1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * User-space Probes (UProbes)
4 *
5 * Copyright (C) IBM Corporation, 2008-2012
6 * Authors:
7 * Srikar Dronamraju
8 * Jim Keniston
9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h> /* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/export.h>
19 #include <linux/rmap.h> /* anon_vma_prepare */
20 #include <linux/mmu_notifier.h>
21 #include <linux/swap.h> /* folio_free_swap */
22 #include <linux/ptrace.h> /* user_enable_single_step */
23 #include <linux/kdebug.h> /* notifier mechanism */
24 #include <linux/percpu-rwsem.h>
25 #include <linux/task_work.h>
26 #include <linux/shmem_fs.h>
27 #include <linux/khugepaged.h>
28 #include <linux/rcupdate_trace.h>
29 #include <linux/workqueue.h>
30 #include <linux/srcu.h>
31 #include <linux/oom.h> /* check_stable_address_space */
32 #include <linux/pagewalk.h>
33
34 #include <linux/uprobes.h>
35
36 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
37 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
38
39 static struct rb_root uprobes_tree = RB_ROOT;
40 /*
41 * allows us to skip the uprobe_mmap if there are no uprobe events active
42 * at this time. Probably a fine grained per inode count is better?
43 */
44 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
45
46 static DEFINE_RWLOCK(uprobes_treelock); /* serialize rbtree access */
47 static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock);
48
49 #define UPROBES_HASH_SZ 13
50 /* serialize uprobe->pending_list */
51 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
52 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
53
54 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
55
56 /* Covers return_instance's uprobe lifetime. */
57 DEFINE_STATIC_SRCU(uretprobes_srcu);
58
59 /* Have a copy of original instruction */
60 #define UPROBE_COPY_INSN 0
61
62 struct uprobe {
63 struct rb_node rb_node; /* node in the rb tree */
64 refcount_t ref;
65 struct rw_semaphore register_rwsem;
66 struct rw_semaphore consumer_rwsem;
67 struct list_head pending_list;
68 struct list_head consumers;
69 struct inode *inode; /* Also hold a ref to inode */
70 union {
71 struct rcu_head rcu;
72 struct work_struct work;
73 };
74 loff_t offset;
75 loff_t ref_ctr_offset;
76 unsigned long flags; /* "unsigned long" so bitops work */
77
78 /*
79 * The generic code assumes that it has two members of unknown type
80 * owned by the arch-specific code:
81 *
82 * insn - copy_insn() saves the original instruction here for
83 * arch_uprobe_analyze_insn().
84 *
85 * ixol - potentially modified instruction to execute out of
86 * line, copied to xol_area by xol_get_insn_slot().
87 */
88 struct arch_uprobe arch;
89 };
90
91 struct delayed_uprobe {
92 struct list_head list;
93 struct uprobe *uprobe;
94 struct mm_struct *mm;
95 };
96
97 static DEFINE_MUTEX(delayed_uprobe_lock);
98 static LIST_HEAD(delayed_uprobe_list);
99
100 /*
101 * Execute out of line area: anonymous executable mapping installed
102 * by the probed task to execute the copy of the original instruction
103 * mangled by set_swbp().
104 *
105 * On a breakpoint hit, thread contests for a slot. It frees the
106 * slot after singlestep. Currently a fixed number of slots are
107 * allocated.
108 */
109 struct xol_area {
110 wait_queue_head_t wq; /* if all slots are busy */
111 unsigned long *bitmap; /* 0 = free slot */
112
113 struct page *page;
114 /*
115 * We keep the vma's vm_start rather than a pointer to the vma
116 * itself. The probed process or a naughty kernel module could make
117 * the vma go away, and we must handle that reasonably gracefully.
118 */
119 unsigned long vaddr; /* Page(s) of instruction slots */
120 };
121
uprobe_warn(struct task_struct * t,const char * msg)122 static void uprobe_warn(struct task_struct *t, const char *msg)
123 {
124 pr_warn("uprobe: %s:%d failed to %s\n", t->comm, t->pid, msg);
125 }
126
127 /*
128 * valid_vma: Verify if the specified vma is an executable vma
129 * Relax restrictions while unregistering: vm_flags might have
130 * changed after breakpoint was inserted.
131 * - is_register: indicates if we are in register context.
132 * - Return 1 if the specified virtual address is in an
133 * executable vma.
134 */
valid_vma(struct vm_area_struct * vma,bool is_register)135 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
136 {
137 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
138
139 if (is_register)
140 flags |= VM_WRITE;
141
142 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
143 }
144
offset_to_vaddr(struct vm_area_struct * vma,loff_t offset)145 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
146 {
147 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
148 }
149
vaddr_to_offset(struct vm_area_struct * vma,unsigned long vaddr)150 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
151 {
152 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
153 }
154
155 /**
156 * is_swbp_insn - check if instruction is breakpoint instruction.
157 * @insn: instruction to be checked.
158 * Default implementation of is_swbp_insn
159 * Returns true if @insn is a breakpoint instruction.
160 */
is_swbp_insn(uprobe_opcode_t * insn)161 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
162 {
163 return *insn == UPROBE_SWBP_INSN;
164 }
165
166 /**
167 * is_trap_insn - check if instruction is breakpoint instruction.
168 * @insn: instruction to be checked.
169 * Default implementation of is_trap_insn
170 * Returns true if @insn is a breakpoint instruction.
171 *
172 * This function is needed for the case where an architecture has multiple
173 * trap instructions (like powerpc).
174 */
is_trap_insn(uprobe_opcode_t * insn)175 bool __weak is_trap_insn(uprobe_opcode_t *insn)
176 {
177 return is_swbp_insn(insn);
178 }
179
uprobe_copy_from_page(struct page * page,unsigned long vaddr,void * dst,int len)180 void uprobe_copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
181 {
182 void *kaddr = kmap_atomic(page);
183 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
184 kunmap_atomic(kaddr);
185 }
186
copy_to_page(struct page * page,unsigned long vaddr,const void * src,int len)187 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
188 {
189 void *kaddr = kmap_atomic(page);
190 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
191 kunmap_atomic(kaddr);
192 }
193
verify_opcode(struct page * page,unsigned long vaddr,uprobe_opcode_t * insn,int nbytes,void * data)194 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *insn,
195 int nbytes, void *data)
196 {
197 uprobe_opcode_t old_opcode;
198 bool is_swbp;
199
200 /*
201 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
202 * We do not check if it is any other 'trap variant' which could
203 * be conditional trap instruction such as the one powerpc supports.
204 *
205 * The logic is that we do not care if the underlying instruction
206 * is a trap variant; uprobes always wins over any other (gdb)
207 * breakpoint.
208 */
209 uprobe_copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
210 is_swbp = is_swbp_insn(&old_opcode);
211
212 if (is_swbp_insn(insn)) {
213 if (is_swbp) /* register: already installed? */
214 return 0;
215 } else {
216 if (!is_swbp) /* unregister: was it changed by us? */
217 return 0;
218 }
219
220 return 1;
221 }
222
223 static struct delayed_uprobe *
delayed_uprobe_check(struct uprobe * uprobe,struct mm_struct * mm)224 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
225 {
226 struct delayed_uprobe *du;
227
228 list_for_each_entry(du, &delayed_uprobe_list, list)
229 if (du->uprobe == uprobe && du->mm == mm)
230 return du;
231 return NULL;
232 }
233
delayed_uprobe_add(struct uprobe * uprobe,struct mm_struct * mm)234 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
235 {
236 struct delayed_uprobe *du;
237
238 if (delayed_uprobe_check(uprobe, mm))
239 return 0;
240
241 du = kzalloc(sizeof(*du), GFP_KERNEL);
242 if (!du)
243 return -ENOMEM;
244
245 du->uprobe = uprobe;
246 du->mm = mm;
247 list_add(&du->list, &delayed_uprobe_list);
248 return 0;
249 }
250
delayed_uprobe_delete(struct delayed_uprobe * du)251 static void delayed_uprobe_delete(struct delayed_uprobe *du)
252 {
253 if (WARN_ON(!du))
254 return;
255 list_del(&du->list);
256 kfree(du);
257 }
258
delayed_uprobe_remove(struct uprobe * uprobe,struct mm_struct * mm)259 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
260 {
261 struct list_head *pos, *q;
262 struct delayed_uprobe *du;
263
264 if (!uprobe && !mm)
265 return;
266
267 list_for_each_safe(pos, q, &delayed_uprobe_list) {
268 du = list_entry(pos, struct delayed_uprobe, list);
269
270 if (uprobe && du->uprobe != uprobe)
271 continue;
272 if (mm && du->mm != mm)
273 continue;
274
275 delayed_uprobe_delete(du);
276 }
277 }
278
valid_ref_ctr_vma(struct uprobe * uprobe,struct vm_area_struct * vma)279 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
280 struct vm_area_struct *vma)
281 {
282 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
283
284 return uprobe->ref_ctr_offset &&
285 vma->vm_file &&
286 file_inode(vma->vm_file) == uprobe->inode &&
287 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
288 vma->vm_start <= vaddr &&
289 vma->vm_end > vaddr;
290 }
291
292 static struct vm_area_struct *
find_ref_ctr_vma(struct uprobe * uprobe,struct mm_struct * mm)293 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
294 {
295 VMA_ITERATOR(vmi, mm, 0);
296 struct vm_area_struct *tmp;
297
298 for_each_vma(vmi, tmp)
299 if (valid_ref_ctr_vma(uprobe, tmp))
300 return tmp;
301
302 return NULL;
303 }
304
305 static int
__update_ref_ctr(struct mm_struct * mm,unsigned long vaddr,short d)306 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
307 {
308 void *kaddr;
309 struct page *page;
310 int ret;
311 short *ptr;
312
313 if (!vaddr || !d)
314 return -EINVAL;
315
316 ret = get_user_pages_remote(mm, vaddr, 1,
317 FOLL_WRITE, &page, NULL);
318 if (unlikely(ret <= 0)) {
319 /*
320 * We are asking for 1 page. If get_user_pages_remote() fails,
321 * it may return 0, in that case we have to return error.
322 */
323 return ret == 0 ? -EBUSY : ret;
324 }
325
326 kaddr = kmap_atomic(page);
327 ptr = kaddr + (vaddr & ~PAGE_MASK);
328
329 if (unlikely(*ptr + d < 0)) {
330 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
331 "curr val: %d, delta: %d\n", vaddr, *ptr, d);
332 ret = -EINVAL;
333 goto out;
334 }
335
336 *ptr += d;
337 ret = 0;
338 out:
339 kunmap_atomic(kaddr);
340 put_page(page);
341 return ret;
342 }
343
update_ref_ctr_warn(struct uprobe * uprobe,struct mm_struct * mm,short d)344 static void update_ref_ctr_warn(struct uprobe *uprobe,
345 struct mm_struct *mm, short d)
346 {
347 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
348 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%p\n",
349 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
350 (unsigned long long) uprobe->offset,
351 (unsigned long long) uprobe->ref_ctr_offset, mm);
352 }
353
update_ref_ctr(struct uprobe * uprobe,struct mm_struct * mm,short d)354 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
355 short d)
356 {
357 struct vm_area_struct *rc_vma;
358 unsigned long rc_vaddr;
359 int ret = 0;
360
361 rc_vma = find_ref_ctr_vma(uprobe, mm);
362
363 if (rc_vma) {
364 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
365 ret = __update_ref_ctr(mm, rc_vaddr, d);
366 if (ret)
367 update_ref_ctr_warn(uprobe, mm, d);
368
369 if (d > 0)
370 return ret;
371 }
372
373 mutex_lock(&delayed_uprobe_lock);
374 if (d > 0)
375 ret = delayed_uprobe_add(uprobe, mm);
376 else
377 delayed_uprobe_remove(uprobe, mm);
378 mutex_unlock(&delayed_uprobe_lock);
379
380 return ret;
381 }
382
orig_page_is_identical(struct vm_area_struct * vma,unsigned long vaddr,struct page * page,bool * pmd_mappable)383 static bool orig_page_is_identical(struct vm_area_struct *vma,
384 unsigned long vaddr, struct page *page, bool *pmd_mappable)
385 {
386 const pgoff_t index = vaddr_to_offset(vma, vaddr) >> PAGE_SHIFT;
387 struct folio *orig_folio = filemap_get_folio(vma->vm_file->f_mapping,
388 index);
389 struct page *orig_page;
390 bool identical;
391
392 if (IS_ERR(orig_folio))
393 return false;
394 orig_page = folio_file_page(orig_folio, index);
395
396 *pmd_mappable = folio_test_pmd_mappable(orig_folio);
397 identical = folio_test_uptodate(orig_folio) &&
398 pages_identical(page, orig_page);
399 folio_put(orig_folio);
400 return identical;
401 }
402
__uprobe_write(struct vm_area_struct * vma,struct folio_walk * fw,struct folio * folio,unsigned long insn_vaddr,uprobe_opcode_t * insn,int nbytes,bool is_register)403 static int __uprobe_write(struct vm_area_struct *vma,
404 struct folio_walk *fw, struct folio *folio,
405 unsigned long insn_vaddr, uprobe_opcode_t *insn, int nbytes,
406 bool is_register)
407 {
408 const unsigned long vaddr = insn_vaddr & PAGE_MASK;
409 bool pmd_mappable;
410
411 /* For now, we'll only handle PTE-mapped folios. */
412 if (fw->level != FW_LEVEL_PTE)
413 return -EFAULT;
414
415 /*
416 * See can_follow_write_pte(): we'd actually prefer a writable PTE here,
417 * but the VMA might not be writable.
418 */
419 if (!pte_write(fw->pte)) {
420 if (!PageAnonExclusive(fw->page))
421 return -EFAULT;
422 if (unlikely(userfaultfd_pte_wp(vma, fw->pte)))
423 return -EFAULT;
424 /* SOFTDIRTY is handled via pte_mkdirty() below. */
425 }
426
427 /*
428 * We'll temporarily unmap the page and flush the TLB, such that we can
429 * modify the page atomically.
430 */
431 flush_cache_page(vma, vaddr, pte_pfn(fw->pte));
432 fw->pte = ptep_clear_flush(vma, vaddr, fw->ptep);
433 copy_to_page(fw->page, insn_vaddr, insn, nbytes);
434
435 /*
436 * When unregistering, we may only zap a PTE if uffd is disabled and
437 * there are no unexpected folio references ...
438 */
439 if (is_register || userfaultfd_missing(vma) ||
440 (folio_ref_count(folio) != folio_expected_ref_count(folio) + 1))
441 goto remap;
442
443 /*
444 * ... and the mapped page is identical to the original page that
445 * would get faulted in on next access.
446 */
447 if (!orig_page_is_identical(vma, vaddr, fw->page, &pmd_mappable))
448 goto remap;
449
450 dec_mm_counter(vma->vm_mm, MM_ANONPAGES);
451 folio_remove_rmap_pte(folio, fw->page, vma);
452 if (!folio_mapped(folio) && folio_test_swapcache(folio) &&
453 folio_trylock(folio)) {
454 folio_free_swap(folio);
455 folio_unlock(folio);
456 }
457 folio_put(folio);
458
459 return pmd_mappable;
460 remap:
461 /*
462 * Make sure that our copy_to_page() changes become visible before the
463 * set_pte_at() write.
464 */
465 smp_wmb();
466 /* We modified the page. Make sure to mark the PTE dirty. */
467 set_pte_at(vma->vm_mm, vaddr, fw->ptep, pte_mkdirty(fw->pte));
468 return 0;
469 }
470
471 /*
472 * NOTE:
473 * Expect the breakpoint instruction to be the smallest size instruction for
474 * the architecture. If an arch has variable length instruction and the
475 * breakpoint instruction is not of the smallest length instruction
476 * supported by that architecture then we need to modify is_trap_at_addr and
477 * uprobe_write_opcode accordingly. This would never be a problem for archs
478 * that have fixed length instructions.
479 *
480 * uprobe_write_opcode - write the opcode at a given virtual address.
481 * @auprobe: arch specific probepoint information.
482 * @vma: the probed virtual memory area.
483 * @opcode_vaddr: the virtual address to store the opcode.
484 * @opcode: opcode to be written at @opcode_vaddr.
485 *
486 * Called with mm->mmap_lock held for write.
487 * Return 0 (success) or a negative errno.
488 */
uprobe_write_opcode(struct arch_uprobe * auprobe,struct vm_area_struct * vma,const unsigned long opcode_vaddr,uprobe_opcode_t opcode,bool is_register)489 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct vm_area_struct *vma,
490 const unsigned long opcode_vaddr, uprobe_opcode_t opcode,
491 bool is_register)
492 {
493 return uprobe_write(auprobe, vma, opcode_vaddr, &opcode, UPROBE_SWBP_INSN_SIZE,
494 verify_opcode, is_register, true /* do_update_ref_ctr */, NULL);
495 }
496
uprobe_write(struct arch_uprobe * auprobe,struct vm_area_struct * vma,const unsigned long insn_vaddr,uprobe_opcode_t * insn,int nbytes,uprobe_write_verify_t verify,bool is_register,bool do_update_ref_ctr,void * data)497 int uprobe_write(struct arch_uprobe *auprobe, struct vm_area_struct *vma,
498 const unsigned long insn_vaddr, uprobe_opcode_t *insn, int nbytes,
499 uprobe_write_verify_t verify, bool is_register, bool do_update_ref_ctr,
500 void *data)
501 {
502 const unsigned long vaddr = insn_vaddr & PAGE_MASK;
503 struct mm_struct *mm = vma->vm_mm;
504 struct uprobe *uprobe;
505 int ret, ref_ctr_updated = 0;
506 unsigned int gup_flags = FOLL_FORCE;
507 struct mmu_notifier_range range;
508 struct folio_walk fw;
509 struct folio *folio;
510 struct page *page;
511
512 uprobe = container_of(auprobe, struct uprobe, arch);
513
514 if (WARN_ON_ONCE(!is_cow_mapping(vma->vm_flags)))
515 return -EINVAL;
516
517 /*
518 * When registering, we have to break COW to get an exclusive anonymous
519 * page that we can safely modify. Use FOLL_WRITE to trigger a write
520 * fault if required. When unregistering, we might be lucky and the
521 * anon page is already gone. So defer write faults until really
522 * required. Use FOLL_SPLIT_PMD, because __uprobe_write()
523 * cannot deal with PMDs yet.
524 */
525 if (is_register)
526 gup_flags |= FOLL_WRITE | FOLL_SPLIT_PMD;
527
528 retry:
529 ret = get_user_pages_remote(mm, vaddr, 1, gup_flags, &page, NULL);
530 if (ret <= 0)
531 goto out;
532 folio = page_folio(page);
533
534 ret = verify(page, insn_vaddr, insn, nbytes, data);
535 if (ret <= 0) {
536 folio_put(folio);
537 goto out;
538 }
539
540 /* We are going to replace instruction, update ref_ctr. */
541 if (do_update_ref_ctr && !ref_ctr_updated && uprobe->ref_ctr_offset) {
542 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
543 if (ret) {
544 folio_put(folio);
545 goto out;
546 }
547
548 ref_ctr_updated = 1;
549 }
550
551 ret = 0;
552 if (unlikely(!folio_test_anon(folio) || folio_is_zone_device(folio))) {
553 VM_WARN_ON_ONCE(is_register);
554 folio_put(folio);
555 goto out;
556 }
557
558 if (!is_register) {
559 /*
560 * In the common case, we'll be able to zap the page when
561 * unregistering. So trigger MMU notifiers now, as we won't
562 * be able to do it under PTL.
563 */
564 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
565 vaddr, vaddr + PAGE_SIZE);
566 mmu_notifier_invalidate_range_start(&range);
567 }
568
569 ret = -EAGAIN;
570 /* Walk the page tables again, to perform the actual update. */
571 if (folio_walk_start(&fw, vma, vaddr, 0)) {
572 if (fw.page == page)
573 ret = __uprobe_write(vma, &fw, folio, insn_vaddr, insn, nbytes, is_register);
574 folio_walk_end(&fw, vma);
575 }
576
577 if (!is_register)
578 mmu_notifier_invalidate_range_end(&range);
579
580 folio_put(folio);
581 switch (ret) {
582 case -EFAULT:
583 gup_flags |= FOLL_WRITE | FOLL_SPLIT_PMD;
584 fallthrough;
585 case -EAGAIN:
586 goto retry;
587 default:
588 break;
589 }
590
591 out:
592 /* Revert back reference counter if instruction update failed. */
593 if (do_update_ref_ctr && ret < 0 && ref_ctr_updated)
594 update_ref_ctr(uprobe, mm, is_register ? -1 : 1);
595
596 /* try collapse pmd for compound page */
597 if (ret > 0)
598 collapse_pte_mapped_thp(mm, vaddr, false);
599
600 return ret < 0 ? ret : 0;
601 }
602
603 /**
604 * set_swbp - store breakpoint at a given address.
605 * @auprobe: arch specific probepoint information.
606 * @vma: the probed virtual memory area.
607 * @vaddr: the virtual address to insert the opcode.
608 *
609 * For mm @mm, store the breakpoint instruction at @vaddr.
610 * Return 0 (success) or a negative errno.
611 */
set_swbp(struct arch_uprobe * auprobe,struct vm_area_struct * vma,unsigned long vaddr)612 int __weak set_swbp(struct arch_uprobe *auprobe, struct vm_area_struct *vma,
613 unsigned long vaddr)
614 {
615 return uprobe_write_opcode(auprobe, vma, vaddr, UPROBE_SWBP_INSN, true);
616 }
617
618 /**
619 * set_orig_insn - Restore the original instruction.
620 * @vma: the probed virtual memory area.
621 * @auprobe: arch specific probepoint information.
622 * @vaddr: the virtual address to insert the opcode.
623 *
624 * For mm @mm, restore the original opcode (opcode) at @vaddr.
625 * Return 0 (success) or a negative errno.
626 */
set_orig_insn(struct arch_uprobe * auprobe,struct vm_area_struct * vma,unsigned long vaddr)627 int __weak set_orig_insn(struct arch_uprobe *auprobe,
628 struct vm_area_struct *vma, unsigned long vaddr)
629 {
630 return uprobe_write_opcode(auprobe, vma, vaddr,
631 *(uprobe_opcode_t *)&auprobe->insn, false);
632 }
633
634 /* uprobe should have guaranteed positive refcount */
get_uprobe(struct uprobe * uprobe)635 static struct uprobe *get_uprobe(struct uprobe *uprobe)
636 {
637 refcount_inc(&uprobe->ref);
638 return uprobe;
639 }
640
641 /*
642 * uprobe should have guaranteed lifetime, which can be either of:
643 * - caller already has refcount taken (and wants an extra one);
644 * - uprobe is RCU protected and won't be freed until after grace period;
645 * - we are holding uprobes_treelock (for read or write, doesn't matter).
646 */
try_get_uprobe(struct uprobe * uprobe)647 static struct uprobe *try_get_uprobe(struct uprobe *uprobe)
648 {
649 if (refcount_inc_not_zero(&uprobe->ref))
650 return uprobe;
651 return NULL;
652 }
653
uprobe_is_active(struct uprobe * uprobe)654 static inline bool uprobe_is_active(struct uprobe *uprobe)
655 {
656 return !RB_EMPTY_NODE(&uprobe->rb_node);
657 }
658
uprobe_free_rcu_tasks_trace(struct rcu_head * rcu)659 static void uprobe_free_rcu_tasks_trace(struct rcu_head *rcu)
660 {
661 struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
662
663 kfree(uprobe);
664 }
665
uprobe_free_srcu(struct rcu_head * rcu)666 static void uprobe_free_srcu(struct rcu_head *rcu)
667 {
668 struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
669
670 call_rcu_tasks_trace(&uprobe->rcu, uprobe_free_rcu_tasks_trace);
671 }
672
uprobe_free_deferred(struct work_struct * work)673 static void uprobe_free_deferred(struct work_struct *work)
674 {
675 struct uprobe *uprobe = container_of(work, struct uprobe, work);
676
677 write_lock(&uprobes_treelock);
678
679 if (uprobe_is_active(uprobe)) {
680 write_seqcount_begin(&uprobes_seqcount);
681 rb_erase(&uprobe->rb_node, &uprobes_tree);
682 write_seqcount_end(&uprobes_seqcount);
683 }
684
685 write_unlock(&uprobes_treelock);
686
687 /*
688 * If application munmap(exec_vma) before uprobe_unregister()
689 * gets called, we don't get a chance to remove uprobe from
690 * delayed_uprobe_list from remove_breakpoint(). Do it here.
691 */
692 mutex_lock(&delayed_uprobe_lock);
693 delayed_uprobe_remove(uprobe, NULL);
694 mutex_unlock(&delayed_uprobe_lock);
695
696 /* start srcu -> rcu_tasks_trace -> kfree chain */
697 call_srcu(&uretprobes_srcu, &uprobe->rcu, uprobe_free_srcu);
698 }
699
put_uprobe(struct uprobe * uprobe)700 static void put_uprobe(struct uprobe *uprobe)
701 {
702 if (!refcount_dec_and_test(&uprobe->ref))
703 return;
704
705 INIT_WORK(&uprobe->work, uprobe_free_deferred);
706 schedule_work(&uprobe->work);
707 }
708
709 /* Initialize hprobe as SRCU-protected "leased" uprobe */
hprobe_init_leased(struct hprobe * hprobe,struct uprobe * uprobe,int srcu_idx)710 static void hprobe_init_leased(struct hprobe *hprobe, struct uprobe *uprobe, int srcu_idx)
711 {
712 WARN_ON(!uprobe);
713 hprobe->state = HPROBE_LEASED;
714 hprobe->uprobe = uprobe;
715 hprobe->srcu_idx = srcu_idx;
716 }
717
718 /* Initialize hprobe as refcounted ("stable") uprobe (uprobe can be NULL). */
hprobe_init_stable(struct hprobe * hprobe,struct uprobe * uprobe)719 static void hprobe_init_stable(struct hprobe *hprobe, struct uprobe *uprobe)
720 {
721 hprobe->state = uprobe ? HPROBE_STABLE : HPROBE_GONE;
722 hprobe->uprobe = uprobe;
723 hprobe->srcu_idx = -1;
724 }
725
726 /*
727 * hprobe_consume() fetches hprobe's underlying uprobe and detects whether
728 * uprobe is SRCU protected or is refcounted. hprobe_consume() can be
729 * used only once for a given hprobe.
730 *
731 * Caller has to call hprobe_finalize() and pass previous hprobe_state, so
732 * that hprobe_finalize() can perform SRCU unlock or put uprobe, whichever
733 * is appropriate.
734 */
hprobe_consume(struct hprobe * hprobe,enum hprobe_state * hstate)735 static inline struct uprobe *hprobe_consume(struct hprobe *hprobe, enum hprobe_state *hstate)
736 {
737 *hstate = xchg(&hprobe->state, HPROBE_CONSUMED);
738 switch (*hstate) {
739 case HPROBE_LEASED:
740 case HPROBE_STABLE:
741 return hprobe->uprobe;
742 case HPROBE_GONE: /* uprobe is NULL, no SRCU */
743 case HPROBE_CONSUMED: /* uprobe was finalized already, do nothing */
744 return NULL;
745 default:
746 WARN(1, "hprobe invalid state %d", *hstate);
747 return NULL;
748 }
749 }
750
751 /*
752 * Reset hprobe state and, if hprobe was LEASED, release SRCU lock.
753 * hprobe_finalize() can only be used from current context after
754 * hprobe_consume() call (which determines uprobe and hstate value).
755 */
hprobe_finalize(struct hprobe * hprobe,enum hprobe_state hstate)756 static void hprobe_finalize(struct hprobe *hprobe, enum hprobe_state hstate)
757 {
758 switch (hstate) {
759 case HPROBE_LEASED:
760 __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
761 break;
762 case HPROBE_STABLE:
763 put_uprobe(hprobe->uprobe);
764 break;
765 case HPROBE_GONE:
766 case HPROBE_CONSUMED:
767 break;
768 default:
769 WARN(1, "hprobe invalid state %d", hstate);
770 break;
771 }
772 }
773
774 /*
775 * Attempt to switch (atomically) uprobe from being SRCU protected (LEASED)
776 * to refcounted (STABLE) state. Competes with hprobe_consume(); only one of
777 * them can win the race to perform SRCU unlocking. Whoever wins must perform
778 * SRCU unlock.
779 *
780 * Returns underlying valid uprobe or NULL, if there was no underlying uprobe
781 * to begin with or we failed to bump its refcount and it's going away.
782 *
783 * Returned non-NULL uprobe can be still safely used within an ongoing SRCU
784 * locked region. If `get` is true, it's guaranteed that non-NULL uprobe has
785 * an extra refcount for caller to assume and use. Otherwise, it's not
786 * guaranteed that returned uprobe has a positive refcount, so caller has to
787 * attempt try_get_uprobe(), if it needs to preserve uprobe beyond current
788 * SRCU lock region. See dup_utask().
789 */
hprobe_expire(struct hprobe * hprobe,bool get)790 static struct uprobe *hprobe_expire(struct hprobe *hprobe, bool get)
791 {
792 enum hprobe_state hstate;
793
794 /*
795 * Caller should guarantee that return_instance is not going to be
796 * freed from under us. This can be achieved either through holding
797 * rcu_read_lock() or by owning return_instance in the first place.
798 *
799 * Underlying uprobe is itself protected from reuse by SRCU, so ensure
800 * SRCU lock is held properly.
801 */
802 lockdep_assert(srcu_read_lock_held(&uretprobes_srcu));
803
804 hstate = READ_ONCE(hprobe->state);
805 switch (hstate) {
806 case HPROBE_STABLE:
807 /* uprobe has positive refcount, bump refcount, if necessary */
808 return get ? get_uprobe(hprobe->uprobe) : hprobe->uprobe;
809 case HPROBE_GONE:
810 /*
811 * SRCU was unlocked earlier and we didn't manage to take
812 * uprobe refcnt, so it's effectively NULL
813 */
814 return NULL;
815 case HPROBE_CONSUMED:
816 /*
817 * uprobe was consumed, so it's effectively NULL as far as
818 * uretprobe processing logic is concerned
819 */
820 return NULL;
821 case HPROBE_LEASED: {
822 struct uprobe *uprobe = try_get_uprobe(hprobe->uprobe);
823 /*
824 * Try to switch hprobe state, guarding against
825 * hprobe_consume() or another hprobe_expire() racing with us.
826 * Note, if we failed to get uprobe refcount, we use special
827 * HPROBE_GONE state to signal that hprobe->uprobe shouldn't
828 * be used as it will be freed after SRCU is unlocked.
829 */
830 if (try_cmpxchg(&hprobe->state, &hstate, uprobe ? HPROBE_STABLE : HPROBE_GONE)) {
831 /* We won the race, we are the ones to unlock SRCU */
832 __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
833 return get ? get_uprobe(uprobe) : uprobe;
834 }
835
836 /*
837 * We lost the race, undo refcount bump (if it ever happened),
838 * unless caller would like an extra refcount anyways.
839 */
840 if (uprobe && !get)
841 put_uprobe(uprobe);
842 /*
843 * Even if hprobe_consume() or another hprobe_expire() wins
844 * the state update race and unlocks SRCU from under us, we
845 * still have a guarantee that underyling uprobe won't be
846 * freed due to ongoing caller's SRCU lock region, so we can
847 * return it regardless. Also, if `get` was true, we also have
848 * an extra ref for the caller to own. This is used in dup_utask().
849 */
850 return uprobe;
851 }
852 default:
853 WARN(1, "unknown hprobe state %d", hstate);
854 return NULL;
855 }
856 }
857
858 static __always_inline
uprobe_cmp(const struct inode * l_inode,const loff_t l_offset,const struct uprobe * r)859 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
860 const struct uprobe *r)
861 {
862 if (l_inode < r->inode)
863 return -1;
864
865 if (l_inode > r->inode)
866 return 1;
867
868 if (l_offset < r->offset)
869 return -1;
870
871 if (l_offset > r->offset)
872 return 1;
873
874 return 0;
875 }
876
877 #define __node_2_uprobe(node) \
878 rb_entry((node), struct uprobe, rb_node)
879
880 struct __uprobe_key {
881 struct inode *inode;
882 loff_t offset;
883 };
884
__uprobe_cmp_key(const void * key,const struct rb_node * b)885 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
886 {
887 const struct __uprobe_key *a = key;
888 return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
889 }
890
__uprobe_cmp(struct rb_node * a,const struct rb_node * b)891 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
892 {
893 struct uprobe *u = __node_2_uprobe(a);
894 return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
895 }
896
897 /*
898 * Assumes being inside RCU protected region.
899 * No refcount is taken on returned uprobe.
900 */
find_uprobe_rcu(struct inode * inode,loff_t offset)901 static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset)
902 {
903 struct __uprobe_key key = {
904 .inode = inode,
905 .offset = offset,
906 };
907 struct rb_node *node;
908 unsigned int seq;
909
910 lockdep_assert(rcu_read_lock_trace_held());
911
912 do {
913 seq = read_seqcount_begin(&uprobes_seqcount);
914 node = rb_find_rcu(&key, &uprobes_tree, __uprobe_cmp_key);
915 /*
916 * Lockless RB-tree lookups can result only in false negatives.
917 * If the element is found, it is correct and can be returned
918 * under RCU protection. If we find nothing, we need to
919 * validate that seqcount didn't change. If it did, we have to
920 * try again as we might have missed the element (false
921 * negative). If seqcount is unchanged, search truly failed.
922 */
923 if (node)
924 return __node_2_uprobe(node);
925 } while (read_seqcount_retry(&uprobes_seqcount, seq));
926
927 return NULL;
928 }
929
930 /*
931 * Attempt to insert a new uprobe into uprobes_tree.
932 *
933 * If uprobe already exists (for given inode+offset), we just increment
934 * refcount of previously existing uprobe.
935 *
936 * If not, a provided new instance of uprobe is inserted into the tree (with
937 * assumed initial refcount == 1).
938 *
939 * In any case, we return a uprobe instance that ends up being in uprobes_tree.
940 * Caller has to clean up new uprobe instance, if it ended up not being
941 * inserted into the tree.
942 *
943 * We assume that uprobes_treelock is held for writing.
944 */
__insert_uprobe(struct uprobe * uprobe)945 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
946 {
947 struct rb_node *node;
948 again:
949 node = rb_find_add_rcu(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
950 if (node) {
951 struct uprobe *u = __node_2_uprobe(node);
952
953 if (!try_get_uprobe(u)) {
954 rb_erase(node, &uprobes_tree);
955 RB_CLEAR_NODE(&u->rb_node);
956 goto again;
957 }
958
959 return u;
960 }
961
962 return uprobe;
963 }
964
965 /*
966 * Acquire uprobes_treelock and insert uprobe into uprobes_tree
967 * (or reuse existing one, see __insert_uprobe() comments above).
968 */
insert_uprobe(struct uprobe * uprobe)969 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
970 {
971 struct uprobe *u;
972
973 write_lock(&uprobes_treelock);
974 write_seqcount_begin(&uprobes_seqcount);
975 u = __insert_uprobe(uprobe);
976 write_seqcount_end(&uprobes_seqcount);
977 write_unlock(&uprobes_treelock);
978
979 return u;
980 }
981
982 static void
ref_ctr_mismatch_warn(struct uprobe * cur_uprobe,struct uprobe * uprobe)983 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
984 {
985 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
986 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
987 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
988 (unsigned long long) cur_uprobe->ref_ctr_offset,
989 (unsigned long long) uprobe->ref_ctr_offset);
990 }
991
alloc_uprobe(struct inode * inode,loff_t offset,loff_t ref_ctr_offset)992 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
993 loff_t ref_ctr_offset)
994 {
995 struct uprobe *uprobe, *cur_uprobe;
996
997 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
998 if (!uprobe)
999 return ERR_PTR(-ENOMEM);
1000
1001 uprobe->inode = inode;
1002 uprobe->offset = offset;
1003 uprobe->ref_ctr_offset = ref_ctr_offset;
1004 INIT_LIST_HEAD(&uprobe->consumers);
1005 init_rwsem(&uprobe->register_rwsem);
1006 init_rwsem(&uprobe->consumer_rwsem);
1007 RB_CLEAR_NODE(&uprobe->rb_node);
1008 refcount_set(&uprobe->ref, 1);
1009
1010 /* add to uprobes_tree, sorted on inode:offset */
1011 cur_uprobe = insert_uprobe(uprobe);
1012 /* a uprobe exists for this inode:offset combination */
1013 if (cur_uprobe != uprobe) {
1014 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
1015 ref_ctr_mismatch_warn(cur_uprobe, uprobe);
1016 put_uprobe(cur_uprobe);
1017 kfree(uprobe);
1018 return ERR_PTR(-EINVAL);
1019 }
1020 kfree(uprobe);
1021 uprobe = cur_uprobe;
1022 }
1023
1024 return uprobe;
1025 }
1026
consumer_add(struct uprobe * uprobe,struct uprobe_consumer * uc)1027 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
1028 {
1029 static atomic64_t id;
1030
1031 down_write(&uprobe->consumer_rwsem);
1032 list_add_rcu(&uc->cons_node, &uprobe->consumers);
1033 uc->id = (__u64) atomic64_inc_return(&id);
1034 up_write(&uprobe->consumer_rwsem);
1035 }
1036
1037 /*
1038 * For uprobe @uprobe, delete the consumer @uc.
1039 * Should never be called with consumer that's not part of @uprobe->consumers.
1040 */
consumer_del(struct uprobe * uprobe,struct uprobe_consumer * uc)1041 static void consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
1042 {
1043 down_write(&uprobe->consumer_rwsem);
1044 list_del_rcu(&uc->cons_node);
1045 up_write(&uprobe->consumer_rwsem);
1046 }
1047
__copy_insn(struct address_space * mapping,struct file * filp,void * insn,int nbytes,loff_t offset)1048 static int __copy_insn(struct address_space *mapping, struct file *filp,
1049 void *insn, int nbytes, loff_t offset)
1050 {
1051 struct page *page;
1052 /*
1053 * Ensure that the page that has the original instruction is populated
1054 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
1055 * see uprobe_register().
1056 */
1057 if (mapping->a_ops->read_folio)
1058 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
1059 else
1060 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
1061 if (IS_ERR(page))
1062 return PTR_ERR(page);
1063
1064 uprobe_copy_from_page(page, offset, insn, nbytes);
1065 put_page(page);
1066
1067 return 0;
1068 }
1069
copy_insn(struct uprobe * uprobe,struct file * filp)1070 static int copy_insn(struct uprobe *uprobe, struct file *filp)
1071 {
1072 struct address_space *mapping = uprobe->inode->i_mapping;
1073 loff_t offs = uprobe->offset;
1074 void *insn = &uprobe->arch.insn;
1075 int size = sizeof(uprobe->arch.insn);
1076 int len, err = -EIO;
1077
1078 /* Copy only available bytes, -EIO if nothing was read */
1079 do {
1080 if (offs >= i_size_read(uprobe->inode))
1081 break;
1082
1083 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
1084 err = __copy_insn(mapping, filp, insn, len, offs);
1085 if (err)
1086 break;
1087
1088 insn += len;
1089 offs += len;
1090 size -= len;
1091 } while (size);
1092
1093 return err;
1094 }
1095
prepare_uprobe(struct uprobe * uprobe,struct file * file,struct mm_struct * mm,unsigned long vaddr)1096 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
1097 struct mm_struct *mm, unsigned long vaddr)
1098 {
1099 int ret = 0;
1100
1101 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
1102 return ret;
1103
1104 /* TODO: move this into _register, until then we abuse this sem. */
1105 down_write(&uprobe->consumer_rwsem);
1106 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
1107 goto out;
1108
1109 ret = copy_insn(uprobe, file);
1110 if (ret)
1111 goto out;
1112
1113 ret = -ENOTSUPP;
1114 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
1115 goto out;
1116
1117 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
1118 if (ret)
1119 goto out;
1120
1121 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
1122 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
1123
1124 out:
1125 up_write(&uprobe->consumer_rwsem);
1126
1127 return ret;
1128 }
1129
consumer_filter(struct uprobe_consumer * uc,struct mm_struct * mm)1130 static inline bool consumer_filter(struct uprobe_consumer *uc, struct mm_struct *mm)
1131 {
1132 return !uc->filter || uc->filter(uc, mm);
1133 }
1134
filter_chain(struct uprobe * uprobe,struct mm_struct * mm)1135 static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm)
1136 {
1137 struct uprobe_consumer *uc;
1138 bool ret = false;
1139
1140 down_read(&uprobe->consumer_rwsem);
1141 list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
1142 ret = consumer_filter(uc, mm);
1143 if (ret)
1144 break;
1145 }
1146 up_read(&uprobe->consumer_rwsem);
1147
1148 return ret;
1149 }
1150
install_breakpoint(struct uprobe * uprobe,struct vm_area_struct * vma,unsigned long vaddr)1151 static int install_breakpoint(struct uprobe *uprobe, struct vm_area_struct *vma,
1152 unsigned long vaddr)
1153 {
1154 struct mm_struct *mm = vma->vm_mm;
1155 bool first_uprobe;
1156 int ret;
1157
1158 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
1159 if (ret)
1160 return ret;
1161
1162 /*
1163 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
1164 * the task can hit this breakpoint right after __replace_page().
1165 */
1166 first_uprobe = !mm_flags_test(MMF_HAS_UPROBES, mm);
1167 if (first_uprobe)
1168 mm_flags_set(MMF_HAS_UPROBES, mm);
1169
1170 ret = set_swbp(&uprobe->arch, vma, vaddr);
1171 if (!ret)
1172 mm_flags_clear(MMF_RECALC_UPROBES, mm);
1173 else if (first_uprobe)
1174 mm_flags_clear(MMF_HAS_UPROBES, mm);
1175
1176 return ret;
1177 }
1178
remove_breakpoint(struct uprobe * uprobe,struct vm_area_struct * vma,unsigned long vaddr)1179 static int remove_breakpoint(struct uprobe *uprobe, struct vm_area_struct *vma,
1180 unsigned long vaddr)
1181 {
1182 struct mm_struct *mm = vma->vm_mm;
1183
1184 mm_flags_set(MMF_RECALC_UPROBES, mm);
1185 return set_orig_insn(&uprobe->arch, vma, vaddr);
1186 }
1187
1188 struct map_info {
1189 struct map_info *next;
1190 struct mm_struct *mm;
1191 unsigned long vaddr;
1192 };
1193
free_map_info(struct map_info * info)1194 static inline struct map_info *free_map_info(struct map_info *info)
1195 {
1196 struct map_info *next = info->next;
1197 kfree(info);
1198 return next;
1199 }
1200
1201 static struct map_info *
build_map_info(struct address_space * mapping,loff_t offset,bool is_register)1202 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
1203 {
1204 unsigned long pgoff = offset >> PAGE_SHIFT;
1205 struct vm_area_struct *vma;
1206 struct map_info *curr = NULL;
1207 struct map_info *prev = NULL;
1208 struct map_info *info;
1209 int more = 0;
1210
1211 again:
1212 i_mmap_lock_read(mapping);
1213 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1214 if (!valid_vma(vma, is_register))
1215 continue;
1216
1217 if (!prev && !more) {
1218 /*
1219 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
1220 * reclaim. This is optimistic, no harm done if it fails.
1221 */
1222 prev = kmalloc(sizeof(struct map_info),
1223 GFP_NOWAIT | __GFP_NOMEMALLOC);
1224 if (prev)
1225 prev->next = NULL;
1226 }
1227 if (!prev) {
1228 more++;
1229 continue;
1230 }
1231
1232 if (!mmget_not_zero(vma->vm_mm))
1233 continue;
1234
1235 info = prev;
1236 prev = prev->next;
1237 info->next = curr;
1238 curr = info;
1239
1240 info->mm = vma->vm_mm;
1241 info->vaddr = offset_to_vaddr(vma, offset);
1242 }
1243 i_mmap_unlock_read(mapping);
1244
1245 if (!more)
1246 goto out;
1247
1248 prev = curr;
1249 while (curr) {
1250 mmput(curr->mm);
1251 curr = curr->next;
1252 }
1253
1254 do {
1255 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1256 if (!info) {
1257 curr = ERR_PTR(-ENOMEM);
1258 goto out;
1259 }
1260 info->next = prev;
1261 prev = info;
1262 } while (--more);
1263
1264 goto again;
1265 out:
1266 while (prev)
1267 prev = free_map_info(prev);
1268 return curr;
1269 }
1270
1271 static int
register_for_each_vma(struct uprobe * uprobe,struct uprobe_consumer * new)1272 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1273 {
1274 bool is_register = !!new;
1275 struct map_info *info;
1276 int err = 0;
1277
1278 percpu_down_write(&dup_mmap_sem);
1279 info = build_map_info(uprobe->inode->i_mapping,
1280 uprobe->offset, is_register);
1281 if (IS_ERR(info)) {
1282 err = PTR_ERR(info);
1283 goto out;
1284 }
1285
1286 while (info) {
1287 struct mm_struct *mm = info->mm;
1288 struct vm_area_struct *vma;
1289
1290 if (err && is_register)
1291 goto free;
1292 /*
1293 * We take mmap_lock for writing to avoid the race with
1294 * find_active_uprobe_rcu() which takes mmap_lock for reading.
1295 * Thus this install_breakpoint() can not make
1296 * is_trap_at_addr() true right after find_uprobe_rcu()
1297 * returns NULL in find_active_uprobe_rcu().
1298 */
1299 mmap_write_lock(mm);
1300 if (check_stable_address_space(mm))
1301 goto unlock;
1302
1303 vma = find_vma(mm, info->vaddr);
1304 if (!vma || !valid_vma(vma, is_register) ||
1305 file_inode(vma->vm_file) != uprobe->inode)
1306 goto unlock;
1307
1308 if (vma->vm_start > info->vaddr ||
1309 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1310 goto unlock;
1311
1312 if (is_register) {
1313 /* consult only the "caller", new consumer. */
1314 if (consumer_filter(new, mm))
1315 err = install_breakpoint(uprobe, vma, info->vaddr);
1316 } else if (mm_flags_test(MMF_HAS_UPROBES, mm)) {
1317 if (!filter_chain(uprobe, mm))
1318 err |= remove_breakpoint(uprobe, vma, info->vaddr);
1319 }
1320
1321 unlock:
1322 mmap_write_unlock(mm);
1323 free:
1324 mmput(mm);
1325 info = free_map_info(info);
1326 }
1327 out:
1328 percpu_up_write(&dup_mmap_sem);
1329 return err;
1330 }
1331
1332 /**
1333 * uprobe_unregister_nosync - unregister an already registered probe.
1334 * @uprobe: uprobe to remove
1335 * @uc: identify which probe if multiple probes are colocated.
1336 */
uprobe_unregister_nosync(struct uprobe * uprobe,struct uprobe_consumer * uc)1337 void uprobe_unregister_nosync(struct uprobe *uprobe, struct uprobe_consumer *uc)
1338 {
1339 int err;
1340
1341 down_write(&uprobe->register_rwsem);
1342 consumer_del(uprobe, uc);
1343 err = register_for_each_vma(uprobe, NULL);
1344 up_write(&uprobe->register_rwsem);
1345
1346 /* TODO : cant unregister? schedule a worker thread */
1347 if (unlikely(err)) {
1348 uprobe_warn(current, "unregister, leaking uprobe");
1349 return;
1350 }
1351
1352 put_uprobe(uprobe);
1353 }
1354 EXPORT_SYMBOL_GPL(uprobe_unregister_nosync);
1355
uprobe_unregister_sync(void)1356 void uprobe_unregister_sync(void)
1357 {
1358 /*
1359 * Now that handler_chain() and handle_uretprobe_chain() iterate over
1360 * uprobe->consumers list under RCU protection without holding
1361 * uprobe->register_rwsem, we need to wait for RCU grace period to
1362 * make sure that we can't call into just unregistered
1363 * uprobe_consumer's callbacks anymore. If we don't do that, fast and
1364 * unlucky enough caller can free consumer's memory and cause
1365 * handler_chain() or handle_uretprobe_chain() to do an use-after-free.
1366 */
1367 synchronize_rcu_tasks_trace();
1368 synchronize_srcu(&uretprobes_srcu);
1369 }
1370 EXPORT_SYMBOL_GPL(uprobe_unregister_sync);
1371
1372 /**
1373 * uprobe_register - register a probe
1374 * @inode: the file in which the probe has to be placed.
1375 * @offset: offset from the start of the file.
1376 * @ref_ctr_offset: offset of SDT marker / reference counter
1377 * @uc: information on howto handle the probe..
1378 *
1379 * Apart from the access refcount, uprobe_register() takes a creation
1380 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1381 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1382 * tuple). Creation refcount stops uprobe_unregister from freeing the
1383 * @uprobe even before the register operation is complete. Creation
1384 * refcount is released when the last @uc for the @uprobe
1385 * unregisters. Caller of uprobe_register() is required to keep @inode
1386 * (and the containing mount) referenced.
1387 *
1388 * Return: pointer to the new uprobe on success or an ERR_PTR on failure.
1389 */
uprobe_register(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1390 struct uprobe *uprobe_register(struct inode *inode,
1391 loff_t offset, loff_t ref_ctr_offset,
1392 struct uprobe_consumer *uc)
1393 {
1394 struct uprobe *uprobe;
1395 int ret;
1396
1397 /* Uprobe must have at least one set consumer */
1398 if (!uc->handler && !uc->ret_handler)
1399 return ERR_PTR(-EINVAL);
1400
1401 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1402 if (!inode->i_mapping->a_ops->read_folio &&
1403 !shmem_mapping(inode->i_mapping))
1404 return ERR_PTR(-EIO);
1405 /* Racy, just to catch the obvious mistakes */
1406 if (offset > i_size_read(inode))
1407 return ERR_PTR(-EINVAL);
1408
1409 /*
1410 * This ensures that uprobe_copy_from_page(), copy_to_page() and
1411 * __update_ref_ctr() can't cross page boundary.
1412 */
1413 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1414 return ERR_PTR(-EINVAL);
1415 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1416 return ERR_PTR(-EINVAL);
1417
1418 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1419 if (IS_ERR(uprobe))
1420 return uprobe;
1421
1422 down_write(&uprobe->register_rwsem);
1423 consumer_add(uprobe, uc);
1424 ret = register_for_each_vma(uprobe, uc);
1425 up_write(&uprobe->register_rwsem);
1426
1427 if (ret) {
1428 uprobe_unregister_nosync(uprobe, uc);
1429 /*
1430 * Registration might have partially succeeded, so we can have
1431 * this consumer being called right at this time. We need to
1432 * sync here. It's ok, it's unlikely slow path.
1433 */
1434 uprobe_unregister_sync();
1435 return ERR_PTR(ret);
1436 }
1437
1438 return uprobe;
1439 }
1440 EXPORT_SYMBOL_GPL(uprobe_register);
1441
1442 /**
1443 * uprobe_apply - add or remove the breakpoints according to @uc->filter
1444 * @uprobe: uprobe which "owns" the breakpoint
1445 * @uc: consumer which wants to add more or remove some breakpoints
1446 * @add: add or remove the breakpoints
1447 * Return: 0 on success or negative error code.
1448 */
uprobe_apply(struct uprobe * uprobe,struct uprobe_consumer * uc,bool add)1449 int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add)
1450 {
1451 struct uprobe_consumer *con;
1452 int ret = -ENOENT;
1453
1454 down_write(&uprobe->register_rwsem);
1455
1456 rcu_read_lock_trace();
1457 list_for_each_entry_rcu(con, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
1458 if (con == uc) {
1459 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1460 break;
1461 }
1462 }
1463 rcu_read_unlock_trace();
1464
1465 up_write(&uprobe->register_rwsem);
1466
1467 return ret;
1468 }
1469
unapply_uprobe(struct uprobe * uprobe,struct mm_struct * mm)1470 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1471 {
1472 VMA_ITERATOR(vmi, mm, 0);
1473 struct vm_area_struct *vma;
1474 int err = 0;
1475
1476 mmap_write_lock(mm);
1477 for_each_vma(vmi, vma) {
1478 unsigned long vaddr;
1479 loff_t offset;
1480
1481 if (!valid_vma(vma, false) ||
1482 file_inode(vma->vm_file) != uprobe->inode)
1483 continue;
1484
1485 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1486 if (uprobe->offset < offset ||
1487 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1488 continue;
1489
1490 vaddr = offset_to_vaddr(vma, uprobe->offset);
1491 err |= remove_breakpoint(uprobe, vma, vaddr);
1492 }
1493 mmap_write_unlock(mm);
1494
1495 return err;
1496 }
1497
1498 static struct rb_node *
find_node_in_range(struct inode * inode,loff_t min,loff_t max)1499 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1500 {
1501 struct rb_node *n = uprobes_tree.rb_node;
1502
1503 while (n) {
1504 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1505
1506 if (inode < u->inode) {
1507 n = n->rb_left;
1508 } else if (inode > u->inode) {
1509 n = n->rb_right;
1510 } else {
1511 if (max < u->offset)
1512 n = n->rb_left;
1513 else if (min > u->offset)
1514 n = n->rb_right;
1515 else
1516 break;
1517 }
1518 }
1519
1520 return n;
1521 }
1522
1523 /*
1524 * For a given range in vma, build a list of probes that need to be inserted.
1525 */
build_probe_list(struct inode * inode,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * head)1526 static void build_probe_list(struct inode *inode,
1527 struct vm_area_struct *vma,
1528 unsigned long start, unsigned long end,
1529 struct list_head *head)
1530 {
1531 loff_t min, max;
1532 struct rb_node *n, *t;
1533 struct uprobe *u;
1534
1535 INIT_LIST_HEAD(head);
1536 min = vaddr_to_offset(vma, start);
1537 max = min + (end - start) - 1;
1538
1539 read_lock(&uprobes_treelock);
1540 n = find_node_in_range(inode, min, max);
1541 if (n) {
1542 for (t = n; t; t = rb_prev(t)) {
1543 u = rb_entry(t, struct uprobe, rb_node);
1544 if (u->inode != inode || u->offset < min)
1545 break;
1546 /* if uprobe went away, it's safe to ignore it */
1547 if (try_get_uprobe(u))
1548 list_add(&u->pending_list, head);
1549 }
1550 for (t = n; (t = rb_next(t)); ) {
1551 u = rb_entry(t, struct uprobe, rb_node);
1552 if (u->inode != inode || u->offset > max)
1553 break;
1554 /* if uprobe went away, it's safe to ignore it */
1555 if (try_get_uprobe(u))
1556 list_add(&u->pending_list, head);
1557 }
1558 }
1559 read_unlock(&uprobes_treelock);
1560 }
1561
1562 /* @vma contains reference counter, not the probed instruction. */
delayed_ref_ctr_inc(struct vm_area_struct * vma)1563 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1564 {
1565 struct list_head *pos, *q;
1566 struct delayed_uprobe *du;
1567 unsigned long vaddr;
1568 int ret = 0, err = 0;
1569
1570 mutex_lock(&delayed_uprobe_lock);
1571 list_for_each_safe(pos, q, &delayed_uprobe_list) {
1572 du = list_entry(pos, struct delayed_uprobe, list);
1573
1574 if (du->mm != vma->vm_mm ||
1575 !valid_ref_ctr_vma(du->uprobe, vma))
1576 continue;
1577
1578 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1579 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1580 if (ret) {
1581 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1582 if (!err)
1583 err = ret;
1584 }
1585 delayed_uprobe_delete(du);
1586 }
1587 mutex_unlock(&delayed_uprobe_lock);
1588 return err;
1589 }
1590
1591 /*
1592 * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1593 *
1594 * Currently we ignore all errors and always return 0, the callers
1595 * can't handle the failure anyway.
1596 */
uprobe_mmap(struct vm_area_struct * vma)1597 int uprobe_mmap(struct vm_area_struct *vma)
1598 {
1599 struct list_head tmp_list;
1600 struct uprobe *uprobe, *u;
1601 struct inode *inode;
1602
1603 if (no_uprobe_events())
1604 return 0;
1605
1606 if (vma->vm_file &&
1607 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1608 mm_flags_test(MMF_HAS_UPROBES, vma->vm_mm))
1609 delayed_ref_ctr_inc(vma);
1610
1611 if (!valid_vma(vma, true))
1612 return 0;
1613
1614 inode = file_inode(vma->vm_file);
1615 if (!inode)
1616 return 0;
1617
1618 mutex_lock(uprobes_mmap_hash(inode));
1619 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1620 /*
1621 * We can race with uprobe_unregister(), this uprobe can be already
1622 * removed. But in this case filter_chain() must return false, all
1623 * consumers have gone away.
1624 */
1625 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1626 if (!fatal_signal_pending(current) &&
1627 filter_chain(uprobe, vma->vm_mm)) {
1628 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1629 install_breakpoint(uprobe, vma, vaddr);
1630 }
1631 put_uprobe(uprobe);
1632 }
1633 mutex_unlock(uprobes_mmap_hash(inode));
1634
1635 return 0;
1636 }
1637
1638 static bool
vma_has_uprobes(struct vm_area_struct * vma,unsigned long start,unsigned long end)1639 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1640 {
1641 loff_t min, max;
1642 struct inode *inode;
1643 struct rb_node *n;
1644
1645 inode = file_inode(vma->vm_file);
1646
1647 min = vaddr_to_offset(vma, start);
1648 max = min + (end - start) - 1;
1649
1650 read_lock(&uprobes_treelock);
1651 n = find_node_in_range(inode, min, max);
1652 read_unlock(&uprobes_treelock);
1653
1654 return !!n;
1655 }
1656
1657 /*
1658 * Called in context of a munmap of a vma.
1659 */
uprobe_munmap(struct vm_area_struct * vma,unsigned long start,unsigned long end)1660 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1661 {
1662 if (no_uprobe_events() || !valid_vma(vma, false))
1663 return;
1664
1665 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1666 return;
1667
1668 if (!mm_flags_test(MMF_HAS_UPROBES, vma->vm_mm) ||
1669 mm_flags_test(MMF_RECALC_UPROBES, vma->vm_mm))
1670 return;
1671
1672 if (vma_has_uprobes(vma, start, end))
1673 mm_flags_set(MMF_RECALC_UPROBES, vma->vm_mm);
1674 }
1675
xol_fault(const struct vm_special_mapping * sm,struct vm_area_struct * vma,struct vm_fault * vmf)1676 static vm_fault_t xol_fault(const struct vm_special_mapping *sm,
1677 struct vm_area_struct *vma, struct vm_fault *vmf)
1678 {
1679 struct xol_area *area = vma->vm_mm->uprobes_state.xol_area;
1680
1681 vmf->page = area->page;
1682 get_page(vmf->page);
1683 return 0;
1684 }
1685
xol_mremap(const struct vm_special_mapping * sm,struct vm_area_struct * new_vma)1686 static int xol_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma)
1687 {
1688 return -EPERM;
1689 }
1690
1691 static const struct vm_special_mapping xol_mapping = {
1692 .name = "[uprobes]",
1693 .fault = xol_fault,
1694 .mremap = xol_mremap,
1695 };
1696
1697 /* Slot allocation for XOL */
xol_add_vma(struct mm_struct * mm,struct xol_area * area)1698 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1699 {
1700 struct vm_area_struct *vma;
1701 int ret;
1702
1703 if (mmap_write_lock_killable(mm))
1704 return -EINTR;
1705
1706 if (mm->uprobes_state.xol_area) {
1707 ret = -EALREADY;
1708 goto fail;
1709 }
1710
1711 if (!area->vaddr) {
1712 /* Try to map as high as possible, this is only a hint. */
1713 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1714 PAGE_SIZE, 0, 0);
1715 if (IS_ERR_VALUE(area->vaddr)) {
1716 ret = area->vaddr;
1717 goto fail;
1718 }
1719 }
1720
1721 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1722 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO|
1723 VM_SEALED_SYSMAP,
1724 &xol_mapping);
1725 if (IS_ERR(vma)) {
1726 ret = PTR_ERR(vma);
1727 goto fail;
1728 }
1729
1730 ret = 0;
1731 /* pairs with get_xol_area() */
1732 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1733 fail:
1734 mmap_write_unlock(mm);
1735
1736 return ret;
1737 }
1738
arch_uretprobe_trampoline(unsigned long * psize)1739 void * __weak arch_uretprobe_trampoline(unsigned long *psize)
1740 {
1741 static uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1742
1743 *psize = UPROBE_SWBP_INSN_SIZE;
1744 return &insn;
1745 }
1746
__create_xol_area(unsigned long vaddr)1747 static struct xol_area *__create_xol_area(unsigned long vaddr)
1748 {
1749 struct mm_struct *mm = current->mm;
1750 unsigned long insns_size;
1751 struct xol_area *area;
1752 void *insns;
1753
1754 area = kzalloc(sizeof(*area), GFP_KERNEL);
1755 if (unlikely(!area))
1756 goto out;
1757
1758 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1759 GFP_KERNEL);
1760 if (!area->bitmap)
1761 goto free_area;
1762
1763 area->page = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
1764 if (!area->page)
1765 goto free_bitmap;
1766
1767 area->vaddr = vaddr;
1768 init_waitqueue_head(&area->wq);
1769 /* Reserve the 1st slot for get_trampoline_vaddr() */
1770 set_bit(0, area->bitmap);
1771 insns = arch_uretprobe_trampoline(&insns_size);
1772 arch_uprobe_copy_ixol(area->page, 0, insns, insns_size);
1773
1774 if (!xol_add_vma(mm, area))
1775 return area;
1776
1777 __free_page(area->page);
1778 free_bitmap:
1779 kfree(area->bitmap);
1780 free_area:
1781 kfree(area);
1782 out:
1783 return NULL;
1784 }
1785
1786 /*
1787 * get_xol_area - Allocate process's xol_area if necessary.
1788 * This area will be used for storing instructions for execution out of line.
1789 *
1790 * Returns the allocated area or NULL.
1791 */
get_xol_area(void)1792 static struct xol_area *get_xol_area(void)
1793 {
1794 struct mm_struct *mm = current->mm;
1795 struct xol_area *area;
1796
1797 if (!mm->uprobes_state.xol_area)
1798 __create_xol_area(0);
1799
1800 /* Pairs with xol_add_vma() smp_store_release() */
1801 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1802 return area;
1803 }
1804
arch_uprobe_clear_state(struct mm_struct * mm)1805 void __weak arch_uprobe_clear_state(struct mm_struct *mm)
1806 {
1807 }
1808
arch_uprobe_init_state(struct mm_struct * mm)1809 void __weak arch_uprobe_init_state(struct mm_struct *mm)
1810 {
1811 }
1812
1813 /*
1814 * uprobe_clear_state - Free the area allocated for slots.
1815 */
uprobe_clear_state(struct mm_struct * mm)1816 void uprobe_clear_state(struct mm_struct *mm)
1817 {
1818 struct xol_area *area = mm->uprobes_state.xol_area;
1819
1820 mutex_lock(&delayed_uprobe_lock);
1821 delayed_uprobe_remove(NULL, mm);
1822 mutex_unlock(&delayed_uprobe_lock);
1823
1824 arch_uprobe_clear_state(mm);
1825
1826 if (!area)
1827 return;
1828
1829 put_page(area->page);
1830 kfree(area->bitmap);
1831 kfree(area);
1832 }
1833
uprobe_start_dup_mmap(void)1834 void uprobe_start_dup_mmap(void)
1835 {
1836 percpu_down_read(&dup_mmap_sem);
1837 }
1838
uprobe_end_dup_mmap(void)1839 void uprobe_end_dup_mmap(void)
1840 {
1841 percpu_up_read(&dup_mmap_sem);
1842 }
1843
uprobe_dup_mmap(struct mm_struct * oldmm,struct mm_struct * newmm)1844 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1845 {
1846 if (mm_flags_test(MMF_HAS_UPROBES, oldmm)) {
1847 mm_flags_set(MMF_HAS_UPROBES, newmm);
1848 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1849 mm_flags_set(MMF_RECALC_UPROBES, newmm);
1850 }
1851 }
1852
xol_get_slot_nr(struct xol_area * area)1853 static unsigned long xol_get_slot_nr(struct xol_area *area)
1854 {
1855 unsigned long slot_nr;
1856
1857 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1858 if (slot_nr < UINSNS_PER_PAGE) {
1859 if (!test_and_set_bit(slot_nr, area->bitmap))
1860 return slot_nr;
1861 }
1862
1863 return UINSNS_PER_PAGE;
1864 }
1865
1866 /*
1867 * xol_get_insn_slot - allocate a slot for xol.
1868 */
xol_get_insn_slot(struct uprobe * uprobe,struct uprobe_task * utask)1869 static bool xol_get_insn_slot(struct uprobe *uprobe, struct uprobe_task *utask)
1870 {
1871 struct xol_area *area = get_xol_area();
1872 unsigned long slot_nr;
1873
1874 if (!area)
1875 return false;
1876
1877 wait_event(area->wq, (slot_nr = xol_get_slot_nr(area)) < UINSNS_PER_PAGE);
1878
1879 utask->xol_vaddr = area->vaddr + slot_nr * UPROBE_XOL_SLOT_BYTES;
1880 arch_uprobe_copy_ixol(area->page, utask->xol_vaddr,
1881 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1882 return true;
1883 }
1884
1885 /*
1886 * xol_free_insn_slot - free the slot allocated by xol_get_insn_slot()
1887 */
xol_free_insn_slot(struct uprobe_task * utask)1888 static void xol_free_insn_slot(struct uprobe_task *utask)
1889 {
1890 struct xol_area *area = current->mm->uprobes_state.xol_area;
1891 unsigned long offset = utask->xol_vaddr - area->vaddr;
1892 unsigned int slot_nr;
1893
1894 utask->xol_vaddr = 0;
1895 /* xol_vaddr must fit into [area->vaddr, area->vaddr + PAGE_SIZE) */
1896 if (WARN_ON_ONCE(offset >= PAGE_SIZE))
1897 return;
1898
1899 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1900 clear_bit(slot_nr, area->bitmap);
1901 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1902 if (waitqueue_active(&area->wq))
1903 wake_up(&area->wq);
1904 }
1905
arch_uprobe_copy_ixol(struct page * page,unsigned long vaddr,void * src,unsigned long len)1906 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1907 void *src, unsigned long len)
1908 {
1909 /* Initialize the slot */
1910 copy_to_page(page, vaddr, src, len);
1911
1912 /*
1913 * We probably need flush_icache_user_page() but it needs vma.
1914 * This should work on most of architectures by default. If
1915 * architecture needs to do something different it can define
1916 * its own version of the function.
1917 */
1918 flush_dcache_page(page);
1919 }
1920
1921 /**
1922 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1923 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1924 * instruction.
1925 * Return the address of the breakpoint instruction.
1926 */
uprobe_get_swbp_addr(struct pt_regs * regs)1927 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1928 {
1929 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1930 }
1931
uprobe_get_trap_addr(struct pt_regs * regs)1932 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1933 {
1934 struct uprobe_task *utask = current->utask;
1935
1936 if (unlikely(utask && utask->active_uprobe))
1937 return utask->vaddr;
1938
1939 return instruction_pointer(regs);
1940 }
1941
ri_pool_push(struct uprobe_task * utask,struct return_instance * ri)1942 static void ri_pool_push(struct uprobe_task *utask, struct return_instance *ri)
1943 {
1944 ri->cons_cnt = 0;
1945 ri->next = utask->ri_pool;
1946 utask->ri_pool = ri;
1947 }
1948
ri_pool_pop(struct uprobe_task * utask)1949 static struct return_instance *ri_pool_pop(struct uprobe_task *utask)
1950 {
1951 struct return_instance *ri = utask->ri_pool;
1952
1953 if (likely(ri))
1954 utask->ri_pool = ri->next;
1955
1956 return ri;
1957 }
1958
ri_free(struct return_instance * ri)1959 static void ri_free(struct return_instance *ri)
1960 {
1961 kfree(ri->extra_consumers);
1962 kfree_rcu(ri, rcu);
1963 }
1964
free_ret_instance(struct uprobe_task * utask,struct return_instance * ri,bool cleanup_hprobe)1965 static void free_ret_instance(struct uprobe_task *utask,
1966 struct return_instance *ri, bool cleanup_hprobe)
1967 {
1968 unsigned seq;
1969
1970 if (cleanup_hprobe) {
1971 enum hprobe_state hstate;
1972
1973 (void)hprobe_consume(&ri->hprobe, &hstate);
1974 hprobe_finalize(&ri->hprobe, hstate);
1975 }
1976
1977 /*
1978 * At this point return_instance is unlinked from utask's
1979 * return_instances list and this has become visible to ri_timer().
1980 * If seqcount now indicates that ri_timer's return instance
1981 * processing loop isn't active, we can return ri into the pool of
1982 * to-be-reused return instances for future uretprobes. If ri_timer()
1983 * happens to be running right now, though, we fallback to safety and
1984 * just perform RCU-delated freeing of ri.
1985 * Admittedly, this is a rather simple use of seqcount, but it nicely
1986 * abstracts away all the necessary memory barriers, so we use
1987 * a well-supported kernel primitive here.
1988 */
1989 if (raw_seqcount_try_begin(&utask->ri_seqcount, seq)) {
1990 /* immediate reuse of ri without RCU GP is OK */
1991 ri_pool_push(utask, ri);
1992 } else {
1993 /* we might be racing with ri_timer(), so play it safe */
1994 ri_free(ri);
1995 }
1996 }
1997
1998 /*
1999 * Called with no locks held.
2000 * Called in context of an exiting or an exec-ing thread.
2001 */
uprobe_free_utask(struct task_struct * t)2002 void uprobe_free_utask(struct task_struct *t)
2003 {
2004 struct uprobe_task *utask = t->utask;
2005 struct return_instance *ri, *ri_next;
2006
2007 if (!utask)
2008 return;
2009
2010 t->utask = NULL;
2011 WARN_ON_ONCE(utask->active_uprobe || utask->xol_vaddr);
2012
2013 timer_delete_sync(&utask->ri_timer);
2014
2015 ri = utask->return_instances;
2016 while (ri) {
2017 ri_next = ri->next;
2018 free_ret_instance(utask, ri, true /* cleanup_hprobe */);
2019 ri = ri_next;
2020 }
2021
2022 /* free_ret_instance() above might add to ri_pool, so this loop should come last */
2023 ri = utask->ri_pool;
2024 while (ri) {
2025 ri_next = ri->next;
2026 ri_free(ri);
2027 ri = ri_next;
2028 }
2029
2030 kfree(utask);
2031 }
2032
2033 #define RI_TIMER_PERIOD (HZ / 10) /* 100 ms */
2034
2035 #define for_each_ret_instance_rcu(pos, head) \
2036 for (pos = rcu_dereference_raw(head); pos; pos = rcu_dereference_raw(pos->next))
2037
ri_timer(struct timer_list * timer)2038 static void ri_timer(struct timer_list *timer)
2039 {
2040 struct uprobe_task *utask = container_of(timer, struct uprobe_task, ri_timer);
2041 struct return_instance *ri;
2042
2043 /* SRCU protects uprobe from reuse for the cmpxchg() inside hprobe_expire(). */
2044 guard(srcu)(&uretprobes_srcu);
2045 /* RCU protects return_instance from freeing. */
2046 guard(rcu)();
2047
2048 /*
2049 * See free_ret_instance() for notes on seqcount use.
2050 * We also employ raw API variants to avoid lockdep false-positive
2051 * warning complaining about enabled preemption. The timer can only be
2052 * invoked once for a uprobe_task. Therefore there can only be one
2053 * writer. The reader does not require an even sequence count to make
2054 * progress, so it is OK to remain preemptible on PREEMPT_RT.
2055 */
2056 raw_write_seqcount_begin(&utask->ri_seqcount);
2057
2058 for_each_ret_instance_rcu(ri, utask->return_instances)
2059 hprobe_expire(&ri->hprobe, false);
2060
2061 raw_write_seqcount_end(&utask->ri_seqcount);
2062 }
2063
alloc_utask(void)2064 static struct uprobe_task *alloc_utask(void)
2065 {
2066 struct uprobe_task *utask;
2067
2068 utask = kzalloc(sizeof(*utask), GFP_KERNEL);
2069 if (!utask)
2070 return NULL;
2071
2072 timer_setup(&utask->ri_timer, ri_timer, 0);
2073 seqcount_init(&utask->ri_seqcount);
2074
2075 return utask;
2076 }
2077
2078 /*
2079 * Allocate a uprobe_task object for the task if necessary.
2080 * Called when the thread hits a breakpoint.
2081 *
2082 * Returns:
2083 * - pointer to new uprobe_task on success
2084 * - NULL otherwise
2085 */
get_utask(void)2086 static struct uprobe_task *get_utask(void)
2087 {
2088 if (!current->utask)
2089 current->utask = alloc_utask();
2090 return current->utask;
2091 }
2092
alloc_return_instance(struct uprobe_task * utask)2093 static struct return_instance *alloc_return_instance(struct uprobe_task *utask)
2094 {
2095 struct return_instance *ri;
2096
2097 ri = ri_pool_pop(utask);
2098 if (ri)
2099 return ri;
2100
2101 ri = kzalloc(sizeof(*ri), GFP_KERNEL);
2102 if (!ri)
2103 return ZERO_SIZE_PTR;
2104
2105 return ri;
2106 }
2107
dup_return_instance(struct return_instance * old)2108 static struct return_instance *dup_return_instance(struct return_instance *old)
2109 {
2110 struct return_instance *ri;
2111
2112 ri = kmemdup(old, sizeof(*ri), GFP_KERNEL);
2113 if (!ri)
2114 return NULL;
2115
2116 if (unlikely(old->cons_cnt > 1)) {
2117 ri->extra_consumers = kmemdup(old->extra_consumers,
2118 sizeof(ri->extra_consumers[0]) * (old->cons_cnt - 1),
2119 GFP_KERNEL);
2120 if (!ri->extra_consumers) {
2121 kfree(ri);
2122 return NULL;
2123 }
2124 }
2125
2126 return ri;
2127 }
2128
dup_utask(struct task_struct * t,struct uprobe_task * o_utask)2129 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
2130 {
2131 struct uprobe_task *n_utask;
2132 struct return_instance **p, *o, *n;
2133 struct uprobe *uprobe;
2134
2135 n_utask = alloc_utask();
2136 if (!n_utask)
2137 return -ENOMEM;
2138 t->utask = n_utask;
2139
2140 /* protect uprobes from freeing, we'll need try_get_uprobe() them */
2141 guard(srcu)(&uretprobes_srcu);
2142
2143 p = &n_utask->return_instances;
2144 for (o = o_utask->return_instances; o; o = o->next) {
2145 n = dup_return_instance(o);
2146 if (!n)
2147 return -ENOMEM;
2148
2149 /* if uprobe is non-NULL, we'll have an extra refcount for uprobe */
2150 uprobe = hprobe_expire(&o->hprobe, true);
2151
2152 /*
2153 * New utask will have stable properly refcounted uprobe or
2154 * NULL. Even if we failed to get refcounted uprobe, we still
2155 * need to preserve full set of return_instances for proper
2156 * uretprobe handling and nesting in forked task.
2157 */
2158 hprobe_init_stable(&n->hprobe, uprobe);
2159
2160 n->next = NULL;
2161 rcu_assign_pointer(*p, n);
2162 p = &n->next;
2163
2164 n_utask->depth++;
2165 }
2166
2167 return 0;
2168 }
2169
dup_xol_work(struct callback_head * work)2170 static void dup_xol_work(struct callback_head *work)
2171 {
2172 if (current->flags & PF_EXITING)
2173 return;
2174
2175 if (!__create_xol_area(current->utask->dup_xol_addr) &&
2176 !fatal_signal_pending(current))
2177 uprobe_warn(current, "dup xol area");
2178 }
2179
2180 /*
2181 * Called in context of a new clone/fork from copy_process.
2182 */
uprobe_copy_process(struct task_struct * t,u64 flags)2183 void uprobe_copy_process(struct task_struct *t, u64 flags)
2184 {
2185 struct uprobe_task *utask = current->utask;
2186 struct mm_struct *mm = current->mm;
2187 struct xol_area *area;
2188
2189 t->utask = NULL;
2190
2191 if (!utask || !utask->return_instances)
2192 return;
2193
2194 if (mm == t->mm && !(flags & CLONE_VFORK))
2195 return;
2196
2197 if (dup_utask(t, utask))
2198 return uprobe_warn(t, "dup ret instances");
2199
2200 /* The task can fork() after dup_xol_work() fails */
2201 area = mm->uprobes_state.xol_area;
2202 if (!area)
2203 return uprobe_warn(t, "dup xol area");
2204
2205 if (mm == t->mm)
2206 return;
2207
2208 t->utask->dup_xol_addr = area->vaddr;
2209 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
2210 task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
2211 }
2212
2213 /*
2214 * Current area->vaddr notion assume the trampoline address is always
2215 * equal area->vaddr.
2216 *
2217 * Returns -1 in case the xol_area is not allocated.
2218 */
uprobe_get_trampoline_vaddr(void)2219 unsigned long uprobe_get_trampoline_vaddr(void)
2220 {
2221 unsigned long trampoline_vaddr = UPROBE_NO_TRAMPOLINE_VADDR;
2222 struct xol_area *area;
2223
2224 /* Pairs with xol_add_vma() smp_store_release() */
2225 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
2226 if (area)
2227 trampoline_vaddr = area->vaddr;
2228
2229 return trampoline_vaddr;
2230 }
2231
cleanup_return_instances(struct uprobe_task * utask,bool chained,struct pt_regs * regs)2232 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
2233 struct pt_regs *regs)
2234 {
2235 struct return_instance *ri = utask->return_instances, *ri_next;
2236 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
2237
2238 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
2239 ri_next = ri->next;
2240 rcu_assign_pointer(utask->return_instances, ri_next);
2241 utask->depth--;
2242
2243 free_ret_instance(utask, ri, true /* cleanup_hprobe */);
2244 ri = ri_next;
2245 }
2246 }
2247
prepare_uretprobe(struct uprobe * uprobe,struct pt_regs * regs,struct return_instance * ri)2248 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs,
2249 struct return_instance *ri)
2250 {
2251 struct uprobe_task *utask = current->utask;
2252 unsigned long orig_ret_vaddr, trampoline_vaddr;
2253 bool chained;
2254 int srcu_idx;
2255
2256 if (!get_xol_area())
2257 goto free;
2258
2259 if (utask->depth >= MAX_URETPROBE_DEPTH) {
2260 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
2261 " nestedness limit pid/tgid=%d/%d\n",
2262 current->pid, current->tgid);
2263 goto free;
2264 }
2265
2266 trampoline_vaddr = uprobe_get_trampoline_vaddr();
2267 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
2268 if (orig_ret_vaddr == -1)
2269 goto free;
2270
2271 /* drop the entries invalidated by longjmp() */
2272 chained = (orig_ret_vaddr == trampoline_vaddr);
2273 cleanup_return_instances(utask, chained, regs);
2274
2275 /*
2276 * We don't want to keep trampoline address in stack, rather keep the
2277 * original return address of first caller thru all the consequent
2278 * instances. This also makes breakpoint unwrapping easier.
2279 */
2280 if (chained) {
2281 if (!utask->return_instances) {
2282 /*
2283 * This situation is not possible. Likely we have an
2284 * attack from user-space.
2285 */
2286 uprobe_warn(current, "handle tail call");
2287 goto free;
2288 }
2289 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
2290 }
2291
2292 /* __srcu_read_lock() because SRCU lock survives switch to user space */
2293 srcu_idx = __srcu_read_lock(&uretprobes_srcu);
2294
2295 ri->func = instruction_pointer(regs);
2296 ri->stack = user_stack_pointer(regs);
2297 ri->orig_ret_vaddr = orig_ret_vaddr;
2298 ri->chained = chained;
2299
2300 utask->depth++;
2301
2302 hprobe_init_leased(&ri->hprobe, uprobe, srcu_idx);
2303 ri->next = utask->return_instances;
2304 rcu_assign_pointer(utask->return_instances, ri);
2305
2306 mod_timer(&utask->ri_timer, jiffies + RI_TIMER_PERIOD);
2307
2308 return;
2309 free:
2310 ri_free(ri);
2311 }
2312
2313 /* Prepare to single-step probed instruction out of line. */
2314 static int
pre_ssout(struct uprobe * uprobe,struct pt_regs * regs,unsigned long bp_vaddr)2315 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
2316 {
2317 struct uprobe_task *utask = current->utask;
2318 int err;
2319
2320 if (!try_get_uprobe(uprobe))
2321 return -EINVAL;
2322
2323 if (!xol_get_insn_slot(uprobe, utask)) {
2324 err = -ENOMEM;
2325 goto err_out;
2326 }
2327
2328 utask->vaddr = bp_vaddr;
2329 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
2330 if (unlikely(err)) {
2331 xol_free_insn_slot(utask);
2332 goto err_out;
2333 }
2334
2335 utask->active_uprobe = uprobe;
2336 utask->state = UTASK_SSTEP;
2337 return 0;
2338 err_out:
2339 put_uprobe(uprobe);
2340 return err;
2341 }
2342
2343 /*
2344 * If we are singlestepping, then ensure this thread is not connected to
2345 * non-fatal signals until completion of singlestep. When xol insn itself
2346 * triggers the signal, restart the original insn even if the task is
2347 * already SIGKILL'ed (since coredump should report the correct ip). This
2348 * is even more important if the task has a handler for SIGSEGV/etc, The
2349 * _same_ instruction should be repeated again after return from the signal
2350 * handler, and SSTEP can never finish in this case.
2351 */
uprobe_deny_signal(void)2352 bool uprobe_deny_signal(void)
2353 {
2354 struct task_struct *t = current;
2355 struct uprobe_task *utask = t->utask;
2356
2357 if (likely(!utask || !utask->active_uprobe))
2358 return false;
2359
2360 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
2361
2362 if (task_sigpending(t)) {
2363 utask->signal_denied = true;
2364 clear_tsk_thread_flag(t, TIF_SIGPENDING);
2365
2366 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
2367 utask->state = UTASK_SSTEP_TRAPPED;
2368 set_tsk_thread_flag(t, TIF_UPROBE);
2369 }
2370 }
2371
2372 return true;
2373 }
2374
mmf_recalc_uprobes(struct mm_struct * mm)2375 static void mmf_recalc_uprobes(struct mm_struct *mm)
2376 {
2377 VMA_ITERATOR(vmi, mm, 0);
2378 struct vm_area_struct *vma;
2379
2380 for_each_vma(vmi, vma) {
2381 if (!valid_vma(vma, false))
2382 continue;
2383 /*
2384 * This is not strictly accurate, we can race with
2385 * uprobe_unregister() and see the already removed
2386 * uprobe if delete_uprobe() was not yet called.
2387 * Or this uprobe can be filtered out.
2388 */
2389 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2390 return;
2391 }
2392
2393 mm_flags_clear(MMF_HAS_UPROBES, mm);
2394 }
2395
is_trap_at_addr(struct mm_struct * mm,unsigned long vaddr)2396 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2397 {
2398 struct page *page;
2399 uprobe_opcode_t opcode;
2400 int result;
2401
2402 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2403 return -EINVAL;
2404
2405 pagefault_disable();
2406 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2407 pagefault_enable();
2408
2409 if (likely(result == 0))
2410 goto out;
2411
2412 result = get_user_pages(vaddr, 1, FOLL_FORCE, &page);
2413 if (result < 0)
2414 return result;
2415
2416 uprobe_copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2417 put_page(page);
2418 out:
2419 /* This needs to return true for any variant of the trap insn */
2420 return is_trap_insn(&opcode);
2421 }
2422
find_active_uprobe_speculative(unsigned long bp_vaddr)2423 static struct uprobe *find_active_uprobe_speculative(unsigned long bp_vaddr)
2424 {
2425 struct mm_struct *mm = current->mm;
2426 struct uprobe *uprobe = NULL;
2427 struct vm_area_struct *vma;
2428 struct file *vm_file;
2429 loff_t offset;
2430 unsigned int seq;
2431
2432 guard(rcu)();
2433
2434 if (!mmap_lock_speculate_try_begin(mm, &seq))
2435 return NULL;
2436
2437 vma = vma_lookup(mm, bp_vaddr);
2438 if (!vma)
2439 return NULL;
2440
2441 /*
2442 * vm_file memory can be reused for another instance of struct file,
2443 * but can't be freed from under us, so it's safe to read fields from
2444 * it, even if the values are some garbage values; ultimately
2445 * find_uprobe_rcu() + mmap_lock_speculation_end() check will ensure
2446 * that whatever we speculatively found is correct
2447 */
2448 vm_file = READ_ONCE(vma->vm_file);
2449 if (!vm_file)
2450 return NULL;
2451
2452 offset = (loff_t)(vma->vm_pgoff << PAGE_SHIFT) + (bp_vaddr - vma->vm_start);
2453 uprobe = find_uprobe_rcu(vm_file->f_inode, offset);
2454 if (!uprobe)
2455 return NULL;
2456
2457 /* now double check that nothing about MM changed */
2458 if (mmap_lock_speculate_retry(mm, seq))
2459 return NULL;
2460
2461 return uprobe;
2462 }
2463
2464 /* assumes being inside RCU protected region */
find_active_uprobe_rcu(unsigned long bp_vaddr,int * is_swbp)2465 static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swbp)
2466 {
2467 struct mm_struct *mm = current->mm;
2468 struct uprobe *uprobe = NULL;
2469 struct vm_area_struct *vma;
2470
2471 uprobe = find_active_uprobe_speculative(bp_vaddr);
2472 if (uprobe)
2473 return uprobe;
2474
2475 mmap_read_lock(mm);
2476 vma = vma_lookup(mm, bp_vaddr);
2477 if (vma) {
2478 if (vma->vm_file) {
2479 struct inode *inode = file_inode(vma->vm_file);
2480 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2481
2482 uprobe = find_uprobe_rcu(inode, offset);
2483 }
2484
2485 if (!uprobe)
2486 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2487 } else {
2488 *is_swbp = -EFAULT;
2489 }
2490
2491 if (!uprobe && mm_flags_test_and_clear(MMF_RECALC_UPROBES, mm))
2492 mmf_recalc_uprobes(mm);
2493 mmap_read_unlock(mm);
2494
2495 return uprobe;
2496 }
2497
push_consumer(struct return_instance * ri,__u64 id,__u64 cookie)2498 static struct return_instance *push_consumer(struct return_instance *ri, __u64 id, __u64 cookie)
2499 {
2500 struct return_consumer *ric;
2501
2502 if (unlikely(ri == ZERO_SIZE_PTR))
2503 return ri;
2504
2505 if (unlikely(ri->cons_cnt > 0)) {
2506 ric = krealloc(ri->extra_consumers, sizeof(*ric) * ri->cons_cnt, GFP_KERNEL);
2507 if (!ric) {
2508 ri_free(ri);
2509 return ZERO_SIZE_PTR;
2510 }
2511 ri->extra_consumers = ric;
2512 }
2513
2514 ric = likely(ri->cons_cnt == 0) ? &ri->consumer : &ri->extra_consumers[ri->cons_cnt - 1];
2515 ric->id = id;
2516 ric->cookie = cookie;
2517
2518 ri->cons_cnt++;
2519 return ri;
2520 }
2521
2522 static struct return_consumer *
return_consumer_find(struct return_instance * ri,int * iter,int id)2523 return_consumer_find(struct return_instance *ri, int *iter, int id)
2524 {
2525 struct return_consumer *ric;
2526 int idx;
2527
2528 for (idx = *iter; idx < ri->cons_cnt; idx++)
2529 {
2530 ric = likely(idx == 0) ? &ri->consumer : &ri->extra_consumers[idx - 1];
2531 if (ric->id == id) {
2532 *iter = idx + 1;
2533 return ric;
2534 }
2535 }
2536
2537 return NULL;
2538 }
2539
ignore_ret_handler(int rc)2540 static bool ignore_ret_handler(int rc)
2541 {
2542 return rc == UPROBE_HANDLER_REMOVE || rc == UPROBE_HANDLER_IGNORE;
2543 }
2544
handler_chain(struct uprobe * uprobe,struct pt_regs * regs)2545 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2546 {
2547 struct uprobe_consumer *uc;
2548 bool has_consumers = false, remove = true;
2549 struct return_instance *ri = NULL;
2550 struct uprobe_task *utask = current->utask;
2551
2552 utask->auprobe = &uprobe->arch;
2553
2554 list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
2555 bool session = uc->handler && uc->ret_handler;
2556 __u64 cookie = 0;
2557 int rc = 0;
2558
2559 if (uc->handler) {
2560 rc = uc->handler(uc, regs, &cookie);
2561 WARN(rc < 0 || rc > 2,
2562 "bad rc=0x%x from %ps()\n", rc, uc->handler);
2563 }
2564
2565 remove &= rc == UPROBE_HANDLER_REMOVE;
2566 has_consumers = true;
2567
2568 if (!uc->ret_handler || ignore_ret_handler(rc))
2569 continue;
2570
2571 if (!ri)
2572 ri = alloc_return_instance(utask);
2573
2574 if (session)
2575 ri = push_consumer(ri, uc->id, cookie);
2576 }
2577 utask->auprobe = NULL;
2578
2579 if (!ZERO_OR_NULL_PTR(ri))
2580 prepare_uretprobe(uprobe, regs, ri);
2581
2582 if (remove && has_consumers) {
2583 down_read(&uprobe->register_rwsem);
2584
2585 /* re-check that removal is still required, this time under lock */
2586 if (!filter_chain(uprobe, current->mm)) {
2587 WARN_ON(!uprobe_is_active(uprobe));
2588 unapply_uprobe(uprobe, current->mm);
2589 }
2590
2591 up_read(&uprobe->register_rwsem);
2592 }
2593 }
2594
2595 static void
handle_uretprobe_chain(struct return_instance * ri,struct uprobe * uprobe,struct pt_regs * regs)2596 handle_uretprobe_chain(struct return_instance *ri, struct uprobe *uprobe, struct pt_regs *regs)
2597 {
2598 struct return_consumer *ric;
2599 struct uprobe_consumer *uc;
2600 int ric_idx = 0;
2601
2602 /* all consumers unsubscribed meanwhile */
2603 if (unlikely(!uprobe))
2604 return;
2605
2606 rcu_read_lock_trace();
2607 list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
2608 bool session = uc->handler && uc->ret_handler;
2609
2610 if (uc->ret_handler) {
2611 ric = return_consumer_find(ri, &ric_idx, uc->id);
2612 if (!session || ric)
2613 uc->ret_handler(uc, ri->func, regs, ric ? &ric->cookie : NULL);
2614 }
2615 }
2616 rcu_read_unlock_trace();
2617 }
2618
find_next_ret_chain(struct return_instance * ri)2619 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2620 {
2621 bool chained;
2622
2623 do {
2624 chained = ri->chained;
2625 ri = ri->next; /* can't be NULL if chained */
2626 } while (chained);
2627
2628 return ri;
2629 }
2630
uprobe_handle_trampoline(struct pt_regs * regs)2631 void uprobe_handle_trampoline(struct pt_regs *regs)
2632 {
2633 struct uprobe_task *utask;
2634 struct return_instance *ri, *ri_next, *next_chain;
2635 struct uprobe *uprobe;
2636 enum hprobe_state hstate;
2637 bool valid;
2638
2639 utask = current->utask;
2640 if (!utask)
2641 goto sigill;
2642
2643 ri = utask->return_instances;
2644 if (!ri)
2645 goto sigill;
2646
2647 do {
2648 /*
2649 * We should throw out the frames invalidated by longjmp().
2650 * If this chain is valid, then the next one should be alive
2651 * or NULL; the latter case means that nobody but ri->func
2652 * could hit this trampoline on return. TODO: sigaltstack().
2653 */
2654 next_chain = find_next_ret_chain(ri);
2655 valid = !next_chain || arch_uretprobe_is_alive(next_chain, RP_CHECK_RET, regs);
2656
2657 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2658 do {
2659 /* pop current instance from the stack of pending return instances,
2660 * as it's not pending anymore: we just fixed up original
2661 * instruction pointer in regs and are about to call handlers;
2662 * this allows fixup_uretprobe_trampoline_entries() to properly fix up
2663 * captured stack traces from uretprobe handlers, in which pending
2664 * trampoline addresses on the stack are replaced with correct
2665 * original return addresses
2666 */
2667 ri_next = ri->next;
2668 rcu_assign_pointer(utask->return_instances, ri_next);
2669 utask->depth--;
2670
2671 uprobe = hprobe_consume(&ri->hprobe, &hstate);
2672 if (valid)
2673 handle_uretprobe_chain(ri, uprobe, regs);
2674 hprobe_finalize(&ri->hprobe, hstate);
2675
2676 /* We already took care of hprobe, no need to waste more time on that. */
2677 free_ret_instance(utask, ri, false /* !cleanup_hprobe */);
2678 ri = ri_next;
2679 } while (ri != next_chain);
2680 } while (!valid);
2681
2682 return;
2683
2684 sigill:
2685 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2686 force_sig(SIGILL);
2687 }
2688
arch_uprobe_ignore(struct arch_uprobe * aup,struct pt_regs * regs)2689 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2690 {
2691 return false;
2692 }
2693
arch_uretprobe_is_alive(struct return_instance * ret,enum rp_check ctx,struct pt_regs * regs)2694 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2695 struct pt_regs *regs)
2696 {
2697 return true;
2698 }
2699
arch_uprobe_optimize(struct arch_uprobe * auprobe,unsigned long vaddr)2700 void __weak arch_uprobe_optimize(struct arch_uprobe *auprobe, unsigned long vaddr)
2701 {
2702 }
2703
2704 /*
2705 * Run handler and ask thread to singlestep.
2706 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2707 */
handle_swbp(struct pt_regs * regs)2708 static void handle_swbp(struct pt_regs *regs)
2709 {
2710 struct uprobe *uprobe;
2711 unsigned long bp_vaddr;
2712 int is_swbp;
2713
2714 bp_vaddr = uprobe_get_swbp_addr(regs);
2715 if (bp_vaddr == uprobe_get_trampoline_vaddr())
2716 return uprobe_handle_trampoline(regs);
2717
2718 rcu_read_lock_trace();
2719
2720 uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp);
2721 if (!uprobe) {
2722 if (is_swbp > 0) {
2723 /* No matching uprobe; signal SIGTRAP. */
2724 force_sig(SIGTRAP);
2725 } else {
2726 /*
2727 * Either we raced with uprobe_unregister() or we can't
2728 * access this memory. The latter is only possible if
2729 * another thread plays with our ->mm. In both cases
2730 * we can simply restart. If this vma was unmapped we
2731 * can pretend this insn was not executed yet and get
2732 * the (correct) SIGSEGV after restart.
2733 */
2734 instruction_pointer_set(regs, bp_vaddr);
2735 }
2736 goto out;
2737 }
2738
2739 /* change it in advance for ->handler() and restart */
2740 instruction_pointer_set(regs, bp_vaddr);
2741
2742 /*
2743 * TODO: move copy_insn/etc into _register and remove this hack.
2744 * After we hit the bp, _unregister + _register can install the
2745 * new and not-yet-analyzed uprobe at the same address, restart.
2746 */
2747 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2748 goto out;
2749
2750 /*
2751 * Pairs with the smp_wmb() in prepare_uprobe().
2752 *
2753 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2754 * we must also see the stores to &uprobe->arch performed by the
2755 * prepare_uprobe() call.
2756 */
2757 smp_rmb();
2758
2759 /* Tracing handlers use ->utask to communicate with fetch methods */
2760 if (!get_utask())
2761 goto out;
2762
2763 if (arch_uprobe_ignore(&uprobe->arch, regs))
2764 goto out;
2765
2766 handler_chain(uprobe, regs);
2767
2768 /*
2769 * If user decided to take execution elsewhere, it makes little sense
2770 * to execute the original instruction, so let's skip it.
2771 */
2772 if (instruction_pointer(regs) != bp_vaddr)
2773 goto out;
2774
2775 /* Try to optimize after first hit. */
2776 arch_uprobe_optimize(&uprobe->arch, bp_vaddr);
2777
2778 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2779 goto out;
2780
2781 if (pre_ssout(uprobe, regs, bp_vaddr))
2782 goto out;
2783
2784 out:
2785 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2786 rcu_read_unlock_trace();
2787 }
2788
handle_syscall_uprobe(struct pt_regs * regs,unsigned long bp_vaddr)2789 void handle_syscall_uprobe(struct pt_regs *regs, unsigned long bp_vaddr)
2790 {
2791 struct uprobe *uprobe;
2792 int is_swbp;
2793
2794 guard(rcu_tasks_trace)();
2795
2796 uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp);
2797 if (!uprobe)
2798 return;
2799 if (!get_utask())
2800 return;
2801 if (arch_uprobe_ignore(&uprobe->arch, regs))
2802 return;
2803 handler_chain(uprobe, regs);
2804 }
2805
2806 /*
2807 * Perform required fix-ups and disable singlestep.
2808 * Allow pending signals to take effect.
2809 */
handle_singlestep(struct uprobe_task * utask,struct pt_regs * regs)2810 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2811 {
2812 struct uprobe *uprobe;
2813 int err = 0;
2814
2815 uprobe = utask->active_uprobe;
2816 if (utask->state == UTASK_SSTEP_ACK)
2817 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2818 else if (utask->state == UTASK_SSTEP_TRAPPED)
2819 arch_uprobe_abort_xol(&uprobe->arch, regs);
2820 else
2821 WARN_ON_ONCE(1);
2822
2823 put_uprobe(uprobe);
2824 utask->active_uprobe = NULL;
2825 utask->state = UTASK_RUNNING;
2826 xol_free_insn_slot(utask);
2827
2828 if (utask->signal_denied) {
2829 set_thread_flag(TIF_SIGPENDING);
2830 utask->signal_denied = false;
2831 }
2832
2833 if (unlikely(err)) {
2834 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2835 force_sig(SIGILL);
2836 }
2837 }
2838
2839 /*
2840 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2841 * allows the thread to return from interrupt. After that handle_swbp()
2842 * sets utask->active_uprobe.
2843 *
2844 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2845 * and allows the thread to return from interrupt.
2846 *
2847 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2848 * uprobe_notify_resume().
2849 */
uprobe_notify_resume(struct pt_regs * regs)2850 void uprobe_notify_resume(struct pt_regs *regs)
2851 {
2852 struct uprobe_task *utask;
2853
2854 clear_thread_flag(TIF_UPROBE);
2855
2856 utask = current->utask;
2857 if (utask && utask->active_uprobe)
2858 handle_singlestep(utask, regs);
2859 else
2860 handle_swbp(regs);
2861 }
2862
2863 /*
2864 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2865 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2866 */
uprobe_pre_sstep_notifier(struct pt_regs * regs)2867 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2868 {
2869 if (!current->mm)
2870 return 0;
2871
2872 if (!mm_flags_test(MMF_HAS_UPROBES, current->mm) &&
2873 (!current->utask || !current->utask->return_instances))
2874 return 0;
2875
2876 set_thread_flag(TIF_UPROBE);
2877 return 1;
2878 }
2879
2880 /*
2881 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2882 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2883 */
uprobe_post_sstep_notifier(struct pt_regs * regs)2884 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2885 {
2886 struct uprobe_task *utask = current->utask;
2887
2888 if (!current->mm || !utask || !utask->active_uprobe)
2889 /* task is currently not uprobed */
2890 return 0;
2891
2892 utask->state = UTASK_SSTEP_ACK;
2893 set_thread_flag(TIF_UPROBE);
2894 return 1;
2895 }
2896
2897 static struct notifier_block uprobe_exception_nb = {
2898 .notifier_call = arch_uprobe_exception_notify,
2899 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2900 };
2901
uprobes_init(void)2902 void __init uprobes_init(void)
2903 {
2904 int i;
2905
2906 for (i = 0; i < UPROBES_HASH_SZ; i++)
2907 mutex_init(&uprobes_mmap_mutex[i]);
2908
2909 BUG_ON(register_die_notifier(&uprobe_exception_nb));
2910 }
2911