1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler.
10 // It contains code to translate the data produced by the decoder into
11 // MCInsts.
12 //
13 //
14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
15 // 64-bit X86 instruction sets. The main decode sequence for an assembly
16 // instruction in this disassembler is:
17 //
18 // 1. Read the prefix bytes and determine the attributes of the instruction.
19 // These attributes, recorded in enum attributeBits
20 // (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
21 // provides a mapping from bitmasks to contexts, which are represented by
22 // enum InstructionContext (ibid.).
23 //
24 // 2. Read the opcode, and determine what kind of opcode it is. The
25 // disassembler distinguishes four kinds of opcodes, which are enumerated in
26 // OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
27 // (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
28 // (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
29 //
30 // 3. Depending on the opcode type, look in one of four ClassDecision structures
31 // (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
32 // OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
33 // a ModRMDecision (ibid.).
34 //
35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even
36 // instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
37 // ModR/M byte to complete decode. The ModRMDecision's type is an entry from
38 // ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
39 // ModR/M byte is required and how to interpret it.
40 //
41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID
42 // of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
43 // INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
44 // meanings of its operands.
45 //
46 // 6. For each operand, its encoding is an entry from OperandEncoding
47 // (X86DisassemblerDecoderCommon.h) and its type is an entry from
48 // OperandType (ibid.). The encoding indicates how to read it from the
49 // instruction; the type indicates how to interpret the value once it has
50 // been read. For example, a register operand could be stored in the R/M
51 // field of the ModR/M byte, the REG field of the ModR/M byte, or added to
52 // the main opcode. This is orthogonal from its meaning (an GPR or an XMM
53 // register, for instance). Given this information, the operands can be
54 // extracted and interpreted.
55 //
56 // 7. As the last step, the disassembler translates the instruction information
57 // and operands into a format understandable by the client - in this case, an
58 // MCInst for use by the MC infrastructure.
59 //
60 // The disassembler is broken broadly into two parts: the table emitter that
61 // emits the instruction decode tables discussed above during compilation, and
62 // the disassembler itself. The table emitter is documented in more detail in
63 // utils/TableGen/X86DisassemblerEmitter.h.
64 //
65 // X86Disassembler.cpp contains the code responsible for step 7, and for
66 // invoking the decoder to execute steps 1-6.
67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
68 // table emitter and the disassembler.
69 // X86DisassemblerDecoder.h contains the public interface of the decoder,
70 // factored out into C for possible use by other projects.
71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is
72 // responsible for steps 1-6.
73 //
74 //===----------------------------------------------------------------------===//
75
76 #include "MCTargetDesc/X86BaseInfo.h"
77 #include "MCTargetDesc/X86MCTargetDesc.h"
78 #include "TargetInfo/X86TargetInfo.h"
79 #include "X86DisassemblerDecoder.h"
80 #include "llvm/MC/MCContext.h"
81 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
82 #include "llvm/MC/MCExpr.h"
83 #include "llvm/MC/MCInst.h"
84 #include "llvm/MC/MCInstrInfo.h"
85 #include "llvm/MC/MCSubtargetInfo.h"
86 #include "llvm/MC/TargetRegistry.h"
87 #include "llvm/Support/Debug.h"
88 #include "llvm/Support/Format.h"
89 #include "llvm/Support/raw_ostream.h"
90
91 using namespace llvm;
92 using namespace llvm::X86Disassembler;
93
94 #define DEBUG_TYPE "x86-disassembler"
95
96 #define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s);
97
98 // Specifies whether a ModR/M byte is needed and (if so) which
99 // instruction each possible value of the ModR/M byte corresponds to. Once
100 // this information is known, we have narrowed down to a single instruction.
101 struct ModRMDecision {
102 uint8_t modrm_type;
103 uint16_t instructionIDs;
104 };
105
106 // Specifies which set of ModR/M->instruction tables to look at
107 // given a particular opcode.
108 struct OpcodeDecision {
109 ModRMDecision modRMDecisions[256];
110 };
111
112 // Specifies which opcode->instruction tables to look at given
113 // a particular context (set of attributes). Since there are many possible
114 // contexts, the decoder first uses CONTEXTS_SYM to determine which context
115 // applies given a specific set of attributes. Hence there are only IC_max
116 // entries in this table, rather than 2^(ATTR_max).
117 struct ContextDecision {
118 OpcodeDecision opcodeDecisions[IC_max];
119 };
120
121 #include "X86GenDisassemblerTables.inc"
122
decode(OpcodeType type,InstructionContext insnContext,uint8_t opcode,uint8_t modRM)123 static InstrUID decode(OpcodeType type, InstructionContext insnContext,
124 uint8_t opcode, uint8_t modRM) {
125 const struct ModRMDecision *dec;
126
127 switch (type) {
128 case ONEBYTE:
129 dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
130 break;
131 case TWOBYTE:
132 dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
133 break;
134 case THREEBYTE_38:
135 dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
136 break;
137 case THREEBYTE_3A:
138 dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
139 break;
140 case XOP8_MAP:
141 dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
142 break;
143 case XOP9_MAP:
144 dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
145 break;
146 case XOPA_MAP:
147 dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
148 break;
149 case THREEDNOW_MAP:
150 dec =
151 &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
152 break;
153 case MAP4:
154 dec = &MAP4_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
155 break;
156 case MAP5:
157 dec = &MAP5_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
158 break;
159 case MAP6:
160 dec = &MAP6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
161 break;
162 case MAP7:
163 dec = &MAP7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
164 break;
165 }
166
167 switch (dec->modrm_type) {
168 default:
169 llvm_unreachable("Corrupt table! Unknown modrm_type");
170 return 0;
171 case MODRM_ONEENTRY:
172 return modRMTable[dec->instructionIDs];
173 case MODRM_SPLITRM:
174 if (modFromModRM(modRM) == 0x3)
175 return modRMTable[dec->instructionIDs + 1];
176 return modRMTable[dec->instructionIDs];
177 case MODRM_SPLITREG:
178 if (modFromModRM(modRM) == 0x3)
179 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8];
180 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
181 case MODRM_SPLITMISC:
182 if (modFromModRM(modRM) == 0x3)
183 return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8];
184 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
185 case MODRM_FULL:
186 return modRMTable[dec->instructionIDs + modRM];
187 }
188 }
189
peek(struct InternalInstruction * insn,uint8_t & byte)190 static bool peek(struct InternalInstruction *insn, uint8_t &byte) {
191 uint64_t offset = insn->readerCursor - insn->startLocation;
192 if (offset >= insn->bytes.size())
193 return true;
194 byte = insn->bytes[offset];
195 return false;
196 }
197
consume(InternalInstruction * insn,T & ptr)198 template <typename T> static bool consume(InternalInstruction *insn, T &ptr) {
199 auto r = insn->bytes;
200 uint64_t offset = insn->readerCursor - insn->startLocation;
201 if (offset + sizeof(T) > r.size())
202 return true;
203 ptr = support::endian::read<T>(&r[offset], llvm::endianness::little);
204 insn->readerCursor += sizeof(T);
205 return false;
206 }
207
isREX(struct InternalInstruction * insn,uint8_t prefix)208 static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
209 return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f;
210 }
211
isREX2(struct InternalInstruction * insn,uint8_t prefix)212 static bool isREX2(struct InternalInstruction *insn, uint8_t prefix) {
213 return insn->mode == MODE_64BIT && prefix == 0xd5;
214 }
215
216 // Consumes all of an instruction's prefix bytes, and marks the
217 // instruction as having them. Also sets the instruction's default operand,
218 // address, and other relevant data sizes to report operands correctly.
219 //
220 // insn must not be empty.
readPrefixes(struct InternalInstruction * insn)221 static int readPrefixes(struct InternalInstruction *insn) {
222 bool isPrefix = true;
223 uint8_t byte = 0;
224 uint8_t nextByte;
225
226 LLVM_DEBUG(dbgs() << "readPrefixes()");
227
228 while (isPrefix) {
229 // If we fail reading prefixes, just stop here and let the opcode reader
230 // deal with it.
231 if (consume(insn, byte))
232 break;
233
234 // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
235 // break and let it be disassembled as a normal "instruction".
236 if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
237 break;
238
239 if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) {
240 // If the byte is 0xf2 or 0xf3, and any of the following conditions are
241 // met:
242 // - it is followed by a LOCK (0xf0) prefix
243 // - it is followed by an xchg instruction
244 // then it should be disassembled as a xacquire/xrelease not repne/rep.
245 if (((nextByte == 0xf0) ||
246 ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
247 insn->xAcquireRelease = true;
248 if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
249 break;
250 }
251 // Also if the byte is 0xf3, and the following condition is met:
252 // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
253 // "mov mem, imm" (opcode 0xc6/0xc7) instructions.
254 // then it should be disassembled as an xrelease not rep.
255 if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
256 nextByte == 0xc6 || nextByte == 0xc7)) {
257 insn->xAcquireRelease = true;
258 break;
259 }
260 if (isREX(insn, nextByte)) {
261 uint8_t nnextByte;
262 // Go to REX prefix after the current one
263 if (consume(insn, nnextByte))
264 return -1;
265 // We should be able to read next byte after REX prefix
266 if (peek(insn, nnextByte))
267 return -1;
268 --insn->readerCursor;
269 }
270 }
271
272 switch (byte) {
273 case 0xf0: // LOCK
274 insn->hasLockPrefix = true;
275 break;
276 case 0xf2: // REPNE/REPNZ
277 case 0xf3: { // REP or REPE/REPZ
278 uint8_t nextByte;
279 if (peek(insn, nextByte))
280 break;
281 // TODO:
282 // 1. There could be several 0x66
283 // 2. if (nextByte == 0x66) and nextNextByte != 0x0f then
284 // it's not mandatory prefix
285 // 3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
286 // 0x0f exactly after it to be mandatory prefix
287 // 4. if (nextByte == 0xd5) it's REX2 and we need
288 // 0x0f exactly after it to be mandatory prefix
289 if (isREX(insn, nextByte) || isREX2(insn, nextByte) || nextByte == 0x0f ||
290 nextByte == 0x66)
291 // The last of 0xf2 /0xf3 is mandatory prefix
292 insn->mandatoryPrefix = byte;
293 insn->repeatPrefix = byte;
294 break;
295 }
296 case 0x2e: // CS segment override -OR- Branch not taken
297 insn->segmentOverride = SEG_OVERRIDE_CS;
298 break;
299 case 0x36: // SS segment override -OR- Branch taken
300 insn->segmentOverride = SEG_OVERRIDE_SS;
301 break;
302 case 0x3e: // DS segment override
303 insn->segmentOverride = SEG_OVERRIDE_DS;
304 break;
305 case 0x26: // ES segment override
306 insn->segmentOverride = SEG_OVERRIDE_ES;
307 break;
308 case 0x64: // FS segment override
309 insn->segmentOverride = SEG_OVERRIDE_FS;
310 break;
311 case 0x65: // GS segment override
312 insn->segmentOverride = SEG_OVERRIDE_GS;
313 break;
314 case 0x66: { // Operand-size override {
315 uint8_t nextByte;
316 insn->hasOpSize = true;
317 if (peek(insn, nextByte))
318 break;
319 // 0x66 can't overwrite existing mandatory prefix and should be ignored
320 if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
321 insn->mandatoryPrefix = byte;
322 break;
323 }
324 case 0x67: // Address-size override
325 insn->hasAdSize = true;
326 break;
327 default: // Not a prefix byte
328 isPrefix = false;
329 break;
330 }
331
332 if (isPrefix)
333 LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte));
334 }
335
336 insn->vectorExtensionType = TYPE_NO_VEX_XOP;
337
338 if (byte == 0x62) {
339 uint8_t byte1, byte2;
340 if (consume(insn, byte1)) {
341 LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix");
342 return -1;
343 }
344
345 if (peek(insn, byte2)) {
346 LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
347 return -1;
348 }
349
350 if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)) {
351 insn->vectorExtensionType = TYPE_EVEX;
352 } else {
353 --insn->readerCursor; // unconsume byte1
354 --insn->readerCursor; // unconsume byte
355 }
356
357 if (insn->vectorExtensionType == TYPE_EVEX) {
358 insn->vectorExtensionPrefix[0] = byte;
359 insn->vectorExtensionPrefix[1] = byte1;
360 if (consume(insn, insn->vectorExtensionPrefix[2])) {
361 LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
362 return -1;
363 }
364 if (consume(insn, insn->vectorExtensionPrefix[3])) {
365 LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix");
366 return -1;
367 }
368
369 if (insn->mode == MODE_64BIT) {
370 // We simulate the REX prefix for simplicity's sake
371 insn->rexPrefix = 0x40 |
372 (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) |
373 (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) |
374 (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) |
375 (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
376
377 // We simulate the REX2 prefix for simplicity's sake
378 insn->rex2ExtensionPrefix[1] =
379 (r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 6) |
380 (x2FromEVEX3of4(insn->vectorExtensionPrefix[2]) << 5) |
381 (b2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4);
382 }
383
384 LLVM_DEBUG(
385 dbgs() << format(
386 "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
387 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
388 insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]));
389 }
390 } else if (byte == 0xc4) {
391 uint8_t byte1;
392 if (peek(insn, byte1)) {
393 LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
394 return -1;
395 }
396
397 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
398 insn->vectorExtensionType = TYPE_VEX_3B;
399 else
400 --insn->readerCursor;
401
402 if (insn->vectorExtensionType == TYPE_VEX_3B) {
403 insn->vectorExtensionPrefix[0] = byte;
404 consume(insn, insn->vectorExtensionPrefix[1]);
405 consume(insn, insn->vectorExtensionPrefix[2]);
406
407 // We simulate the REX prefix for simplicity's sake
408
409 if (insn->mode == MODE_64BIT)
410 insn->rexPrefix = 0x40 |
411 (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) |
412 (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) |
413 (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) |
414 (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
415
416 LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
417 insn->vectorExtensionPrefix[0],
418 insn->vectorExtensionPrefix[1],
419 insn->vectorExtensionPrefix[2]));
420 }
421 } else if (byte == 0xc5) {
422 uint8_t byte1;
423 if (peek(insn, byte1)) {
424 LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
425 return -1;
426 }
427
428 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
429 insn->vectorExtensionType = TYPE_VEX_2B;
430 else
431 --insn->readerCursor;
432
433 if (insn->vectorExtensionType == TYPE_VEX_2B) {
434 insn->vectorExtensionPrefix[0] = byte;
435 consume(insn, insn->vectorExtensionPrefix[1]);
436
437 if (insn->mode == MODE_64BIT)
438 insn->rexPrefix =
439 0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
440
441 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
442 default:
443 break;
444 case VEX_PREFIX_66:
445 insn->hasOpSize = true;
446 break;
447 }
448
449 LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx",
450 insn->vectorExtensionPrefix[0],
451 insn->vectorExtensionPrefix[1]));
452 }
453 } else if (byte == 0x8f) {
454 uint8_t byte1;
455 if (peek(insn, byte1)) {
456 LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP");
457 return -1;
458 }
459
460 if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction.
461 insn->vectorExtensionType = TYPE_XOP;
462 else
463 --insn->readerCursor;
464
465 if (insn->vectorExtensionType == TYPE_XOP) {
466 insn->vectorExtensionPrefix[0] = byte;
467 consume(insn, insn->vectorExtensionPrefix[1]);
468 consume(insn, insn->vectorExtensionPrefix[2]);
469
470 // We simulate the REX prefix for simplicity's sake
471
472 if (insn->mode == MODE_64BIT)
473 insn->rexPrefix = 0x40 |
474 (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) |
475 (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) |
476 (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) |
477 (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
478
479 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
480 default:
481 break;
482 case VEX_PREFIX_66:
483 insn->hasOpSize = true;
484 break;
485 }
486
487 LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
488 insn->vectorExtensionPrefix[0],
489 insn->vectorExtensionPrefix[1],
490 insn->vectorExtensionPrefix[2]));
491 }
492 } else if (isREX2(insn, byte)) {
493 uint8_t byte1;
494 if (peek(insn, byte1)) {
495 LLVM_DEBUG(dbgs() << "Couldn't read second byte of REX2");
496 return -1;
497 }
498 insn->rex2ExtensionPrefix[0] = byte;
499 consume(insn, insn->rex2ExtensionPrefix[1]);
500
501 // We simulate the REX prefix for simplicity's sake
502 insn->rexPrefix = 0x40 | (wFromREX2(insn->rex2ExtensionPrefix[1]) << 3) |
503 (rFromREX2(insn->rex2ExtensionPrefix[1]) << 2) |
504 (xFromREX2(insn->rex2ExtensionPrefix[1]) << 1) |
505 (bFromREX2(insn->rex2ExtensionPrefix[1]) << 0);
506 LLVM_DEBUG(dbgs() << format("Found REX2 prefix 0x%hhx 0x%hhx",
507 insn->rex2ExtensionPrefix[0],
508 insn->rex2ExtensionPrefix[1]));
509 } else if (isREX(insn, byte)) {
510 if (peek(insn, nextByte))
511 return -1;
512 insn->rexPrefix = byte;
513 LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte));
514 } else
515 --insn->readerCursor;
516
517 if (insn->mode == MODE_16BIT) {
518 insn->registerSize = (insn->hasOpSize ? 4 : 2);
519 insn->addressSize = (insn->hasAdSize ? 4 : 2);
520 insn->displacementSize = (insn->hasAdSize ? 4 : 2);
521 insn->immediateSize = (insn->hasOpSize ? 4 : 2);
522 } else if (insn->mode == MODE_32BIT) {
523 insn->registerSize = (insn->hasOpSize ? 2 : 4);
524 insn->addressSize = (insn->hasAdSize ? 2 : 4);
525 insn->displacementSize = (insn->hasAdSize ? 2 : 4);
526 insn->immediateSize = (insn->hasOpSize ? 2 : 4);
527 } else if (insn->mode == MODE_64BIT) {
528 insn->displacementSize = 4;
529 if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
530 insn->registerSize = 8;
531 insn->addressSize = (insn->hasAdSize ? 4 : 8);
532 insn->immediateSize = 4;
533 insn->hasOpSize = false;
534 } else {
535 insn->registerSize = (insn->hasOpSize ? 2 : 4);
536 insn->addressSize = (insn->hasAdSize ? 4 : 8);
537 insn->immediateSize = (insn->hasOpSize ? 2 : 4);
538 }
539 }
540
541 return 0;
542 }
543
544 // Consumes the SIB byte to determine addressing information.
readSIB(struct InternalInstruction * insn)545 static int readSIB(struct InternalInstruction *insn) {
546 SIBBase sibBaseBase = SIB_BASE_NONE;
547 uint8_t index, base;
548
549 LLVM_DEBUG(dbgs() << "readSIB()");
550 switch (insn->addressSize) {
551 case 2:
552 default:
553 llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode");
554 case 4:
555 insn->sibIndexBase = SIB_INDEX_EAX;
556 sibBaseBase = SIB_BASE_EAX;
557 break;
558 case 8:
559 insn->sibIndexBase = SIB_INDEX_RAX;
560 sibBaseBase = SIB_BASE_RAX;
561 break;
562 }
563
564 if (consume(insn, insn->sib))
565 return -1;
566
567 index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3) |
568 (x2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
569
570 if (index == 0x4) {
571 insn->sibIndex = SIB_INDEX_NONE;
572 } else {
573 insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
574 }
575
576 insn->sibScale = 1 << scaleFromSIB(insn->sib);
577
578 base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3) |
579 (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
580
581 switch (base) {
582 case 0x5:
583 case 0xd:
584 switch (modFromModRM(insn->modRM)) {
585 case 0x0:
586 insn->eaDisplacement = EA_DISP_32;
587 insn->sibBase = SIB_BASE_NONE;
588 break;
589 case 0x1:
590 insn->eaDisplacement = EA_DISP_8;
591 insn->sibBase = (SIBBase)(sibBaseBase + base);
592 break;
593 case 0x2:
594 insn->eaDisplacement = EA_DISP_32;
595 insn->sibBase = (SIBBase)(sibBaseBase + base);
596 break;
597 default:
598 llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte");
599 }
600 break;
601 default:
602 insn->sibBase = (SIBBase)(sibBaseBase + base);
603 break;
604 }
605
606 return 0;
607 }
608
readDisplacement(struct InternalInstruction * insn)609 static int readDisplacement(struct InternalInstruction *insn) {
610 int8_t d8;
611 int16_t d16;
612 int32_t d32;
613 LLVM_DEBUG(dbgs() << "readDisplacement()");
614
615 insn->displacementOffset = insn->readerCursor - insn->startLocation;
616 switch (insn->eaDisplacement) {
617 case EA_DISP_NONE:
618 break;
619 case EA_DISP_8:
620 if (consume(insn, d8))
621 return -1;
622 insn->displacement = d8;
623 break;
624 case EA_DISP_16:
625 if (consume(insn, d16))
626 return -1;
627 insn->displacement = d16;
628 break;
629 case EA_DISP_32:
630 if (consume(insn, d32))
631 return -1;
632 insn->displacement = d32;
633 break;
634 }
635
636 return 0;
637 }
638
639 // Consumes all addressing information (ModR/M byte, SIB byte, and displacement.
readModRM(struct InternalInstruction * insn)640 static int readModRM(struct InternalInstruction *insn) {
641 uint8_t mod, rm, reg;
642 LLVM_DEBUG(dbgs() << "readModRM()");
643
644 if (insn->consumedModRM)
645 return 0;
646
647 if (consume(insn, insn->modRM))
648 return -1;
649 insn->consumedModRM = true;
650
651 mod = modFromModRM(insn->modRM);
652 rm = rmFromModRM(insn->modRM);
653 reg = regFromModRM(insn->modRM);
654
655 // This goes by insn->registerSize to pick the correct register, which messes
656 // up if we're using (say) XMM or 8-bit register operands. That gets fixed in
657 // fixupReg().
658 switch (insn->registerSize) {
659 case 2:
660 insn->regBase = MODRM_REG_AX;
661 insn->eaRegBase = EA_REG_AX;
662 break;
663 case 4:
664 insn->regBase = MODRM_REG_EAX;
665 insn->eaRegBase = EA_REG_EAX;
666 break;
667 case 8:
668 insn->regBase = MODRM_REG_RAX;
669 insn->eaRegBase = EA_REG_RAX;
670 break;
671 }
672
673 reg |= (rFromREX(insn->rexPrefix) << 3) |
674 (r2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
675 rm |= (bFromREX(insn->rexPrefix) << 3) |
676 (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
677
678 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT)
679 reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
680
681 insn->reg = (Reg)(insn->regBase + reg);
682
683 switch (insn->addressSize) {
684 case 2: {
685 EABase eaBaseBase = EA_BASE_BX_SI;
686
687 switch (mod) {
688 case 0x0:
689 if (rm == 0x6) {
690 insn->eaBase = EA_BASE_NONE;
691 insn->eaDisplacement = EA_DISP_16;
692 if (readDisplacement(insn))
693 return -1;
694 } else {
695 insn->eaBase = (EABase)(eaBaseBase + rm);
696 insn->eaDisplacement = EA_DISP_NONE;
697 }
698 break;
699 case 0x1:
700 insn->eaBase = (EABase)(eaBaseBase + rm);
701 insn->eaDisplacement = EA_DISP_8;
702 insn->displacementSize = 1;
703 if (readDisplacement(insn))
704 return -1;
705 break;
706 case 0x2:
707 insn->eaBase = (EABase)(eaBaseBase + rm);
708 insn->eaDisplacement = EA_DISP_16;
709 if (readDisplacement(insn))
710 return -1;
711 break;
712 case 0x3:
713 insn->eaBase = (EABase)(insn->eaRegBase + rm);
714 if (readDisplacement(insn))
715 return -1;
716 break;
717 }
718 break;
719 }
720 case 4:
721 case 8: {
722 EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
723
724 switch (mod) {
725 case 0x0:
726 insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this
727 // In determining whether RIP-relative mode is used (rm=5),
728 // or whether a SIB byte is present (rm=4),
729 // the extension bits (REX.b and EVEX.x) are ignored.
730 switch (rm & 7) {
731 case 0x4: // SIB byte is present
732 insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64);
733 if (readSIB(insn) || readDisplacement(insn))
734 return -1;
735 break;
736 case 0x5: // RIP-relative
737 insn->eaBase = EA_BASE_NONE;
738 insn->eaDisplacement = EA_DISP_32;
739 if (readDisplacement(insn))
740 return -1;
741 break;
742 default:
743 insn->eaBase = (EABase)(eaBaseBase + rm);
744 break;
745 }
746 break;
747 case 0x1:
748 insn->displacementSize = 1;
749 [[fallthrough]];
750 case 0x2:
751 insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
752 switch (rm & 7) {
753 case 0x4: // SIB byte is present
754 insn->eaBase = EA_BASE_sib;
755 if (readSIB(insn) || readDisplacement(insn))
756 return -1;
757 break;
758 default:
759 insn->eaBase = (EABase)(eaBaseBase + rm);
760 if (readDisplacement(insn))
761 return -1;
762 break;
763 }
764 break;
765 case 0x3:
766 insn->eaDisplacement = EA_DISP_NONE;
767 insn->eaBase = (EABase)(insn->eaRegBase + rm);
768 break;
769 }
770 break;
771 }
772 } // switch (insn->addressSize)
773
774 return 0;
775 }
776
777 #define GENERIC_FIXUP_FUNC(name, base, prefix) \
778 static uint16_t name(struct InternalInstruction *insn, OperandType type, \
779 uint8_t index, uint8_t *valid) { \
780 *valid = 1; \
781 switch (type) { \
782 default: \
783 debug("Unhandled register type"); \
784 *valid = 0; \
785 return 0; \
786 case TYPE_Rv: \
787 return base + index; \
788 case TYPE_R8: \
789 if (insn->rexPrefix && index >= 4 && index <= 7) \
790 return prefix##_SPL + (index - 4); \
791 else \
792 return prefix##_AL + index; \
793 case TYPE_R16: \
794 return prefix##_AX + index; \
795 case TYPE_R32: \
796 return prefix##_EAX + index; \
797 case TYPE_R64: \
798 return prefix##_RAX + index; \
799 case TYPE_ZMM: \
800 return prefix##_ZMM0 + index; \
801 case TYPE_YMM: \
802 return prefix##_YMM0 + index; \
803 case TYPE_XMM: \
804 return prefix##_XMM0 + index; \
805 case TYPE_TMM: \
806 if (index > 7) \
807 *valid = 0; \
808 return prefix##_TMM0 + index; \
809 case TYPE_VK: \
810 index &= 0xf; \
811 if (index > 7) \
812 *valid = 0; \
813 return prefix##_K0 + index; \
814 case TYPE_VK_PAIR: \
815 if (index > 7) \
816 *valid = 0; \
817 return prefix##_K0_K1 + (index / 2); \
818 case TYPE_MM64: \
819 return prefix##_MM0 + (index & 0x7); \
820 case TYPE_SEGMENTREG: \
821 if ((index & 7) > 5) \
822 *valid = 0; \
823 return prefix##_ES + (index & 7); \
824 case TYPE_DEBUGREG: \
825 if (index > 15) \
826 *valid = 0; \
827 return prefix##_DR0 + index; \
828 case TYPE_CONTROLREG: \
829 if (index > 15) \
830 *valid = 0; \
831 return prefix##_CR0 + index; \
832 case TYPE_MVSIBX: \
833 return prefix##_XMM0 + index; \
834 case TYPE_MVSIBY: \
835 return prefix##_YMM0 + index; \
836 case TYPE_MVSIBZ: \
837 return prefix##_ZMM0 + index; \
838 } \
839 }
840
841 // Consult an operand type to determine the meaning of the reg or R/M field. If
842 // the operand is an XMM operand, for example, an operand would be XMM0 instead
843 // of AX, which readModRM() would otherwise misinterpret it as.
844 //
845 // @param insn - The instruction containing the operand.
846 // @param type - The operand type.
847 // @param index - The existing value of the field as reported by readModRM().
848 // @param valid - The address of a uint8_t. The target is set to 1 if the
849 // field is valid for the register class; 0 if not.
850 // @return - The proper value.
851 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG)
852 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG)
853
854 // Consult an operand specifier to determine which of the fixup*Value functions
855 // to use in correcting readModRM()'ss interpretation.
856 //
857 // @param insn - See fixup*Value().
858 // @param op - The operand specifier.
859 // @return - 0 if fixup was successful; -1 if the register returned was
860 // invalid for its class.
fixupReg(struct InternalInstruction * insn,const struct OperandSpecifier * op)861 static int fixupReg(struct InternalInstruction *insn,
862 const struct OperandSpecifier *op) {
863 uint8_t valid;
864 LLVM_DEBUG(dbgs() << "fixupReg()");
865
866 switch ((OperandEncoding)op->encoding) {
867 default:
868 debug("Expected a REG or R/M encoding in fixupReg");
869 return -1;
870 case ENCODING_VVVV:
871 insn->vvvv =
872 (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid);
873 if (!valid)
874 return -1;
875 break;
876 case ENCODING_REG:
877 insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type,
878 insn->reg - insn->regBase, &valid);
879 if (!valid)
880 return -1;
881 break;
882 CASE_ENCODING_RM:
883 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
884 modFromModRM(insn->modRM) == 3) {
885 // EVEX_X can extend the register id to 32 for a non-GPR register that is
886 // encoded in RM.
887 // mode : MODE_64_BIT
888 // Only 8 vector registers are available in 32 bit mode
889 // mod : 3
890 // RM encodes a register
891 switch (op->type) {
892 case TYPE_Rv:
893 case TYPE_R8:
894 case TYPE_R16:
895 case TYPE_R32:
896 case TYPE_R64:
897 break;
898 default:
899 insn->eaBase =
900 (EABase)(insn->eaBase +
901 (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4));
902 break;
903 }
904 }
905 [[fallthrough]];
906 case ENCODING_SIB:
907 if (insn->eaBase >= insn->eaRegBase) {
908 insn->eaBase = (EABase)fixupRMValue(
909 insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid);
910 if (!valid)
911 return -1;
912 }
913 break;
914 }
915
916 return 0;
917 }
918
919 // Read the opcode (except the ModR/M byte in the case of extended or escape
920 // opcodes).
readOpcode(struct InternalInstruction * insn)921 static bool readOpcode(struct InternalInstruction *insn) {
922 uint8_t current;
923 LLVM_DEBUG(dbgs() << "readOpcode()");
924
925 insn->opcodeType = ONEBYTE;
926 if (insn->vectorExtensionType == TYPE_EVEX) {
927 switch (mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
928 default:
929 LLVM_DEBUG(
930 dbgs() << format("Unhandled mmm field for instruction (0x%hhx)",
931 mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])));
932 return true;
933 case VEX_LOB_0F:
934 insn->opcodeType = TWOBYTE;
935 return consume(insn, insn->opcode);
936 case VEX_LOB_0F38:
937 insn->opcodeType = THREEBYTE_38;
938 return consume(insn, insn->opcode);
939 case VEX_LOB_0F3A:
940 insn->opcodeType = THREEBYTE_3A;
941 return consume(insn, insn->opcode);
942 case VEX_LOB_MAP4:
943 insn->opcodeType = MAP4;
944 return consume(insn, insn->opcode);
945 case VEX_LOB_MAP5:
946 insn->opcodeType = MAP5;
947 return consume(insn, insn->opcode);
948 case VEX_LOB_MAP6:
949 insn->opcodeType = MAP6;
950 return consume(insn, insn->opcode);
951 case VEX_LOB_MAP7:
952 insn->opcodeType = MAP7;
953 return consume(insn, insn->opcode);
954 }
955 } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
956 switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
957 default:
958 LLVM_DEBUG(
959 dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
960 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
961 return true;
962 case VEX_LOB_0F:
963 insn->opcodeType = TWOBYTE;
964 return consume(insn, insn->opcode);
965 case VEX_LOB_0F38:
966 insn->opcodeType = THREEBYTE_38;
967 return consume(insn, insn->opcode);
968 case VEX_LOB_0F3A:
969 insn->opcodeType = THREEBYTE_3A;
970 return consume(insn, insn->opcode);
971 case VEX_LOB_MAP5:
972 insn->opcodeType = MAP5;
973 return consume(insn, insn->opcode);
974 case VEX_LOB_MAP6:
975 insn->opcodeType = MAP6;
976 return consume(insn, insn->opcode);
977 case VEX_LOB_MAP7:
978 insn->opcodeType = MAP7;
979 return consume(insn, insn->opcode);
980 }
981 } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
982 insn->opcodeType = TWOBYTE;
983 return consume(insn, insn->opcode);
984 } else if (insn->vectorExtensionType == TYPE_XOP) {
985 switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
986 default:
987 LLVM_DEBUG(
988 dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
989 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
990 return true;
991 case XOP_MAP_SELECT_8:
992 insn->opcodeType = XOP8_MAP;
993 return consume(insn, insn->opcode);
994 case XOP_MAP_SELECT_9:
995 insn->opcodeType = XOP9_MAP;
996 return consume(insn, insn->opcode);
997 case XOP_MAP_SELECT_A:
998 insn->opcodeType = XOPA_MAP;
999 return consume(insn, insn->opcode);
1000 }
1001 } else if (mFromREX2(insn->rex2ExtensionPrefix[1])) {
1002 // m bit indicates opcode map 1
1003 insn->opcodeType = TWOBYTE;
1004 return consume(insn, insn->opcode);
1005 }
1006
1007 if (consume(insn, current))
1008 return true;
1009
1010 if (current == 0x0f) {
1011 LLVM_DEBUG(
1012 dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current));
1013 if (consume(insn, current))
1014 return true;
1015
1016 if (current == 0x38) {
1017 LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
1018 current));
1019 if (consume(insn, current))
1020 return true;
1021
1022 insn->opcodeType = THREEBYTE_38;
1023 } else if (current == 0x3a) {
1024 LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
1025 current));
1026 if (consume(insn, current))
1027 return true;
1028
1029 insn->opcodeType = THREEBYTE_3A;
1030 } else if (current == 0x0f) {
1031 LLVM_DEBUG(
1032 dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current));
1033
1034 // Consume operands before the opcode to comply with the 3DNow encoding
1035 if (readModRM(insn))
1036 return true;
1037
1038 if (consume(insn, current))
1039 return true;
1040
1041 insn->opcodeType = THREEDNOW_MAP;
1042 } else {
1043 LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix");
1044 insn->opcodeType = TWOBYTE;
1045 }
1046 } else if (insn->mandatoryPrefix)
1047 // The opcode with mandatory prefix must start with opcode escape.
1048 // If not it's legacy repeat prefix
1049 insn->mandatoryPrefix = 0;
1050
1051 // At this point we have consumed the full opcode.
1052 // Anything we consume from here on must be unconsumed.
1053 insn->opcode = current;
1054
1055 return false;
1056 }
1057
1058 // Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit).
is16BitEquivalent(const char * orig,const char * equiv)1059 static bool is16BitEquivalent(const char *orig, const char *equiv) {
1060 for (int i = 0;; i++) {
1061 if (orig[i] == '\0' && equiv[i] == '\0')
1062 return true;
1063 if (orig[i] == '\0' || equiv[i] == '\0')
1064 return false;
1065 if (orig[i] != equiv[i]) {
1066 if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
1067 continue;
1068 if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
1069 continue;
1070 if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
1071 continue;
1072 return false;
1073 }
1074 }
1075 }
1076
1077 // Determine whether this instruction is a 64-bit instruction.
is64Bit(const char * name)1078 static bool is64Bit(const char *name) {
1079 for (int i = 0;; ++i) {
1080 if (name[i] == '\0')
1081 return false;
1082 if (name[i] == '6' && name[i + 1] == '4')
1083 return true;
1084 }
1085 }
1086
1087 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1088 // for extended and escape opcodes, and using a supplied attribute mask.
getInstructionIDWithAttrMask(uint16_t * instructionID,struct InternalInstruction * insn,uint16_t attrMask)1089 static int getInstructionIDWithAttrMask(uint16_t *instructionID,
1090 struct InternalInstruction *insn,
1091 uint16_t attrMask) {
1092 auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]);
1093 const ContextDecision *decision;
1094 switch (insn->opcodeType) {
1095 case ONEBYTE:
1096 decision = &ONEBYTE_SYM;
1097 break;
1098 case TWOBYTE:
1099 decision = &TWOBYTE_SYM;
1100 break;
1101 case THREEBYTE_38:
1102 decision = &THREEBYTE38_SYM;
1103 break;
1104 case THREEBYTE_3A:
1105 decision = &THREEBYTE3A_SYM;
1106 break;
1107 case XOP8_MAP:
1108 decision = &XOP8_MAP_SYM;
1109 break;
1110 case XOP9_MAP:
1111 decision = &XOP9_MAP_SYM;
1112 break;
1113 case XOPA_MAP:
1114 decision = &XOPA_MAP_SYM;
1115 break;
1116 case THREEDNOW_MAP:
1117 decision = &THREEDNOW_MAP_SYM;
1118 break;
1119 case MAP4:
1120 decision = &MAP4_SYM;
1121 break;
1122 case MAP5:
1123 decision = &MAP5_SYM;
1124 break;
1125 case MAP6:
1126 decision = &MAP6_SYM;
1127 break;
1128 case MAP7:
1129 decision = &MAP7_SYM;
1130 break;
1131 }
1132
1133 if (decision->opcodeDecisions[insnCtx]
1134 .modRMDecisions[insn->opcode]
1135 .modrm_type != MODRM_ONEENTRY) {
1136 if (readModRM(insn))
1137 return -1;
1138 *instructionID =
1139 decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM);
1140 } else {
1141 *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0);
1142 }
1143
1144 return 0;
1145 }
1146
isCCMPOrCTEST(InternalInstruction * insn)1147 static bool isCCMPOrCTEST(InternalInstruction *insn) {
1148 if (insn->opcodeType != MAP4)
1149 return false;
1150 if (insn->opcode == 0x83 && regFromModRM(insn->modRM) == 7)
1151 return true;
1152 switch (insn->opcode & 0xfe) {
1153 default:
1154 return false;
1155 case 0x38:
1156 case 0x3a:
1157 case 0x84:
1158 return true;
1159 case 0x80:
1160 return regFromModRM(insn->modRM) == 7;
1161 case 0xf6:
1162 return regFromModRM(insn->modRM) == 0;
1163 }
1164 }
1165
isNF(InternalInstruction * insn)1166 static bool isNF(InternalInstruction *insn) {
1167 if (!nfFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1168 return false;
1169 if (insn->opcodeType == MAP4)
1170 return true;
1171 // Below NF instructions are not in map4.
1172 if (insn->opcodeType == THREEBYTE_38 &&
1173 ppFromEVEX3of4(insn->vectorExtensionPrefix[2]) == VEX_PREFIX_NONE) {
1174 switch (insn->opcode) {
1175 case 0xf2: // ANDN
1176 case 0xf3: // BLSI, BLSR, BLSMSK
1177 case 0xf5: // BZHI
1178 case 0xf7: // BEXTR
1179 return true;
1180 default:
1181 break;
1182 }
1183 }
1184 return false;
1185 }
1186
1187 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1188 // for extended and escape opcodes. Determines the attributes and context for
1189 // the instruction before doing so.
getInstructionID(struct InternalInstruction * insn,const MCInstrInfo * mii)1190 static int getInstructionID(struct InternalInstruction *insn,
1191 const MCInstrInfo *mii) {
1192 uint16_t attrMask;
1193 uint16_t instructionID;
1194
1195 LLVM_DEBUG(dbgs() << "getID()");
1196
1197 attrMask = ATTR_NONE;
1198
1199 if (insn->mode == MODE_64BIT)
1200 attrMask |= ATTR_64BIT;
1201
1202 if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1203 attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
1204
1205 if (insn->vectorExtensionType == TYPE_EVEX) {
1206 switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
1207 case VEX_PREFIX_66:
1208 attrMask |= ATTR_OPSIZE;
1209 break;
1210 case VEX_PREFIX_F3:
1211 attrMask |= ATTR_XS;
1212 break;
1213 case VEX_PREFIX_F2:
1214 attrMask |= ATTR_XD;
1215 break;
1216 }
1217
1218 if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1219 attrMask |= ATTR_EVEXKZ;
1220 if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1221 attrMask |= ATTR_EVEXB;
1222 if (isNF(insn) && !readModRM(insn) &&
1223 !isCCMPOrCTEST(insn)) // NF bit is the MSB of aaa.
1224 attrMask |= ATTR_EVEXNF;
1225 // aaa is not used a opmask in MAP4
1226 else if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]) &&
1227 (insn->opcodeType != MAP4))
1228 attrMask |= ATTR_EVEXK;
1229 if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1230 attrMask |= ATTR_VEXL;
1231 if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1232 attrMask |= ATTR_EVEXL2;
1233 } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
1234 switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
1235 case VEX_PREFIX_66:
1236 attrMask |= ATTR_OPSIZE;
1237 break;
1238 case VEX_PREFIX_F3:
1239 attrMask |= ATTR_XS;
1240 break;
1241 case VEX_PREFIX_F2:
1242 attrMask |= ATTR_XD;
1243 break;
1244 }
1245
1246 if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
1247 attrMask |= ATTR_VEXL;
1248 } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
1249 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
1250 case VEX_PREFIX_66:
1251 attrMask |= ATTR_OPSIZE;
1252 if (insn->hasAdSize)
1253 attrMask |= ATTR_ADSIZE;
1254 break;
1255 case VEX_PREFIX_F3:
1256 attrMask |= ATTR_XS;
1257 break;
1258 case VEX_PREFIX_F2:
1259 attrMask |= ATTR_XD;
1260 break;
1261 }
1262
1263 if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
1264 attrMask |= ATTR_VEXL;
1265 } else if (insn->vectorExtensionType == TYPE_XOP) {
1266 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
1267 case VEX_PREFIX_66:
1268 attrMask |= ATTR_OPSIZE;
1269 break;
1270 case VEX_PREFIX_F3:
1271 attrMask |= ATTR_XS;
1272 break;
1273 case VEX_PREFIX_F2:
1274 attrMask |= ATTR_XD;
1275 break;
1276 }
1277
1278 if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
1279 attrMask |= ATTR_VEXL;
1280 } else {
1281 return -1;
1282 }
1283 } else if (!insn->mandatoryPrefix) {
1284 // If we don't have mandatory prefix we should use legacy prefixes here
1285 if (insn->hasOpSize && (insn->mode != MODE_16BIT))
1286 attrMask |= ATTR_OPSIZE;
1287 if (insn->hasAdSize)
1288 attrMask |= ATTR_ADSIZE;
1289 if (insn->opcodeType == ONEBYTE) {
1290 if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
1291 // Special support for PAUSE
1292 attrMask |= ATTR_XS;
1293 } else {
1294 if (insn->repeatPrefix == 0xf2)
1295 attrMask |= ATTR_XD;
1296 else if (insn->repeatPrefix == 0xf3)
1297 attrMask |= ATTR_XS;
1298 }
1299 } else {
1300 switch (insn->mandatoryPrefix) {
1301 case 0xf2:
1302 attrMask |= ATTR_XD;
1303 break;
1304 case 0xf3:
1305 attrMask |= ATTR_XS;
1306 break;
1307 case 0x66:
1308 if (insn->mode != MODE_16BIT)
1309 attrMask |= ATTR_OPSIZE;
1310 if (insn->hasAdSize)
1311 attrMask |= ATTR_ADSIZE;
1312 break;
1313 case 0x67:
1314 attrMask |= ATTR_ADSIZE;
1315 break;
1316 }
1317 }
1318
1319 if (insn->rexPrefix & 0x08) {
1320 attrMask |= ATTR_REXW;
1321 attrMask &= ~ATTR_ADSIZE;
1322 }
1323
1324 // Absolute jump and pushp/popp need special handling
1325 if (insn->rex2ExtensionPrefix[0] == 0xd5 && insn->opcodeType == ONEBYTE &&
1326 (insn->opcode == 0xA1 || (insn->opcode & 0xf0) == 0x50))
1327 attrMask |= ATTR_REX2;
1328
1329 if (insn->mode == MODE_16BIT) {
1330 // JCXZ/JECXZ need special handling for 16-bit mode because the meaning
1331 // of the AdSize prefix is inverted w.r.t. 32-bit mode.
1332 if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3)
1333 attrMask ^= ATTR_ADSIZE;
1334 // If we're in 16-bit mode and this is one of the relative jumps and opsize
1335 // prefix isn't present, we need to force the opsize attribute since the
1336 // prefix is inverted relative to 32-bit mode.
1337 if (!insn->hasOpSize && insn->opcodeType == ONEBYTE &&
1338 (insn->opcode == 0xE8 || insn->opcode == 0xE9))
1339 attrMask |= ATTR_OPSIZE;
1340
1341 if (!insn->hasOpSize && insn->opcodeType == TWOBYTE &&
1342 insn->opcode >= 0x80 && insn->opcode <= 0x8F)
1343 attrMask |= ATTR_OPSIZE;
1344 }
1345
1346
1347 if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1348 return -1;
1349
1350 // The following clauses compensate for limitations of the tables.
1351
1352 if (insn->mode != MODE_64BIT &&
1353 insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1354 // The tables can't distinquish between cases where the W-bit is used to
1355 // select register size and cases where its a required part of the opcode.
1356 if ((insn->vectorExtensionType == TYPE_EVEX &&
1357 wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
1358 (insn->vectorExtensionType == TYPE_VEX_3B &&
1359 wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
1360 (insn->vectorExtensionType == TYPE_XOP &&
1361 wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1362
1363 uint16_t instructionIDWithREXW;
1364 if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn,
1365 attrMask | ATTR_REXW)) {
1366 insn->instructionID = instructionID;
1367 insn->spec = &INSTRUCTIONS_SYM[instructionID];
1368 return 0;
1369 }
1370
1371 auto SpecName = mii->getName(instructionIDWithREXW);
1372 // If not a 64-bit instruction. Switch the opcode.
1373 if (!is64Bit(SpecName.data())) {
1374 insn->instructionID = instructionIDWithREXW;
1375 insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW];
1376 return 0;
1377 }
1378 }
1379 }
1380
1381 // Absolute moves, umonitor, and movdir64b need special handling.
1382 // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1383 // inverted w.r.t.
1384 // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1385 // any position.
1386 if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
1387 (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
1388 (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8) ||
1389 (insn->opcodeType == MAP4 && insn->opcode == 0xF8)) {
1390 // Make sure we observed the prefixes in any position.
1391 if (insn->hasAdSize)
1392 attrMask |= ATTR_ADSIZE;
1393 if (insn->hasOpSize)
1394 attrMask |= ATTR_OPSIZE;
1395
1396 // In 16-bit, invert the attributes.
1397 if (insn->mode == MODE_16BIT) {
1398 attrMask ^= ATTR_ADSIZE;
1399
1400 // The OpSize attribute is only valid with the absolute moves.
1401 if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
1402 attrMask ^= ATTR_OPSIZE;
1403 }
1404
1405 if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1406 return -1;
1407
1408 insn->instructionID = instructionID;
1409 insn->spec = &INSTRUCTIONS_SYM[instructionID];
1410 return 0;
1411 }
1412
1413 if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
1414 !(attrMask & ATTR_OPSIZE)) {
1415 // The instruction tables make no distinction between instructions that
1416 // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1417 // particular spot (i.e., many MMX operations). In general we're
1418 // conservative, but in the specific case where OpSize is present but not in
1419 // the right place we check if there's a 16-bit operation.
1420 const struct InstructionSpecifier *spec;
1421 uint16_t instructionIDWithOpsize;
1422 llvm::StringRef specName, specWithOpSizeName;
1423
1424 spec = &INSTRUCTIONS_SYM[instructionID];
1425
1426 if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn,
1427 attrMask | ATTR_OPSIZE)) {
1428 // ModRM required with OpSize but not present. Give up and return the
1429 // version without OpSize set.
1430 insn->instructionID = instructionID;
1431 insn->spec = spec;
1432 return 0;
1433 }
1434
1435 specName = mii->getName(instructionID);
1436 specWithOpSizeName = mii->getName(instructionIDWithOpsize);
1437
1438 if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
1439 (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
1440 insn->instructionID = instructionIDWithOpsize;
1441 insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize];
1442 } else {
1443 insn->instructionID = instructionID;
1444 insn->spec = spec;
1445 }
1446 return 0;
1447 }
1448
1449 if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1450 insn->rexPrefix & 0x01) {
1451 // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode
1452 // as XCHG %r8, %eax.
1453 const struct InstructionSpecifier *spec;
1454 uint16_t instructionIDWithNewOpcode;
1455 const struct InstructionSpecifier *specWithNewOpcode;
1456
1457 spec = &INSTRUCTIONS_SYM[instructionID];
1458
1459 // Borrow opcode from one of the other XCHGar opcodes
1460 insn->opcode = 0x91;
1461
1462 if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn,
1463 attrMask)) {
1464 insn->opcode = 0x90;
1465
1466 insn->instructionID = instructionID;
1467 insn->spec = spec;
1468 return 0;
1469 }
1470
1471 specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode];
1472
1473 // Change back
1474 insn->opcode = 0x90;
1475
1476 insn->instructionID = instructionIDWithNewOpcode;
1477 insn->spec = specWithNewOpcode;
1478
1479 return 0;
1480 }
1481
1482 insn->instructionID = instructionID;
1483 insn->spec = &INSTRUCTIONS_SYM[insn->instructionID];
1484
1485 return 0;
1486 }
1487
1488 // Read an operand from the opcode field of an instruction and interprets it
1489 // appropriately given the operand width. Handles AddRegFrm instructions.
1490 //
1491 // @param insn - the instruction whose opcode field is to be read.
1492 // @param size - The width (in bytes) of the register being specified.
1493 // 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1494 // RAX.
1495 // @return - 0 on success; nonzero otherwise.
readOpcodeRegister(struct InternalInstruction * insn,uint8_t size)1496 static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) {
1497 LLVM_DEBUG(dbgs() << "readOpcodeRegister()");
1498
1499 if (size == 0)
1500 size = insn->registerSize;
1501
1502 auto setOpcodeRegister = [&](unsigned base) {
1503 insn->opcodeRegister =
1504 (Reg)(base + ((bFromREX(insn->rexPrefix) << 3) |
1505 (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4) |
1506 (insn->opcode & 7)));
1507 };
1508
1509 switch (size) {
1510 case 1:
1511 setOpcodeRegister(MODRM_REG_AL);
1512 if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1513 insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1514 insn->opcodeRegister =
1515 (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4));
1516 }
1517
1518 break;
1519 case 2:
1520 setOpcodeRegister(MODRM_REG_AX);
1521 break;
1522 case 4:
1523 setOpcodeRegister(MODRM_REG_EAX);
1524 break;
1525 case 8:
1526 setOpcodeRegister(MODRM_REG_RAX);
1527 break;
1528 }
1529
1530 return 0;
1531 }
1532
1533 // Consume an immediate operand from an instruction, given the desired operand
1534 // size.
1535 //
1536 // @param insn - The instruction whose operand is to be read.
1537 // @param size - The width (in bytes) of the operand.
1538 // @return - 0 if the immediate was successfully consumed; nonzero
1539 // otherwise.
readImmediate(struct InternalInstruction * insn,uint8_t size)1540 static int readImmediate(struct InternalInstruction *insn, uint8_t size) {
1541 uint8_t imm8;
1542 uint16_t imm16;
1543 uint32_t imm32;
1544 uint64_t imm64;
1545
1546 LLVM_DEBUG(dbgs() << "readImmediate()");
1547
1548 assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates");
1549
1550 insn->immediateSize = size;
1551 insn->immediateOffset = insn->readerCursor - insn->startLocation;
1552
1553 switch (size) {
1554 case 1:
1555 if (consume(insn, imm8))
1556 return -1;
1557 insn->immediates[insn->numImmediatesConsumed] = imm8;
1558 break;
1559 case 2:
1560 if (consume(insn, imm16))
1561 return -1;
1562 insn->immediates[insn->numImmediatesConsumed] = imm16;
1563 break;
1564 case 4:
1565 if (consume(insn, imm32))
1566 return -1;
1567 insn->immediates[insn->numImmediatesConsumed] = imm32;
1568 break;
1569 case 8:
1570 if (consume(insn, imm64))
1571 return -1;
1572 insn->immediates[insn->numImmediatesConsumed] = imm64;
1573 break;
1574 default:
1575 llvm_unreachable("invalid size");
1576 }
1577
1578 insn->numImmediatesConsumed++;
1579
1580 return 0;
1581 }
1582
1583 // Consume vvvv from an instruction if it has a VEX prefix.
readVVVV(struct InternalInstruction * insn)1584 static int readVVVV(struct InternalInstruction *insn) {
1585 LLVM_DEBUG(dbgs() << "readVVVV()");
1586
1587 int vvvv;
1588 if (insn->vectorExtensionType == TYPE_EVEX)
1589 vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1590 vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1591 else if (insn->vectorExtensionType == TYPE_VEX_3B)
1592 vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1593 else if (insn->vectorExtensionType == TYPE_VEX_2B)
1594 vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1595 else if (insn->vectorExtensionType == TYPE_XOP)
1596 vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1597 else
1598 return -1;
1599
1600 if (insn->mode != MODE_64BIT)
1601 vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.
1602
1603 insn->vvvv = static_cast<Reg>(vvvv);
1604 return 0;
1605 }
1606
1607 // Read an mask register from the opcode field of an instruction.
1608 //
1609 // @param insn - The instruction whose opcode field is to be read.
1610 // @return - 0 on success; nonzero otherwise.
readMaskRegister(struct InternalInstruction * insn)1611 static int readMaskRegister(struct InternalInstruction *insn) {
1612 LLVM_DEBUG(dbgs() << "readMaskRegister()");
1613
1614 if (insn->vectorExtensionType != TYPE_EVEX)
1615 return -1;
1616
1617 insn->writemask =
1618 static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1619 return 0;
1620 }
1621
1622 // Consults the specifier for an instruction and consumes all
1623 // operands for that instruction, interpreting them as it goes.
readOperands(struct InternalInstruction * insn)1624 static int readOperands(struct InternalInstruction *insn) {
1625 int hasVVVV, needVVVV;
1626 int sawRegImm = 0;
1627
1628 LLVM_DEBUG(dbgs() << "readOperands()");
1629
1630 // If non-zero vvvv specified, make sure one of the operands uses it.
1631 hasVVVV = !readVVVV(insn);
1632 needVVVV = hasVVVV && (insn->vvvv != 0);
1633
1634 for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1635 switch (Op.encoding) {
1636 case ENCODING_NONE:
1637 case ENCODING_SI:
1638 case ENCODING_DI:
1639 break;
1640 CASE_ENCODING_VSIB:
1641 // VSIB can use the V2 bit so check only the other bits.
1642 if (needVVVV)
1643 needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
1644 if (readModRM(insn))
1645 return -1;
1646
1647 // Reject if SIB wasn't used.
1648 if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1649 return -1;
1650
1651 // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
1652 if (insn->sibIndex == SIB_INDEX_NONE)
1653 insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);
1654
1655 // If EVEX.v2 is set this is one of the 16-31 registers.
1656 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
1657 v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1658 insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
1659
1660 // Adjust the index register to the correct size.
1661 switch ((OperandType)Op.type) {
1662 default:
1663 debug("Unhandled VSIB index type");
1664 return -1;
1665 case TYPE_MVSIBX:
1666 insn->sibIndex =
1667 (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase));
1668 break;
1669 case TYPE_MVSIBY:
1670 insn->sibIndex =
1671 (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase));
1672 break;
1673 case TYPE_MVSIBZ:
1674 insn->sibIndex =
1675 (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase));
1676 break;
1677 }
1678
1679 // Apply the AVX512 compressed displacement scaling factor.
1680 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1681 insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
1682 break;
1683 case ENCODING_SIB:
1684 // Reject if SIB wasn't used.
1685 if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1686 return -1;
1687 if (readModRM(insn))
1688 return -1;
1689 if (fixupReg(insn, &Op))
1690 return -1;
1691 break;
1692 case ENCODING_REG:
1693 CASE_ENCODING_RM:
1694 if (readModRM(insn))
1695 return -1;
1696 if (fixupReg(insn, &Op))
1697 return -1;
1698 // Apply the AVX512 compressed displacement scaling factor.
1699 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1700 insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1701 break;
1702 case ENCODING_IB:
1703 if (sawRegImm) {
1704 // Saw a register immediate so don't read again and instead split the
1705 // previous immediate. FIXME: This is a hack.
1706 insn->immediates[insn->numImmediatesConsumed] =
1707 insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1708 ++insn->numImmediatesConsumed;
1709 break;
1710 }
1711 if (readImmediate(insn, 1))
1712 return -1;
1713 if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
1714 sawRegImm = 1;
1715 break;
1716 case ENCODING_IW:
1717 if (readImmediate(insn, 2))
1718 return -1;
1719 break;
1720 case ENCODING_ID:
1721 if (readImmediate(insn, 4))
1722 return -1;
1723 break;
1724 case ENCODING_IO:
1725 if (readImmediate(insn, 8))
1726 return -1;
1727 break;
1728 case ENCODING_Iv:
1729 if (readImmediate(insn, insn->immediateSize))
1730 return -1;
1731 break;
1732 case ENCODING_Ia:
1733 if (readImmediate(insn, insn->addressSize))
1734 return -1;
1735 break;
1736 case ENCODING_IRC:
1737 insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
1738 lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
1739 break;
1740 case ENCODING_RB:
1741 if (readOpcodeRegister(insn, 1))
1742 return -1;
1743 break;
1744 case ENCODING_RW:
1745 if (readOpcodeRegister(insn, 2))
1746 return -1;
1747 break;
1748 case ENCODING_RD:
1749 if (readOpcodeRegister(insn, 4))
1750 return -1;
1751 break;
1752 case ENCODING_RO:
1753 if (readOpcodeRegister(insn, 8))
1754 return -1;
1755 break;
1756 case ENCODING_Rv:
1757 if (readOpcodeRegister(insn, 0))
1758 return -1;
1759 break;
1760 case ENCODING_CF:
1761 insn->immediates[1] = oszcFromEVEX3of4(insn->vectorExtensionPrefix[2]);
1762 needVVVV = false; // oszc shares the same bits with VVVV
1763 break;
1764 case ENCODING_CC:
1765 if (isCCMPOrCTEST(insn))
1766 insn->immediates[2] = scFromEVEX4of4(insn->vectorExtensionPrefix[3]);
1767 else
1768 insn->immediates[1] = insn->opcode & 0xf;
1769 break;
1770 case ENCODING_FP:
1771 break;
1772 case ENCODING_VVVV:
1773 needVVVV = 0; // Mark that we have found a VVVV operand.
1774 if (!hasVVVV)
1775 return -1;
1776 if (insn->mode != MODE_64BIT)
1777 insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7);
1778 if (fixupReg(insn, &Op))
1779 return -1;
1780 break;
1781 case ENCODING_WRITEMASK:
1782 if (readMaskRegister(insn))
1783 return -1;
1784 break;
1785 case ENCODING_DUP:
1786 break;
1787 default:
1788 LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding.");
1789 return -1;
1790 }
1791 }
1792
1793 // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail
1794 if (needVVVV)
1795 return -1;
1796
1797 return 0;
1798 }
1799
1800 namespace llvm {
1801
1802 // Fill-ins to make the compiler happy. These constants are never actually
1803 // assigned; they are just filler to make an automatically-generated switch
1804 // statement work.
1805 namespace X86 {
1806 enum {
1807 BX_SI = 500,
1808 BX_DI = 501,
1809 BP_SI = 502,
1810 BP_DI = 503,
1811 sib = 504,
1812 sib64 = 505
1813 };
1814 } // namespace X86
1815
1816 } // namespace llvm
1817
1818 static bool translateInstruction(MCInst &target,
1819 InternalInstruction &source,
1820 const MCDisassembler *Dis);
1821
1822 namespace {
1823
1824 /// Generic disassembler for all X86 platforms. All each platform class should
1825 /// have to do is subclass the constructor, and provide a different
1826 /// disassemblerMode value.
1827 class X86GenericDisassembler : public MCDisassembler {
1828 std::unique_ptr<const MCInstrInfo> MII;
1829 public:
1830 X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
1831 std::unique_ptr<const MCInstrInfo> MII);
1832 public:
1833 DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
1834 ArrayRef<uint8_t> Bytes, uint64_t Address,
1835 raw_ostream &cStream) const override;
1836
1837 private:
1838 DisassemblerMode fMode;
1839 };
1840
1841 } // namespace
1842
X86GenericDisassembler(const MCSubtargetInfo & STI,MCContext & Ctx,std::unique_ptr<const MCInstrInfo> MII)1843 X86GenericDisassembler::X86GenericDisassembler(
1844 const MCSubtargetInfo &STI,
1845 MCContext &Ctx,
1846 std::unique_ptr<const MCInstrInfo> MII)
1847 : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
1848 const FeatureBitset &FB = STI.getFeatureBits();
1849 if (FB[X86::Is16Bit]) {
1850 fMode = MODE_16BIT;
1851 return;
1852 } else if (FB[X86::Is32Bit]) {
1853 fMode = MODE_32BIT;
1854 return;
1855 } else if (FB[X86::Is64Bit]) {
1856 fMode = MODE_64BIT;
1857 return;
1858 }
1859
1860 llvm_unreachable("Invalid CPU mode");
1861 }
1862
getInstruction(MCInst & Instr,uint64_t & Size,ArrayRef<uint8_t> Bytes,uint64_t Address,raw_ostream & CStream) const1863 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
1864 MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
1865 raw_ostream &CStream) const {
1866 CommentStream = &CStream;
1867
1868 InternalInstruction Insn;
1869 memset(&Insn, 0, sizeof(InternalInstruction));
1870 Insn.bytes = Bytes;
1871 Insn.startLocation = Address;
1872 Insn.readerCursor = Address;
1873 Insn.mode = fMode;
1874
1875 if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) ||
1876 getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 ||
1877 readOperands(&Insn)) {
1878 Size = Insn.readerCursor - Address;
1879 return Fail;
1880 }
1881
1882 Insn.operands = x86OperandSets[Insn.spec->operands];
1883 Insn.length = Insn.readerCursor - Insn.startLocation;
1884 Size = Insn.length;
1885 if (Size > 15)
1886 LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit");
1887
1888 bool Ret = translateInstruction(Instr, Insn, this);
1889 if (!Ret) {
1890 unsigned Flags = X86::IP_NO_PREFIX;
1891 if (Insn.hasAdSize)
1892 Flags |= X86::IP_HAS_AD_SIZE;
1893 if (!Insn.mandatoryPrefix) {
1894 if (Insn.hasOpSize)
1895 Flags |= X86::IP_HAS_OP_SIZE;
1896 if (Insn.repeatPrefix == 0xf2)
1897 Flags |= X86::IP_HAS_REPEAT_NE;
1898 else if (Insn.repeatPrefix == 0xf3 &&
1899 // It should not be 'pause' f3 90
1900 Insn.opcode != 0x90)
1901 Flags |= X86::IP_HAS_REPEAT;
1902 if (Insn.hasLockPrefix)
1903 Flags |= X86::IP_HAS_LOCK;
1904 }
1905 Instr.setFlags(Flags);
1906 }
1907 return (!Ret) ? Success : Fail;
1908 }
1909
1910 //
1911 // Private code that translates from struct InternalInstructions to MCInsts.
1912 //
1913
1914 /// translateRegister - Translates an internal register to the appropriate LLVM
1915 /// register, and appends it as an operand to an MCInst.
1916 ///
1917 /// @param mcInst - The MCInst to append to.
1918 /// @param reg - The Reg to append.
translateRegister(MCInst & mcInst,Reg reg)1919 static void translateRegister(MCInst &mcInst, Reg reg) {
1920 #define ENTRY(x) X86::x,
1921 static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
1922 #undef ENTRY
1923
1924 MCPhysReg llvmRegnum = llvmRegnums[reg];
1925 mcInst.addOperand(MCOperand::createReg(llvmRegnum));
1926 }
1927
1928 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
1929 0, // SEG_OVERRIDE_NONE
1930 X86::CS,
1931 X86::SS,
1932 X86::DS,
1933 X86::ES,
1934 X86::FS,
1935 X86::GS
1936 };
1937
1938 /// translateSrcIndex - Appends a source index operand to an MCInst.
1939 ///
1940 /// @param mcInst - The MCInst to append to.
1941 /// @param insn - The internal instruction.
translateSrcIndex(MCInst & mcInst,InternalInstruction & insn)1942 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
1943 unsigned baseRegNo;
1944
1945 if (insn.mode == MODE_64BIT)
1946 baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
1947 else if (insn.mode == MODE_32BIT)
1948 baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
1949 else {
1950 assert(insn.mode == MODE_16BIT);
1951 baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
1952 }
1953 MCOperand baseReg = MCOperand::createReg(baseRegNo);
1954 mcInst.addOperand(baseReg);
1955
1956 MCOperand segmentReg;
1957 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
1958 mcInst.addOperand(segmentReg);
1959 return false;
1960 }
1961
1962 /// translateDstIndex - Appends a destination index operand to an MCInst.
1963 ///
1964 /// @param mcInst - The MCInst to append to.
1965 /// @param insn - The internal instruction.
1966
translateDstIndex(MCInst & mcInst,InternalInstruction & insn)1967 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
1968 unsigned baseRegNo;
1969
1970 if (insn.mode == MODE_64BIT)
1971 baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
1972 else if (insn.mode == MODE_32BIT)
1973 baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
1974 else {
1975 assert(insn.mode == MODE_16BIT);
1976 baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
1977 }
1978 MCOperand baseReg = MCOperand::createReg(baseRegNo);
1979 mcInst.addOperand(baseReg);
1980 return false;
1981 }
1982
1983 /// translateImmediate - Appends an immediate operand to an MCInst.
1984 ///
1985 /// @param mcInst - The MCInst to append to.
1986 /// @param immediate - The immediate value to append.
1987 /// @param operand - The operand, as stored in the descriptor table.
1988 /// @param insn - The internal instruction.
translateImmediate(MCInst & mcInst,uint64_t immediate,const OperandSpecifier & operand,InternalInstruction & insn,const MCDisassembler * Dis)1989 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
1990 const OperandSpecifier &operand,
1991 InternalInstruction &insn,
1992 const MCDisassembler *Dis) {
1993 // Sign-extend the immediate if necessary.
1994
1995 OperandType type = (OperandType)operand.type;
1996
1997 bool isBranch = false;
1998 uint64_t pcrel = 0;
1999 if (type == TYPE_REL) {
2000 isBranch = true;
2001 pcrel = insn.startLocation + insn.length;
2002 switch (operand.encoding) {
2003 default:
2004 break;
2005 case ENCODING_Iv:
2006 switch (insn.displacementSize) {
2007 default:
2008 break;
2009 case 1:
2010 if(immediate & 0x80)
2011 immediate |= ~(0xffull);
2012 break;
2013 case 2:
2014 if(immediate & 0x8000)
2015 immediate |= ~(0xffffull);
2016 break;
2017 case 4:
2018 if(immediate & 0x80000000)
2019 immediate |= ~(0xffffffffull);
2020 break;
2021 case 8:
2022 break;
2023 }
2024 break;
2025 case ENCODING_IB:
2026 if(immediate & 0x80)
2027 immediate |= ~(0xffull);
2028 break;
2029 case ENCODING_IW:
2030 if(immediate & 0x8000)
2031 immediate |= ~(0xffffull);
2032 break;
2033 case ENCODING_ID:
2034 if(immediate & 0x80000000)
2035 immediate |= ~(0xffffffffull);
2036 break;
2037 }
2038 }
2039 // By default sign-extend all X86 immediates based on their encoding.
2040 else if (type == TYPE_IMM) {
2041 switch (operand.encoding) {
2042 default:
2043 break;
2044 case ENCODING_IB:
2045 if(immediate & 0x80)
2046 immediate |= ~(0xffull);
2047 break;
2048 case ENCODING_IW:
2049 if(immediate & 0x8000)
2050 immediate |= ~(0xffffull);
2051 break;
2052 case ENCODING_ID:
2053 if(immediate & 0x80000000)
2054 immediate |= ~(0xffffffffull);
2055 break;
2056 case ENCODING_IO:
2057 break;
2058 }
2059 }
2060
2061 switch (type) {
2062 case TYPE_XMM:
2063 mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
2064 return;
2065 case TYPE_YMM:
2066 mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
2067 return;
2068 case TYPE_ZMM:
2069 mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
2070 return;
2071 default:
2072 // operand is 64 bits wide. Do nothing.
2073 break;
2074 }
2075
2076 if (!Dis->tryAddingSymbolicOperand(
2077 mcInst, immediate + pcrel, insn.startLocation, isBranch,
2078 insn.immediateOffset, insn.immediateSize, insn.length))
2079 mcInst.addOperand(MCOperand::createImm(immediate));
2080
2081 if (type == TYPE_MOFFS) {
2082 MCOperand segmentReg;
2083 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
2084 mcInst.addOperand(segmentReg);
2085 }
2086 }
2087
2088 /// translateRMRegister - Translates a register stored in the R/M field of the
2089 /// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
2090 /// @param mcInst - The MCInst to append to.
2091 /// @param insn - The internal instruction to extract the R/M field
2092 /// from.
2093 /// @return - 0 on success; -1 otherwise
translateRMRegister(MCInst & mcInst,InternalInstruction & insn)2094 static bool translateRMRegister(MCInst &mcInst,
2095 InternalInstruction &insn) {
2096 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2097 debug("A R/M register operand may not have a SIB byte");
2098 return true;
2099 }
2100
2101 switch (insn.eaBase) {
2102 default:
2103 debug("Unexpected EA base register");
2104 return true;
2105 case EA_BASE_NONE:
2106 debug("EA_BASE_NONE for ModR/M base");
2107 return true;
2108 #define ENTRY(x) case EA_BASE_##x:
2109 ALL_EA_BASES
2110 #undef ENTRY
2111 debug("A R/M register operand may not have a base; "
2112 "the operand must be a register.");
2113 return true;
2114 #define ENTRY(x) \
2115 case EA_REG_##x: \
2116 mcInst.addOperand(MCOperand::createReg(X86::x)); break;
2117 ALL_REGS
2118 #undef ENTRY
2119 }
2120
2121 return false;
2122 }
2123
2124 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
2125 /// fields of an internal instruction (and possibly its SIB byte) to a memory
2126 /// operand in LLVM's format, and appends it to an MCInst.
2127 ///
2128 /// @param mcInst - The MCInst to append to.
2129 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
2130 /// from.
2131 /// @param ForceSIB - The instruction must use SIB.
2132 /// @return - 0 on success; nonzero otherwise
translateRMMemory(MCInst & mcInst,InternalInstruction & insn,const MCDisassembler * Dis,bool ForceSIB=false)2133 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
2134 const MCDisassembler *Dis,
2135 bool ForceSIB = false) {
2136 // Addresses in an MCInst are represented as five operands:
2137 // 1. basereg (register) The R/M base, or (if there is a SIB) the
2138 // SIB base
2139 // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
2140 // scale amount
2141 // 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
2142 // the index (which is multiplied by the
2143 // scale amount)
2144 // 4. displacement (immediate) 0, or the displacement if there is one
2145 // 5. segmentreg (register) x86_registerNONE for now, but could be set
2146 // if we have segment overrides
2147
2148 MCOperand baseReg;
2149 MCOperand scaleAmount;
2150 MCOperand indexReg;
2151 MCOperand displacement;
2152 MCOperand segmentReg;
2153 uint64_t pcrel = 0;
2154
2155 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2156 if (insn.sibBase != SIB_BASE_NONE) {
2157 switch (insn.sibBase) {
2158 default:
2159 debug("Unexpected sibBase");
2160 return true;
2161 #define ENTRY(x) \
2162 case SIB_BASE_##x: \
2163 baseReg = MCOperand::createReg(X86::x); break;
2164 ALL_SIB_BASES
2165 #undef ENTRY
2166 }
2167 } else {
2168 baseReg = MCOperand::createReg(X86::NoRegister);
2169 }
2170
2171 if (insn.sibIndex != SIB_INDEX_NONE) {
2172 switch (insn.sibIndex) {
2173 default:
2174 debug("Unexpected sibIndex");
2175 return true;
2176 #define ENTRY(x) \
2177 case SIB_INDEX_##x: \
2178 indexReg = MCOperand::createReg(X86::x); break;
2179 EA_BASES_32BIT
2180 EA_BASES_64BIT
2181 REGS_XMM
2182 REGS_YMM
2183 REGS_ZMM
2184 #undef ENTRY
2185 }
2186 } else {
2187 // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
2188 // but no index is used and modrm alone should have been enough.
2189 // -No base register in 32-bit mode. In 64-bit mode this is used to
2190 // avoid rip-relative addressing.
2191 // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
2192 // base always requires a SIB byte.
2193 // -A scale other than 1 is used.
2194 if (!ForceSIB &&
2195 (insn.sibScale != 1 ||
2196 (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
2197 (insn.sibBase != SIB_BASE_NONE &&
2198 insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
2199 insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) {
2200 indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
2201 X86::RIZ);
2202 } else
2203 indexReg = MCOperand::createReg(X86::NoRegister);
2204 }
2205
2206 scaleAmount = MCOperand::createImm(insn.sibScale);
2207 } else {
2208 switch (insn.eaBase) {
2209 case EA_BASE_NONE:
2210 if (insn.eaDisplacement == EA_DISP_NONE) {
2211 debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
2212 return true;
2213 }
2214 if (insn.mode == MODE_64BIT){
2215 pcrel = insn.startLocation + insn.length;
2216 Dis->tryAddingPcLoadReferenceComment(insn.displacement + pcrel,
2217 insn.startLocation +
2218 insn.displacementOffset);
2219 // Section 2.2.1.6
2220 baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
2221 X86::RIP);
2222 }
2223 else
2224 baseReg = MCOperand::createReg(X86::NoRegister);
2225
2226 indexReg = MCOperand::createReg(X86::NoRegister);
2227 break;
2228 case EA_BASE_BX_SI:
2229 baseReg = MCOperand::createReg(X86::BX);
2230 indexReg = MCOperand::createReg(X86::SI);
2231 break;
2232 case EA_BASE_BX_DI:
2233 baseReg = MCOperand::createReg(X86::BX);
2234 indexReg = MCOperand::createReg(X86::DI);
2235 break;
2236 case EA_BASE_BP_SI:
2237 baseReg = MCOperand::createReg(X86::BP);
2238 indexReg = MCOperand::createReg(X86::SI);
2239 break;
2240 case EA_BASE_BP_DI:
2241 baseReg = MCOperand::createReg(X86::BP);
2242 indexReg = MCOperand::createReg(X86::DI);
2243 break;
2244 default:
2245 indexReg = MCOperand::createReg(X86::NoRegister);
2246 switch (insn.eaBase) {
2247 default:
2248 debug("Unexpected eaBase");
2249 return true;
2250 // Here, we will use the fill-ins defined above. However,
2251 // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
2252 // sib and sib64 were handled in the top-level if, so they're only
2253 // placeholders to keep the compiler happy.
2254 #define ENTRY(x) \
2255 case EA_BASE_##x: \
2256 baseReg = MCOperand::createReg(X86::x); break;
2257 ALL_EA_BASES
2258 #undef ENTRY
2259 #define ENTRY(x) case EA_REG_##x:
2260 ALL_REGS
2261 #undef ENTRY
2262 debug("A R/M memory operand may not be a register; "
2263 "the base field must be a base.");
2264 return true;
2265 }
2266 }
2267
2268 scaleAmount = MCOperand::createImm(1);
2269 }
2270
2271 displacement = MCOperand::createImm(insn.displacement);
2272
2273 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
2274
2275 mcInst.addOperand(baseReg);
2276 mcInst.addOperand(scaleAmount);
2277 mcInst.addOperand(indexReg);
2278
2279 const uint8_t dispSize =
2280 (insn.eaDisplacement == EA_DISP_NONE) ? 0 : insn.displacementSize;
2281
2282 if (!Dis->tryAddingSymbolicOperand(
2283 mcInst, insn.displacement + pcrel, insn.startLocation, false,
2284 insn.displacementOffset, dispSize, insn.length))
2285 mcInst.addOperand(displacement);
2286 mcInst.addOperand(segmentReg);
2287 return false;
2288 }
2289
2290 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
2291 /// byte of an instruction to LLVM form, and appends it to an MCInst.
2292 ///
2293 /// @param mcInst - The MCInst to append to.
2294 /// @param operand - The operand, as stored in the descriptor table.
2295 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
2296 /// from.
2297 /// @return - 0 on success; nonzero otherwise
translateRM(MCInst & mcInst,const OperandSpecifier & operand,InternalInstruction & insn,const MCDisassembler * Dis)2298 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
2299 InternalInstruction &insn, const MCDisassembler *Dis) {
2300 switch (operand.type) {
2301 default:
2302 debug("Unexpected type for a R/M operand");
2303 return true;
2304 case TYPE_R8:
2305 case TYPE_R16:
2306 case TYPE_R32:
2307 case TYPE_R64:
2308 case TYPE_Rv:
2309 case TYPE_MM64:
2310 case TYPE_XMM:
2311 case TYPE_YMM:
2312 case TYPE_ZMM:
2313 case TYPE_TMM:
2314 case TYPE_VK_PAIR:
2315 case TYPE_VK:
2316 case TYPE_DEBUGREG:
2317 case TYPE_CONTROLREG:
2318 case TYPE_BNDR:
2319 return translateRMRegister(mcInst, insn);
2320 case TYPE_M:
2321 case TYPE_MVSIBX:
2322 case TYPE_MVSIBY:
2323 case TYPE_MVSIBZ:
2324 return translateRMMemory(mcInst, insn, Dis);
2325 case TYPE_MSIB:
2326 return translateRMMemory(mcInst, insn, Dis, true);
2327 }
2328 }
2329
2330 /// translateFPRegister - Translates a stack position on the FPU stack to its
2331 /// LLVM form, and appends it to an MCInst.
2332 ///
2333 /// @param mcInst - The MCInst to append to.
2334 /// @param stackPos - The stack position to translate.
translateFPRegister(MCInst & mcInst,uint8_t stackPos)2335 static void translateFPRegister(MCInst &mcInst,
2336 uint8_t stackPos) {
2337 mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
2338 }
2339
2340 /// translateMaskRegister - Translates a 3-bit mask register number to
2341 /// LLVM form, and appends it to an MCInst.
2342 ///
2343 /// @param mcInst - The MCInst to append to.
2344 /// @param maskRegNum - Number of mask register from 0 to 7.
2345 /// @return - false on success; true otherwise.
translateMaskRegister(MCInst & mcInst,uint8_t maskRegNum)2346 static bool translateMaskRegister(MCInst &mcInst,
2347 uint8_t maskRegNum) {
2348 if (maskRegNum >= 8) {
2349 debug("Invalid mask register number");
2350 return true;
2351 }
2352
2353 mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
2354 return false;
2355 }
2356
2357 /// translateOperand - Translates an operand stored in an internal instruction
2358 /// to LLVM's format and appends it to an MCInst.
2359 ///
2360 /// @param mcInst - The MCInst to append to.
2361 /// @param operand - The operand, as stored in the descriptor table.
2362 /// @param insn - The internal instruction.
2363 /// @return - false on success; true otherwise.
translateOperand(MCInst & mcInst,const OperandSpecifier & operand,InternalInstruction & insn,const MCDisassembler * Dis)2364 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
2365 InternalInstruction &insn,
2366 const MCDisassembler *Dis) {
2367 switch (operand.encoding) {
2368 default:
2369 debug("Unhandled operand encoding during translation");
2370 return true;
2371 case ENCODING_REG:
2372 translateRegister(mcInst, insn.reg);
2373 return false;
2374 case ENCODING_WRITEMASK:
2375 return translateMaskRegister(mcInst, insn.writemask);
2376 case ENCODING_SIB:
2377 CASE_ENCODING_RM:
2378 CASE_ENCODING_VSIB:
2379 return translateRM(mcInst, operand, insn, Dis);
2380 case ENCODING_IB:
2381 case ENCODING_IW:
2382 case ENCODING_ID:
2383 case ENCODING_IO:
2384 case ENCODING_Iv:
2385 case ENCODING_Ia:
2386 translateImmediate(mcInst,
2387 insn.immediates[insn.numImmediatesTranslated++],
2388 operand,
2389 insn,
2390 Dis);
2391 return false;
2392 case ENCODING_IRC:
2393 mcInst.addOperand(MCOperand::createImm(insn.RC));
2394 return false;
2395 case ENCODING_SI:
2396 return translateSrcIndex(mcInst, insn);
2397 case ENCODING_DI:
2398 return translateDstIndex(mcInst, insn);
2399 case ENCODING_RB:
2400 case ENCODING_RW:
2401 case ENCODING_RD:
2402 case ENCODING_RO:
2403 case ENCODING_Rv:
2404 translateRegister(mcInst, insn.opcodeRegister);
2405 return false;
2406 case ENCODING_CF:
2407 mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
2408 return false;
2409 case ENCODING_CC:
2410 if (isCCMPOrCTEST(&insn))
2411 mcInst.addOperand(MCOperand::createImm(insn.immediates[2]));
2412 else
2413 mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
2414 return false;
2415 case ENCODING_FP:
2416 translateFPRegister(mcInst, insn.modRM & 7);
2417 return false;
2418 case ENCODING_VVVV:
2419 translateRegister(mcInst, insn.vvvv);
2420 return false;
2421 case ENCODING_DUP:
2422 return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
2423 insn, Dis);
2424 }
2425 }
2426
2427 /// translateInstruction - Translates an internal instruction and all its
2428 /// operands to an MCInst.
2429 ///
2430 /// @param mcInst - The MCInst to populate with the instruction's data.
2431 /// @param insn - The internal instruction.
2432 /// @return - false on success; true otherwise.
translateInstruction(MCInst & mcInst,InternalInstruction & insn,const MCDisassembler * Dis)2433 static bool translateInstruction(MCInst &mcInst,
2434 InternalInstruction &insn,
2435 const MCDisassembler *Dis) {
2436 if (!insn.spec) {
2437 debug("Instruction has no specification");
2438 return true;
2439 }
2440
2441 mcInst.clear();
2442 mcInst.setOpcode(insn.instructionID);
2443 // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
2444 // prefix bytes should be disassembled as xrelease and xacquire then set the
2445 // opcode to those instead of the rep and repne opcodes.
2446 if (insn.xAcquireRelease) {
2447 if(mcInst.getOpcode() == X86::REP_PREFIX)
2448 mcInst.setOpcode(X86::XRELEASE_PREFIX);
2449 else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
2450 mcInst.setOpcode(X86::XACQUIRE_PREFIX);
2451 }
2452
2453 insn.numImmediatesTranslated = 0;
2454
2455 for (const auto &Op : insn.operands) {
2456 if (Op.encoding != ENCODING_NONE) {
2457 if (translateOperand(mcInst, Op, insn, Dis)) {
2458 return true;
2459 }
2460 }
2461 }
2462
2463 return false;
2464 }
2465
createX86Disassembler(const Target & T,const MCSubtargetInfo & STI,MCContext & Ctx)2466 static MCDisassembler *createX86Disassembler(const Target &T,
2467 const MCSubtargetInfo &STI,
2468 MCContext &Ctx) {
2469 std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
2470 return new X86GenericDisassembler(STI, Ctx, std::move(MII));
2471 }
2472
LLVMInitializeX86Disassembler()2473 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() {
2474 // Register the disassembler.
2475 TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
2476 createX86Disassembler);
2477 TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
2478 createX86Disassembler);
2479 }
2480