1 // SPDX-License-Identifier: GPL-2.0+
2 /* Renesas R-Car CAN FD device driver
3 *
4 * Copyright (C) 2015 Renesas Electronics Corp.
5 */
6
7 /* The R-Car CAN FD controller can operate in either one of the below two modes
8 * - CAN FD only mode
9 * - Classical CAN (CAN 2.0) only mode
10 *
11 * This driver puts the controller in CAN FD only mode by default. In this
12 * mode, the controller acts as a CAN FD node that can also interoperate with
13 * CAN 2.0 nodes.
14 *
15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17 * also required to switch modes.
18 *
19 * Note: The h/w manual register naming convention is clumsy and not acceptable
20 * to use as it is in the driver. However, those names are added as comments
21 * wherever it is modified to a readable name.
22 */
23
24 #include <linux/bitmap.h>
25 #include <linux/bitops.h>
26 #include <linux/can/dev.h>
27 #include <linux/clk.h>
28 #include <linux/errno.h>
29 #include <linux/ethtool.h>
30 #include <linux/interrupt.h>
31 #include <linux/iopoll.h>
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/netdevice.h>
36 #include <linux/of.h>
37 #include <linux/phy/phy.h>
38 #include <linux/platform_device.h>
39 #include <linux/reset.h>
40 #include <linux/types.h>
41
42 #define RCANFD_DRV_NAME "rcar_canfd"
43
44 /* Global register bits */
45
46 /* RSCFDnCFDGRMCFG */
47 #define RCANFD_GRMCFG_RCMC BIT(0)
48
49 /* RSCFDnCFDGCFG / RSCFDnGCFG */
50 #define RCANFD_GCFG_EEFE BIT(6)
51 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */
52 #define RCANFD_GCFG_DCS BIT(4)
53 #define RCANFD_GCFG_DCE BIT(1)
54 #define RCANFD_GCFG_TPRI BIT(0)
55
56 /* RSCFDnCFDGCTR / RSCFDnGCTR */
57 #define RCANFD_GCTR_TSRST BIT(16)
58 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */
59 #define RCANFD_GCTR_THLEIE BIT(10)
60 #define RCANFD_GCTR_MEIE BIT(9)
61 #define RCANFD_GCTR_DEIE BIT(8)
62 #define RCANFD_GCTR_GSLPR BIT(2)
63 #define RCANFD_GCTR_GMDC_MASK (0x3)
64 #define RCANFD_GCTR_GMDC_GOPM (0x0)
65 #define RCANFD_GCTR_GMDC_GRESET (0x1)
66 #define RCANFD_GCTR_GMDC_GTEST (0x2)
67
68 /* RSCFDnCFDGSTS / RSCFDnGSTS */
69 #define RCANFD_GSTS_GRAMINIT BIT(3)
70 #define RCANFD_GSTS_GSLPSTS BIT(2)
71 #define RCANFD_GSTS_GHLTSTS BIT(1)
72 #define RCANFD_GSTS_GRSTSTS BIT(0)
73 /* Non-operational status */
74 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3))
75
76 /* RSCFDnCFDGERFL / RSCFDnGERFL */
77 #define RCANFD_GERFL_EEF0_7 GENMASK(23, 16)
78 #define RCANFD_GERFL_EEF(ch) BIT(16 + (ch))
79 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */
80 #define RCANFD_GERFL_THLES BIT(2)
81 #define RCANFD_GERFL_MES BIT(1)
82 #define RCANFD_GERFL_DEF BIT(0)
83
84 #define RCANFD_GERFL_ERR(gpriv, x) \
85 ((x) & (reg_gen4(gpriv, RCANFD_GERFL_EEF0_7, \
86 RCANFD_GERFL_EEF(0) | RCANFD_GERFL_EEF(1)) | \
87 RCANFD_GERFL_MES | \
88 ((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0)))
89
90 /* AFL Rx rules registers */
91
92 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
93 #define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \
94 (((x) & reg_gen4(gpriv, 0x1ff, 0xff)) << \
95 (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8)))
96
97 #define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \
98 (((x) >> (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8))) & \
99 reg_gen4(gpriv, 0x1ff, 0xff))
100
101 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
102 #define RCANFD_GAFLECTR_AFLDAE BIT(8)
103 #define RCANFD_GAFLECTR_AFLPN(gpriv, x) ((x) & reg_gen4(gpriv, 0x7f, 0x1f))
104
105 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
106 #define RCANFD_GAFLID_GAFLLB BIT(29)
107
108 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
109 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x))
110
111 /* Channel register bits */
112
113 /* RSCFDnCmCFG - Classical CAN only */
114 #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24)
115 #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20)
116 #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16)
117 #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0)
118
119 /* RSCFDnCFDCmNCFG - CAN FD only */
120 #define RCANFD_NCFG_NTSEG2(gpriv, x) \
121 (((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 25, 24))
122
123 #define RCANFD_NCFG_NTSEG1(gpriv, x) \
124 (((x) & reg_gen4(gpriv, 0xff, 0x7f)) << reg_gen4(gpriv, 17, 16))
125
126 #define RCANFD_NCFG_NSJW(gpriv, x) \
127 (((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 10, 11))
128
129 #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0)
130
131 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
132 #define RCANFD_CCTR_CTME BIT(24)
133 #define RCANFD_CCTR_ERRD BIT(23)
134 #define RCANFD_CCTR_BOM_MASK (0x3 << 21)
135 #define RCANFD_CCTR_BOM_ISO (0x0 << 21)
136 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21)
137 #define RCANFD_CCTR_BOM_BEND (0x2 << 21)
138 #define RCANFD_CCTR_TDCVFIE BIT(19)
139 #define RCANFD_CCTR_SOCOIE BIT(18)
140 #define RCANFD_CCTR_EOCOIE BIT(17)
141 #define RCANFD_CCTR_TAIE BIT(16)
142 #define RCANFD_CCTR_ALIE BIT(15)
143 #define RCANFD_CCTR_BLIE BIT(14)
144 #define RCANFD_CCTR_OLIE BIT(13)
145 #define RCANFD_CCTR_BORIE BIT(12)
146 #define RCANFD_CCTR_BOEIE BIT(11)
147 #define RCANFD_CCTR_EPIE BIT(10)
148 #define RCANFD_CCTR_EWIE BIT(9)
149 #define RCANFD_CCTR_BEIE BIT(8)
150 #define RCANFD_CCTR_CSLPR BIT(2)
151 #define RCANFD_CCTR_CHMDC_MASK (0x3)
152 #define RCANFD_CCTR_CHDMC_COPM (0x0)
153 #define RCANFD_CCTR_CHDMC_CRESET (0x1)
154 #define RCANFD_CCTR_CHDMC_CHLT (0x2)
155
156 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
157 #define RCANFD_CSTS_COMSTS BIT(7)
158 #define RCANFD_CSTS_RECSTS BIT(6)
159 #define RCANFD_CSTS_TRMSTS BIT(5)
160 #define RCANFD_CSTS_BOSTS BIT(4)
161 #define RCANFD_CSTS_EPSTS BIT(3)
162 #define RCANFD_CSTS_SLPSTS BIT(2)
163 #define RCANFD_CSTS_HLTSTS BIT(1)
164 #define RCANFD_CSTS_CRSTSTS BIT(0)
165
166 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff)
167 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff)
168
169 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
170 #define RCANFD_CERFL_ADERR BIT(14)
171 #define RCANFD_CERFL_B0ERR BIT(13)
172 #define RCANFD_CERFL_B1ERR BIT(12)
173 #define RCANFD_CERFL_CERR BIT(11)
174 #define RCANFD_CERFL_AERR BIT(10)
175 #define RCANFD_CERFL_FERR BIT(9)
176 #define RCANFD_CERFL_SERR BIT(8)
177 #define RCANFD_CERFL_ALF BIT(7)
178 #define RCANFD_CERFL_BLF BIT(6)
179 #define RCANFD_CERFL_OVLF BIT(5)
180 #define RCANFD_CERFL_BORF BIT(4)
181 #define RCANFD_CERFL_BOEF BIT(3)
182 #define RCANFD_CERFL_EPF BIT(2)
183 #define RCANFD_CERFL_EWF BIT(1)
184 #define RCANFD_CERFL_BEF BIT(0)
185
186 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */
187
188 /* RSCFDnCFDCmDCFG */
189 #define RCANFD_DCFG_DSJW(gpriv, x) (((x) & reg_gen4(gpriv, 0xf, 0x7)) << 24)
190
191 #define RCANFD_DCFG_DTSEG2(gpriv, x) \
192 (((x) & reg_gen4(gpriv, 0x0f, 0x7)) << reg_gen4(gpriv, 16, 20))
193
194 #define RCANFD_DCFG_DTSEG1(gpriv, x) \
195 (((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 8, 16))
196
197 #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0)
198
199 /* RSCFDnCFDCmFDCFG */
200 #define RCANFD_GEN4_FDCFG_CLOE BIT(30)
201 #define RCANFD_GEN4_FDCFG_FDOE BIT(28)
202 #define RCANFD_FDCFG_TDCE BIT(9)
203 #define RCANFD_FDCFG_TDCOC BIT(8)
204 #define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16)
205
206 /* RSCFDnCFDRFCCx */
207 #define RCANFD_RFCC_RFIM BIT(12)
208 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8)
209 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4)
210 #define RCANFD_RFCC_RFIE BIT(1)
211 #define RCANFD_RFCC_RFE BIT(0)
212
213 /* RSCFDnCFDRFSTSx */
214 #define RCANFD_RFSTS_RFIF BIT(3)
215 #define RCANFD_RFSTS_RFMLT BIT(2)
216 #define RCANFD_RFSTS_RFFLL BIT(1)
217 #define RCANFD_RFSTS_RFEMP BIT(0)
218
219 /* RSCFDnCFDRFIDx */
220 #define RCANFD_RFID_RFIDE BIT(31)
221 #define RCANFD_RFID_RFRTR BIT(30)
222
223 /* RSCFDnCFDRFPTRx */
224 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf)
225 #define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff)
226 #define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff)
227
228 /* RSCFDnCFDRFFDSTSx */
229 #define RCANFD_RFFDSTS_RFFDF BIT(2)
230 #define RCANFD_RFFDSTS_RFBRS BIT(1)
231 #define RCANFD_RFFDSTS_RFESI BIT(0)
232
233 /* Common FIFO bits */
234
235 /* RSCFDnCFDCFCCk */
236 #define RCANFD_CFCC_CFTML(gpriv, x) \
237 (((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 16, 20))
238 #define RCANFD_CFCC_CFM(gpriv, x) (((x) & 0x3) << reg_gen4(gpriv, 8, 16))
239 #define RCANFD_CFCC_CFIM BIT(12)
240 #define RCANFD_CFCC_CFDC(gpriv, x) (((x) & 0x7) << reg_gen4(gpriv, 21, 8))
241 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4)
242 #define RCANFD_CFCC_CFTXIE BIT(2)
243 #define RCANFD_CFCC_CFE BIT(0)
244
245 /* RSCFDnCFDCFSTSk */
246 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff)
247 #define RCANFD_CFSTS_CFTXIF BIT(4)
248 #define RCANFD_CFSTS_CFMLT BIT(2)
249 #define RCANFD_CFSTS_CFFLL BIT(1)
250 #define RCANFD_CFSTS_CFEMP BIT(0)
251
252 /* RSCFDnCFDCFIDk */
253 #define RCANFD_CFID_CFIDE BIT(31)
254 #define RCANFD_CFID_CFRTR BIT(30)
255 #define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff)
256
257 /* RSCFDnCFDCFPTRk */
258 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28)
259 #define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16)
260 #define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0)
261
262 /* RSCFDnCFDCFFDCSTSk */
263 #define RCANFD_CFFDCSTS_CFFDF BIT(2)
264 #define RCANFD_CFFDCSTS_CFBRS BIT(1)
265 #define RCANFD_CFFDCSTS_CFESI BIT(0)
266
267 /* This controller supports either Classical CAN only mode or CAN FD only mode.
268 * These modes are supported in two separate set of register maps & names.
269 * However, some of the register offsets are common for both modes. Those
270 * offsets are listed below as Common registers.
271 *
272 * The CAN FD only mode specific registers & Classical CAN only mode specific
273 * registers are listed separately. Their register names starts with
274 * RCANFD_F_xxx & RCANFD_C_xxx respectively.
275 */
276
277 /* Common registers */
278
279 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
280 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m)))
281 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
282 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m)))
283 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
284 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m)))
285 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
286 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m)))
287
288 /* RSCFDnCFDGCFG / RSCFDnGCFG */
289 #define RCANFD_GCFG (0x0084)
290 /* RSCFDnCFDGCTR / RSCFDnGCTR */
291 #define RCANFD_GCTR (0x0088)
292 /* RSCFDnCFDGCTS / RSCFDnGCTS */
293 #define RCANFD_GSTS (0x008c)
294 /* RSCFDnCFDGERFL / RSCFDnGERFL */
295 #define RCANFD_GERFL (0x0090)
296 /* RSCFDnCFDGTSC / RSCFDnGTSC */
297 #define RCANFD_GTSC (0x0094)
298 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
299 #define RCANFD_GAFLECTR (0x0098)
300 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
301 #define RCANFD_GAFLCFG(ch) (0x009c + (0x04 * ((ch) / 2)))
302 /* RSCFDnCFDRMNB / RSCFDnRMNB */
303 #define RCANFD_RMNB (0x00a4)
304 /* RSCFDnCFDRMND / RSCFDnRMND */
305 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y)))
306
307 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
308 #define RCANFD_RFCC(gpriv, x) (reg_gen4(gpriv, 0x00c0, 0x00b8) + (0x04 * (x)))
309 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
310 #define RCANFD_RFSTS(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x20)
311 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
312 #define RCANFD_RFPCTR(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x40)
313
314 /* Common FIFO Control registers */
315
316 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
317 #define RCANFD_CFCC(gpriv, ch, idx) \
318 (reg_gen4(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx)))
319 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
320 #define RCANFD_CFSTS(gpriv, ch, idx) \
321 (reg_gen4(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx)))
322 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
323 #define RCANFD_CFPCTR(gpriv, ch, idx) \
324 (reg_gen4(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx)))
325
326 /* RSCFDnCFDFESTS / RSCFDnFESTS */
327 #define RCANFD_FESTS (0x0238)
328 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */
329 #define RCANFD_FFSTS (0x023c)
330 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */
331 #define RCANFD_FMSTS (0x0240)
332 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */
333 #define RCANFD_RFISTS (0x0244)
334 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
335 #define RCANFD_CFRISTS (0x0248)
336 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
337 #define RCANFD_CFTISTS (0x024c)
338
339 /* RSCFDnCFDTMCp / RSCFDnTMCp */
340 #define RCANFD_TMC(p) (0x0250 + (0x01 * (p)))
341 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
342 #define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p)))
343
344 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
345 #define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y)))
346 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
347 #define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y)))
348 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
349 #define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y)))
350 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
351 #define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y)))
352 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */
353 #define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y)))
354
355 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
356 #define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m)))
357 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
358 #define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m)))
359 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
360 #define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m)))
361
362 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
363 #define RCANFD_THLCC(m) (0x0400 + (0x04 * (m)))
364 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
365 #define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m)))
366 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
367 #define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m)))
368
369 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
370 #define RCANFD_GTINTSTS0 (0x0460)
371 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
372 #define RCANFD_GTINTSTS1 (0x0464)
373 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
374 #define RCANFD_GTSTCFG (0x0468)
375 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
376 #define RCANFD_GTSTCTR (0x046c)
377 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
378 #define RCANFD_GLOCKK (0x047c)
379 /* RSCFDnCFDGRMCFG */
380 #define RCANFD_GRMCFG (0x04fc)
381
382 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
383 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j)))
384 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
385 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j)))
386 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
387 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j)))
388 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
389 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j)))
390
391 /* Classical CAN only mode register map */
392
393 /* RSCFDnGAFLXXXj offset */
394 #define RCANFD_C_GAFL_OFFSET (0x0500)
395
396 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
397 #define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q)))
398 #define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q)))
399 #define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q)))
400 #define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q)))
401
402 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
403 #define RCANFD_C_RFOFFSET (0x0e00)
404 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x)))
405 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
406 #define RCANFD_C_RFDF(x, df) \
407 (RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
408
409 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
410 #define RCANFD_C_CFOFFSET (0x0e80)
411
412 #define RCANFD_C_CFID(ch, idx) \
413 (RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
414
415 #define RCANFD_C_CFPTR(ch, idx) \
416 (RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
417
418 #define RCANFD_C_CFDF(ch, idx, df) \
419 (RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
420
421 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
422 #define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p)))
423 #define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p)))
424 #define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p)))
425 #define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p)))
426
427 /* RSCFDnTHLACCm */
428 #define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m)))
429 /* RSCFDnRPGACCr */
430 #define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r)))
431
432 /* R-Car Gen4 Classical and CAN FD mode specific register map */
433 #define RCANFD_GEN4_FDCFG(m) (0x1404 + (0x20 * (m)))
434
435 #define RCANFD_GEN4_GAFL_OFFSET (0x1800)
436
437 /* CAN FD mode specific register map */
438
439 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
440 #define RCANFD_F_DCFG(gpriv, m) (reg_gen4(gpriv, 0x1400, 0x0500) + (0x20 * (m)))
441 #define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m)))
442 #define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m)))
443 #define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m)))
444 #define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m)))
445
446 /* RSCFDnCFDGAFLXXXj offset */
447 #define RCANFD_F_GAFL_OFFSET (0x1000)
448
449 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
450 #define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q)))
451 #define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q)))
452 #define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q)))
453 #define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q)))
454
455 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
456 #define RCANFD_F_RFOFFSET(gpriv) reg_gen4(gpriv, 0x6000, 0x3000)
457 #define RCANFD_F_RFID(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
458 #define RCANFD_F_RFPTR(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
459 #define RCANFD_F_RFFDSTS(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
460 #define RCANFD_F_RFDF(gpriv, x, df) \
461 (RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
462
463 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
464 #define RCANFD_F_CFOFFSET(gpriv) reg_gen4(gpriv, 0x6400, 0x3400)
465
466 #define RCANFD_F_CFID(gpriv, ch, idx) \
467 (RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
468
469 #define RCANFD_F_CFPTR(gpriv, ch, idx) \
470 (RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
471
472 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
473 (RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
474
475 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \
476 (RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
477 (0x04 * (df)))
478
479 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
480 #define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p)))
481 #define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p)))
482 #define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p)))
483 #define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b)))
484
485 /* RSCFDnCFDTHLACCm */
486 #define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m)))
487 /* RSCFDnCFDRPGACCr */
488 #define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r)))
489
490 /* Constants */
491 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */
492 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */
493
494 #define RCANFD_NUM_CHANNELS 8 /* Eight channels max */
495 #define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1)
496
497 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16)
498 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */
499
500 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
501 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
502 * number is added to RFFIFO index.
503 */
504 #define RCANFD_RFFIFO_IDX 0
505
506 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
507 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
508 */
509 #define RCANFD_CFFIFO_IDX 0
510
511 struct rcar_canfd_global;
512
513 struct rcar_canfd_hw_info {
514 u8 max_channels;
515 u8 postdiv;
516 /* hardware features */
517 unsigned shared_global_irqs:1; /* Has shared global irqs */
518 unsigned multi_channel_irqs:1; /* Has multiple channel irqs */
519 };
520
521 /* Channel priv data */
522 struct rcar_canfd_channel {
523 struct can_priv can; /* Must be the first member */
524 struct net_device *ndev;
525 struct rcar_canfd_global *gpriv; /* Controller reference */
526 void __iomem *base; /* Register base address */
527 struct phy *transceiver; /* Optional transceiver */
528 struct napi_struct napi;
529 u32 tx_head; /* Incremented on xmit */
530 u32 tx_tail; /* Incremented on xmit done */
531 u32 channel; /* Channel number */
532 spinlock_t tx_lock; /* To protect tx path */
533 };
534
535 /* Global priv data */
536 struct rcar_canfd_global {
537 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
538 void __iomem *base; /* Register base address */
539 struct platform_device *pdev; /* Respective platform device */
540 struct clk *clkp; /* Peripheral clock */
541 struct clk *can_clk; /* fCAN clock */
542 unsigned long channels_mask; /* Enabled channels mask */
543 bool extclk; /* CANFD or Ext clock */
544 bool fdmode; /* CAN FD or Classical CAN only mode */
545 struct reset_control *rstc1;
546 struct reset_control *rstc2;
547 const struct rcar_canfd_hw_info *info;
548 };
549
550 /* CAN FD mode nominal rate constants */
551 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
552 .name = RCANFD_DRV_NAME,
553 .tseg1_min = 2,
554 .tseg1_max = 128,
555 .tseg2_min = 2,
556 .tseg2_max = 32,
557 .sjw_max = 32,
558 .brp_min = 1,
559 .brp_max = 1024,
560 .brp_inc = 1,
561 };
562
563 /* CAN FD mode data rate constants */
564 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
565 .name = RCANFD_DRV_NAME,
566 .tseg1_min = 2,
567 .tseg1_max = 16,
568 .tseg2_min = 2,
569 .tseg2_max = 8,
570 .sjw_max = 8,
571 .brp_min = 1,
572 .brp_max = 256,
573 .brp_inc = 1,
574 };
575
576 /* Classical CAN mode bitrate constants */
577 static const struct can_bittiming_const rcar_canfd_bittiming_const = {
578 .name = RCANFD_DRV_NAME,
579 .tseg1_min = 4,
580 .tseg1_max = 16,
581 .tseg2_min = 2,
582 .tseg2_max = 8,
583 .sjw_max = 4,
584 .brp_min = 1,
585 .brp_max = 1024,
586 .brp_inc = 1,
587 };
588
589 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = {
590 .max_channels = 2,
591 .postdiv = 2,
592 .shared_global_irqs = 1,
593 };
594
595 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = {
596 .max_channels = 8,
597 .postdiv = 2,
598 .shared_global_irqs = 1,
599 };
600
601 static const struct rcar_canfd_hw_info rzg2l_hw_info = {
602 .max_channels = 2,
603 .postdiv = 1,
604 .multi_channel_irqs = 1,
605 };
606
607 /* Helper functions */
is_gen4(struct rcar_canfd_global * gpriv)608 static inline bool is_gen4(struct rcar_canfd_global *gpriv)
609 {
610 return gpriv->info == &rcar_gen4_hw_info;
611 }
612
reg_gen4(struct rcar_canfd_global * gpriv,u32 gen4,u32 not_gen4)613 static inline u32 reg_gen4(struct rcar_canfd_global *gpriv,
614 u32 gen4, u32 not_gen4)
615 {
616 return is_gen4(gpriv) ? gen4 : not_gen4;
617 }
618
rcar_canfd_update(u32 mask,u32 val,u32 __iomem * reg)619 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
620 {
621 u32 data = readl(reg);
622
623 data &= ~mask;
624 data |= (val & mask);
625 writel(data, reg);
626 }
627
rcar_canfd_read(void __iomem * base,u32 offset)628 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
629 {
630 return readl(base + offset);
631 }
632
rcar_canfd_write(void __iomem * base,u32 offset,u32 val)633 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
634 {
635 writel(val, base + offset);
636 }
637
rcar_canfd_set_bit(void __iomem * base,u32 reg,u32 val)638 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
639 {
640 rcar_canfd_update(val, val, base + reg);
641 }
642
rcar_canfd_clear_bit(void __iomem * base,u32 reg,u32 val)643 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
644 {
645 rcar_canfd_update(val, 0, base + reg);
646 }
647
rcar_canfd_update_bit(void __iomem * base,u32 reg,u32 mask,u32 val)648 static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
649 u32 mask, u32 val)
650 {
651 rcar_canfd_update(mask, val, base + reg);
652 }
653
rcar_canfd_get_data(struct rcar_canfd_channel * priv,struct canfd_frame * cf,u32 off)654 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
655 struct canfd_frame *cf, u32 off)
656 {
657 u32 i, lwords;
658
659 lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
660 for (i = 0; i < lwords; i++)
661 *((u32 *)cf->data + i) =
662 rcar_canfd_read(priv->base, off + i * sizeof(u32));
663 }
664
rcar_canfd_put_data(struct rcar_canfd_channel * priv,struct canfd_frame * cf,u32 off)665 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
666 struct canfd_frame *cf, u32 off)
667 {
668 u32 i, lwords;
669
670 lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
671 for (i = 0; i < lwords; i++)
672 rcar_canfd_write(priv->base, off + i * sizeof(u32),
673 *((u32 *)cf->data + i));
674 }
675
rcar_canfd_tx_failure_cleanup(struct net_device * ndev)676 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
677 {
678 u32 i;
679
680 for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
681 can_free_echo_skb(ndev, i, NULL);
682 }
683
rcar_canfd_set_mode(struct rcar_canfd_global * gpriv)684 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv)
685 {
686 if (is_gen4(gpriv)) {
687 u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE
688 : RCANFD_GEN4_FDCFG_CLOE;
689
690 for_each_set_bit(ch, &gpriv->channels_mask,
691 gpriv->info->max_channels)
692 rcar_canfd_set_bit(gpriv->base, RCANFD_GEN4_FDCFG(ch),
693 val);
694 } else {
695 if (gpriv->fdmode)
696 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
697 RCANFD_GRMCFG_RCMC);
698 else
699 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
700 RCANFD_GRMCFG_RCMC);
701 }
702 }
703
rcar_canfd_reset_controller(struct rcar_canfd_global * gpriv)704 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
705 {
706 u32 sts, ch;
707 int err;
708
709 /* Check RAMINIT flag as CAN RAM initialization takes place
710 * after the MCU reset
711 */
712 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
713 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
714 if (err) {
715 dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
716 return err;
717 }
718
719 /* Transition to Global Reset mode */
720 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
721 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
722 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
723
724 /* Ensure Global reset mode */
725 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
726 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
727 if (err) {
728 dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
729 return err;
730 }
731
732 /* Reset Global error flags */
733 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
734
735 /* Set the controller into appropriate mode */
736 rcar_canfd_set_mode(gpriv);
737
738 /* Transition all Channels to reset mode */
739 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
740 rcar_canfd_clear_bit(gpriv->base,
741 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
742
743 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
744 RCANFD_CCTR_CHMDC_MASK,
745 RCANFD_CCTR_CHDMC_CRESET);
746
747 /* Ensure Channel reset mode */
748 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
749 (sts & RCANFD_CSTS_CRSTSTS),
750 2, 500000);
751 if (err) {
752 dev_dbg(&gpriv->pdev->dev,
753 "channel %u reset failed\n", ch);
754 return err;
755 }
756 }
757 return 0;
758 }
759
rcar_canfd_configure_controller(struct rcar_canfd_global * gpriv)760 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
761 {
762 u32 cfg, ch;
763
764 /* Global configuration settings */
765
766 /* ECC Error flag Enable */
767 cfg = RCANFD_GCFG_EEFE;
768
769 if (gpriv->fdmode)
770 /* Truncate payload to configured message size RFPLS */
771 cfg |= RCANFD_GCFG_CMPOC;
772
773 /* Set External Clock if selected */
774 if (gpriv->extclk)
775 cfg |= RCANFD_GCFG_DCS;
776
777 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
778
779 /* Channel configuration settings */
780 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
781 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
782 RCANFD_CCTR_ERRD);
783 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
784 RCANFD_CCTR_BOM_MASK,
785 RCANFD_CCTR_BOM_BENTRY);
786 }
787 }
788
rcar_canfd_configure_afl_rules(struct rcar_canfd_global * gpriv,u32 ch,u32 rule_entry)789 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
790 u32 ch, u32 rule_entry)
791 {
792 int offset, page, num_rules = RCANFD_CHANNEL_NUMRULES;
793 u32 rule_entry_index = rule_entry % 16;
794 u32 ridx = ch + RCANFD_RFFIFO_IDX;
795
796 /* Enable write access to entry */
797 page = RCANFD_GAFL_PAGENUM(rule_entry);
798 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
799 (RCANFD_GAFLECTR_AFLPN(gpriv, page) |
800 RCANFD_GAFLECTR_AFLDAE));
801
802 /* Write number of rules for channel */
803 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch),
804 RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules));
805 if (is_gen4(gpriv))
806 offset = RCANFD_GEN4_GAFL_OFFSET;
807 else if (gpriv->fdmode)
808 offset = RCANFD_F_GAFL_OFFSET;
809 else
810 offset = RCANFD_C_GAFL_OFFSET;
811
812 /* Accept all IDs */
813 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, rule_entry_index), 0);
814 /* IDE or RTR is not considered for matching */
815 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, rule_entry_index), 0);
816 /* Any data length accepted */
817 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, rule_entry_index), 0);
818 /* Place the msg in corresponding Rx FIFO entry */
819 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, rule_entry_index),
820 RCANFD_GAFLP1_GAFLFDP(ridx));
821
822 /* Disable write access to page */
823 rcar_canfd_clear_bit(gpriv->base,
824 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
825 }
826
rcar_canfd_configure_rx(struct rcar_canfd_global * gpriv,u32 ch)827 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
828 {
829 /* Rx FIFO is used for reception */
830 u32 cfg;
831 u16 rfdc, rfpls;
832
833 /* Select Rx FIFO based on channel */
834 u32 ridx = ch + RCANFD_RFFIFO_IDX;
835
836 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */
837 if (gpriv->fdmode)
838 rfpls = 7; /* b111 - Max 64 bytes payload */
839 else
840 rfpls = 0; /* b000 - Max 8 bytes payload */
841
842 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
843 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
844 rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
845 }
846
rcar_canfd_configure_tx(struct rcar_canfd_global * gpriv,u32 ch)847 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
848 {
849 /* Tx/Rx(Common) FIFO configured in Tx mode is
850 * used for transmission
851 *
852 * Each channel has 3 Common FIFO dedicated to them.
853 * Use the 1st (index 0) out of 3
854 */
855 u32 cfg;
856 u16 cftml, cfm, cfdc, cfpls;
857
858 cftml = 0; /* 0th buffer */
859 cfm = 1; /* b01 - Transmit mode */
860 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */
861 if (gpriv->fdmode)
862 cfpls = 7; /* b111 - Max 64 bytes payload */
863 else
864 cfpls = 0; /* b000 - Max 8 bytes payload */
865
866 cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
867 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
868 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
869 rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
870
871 if (gpriv->fdmode)
872 /* Clear FD mode specific control/status register */
873 rcar_canfd_write(gpriv->base,
874 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
875 }
876
rcar_canfd_enable_global_interrupts(struct rcar_canfd_global * gpriv)877 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
878 {
879 u32 ctr;
880
881 /* Clear any stray error interrupt flags */
882 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
883
884 /* Global interrupts setup */
885 ctr = RCANFD_GCTR_MEIE;
886 if (gpriv->fdmode)
887 ctr |= RCANFD_GCTR_CFMPOFIE;
888
889 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
890 }
891
rcar_canfd_disable_global_interrupts(struct rcar_canfd_global * gpriv)892 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
893 *gpriv)
894 {
895 /* Disable all interrupts */
896 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
897
898 /* Clear any stray error interrupt flags */
899 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
900 }
901
rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel * priv)902 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
903 *priv)
904 {
905 u32 ctr, ch = priv->channel;
906
907 /* Clear any stray error flags */
908 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
909
910 /* Channel interrupts setup */
911 ctr = (RCANFD_CCTR_TAIE |
912 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
913 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
914 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
915 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
916 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
917 }
918
rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel * priv)919 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
920 *priv)
921 {
922 u32 ctr, ch = priv->channel;
923
924 ctr = (RCANFD_CCTR_TAIE |
925 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
926 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
927 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
928 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
929 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
930
931 /* Clear any stray error flags */
932 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
933 }
934
rcar_canfd_global_error(struct net_device * ndev)935 static void rcar_canfd_global_error(struct net_device *ndev)
936 {
937 struct rcar_canfd_channel *priv = netdev_priv(ndev);
938 struct rcar_canfd_global *gpriv = priv->gpriv;
939 struct net_device_stats *stats = &ndev->stats;
940 u32 ch = priv->channel;
941 u32 gerfl, sts;
942 u32 ridx = ch + RCANFD_RFFIFO_IDX;
943
944 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
945 if (gerfl & RCANFD_GERFL_EEF(ch)) {
946 netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch);
947 stats->tx_dropped++;
948 }
949 if (gerfl & RCANFD_GERFL_MES) {
950 sts = rcar_canfd_read(priv->base,
951 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
952 if (sts & RCANFD_CFSTS_CFMLT) {
953 netdev_dbg(ndev, "Tx Message Lost flag\n");
954 stats->tx_dropped++;
955 rcar_canfd_write(priv->base,
956 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
957 sts & ~RCANFD_CFSTS_CFMLT);
958 }
959
960 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
961 if (sts & RCANFD_RFSTS_RFMLT) {
962 netdev_dbg(ndev, "Rx Message Lost flag\n");
963 stats->rx_dropped++;
964 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
965 sts & ~RCANFD_RFSTS_RFMLT);
966 }
967 }
968 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
969 /* Message Lost flag will be set for respective channel
970 * when this condition happens with counters and flags
971 * already updated.
972 */
973 netdev_dbg(ndev, "global payload overflow interrupt\n");
974 }
975
976 /* Clear all global error interrupts. Only affected channels bits
977 * get cleared
978 */
979 rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
980 }
981
rcar_canfd_error(struct net_device * ndev,u32 cerfl,u16 txerr,u16 rxerr)982 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
983 u16 txerr, u16 rxerr)
984 {
985 struct rcar_canfd_channel *priv = netdev_priv(ndev);
986 struct net_device_stats *stats = &ndev->stats;
987 struct can_frame *cf;
988 struct sk_buff *skb;
989 u32 ch = priv->channel;
990
991 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
992
993 /* Propagate the error condition to the CAN stack */
994 skb = alloc_can_err_skb(ndev, &cf);
995 if (!skb) {
996 stats->rx_dropped++;
997 return;
998 }
999
1000 /* Channel error interrupts */
1001 if (cerfl & RCANFD_CERFL_BEF) {
1002 netdev_dbg(ndev, "Bus error\n");
1003 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
1004 cf->data[2] = CAN_ERR_PROT_UNSPEC;
1005 priv->can.can_stats.bus_error++;
1006 }
1007 if (cerfl & RCANFD_CERFL_ADERR) {
1008 netdev_dbg(ndev, "ACK Delimiter Error\n");
1009 stats->tx_errors++;
1010 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
1011 }
1012 if (cerfl & RCANFD_CERFL_B0ERR) {
1013 netdev_dbg(ndev, "Bit Error (dominant)\n");
1014 stats->tx_errors++;
1015 cf->data[2] |= CAN_ERR_PROT_BIT0;
1016 }
1017 if (cerfl & RCANFD_CERFL_B1ERR) {
1018 netdev_dbg(ndev, "Bit Error (recessive)\n");
1019 stats->tx_errors++;
1020 cf->data[2] |= CAN_ERR_PROT_BIT1;
1021 }
1022 if (cerfl & RCANFD_CERFL_CERR) {
1023 netdev_dbg(ndev, "CRC Error\n");
1024 stats->rx_errors++;
1025 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1026 }
1027 if (cerfl & RCANFD_CERFL_AERR) {
1028 netdev_dbg(ndev, "ACK Error\n");
1029 stats->tx_errors++;
1030 cf->can_id |= CAN_ERR_ACK;
1031 cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
1032 }
1033 if (cerfl & RCANFD_CERFL_FERR) {
1034 netdev_dbg(ndev, "Form Error\n");
1035 stats->rx_errors++;
1036 cf->data[2] |= CAN_ERR_PROT_FORM;
1037 }
1038 if (cerfl & RCANFD_CERFL_SERR) {
1039 netdev_dbg(ndev, "Stuff Error\n");
1040 stats->rx_errors++;
1041 cf->data[2] |= CAN_ERR_PROT_STUFF;
1042 }
1043 if (cerfl & RCANFD_CERFL_ALF) {
1044 netdev_dbg(ndev, "Arbitration lost Error\n");
1045 priv->can.can_stats.arbitration_lost++;
1046 cf->can_id |= CAN_ERR_LOSTARB;
1047 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
1048 }
1049 if (cerfl & RCANFD_CERFL_BLF) {
1050 netdev_dbg(ndev, "Bus Lock Error\n");
1051 stats->rx_errors++;
1052 cf->can_id |= CAN_ERR_BUSERROR;
1053 }
1054 if (cerfl & RCANFD_CERFL_EWF) {
1055 netdev_dbg(ndev, "Error warning interrupt\n");
1056 priv->can.state = CAN_STATE_ERROR_WARNING;
1057 priv->can.can_stats.error_warning++;
1058 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1059 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
1060 CAN_ERR_CRTL_RX_WARNING;
1061 cf->data[6] = txerr;
1062 cf->data[7] = rxerr;
1063 }
1064 if (cerfl & RCANFD_CERFL_EPF) {
1065 netdev_dbg(ndev, "Error passive interrupt\n");
1066 priv->can.state = CAN_STATE_ERROR_PASSIVE;
1067 priv->can.can_stats.error_passive++;
1068 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1069 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1070 CAN_ERR_CRTL_RX_PASSIVE;
1071 cf->data[6] = txerr;
1072 cf->data[7] = rxerr;
1073 }
1074 if (cerfl & RCANFD_CERFL_BOEF) {
1075 netdev_dbg(ndev, "Bus-off entry interrupt\n");
1076 rcar_canfd_tx_failure_cleanup(ndev);
1077 priv->can.state = CAN_STATE_BUS_OFF;
1078 priv->can.can_stats.bus_off++;
1079 can_bus_off(ndev);
1080 cf->can_id |= CAN_ERR_BUSOFF;
1081 }
1082 if (cerfl & RCANFD_CERFL_OVLF) {
1083 netdev_dbg(ndev,
1084 "Overload Frame Transmission error interrupt\n");
1085 stats->tx_errors++;
1086 cf->can_id |= CAN_ERR_PROT;
1087 cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1088 }
1089
1090 /* Clear channel error interrupts that are handled */
1091 rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1092 RCANFD_CERFL_ERR(~cerfl));
1093 netif_rx(skb);
1094 }
1095
rcar_canfd_tx_done(struct net_device * ndev)1096 static void rcar_canfd_tx_done(struct net_device *ndev)
1097 {
1098 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1099 struct rcar_canfd_global *gpriv = priv->gpriv;
1100 struct net_device_stats *stats = &ndev->stats;
1101 u32 sts;
1102 unsigned long flags;
1103 u32 ch = priv->channel;
1104
1105 do {
1106 u8 unsent, sent;
1107
1108 sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1109 stats->tx_packets++;
1110 stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
1111
1112 spin_lock_irqsave(&priv->tx_lock, flags);
1113 priv->tx_tail++;
1114 sts = rcar_canfd_read(priv->base,
1115 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1116 unsent = RCANFD_CFSTS_CFMC(sts);
1117
1118 /* Wake producer only when there is room */
1119 if (unsent != RCANFD_FIFO_DEPTH)
1120 netif_wake_queue(ndev);
1121
1122 if (priv->tx_head - priv->tx_tail <= unsent) {
1123 spin_unlock_irqrestore(&priv->tx_lock, flags);
1124 break;
1125 }
1126 spin_unlock_irqrestore(&priv->tx_lock, flags);
1127
1128 } while (1);
1129
1130 /* Clear interrupt */
1131 rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1132 sts & ~RCANFD_CFSTS_CFTXIF);
1133 }
1134
rcar_canfd_handle_global_err(struct rcar_canfd_global * gpriv,u32 ch)1135 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
1136 {
1137 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1138 struct net_device *ndev = priv->ndev;
1139 u32 gerfl;
1140
1141 /* Handle global error interrupts */
1142 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1143 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1144 rcar_canfd_global_error(ndev);
1145 }
1146
rcar_canfd_global_err_interrupt(int irq,void * dev_id)1147 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
1148 {
1149 struct rcar_canfd_global *gpriv = dev_id;
1150 u32 ch;
1151
1152 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1153 rcar_canfd_handle_global_err(gpriv, ch);
1154
1155 return IRQ_HANDLED;
1156 }
1157
rcar_canfd_handle_global_receive(struct rcar_canfd_global * gpriv,u32 ch)1158 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
1159 {
1160 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1161 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1162 u32 sts, cc;
1163
1164 /* Handle Rx interrupts */
1165 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1166 cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx));
1167 if (likely(sts & RCANFD_RFSTS_RFIF &&
1168 cc & RCANFD_RFCC_RFIE)) {
1169 if (napi_schedule_prep(&priv->napi)) {
1170 /* Disable Rx FIFO interrupts */
1171 rcar_canfd_clear_bit(priv->base,
1172 RCANFD_RFCC(gpriv, ridx),
1173 RCANFD_RFCC_RFIE);
1174 __napi_schedule(&priv->napi);
1175 }
1176 }
1177 }
1178
rcar_canfd_global_receive_fifo_interrupt(int irq,void * dev_id)1179 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
1180 {
1181 struct rcar_canfd_global *gpriv = dev_id;
1182 u32 ch;
1183
1184 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1185 rcar_canfd_handle_global_receive(gpriv, ch);
1186
1187 return IRQ_HANDLED;
1188 }
1189
rcar_canfd_global_interrupt(int irq,void * dev_id)1190 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1191 {
1192 struct rcar_canfd_global *gpriv = dev_id;
1193 u32 ch;
1194
1195 /* Global error interrupts still indicate a condition specific
1196 * to a channel. RxFIFO interrupt is a global interrupt.
1197 */
1198 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1199 rcar_canfd_handle_global_err(gpriv, ch);
1200 rcar_canfd_handle_global_receive(gpriv, ch);
1201 }
1202 return IRQ_HANDLED;
1203 }
1204
rcar_canfd_state_change(struct net_device * ndev,u16 txerr,u16 rxerr)1205 static void rcar_canfd_state_change(struct net_device *ndev,
1206 u16 txerr, u16 rxerr)
1207 {
1208 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1209 struct net_device_stats *stats = &ndev->stats;
1210 enum can_state rx_state, tx_state, state = priv->can.state;
1211 struct can_frame *cf;
1212 struct sk_buff *skb;
1213
1214 /* Handle transition from error to normal states */
1215 if (txerr < 96 && rxerr < 96)
1216 state = CAN_STATE_ERROR_ACTIVE;
1217 else if (txerr < 128 && rxerr < 128)
1218 state = CAN_STATE_ERROR_WARNING;
1219
1220 if (state != priv->can.state) {
1221 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1222 state, priv->can.state, txerr, rxerr);
1223 skb = alloc_can_err_skb(ndev, &cf);
1224 if (!skb) {
1225 stats->rx_dropped++;
1226 return;
1227 }
1228 tx_state = txerr >= rxerr ? state : 0;
1229 rx_state = txerr <= rxerr ? state : 0;
1230
1231 can_change_state(ndev, cf, tx_state, rx_state);
1232 netif_rx(skb);
1233 }
1234 }
1235
rcar_canfd_handle_channel_tx(struct rcar_canfd_global * gpriv,u32 ch)1236 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
1237 {
1238 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1239 struct net_device *ndev = priv->ndev;
1240 u32 sts;
1241
1242 /* Handle Tx interrupts */
1243 sts = rcar_canfd_read(priv->base,
1244 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1245 if (likely(sts & RCANFD_CFSTS_CFTXIF))
1246 rcar_canfd_tx_done(ndev);
1247 }
1248
rcar_canfd_channel_tx_interrupt(int irq,void * dev_id)1249 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
1250 {
1251 struct rcar_canfd_channel *priv = dev_id;
1252
1253 rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel);
1254
1255 return IRQ_HANDLED;
1256 }
1257
rcar_canfd_handle_channel_err(struct rcar_canfd_global * gpriv,u32 ch)1258 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
1259 {
1260 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1261 struct net_device *ndev = priv->ndev;
1262 u16 txerr, rxerr;
1263 u32 sts, cerfl;
1264
1265 /* Handle channel error interrupts */
1266 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1267 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1268 txerr = RCANFD_CSTS_TECCNT(sts);
1269 rxerr = RCANFD_CSTS_RECCNT(sts);
1270 if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1271 rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1272
1273 /* Handle state change to lower states */
1274 if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
1275 priv->can.state != CAN_STATE_BUS_OFF))
1276 rcar_canfd_state_change(ndev, txerr, rxerr);
1277 }
1278
rcar_canfd_channel_err_interrupt(int irq,void * dev_id)1279 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
1280 {
1281 struct rcar_canfd_channel *priv = dev_id;
1282
1283 rcar_canfd_handle_channel_err(priv->gpriv, priv->channel);
1284
1285 return IRQ_HANDLED;
1286 }
1287
rcar_canfd_channel_interrupt(int irq,void * dev_id)1288 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1289 {
1290 struct rcar_canfd_global *gpriv = dev_id;
1291 u32 ch;
1292
1293 /* Common FIFO is a per channel resource */
1294 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1295 rcar_canfd_handle_channel_err(gpriv, ch);
1296 rcar_canfd_handle_channel_tx(gpriv, ch);
1297 }
1298
1299 return IRQ_HANDLED;
1300 }
1301
rcar_canfd_set_bittiming(struct net_device * dev)1302 static void rcar_canfd_set_bittiming(struct net_device *dev)
1303 {
1304 struct rcar_canfd_channel *priv = netdev_priv(dev);
1305 struct rcar_canfd_global *gpriv = priv->gpriv;
1306 const struct can_bittiming *bt = &priv->can.bittiming;
1307 const struct can_bittiming *dbt = &priv->can.data_bittiming;
1308 u16 brp, sjw, tseg1, tseg2;
1309 u32 cfg;
1310 u32 ch = priv->channel;
1311
1312 /* Nominal bit timing settings */
1313 brp = bt->brp - 1;
1314 sjw = bt->sjw - 1;
1315 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1316 tseg2 = bt->phase_seg2 - 1;
1317
1318 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1319 /* CAN FD only mode */
1320 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) |
1321 RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1322
1323 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1324 netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1325 brp, sjw, tseg1, tseg2);
1326
1327 /* Data bit timing settings */
1328 brp = dbt->brp - 1;
1329 sjw = dbt->sjw - 1;
1330 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1331 tseg2 = dbt->phase_seg2 - 1;
1332
1333 cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) |
1334 RCANFD_DCFG_DSJW(gpriv, sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2));
1335
1336 rcar_canfd_write(priv->base, RCANFD_F_DCFG(gpriv, ch), cfg);
1337 netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1338 brp, sjw, tseg1, tseg2);
1339 } else {
1340 /* Classical CAN only mode */
1341 if (is_gen4(gpriv)) {
1342 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) |
1343 RCANFD_NCFG_NBRP(brp) |
1344 RCANFD_NCFG_NSJW(gpriv, sjw) |
1345 RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1346 } else {
1347 cfg = (RCANFD_CFG_TSEG1(tseg1) |
1348 RCANFD_CFG_BRP(brp) |
1349 RCANFD_CFG_SJW(sjw) |
1350 RCANFD_CFG_TSEG2(tseg2));
1351 }
1352
1353 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1354 netdev_dbg(priv->ndev,
1355 "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1356 brp, sjw, tseg1, tseg2);
1357 }
1358 }
1359
rcar_canfd_start(struct net_device * ndev)1360 static int rcar_canfd_start(struct net_device *ndev)
1361 {
1362 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1363 struct rcar_canfd_global *gpriv = priv->gpriv;
1364 int err = -EOPNOTSUPP;
1365 u32 sts, ch = priv->channel;
1366 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1367
1368 rcar_canfd_set_bittiming(ndev);
1369
1370 rcar_canfd_enable_channel_interrupts(priv);
1371
1372 /* Set channel to Operational mode */
1373 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1374 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1375
1376 /* Verify channel mode change */
1377 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1378 (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1379 if (err) {
1380 netdev_err(ndev, "channel %u communication state failed\n", ch);
1381 goto fail_mode_change;
1382 }
1383
1384 /* Enable Common & Rx FIFO */
1385 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1386 RCANFD_CFCC_CFE);
1387 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1388
1389 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1390 return 0;
1391
1392 fail_mode_change:
1393 rcar_canfd_disable_channel_interrupts(priv);
1394 return err;
1395 }
1396
rcar_canfd_open(struct net_device * ndev)1397 static int rcar_canfd_open(struct net_device *ndev)
1398 {
1399 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1400 struct rcar_canfd_global *gpriv = priv->gpriv;
1401 int err;
1402
1403 err = phy_power_on(priv->transceiver);
1404 if (err) {
1405 netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err));
1406 return err;
1407 }
1408
1409 /* Peripheral clock is already enabled in probe */
1410 err = clk_prepare_enable(gpriv->can_clk);
1411 if (err) {
1412 netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err));
1413 goto out_phy;
1414 }
1415
1416 err = open_candev(ndev);
1417 if (err) {
1418 netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err));
1419 goto out_can_clock;
1420 }
1421
1422 napi_enable(&priv->napi);
1423 err = rcar_canfd_start(ndev);
1424 if (err)
1425 goto out_close;
1426 netif_start_queue(ndev);
1427 return 0;
1428 out_close:
1429 napi_disable(&priv->napi);
1430 close_candev(ndev);
1431 out_can_clock:
1432 clk_disable_unprepare(gpriv->can_clk);
1433 out_phy:
1434 phy_power_off(priv->transceiver);
1435 return err;
1436 }
1437
rcar_canfd_stop(struct net_device * ndev)1438 static void rcar_canfd_stop(struct net_device *ndev)
1439 {
1440 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1441 struct rcar_canfd_global *gpriv = priv->gpriv;
1442 int err;
1443 u32 sts, ch = priv->channel;
1444 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1445
1446 /* Transition to channel reset mode */
1447 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1448 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1449
1450 /* Check Channel reset mode */
1451 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1452 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1453 if (err)
1454 netdev_err(ndev, "channel %u reset failed\n", ch);
1455
1456 rcar_canfd_disable_channel_interrupts(priv);
1457
1458 /* Disable Common & Rx FIFO */
1459 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1460 RCANFD_CFCC_CFE);
1461 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1462
1463 /* Set the state as STOPPED */
1464 priv->can.state = CAN_STATE_STOPPED;
1465 }
1466
rcar_canfd_close(struct net_device * ndev)1467 static int rcar_canfd_close(struct net_device *ndev)
1468 {
1469 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1470 struct rcar_canfd_global *gpriv = priv->gpriv;
1471
1472 netif_stop_queue(ndev);
1473 rcar_canfd_stop(ndev);
1474 napi_disable(&priv->napi);
1475 clk_disable_unprepare(gpriv->can_clk);
1476 close_candev(ndev);
1477 phy_power_off(priv->transceiver);
1478 return 0;
1479 }
1480
rcar_canfd_start_xmit(struct sk_buff * skb,struct net_device * ndev)1481 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1482 struct net_device *ndev)
1483 {
1484 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1485 struct rcar_canfd_global *gpriv = priv->gpriv;
1486 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1487 u32 sts = 0, id, dlc;
1488 unsigned long flags;
1489 u32 ch = priv->channel;
1490
1491 if (can_dev_dropped_skb(ndev, skb))
1492 return NETDEV_TX_OK;
1493
1494 if (cf->can_id & CAN_EFF_FLAG) {
1495 id = cf->can_id & CAN_EFF_MASK;
1496 id |= RCANFD_CFID_CFIDE;
1497 } else {
1498 id = cf->can_id & CAN_SFF_MASK;
1499 }
1500
1501 if (cf->can_id & CAN_RTR_FLAG)
1502 id |= RCANFD_CFID_CFRTR;
1503
1504 dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
1505
1506 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) {
1507 rcar_canfd_write(priv->base,
1508 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
1509 rcar_canfd_write(priv->base,
1510 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
1511
1512 if (can_is_canfd_skb(skb)) {
1513 /* CAN FD frame format */
1514 sts |= RCANFD_CFFDCSTS_CFFDF;
1515 if (cf->flags & CANFD_BRS)
1516 sts |= RCANFD_CFFDCSTS_CFBRS;
1517
1518 if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1519 sts |= RCANFD_CFFDCSTS_CFESI;
1520 }
1521
1522 rcar_canfd_write(priv->base,
1523 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
1524
1525 rcar_canfd_put_data(priv, cf,
1526 RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
1527 } else {
1528 rcar_canfd_write(priv->base,
1529 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1530 rcar_canfd_write(priv->base,
1531 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1532 rcar_canfd_put_data(priv, cf,
1533 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1534 }
1535
1536 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
1537
1538 spin_lock_irqsave(&priv->tx_lock, flags);
1539 priv->tx_head++;
1540
1541 /* Stop the queue if we've filled all FIFO entries */
1542 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1543 netif_stop_queue(ndev);
1544
1545 /* Start Tx: Write 0xff to CFPC to increment the CPU-side
1546 * pointer for the Common FIFO
1547 */
1548 rcar_canfd_write(priv->base,
1549 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
1550
1551 spin_unlock_irqrestore(&priv->tx_lock, flags);
1552 return NETDEV_TX_OK;
1553 }
1554
rcar_canfd_rx_pkt(struct rcar_canfd_channel * priv)1555 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1556 {
1557 struct net_device_stats *stats = &priv->ndev->stats;
1558 struct rcar_canfd_global *gpriv = priv->gpriv;
1559 struct canfd_frame *cf;
1560 struct sk_buff *skb;
1561 u32 sts = 0, id, dlc;
1562 u32 ch = priv->channel;
1563 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1564
1565 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) {
1566 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
1567 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
1568
1569 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
1570
1571 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
1572 sts & RCANFD_RFFDSTS_RFFDF)
1573 skb = alloc_canfd_skb(priv->ndev, &cf);
1574 else
1575 skb = alloc_can_skb(priv->ndev,
1576 (struct can_frame **)&cf);
1577 } else {
1578 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1579 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1580 skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
1581 }
1582
1583 if (!skb) {
1584 stats->rx_dropped++;
1585 return;
1586 }
1587
1588 if (id & RCANFD_RFID_RFIDE)
1589 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1590 else
1591 cf->can_id = id & CAN_SFF_MASK;
1592
1593 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1594 if (sts & RCANFD_RFFDSTS_RFFDF)
1595 cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1596 else
1597 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1598
1599 if (sts & RCANFD_RFFDSTS_RFESI) {
1600 cf->flags |= CANFD_ESI;
1601 netdev_dbg(priv->ndev, "ESI Error\n");
1602 }
1603
1604 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1605 cf->can_id |= CAN_RTR_FLAG;
1606 } else {
1607 if (sts & RCANFD_RFFDSTS_RFBRS)
1608 cf->flags |= CANFD_BRS;
1609
1610 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1611 }
1612 } else {
1613 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1614 if (id & RCANFD_RFID_RFRTR)
1615 cf->can_id |= CAN_RTR_FLAG;
1616 else if (is_gen4(gpriv))
1617 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1618 else
1619 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1620 }
1621
1622 /* Write 0xff to RFPC to increment the CPU-side
1623 * pointer of the Rx FIFO
1624 */
1625 rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
1626
1627 if (!(cf->can_id & CAN_RTR_FLAG))
1628 stats->rx_bytes += cf->len;
1629 stats->rx_packets++;
1630 netif_receive_skb(skb);
1631 }
1632
rcar_canfd_rx_poll(struct napi_struct * napi,int quota)1633 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1634 {
1635 struct rcar_canfd_channel *priv =
1636 container_of(napi, struct rcar_canfd_channel, napi);
1637 struct rcar_canfd_global *gpriv = priv->gpriv;
1638 int num_pkts;
1639 u32 sts;
1640 u32 ch = priv->channel;
1641 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1642
1643 for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1644 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1645 /* Check FIFO empty condition */
1646 if (sts & RCANFD_RFSTS_RFEMP)
1647 break;
1648
1649 rcar_canfd_rx_pkt(priv);
1650
1651 /* Clear interrupt bit */
1652 if (sts & RCANFD_RFSTS_RFIF)
1653 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1654 sts & ~RCANFD_RFSTS_RFIF);
1655 }
1656
1657 /* All packets processed */
1658 if (num_pkts < quota) {
1659 if (napi_complete_done(napi, num_pkts)) {
1660 /* Enable Rx FIFO interrupts */
1661 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
1662 RCANFD_RFCC_RFIE);
1663 }
1664 }
1665 return num_pkts;
1666 }
1667
rcar_canfd_do_set_mode(struct net_device * ndev,enum can_mode mode)1668 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1669 {
1670 int err;
1671
1672 switch (mode) {
1673 case CAN_MODE_START:
1674 err = rcar_canfd_start(ndev);
1675 if (err)
1676 return err;
1677 netif_wake_queue(ndev);
1678 return 0;
1679 default:
1680 return -EOPNOTSUPP;
1681 }
1682 }
1683
rcar_canfd_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)1684 static int rcar_canfd_get_berr_counter(const struct net_device *dev,
1685 struct can_berr_counter *bec)
1686 {
1687 struct rcar_canfd_channel *priv = netdev_priv(dev);
1688 u32 val, ch = priv->channel;
1689
1690 /* Peripheral clock is already enabled in probe */
1691 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1692 bec->txerr = RCANFD_CSTS_TECCNT(val);
1693 bec->rxerr = RCANFD_CSTS_RECCNT(val);
1694 return 0;
1695 }
1696
1697 static const struct net_device_ops rcar_canfd_netdev_ops = {
1698 .ndo_open = rcar_canfd_open,
1699 .ndo_stop = rcar_canfd_close,
1700 .ndo_start_xmit = rcar_canfd_start_xmit,
1701 .ndo_change_mtu = can_change_mtu,
1702 };
1703
1704 static const struct ethtool_ops rcar_canfd_ethtool_ops = {
1705 .get_ts_info = ethtool_op_get_ts_info,
1706 };
1707
rcar_canfd_channel_probe(struct rcar_canfd_global * gpriv,u32 ch,u32 fcan_freq,struct phy * transceiver)1708 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1709 u32 fcan_freq, struct phy *transceiver)
1710 {
1711 const struct rcar_canfd_hw_info *info = gpriv->info;
1712 struct platform_device *pdev = gpriv->pdev;
1713 struct device *dev = &pdev->dev;
1714 struct rcar_canfd_channel *priv;
1715 struct net_device *ndev;
1716 int err = -ENODEV;
1717
1718 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1719 if (!ndev)
1720 return -ENOMEM;
1721
1722 priv = netdev_priv(ndev);
1723
1724 ndev->netdev_ops = &rcar_canfd_netdev_ops;
1725 ndev->ethtool_ops = &rcar_canfd_ethtool_ops;
1726 ndev->flags |= IFF_ECHO;
1727 priv->ndev = ndev;
1728 priv->base = gpriv->base;
1729 priv->transceiver = transceiver;
1730 priv->channel = ch;
1731 priv->gpriv = gpriv;
1732 if (transceiver)
1733 priv->can.bitrate_max = transceiver->attrs.max_link_rate;
1734 priv->can.clock.freq = fcan_freq;
1735 dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq);
1736
1737 if (info->multi_channel_irqs) {
1738 char *irq_name;
1739 int err_irq;
1740 int tx_irq;
1741
1742 err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err");
1743 if (err_irq < 0) {
1744 err = err_irq;
1745 goto fail;
1746 }
1747
1748 tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx");
1749 if (tx_irq < 0) {
1750 err = tx_irq;
1751 goto fail;
1752 }
1753
1754 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err",
1755 ch);
1756 if (!irq_name) {
1757 err = -ENOMEM;
1758 goto fail;
1759 }
1760 err = devm_request_irq(dev, err_irq,
1761 rcar_canfd_channel_err_interrupt, 0,
1762 irq_name, priv);
1763 if (err) {
1764 dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n",
1765 err_irq, ERR_PTR(err));
1766 goto fail;
1767 }
1768 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx",
1769 ch);
1770 if (!irq_name) {
1771 err = -ENOMEM;
1772 goto fail;
1773 }
1774 err = devm_request_irq(dev, tx_irq,
1775 rcar_canfd_channel_tx_interrupt, 0,
1776 irq_name, priv);
1777 if (err) {
1778 dev_err(dev, "devm_request_irq Tx %d failed: %pe\n",
1779 tx_irq, ERR_PTR(err));
1780 goto fail;
1781 }
1782 }
1783
1784 if (gpriv->fdmode) {
1785 priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
1786 priv->can.data_bittiming_const =
1787 &rcar_canfd_data_bittiming_const;
1788
1789 /* Controller starts in CAN FD only mode */
1790 err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1791 if (err)
1792 goto fail;
1793 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1794 } else {
1795 /* Controller starts in Classical CAN only mode */
1796 priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1797 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1798 }
1799
1800 priv->can.do_set_mode = rcar_canfd_do_set_mode;
1801 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1802 SET_NETDEV_DEV(ndev, dev);
1803
1804 netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
1805 RCANFD_NAPI_WEIGHT);
1806 spin_lock_init(&priv->tx_lock);
1807 gpriv->ch[priv->channel] = priv;
1808 err = register_candev(ndev);
1809 if (err) {
1810 dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err));
1811 goto fail_candev;
1812 }
1813 dev_info(dev, "device registered (channel %u)\n", priv->channel);
1814 return 0;
1815
1816 fail_candev:
1817 netif_napi_del(&priv->napi);
1818 fail:
1819 free_candev(ndev);
1820 return err;
1821 }
1822
rcar_canfd_channel_remove(struct rcar_canfd_global * gpriv,u32 ch)1823 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1824 {
1825 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1826
1827 if (priv) {
1828 unregister_candev(priv->ndev);
1829 netif_napi_del(&priv->napi);
1830 free_candev(priv->ndev);
1831 }
1832 }
1833
rcar_canfd_probe(struct platform_device * pdev)1834 static int rcar_canfd_probe(struct platform_device *pdev)
1835 {
1836 struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, };
1837 const struct rcar_canfd_hw_info *info;
1838 struct device *dev = &pdev->dev;
1839 void __iomem *addr;
1840 u32 sts, ch, fcan_freq;
1841 struct rcar_canfd_global *gpriv;
1842 struct device_node *of_child;
1843 unsigned long channels_mask = 0;
1844 int err, ch_irq, g_irq;
1845 int g_err_irq, g_recc_irq;
1846 u32 rule_entry = 0;
1847 bool fdmode = true; /* CAN FD only mode - default */
1848 char name[9] = "channelX";
1849 int i;
1850
1851 info = of_device_get_match_data(dev);
1852
1853 if (of_property_read_bool(dev->of_node, "renesas,no-can-fd"))
1854 fdmode = false; /* Classical CAN only mode */
1855
1856 for (i = 0; i < info->max_channels; ++i) {
1857 name[7] = '0' + i;
1858 of_child = of_get_child_by_name(dev->of_node, name);
1859 if (of_child && of_device_is_available(of_child)) {
1860 channels_mask |= BIT(i);
1861 transceivers[i] = devm_of_phy_optional_get(dev,
1862 of_child, NULL);
1863 }
1864 of_node_put(of_child);
1865 if (IS_ERR(transceivers[i]))
1866 return PTR_ERR(transceivers[i]);
1867 }
1868
1869 if (info->shared_global_irqs) {
1870 ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
1871 if (ch_irq < 0) {
1872 /* For backward compatibility get irq by index */
1873 ch_irq = platform_get_irq(pdev, 0);
1874 if (ch_irq < 0)
1875 return ch_irq;
1876 }
1877
1878 g_irq = platform_get_irq_byname_optional(pdev, "g_int");
1879 if (g_irq < 0) {
1880 /* For backward compatibility get irq by index */
1881 g_irq = platform_get_irq(pdev, 1);
1882 if (g_irq < 0)
1883 return g_irq;
1884 }
1885 } else {
1886 g_err_irq = platform_get_irq_byname(pdev, "g_err");
1887 if (g_err_irq < 0)
1888 return g_err_irq;
1889
1890 g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
1891 if (g_recc_irq < 0)
1892 return g_recc_irq;
1893 }
1894
1895 /* Global controller context */
1896 gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL);
1897 if (!gpriv)
1898 return -ENOMEM;
1899
1900 gpriv->pdev = pdev;
1901 gpriv->channels_mask = channels_mask;
1902 gpriv->fdmode = fdmode;
1903 gpriv->info = info;
1904
1905 gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n");
1906 if (IS_ERR(gpriv->rstc1))
1907 return dev_err_probe(dev, PTR_ERR(gpriv->rstc1),
1908 "failed to get rstp_n\n");
1909
1910 gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n");
1911 if (IS_ERR(gpriv->rstc2))
1912 return dev_err_probe(dev, PTR_ERR(gpriv->rstc2),
1913 "failed to get rstc_n\n");
1914
1915 /* Peripheral clock */
1916 gpriv->clkp = devm_clk_get(dev, "fck");
1917 if (IS_ERR(gpriv->clkp))
1918 return dev_err_probe(dev, PTR_ERR(gpriv->clkp),
1919 "cannot get peripheral clock\n");
1920
1921 /* fCAN clock: Pick External clock. If not available fallback to
1922 * CANFD clock
1923 */
1924 gpriv->can_clk = devm_clk_get(dev, "can_clk");
1925 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
1926 gpriv->can_clk = devm_clk_get(dev, "canfd");
1927 if (IS_ERR(gpriv->can_clk))
1928 return dev_err_probe(dev, PTR_ERR(gpriv->can_clk),
1929 "cannot get canfd clock\n");
1930
1931 /* CANFD clock may be further divided within the IP */
1932 fcan_freq = clk_get_rate(gpriv->can_clk) / info->postdiv;
1933 } else {
1934 fcan_freq = clk_get_rate(gpriv->can_clk);
1935 gpriv->extclk = true;
1936 }
1937
1938 addr = devm_platform_ioremap_resource(pdev, 0);
1939 if (IS_ERR(addr)) {
1940 err = PTR_ERR(addr);
1941 goto fail_dev;
1942 }
1943 gpriv->base = addr;
1944
1945 /* Request IRQ that's common for both channels */
1946 if (info->shared_global_irqs) {
1947 err = devm_request_irq(dev, ch_irq,
1948 rcar_canfd_channel_interrupt, 0,
1949 "canfd.ch_int", gpriv);
1950 if (err) {
1951 dev_err(dev, "devm_request_irq %d failed: %pe\n",
1952 ch_irq, ERR_PTR(err));
1953 goto fail_dev;
1954 }
1955
1956 err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt,
1957 0, "canfd.g_int", gpriv);
1958 if (err) {
1959 dev_err(dev, "devm_request_irq %d failed: %pe\n",
1960 g_irq, ERR_PTR(err));
1961 goto fail_dev;
1962 }
1963 } else {
1964 err = devm_request_irq(dev, g_recc_irq,
1965 rcar_canfd_global_receive_fifo_interrupt, 0,
1966 "canfd.g_recc", gpriv);
1967
1968 if (err) {
1969 dev_err(dev, "devm_request_irq %d failed: %pe\n",
1970 g_recc_irq, ERR_PTR(err));
1971 goto fail_dev;
1972 }
1973
1974 err = devm_request_irq(dev, g_err_irq,
1975 rcar_canfd_global_err_interrupt, 0,
1976 "canfd.g_err", gpriv);
1977 if (err) {
1978 dev_err(dev, "devm_request_irq %d failed: %pe\n",
1979 g_err_irq, ERR_PTR(err));
1980 goto fail_dev;
1981 }
1982 }
1983
1984 err = reset_control_reset(gpriv->rstc1);
1985 if (err)
1986 goto fail_dev;
1987 err = reset_control_reset(gpriv->rstc2);
1988 if (err) {
1989 reset_control_assert(gpriv->rstc1);
1990 goto fail_dev;
1991 }
1992
1993 /* Enable peripheral clock for register access */
1994 err = clk_prepare_enable(gpriv->clkp);
1995 if (err) {
1996 dev_err(dev, "failed to enable peripheral clock: %pe\n",
1997 ERR_PTR(err));
1998 goto fail_reset;
1999 }
2000
2001 err = rcar_canfd_reset_controller(gpriv);
2002 if (err) {
2003 dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err));
2004 goto fail_clk;
2005 }
2006
2007 /* Controller in Global reset & Channel reset mode */
2008 rcar_canfd_configure_controller(gpriv);
2009
2010 /* Configure per channel attributes */
2011 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2012 /* Configure Channel's Rx fifo */
2013 rcar_canfd_configure_rx(gpriv, ch);
2014
2015 /* Configure Channel's Tx (Common) fifo */
2016 rcar_canfd_configure_tx(gpriv, ch);
2017
2018 /* Configure receive rules */
2019 rcar_canfd_configure_afl_rules(gpriv, ch, rule_entry);
2020 rule_entry += RCANFD_CHANNEL_NUMRULES;
2021 }
2022
2023 /* Configure common interrupts */
2024 rcar_canfd_enable_global_interrupts(gpriv);
2025
2026 /* Start Global operation mode */
2027 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
2028 RCANFD_GCTR_GMDC_GOPM);
2029
2030 /* Verify mode change */
2031 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
2032 !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
2033 if (err) {
2034 dev_err(dev, "global operational mode failed\n");
2035 goto fail_mode;
2036 }
2037
2038 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2039 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq,
2040 transceivers[ch]);
2041 if (err)
2042 goto fail_channel;
2043 }
2044
2045 platform_set_drvdata(pdev, gpriv);
2046 dev_info(dev, "global operational state (%s clk, %s mode)\n",
2047 gpriv->extclk ? "ext" : "canfd",
2048 gpriv->fdmode ? "fd" : "classical");
2049 return 0;
2050
2051 fail_channel:
2052 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels)
2053 rcar_canfd_channel_remove(gpriv, ch);
2054 fail_mode:
2055 rcar_canfd_disable_global_interrupts(gpriv);
2056 fail_clk:
2057 clk_disable_unprepare(gpriv->clkp);
2058 fail_reset:
2059 reset_control_assert(gpriv->rstc1);
2060 reset_control_assert(gpriv->rstc2);
2061 fail_dev:
2062 return err;
2063 }
2064
rcar_canfd_remove(struct platform_device * pdev)2065 static void rcar_canfd_remove(struct platform_device *pdev)
2066 {
2067 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
2068 u32 ch;
2069
2070 rcar_canfd_reset_controller(gpriv);
2071 rcar_canfd_disable_global_interrupts(gpriv);
2072
2073 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
2074 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
2075 rcar_canfd_channel_remove(gpriv, ch);
2076 }
2077
2078 /* Enter global sleep mode */
2079 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
2080 clk_disable_unprepare(gpriv->clkp);
2081 reset_control_assert(gpriv->rstc1);
2082 reset_control_assert(gpriv->rstc2);
2083 }
2084
rcar_canfd_suspend(struct device * dev)2085 static int __maybe_unused rcar_canfd_suspend(struct device *dev)
2086 {
2087 return 0;
2088 }
2089
rcar_canfd_resume(struct device * dev)2090 static int __maybe_unused rcar_canfd_resume(struct device *dev)
2091 {
2092 return 0;
2093 }
2094
2095 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
2096 rcar_canfd_resume);
2097
2098 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
2099 { .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info },
2100 { .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info },
2101 { .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info },
2102 { .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info },
2103 { }
2104 };
2105
2106 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
2107
2108 static struct platform_driver rcar_canfd_driver = {
2109 .driver = {
2110 .name = RCANFD_DRV_NAME,
2111 .of_match_table = of_match_ptr(rcar_canfd_of_table),
2112 .pm = &rcar_canfd_pm_ops,
2113 },
2114 .probe = rcar_canfd_probe,
2115 .remove = rcar_canfd_remove,
2116 };
2117
2118 module_platform_driver(rcar_canfd_driver);
2119
2120 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
2121 MODULE_LICENSE("GPL");
2122 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
2123 MODULE_ALIAS("platform:" RCANFD_DRV_NAME);
2124