1 /*-
2 * Copyright (c) 2008-2010 Rui Paulo
3 * Copyright (c) 2006 Marcel Moolenaar
4 * All rights reserved.
5 *
6 * Copyright (c) 2016-2019 Netflix, Inc. written by M. Warner Losh
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #include <stand.h>
31
32 #include <sys/disk.h>
33 #include <sys/param.h>
34 #include <sys/reboot.h>
35 #include <sys/boot.h>
36 #ifdef EFI_ZFS_BOOT
37 #include <sys/zfs_bootenv.h>
38 #endif
39 #include <paths.h>
40 #include <netinet/in.h>
41 #include <netinet/in_systm.h>
42 #include <stdint.h>
43 #include <string.h>
44 #include <setjmp.h>
45 #include <disk.h>
46 #include <dev_net.h>
47 #include <net.h>
48 #include <machine/_inttypes.h>
49
50 #include <efi.h>
51 #include <efilib.h>
52 #include <efichar.h>
53 #include <efirng.h>
54
55 #include <uuid.h>
56
57 #include <bootstrap.h>
58 #include <smbios.h>
59
60 #include <dev/random/fortuna.h>
61 #include <geom/eli/pkcs5v2.h>
62
63 #include "efizfs.h"
64 #include "framebuffer.h"
65
66 #include "platform/acfreebsd.h"
67 #include "acconfig.h"
68 #define ACPI_SYSTEM_XFACE
69 #include "actypes.h"
70 #include "actbl.h"
71
72 #include "loader_efi.h"
73
74 struct arch_switch archsw; /* MI/MD interface boundary */
75
76 EFI_GUID acpi = ACPI_TABLE_GUID;
77 EFI_GUID acpi20 = ACPI_20_TABLE_GUID;
78 EFI_GUID devid = DEVICE_PATH_PROTOCOL;
79 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
80 EFI_GUID mps = MPS_TABLE_GUID;
81 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL;
82 EFI_GUID smbios = SMBIOS_TABLE_GUID;
83 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID;
84 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
85 EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
86 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID;
87 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID;
88 EFI_GUID esrt = ESRT_TABLE_GUID;
89 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
90 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID;
91 EFI_GUID fdtdtb = FDT_TABLE_GUID;
92 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL;
93
94 /*
95 * Number of seconds to wait for a keystroke before exiting with failure
96 * in the event no currdev is found. -2 means always break, -1 means
97 * never break, 0 means poll once and then reboot, > 0 means wait for
98 * that many seconds. "fail_timeout" can be set in the environment as
99 * well.
100 */
101 static int fail_timeout = 5;
102
103 /*
104 * Current boot variable
105 */
106 UINT16 boot_current;
107
108 /*
109 * Image that we booted from.
110 */
111 EFI_LOADED_IMAGE *boot_img;
112
113 /*
114 * RSDP base table.
115 */
116 ACPI_TABLE_RSDP *rsdp;
117
118 static bool
has_keyboard(void)119 has_keyboard(void)
120 {
121 EFI_STATUS status;
122 EFI_DEVICE_PATH *path;
123 EFI_HANDLE *hin, *hin_end, *walker;
124 UINTN sz;
125 bool retval = false;
126
127 /*
128 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and
129 * do the typical dance to get the right sized buffer.
130 */
131 sz = 0;
132 hin = NULL;
133 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
134 if (status == EFI_BUFFER_TOO_SMALL) {
135 hin = (EFI_HANDLE *)malloc(sz);
136 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
137 hin);
138 if (EFI_ERROR(status))
139 free(hin);
140 }
141 if (EFI_ERROR(status))
142 return retval;
143
144 /*
145 * Look at each of the handles. If it supports the device path protocol,
146 * use it to get the device path for this handle. Then see if that
147 * device path matches either the USB device path for keyboards or the
148 * legacy device path for keyboards.
149 */
150 hin_end = &hin[sz / sizeof(*hin)];
151 for (walker = hin; walker < hin_end; walker++) {
152 status = OpenProtocolByHandle(*walker, &devid, (void **)&path);
153 if (EFI_ERROR(status))
154 continue;
155
156 while (!IsDevicePathEnd(path)) {
157 /*
158 * Check for the ACPI keyboard node. All PNP3xx nodes
159 * are keyboards of different flavors. Note: It is
160 * unclear of there's always a keyboard node when
161 * there's a keyboard controller, or if there's only one
162 * when a keyboard is detected at boot.
163 */
164 if (DevicePathType(path) == ACPI_DEVICE_PATH &&
165 (DevicePathSubType(path) == ACPI_DP ||
166 DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
167 ACPI_HID_DEVICE_PATH *acpi;
168
169 acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
170 if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
171 (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
172 retval = true;
173 goto out;
174 }
175 /*
176 * Check for USB keyboard node, if present. Unlike a
177 * PS/2 keyboard, these definitely only appear when
178 * connected to the system.
179 */
180 } else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
181 DevicePathSubType(path) == MSG_USB_CLASS_DP) {
182 USB_CLASS_DEVICE_PATH *usb;
183
184 usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
185 if (usb->DeviceClass == 3 && /* HID */
186 usb->DeviceSubClass == 1 && /* Boot devices */
187 usb->DeviceProtocol == 1) { /* Boot keyboards */
188 retval = true;
189 goto out;
190 }
191 }
192 path = NextDevicePathNode(path);
193 }
194 }
195 out:
196 free(hin);
197 return retval;
198 }
199
200 static void
set_currdev_devdesc(struct devdesc * currdev)201 set_currdev_devdesc(struct devdesc *currdev)
202 {
203 const char *devname;
204
205 devname = devformat(currdev);
206 printf("Setting currdev to %s\n", devname);
207 set_currdev(devname);
208 }
209
210 static void
set_currdev_devsw(struct devsw * dev,int unit)211 set_currdev_devsw(struct devsw *dev, int unit)
212 {
213 struct devdesc currdev;
214
215 currdev.d_dev = dev;
216 currdev.d_unit = unit;
217
218 set_currdev_devdesc(&currdev);
219 }
220
221 static void
set_currdev_pdinfo(pdinfo_t * dp)222 set_currdev_pdinfo(pdinfo_t *dp)
223 {
224
225 /*
226 * Disks are special: they have partitions. if the parent
227 * pointer is non-null, we're a partition not a full disk
228 * and we need to adjust currdev appropriately.
229 */
230 if (dp->pd_devsw->dv_type == DEVT_DISK) {
231 struct disk_devdesc currdev;
232
233 currdev.dd.d_dev = dp->pd_devsw;
234 if (dp->pd_parent == NULL) {
235 currdev.dd.d_unit = dp->pd_unit;
236 currdev.d_slice = D_SLICENONE;
237 currdev.d_partition = D_PARTNONE;
238 } else {
239 currdev.dd.d_unit = dp->pd_parent->pd_unit;
240 currdev.d_slice = dp->pd_unit;
241 currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */
242 }
243 set_currdev_devdesc((struct devdesc *)&currdev);
244 } else {
245 set_currdev_devsw(dp->pd_devsw, dp->pd_unit);
246 }
247 }
248
249 static bool
sanity_check_currdev(void)250 sanity_check_currdev(void)
251 {
252 struct stat st;
253
254 return (stat(PATH_DEFAULTS_LOADER_CONF, &st) == 0 ||
255 #ifdef PATH_BOOTABLE_TOKEN
256 stat(PATH_BOOTABLE_TOKEN, &st) == 0 || /* non-standard layout */
257 #endif
258 stat(PATH_KERNEL, &st) == 0);
259 }
260
261 #ifdef EFI_ZFS_BOOT
262 static bool
probe_zfs_currdev(uint64_t guid)263 probe_zfs_currdev(uint64_t guid)
264 {
265 char buf[VDEV_PAD_SIZE];
266 char *devname;
267 struct zfs_devdesc currdev;
268
269 currdev.dd.d_dev = &zfs_dev;
270 currdev.dd.d_unit = 0;
271 currdev.pool_guid = guid;
272 currdev.root_guid = 0;
273 devname = devformat(&currdev.dd);
274 set_currdev(devname);
275 printf("Setting currdev to %s\n", devname);
276 init_zfs_boot_options(devname);
277
278 if (zfs_get_bootonce(&currdev, OS_BOOTONCE, buf, sizeof(buf)) == 0) {
279 printf("zfs bootonce: %s\n", buf);
280 set_currdev(buf);
281 setenv("zfs-bootonce", buf, 1);
282 }
283 (void)zfs_attach_nvstore(&currdev);
284
285 return (sanity_check_currdev());
286 }
287 #endif
288
289 #ifdef MD_IMAGE_SIZE
290 extern struct devsw md_dev;
291
292 static bool
probe_md_currdev(void)293 probe_md_currdev(void)
294 {
295 bool rv;
296
297 set_currdev_devsw(&md_dev, 0);
298 rv = sanity_check_currdev();
299 if (!rv)
300 printf("MD not present\n");
301 return (rv);
302 }
303 #endif
304
305 static bool
try_as_currdev(pdinfo_t * hd,pdinfo_t * pp)306 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp)
307 {
308 uint64_t guid;
309
310 #ifdef EFI_ZFS_BOOT
311 /*
312 * If there's a zpool on this device, try it as a ZFS
313 * filesystem, which has somewhat different setup than all
314 * other types of fs due to imperfect loader integration.
315 * This all stems from ZFS being both a device (zpool) and
316 * a filesystem, plus the boot env feature.
317 */
318 if (efizfs_get_guid_by_handle(pp->pd_handle, &guid))
319 return (probe_zfs_currdev(guid));
320 #endif
321 /*
322 * All other filesystems just need the pdinfo
323 * initialized in the standard way.
324 */
325 set_currdev_pdinfo(pp);
326 return (sanity_check_currdev());
327 }
328
329 /*
330 * Sometimes we get filenames that are all upper case
331 * and/or have backslashes in them. Filter all this out
332 * if it looks like we need to do so.
333 */
334 static void
fix_dosisms(char * p)335 fix_dosisms(char *p)
336 {
337 while (*p) {
338 if (isupper(*p))
339 *p = tolower(*p);
340 else if (*p == '\\')
341 *p = '/';
342 p++;
343 }
344 }
345
346 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp)
347
348 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2 };
349 static int
match_boot_info(char * boot_info,size_t bisz)350 match_boot_info(char *boot_info, size_t bisz)
351 {
352 uint32_t attr;
353 uint16_t fplen;
354 size_t len;
355 char *walker, *ep;
356 EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp;
357 pdinfo_t *pp;
358 CHAR16 *descr;
359 char *kernel = NULL;
360 FILEPATH_DEVICE_PATH *fp;
361 struct stat st;
362 CHAR16 *text;
363
364 /*
365 * FreeBSD encodes its boot loading path into the boot loader
366 * BootXXXX variable. We look for the last one in the path
367 * and use that to load the kernel. However, if we only find
368 * one DEVICE_PATH, then there's nothing specific and we should
369 * fall back.
370 *
371 * In an ideal world, we'd look at the image handle we were
372 * passed, match up with the loader we are and then return the
373 * next one in the path. This would be most flexible and cover
374 * many chain booting scenarios where you need to use this
375 * boot loader to get to the next boot loader. However, that
376 * doesn't work. We rarely have the path to the image booted
377 * (just the device) so we can't count on that. So, we do the
378 * next best thing: we look through the device path(s) passed
379 * in the BootXXXX variable. If there's only one, we return
380 * NOT_SPECIFIC. Otherwise, we look at the last one and try to
381 * load that. If we can, we return BOOT_INFO_OK. Otherwise we
382 * return BAD_CHOICE for the caller to sort out.
383 */
384 if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16))
385 return NOT_SPECIFIC;
386 walker = boot_info;
387 ep = walker + bisz;
388 memcpy(&attr, walker, sizeof(attr));
389 walker += sizeof(attr);
390 memcpy(&fplen, walker, sizeof(fplen));
391 walker += sizeof(fplen);
392 descr = (CHAR16 *)(intptr_t)walker;
393 len = ucs2len(descr);
394 walker += (len + 1) * sizeof(CHAR16);
395 last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker;
396 edp = (EFI_DEVICE_PATH *)(walker + fplen);
397 if ((char *)edp > ep)
398 return NOT_SPECIFIC;
399 while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) {
400 text = efi_devpath_name(dp);
401 if (text != NULL) {
402 printf(" BootInfo Path: %S\n", text);
403 efi_free_devpath_name(text);
404 }
405 last_dp = dp;
406 dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp));
407 }
408
409 /*
410 * If there's only one item in the list, then nothing was
411 * specified. Or if the last path doesn't have a media
412 * path in it. Those show up as various VenHw() nodes
413 * which are basically opaque to us. Don't count those
414 * as something specifc.
415 */
416 if (last_dp == first_dp) {
417 printf("Ignoring Boot%04x: Only one DP found\n", boot_current);
418 return NOT_SPECIFIC;
419 }
420 if (efi_devpath_to_media_path(last_dp) == NULL) {
421 printf("Ignoring Boot%04x: No Media Path\n", boot_current);
422 return NOT_SPECIFIC;
423 }
424
425 /*
426 * OK. At this point we either have a good path or a bad one.
427 * Let's check.
428 */
429 pp = efiblk_get_pdinfo_by_device_path(last_dp);
430 if (pp == NULL) {
431 printf("Ignoring Boot%04x: Device Path not found\n", boot_current);
432 return BAD_CHOICE;
433 }
434 set_currdev_pdinfo(pp);
435 if (!sanity_check_currdev()) {
436 printf("Ignoring Boot%04x: sanity check failed\n", boot_current);
437 return BAD_CHOICE;
438 }
439
440 /*
441 * OK. We've found a device that matches, next we need to check the last
442 * component of the path. If it's a file, then we set the default kernel
443 * to that. Otherwise, just use this as the default root.
444 *
445 * Reminder: we're running very early, before we've parsed the defaults
446 * file, so we may need to have a hack override.
447 */
448 dp = efi_devpath_last_node(last_dp);
449 if (DevicePathType(dp) != MEDIA_DEVICE_PATH ||
450 DevicePathSubType(dp) != MEDIA_FILEPATH_DP) {
451 printf("Using Boot%04x for root partition\n", boot_current);
452 return (BOOT_INFO_OK); /* use currdir, default kernel */
453 }
454 fp = (FILEPATH_DEVICE_PATH *)dp;
455 ucs2_to_utf8(fp->PathName, &kernel);
456 if (kernel == NULL) {
457 printf("Not using Boot%04x: can't decode kernel\n", boot_current);
458 return (BAD_CHOICE);
459 }
460 if (*kernel == '\\' || isupper(*kernel))
461 fix_dosisms(kernel);
462 if (stat(kernel, &st) != 0) {
463 free(kernel);
464 printf("Not using Boot%04x: can't find %s\n", boot_current,
465 kernel);
466 return (BAD_CHOICE);
467 }
468 setenv("kernel", kernel, 1);
469 free(kernel);
470 text = efi_devpath_name(last_dp);
471 if (text) {
472 printf("Using Boot%04x %S + %s\n", boot_current, text,
473 kernel);
474 efi_free_devpath_name(text);
475 }
476
477 return (BOOT_INFO_OK);
478 }
479
480 /*
481 * Look at the passed-in boot_info, if any. If we find it then we need
482 * to see if we can find ourselves in the boot chain. If we can, and
483 * there's another specified thing to boot next, assume that the file
484 * is loaded from / and use that for the root filesystem. If can't
485 * find the specified thing, we must fail the boot. If we're last on
486 * the list, then we fallback to looking for the first available /
487 * candidate (ZFS, if there's a bootable zpool, otherwise a UFS
488 * partition that has either /boot/defaults/loader.conf on it or
489 * /boot/kernel/kernel (the default kernel) that we can use.
490 *
491 * We always fail if we can't find the right thing. However, as
492 * a concession to buggy UEFI implementations, like u-boot, if
493 * we have determined that the host is violating the UEFI boot
494 * manager protocol, we'll signal the rest of the program that
495 * a drop to the OK boot loader prompt is possible.
496 */
497 static int
find_currdev(bool do_bootmgr,bool is_last,char * boot_info,size_t boot_info_sz)498 find_currdev(bool do_bootmgr, bool is_last,
499 char *boot_info, size_t boot_info_sz)
500 {
501 pdinfo_t *dp, *pp;
502 EFI_DEVICE_PATH *devpath, *copy;
503 EFI_HANDLE h;
504 CHAR16 *text;
505 struct devsw *dev;
506 int unit;
507 uint64_t extra;
508 int rv;
509 char *rootdev;
510
511 /*
512 * First choice: if rootdev is already set, use that, even if
513 * it's wrong.
514 */
515 rootdev = getenv("rootdev");
516 if (rootdev != NULL) {
517 printf(" Setting currdev to configured rootdev %s\n",
518 rootdev);
519 set_currdev(rootdev);
520 return (0);
521 }
522
523 /*
524 * Second choice: If uefi_rootdev is set, translate that UEFI device
525 * path to the loader's internal name and use that.
526 */
527 do {
528 rootdev = getenv("uefi_rootdev");
529 if (rootdev == NULL)
530 break;
531 devpath = efi_name_to_devpath(rootdev);
532 if (devpath == NULL)
533 break;
534 dp = efiblk_get_pdinfo_by_device_path(devpath);
535 efi_devpath_free(devpath);
536 if (dp == NULL)
537 break;
538 printf(" Setting currdev to UEFI path %s\n",
539 rootdev);
540 set_currdev_pdinfo(dp);
541 return (0);
542 } while (0);
543
544 /*
545 * Third choice: If we can find out image boot_info, and there's
546 * a follow-on boot image in that boot_info, use that. In this
547 * case root will be the partition specified in that image and
548 * we'll load the kernel specified by the file path. Should there
549 * not be a filepath, we use the default. This filepath overrides
550 * loader.conf.
551 */
552 if (do_bootmgr) {
553 rv = match_boot_info(boot_info, boot_info_sz);
554 switch (rv) {
555 case BOOT_INFO_OK: /* We found it */
556 return (0);
557 case BAD_CHOICE: /* specified file not found -> error */
558 /* XXX do we want to have an escape hatch for last in boot order? */
559 return (ENOENT);
560 } /* Nothing specified, try normal match */
561 }
562
563 #ifdef EFI_ZFS_BOOT
564 /*
565 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool
566 * it found, if it's sane. ZFS is the only thing that looks for
567 * disks and pools to boot. This may change in the future, however,
568 * if we allow specifying which pool to boot from via UEFI variables
569 * rather than the bootenv stuff that FreeBSD uses today.
570 */
571 if (pool_guid != 0) {
572 printf("Trying ZFS pool\n");
573 if (probe_zfs_currdev(pool_guid))
574 return (0);
575 }
576 #endif /* EFI_ZFS_BOOT */
577
578 #ifdef MD_IMAGE_SIZE
579 /*
580 * If there is an embedded MD, try to use that.
581 */
582 printf("Trying MD\n");
583 if (probe_md_currdev())
584 return (0);
585 #endif /* MD_IMAGE_SIZE */
586
587 /*
588 * Try to find the block device by its handle based on the
589 * image we're booting. If we can't find a sane partition,
590 * search all the other partitions of the disk. We do not
591 * search other disks because it's a violation of the UEFI
592 * boot protocol to do so. We fail and let UEFI go on to
593 * the next candidate.
594 */
595 dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle);
596 if (dp != NULL) {
597 text = efi_devpath_name(dp->pd_devpath);
598 if (text != NULL) {
599 printf("Trying ESP: %S\n", text);
600 efi_free_devpath_name(text);
601 }
602 set_currdev_pdinfo(dp);
603 if (sanity_check_currdev())
604 return (0);
605 if (dp->pd_parent != NULL) {
606 pdinfo_t *espdp = dp;
607 dp = dp->pd_parent;
608 STAILQ_FOREACH(pp, &dp->pd_part, pd_link) {
609 /* Already tried the ESP */
610 if (espdp == pp)
611 continue;
612 /*
613 * Roll up the ZFS special case
614 * for those partitions that have
615 * zpools on them.
616 */
617 text = efi_devpath_name(pp->pd_devpath);
618 if (text != NULL) {
619 printf("Trying: %S\n", text);
620 efi_free_devpath_name(text);
621 }
622 if (try_as_currdev(dp, pp))
623 return (0);
624 }
625 }
626 }
627
628 /*
629 * Try the device handle from our loaded image first. If that
630 * fails, use the device path from the loaded image and see if
631 * any of the nodes in that path match one of the enumerated
632 * handles. Currently, this handle list is only for netboot.
633 */
634 if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) {
635 set_currdev_devsw(dev, unit);
636 if (sanity_check_currdev())
637 return (0);
638 }
639
640 copy = NULL;
641 devpath = efi_lookup_image_devpath(IH);
642 while (devpath != NULL) {
643 h = efi_devpath_handle(devpath);
644 if (h == NULL)
645 break;
646
647 free(copy);
648 copy = NULL;
649
650 if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) {
651 set_currdev_devsw(dev, unit);
652 if (sanity_check_currdev())
653 return (0);
654 }
655
656 devpath = efi_lookup_devpath(h);
657 if (devpath != NULL) {
658 copy = efi_devpath_trim(devpath);
659 devpath = copy;
660 }
661 }
662 free(copy);
663
664 return (ENOENT);
665 }
666
667 static bool
interactive_interrupt(const char * msg)668 interactive_interrupt(const char *msg)
669 {
670 time_t now, then, last;
671
672 last = 0;
673 now = then = getsecs();
674 printf("%s\n", msg);
675 if (fail_timeout == -2) /* Always break to OK */
676 return (true);
677 if (fail_timeout == -1) /* Never break to OK */
678 return (false);
679 do {
680 if (last != now) {
681 printf("press any key to interrupt reboot in %d seconds\r",
682 fail_timeout - (int)(now - then));
683 last = now;
684 }
685
686 /* XXX no pause or timeout wait for char */
687 if (ischar())
688 return (true);
689 now = getsecs();
690 } while (now - then < fail_timeout);
691 return (false);
692 }
693
694 static int
parse_args(int argc,CHAR16 * argv[])695 parse_args(int argc, CHAR16 *argv[])
696 {
697 int i, howto;
698 char var[128];
699
700 /*
701 * Parse the args to set the console settings, etc
702 * boot1.efi passes these in, if it can read /boot.config or /boot/config
703 * or iPXE may be setup to pass these in. Or the optional argument in the
704 * boot environment was used to pass these arguments in (in which case
705 * neither /boot.config nor /boot/config are consulted).
706 *
707 * Loop through the args, and for each one that contains an '=' that is
708 * not the first character, add it to the environment. This allows
709 * loader and kernel env vars to be passed on the command line. Convert
710 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this
711 * method is flawed for non-ASCII characters).
712 */
713 howto = 0;
714 for (i = 0; i < argc; i++) {
715 cpy16to8(argv[i], var, sizeof(var));
716 howto |= boot_parse_arg(var);
717 }
718
719 return (howto);
720 }
721
722 static void
setenv_int(const char * key,int val)723 setenv_int(const char *key, int val)
724 {
725 char buf[20];
726
727 snprintf(buf, sizeof(buf), "%d", val);
728 setenv(key, buf, 1);
729 }
730
731 static void *
acpi_map_sdt(vm_offset_t addr)732 acpi_map_sdt(vm_offset_t addr)
733 {
734 /* PA == VA */
735 return ((void *)addr);
736 }
737
738 static int
acpi_checksum(void * p,size_t length)739 acpi_checksum(void *p, size_t length)
740 {
741 uint8_t *bp;
742 uint8_t sum;
743
744 bp = p;
745 sum = 0;
746 while (length--)
747 sum += *bp++;
748
749 return (sum);
750 }
751
752 static void *
acpi_find_table(uint8_t * sig)753 acpi_find_table(uint8_t *sig)
754 {
755 int entries, i, addr_size;
756 ACPI_TABLE_HEADER *sdp;
757 ACPI_TABLE_RSDT *rsdt;
758 ACPI_TABLE_XSDT *xsdt;
759 vm_offset_t addr;
760
761 if (rsdp == NULL)
762 return (NULL);
763
764 rsdt = (ACPI_TABLE_RSDT *)(uintptr_t)rsdp->RsdtPhysicalAddress;
765 xsdt = (ACPI_TABLE_XSDT *)(uintptr_t)rsdp->XsdtPhysicalAddress;
766 if (rsdp->Revision < 2) {
767 sdp = (ACPI_TABLE_HEADER *)rsdt;
768 addr_size = sizeof(uint32_t);
769 } else {
770 sdp = (ACPI_TABLE_HEADER *)xsdt;
771 addr_size = sizeof(uint64_t);
772 }
773 entries = (sdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size;
774 for (i = 0; i < entries; i++) {
775 if (addr_size == 4)
776 addr = le32toh(rsdt->TableOffsetEntry[i]);
777 else
778 addr = le64toh(xsdt->TableOffsetEntry[i]);
779 if (addr == 0)
780 continue;
781 sdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(addr);
782 if (acpi_checksum(sdp, sdp->Length)) {
783 printf("RSDT entry %d (sig %.4s) is corrupt", i,
784 sdp->Signature);
785 continue;
786 }
787 if (memcmp(sig, sdp->Signature, 4) == 0)
788 return (sdp);
789 }
790 return (NULL);
791 }
792
793 /*
794 * Convert the InterfaceType in the SPCR. These are encoded the same for DBG2
795 * tables as well (though we don't parse those here).
796 */
797 static const char *
acpi_uart_type(UINT8 t)798 acpi_uart_type(UINT8 t)
799 {
800 static const char *types[] = {
801 [0] = "ns8250", /* Full 16550 */
802 [1] = "ns8250", /* DBGP Rev 1 16550 subset */
803 [3] = "pl011", /* Arm PL011 */
804 [5] = "ns8250", /* Nvidia 16550 */
805 [0x12] = "ns8250", /* 16550 defined in SerialPort */
806 };
807
808 if (t >= nitems(types))
809 return (NULL);
810 return (types[t]);
811 }
812
813 static int
acpi_uart_baud(UINT8 b)814 acpi_uart_baud(UINT8 b)
815 {
816 static int baud[] = { 0, -1, -1, 9600, 19200, -1, 57600, 115200 };
817
818 if (b > 7)
819 return (-1);
820 return (baud[b]);
821 }
822
823 static int
acpi_uart_regionwidth(UINT8 rw)824 acpi_uart_regionwidth(UINT8 rw)
825 {
826 if (rw == 0)
827 return (1);
828 if (rw > 4)
829 return (-1);
830 return (1 << (rw - 1));
831 }
832
833 static const char *
acpi_uart_parity(UINT8 p)834 acpi_uart_parity(UINT8 p)
835 {
836 /* Some of these SPCR entires get this wrong, hard wire none */
837 return ("none");
838 }
839
840 /*
841 * See if we can find a SPCR ACPI table in the static tables. If so, then it
842 * describes the serial console that's been redirected to, so we know that at
843 * least there's a serial console. this is most important for embedded systems
844 * that don't have traidtional PC serial ports.
845 *
846 * All the two letter variables in this function correspond to their usage in
847 * the uart(4) console string. We use io == -1 to select between I/O ports and
848 * memory mapped addresses. Set both hw.uart.console and hw.uart.consol.extra
849 * to communicate settings from SPCR to the kernel.
850 */
851 static int
check_acpi_spcr(void)852 check_acpi_spcr(void)
853 {
854 ACPI_TABLE_SPCR *spcr;
855 int br, db, io, rs, rw, sb, xo, pv, pd;
856 uintmax_t mm;
857 const char *dt, *pa;
858 char *val = NULL;
859
860 spcr = acpi_find_table(ACPI_SIG_SPCR);
861 if (spcr == NULL)
862 return (0);
863 dt = acpi_uart_type(spcr->InterfaceType);
864 if (dt == NULL) { /* Kernel can't use unknown types */
865 printf("UART Type %d not known\n", spcr->InterfaceType);
866 return (0);
867 }
868
869 /* I/O vs Memory mapped vs PCI device */
870 io = -1;
871 pv = spcr->PciVendorId;
872 pd = spcr->PciDeviceId;
873 if (pv == 0xffff && pd == 0xffff) {
874 if (spcr->SerialPort.SpaceId == 1)
875 io = spcr->SerialPort.Address;
876 else {
877 mm = spcr->SerialPort.Address;
878 rs = ffs(spcr->SerialPort.BitWidth) - 4;
879 rw = acpi_uart_regionwidth(spcr->SerialPort.AccessWidth);
880 }
881 } else {
882 /* XXX todo: bus:device:function + flags and segment */
883 }
884
885 /* Uart settings */
886 pa = acpi_uart_parity(spcr->Parity);
887 sb = spcr->StopBits;
888 db = 8;
889
890 /*
891 * UartClkFreq is 3 and newer. We always use it then (it's only valid if
892 * it isn't 0, but if it is 0, we want to use 0 to have the kernel
893 * guess).
894 */
895 if (spcr->Header.Revision <= 2)
896 xo = 0;
897 else
898 xo = spcr->UartClkFreq;
899
900 /*
901 * PreciseBaudrate, when non-zero, is to be preferred. It's only valid,
902 * though, for rev 4 and newer. So when it's 0 or the version is too
903 * old, we do the old-style table lookup. Otherwise we believe it.
904 */
905 if (spcr->Header.Revision <= 3 || spcr->PreciseBaudrate == 0)
906 br = acpi_uart_baud(spcr->BaudRate);
907 else
908 br = spcr->PreciseBaudrate;
909
910 if (io != -1) {
911 asprintf(&val, "db:%d,dt:%s,io:%#x,pa:%s,br:%d,xo=%d",
912 db, dt, io, pa, br, xo);
913 } else if (pv != 0xffff && pd != 0xffff) {
914 asprintf(&val, "db:%d,dt:%s,pv:%#x,pd:%#x,pa:%s,br:%d,xo=%d",
915 db, dt, pv, pd, pa, br, xo);
916 } else {
917 asprintf(&val, "db:%d,dt:%s,mm:%#jx,rs:%d,rw:%d,pa:%s,br:%d,xo=%d",
918 db, dt, mm, rs, rw, pa, br, xo);
919 }
920 env_setenv("hw.uart.console", EV_VOLATILE, val, NULL, NULL);
921 free(val);
922
923 return (RB_SERIAL);
924 }
925
926
927 /*
928 * Parse ConOut (the list of consoles active) and see if we can find a serial
929 * port and/or a video port. It would be nice to also walk the ACPI DSDT to map
930 * the UID for the serial port to a port since there's no standard mapping. Also
931 * check for ConIn as well. This will be enough to determine if we have serial,
932 * and if we don't, we default to video. If there's a dual-console situation
933 * with only ConIn defined, this will currently fail.
934 */
935 int
parse_uefi_con_out(void)936 parse_uefi_con_out(void)
937 {
938 int how, rv;
939 int vid_seen = 0, com_seen = 0, seen = 0;
940 size_t sz;
941 char buf[4096], *ep;
942 EFI_DEVICE_PATH *node;
943 ACPI_HID_DEVICE_PATH *acpi;
944 UART_DEVICE_PATH *uart;
945 bool pci_pending;
946
947 /*
948 * A SPCR in the ACPI fixed tables documents a serial port used for the
949 * console. It may mirror a video console, or may be stand alone. If it
950 * is present, we return RB_SERIAL and will use it for the kernel.
951 */
952 how = check_acpi_spcr();
953 sz = sizeof(buf);
954 rv = efi_global_getenv("ConOut", buf, &sz);
955 if (rv != EFI_SUCCESS)
956 rv = efi_global_getenv("ConOutDev", buf, &sz);
957 if (rv != EFI_SUCCESS)
958 rv = efi_global_getenv("ConIn", buf, &sz);
959 if (rv != EFI_SUCCESS) {
960 /*
961 * If we don't have any Con* variable use both. If we have GOP
962 * make video primary, otherwise set serial primary. In either
963 * case, try to use both the 'efi' console which will use the
964 * GOP, if present and serial. If there's an EFI BIOS that omits
965 * this, but has a serial port redirect, we'll unavioidably get
966 * doubled characters, but we'll be right in all the other more
967 * common cases.
968 */
969 if (efi_has_gop())
970 how |= RB_MULTIPLE;
971 else
972 how |= RB_MULTIPLE | RB_SERIAL;
973 setenv("console", "efi,comconsole", 1);
974 goto out;
975 }
976 ep = buf + sz;
977 node = (EFI_DEVICE_PATH *)buf;
978 while ((char *)node < ep) {
979 if (IsDevicePathEndType(node)) {
980 if (pci_pending && vid_seen == 0)
981 vid_seen = ++seen;
982 }
983 pci_pending = false;
984 if (DevicePathType(node) == ACPI_DEVICE_PATH &&
985 (DevicePathSubType(node) == ACPI_DP ||
986 DevicePathSubType(node) == ACPI_EXTENDED_DP)) {
987 /* Check for Serial node */
988 acpi = (void *)node;
989 if (EISA_ID_TO_NUM(acpi->HID) == 0x501) {
990 setenv_int("efi_8250_uid", acpi->UID);
991 com_seen = ++seen;
992 }
993 } else if (DevicePathType(node) == MESSAGING_DEVICE_PATH &&
994 DevicePathSubType(node) == MSG_UART_DP) {
995 com_seen = ++seen;
996 uart = (void *)node;
997 setenv_int("efi_com_speed", uart->BaudRate);
998 } else if (DevicePathType(node) == ACPI_DEVICE_PATH &&
999 DevicePathSubType(node) == ACPI_ADR_DP) {
1000 /* Check for AcpiAdr() Node for video */
1001 vid_seen = ++seen;
1002 } else if (DevicePathType(node) == HARDWARE_DEVICE_PATH &&
1003 DevicePathSubType(node) == HW_PCI_DP) {
1004 /*
1005 * Note, vmware fusion has a funky console device
1006 * PciRoot(0x0)/Pci(0xf,0x0)
1007 * which we can only detect at the end since we also
1008 * have to cope with:
1009 * PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1)
1010 * so only match it if it's last.
1011 */
1012 pci_pending = true;
1013 }
1014 node = NextDevicePathNode(node);
1015 }
1016
1017 /*
1018 * Truth table for RB_MULTIPLE | RB_SERIAL
1019 * Value Result
1020 * 0 Use only video console
1021 * RB_SERIAL Use only serial console
1022 * RB_MULTIPLE Use both video and serial console
1023 * (but video is primary so gets rc messages)
1024 * both Use both video and serial console
1025 * (but serial is primary so gets rc messages)
1026 *
1027 * Try to honor this as best we can. If only one of serial / video
1028 * found, then use that. Otherwise, use the first one we found.
1029 * This also implies if we found nothing, default to video.
1030 */
1031 how = 0;
1032 if (vid_seen && com_seen) {
1033 how |= RB_MULTIPLE;
1034 if (com_seen < vid_seen)
1035 how |= RB_SERIAL;
1036 } else if (com_seen)
1037 how |= RB_SERIAL;
1038 out:
1039 return (how);
1040 }
1041
1042 void
parse_loader_efi_config(EFI_HANDLE h,const char * env_fn)1043 parse_loader_efi_config(EFI_HANDLE h, const char *env_fn)
1044 {
1045 pdinfo_t *dp;
1046 struct stat st;
1047 int fd = -1;
1048 char *env = NULL;
1049
1050 dp = efiblk_get_pdinfo_by_handle(h);
1051 if (dp == NULL)
1052 return;
1053 set_currdev_pdinfo(dp);
1054 if (stat(env_fn, &st) != 0)
1055 return;
1056 fd = open(env_fn, O_RDONLY);
1057 if (fd == -1)
1058 return;
1059 env = malloc(st.st_size + 1);
1060 if (env == NULL)
1061 goto out;
1062 if (read(fd, env, st.st_size) != st.st_size)
1063 goto out;
1064 env[st.st_size] = '\0';
1065 boot_parse_cmdline(env);
1066 out:
1067 free(env);
1068 close(fd);
1069 }
1070
1071 static void
read_loader_env(const char * name,char * def_fn,bool once)1072 read_loader_env(const char *name, char *def_fn, bool once)
1073 {
1074 UINTN len;
1075 char *fn, *freeme = NULL;
1076
1077 len = 0;
1078 fn = def_fn;
1079 if (efi_freebsd_getenv(name, NULL, &len) == EFI_BUFFER_TOO_SMALL) {
1080 freeme = fn = malloc(len + 1);
1081 if (fn != NULL) {
1082 if (efi_freebsd_getenv(name, fn, &len) != EFI_SUCCESS) {
1083 free(fn);
1084 fn = NULL;
1085 printf(
1086 "Can't fetch FreeBSD::%s we know is there\n", name);
1087 } else {
1088 /*
1089 * if tagged as 'once' delete the env variable so we
1090 * only use it once.
1091 */
1092 if (once)
1093 efi_freebsd_delenv(name);
1094 /*
1095 * We malloced 1 more than len above, then redid the call.
1096 * so now we have room at the end of the string to NUL terminate
1097 * it here, even if the typical idium would have '- 1' here to
1098 * not overflow. len should be the same on return both times.
1099 */
1100 fn[len] = '\0';
1101 }
1102 } else {
1103 printf(
1104 "Can't allocate %d bytes to fetch FreeBSD::%s env var\n",
1105 len, name);
1106 }
1107 }
1108 if (fn) {
1109 printf(" Reading loader env vars from %s\n", fn);
1110 parse_loader_efi_config(boot_img->DeviceHandle, fn);
1111 }
1112 }
1113
1114 caddr_t
ptov(uintptr_t x)1115 ptov(uintptr_t x)
1116 {
1117 return ((caddr_t)x);
1118 }
1119
1120 static void
acpi_detect(void)1121 acpi_detect(void)
1122 {
1123 char buf[24];
1124 int revision;
1125
1126 feature_enable(FEATURE_EARLY_ACPI);
1127 if ((rsdp = efi_get_table(&acpi20)) == NULL)
1128 if ((rsdp = efi_get_table(&acpi)) == NULL)
1129 return;
1130
1131 sprintf(buf, "0x%016"PRIxPTR, (uintptr_t)rsdp);
1132 setenv("acpi.rsdp", buf, 1);
1133 revision = rsdp->Revision;
1134 if (revision == 0)
1135 revision = 1;
1136 sprintf(buf, "%d", revision);
1137 setenv("acpi.revision", buf, 1);
1138 strncpy(buf, rsdp->OemId, sizeof(rsdp->OemId));
1139 buf[sizeof(rsdp->OemId)] = '\0';
1140 setenv("acpi.oem", buf, 1);
1141 sprintf(buf, "0x%016x", rsdp->RsdtPhysicalAddress);
1142 setenv("acpi.rsdt", buf, 1);
1143 if (revision >= 2) {
1144 /* XXX extended checksum? */
1145 sprintf(buf, "0x%016llx",
1146 (unsigned long long)rsdp->XsdtPhysicalAddress);
1147 setenv("acpi.xsdt", buf, 1);
1148 sprintf(buf, "%d", rsdp->Length);
1149 setenv("acpi.xsdt_length", buf, 1);
1150 }
1151 }
1152
1153 EFI_STATUS
main(int argc,CHAR16 * argv[])1154 main(int argc, CHAR16 *argv[])
1155 {
1156 EFI_GUID *guid;
1157 int howto, i, uhowto;
1158 UINTN k;
1159 bool has_kbd, is_last;
1160 char *s;
1161 EFI_DEVICE_PATH *imgpath;
1162 CHAR16 *text;
1163 EFI_STATUS rv;
1164 size_t sz, bosz = 0, bisz = 0;
1165 UINT16 boot_order[100];
1166 char boot_info[4096];
1167 char buf[32];
1168 bool uefi_boot_mgr;
1169
1170 archsw.arch_autoload = efi_autoload;
1171 archsw.arch_getdev = efi_getdev;
1172 archsw.arch_copyin = efi_copyin;
1173 archsw.arch_copyout = efi_copyout;
1174 #if defined(__amd64__) || defined(__i386__)
1175 archsw.arch_hypervisor = x86_hypervisor;
1176 #endif
1177 archsw.arch_readin = efi_readin;
1178 archsw.arch_zfs_probe = efi_zfs_probe;
1179
1180 #if !defined(__arm__)
1181 for (k = 0; k < ST->NumberOfTableEntries; k++) {
1182 guid = &ST->ConfigurationTable[k].VendorGuid;
1183 if (!memcmp(guid, &smbios, sizeof(EFI_GUID)) ||
1184 !memcmp(guid, &smbios3, sizeof(EFI_GUID))) {
1185 char buf[40];
1186
1187 snprintf(buf, sizeof(buf), "%p",
1188 ST->ConfigurationTable[k].VendorTable);
1189 setenv("hint.smbios.0.mem", buf, 1);
1190 smbios_detect(ST->ConfigurationTable[k].VendorTable);
1191 break;
1192 }
1193 }
1194 #endif
1195
1196 /* Get our loaded image protocol interface structure. */
1197 (void) OpenProtocolByHandle(IH, &imgid, (void **)&boot_img);
1198
1199 /* Report the RSDP early. */
1200 acpi_detect();
1201
1202 /*
1203 * Chicken-and-egg problem; we want to have console output early, but
1204 * some console attributes may depend on reading from eg. the boot
1205 * device, which we can't do yet. We can use printf() etc. once this is
1206 * done. So, we set it to the efi console, then call console init. This
1207 * gets us printf early, but also primes the pump for all future console
1208 * changes to take effect, regardless of where they come from.
1209 */
1210 setenv("console", "efi", 1);
1211 uhowto = parse_uefi_con_out();
1212 #if defined(__riscv)
1213 /*
1214 * This workaround likely is papering over a real issue
1215 */
1216 if ((uhowto & RB_SERIAL) != 0)
1217 setenv("console", "comconsole", 1);
1218 #endif
1219 cons_probe();
1220
1221 /* Set up currdev variable to have hooks in place. */
1222 env_setenv("currdev", EV_VOLATILE, "", gen_setcurrdev, env_nounset);
1223
1224 /* Init the time source */
1225 efi_time_init();
1226
1227 /*
1228 * Initialise the block cache. Set the upper limit.
1229 */
1230 bcache_init(32768, 512);
1231
1232 /*
1233 * Scan the BLOCK IO MEDIA handles then
1234 * march through the device switch probing for things.
1235 */
1236 i = efipart_inithandles();
1237 if (i != 0 && i != ENOENT) {
1238 printf("efipart_inithandles failed with ERRNO %d, expect "
1239 "failures\n", i);
1240 }
1241
1242 devinit();
1243
1244 /*
1245 * Detect console settings two different ways: one via the command
1246 * args (eg -h) or via the UEFI ConOut variable.
1247 */
1248 has_kbd = has_keyboard();
1249 howto = parse_args(argc, argv);
1250 if (!has_kbd && (howto & RB_PROBE))
1251 howto |= RB_SERIAL | RB_MULTIPLE;
1252 howto &= ~RB_PROBE;
1253
1254 /*
1255 * Read additional environment variables from the boot device's
1256 * "LoaderEnv" file. Any boot loader environment variable may be set
1257 * there, which are subtly different than loader.conf variables. Only
1258 * the 'simple' ones may be set so things like foo_load="YES" won't work
1259 * for two reasons. First, the parser is simplistic and doesn't grok
1260 * quotes. Second, because the variables that cause an action to happen
1261 * are parsed by the lua, 4th or whatever code that's not yet
1262 * loaded. This is relative to the root directory when loader.efi is
1263 * loaded off the UFS root drive (when chain booted), or from the ESP
1264 * when directly loaded by the BIOS.
1265 *
1266 * We also read in NextLoaderEnv if it was specified. This allows next boot
1267 * functionality to be implemented and to override anything in LoaderEnv.
1268 */
1269 read_loader_env("LoaderEnv", "/efi/freebsd/loader.env", false);
1270 read_loader_env("NextLoaderEnv", NULL, true);
1271
1272 /*
1273 * We now have two notions of console. howto should be viewed as
1274 * overrides. If console is already set, don't set it again.
1275 */
1276 #define VIDEO_ONLY 0
1277 #define SERIAL_ONLY RB_SERIAL
1278 #define VID_SER_BOTH RB_MULTIPLE
1279 #define SER_VID_BOTH (RB_SERIAL | RB_MULTIPLE)
1280 #define CON_MASK (RB_SERIAL | RB_MULTIPLE)
1281 if (strcmp(getenv("console"), "efi") == 0) {
1282 if ((howto & CON_MASK) == 0) {
1283 /* No override, uhowto is controlling and efi cons is perfect */
1284 howto = howto | (uhowto & CON_MASK);
1285 } else if ((howto & CON_MASK) == (uhowto & CON_MASK)) {
1286 /* override matches what UEFI told us, efi console is perfect */
1287 } else if ((uhowto & (CON_MASK)) != 0) {
1288 /*
1289 * We detected a serial console on ConOut. All possible
1290 * overrides include serial. We can't really override what efi
1291 * gives us, so we use it knowing it's the best choice.
1292 */
1293 /* Do nothing */
1294 } else {
1295 /*
1296 * We detected some kind of serial in the override, but ConOut
1297 * has no serial, so we have to sort out which case it really is.
1298 */
1299 switch (howto & CON_MASK) {
1300 case SERIAL_ONLY:
1301 setenv("console", "comconsole", 1);
1302 break;
1303 case VID_SER_BOTH:
1304 setenv("console", "efi comconsole", 1);
1305 break;
1306 case SER_VID_BOTH:
1307 setenv("console", "comconsole efi", 1);
1308 break;
1309 /* case VIDEO_ONLY can't happen -- it's the first if above */
1310 }
1311 }
1312 }
1313
1314 /*
1315 * howto is set now how we want to export the flags to the kernel, so
1316 * set the env based on it.
1317 */
1318 boot_howto_to_env(howto);
1319
1320 if (efi_copy_init())
1321 return (EFI_BUFFER_TOO_SMALL);
1322
1323 if ((s = getenv("fail_timeout")) != NULL)
1324 fail_timeout = strtol(s, NULL, 10);
1325
1326 printf("%s\n", bootprog_info);
1327 printf(" Command line arguments:");
1328 for (i = 0; i < argc; i++)
1329 printf(" %S", argv[i]);
1330 printf("\n");
1331
1332 printf(" Image base: 0x%lx\n", (unsigned long)boot_img->ImageBase);
1333 printf(" EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
1334 ST->Hdr.Revision & 0xffff);
1335 printf(" EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor,
1336 ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff);
1337 printf(" Console: %s (%#x)\n", getenv("console"), howto);
1338
1339 /* Determine the devpath of our image so we can prefer it. */
1340 text = efi_devpath_name(boot_img->FilePath);
1341 if (text != NULL) {
1342 printf(" Load Path: %S\n", text);
1343 efi_setenv_freebsd_wcs("LoaderPath", text);
1344 efi_free_devpath_name(text);
1345 }
1346
1347 rv = OpenProtocolByHandle(boot_img->DeviceHandle, &devid,
1348 (void **)&imgpath);
1349 if (rv == EFI_SUCCESS) {
1350 text = efi_devpath_name(imgpath);
1351 if (text != NULL) {
1352 printf(" Load Device: %S\n", text);
1353 efi_setenv_freebsd_wcs("LoaderDev", text);
1354 efi_free_devpath_name(text);
1355 }
1356 }
1357
1358 if (getenv("uefi_ignore_boot_mgr") != NULL) {
1359 printf(" Ignoring UEFI boot manager\n");
1360 uefi_boot_mgr = false;
1361 } else {
1362 uefi_boot_mgr = true;
1363 boot_current = 0;
1364 sz = sizeof(boot_current);
1365 rv = efi_global_getenv("BootCurrent", &boot_current, &sz);
1366 if (rv == EFI_SUCCESS)
1367 printf(" BootCurrent: %04x\n", boot_current);
1368 else {
1369 boot_current = 0xffff;
1370 uefi_boot_mgr = false;
1371 }
1372
1373 sz = sizeof(boot_order);
1374 rv = efi_global_getenv("BootOrder", &boot_order, &sz);
1375 if (rv == EFI_SUCCESS) {
1376 printf(" BootOrder:");
1377 for (i = 0; i < sz / sizeof(boot_order[0]); i++)
1378 printf(" %04x%s", boot_order[i],
1379 boot_order[i] == boot_current ? "[*]" : "");
1380 printf("\n");
1381 is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current;
1382 bosz = sz;
1383 } else if (uefi_boot_mgr) {
1384 /*
1385 * u-boot doesn't set BootOrder, but otherwise participates in the
1386 * boot manager protocol. So we fake it here and don't consider it
1387 * a failure.
1388 */
1389 bosz = sizeof(boot_order[0]);
1390 boot_order[0] = boot_current;
1391 is_last = true;
1392 }
1393 }
1394
1395 /*
1396 * Next, find the boot info structure the UEFI boot manager is
1397 * supposed to setup. We need this so we can walk through it to
1398 * find where we are in the booting process and what to try to
1399 * boot next.
1400 */
1401 if (uefi_boot_mgr) {
1402 snprintf(buf, sizeof(buf), "Boot%04X", boot_current);
1403 sz = sizeof(boot_info);
1404 rv = efi_global_getenv(buf, &boot_info, &sz);
1405 if (rv == EFI_SUCCESS)
1406 bisz = sz;
1407 else
1408 uefi_boot_mgr = false;
1409 }
1410
1411 /*
1412 * Disable the watchdog timer. By default the boot manager sets
1413 * the timer to 5 minutes before invoking a boot option. If we
1414 * want to return to the boot manager, we have to disable the
1415 * watchdog timer and since we're an interactive program, we don't
1416 * want to wait until the user types "quit". The timer may have
1417 * fired by then. We don't care if this fails. It does not prevent
1418 * normal functioning in any way...
1419 */
1420 BS->SetWatchdogTimer(0, 0, 0, NULL);
1421
1422 /*
1423 * Initialize the trusted/forbidden certificates from UEFI.
1424 * They will be later used to verify the manifest(s),
1425 * which should contain hashes of verified files.
1426 * This needs to be initialized before any configuration files
1427 * are loaded.
1428 */
1429 #ifdef EFI_SECUREBOOT
1430 ve_efi_init();
1431 #endif
1432
1433 /*
1434 * Try and find a good currdev based on the image that was booted.
1435 * It might be desirable here to have a short pause to allow falling
1436 * through to the boot loader instead of returning instantly to follow
1437 * the boot protocol and also allow an escape hatch for users wishing
1438 * to try something different.
1439 */
1440 if (find_currdev(uefi_boot_mgr, is_last, boot_info, bisz) != 0)
1441 if (uefi_boot_mgr &&
1442 !interactive_interrupt("Failed to find bootable partition"))
1443 return (EFI_NOT_FOUND);
1444
1445 autoload_font(false); /* Set up the font list for console. */
1446 efi_init_environment();
1447
1448 interact(); /* doesn't return */
1449
1450 return (EFI_SUCCESS); /* keep compiler happy */
1451 }
1452
1453 COMMAND_SET(efi_seed_entropy, "efi-seed-entropy", "try to get entropy from the EFI RNG", command_seed_entropy);
1454
1455 static int
command_seed_entropy(int argc,char * argv[])1456 command_seed_entropy(int argc, char *argv[])
1457 {
1458 EFI_STATUS status;
1459 EFI_RNG_PROTOCOL *rng;
1460 unsigned int size_efi = RANDOM_FORTUNA_DEFPOOLSIZE * RANDOM_FORTUNA_NPOOLS;
1461 unsigned int size = RANDOM_FORTUNA_DEFPOOLSIZE * RANDOM_FORTUNA_NPOOLS;
1462 void *buf_efi;
1463 void *buf;
1464
1465 if (argc > 1) {
1466 size_efi = strtol(argv[1], NULL, 0);
1467
1468 /* Don't *compress* the entropy we get from EFI. */
1469 if (size_efi > size)
1470 size = size_efi;
1471
1472 /*
1473 * If the amount of entropy we get from EFI is less than the
1474 * size of a single Fortuna pool -- i.e. not enough to ensure
1475 * that Fortuna is safely seeded -- don't expand it since we
1476 * don't want to trick Fortuna into thinking that it has been
1477 * safely seeded when it has not.
1478 */
1479 if (size_efi < RANDOM_FORTUNA_DEFPOOLSIZE)
1480 size = size_efi;
1481 }
1482
1483 status = BS->LocateProtocol(&rng_guid, NULL, (VOID **)&rng);
1484 if (status != EFI_SUCCESS) {
1485 command_errmsg = "RNG protocol not found";
1486 return (CMD_ERROR);
1487 }
1488
1489 if ((buf = malloc(size)) == NULL) {
1490 command_errmsg = "out of memory";
1491 return (CMD_ERROR);
1492 }
1493
1494 if ((buf_efi = malloc(size_efi)) == NULL) {
1495 free(buf);
1496 command_errmsg = "out of memory";
1497 return (CMD_ERROR);
1498 }
1499
1500 TSENTER2("rng->GetRNG");
1501 status = rng->GetRNG(rng, NULL, size_efi, (UINT8 *)buf_efi);
1502 TSEXIT();
1503 if (status != EFI_SUCCESS) {
1504 free(buf_efi);
1505 free(buf);
1506 command_errmsg = "GetRNG failed";
1507 return (CMD_ERROR);
1508 }
1509 if (size_efi < size)
1510 pkcs5v2_genkey_raw(buf, size, "", 0, buf_efi, size_efi, 1);
1511 else
1512 memcpy(buf, buf_efi, size);
1513
1514 if (file_addbuf("efi_rng_seed", "boot_entropy_platform", size, buf) != 0) {
1515 free(buf_efi);
1516 free(buf);
1517 return (CMD_ERROR);
1518 }
1519
1520 explicit_bzero(buf_efi, size_efi);
1521 free(buf_efi);
1522 free(buf);
1523 return (CMD_OK);
1524 }
1525
1526 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff);
1527
1528 static int
command_poweroff(int argc __unused,char * argv[]__unused)1529 command_poweroff(int argc __unused, char *argv[] __unused)
1530 {
1531 int i;
1532
1533 for (i = 0; devsw[i] != NULL; ++i)
1534 if (devsw[i]->dv_cleanup != NULL)
1535 (devsw[i]->dv_cleanup)();
1536
1537 RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL);
1538
1539 /* NOTREACHED */
1540 return (CMD_ERROR);
1541 }
1542
1543 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
1544
1545 static int
command_reboot(int argc,char * argv[])1546 command_reboot(int argc, char *argv[])
1547 {
1548 int i;
1549
1550 for (i = 0; devsw[i] != NULL; ++i)
1551 if (devsw[i]->dv_cleanup != NULL)
1552 (devsw[i]->dv_cleanup)();
1553
1554 RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL);
1555
1556 /* NOTREACHED */
1557 return (CMD_ERROR);
1558 }
1559
1560 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
1561
1562 static int
command_memmap(int argc __unused,char * argv[]__unused)1563 command_memmap(int argc __unused, char *argv[] __unused)
1564 {
1565 UINTN sz;
1566 EFI_MEMORY_DESCRIPTOR *map, *p;
1567 UINTN key, dsz;
1568 UINT32 dver;
1569 EFI_STATUS status;
1570 int i, ndesc;
1571 char line[80];
1572
1573 sz = 0;
1574 status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
1575 if (status != EFI_BUFFER_TOO_SMALL) {
1576 printf("Can't determine memory map size\n");
1577 return (CMD_ERROR);
1578 }
1579 map = malloc(sz);
1580 status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
1581 if (EFI_ERROR(status)) {
1582 printf("Can't read memory map\n");
1583 return (CMD_ERROR);
1584 }
1585
1586 ndesc = sz / dsz;
1587 snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n",
1588 "Type", "Physical", "Virtual", "#Pages", "Attr");
1589 pager_open();
1590 if (pager_output(line)) {
1591 pager_close();
1592 return (CMD_OK);
1593 }
1594
1595 for (i = 0, p = map; i < ndesc;
1596 i++, p = NextMemoryDescriptor(p, dsz)) {
1597 snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ",
1598 efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart,
1599 (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages);
1600 if (pager_output(line))
1601 break;
1602
1603 if (p->Attribute & EFI_MEMORY_UC)
1604 printf("UC ");
1605 if (p->Attribute & EFI_MEMORY_WC)
1606 printf("WC ");
1607 if (p->Attribute & EFI_MEMORY_WT)
1608 printf("WT ");
1609 if (p->Attribute & EFI_MEMORY_WB)
1610 printf("WB ");
1611 if (p->Attribute & EFI_MEMORY_UCE)
1612 printf("UCE ");
1613 if (p->Attribute & EFI_MEMORY_WP)
1614 printf("WP ");
1615 if (p->Attribute & EFI_MEMORY_RP)
1616 printf("RP ");
1617 if (p->Attribute & EFI_MEMORY_XP)
1618 printf("XP ");
1619 if (p->Attribute & EFI_MEMORY_NV)
1620 printf("NV ");
1621 if (p->Attribute & EFI_MEMORY_MORE_RELIABLE)
1622 printf("MR ");
1623 if (p->Attribute & EFI_MEMORY_RO)
1624 printf("RO ");
1625 if (pager_output("\n"))
1626 break;
1627 }
1628
1629 pager_close();
1630 return (CMD_OK);
1631 }
1632
1633 COMMAND_SET(configuration, "configuration", "print configuration tables",
1634 command_configuration);
1635
1636 static int
command_configuration(int argc,char * argv[])1637 command_configuration(int argc, char *argv[])
1638 {
1639 UINTN i;
1640 char *name;
1641
1642 printf("NumberOfTableEntries=%lu\n",
1643 (unsigned long)ST->NumberOfTableEntries);
1644
1645 for (i = 0; i < ST->NumberOfTableEntries; i++) {
1646 EFI_GUID *guid;
1647
1648 printf(" ");
1649 guid = &ST->ConfigurationTable[i].VendorGuid;
1650
1651 if (efi_guid_to_name(guid, &name) == true) {
1652 printf(name);
1653 free(name);
1654 } else {
1655 printf("Error while translating UUID to name");
1656 }
1657 printf(" at %p\n", ST->ConfigurationTable[i].VendorTable);
1658 }
1659
1660 return (CMD_OK);
1661 }
1662
1663
1664 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
1665
1666 static int
command_mode(int argc,char * argv[])1667 command_mode(int argc, char *argv[])
1668 {
1669 UINTN cols, rows;
1670 unsigned int mode;
1671 int i;
1672 char *cp;
1673 EFI_STATUS status;
1674 SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
1675
1676 conout = ST->ConOut;
1677
1678 if (argc > 1) {
1679 mode = strtol(argv[1], &cp, 0);
1680 if (cp[0] != '\0') {
1681 printf("Invalid mode\n");
1682 return (CMD_ERROR);
1683 }
1684 status = conout->QueryMode(conout, mode, &cols, &rows);
1685 if (EFI_ERROR(status)) {
1686 printf("invalid mode %d\n", mode);
1687 return (CMD_ERROR);
1688 }
1689 status = conout->SetMode(conout, mode);
1690 if (EFI_ERROR(status)) {
1691 printf("couldn't set mode %d\n", mode);
1692 return (CMD_ERROR);
1693 }
1694 (void) cons_update_mode(true);
1695 return (CMD_OK);
1696 }
1697
1698 printf("Current mode: %d\n", conout->Mode->Mode);
1699 for (i = 0; i <= conout->Mode->MaxMode; i++) {
1700 status = conout->QueryMode(conout, i, &cols, &rows);
1701 if (EFI_ERROR(status))
1702 continue;
1703 printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
1704 (unsigned)rows);
1705 }
1706
1707 if (i != 0)
1708 printf("Select a mode with the command \"mode <number>\"\n");
1709
1710 return (CMD_OK);
1711 }
1712
1713 COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi);
1714
1715 static void
lsefi_print_handle_info(EFI_HANDLE handle)1716 lsefi_print_handle_info(EFI_HANDLE handle)
1717 {
1718 EFI_DEVICE_PATH *devpath;
1719 EFI_DEVICE_PATH *imagepath;
1720 CHAR16 *dp_name;
1721
1722 imagepath = efi_lookup_image_devpath(handle);
1723 if (imagepath != NULL) {
1724 dp_name = efi_devpath_name(imagepath);
1725 printf("Handle for image %S", dp_name);
1726 efi_free_devpath_name(dp_name);
1727 return;
1728 }
1729 devpath = efi_lookup_devpath(handle);
1730 if (devpath != NULL) {
1731 dp_name = efi_devpath_name(devpath);
1732 printf("Handle for device %S", dp_name);
1733 efi_free_devpath_name(dp_name);
1734 return;
1735 }
1736 printf("Handle %p", handle);
1737 }
1738
1739 static int
command_lsefi(int argc __unused,char * argv[]__unused)1740 command_lsefi(int argc __unused, char *argv[] __unused)
1741 {
1742 char *name;
1743 EFI_HANDLE *buffer = NULL;
1744 EFI_HANDLE handle;
1745 UINTN bufsz = 0, i, j;
1746 EFI_STATUS status;
1747 int ret = 0;
1748
1749 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1750 if (status != EFI_BUFFER_TOO_SMALL) {
1751 snprintf(command_errbuf, sizeof (command_errbuf),
1752 "unexpected error: %lld", (long long)status);
1753 return (CMD_ERROR);
1754 }
1755 if ((buffer = malloc(bufsz)) == NULL) {
1756 sprintf(command_errbuf, "out of memory");
1757 return (CMD_ERROR);
1758 }
1759
1760 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1761 if (EFI_ERROR(status)) {
1762 free(buffer);
1763 snprintf(command_errbuf, sizeof (command_errbuf),
1764 "LocateHandle() error: %lld", (long long)status);
1765 return (CMD_ERROR);
1766 }
1767
1768 pager_open();
1769 for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) {
1770 UINTN nproto = 0;
1771 EFI_GUID **protocols = NULL;
1772
1773 handle = buffer[i];
1774 lsefi_print_handle_info(handle);
1775 if (pager_output("\n"))
1776 break;
1777 /* device path */
1778
1779 status = BS->ProtocolsPerHandle(handle, &protocols, &nproto);
1780 if (EFI_ERROR(status)) {
1781 snprintf(command_errbuf, sizeof (command_errbuf),
1782 "ProtocolsPerHandle() error: %lld",
1783 (long long)status);
1784 continue;
1785 }
1786
1787 for (j = 0; j < nproto; j++) {
1788 if (efi_guid_to_name(protocols[j], &name) == true) {
1789 printf(" %s", name);
1790 free(name);
1791 } else {
1792 printf("Error while translating UUID to name");
1793 }
1794 if ((ret = pager_output("\n")) != 0)
1795 break;
1796 }
1797 BS->FreePool(protocols);
1798 if (ret != 0)
1799 break;
1800 }
1801 pager_close();
1802 free(buffer);
1803 return (CMD_OK);
1804 }
1805
1806 #ifdef LOADER_FDT_SUPPORT
1807 extern int command_fdt_internal(int argc, char *argv[]);
1808
1809 /*
1810 * Since proper fdt command handling function is defined in fdt_loader_cmd.c,
1811 * and declaring it as extern is in contradiction with COMMAND_SET() macro
1812 * (which uses static pointer), we're defining wrapper function, which
1813 * calls the proper fdt handling routine.
1814 */
1815 static int
command_fdt(int argc,char * argv[])1816 command_fdt(int argc, char *argv[])
1817 {
1818
1819 return (command_fdt_internal(argc, argv));
1820 }
1821
1822 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
1823 #endif
1824
1825 /*
1826 * Chain load another efi loader.
1827 */
1828 static int
command_chain(int argc,char * argv[])1829 command_chain(int argc, char *argv[])
1830 {
1831 EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL;
1832 EFI_HANDLE loaderhandle;
1833 EFI_LOADED_IMAGE *loaded_image;
1834 EFI_STATUS status;
1835 struct stat st;
1836 struct devdesc *dev;
1837 char *name, *path;
1838 void *buf;
1839 int fd;
1840
1841 if (argc < 2) {
1842 command_errmsg = "wrong number of arguments";
1843 return (CMD_ERROR);
1844 }
1845
1846 name = argv[1];
1847
1848 if ((fd = open(name, O_RDONLY)) < 0) {
1849 command_errmsg = "no such file";
1850 return (CMD_ERROR);
1851 }
1852
1853 #ifdef LOADER_VERIEXEC
1854 if (verify_file(fd, name, 0, VE_MUST, __func__) < 0) {
1855 sprintf(command_errbuf, "can't verify: %s", name);
1856 close(fd);
1857 return (CMD_ERROR);
1858 }
1859 #endif
1860
1861 if (fstat(fd, &st) < -1) {
1862 command_errmsg = "stat failed";
1863 close(fd);
1864 return (CMD_ERROR);
1865 }
1866
1867 status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf);
1868 if (status != EFI_SUCCESS) {
1869 command_errmsg = "failed to allocate buffer";
1870 close(fd);
1871 return (CMD_ERROR);
1872 }
1873 if (read(fd, buf, st.st_size) != st.st_size) {
1874 command_errmsg = "error while reading the file";
1875 (void)BS->FreePool(buf);
1876 close(fd);
1877 return (CMD_ERROR);
1878 }
1879 close(fd);
1880 status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle);
1881 (void)BS->FreePool(buf);
1882 if (status != EFI_SUCCESS) {
1883 command_errmsg = "LoadImage failed";
1884 return (CMD_ERROR);
1885 }
1886 status = OpenProtocolByHandle(loaderhandle, &LoadedImageGUID,
1887 (void **)&loaded_image);
1888
1889 if (argc > 2) {
1890 int i, len = 0;
1891 CHAR16 *argp;
1892
1893 for (i = 2; i < argc; i++)
1894 len += strlen(argv[i]) + 1;
1895
1896 len *= sizeof (*argp);
1897 loaded_image->LoadOptions = argp = malloc (len);
1898 loaded_image->LoadOptionsSize = len;
1899 for (i = 2; i < argc; i++) {
1900 char *ptr = argv[i];
1901 while (*ptr)
1902 *(argp++) = *(ptr++);
1903 *(argp++) = ' ';
1904 }
1905 *(--argv) = 0;
1906 }
1907
1908 if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) {
1909 #ifdef EFI_ZFS_BOOT
1910 struct zfs_devdesc *z_dev;
1911 #endif
1912 struct disk_devdesc *d_dev;
1913 pdinfo_t *hd, *pd;
1914
1915 switch (dev->d_dev->dv_type) {
1916 #ifdef EFI_ZFS_BOOT
1917 case DEVT_ZFS:
1918 z_dev = (struct zfs_devdesc *)dev;
1919 loaded_image->DeviceHandle =
1920 efizfs_get_handle_by_guid(z_dev->pool_guid);
1921 break;
1922 #endif
1923 case DEVT_NET:
1924 loaded_image->DeviceHandle =
1925 efi_find_handle(dev->d_dev, dev->d_unit);
1926 break;
1927 default:
1928 hd = efiblk_get_pdinfo(dev);
1929 if (STAILQ_EMPTY(&hd->pd_part)) {
1930 loaded_image->DeviceHandle = hd->pd_handle;
1931 break;
1932 }
1933 d_dev = (struct disk_devdesc *)dev;
1934 STAILQ_FOREACH(pd, &hd->pd_part, pd_link) {
1935 /*
1936 * d_partition should be 255
1937 */
1938 if (pd->pd_unit == (uint32_t)d_dev->d_slice) {
1939 loaded_image->DeviceHandle =
1940 pd->pd_handle;
1941 break;
1942 }
1943 }
1944 break;
1945 }
1946 }
1947
1948 dev_cleanup();
1949 status = BS->StartImage(loaderhandle, NULL, NULL);
1950 if (status != EFI_SUCCESS) {
1951 command_errmsg = "StartImage failed";
1952 free(loaded_image->LoadOptions);
1953 loaded_image->LoadOptions = NULL;
1954 status = BS->UnloadImage(loaded_image);
1955 return (CMD_ERROR);
1956 }
1957
1958 return (CMD_ERROR); /* not reached */
1959 }
1960
1961 COMMAND_SET(chain, "chain", "chain load file", command_chain);
1962
1963 #if defined(LOADER_NET_SUPPORT)
1964 extern struct in_addr servip;
1965 static int
command_netserver(int argc,char * argv[])1966 command_netserver(int argc, char *argv[])
1967 {
1968 char *proto;
1969 n_long rootaddr;
1970
1971 if (argc > 2) {
1972 command_errmsg = "wrong number of arguments";
1973 return (CMD_ERROR);
1974 }
1975 if (argc < 2) {
1976 proto = netproto == NET_TFTP ? "tftp://" : "nfs://";
1977 printf("Netserver URI: %s%s%s\n", proto, intoa(rootip.s_addr),
1978 rootpath);
1979 return (CMD_OK);
1980 }
1981 if (argc == 2) {
1982 strncpy(rootpath, argv[1], sizeof(rootpath));
1983 rootpath[sizeof(rootpath) -1] = '\0';
1984 if ((rootaddr = net_parse_rootpath()) != INADDR_NONE)
1985 servip.s_addr = rootip.s_addr = rootaddr;
1986 return (CMD_OK);
1987 }
1988 return (CMD_ERROR); /* not reached */
1989
1990 }
1991
1992 COMMAND_SET(netserver, "netserver", "change or display netserver URI",
1993 command_netserver);
1994 #endif
1995