live in
779 // Header<->Latch.
780 MachineLoop *L = Loops->getLoopFor(MF->getBlockNumbered(NewBlocks[0]));
781 if (L && L->getHeader()->getNumber() == (int)NewBlocks[0] &&
782 all_of(NewBlocks.drop_front(), [&](unsigned Block) {
783 return L == Loops->getLoopFor(MF->getBlockNumbered(Block));
784 }))
785 PrefSpill = false;
786 }
787 if (PrefSpill)
788 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
789 }
790 AddedTo = ActiveBlocks.size();
791
792 // Perhaps iterating can enable more bundles?
793 SpillPlacer->iterate();
794 }
795 LLVM_DEBUG(dbgs() << ", v=" << Visited);
796 return true;
797 }
798
799 /// calcCompactRegion - Compute the set of edge bundles that should be live
800 /// when splitting the current live range into compact regions. Compact
801 /// regions can be computed without looking at interference. They are the
802 /// regions formed by removing all the live-through blocks from the live range.
803 ///
804 /// Returns false if the current live range is already compact, or if the
805 /// compact regions would form single block regions anyway.
calcCompactRegion(GlobalSplitCandidate & Cand)806 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
807 // Without any through blocks, the live range is already compact.
808 if (!SA->getNumThroughBlocks())
809 return false;
810
811 // Compact regions don't correspond to any physreg.
812 Cand.reset(IntfCache, MCRegister::NoRegister);
813
814 LLVM_DEBUG(dbgs() << "Compact region bundles");
815
816 // Use the spill placer to determine the live bundles. GrowRegion pretends
817 // that all the through blocks have interference when PhysReg is unset.
818 SpillPlacer->prepare(Cand.LiveBundles);
819
820 // The static split cost will be zero since Cand.Intf reports no interference.
821 BlockFrequency Cost;
822 if (!addSplitConstraints(Cand.Intf, Cost)) {
823 LLVM_DEBUG(dbgs() << ", none.\n");
824 return false;
825 }
826
827 if (!growRegion(Cand)) {
828 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
829 return false;
830 }
831
832 SpillPlacer->finish();
833
834 if (!Cand.LiveBundles.any()) {
835 LLVM_DEBUG(dbgs() << ", none.\n");
836 return false;
837 }
838
839 LLVM_DEBUG({
840 for (int I : Cand.LiveBundles.set_bits())
841 dbgs() << " EB#" << I;
842 dbgs() << ".\n";
843 });
844 return true;
845 }
846
847 /// calcSpillCost - Compute how expensive it would be to split the live range in
848 /// SA around all use blocks instead of forming bundle regions.
calcSpillCost()849 BlockFrequency RAGreedy::calcSpillCost() {
850 BlockFrequency Cost = BlockFrequency(0);
851 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
852 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
853 unsigned Number = BI.MBB->getNumber();
854 // We normally only need one spill instruction - a load or a store.
855 Cost += SpillPlacer->getBlockFrequency(Number);
856
857 // Unless the value is redefined in the block.
858 if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
859 Cost += SpillPlacer->getBlockFrequency(Number);
860 }
861 return Cost;
862 }
863
864 /// calcGlobalSplitCost - Return the global split cost of following the split
865 /// pattern in LiveBundles. This cost should be added to the local cost of the
866 /// interference pattern in SplitConstraints.
867 ///
calcGlobalSplitCost(GlobalSplitCandidate & Cand,const AllocationOrder & Order)868 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
869 const AllocationOrder &Order) {
870 BlockFrequency GlobalCost = BlockFrequency(0);
871 const BitVector &LiveBundles = Cand.LiveBundles;
872 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
873 for (unsigned I = 0; I != UseBlocks.size(); ++I) {
874 const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
875 SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
876 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)];
877 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
878 unsigned Ins = 0;
879
880 Cand.Intf.moveToBlock(BC.Number);
881
882 if (BI.LiveIn)
883 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
884 if (BI.LiveOut)
885 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
886 while (Ins--)
887 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
888 }
889
890 for (unsigned Number : Cand.ActiveBlocks) {
891 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)];
892 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
893 if (!RegIn && !RegOut)
894 continue;
895 if (RegIn && RegOut) {
896 // We need double spill code if this block has interference.
897 Cand.Intf.moveToBlock(Number);
898 if (Cand.Intf.hasInterference()) {
899 GlobalCost += SpillPlacer->getBlockFrequency(Number);
900 GlobalCost += SpillPlacer->getBlockFrequency(Number);
901 }
902 continue;
903 }
904 // live-in / stack-out or stack-in live-out.
905 GlobalCost += SpillPlacer->getBlockFrequency(Number);
906 }
907 return GlobalCost;
908 }
909
910 /// splitAroundRegion - Split the current live range around the regions
911 /// determined by BundleCand and GlobalCand.
912 ///
913 /// Before calling this function, GlobalCand and BundleCand must be initialized
914 /// so each bundle is assigned to a valid candidate, or NoCand for the
915 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
916 /// objects must be initialized for the current live range, and intervals
917 /// created for the used candidates.
918 ///
919 /// @param LREdit The LiveRangeEdit object handling the current split.
920 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
921 /// must appear in this list.
splitAroundRegion(LiveRangeEdit & LREdit,ArrayRef<unsigned> UsedCands)922 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
923 ArrayRef<unsigned> UsedCands) {
924 // These are the intervals created for new global ranges. We may create more
925 // intervals for local ranges.
926 const unsigned NumGlobalIntvs = LREdit.size();
927 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
928 << " globals.\n");
929 assert(NumGlobalIntvs && "No global intervals configured");
930
931 // Isolate even single instructions when dealing with a proper sub-class.
932 // That guarantees register class inflation for the stack interval because it
933 // is all copies.
934 Register Reg = SA->getParent().reg();
935 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
936
937 // First handle all the blocks with uses.
938 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
939 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
940 unsigned Number = BI.MBB->getNumber();
941 unsigned IntvIn = 0, IntvOut = 0;
942 SlotIndex IntfIn, IntfOut;
943 if (BI.LiveIn) {
944 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
945 if (CandIn != NoCand) {
946 GlobalSplitCandidate &Cand = GlobalCand[CandIn];
947 IntvIn = Cand.IntvIdx;
948 Cand.Intf.moveToBlock(Number);
949 IntfIn = Cand.Intf.first();
950 }
951 }
952 if (BI.LiveOut) {
953 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
954 if (CandOut != NoCand) {
955 GlobalSplitCandidate &Cand = GlobalCand[CandOut];
956 IntvOut = Cand.IntvIdx;
957 Cand.Intf.moveToBlock(Number);
958 IntfOut = Cand.Intf.last();
959 }
960 }
961
962 // Create separate intervals for isolated blocks with multiple uses.
963 if (!IntvIn && !IntvOut) {
964 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
965 if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
966 SE->splitSingleBlock(BI);
967 continue;
968 }
969
970 if (IntvIn && IntvOut)
971 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
972 else if (IntvIn)
973 SE->splitRegInBlock(BI, IntvIn, IntfIn);
974 else
975 SE->splitRegOutBlock(BI, IntvOut, IntfOut);
976 }
977
978 // Handle live-through blocks. The relevant live-through blocks are stored in
979 // the ActiveBlocks list with each candidate. We need to filter out
980 // duplicates.
981 BitVector Todo = SA->getThroughBlocks();
982 for (unsigned UsedCand : UsedCands) {
983 ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks;
984 for (unsigned Number : Blocks) {
985 if (!Todo.test(Number))
986 continue;
987 Todo.reset(Number);
988
989 unsigned IntvIn = 0, IntvOut = 0;
990 SlotIndex IntfIn, IntfOut;
991
992 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
993 if (CandIn != NoCand) {
994 GlobalSplitCandidate &Cand = GlobalCand[CandIn];
995 IntvIn = Cand.IntvIdx;
996 Cand.Intf.moveToBlock(Number);
997 IntfIn = Cand.Intf.first();
998 }
999
1000 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1001 if (CandOut != NoCand) {
1002 GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1003 IntvOut = Cand.IntvIdx;
1004 Cand.Intf.moveToBlock(Number);
1005 IntfOut = Cand.Intf.last();
1006 }
1007 if (!IntvIn && !IntvOut)
1008 continue;
1009 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1010 }
1011 }
1012
1013 ++NumGlobalSplits;
1014
1015 SmallVector<unsigned, 8> IntvMap;
1016 SE->finish(&IntvMap);
1017 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1018
1019 unsigned OrigBlocks = SA->getNumLiveBlocks();
1020
1021 // Sort out the new intervals created by splitting. We get four kinds:
1022 // - Remainder intervals should not be split again.
1023 // - Candidate intervals can be assigned to Cand.PhysReg.
1024 // - Block-local splits are candidates for local splitting.
1025 // - DCE leftovers should go back on the queue.
1026 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1027 const LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1028
1029 // Ignore old intervals from DCE.
1030 if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New)
1031 continue;
1032
1033 // Remainder interval. Don't try splitting again, spill if it doesn't
1034 // allocate.
1035 if (IntvMap[I] == 0) {
1036 ExtraInfo->setStage(Reg, RS_Spill);
1037 continue;
1038 }
1039
1040 // Global intervals. Allow repeated splitting as long as the number of live
1041 // blocks is strictly decreasing.
1042 if (IntvMap[I] < NumGlobalIntvs) {
1043 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1044 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1045 << " blocks as original.\n");
1046 // Don't allow repeated splitting as a safe guard against looping.
1047 ExtraInfo->setStage(Reg, RS_Split2);
1048 }
1049 continue;
1050 }
1051
1052 // Other intervals are treated as new. This includes local intervals created
1053 // for blocks with multiple uses, and anything created by DCE.
1054 }
1055
1056 if (VerifyEnabled)
1057 MF->verify(this, "After splitting live range around region");
1058 }
1059
tryRegionSplit(const LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<Register> & NewVRegs)1060 MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg,
1061 AllocationOrder &Order,
1062 SmallVectorImpl<Register> &NewVRegs) {
1063 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1064 return MCRegister::NoRegister;
1065 unsigned NumCands = 0;
1066 BlockFrequency SpillCost = calcSpillCost();
1067 BlockFrequency BestCost;
1068
1069 // Check if we can split this live range around a compact region.
1070 bool HasCompact = calcCompactRegion(GlobalCand.front());
1071 if (HasCompact) {
1072 // Yes, keep GlobalCand[0] as the compact region candidate.
1073 NumCands = 1;
1074 BestCost = BlockFrequency::max();
1075 } else {
1076 // No benefit from the compact region, our fallback will be per-block
1077 // splitting. Make sure we find a solution that is cheaper than spilling.
1078 BestCost = SpillCost;
1079 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "
1080 << printBlockFreq(*MBFI, BestCost) << '\n');
1081 }
1082
1083 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
1084 NumCands, false /*IgnoreCSR*/);
1085
1086 // No solutions found, fall back to single block splitting.
1087 if (!HasCompact && BestCand == NoCand)
1088 return MCRegister::NoRegister;
1089
1090 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1091 }
1092
1093 unsigned
calculateRegionSplitCostAroundReg(MCPhysReg PhysReg,AllocationOrder & Order,BlockFrequency & BestCost,unsigned & NumCands,unsigned & BestCand)1094 RAGreedy::calculateRegionSplitCostAroundReg(MCPhysReg PhysReg,
1095 AllocationOrder &Order,
1096 BlockFrequency &BestCost,
1097 unsigned &NumCands,
1098 unsigned &BestCand) {
1099 // Discard bad candidates before we run out of interference cache cursors.
1100 // This will only affect register classes with a lot of registers (>32).
1101 if (NumCands == IntfCache.getMaxCursors()) {
1102 unsigned WorstCount = ~0u;
1103 unsigned Worst = 0;
1104 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1105 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1106 continue;
1107 unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1108 if (Count < WorstCount) {
1109 Worst = CandIndex;
1110 WorstCount = Count;
1111 }
1112 }
1113 --NumCands;
1114 GlobalCand[Worst] = GlobalCand[NumCands];
1115 if (BestCand == NumCands)
1116 BestCand = Worst;
1117 }
1118
1119 if (GlobalCand.size() <= NumCands)
1120 GlobalCand.resize(NumCands+1);
1121 GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1122 Cand.reset(IntfCache, PhysReg);
1123
1124 SpillPlacer->prepare(Cand.LiveBundles);
1125 BlockFrequency Cost;
1126 if (!addSplitConstraints(Cand.Intf, Cost)) {
1127 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1128 return BestCand;
1129 }
1130 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI)
1131 << "\tstatic = " << printBlockFreq(*MBFI, Cost));
1132 if (Cost >= BestCost) {
1133 LLVM_DEBUG({
1134 if (BestCand == NoCand)
1135 dbgs() << " worse than no bundles\n";
1136 else
1137 dbgs() << " worse than "
1138 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1139 });
1140 return BestCand;
1141 }
1142 if (!growRegion(Cand)) {
1143 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1144 return BestCand;
1145 }
1146
1147 SpillPlacer->finish();
1148
1149 // No live bundles, defer to splitSingleBlocks().
1150 if (!Cand.LiveBundles.any()) {
1151 LLVM_DEBUG(dbgs() << " no bundles.\n");
1152 return BestCand;
1153 }
1154
1155 Cost += calcGlobalSplitCost(Cand, Order);
1156 LLVM_DEBUG({
1157 dbgs() << ", total = " << printBlockFreq(*MBFI, Cost) << " with bundles";
1158 for (int I : Cand.LiveBundles.set_bits())
1159 dbgs() << " EB#" << I;
1160 dbgs() << ".\n";
1161 });
1162 if (Cost < BestCost) {
1163 BestCand = NumCands;
1164 BestCost = Cost;
1165 }
1166 ++NumCands;
1167
1168 return BestCand;
1169 }
1170
calculateRegionSplitCost(const LiveInterval & VirtReg,AllocationOrder & Order,BlockFrequency & BestCost,unsigned & NumCands,bool IgnoreCSR)1171 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg,
1172 AllocationOrder &Order,
1173 BlockFrequency &BestCost,
1174 unsigned &NumCands,
1175 bool IgnoreCSR) {
1176 unsigned BestCand = NoCand;
1177 for (MCPhysReg PhysReg : Order) {
1178 assert(PhysReg);
1179 if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg))
1180 continue;
1181
1182 calculateRegionSplitCostAroundReg(PhysReg, Order, BestCost, NumCands,
1183 BestCand);
1184 }
1185
1186 return BestCand;
1187 }
1188
doRegionSplit(const LiveInterval & VirtReg,unsigned BestCand,bool HasCompact,SmallVectorImpl<Register> & NewVRegs)1189 unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand,
1190 bool HasCompact,
1191 SmallVectorImpl<Register> &NewVRegs) {
1192 SmallVector<unsigned, 8> UsedCands;
1193 // Prepare split editor.
1194 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1195 SE->reset(LREdit, SplitSpillMode);
1196
1197 // Assign all edge bundles to the preferred candidate, or NoCand.
1198 BundleCand.assign(Bundles->getNumBundles(), NoCand);
1199
1200 // Assign bundles for the best candidate region.
1201 if (BestCand != NoCand) {
1202 GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1203 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1204 UsedCands.push_back(BestCand);
1205 Cand.IntvIdx = SE->openIntv();
1206 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1207 << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1208 (void)B;
1209 }
1210 }
1211
1212 // Assign bundles for the compact region.
1213 if (HasCompact) {
1214 GlobalSplitCandidate &Cand = GlobalCand.front();
1215 assert(!Cand.PhysReg && "Compact region has no physreg");
1216 if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1217 UsedCands.push_back(0);
1218 Cand.IntvIdx = SE->openIntv();
1219 LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1220 << " bundles, intv " << Cand.IntvIdx << ".\n");
1221 (void)B;
1222 }
1223 }
1224
1225 splitAroundRegion(LREdit, UsedCands);
1226 return 0;
1227 }
1228
1229 // VirtReg has a physical Hint, this function tries to split VirtReg around
1230 // Hint if we can place new COPY instructions in cold blocks.
trySplitAroundHintReg(MCPhysReg Hint,const LiveInterval & VirtReg,SmallVectorImpl<Register> & NewVRegs,AllocationOrder & Order)1231 bool RAGreedy::trySplitAroundHintReg(MCPhysReg Hint,
1232 const LiveInterval &VirtReg,
1233 SmallVectorImpl<Register> &NewVRegs,
1234 AllocationOrder &Order) {
1235 // Split the VirtReg may generate COPY instructions in multiple cold basic
1236 // blocks, and increase code size. So we avoid it when the function is
1237 // optimized for size.
1238 if (MF->getFunction().hasOptSize())
1239 return false;
1240
1241 // Don't allow repeated splitting as a safe guard against looping.
1242 if (ExtraInfo->getStage(VirtReg) >= RS_Split2)
1243 return false;
1244
1245 BlockFrequency Cost = BlockFrequency(0);
1246 Register Reg = VirtReg.reg();
1247
1248 // Compute the cost of assigning a non Hint physical register to VirtReg.
1249 // We define it as the total frequency of broken COPY instructions to/from
1250 // Hint register, and after split, they can be deleted.
1251 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
1252 if (!TII->isFullCopyInstr(Instr))
1253 continue;
1254 Register OtherReg = Instr.getOperand(1).getReg();
1255 if (OtherReg == Reg) {
1256 OtherReg = Instr.getOperand(0).getReg();
1257 if (OtherReg == Reg)
1258 continue;
1259 // Check if VirtReg interferes with OtherReg after this COPY instruction.
1260 if (VirtReg.liveAt(LIS->getInstructionIndex(Instr).getRegSlot()))
1261 continue;
1262 }
1263 MCRegister OtherPhysReg =
1264 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
1265 if (OtherPhysReg == Hint)
1266 Cost += MBFI->getBlockFreq(Instr.getParent());
1267 }
1268
1269 // Decrease the cost so it will be split in colder blocks.
1270 BranchProbability Threshold(SplitThresholdForRegWithHint, 100);
1271 Cost *= Threshold;
1272 if (Cost == BlockFrequency(0))
1273 return false;
1274
1275 unsigned NumCands = 0;
1276 unsigned BestCand = NoCand;
1277 SA->analyze(&VirtReg);
1278 calculateRegionSplitCostAroundReg(Hint, Order, Cost, NumCands, BestCand);
1279 if (BestCand == NoCand)
1280 return false;
1281
1282 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
1283 return true;
1284 }
1285
1286 //===----------------------------------------------------------------------===//
1287 // Per-Block Splitting
1288 //===----------------------------------------------------------------------===//
1289
1290 /// tryBlockSplit - Split a global live range around every block with uses. This
1291 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1292 /// they don't allocate.
tryBlockSplit(const LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<Register> & NewVRegs)1293 unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg,
1294 AllocationOrder &Order,
1295 SmallVectorImpl<Register> &NewVRegs) {
1296 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1297 Register Reg = VirtReg.reg();
1298 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1299 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1300 SE->reset(LREdit, SplitSpillMode);
1301 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1302 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1303 if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1304 SE->splitSingleBlock(BI);
1305 }
1306 // No blocks were split.
1307 if (LREdit.empty())
1308 return 0;
1309
1310 // We did split for some blocks.
1311 SmallVector<unsigned, 8> IntvMap;
1312 SE->finish(&IntvMap);
1313
1314 // Tell LiveDebugVariables about the new ranges.
1315 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1316
1317 // Sort out the new intervals created by splitting. The remainder interval
1318 // goes straight to spilling, the new local ranges get to stay RS_New.
1319 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1320 const LiveInterval &LI = LIS->getInterval(LREdit.get(I));
1321 if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0)
1322 ExtraInfo->setStage(LI, RS_Spill);
1323 }
1324
1325 if (VerifyEnabled)
1326 MF->verify(this, "After splitting live range around basic blocks");
1327 return 0;
1328 }
1329
1330 //===----------------------------------------------------------------------===//
1331 // Per-Instruction Splitting
1332 //===----------------------------------------------------------------------===//
1333
1334 /// Get the number of allocatable registers that match the constraints of \p Reg
1335 /// on \p MI and that are also in \p SuperRC.
getNumAllocatableRegsForConstraints(const MachineInstr * MI,Register Reg,const TargetRegisterClass * SuperRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI,const RegisterClassInfo & RCI)1336 static unsigned getNumAllocatableRegsForConstraints(
1337 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
1338 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1339 const RegisterClassInfo &RCI) {
1340 assert(SuperRC && "Invalid register class");
1341
1342 const TargetRegisterClass *ConstrainedRC =
1343 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1344 /* ExploreBundle */ true);
1345 if (!ConstrainedRC)
1346 return 0;
1347 return RCI.getNumAllocatableRegs(ConstrainedRC);
1348 }
1349
getInstReadLaneMask(const MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,const MachineInstr & FirstMI,Register Reg)1350 static LaneBitmask getInstReadLaneMask(const MachineRegisterInfo &MRI,
1351 const TargetRegisterInfo &TRI,
1352 const MachineInstr &FirstMI,
1353 Register Reg) {
1354 LaneBitmask Mask;
1355 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
1356 (void)AnalyzeVirtRegInBundle(const_cast<MachineInstr &>(FirstMI), Reg, &Ops);
1357
1358 for (auto [MI, OpIdx] : Ops) {
1359 const MachineOperand &MO = MI->getOperand(OpIdx);
1360 assert(MO.isReg() && MO.getReg() == Reg);
1361 unsigned SubReg = MO.getSubReg();
1362 if (SubReg == 0 && MO.isUse()) {
1363 if (MO.isUndef())
1364 continue;
1365 return MRI.getMaxLaneMaskForVReg(Reg);
1366 }
1367
1368 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(SubReg);
1369 if (MO.isDef()) {
1370 if (!MO.isUndef())
1371 Mask |= ~SubRegMask;
1372 } else
1373 Mask |= SubRegMask;
1374 }
1375
1376 return Mask;
1377 }
1378
1379 /// Return true if \p MI at \P Use reads a subset of the lanes live in \p
1380 /// VirtReg.
readsLaneSubset(const MachineRegisterInfo & MRI,const MachineInstr * MI,const LiveInterval & VirtReg,const TargetRegisterInfo * TRI,SlotIndex Use,const TargetInstrInfo * TII)1381 static bool readsLaneSubset(const MachineRegisterInfo &MRI,
1382 const MachineInstr *MI, const LiveInterval &VirtReg,
1383 const TargetRegisterInfo *TRI, SlotIndex Use,
1384 const TargetInstrInfo *TII) {
1385 // Early check the common case. Beware of the semi-formed bundles SplitKit
1386 // creates by setting the bundle flag on copies without a matching BUNDLE.
1387
1388 auto DestSrc = TII->isCopyInstr(*MI);
1389 if (DestSrc && !MI->isBundled() &&
1390 DestSrc->Destination->getSubReg() == DestSrc->Source->getSubReg())
1391 return false;
1392
1393 // FIXME: We're only considering uses, but should be consider defs too?
1394 LaneBitmask ReadMask = getInstReadLaneMask(MRI, *TRI, *MI, VirtReg.reg());
1395
1396 LaneBitmask LiveAtMask;
1397 for (const LiveInterval::SubRange &S : VirtReg.subranges()) {
1398 if (S.liveAt(Use))
1399 LiveAtMask |= S.LaneMask;
1400 }
1401
1402 // If the live lanes aren't different from the lanes used by the instruction,
1403 // this doesn't help.
1404 return (ReadMask & ~(LiveAtMask & TRI->getCoveringLanes())).any();
1405 }
1406
1407 /// tryInstructionSplit - Split a live range around individual instructions.
1408 /// This is normally not worthwhile since the spiller is doing essentially the
1409 /// same thing. However, when the live range is in a constrained register
1410 /// class, it may help to insert copies such that parts of the live range can
1411 /// be moved to a larger register class.
1412 ///
1413 /// This is similar to spilling to a larger register class.
tryInstructionSplit(const LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<Register> & NewVRegs)1414 unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg,
1415 AllocationOrder &Order,
1416 SmallVectorImpl<Register> &NewVRegs) {
1417 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1418 // There is no point to this if there are no larger sub-classes.
1419
1420 bool SplitSubClass = true;
1421 if (!RegClassInfo.isProperSubClass(CurRC)) {
1422 if (!VirtReg.hasSubRanges())
1423 return 0;
1424 SplitSubClass = false;
1425 }
1426
1427 // Always enable split spill mode, since we're effectively spilling to a
1428 // register.
1429 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1430 SE->reset(LREdit, SplitEditor::SM_Size);
1431
1432 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1433 if (Uses.size() <= 1)
1434 return 0;
1435
1436 LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
1437 << " individual instrs.\n");
1438
1439 const TargetRegisterClass *SuperRC =
1440 TRI->getLargestLegalSuperClass(CurRC, *MF);
1441 unsigned SuperRCNumAllocatableRegs =
1442 RegClassInfo.getNumAllocatableRegs(SuperRC);
1443 // Split around every non-copy instruction if this split will relax
1444 // the constraints on the virtual register.
1445 // Otherwise, splitting just inserts uncoalescable copies that do not help
1446 // the allocation.
1447 for (const SlotIndex Use : Uses) {
1448 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) {
1449 if (TII->isFullCopyInstr(*MI) ||
1450 (SplitSubClass &&
1451 SuperRCNumAllocatableRegs ==
1452 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
1453 TII, TRI, RegClassInfo)) ||
1454 // TODO: Handle split for subranges with subclass constraints?
1455 (!SplitSubClass && VirtReg.hasSubRanges() &&
1456 !readsLaneSubset(*MRI, MI, VirtReg, TRI, Use, TII))) {
1457 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI);
1458 continue;
1459 }
1460 }
1461 SE->openIntv();
1462 SlotIndex SegStart = SE->enterIntvBefore(Use);
1463 SlotIndex SegStop = SE->leaveIntvAfter(Use);
1464 SE->useIntv(SegStart, SegStop);
1465 }
1466
1467 if (LREdit.empty()) {
1468 LLVM_DEBUG(dbgs() << "All uses were copies.\n");
1469 return 0;
1470 }
1471
1472 SmallVector<unsigned, 8> IntvMap;
1473 SE->finish(&IntvMap);
1474 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1475 // Assign all new registers to RS_Spill. This was the last chance.
1476 ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1477 return 0;
1478 }
1479
1480 //===----------------------------------------------------------------------===//
1481 // Local Splitting
1482 //===----------------------------------------------------------------------===//
1483
1484 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1485 /// in order to use PhysReg between two entries in SA->UseSlots.
1486 ///
1487 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
1488 ///
calcGapWeights(MCRegister PhysReg,SmallVectorImpl<float> & GapWeight)1489 void RAGreedy::calcGapWeights(MCRegister PhysReg,
1490 SmallVectorImpl<float> &GapWeight) {
1491 assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1492 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1493 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1494 const unsigned NumGaps = Uses.size()-1;
1495
1496 // Start and end points for the interference check.
1497 SlotIndex StartIdx =
1498 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1499 SlotIndex StopIdx =
1500 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1501
1502 GapWeight.assign(NumGaps, 0.0f);
1503
1504 // Add interference from each overlapping register.
1505 for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
1506 if (!Matrix->query(const_cast<LiveInterval &>(SA->getParent()), Unit)
1507 .checkInterference())
1508 continue;
1509
1510 // We know that VirtReg is a continuous interval from FirstInstr to
1511 // LastInstr, so we don't need InterferenceQuery.
1512 //
1513 // Interference that overlaps an instruction is counted in both gaps
1514 // surrounding the instruction. The exception is interference before
1515 // StartIdx and after StopIdx.
1516 //
1517 LiveIntervalUnion::SegmentIter IntI =
1518 Matrix->getLiveUnions()[Unit].find(StartIdx);
1519 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1520 // Skip the gaps before IntI.
1521 while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1522 if (++Gap == NumGaps)
1523 break;
1524 if (Gap == NumGaps)
1525 break;
1526
1527 // Update the gaps covered by IntI.
1528 const float weight = IntI.value()->weight();
1529 for (; Gap != NumGaps; ++Gap) {
1530 GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1531 if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1532 break;
1533 }
1534 if (Gap == NumGaps)
1535 break;
1536 }
1537 }
1538
1539 // Add fixed interference.
1540 for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
1541 const LiveRange &LR = LIS->getRegUnit(Unit);
1542 LiveRange::const_iterator I = LR.find(StartIdx);
1543 LiveRange::const_iterator E = LR.end();
1544
1545 // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1546 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1547 while (Uses[Gap+1].getBoundaryIndex() < I->start)
1548 if (++Gap == NumGaps)
1549 break;
1550 if (Gap == NumGaps)
1551 break;
1552
1553 for (; Gap != NumGaps; ++Gap) {
1554 GapWeight[Gap] = huge_valf;
1555 if (Uses[Gap+1].getBaseIndex() >= I->end)
1556 break;
1557 }
1558 if (Gap == NumGaps)
1559 break;
1560 }
1561 }
1562 }
1563
1564 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1565 /// basic block.
1566 ///
tryLocalSplit(const LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<Register> & NewVRegs)1567 unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg,
1568 AllocationOrder &Order,
1569 SmallVectorImpl<Register> &NewVRegs) {
1570 // TODO: the function currently only handles a single UseBlock; it should be
1571 // possible to generalize.
1572 if (SA->getUseBlocks().size() != 1)
1573 return 0;
1574
1575 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1576
1577 // Note that it is possible to have an interval that is live-in or live-out
1578 // while only covering a single block - A phi-def can use undef values from
1579 // predecessors, and the block could be a single-block loop.
1580 // We don't bother doing anything clever about such a case, we simply assume
1581 // that the interval is continuous from FirstInstr to LastInstr. We should
1582 // make sure that we don't do anything illegal to such an interval, though.
1583
1584 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1585 if (Uses.size() <= 2)
1586 return 0;
1587 const unsigned NumGaps = Uses.size()-1;
1588
1589 LLVM_DEBUG({
1590 dbgs() << "tryLocalSplit: ";
1591 for (const auto &Use : Uses)
1592 dbgs() << ' ' << Use;
1593 dbgs() << '\n';
1594 });
1595
1596 // If VirtReg is live across any register mask operands, compute a list of
1597 // gaps with register masks.
1598 SmallVector<unsigned, 8> RegMaskGaps;
1599 if (Matrix->checkRegMaskInterference(VirtReg)) {
1600 // Get regmask slots for the whole block.
1601 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1602 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1603 // Constrain to VirtReg's live range.
1604 unsigned RI =
1605 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
1606 unsigned RE = RMS.size();
1607 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
1608 // Look for Uses[I] <= RMS <= Uses[I + 1].
1609 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
1610 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
1611 continue;
1612 // Skip a regmask on the same instruction as the last use. It doesn't
1613 // overlap the live range.
1614 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
1615 break;
1616 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
1617 << Uses[I + 1]);
1618 RegMaskGaps.push_back(I);
1619 // Advance ri to the next gap. A regmask on one of the uses counts in
1620 // both gaps.
1621 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
1622 ++RI;
1623 }
1624 LLVM_DEBUG(dbgs() << '\n');
1625 }
1626
1627 // Since we allow local split results to be split again, there is a risk of
1628 // creating infinite loops. It is tempting to require that the new live
1629 // ranges have less instructions than the original. That would guarantee
1630 // convergence, but it is too strict. A live range with 3 instructions can be
1631 // split 2+3 (including the COPY), and we want to allow that.
1632 //
1633 // Instead we use these rules:
1634 //
1635 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1636 // noop split, of course).
1637 // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1638 // the new ranges must have fewer instructions than before the split.
1639 // 3. New ranges with the same number of instructions are marked RS_Split2,
1640 // smaller ranges are marked RS_New.
1641 //
1642 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1643 // excessive splitting and infinite loops.
1644 //
1645 bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2;
1646
1647 // Best split candidate.
1648 unsigned BestBefore = NumGaps;
1649 unsigned BestAfter = 0;
1650 float BestDiff = 0;
1651
1652 const float blockFreq =
1653 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1654 (1.0f / MBFI->getEntryFreq().getFrequency());
1655 SmallVector<float, 8> GapWeight;
1656
1657 for (MCPhysReg PhysReg : Order) {
1658 assert(PhysReg);
1659 // Keep track of the largest spill weight that would need to be evicted in
1660 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
1661 calcGapWeights(PhysReg, GapWeight);
1662
1663 // Remove any gaps with regmask clobbers.
1664 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1665 for (unsigned Gap : RegMaskGaps)
1666 GapWeight[Gap] = huge_valf;
1667
1668 // Try to find the best sequence of gaps to close.
1669 // The new spill weight must be larger than any gap interference.
1670
1671 // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1672 unsigned SplitBefore = 0, SplitAfter = 1;
1673
1674 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1675 // It is the spill weight that needs to be evicted.
1676 float MaxGap = GapWeight[0];
1677
1678 while (true) {
1679 // Live before/after split?
1680 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1681 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1682
1683 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
1684 << '-' << Uses[SplitAfter] << " I=" << MaxGap);
1685
1686 // Stop before the interval gets so big we wouldn't be making progress.
1687 if (!LiveBefore && !LiveAfter) {
1688 LLVM_DEBUG(dbgs() << " all\n");
1689 break;
1690 }
1691 // Should the interval be extended or shrunk?
1692 bool Shrink = true;
1693
1694 // How many gaps would the new range have?
1695 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1696
1697 // Legally, without causing looping?
1698 bool Legal = !ProgressRequired || NewGaps < NumGaps;
1699
1700 if (Legal && MaxGap < huge_valf) {
1701 // Estimate the new spill weight. Each instruction reads or writes the
1702 // register. Conservatively assume there are no read-modify-write
1703 // instructions.
1704 //
1705 // Try to guess the size of the new interval.
1706 const float EstWeight = normalizeSpillWeight(
1707 blockFreq * (NewGaps + 1),
1708 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1709 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1710 1);
1711 // Would this split be possible to allocate?
1712 // Never allocate all gaps, we wouldn't be making progress.
1713 LLVM_DEBUG(dbgs() << " w=" << EstWeight);
1714 if (EstWeight * Hysteresis >= MaxGap) {
1715 Shrink = false;
1716 float Diff = EstWeight - MaxGap;
1717 if (Diff > BestDiff) {
1718 LLVM_DEBUG(dbgs() << " (best)");
1719 BestDiff = Hysteresis * Diff;
1720 BestBefore = SplitBefore;
1721 BestAfter = SplitAfter;
1722 }
1723 }
1724 }
1725
1726 // Try to shrink.
1727 if (Shrink) {
1728 if (++SplitBefore < SplitAfter) {
1729 LLVM_DEBUG(dbgs() << " shrink\n");
1730 // Recompute the max when necessary.
1731 if (GapWeight[SplitBefore - 1] >= MaxGap) {
1732 MaxGap = GapWeight[SplitBefore];
1733 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
1734 MaxGap = std::max(MaxGap, GapWeight[I]);
1735 }
1736 continue;
1737 }
1738 MaxGap = 0;
1739 }
1740
1741 // Try to extend the interval.
1742 if (SplitAfter >= NumGaps) {
1743 LLVM_DEBUG(dbgs() << " end\n");
1744 break;
1745 }
1746
1747 LLVM_DEBUG(dbgs() << " extend\n");
1748 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1749 }
1750 }
1751
1752 // Didn't find any candidates?
1753 if (BestBefore == NumGaps)
1754 return 0;
1755
1756 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
1757 << Uses[BestAfter] << ", " << BestDiff << ", "
1758 << (BestAfter - BestBefore + 1) << " instrs\n");
1759
1760 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1761 SE->reset(LREdit);
1762
1763 SE->openIntv();
1764 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1765 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
1766 SE->useIntv(SegStart, SegStop);
1767 SmallVector<unsigned, 8> IntvMap;
1768 SE->finish(&IntvMap);
1769 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1770 // If the new range has the same number of instructions as before, mark it as
1771 // RS_Split2 so the next split will be forced to make progress. Otherwise,
1772 // leave the new intervals as RS_New so they can compete.
1773 bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1774 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1775 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1776 if (NewGaps >= NumGaps) {
1777 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
1778 assert(!ProgressRequired && "Didn't make progress when it was required.");
1779 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
1780 if (IntvMap[I] == 1) {
1781 ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
1782 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I)));
1783 }
1784 LLVM_DEBUG(dbgs() << '\n');
1785 }
1786 ++NumLocalSplits;
1787
1788 return 0;
1789 }
1790
1791 //===----------------------------------------------------------------------===//
1792 // Live Range Splitting
1793 //===----------------------------------------------------------------------===//
1794
1795 /// trySplit - Try to split VirtReg or one of its interferences, making it
1796 /// assignable.
1797 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
trySplit(const LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<Register> & NewVRegs,const SmallVirtRegSet & FixedRegisters)1798 unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order,
1799 SmallVectorImpl<Register> &NewVRegs,
1800 const SmallVirtRegSet &FixedRegisters) {
1801 // Ranges must be Split2 or less.
1802 if (ExtraInfo->getStage(VirtReg) >= RS_Spill)
1803 return 0;
1804
1805 // Local intervals are handled separately.
1806 if (LIS->intervalIsInOneMBB(VirtReg)) {
1807 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
1808 TimerGroupDescription, TimePassesIsEnabled);
1809 SA->analyze(&VirtReg);
1810 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1811 if (PhysReg || !NewVRegs.empty())
1812 return PhysReg;
1813 return tryInstructionSplit(VirtReg, Order, NewVRegs);
1814 }
1815
1816 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
1817 TimerGroupDescription, TimePassesIsEnabled);
1818
1819 SA->analyze(&VirtReg);
1820
1821 // First try to split around a region spanning multiple blocks. RS_Split2
1822 // ranges already made dubious progress with region splitting, so they go
1823 // straight to single block splitting.
1824 if (ExtraInfo->getStage(VirtReg) < RS_Split2) {
1825 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1826 if (PhysReg || !NewVRegs.empty())
1827 return PhysReg;
1828 }
1829
1830 // Then isolate blocks.
1831 return tryBlockSplit(VirtReg, Order, NewVRegs);
1832 }
1833
1834 //===----------------------------------------------------------------------===//
1835 // Last Chance Recoloring
1836 //===----------------------------------------------------------------------===//
1837
1838 /// Return true if \p reg has any tied def operand.
hasTiedDef(MachineRegisterInfo * MRI,unsigned reg)1839 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
1840 for (const MachineOperand &MO : MRI->def_operands(reg))
1841 if (MO.isTied())
1842 return true;
1843
1844 return false;
1845 }
1846
1847 /// Return true if the existing assignment of \p Intf overlaps, but is not the
1848 /// same, as \p PhysReg.
assignedRegPartiallyOverlaps(const TargetRegisterInfo & TRI,const VirtRegMap & VRM,MCRegister PhysReg,const LiveInterval & Intf)1849 static bool assignedRegPartiallyOverlaps(const TargetRegisterInfo &TRI,
1850 const VirtRegMap &VRM,
1851 MCRegister PhysReg,
1852 const LiveInterval &Intf) {
1853 MCRegister AssignedReg = VRM.getPhys(Intf.reg());
1854 if (PhysReg == AssignedReg)
1855 return false;
1856 return TRI.regsOverlap(PhysReg, AssignedReg);
1857 }
1858
1859 /// mayRecolorAllInterferences - Check if the virtual registers that
1860 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
1861 /// recolored to free \p PhysReg.
1862 /// When true is returned, \p RecoloringCandidates has been augmented with all
1863 /// the live intervals that need to be recolored in order to free \p PhysReg
1864 /// for \p VirtReg.
1865 /// \p FixedRegisters contains all the virtual registers that cannot be
1866 /// recolored.
mayRecolorAllInterferences(MCRegister PhysReg,const LiveInterval & VirtReg,SmallLISet & RecoloringCandidates,const SmallVirtRegSet & FixedRegisters)1867 bool RAGreedy::mayRecolorAllInterferences(
1868 MCRegister PhysReg, const LiveInterval &VirtReg,
1869 SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) {
1870 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1871
1872 for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
1873 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit);
1874 // If there is LastChanceRecoloringMaxInterference or more interferences,
1875 // chances are one would not be recolorable.
1876 if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >=
1877 LastChanceRecoloringMaxInterference &&
1878 !ExhaustiveSearch) {
1879 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
1880 CutOffInfo |= CO_Interf;
1881 return false;
1882 }
1883 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
1884 // If Intf is done and sits on the same register class as VirtReg, it
1885 // would not be recolorable as it is in the same state as
1886 // VirtReg. However there are at least two exceptions.
1887 //
1888 // If VirtReg has tied defs and Intf doesn't, then
1889 // there is still a point in examining if it can be recolorable.
1890 //
1891 // Additionally, if the register class has overlapping tuple members, it
1892 // may still be recolorable using a different tuple. This is more likely
1893 // if the existing assignment aliases with the candidate.
1894 //
1895 if (((ExtraInfo->getStage(*Intf) == RS_Done &&
1896 MRI->getRegClass(Intf->reg()) == CurRC &&
1897 !assignedRegPartiallyOverlaps(*TRI, *VRM, PhysReg, *Intf)) &&
1898 !(hasTiedDef(MRI, VirtReg.reg()) &&
1899 !hasTiedDef(MRI, Intf->reg()))) ||
1900 FixedRegisters.count(Intf->reg())) {
1901 LLVM_DEBUG(
1902 dbgs() << "Early abort: the interference is not recolorable.\n");
1903 return false;
1904 }
1905 RecoloringCandidates.insert(Intf);
1906 }
1907 }
1908 return true;
1909 }
1910
1911 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
1912 /// its interferences.
1913 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
1914 /// virtual register that was using it. The recoloring process may recursively
1915 /// use the last chance recoloring. Therefore, when a virtual register has been
1916 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
1917 /// be last-chance-recolored again during this recoloring "session".
1918 /// E.g.,
1919 /// Let
1920 /// vA can use {R1, R2 }
1921 /// vB can use { R2, R3}
1922 /// vC can use {R1 }
1923 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
1924 /// instance) and they all interfere.
1925 ///
1926 /// vA is assigned R1
1927 /// vB is assigned R2
1928 /// vC tries to evict vA but vA is already done.
1929 /// Regular register allocation fails.
1930 ///
1931 /// Last chance recoloring kicks in:
1932 /// vC does as if vA was evicted => vC uses R1.
1933 /// vC is marked as fixed.
1934 /// vA needs to find a color.
1935 /// None are available.
1936 /// vA cannot evict vC: vC is a fixed virtual register now.
1937 /// vA does as if vB was evicted => vA uses R2.
1938 /// vB needs to find a color.
1939 /// R3 is available.
1940 /// Recoloring => vC = R1, vA = R2, vB = R3
1941 ///
1942 /// \p Order defines the preferred allocation order for \p VirtReg.
1943 /// \p NewRegs will contain any new virtual register that have been created
1944 /// (split, spill) during the process and that must be assigned.
1945 /// \p FixedRegisters contains all the virtual registers that cannot be
1946 /// recolored.
1947 ///
1948 /// \p RecolorStack tracks the original assignments of successfully recolored
1949 /// registers.
1950 ///
1951 /// \p Depth gives the current depth of the last chance recoloring.
1952 /// \return a physical register that can be used for VirtReg or ~0u if none
1953 /// exists.
tryLastChanceRecoloring(const LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<Register> & NewVRegs,SmallVirtRegSet & FixedRegisters,RecoloringStack & RecolorStack,unsigned Depth)1954 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg,
1955 AllocationOrder &Order,
1956 SmallVectorImpl<Register> &NewVRegs,
1957 SmallVirtRegSet &FixedRegisters,
1958 RecoloringStack &RecolorStack,
1959 unsigned Depth) {
1960 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
1961 return ~0u;
1962
1963 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
1964
1965 const ssize_t EntryStackSize = RecolorStack.size();
1966
1967 // Ranges must be Done.
1968 assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
1969 "Last chance recoloring should really be last chance");
1970 // Set the max depth to LastChanceRecoloringMaxDepth.
1971 // We may want to reconsider that if we end up with a too large search space
1972 // for target with hundreds of registers.
1973 // Indeed, in that case we may want to cut the search space earlier.
1974 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
1975 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
1976 CutOffInfo |= CO_Depth;
1977 return ~0u;
1978 }
1979
1980 // Set of Live intervals that will need to be recolored.
1981 SmallLISet RecoloringCandidates;
1982
1983 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
1984 // this recoloring "session".
1985 assert(!FixedRegisters.count(VirtReg.reg()));
1986 FixedRegisters.insert(VirtReg.reg());
1987 SmallVector<Register, 4> CurrentNewVRegs;
1988
1989 for (MCRegister PhysReg : Order) {
1990 assert(PhysReg.isValid());
1991 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
1992 << printReg(PhysReg, TRI) << '\n');
1993 RecoloringCandidates.clear();
1994 CurrentNewVRegs.clear();
1995
1996 // It is only possible to recolor virtual register interference.
1997 if (Matrix->checkInterference(VirtReg, PhysReg) >
1998 LiveRegMatrix::IK_VirtReg) {
1999 LLVM_DEBUG(
2000 dbgs() << "Some interferences are not with virtual registers.\n");
2001
2002 continue;
2003 }
2004
2005 // Early give up on this PhysReg if it is obvious we cannot recolor all
2006 // the interferences.
2007 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2008 FixedRegisters)) {
2009 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2010 continue;
2011 }
2012
2013 // RecoloringCandidates contains all the virtual registers that interfere
2014 // with VirtReg on PhysReg (or one of its aliases). Enqueue them for
2015 // recoloring and perform the actual recoloring.
2016 PQueue RecoloringQueue;
2017 for (const LiveInterval *RC : RecoloringCandidates) {
2018 Register ItVirtReg = RC->reg();
2019 enqueue(RecoloringQueue, RC);
2020 assert(VRM->hasPhys(ItVirtReg) &&
2021 "Interferences are supposed to be with allocated variables");
2022
2023 // Record the current allocation.
2024 RecolorStack.push_back(std::make_pair(RC, VRM->getPhys(ItVirtReg)));
2025
2026 // unset the related struct.
2027 Matrix->unassign(*RC);
2028 }
2029
2030 // Do as if VirtReg was assigned to PhysReg so that the underlying
2031 // recoloring has the right information about the interferes and
2032 // available colors.
2033 Matrix->assign(VirtReg, PhysReg);
2034
2035 // Save the current recoloring state.
2036 // If we cannot recolor all the interferences, we will have to start again
2037 // at this point for the next physical register.
2038 SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2039 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2040 FixedRegisters, RecolorStack, Depth)) {
2041 // Push the queued vregs into the main queue.
2042 for (Register NewVReg : CurrentNewVRegs)
2043 NewVRegs.push_back(NewVReg);
2044 // Do not mess up with the global assignment process.
2045 // I.e., VirtReg must be unassigned.
2046 Matrix->unassign(VirtReg);
2047 return PhysReg;
2048 }
2049
2050 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2051 << printReg(PhysReg, TRI) << '\n');
2052
2053 // The recoloring attempt failed, undo the changes.
2054 FixedRegisters = SaveFixedRegisters;
2055 Matrix->unassign(VirtReg);
2056
2057 // For a newly created vreg which is also in RecoloringCandidates,
2058 // don't add it to NewVRegs because its physical register will be restored
2059 // below. Other vregs in CurrentNewVRegs are created by calling
2060 // selectOrSplit and should be added into NewVRegs.
2061 for (Register R : CurrentNewVRegs) {
2062 if (RecoloringCandidates.count(&LIS->getInterval(R)))
2063 continue;
2064 NewVRegs.push_back(R);
2065 }
2066
2067 // Roll back our unsuccessful recoloring. Also roll back any successful
2068 // recolorings in any recursive recoloring attempts, since it's possible
2069 // they would have introduced conflicts with assignments we will be
2070 // restoring further up the stack. Perform all unassignments prior to
2071 // reassigning, since sub-recolorings may have conflicted with the registers
2072 // we are going to restore to their original assignments.
2073 for (ssize_t I = RecolorStack.size() - 1; I >= EntryStackSize; --I) {
2074 const LiveInterval *LI;
2075 MCRegister PhysReg;
2076 std::tie(LI, PhysReg) = RecolorStack[I];
2077
2078 if (VRM->hasPhys(LI->reg()))
2079 Matrix->unassign(*LI);
2080 }
2081
2082 for (size_t I = EntryStackSize; I != RecolorStack.size(); ++I) {
2083 const LiveInterval *LI;
2084 MCRegister PhysReg;
2085 std::tie(LI, PhysReg) = RecolorStack[I];
2086 if (!LI->empty() && !MRI->reg_nodbg_empty(LI->reg()))
2087 Matrix->assign(*LI, PhysReg);
2088 }
2089
2090 // Pop the stack of recoloring attempts.
2091 RecolorStack.resize(EntryStackSize);
2092 }
2093
2094 // Last chance recoloring did not worked either, give up.
2095 return ~0u;
2096 }
2097
2098 /// tryRecoloringCandidates - Try to assign a new color to every register
2099 /// in \RecoloringQueue.
2100 /// \p NewRegs will contain any new virtual register created during the
2101 /// recoloring process.
2102 /// \p FixedRegisters[in/out] contains all the registers that have been
2103 /// recolored.
2104 /// \return true if all virtual registers in RecoloringQueue were successfully
2105 /// recolored, false otherwise.
tryRecoloringCandidates(PQueue & RecoloringQueue,SmallVectorImpl<Register> & NewVRegs,SmallVirtRegSet & FixedRegisters,RecoloringStack & RecolorStack,unsigned Depth)2106 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2107 SmallVectorImpl<Register> &NewVRegs,
2108 SmallVirtRegSet &FixedRegisters,
2109 RecoloringStack &RecolorStack,
2110 unsigned Depth) {
2111 while (!RecoloringQueue.empty()) {
2112 const LiveInterval *LI = dequeue(RecoloringQueue);
2113 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2114 MCRegister PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters,
2115 RecolorStack, Depth + 1);
2116 // When splitting happens, the live-range may actually be empty.
2117 // In that case, this is okay to continue the recoloring even
2118 // if we did not find an alternative color for it. Indeed,
2119 // there will not be anything to color for LI in the end.
2120 if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2121 return false;
2122
2123 if (!PhysReg) {
2124 assert(LI->empty() && "Only empty live-range do not require a register");
2125 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2126 << " succeeded. Empty LI.\n");
2127 continue;
2128 }
2129 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2130 << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2131
2132 Matrix->assign(*LI, PhysReg);
2133 FixedRegisters.insert(LI->reg());
2134 }
2135 return true;
2136 }
2137
2138 //===----------------------------------------------------------------------===//
2139 // Main Entry Point
2140 //===----------------------------------------------------------------------===//
2141
selectOrSplit(const LiveInterval & VirtReg,SmallVectorImpl<Register> & NewVRegs)2142 MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg,
2143 SmallVectorImpl<Register> &NewVRegs) {
2144 CutOffInfo = CO_None;
2145 LLVMContext &Ctx = MF->getFunction().getContext();
2146 SmallVirtRegSet FixedRegisters;
2147 RecoloringStack RecolorStack;
2148 MCRegister Reg =
2149 selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters, RecolorStack);
2150 if (Reg == ~0U && (CutOffInfo != CO_None)) {
2151 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2152 if (CutOffEncountered == CO_Depth)
2153 Ctx.emitError("register allocation failed: maximum depth for recoloring "
2154 "reached. Use -fexhaustive-register-search to skip "
2155 "cutoffs");
2156 else if (CutOffEncountered == CO_Interf)
2157 Ctx.emitError("register allocation failed: maximum interference for "
2158 "recoloring reached. Use -fexhaustive-register-search "
2159 "to skip cutoffs");
2160 else if (CutOffEncountered == (CO_Depth | CO_Interf))
2161 Ctx.emitError("register allocation failed: maximum interference and "
2162 "depth for recoloring reached. Use "
2163 "-fexhaustive-register-search to skip cutoffs");
2164 }
2165 return Reg;
2166 }
2167
2168 /// Using a CSR for the first time has a cost because it causes push|pop
2169 /// to be added to prologue|epilogue. Splitting a cold section of the live
2170 /// range can have lower cost than using the CSR for the first time;
2171 /// Spilling a live range in the cold path can have lower cost than using
2172 /// the CSR for the first time. Returns the physical register if we decide
2173 /// to use the CSR; otherwise return 0.
tryAssignCSRFirstTime(const LiveInterval & VirtReg,AllocationOrder & Order,MCRegister PhysReg,uint8_t & CostPerUseLimit,SmallVectorImpl<Register> & NewVRegs)2174 MCRegister RAGreedy::tryAssignCSRFirstTime(
2175 const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg,
2176 uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) {
2177 if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2178 // We choose spill over using the CSR for the first time if the spill cost
2179 // is lower than CSRCost.
2180 SA->analyze(&VirtReg);
2181 if (calcSpillCost() >= CSRCost)
2182 return PhysReg;
2183
2184 // We are going to spill, set CostPerUseLimit to 1 to make sure that
2185 // we will not use a callee-saved register in tryEvict.
2186 CostPerUseLimit = 1;
2187 return 0;
2188 }
2189 if (ExtraInfo->getStage(VirtReg) < RS_Split) {
2190 // We choose pre-splitting over using the CSR for the first time if
2191 // the cost of splitting is lower than CSRCost.
2192 SA->analyze(&VirtReg);
2193 unsigned NumCands = 0;
2194 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2195 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2196 NumCands, true /*IgnoreCSR*/);
2197 if (BestCand == NoCand)
2198 // Use the CSR if we can't find a region split below CSRCost.
2199 return PhysReg;
2200
2201 // Perform the actual pre-splitting.
2202 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2203 return 0;
2204 }
2205 return PhysReg;
2206 }
2207
aboutToRemoveInterval(const LiveInterval & LI)2208 void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) {
2209 // Do not keep invalid information around.
2210 SetOfBrokenHints.remove(&LI);
2211 }
2212
initializeCSRCost()2213 void RAGreedy::initializeCSRCost() {
2214 // We use the larger one out of the command-line option and the value report
2215 // by TRI.
2216 CSRCost = BlockFrequency(
2217 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2218 if (!CSRCost.getFrequency())
2219 return;
2220
2221 // Raw cost is relative to Entry == 2^14; scale it appropriately.
2222 uint64_t ActualEntry = MBFI->getEntryFreq().getFrequency();
2223 if (!ActualEntry) {
2224 CSRCost = BlockFrequency(0);
2225 return;
2226 }
2227 uint64_t FixedEntry = 1 << 14;
2228 if (ActualEntry < FixedEntry)
2229 CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2230 else if (ActualEntry <= UINT32_MAX)
2231 // Invert the fraction and divide.
2232 CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2233 else
2234 // Can't use BranchProbability in general, since it takes 32-bit numbers.
2235 CSRCost =
2236 BlockFrequency(CSRCost.getFrequency() * (ActualEntry / FixedEntry));
2237 }
2238
2239 /// Collect the hint info for \p Reg.
2240 /// The results are stored into \p Out.
2241 /// \p Out is not cleared before being populated.
collectHintInfo(Register Reg,HintsInfo & Out)2242 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2243 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2244 if (!TII->isFullCopyInstr(Instr))
2245 continue;
2246 // Look for the other end of the copy.
2247 Register OtherReg = Instr.getOperand(0).getReg();
2248 if (OtherReg == Reg) {
2249 OtherReg = Instr.getOperand(1).getReg();
2250 if (OtherReg == Reg)
2251 continue;
2252 }
2253 // Get the current assignment.
2254 MCRegister OtherPhysReg =
2255 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2256 // Push the collected information.
2257 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2258 OtherPhysReg));
2259 }
2260 }
2261
2262 /// Using the given \p List, compute the cost of the broken hints if
2263 /// \p PhysReg was used.
2264 /// \return The cost of \p List for \p PhysReg.
getBrokenHintFreq(const HintsInfo & List,MCRegister PhysReg)2265 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2266 MCRegister PhysReg) {
2267 BlockFrequency Cost = BlockFrequency(0);
2268 for (const HintInfo &Info : List) {
2269 if (Info.PhysReg != PhysReg)
2270 Cost += Info.Freq;
2271 }
2272 return Cost;
2273 }
2274
2275 /// Using the register assigned to \p VirtReg, try to recolor
2276 /// all the live ranges that are copy-related with \p VirtReg.
2277 /// The recoloring is then propagated to all the live-ranges that have
2278 /// been recolored and so on, until no more copies can be coalesced or
2279 /// it is not profitable.
2280 /// For a given live range, profitability is determined by the sum of the
2281 /// frequencies of the non-identity copies it would introduce with the old
2282 /// and new register.
tryHintRecoloring(const LiveInterval & VirtReg)2283 void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) {
2284 // We have a broken hint, check if it is possible to fix it by
2285 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2286 // some register and PhysReg may be available for the other live-ranges.
2287 SmallSet<Register, 4> Visited;
2288 SmallVector<unsigned, 2> RecoloringCandidates;
2289 HintsInfo Info;
2290 Register Reg = VirtReg.reg();
2291 MCRegister PhysReg = VRM->getPhys(Reg);
2292 // Start the recoloring algorithm from the input live-interval, then
2293 // it will propagate to the ones that are copy-related with it.
2294 Visited.insert(Reg);
2295 RecoloringCandidates.push_back(Reg);
2296
2297 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2298 << '(' << printReg(PhysReg, TRI) << ")\n");
2299
2300 do {
2301 Reg = RecoloringCandidates.pop_back_val();
2302
2303 // We cannot recolor physical register.
2304 if (Reg.isPhysical())
2305 continue;
2306
2307 // This may be a skipped register.
2308 if (!VRM->hasPhys(Reg)) {
2309 assert(!shouldAllocateRegister(Reg) &&
2310 "We have an unallocated variable which should have been handled");
2311 continue;
2312 }
2313
2314 // Get the live interval mapped with this virtual register to be able
2315 // to check for the interference with the new color.
2316 LiveInterval &LI = LIS->getInterval(Reg);
2317 MCRegister CurrPhys = VRM->getPhys(Reg);
2318 // Check that the new color matches the register class constraints and
2319 // that it is free for this live range.
2320 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2321 Matrix->checkInterference(LI, PhysReg)))
2322 continue;
2323
2324 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2325 << ") is recolorable.\n");
2326
2327 // Gather the hint info.
2328 Info.clear();
2329 collectHintInfo(Reg, Info);
2330 // Check if recoloring the live-range will increase the cost of the
2331 // non-identity copies.
2332 if (CurrPhys != PhysReg) {
2333 LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2334 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2335 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2336 LLVM_DEBUG(dbgs() << "Old Cost: " << printBlockFreq(*MBFI, OldCopiesCost)
2337 << "\nNew Cost: "
2338 << printBlockFreq(*MBFI, NewCopiesCost) << '\n');
2339 if (OldCopiesCost < NewCopiesCost) {
2340 LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2341 continue;
2342 }
2343 // At this point, the cost is either cheaper or equal. If it is
2344 // equal, we consider this is profitable because it may expose
2345 // more recoloring opportunities.
2346 LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2347 // Recolor the live-range.
2348 Matrix->unassign(LI);
2349 Matrix->assign(LI, PhysReg);
2350 }
2351 // Push all copy-related live-ranges to keep reconciling the broken
2352 // hints.
2353 for (const HintInfo &HI : Info) {
2354 if (Visited.insert(HI.Reg).second)
2355 RecoloringCandidates.push_back(HI.Reg);
2356 }
2357 } while (!RecoloringCandidates.empty());
2358 }
2359
2360 /// Try to recolor broken hints.
2361 /// Broken hints may be repaired by recoloring when an evicted variable
2362 /// freed up a register for a larger live-range.
2363 /// Consider the following example:
2364 /// BB1:
2365 /// a =
2366 /// b =
2367 /// BB2:
2368 /// ...
2369 /// = b
2370 /// = a
2371 /// Let us assume b gets split:
2372 /// BB1:
2373 /// a =
2374 /// b =
2375 /// BB2:
2376 /// c = b
2377 /// ...
2378 /// d = c
2379 /// = d
2380 /// = a
2381 /// Because of how the allocation work, b, c, and d may be assigned different
2382 /// colors. Now, if a gets evicted later:
2383 /// BB1:
2384 /// a =
2385 /// st a, SpillSlot
2386 /// b =
2387 /// BB2:
2388 /// c = b
2389 /// ...
2390 /// d = c
2391 /// = d
2392 /// e = ld SpillSlot
2393 /// = e
2394 /// This is likely that we can assign the same register for b, c, and d,
2395 /// getting rid of 2 copies.
tryHintsRecoloring()2396 void RAGreedy::tryHintsRecoloring() {
2397 for (const LiveInterval *LI : SetOfBrokenHints) {
2398 assert(LI->reg().isVirtual() &&
2399 "Recoloring is possible only for virtual registers");
2400 // Some dead defs may be around (e.g., because of debug uses).
2401 // Ignore those.
2402 if (!VRM->hasPhys(LI->reg()))
2403 continue;
2404 tryHintRecoloring(*LI);
2405 }
2406 }
2407
selectOrSplitImpl(const LiveInterval & VirtReg,SmallVectorImpl<Register> & NewVRegs,SmallVirtRegSet & FixedRegisters,RecoloringStack & RecolorStack,unsigned Depth)2408 MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg,
2409 SmallVectorImpl<Register> &NewVRegs,
2410 SmallVirtRegSet &FixedRegisters,
2411 RecoloringStack &RecolorStack,
2412 unsigned Depth) {
2413 uint8_t CostPerUseLimit = uint8_t(~0u);
2414 // First try assigning a free register.
2415 auto Order =
2416 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
2417 if (MCRegister PhysReg =
2418 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
2419 // When NewVRegs is not empty, we may have made decisions such as evicting
2420 // a virtual register, go with the earlier decisions and use the physical
2421 // register.
2422 if (CSRCost.getFrequency() &&
2423 EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) {
2424 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2425 CostPerUseLimit, NewVRegs);
2426 if (CSRReg || !NewVRegs.empty())
2427 // Return now if we decide to use a CSR or create new vregs due to
2428 // pre-splitting.
2429 return CSRReg;
2430 } else
2431 return PhysReg;
2432 }
2433 // Non emtpy NewVRegs means VirtReg has been split.
2434 if (!NewVRegs.empty())
2435 return 0;
2436
2437 LiveRangeStage Stage = ExtraInfo->getStage(VirtReg);
2438 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
2439 << ExtraInfo->getCascade(VirtReg.reg()) << '\n');
2440
2441 // Try to evict a less worthy live range, but only for ranges from the primary
2442 // queue. The RS_Split ranges already failed to do this, and they should not
2443 // get a second chance until they have been split.
2444 if (Stage != RS_Split)
2445 if (Register PhysReg =
2446 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
2447 FixedRegisters)) {
2448 Register Hint = MRI->getSimpleHint(VirtReg.reg());
2449 // If VirtReg has a hint and that hint is broken record this
2450 // virtual register as a recoloring candidate for broken hint.
2451 // Indeed, since we evicted a variable in its neighborhood it is
2452 // likely we can at least partially recolor some of the
2453 // copy-related live-ranges.
2454 if (Hint && Hint != PhysReg)
2455 SetOfBrokenHints.insert(&VirtReg);
2456 return PhysReg;
2457 }
2458
2459 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
2460
2461 // The first time we see a live range, don't try to split or spill.
2462 // Wait until the second time, when all smaller ranges have been allocated.
2463 // This gives a better picture of the interference to split around.
2464 if (Stage < RS_Split) {
2465 ExtraInfo->setStage(VirtReg, RS_Split);
2466 LLVM_DEBUG(dbgs() << "wait for second round\n");
2467 NewVRegs.push_back(VirtReg.reg());
2468 return 0;
2469 }
2470
2471 if (Stage < RS_Spill) {
2472 // Try splitting VirtReg or interferences.
2473 unsigned NewVRegSizeBefore = NewVRegs.size();
2474 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
2475 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore))
2476 return PhysReg;
2477 }
2478
2479 // If we couldn't allocate a register from spilling, there is probably some
2480 // invalid inline assembly. The base class will report it.
2481 if (Stage >= RS_Done || !VirtReg.isSpillable()) {
2482 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2483 RecolorStack, Depth);
2484 }
2485
2486 // Finally spill VirtReg itself.
2487 if ((EnableDeferredSpilling ||
2488 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
2489 ExtraInfo->getStage(VirtReg) < RS_Memory) {
2490 // TODO: This is experimental and in particular, we do not model
2491 // the live range splitting done by spilling correctly.
2492 // We would need a deep integration with the spiller to do the
2493 // right thing here. Anyway, that is still good for early testing.
2494 ExtraInfo->setStage(VirtReg, RS_Memory);
2495 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
2496 NewVRegs.push_back(VirtReg.reg());
2497 } else {
2498 NamedRegionTimer T("spill", "Spiller", TimerGroupName,
2499 TimerGroupDescription, TimePassesIsEnabled);
2500 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2501 spiller().spill(LRE);
2502 ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2503
2504 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
2505 // the new regs are kept in LDV (still mapping to the old register), until
2506 // we rewrite spilled locations in LDV at a later stage.
2507 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
2508
2509 if (VerifyEnabled)
2510 MF->verify(this, "After spilling");
2511 }
2512
2513 // The live virtual register requesting allocation was spilled, so tell
2514 // the caller not to allocate anything during this round.
2515 return 0;
2516 }
2517
report(MachineOptimizationRemarkMissed & R)2518 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
2519 using namespace ore;
2520 if (Spills) {
2521 R << NV("NumSpills", Spills) << " spills ";
2522 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
2523 }
2524 if (FoldedSpills) {
2525 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
2526 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
2527 << " total folded spills cost ";
2528 }
2529 if (Reloads) {
2530 R << NV("NumReloads", Reloads) << " reloads ";
2531 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
2532 }
2533 if (FoldedReloads) {
2534 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
2535 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
2536 << " total folded reloads cost ";
2537 }
2538 if (ZeroCostFoldedReloads)
2539 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
2540 << " zero cost folded reloads ";
2541 if (Copies) {
2542 R << NV("NumVRCopies", Copies) << " virtual registers copies ";
2543 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
2544 }
2545 }
2546
computeStats(MachineBasicBlock & MBB)2547 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
2548 RAGreedyStats Stats;
2549 const MachineFrameInfo &MFI = MF->getFrameInfo();
2550 int FI;
2551
2552 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
2553 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
2554 A->getPseudoValue())->getFrameIndex());
2555 };
2556 auto isPatchpointInstr = [](const MachineInstr &MI) {
2557 return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
2558 MI.getOpcode() == TargetOpcode::STACKMAP ||
2559 MI.getOpcode() == TargetOpcode::STATEPOINT;
2560 };
2561 for (MachineInstr &MI : MBB) {
2562 auto DestSrc = TII->isCopyInstr(MI);
2563 if (DestSrc) {
2564 const MachineOperand &Dest = *DestSrc->Destination;
2565 const MachineOperand &Src = *DestSrc->Source;
2566 Register SrcReg = Src.getReg();
2567 Register DestReg = Dest.getReg();
2568 // Only count `COPY`s with a virtual register as source or destination.
2569 if (SrcReg.isVirtual() || DestReg.isVirtual()) {
2570 if (SrcReg.isVirtual()) {
2571 SrcReg = VRM->getPhys(SrcReg);
2572 if (SrcReg && Src.getSubReg())
2573 SrcReg = TRI->getSubReg(SrcReg, Src.getSubReg());
2574 }
2575 if (DestReg.isVirtual()) {
2576 DestReg = VRM->getPhys(DestReg);
2577 if (DestReg && Dest.getSubReg())
2578 DestReg = TRI->getSubReg(DestReg, Dest.getSubReg());
2579 }
2580 if (SrcReg != DestReg)
2581 ++Stats.Copies;
2582 }
2583 continue;
2584 }
2585
2586 SmallVector<const MachineMemOperand *, 2> Accesses;
2587 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2588 ++Stats.Reloads;
2589 continue;
2590 }
2591 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2592 ++Stats.Spills;
2593 continue;
2594 }
2595 if (TII->hasLoadFromStackSlot(MI, Accesses) &&
2596 llvm::any_of(Accesses, isSpillSlotAccess)) {
2597 if (!isPatchpointInstr(MI)) {
2598 Stats.FoldedReloads += Accesses.size();
2599 continue;
2600 }
2601 // For statepoint there may be folded and zero cost folded stack reloads.
2602 std::pair<unsigned, unsigned> NonZeroCostRange =
2603 TII->getPatchpointUnfoldableRange(MI);
2604 SmallSet<unsigned, 16> FoldedReloads;
2605 SmallSet<unsigned, 16> ZeroCostFoldedReloads;
2606 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
2607 MachineOperand &MO = MI.getOperand(Idx);
2608 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
2609 continue;
2610 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
2611 FoldedReloads.insert(MO.getIndex());
2612 else
2613 ZeroCostFoldedReloads.insert(MO.getIndex());
2614 }
2615 // If stack slot is used in folded reload it is not zero cost then.
2616 for (unsigned Slot : FoldedReloads)
2617 ZeroCostFoldedReloads.erase(Slot);
2618 Stats.FoldedReloads += FoldedReloads.size();
2619 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
2620 continue;
2621 }
2622 Accesses.clear();
2623 if (TII->hasStoreToStackSlot(MI, Accesses) &&
2624 llvm::any_of(Accesses, isSpillSlotAccess)) {
2625 Stats.FoldedSpills += Accesses.size();
2626 }
2627 }
2628 // Set cost of collected statistic by multiplication to relative frequency of
2629 // this basic block.
2630 float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
2631 Stats.ReloadsCost = RelFreq * Stats.Reloads;
2632 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
2633 Stats.SpillsCost = RelFreq * Stats.Spills;
2634 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
2635 Stats.CopiesCost = RelFreq * Stats.Copies;
2636 return Stats;
2637 }
2638
reportStats(MachineLoop * L)2639 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
2640 RAGreedyStats Stats;
2641
2642 // Sum up the spill and reloads in subloops.
2643 for (MachineLoop *SubLoop : *L)
2644 Stats.add(reportStats(SubLoop));
2645
2646 for (MachineBasicBlock *MBB : L->getBlocks())
2647 // Handle blocks that were not included in subloops.
2648 if (Loops->getLoopFor(MBB) == L)
2649 Stats.add(computeStats(*MBB));
2650
2651 if (!Stats.isEmpty()) {
2652 using namespace ore;
2653
2654 ORE->emit([&]() {
2655 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
2656 L->getStartLoc(), L->getHeader());
2657 Stats.report(R);
2658 R << "generated in loop";
2659 return R;
2660 });
2661 }
2662 return Stats;
2663 }
2664
reportStats()2665 void RAGreedy::reportStats() {
2666 if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
2667 return;
2668 RAGreedyStats Stats;
2669 for (MachineLoop *L : *Loops)
2670 Stats.add(reportStats(L));
2671 // Process non-loop blocks.
2672 for (MachineBasicBlock &MBB : *MF)
2673 if (!Loops->getLoopFor(&MBB))
2674 Stats.add(computeStats(MBB));
2675 if (!Stats.isEmpty()) {
2676 using namespace ore;
2677
2678 ORE->emit([&]() {
2679 DebugLoc Loc;
2680 if (auto *SP = MF->getFunction().getSubprogram())
2681 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
2682 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
2683 &MF->front());
2684 Stats.report(R);
2685 R << "generated in function";
2686 return R;
2687 });
2688 }
2689 }
2690
hasVirtRegAlloc()2691 bool RAGreedy::hasVirtRegAlloc() {
2692 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2693 Register Reg = Register::index2VirtReg(I);
2694 if (MRI->reg_nodbg_empty(Reg))
2695 continue;
2696 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
2697 if (!RC)
2698 continue;
2699 if (shouldAllocateRegister(Reg))
2700 return true;
2701 }
2702
2703 return false;
2704 }
2705
runOnMachineFunction(MachineFunction & mf)2706 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2707 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2708 << "********** Function: " << mf.getName() << '\n');
2709
2710 MF = &mf;
2711 TII = MF->getSubtarget().getInstrInfo();
2712
2713 if (VerifyEnabled)
2714 MF->verify(this, "Before greedy register allocator");
2715
2716 RegAllocBase::init(getAnalysis<VirtRegMap>(),
2717 getAnalysis<LiveIntervalsWrapperPass>().getLIS(),
2718 getAnalysis<LiveRegMatrix>());
2719
2720 // Early return if there is no virtual register to be allocated to a
2721 // physical register.
2722 if (!hasVirtRegAlloc())
2723 return false;
2724
2725 Indexes = &getAnalysis<SlotIndexesWrapperPass>().getSI();
2726 // Renumber to get accurate and consistent results from
2727 // SlotIndexes::getApproxInstrDistance.
2728 Indexes->packIndexes();
2729 MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI();
2730 DomTree = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
2731 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2732 Loops = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
2733 Bundles = &getAnalysis<EdgeBundles>();
2734 SpillPlacer = &getAnalysis<SpillPlacement>();
2735 DebugVars = &getAnalysis<LiveDebugVariables>();
2736
2737 initializeCSRCost();
2738
2739 RegCosts = TRI->getRegisterCosts(*MF);
2740 RegClassPriorityTrumpsGlobalness =
2741 GreedyRegClassPriorityTrumpsGlobalness.getNumOccurrences()
2742 ? GreedyRegClassPriorityTrumpsGlobalness
2743 : TRI->regClassPriorityTrumpsGlobalness(*MF);
2744
2745 ReverseLocalAssignment = GreedyReverseLocalAssignment.getNumOccurrences()
2746 ? GreedyReverseLocalAssignment
2747 : TRI->reverseLocalAssignment();
2748
2749 ExtraInfo.emplace();
2750 EvictAdvisor =
2751 getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this);
2752 PriorityAdvisor =
2753 getAnalysis<RegAllocPriorityAdvisorAnalysis>().getAdvisor(*MF, *this);
2754
2755 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
2756 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
2757
2758 VRAI->calculateSpillWeightsAndHints();
2759
2760 LLVM_DEBUG(LIS->dump());
2761
2762 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2763 SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
2764
2765 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2766 GlobalCand.resize(32); // This will grow as needed.
2767 SetOfBrokenHints.clear();
2768
2769 allocatePhysRegs();
2770 tryHintsRecoloring();
2771
2772 if (VerifyEnabled)
2773 MF->verify(this, "Before post optimization");
2774 postOptimization();
2775 reportStats();
2776
2777 releaseMemory();
2778 return true;
2779 }
2780