1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Renesas R-Car CAN FD device driver 3 * 4 * Copyright (C) 2015 Renesas Electronics Corp. 5 */ 6 7 /* The R-Car CAN FD controller can operate in either one of the below two modes 8 * - CAN FD only mode 9 * - Classical CAN (CAN 2.0) only mode 10 * 11 * This driver puts the controller in CAN FD only mode by default. In this 12 * mode, the controller acts as a CAN FD node that can also interoperate with 13 * CAN 2.0 nodes. 14 * 15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add 16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is 17 * also required to switch modes. 18 * 19 * Note: The h/w manual register naming convention is clumsy and not acceptable 20 * to use as it is in the driver. However, those names are added as comments 21 * wherever it is modified to a readable name. 22 */ 23 24 #include <linux/bitfield.h> 25 #include <linux/bitmap.h> 26 #include <linux/bitops.h> 27 #include <linux/can/dev.h> 28 #include <linux/clk.h> 29 #include <linux/errno.h> 30 #include <linux/ethtool.h> 31 #include <linux/interrupt.h> 32 #include <linux/iopoll.h> 33 #include <linux/kernel.h> 34 #include <linux/module.h> 35 #include <linux/moduleparam.h> 36 #include <linux/netdevice.h> 37 #include <linux/of.h> 38 #include <linux/phy/phy.h> 39 #include <linux/platform_device.h> 40 #include <linux/reset.h> 41 #include <linux/types.h> 42 43 #define RCANFD_DRV_NAME "rcar_canfd" 44 45 /* Global register bits */ 46 47 /* RSCFDnCFDGRMCFG */ 48 #define RCANFD_GRMCFG_RCMC BIT(0) 49 50 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 51 #define RCANFD_GCFG_EEFE BIT(6) 52 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */ 53 #define RCANFD_GCFG_DCS BIT(4) 54 #define RCANFD_GCFG_DCE BIT(1) 55 #define RCANFD_GCFG_TPRI BIT(0) 56 57 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 58 #define RCANFD_GCTR_TSRST BIT(16) 59 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */ 60 #define RCANFD_GCTR_THLEIE BIT(10) 61 #define RCANFD_GCTR_MEIE BIT(9) 62 #define RCANFD_GCTR_DEIE BIT(8) 63 #define RCANFD_GCTR_GSLPR BIT(2) 64 #define RCANFD_GCTR_GMDC_MASK (0x3) 65 #define RCANFD_GCTR_GMDC_GOPM (0x0) 66 #define RCANFD_GCTR_GMDC_GRESET (0x1) 67 #define RCANFD_GCTR_GMDC_GTEST (0x2) 68 69 /* RSCFDnCFDGSTS / RSCFDnGSTS */ 70 #define RCANFD_GSTS_GRAMINIT BIT(3) 71 #define RCANFD_GSTS_GSLPSTS BIT(2) 72 #define RCANFD_GSTS_GHLTSTS BIT(1) 73 #define RCANFD_GSTS_GRSTSTS BIT(0) 74 /* Non-operational status */ 75 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3)) 76 77 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 78 #define RCANFD_GERFL_EEF GENMASK(23, 16) 79 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */ 80 #define RCANFD_GERFL_THLES BIT(2) 81 #define RCANFD_GERFL_MES BIT(1) 82 #define RCANFD_GERFL_DEF BIT(0) 83 84 #define RCANFD_GERFL_ERR(gpriv, x) \ 85 ({\ 86 typeof(gpriv) (_gpriv) = (gpriv); \ 87 ((x) & ((FIELD_PREP(RCANFD_GERFL_EEF, (_gpriv)->channels_mask)) | \ 88 RCANFD_GERFL_MES | ((_gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0))); \ 89 }) 90 91 /* AFL Rx rules registers */ 92 93 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 94 #define RCANFD_GAFLECTR_AFLDAE BIT(8) 95 #define RCANFD_GAFLECTR_AFLPN(gpriv, page_num) ((page_num) & (gpriv)->info->max_aflpn) 96 97 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 98 #define RCANFD_GAFLID_GAFLLB BIT(29) 99 100 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */ 101 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x)) 102 103 /* Channel register bits */ 104 105 /* RSCFDnCmCFG - Classical CAN only */ 106 #define RCANFD_CFG_SJW GENMASK(25, 24) 107 #define RCANFD_CFG_TSEG2 GENMASK(22, 20) 108 #define RCANFD_CFG_TSEG1 GENMASK(19, 16) 109 #define RCANFD_CFG_BRP GENMASK(9, 0) 110 111 /* RSCFDnCFDCmNCFG - CAN FD only */ 112 #define RCANFD_NCFG_NBRP GENMASK(9, 0) 113 114 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 115 #define RCANFD_CCTR_CTME BIT(24) 116 #define RCANFD_CCTR_ERRD BIT(23) 117 #define RCANFD_CCTR_BOM_MASK (0x3 << 21) 118 #define RCANFD_CCTR_BOM_ISO (0x0 << 21) 119 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21) 120 #define RCANFD_CCTR_BOM_BEND (0x2 << 21) 121 #define RCANFD_CCTR_TDCVFIE BIT(19) 122 #define RCANFD_CCTR_SOCOIE BIT(18) 123 #define RCANFD_CCTR_EOCOIE BIT(17) 124 #define RCANFD_CCTR_TAIE BIT(16) 125 #define RCANFD_CCTR_ALIE BIT(15) 126 #define RCANFD_CCTR_BLIE BIT(14) 127 #define RCANFD_CCTR_OLIE BIT(13) 128 #define RCANFD_CCTR_BORIE BIT(12) 129 #define RCANFD_CCTR_BOEIE BIT(11) 130 #define RCANFD_CCTR_EPIE BIT(10) 131 #define RCANFD_CCTR_EWIE BIT(9) 132 #define RCANFD_CCTR_BEIE BIT(8) 133 #define RCANFD_CCTR_CSLPR BIT(2) 134 #define RCANFD_CCTR_CHMDC_MASK (0x3) 135 #define RCANFD_CCTR_CHDMC_COPM (0x0) 136 #define RCANFD_CCTR_CHDMC_CRESET (0x1) 137 #define RCANFD_CCTR_CHDMC_CHLT (0x2) 138 139 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 140 #define RCANFD_CSTS_COMSTS BIT(7) 141 #define RCANFD_CSTS_RECSTS BIT(6) 142 #define RCANFD_CSTS_TRMSTS BIT(5) 143 #define RCANFD_CSTS_BOSTS BIT(4) 144 #define RCANFD_CSTS_EPSTS BIT(3) 145 #define RCANFD_CSTS_SLPSTS BIT(2) 146 #define RCANFD_CSTS_HLTSTS BIT(1) 147 #define RCANFD_CSTS_CRSTSTS BIT(0) 148 149 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff) 150 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff) 151 152 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 153 #define RCANFD_CERFL_ADERR BIT(14) 154 #define RCANFD_CERFL_B0ERR BIT(13) 155 #define RCANFD_CERFL_B1ERR BIT(12) 156 #define RCANFD_CERFL_CERR BIT(11) 157 #define RCANFD_CERFL_AERR BIT(10) 158 #define RCANFD_CERFL_FERR BIT(9) 159 #define RCANFD_CERFL_SERR BIT(8) 160 #define RCANFD_CERFL_ALF BIT(7) 161 #define RCANFD_CERFL_BLF BIT(6) 162 #define RCANFD_CERFL_OVLF BIT(5) 163 #define RCANFD_CERFL_BORF BIT(4) 164 #define RCANFD_CERFL_BOEF BIT(3) 165 #define RCANFD_CERFL_EPF BIT(2) 166 #define RCANFD_CERFL_EWF BIT(1) 167 #define RCANFD_CERFL_BEF BIT(0) 168 169 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */ 170 171 /* RSCFDnCFDCmDCFG */ 172 #define RCANFD_DCFG_DBRP GENMASK(7, 0) 173 174 /* RSCFDnCFDCmFDCFG */ 175 #define RCANFD_GEN4_FDCFG_CLOE BIT(30) 176 #define RCANFD_GEN4_FDCFG_FDOE BIT(28) 177 #define RCANFD_FDCFG_TDCO GENMASK(23, 16) 178 #define RCANFD_FDCFG_TDCE BIT(9) 179 #define RCANFD_FDCFG_TDCOC BIT(8) 180 181 /* RSCFDnCFDCmFDSTS */ 182 #define RCANFD_FDSTS_SOC GENMASK(31, 24) 183 #define RCANFD_FDSTS_EOC GENMASK(23, 16) 184 #define RCANFD_GEN4_FDSTS_TDCVF BIT(15) 185 #define RCANFD_GEN4_FDSTS_PNSTS GENMASK(13, 12) 186 #define RCANFD_FDSTS_SOCO BIT(9) 187 #define RCANFD_FDSTS_EOCO BIT(8) 188 #define RCANFD_FDSTS_TDCVF BIT(7) 189 #define RCANFD_FDSTS_TDCR GENMASK(7, 0) 190 191 /* RSCFDnCFDRFCCx */ 192 #define RCANFD_RFCC_RFIM BIT(12) 193 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8) 194 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4) 195 #define RCANFD_RFCC_RFIE BIT(1) 196 #define RCANFD_RFCC_RFE BIT(0) 197 198 /* RSCFDnCFDRFSTSx */ 199 #define RCANFD_RFSTS_RFIF BIT(3) 200 #define RCANFD_RFSTS_RFMLT BIT(2) 201 #define RCANFD_RFSTS_RFFLL BIT(1) 202 #define RCANFD_RFSTS_RFEMP BIT(0) 203 204 /* RSCFDnCFDRFIDx */ 205 #define RCANFD_RFID_RFIDE BIT(31) 206 #define RCANFD_RFID_RFRTR BIT(30) 207 208 /* RSCFDnCFDRFPTRx */ 209 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf) 210 211 /* RSCFDnCFDRFFDSTSx */ 212 #define RCANFD_RFFDSTS_RFFDF BIT(2) 213 #define RCANFD_RFFDSTS_RFBRS BIT(1) 214 #define RCANFD_RFFDSTS_RFESI BIT(0) 215 216 /* Common FIFO bits */ 217 218 /* RSCFDnCFDCFCCk */ 219 #define RCANFD_CFCC_CFTML(gpriv, cftml) \ 220 ({\ 221 typeof(gpriv) (_gpriv) = (gpriv); \ 222 (((cftml) & (_gpriv)->info->max_cftml) << (_gpriv)->info->sh->cftml); \ 223 }) 224 #define RCANFD_CFCC_CFM(gpriv, x) (((x) & 0x3) << (gpriv)->info->sh->cfm) 225 #define RCANFD_CFCC_CFIM BIT(12) 226 #define RCANFD_CFCC_CFDC(gpriv, x) (((x) & 0x7) << (gpriv)->info->sh->cfdc) 227 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4) 228 #define RCANFD_CFCC_CFTXIE BIT(2) 229 #define RCANFD_CFCC_CFE BIT(0) 230 231 /* RSCFDnCFDCFSTSk */ 232 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff) 233 #define RCANFD_CFSTS_CFTXIF BIT(4) 234 #define RCANFD_CFSTS_CFMLT BIT(2) 235 #define RCANFD_CFSTS_CFFLL BIT(1) 236 #define RCANFD_CFSTS_CFEMP BIT(0) 237 238 /* RSCFDnCFDCFIDk */ 239 #define RCANFD_CFID_CFIDE BIT(31) 240 #define RCANFD_CFID_CFRTR BIT(30) 241 242 /* RSCFDnCFDCFPTRk */ 243 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28) 244 245 /* RSCFDnCFDCFFDCSTSk */ 246 #define RCANFD_CFFDCSTS_CFFDF BIT(2) 247 #define RCANFD_CFFDCSTS_CFBRS BIT(1) 248 #define RCANFD_CFFDCSTS_CFESI BIT(0) 249 250 /* This controller supports either Classical CAN only mode or CAN FD only mode. 251 * These modes are supported in two separate set of register maps & names. 252 * However, some of the register offsets are common for both modes. Those 253 * offsets are listed below as Common registers. 254 * 255 * The CAN FD only mode specific registers & Classical CAN only mode specific 256 * registers are listed separately. Their register names starts with 257 * RCANFD_F_xxx & RCANFD_C_xxx respectively. 258 */ 259 260 /* Common registers */ 261 262 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */ 263 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m))) 264 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 265 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m))) 266 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 267 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m))) 268 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 269 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m))) 270 271 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 272 #define RCANFD_GCFG (0x0084) 273 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 274 #define RCANFD_GCTR (0x0088) 275 /* RSCFDnCFDGCTS / RSCFDnGCTS */ 276 #define RCANFD_GSTS (0x008c) 277 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 278 #define RCANFD_GERFL (0x0090) 279 /* RSCFDnCFDGTSC / RSCFDnGTSC */ 280 #define RCANFD_GTSC (0x0094) 281 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 282 #define RCANFD_GAFLECTR (0x0098) 283 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */ 284 #define RCANFD_GAFLCFG(w) (0x009c + (0x04 * (w))) 285 /* RSCFDnCFDRMNB / RSCFDnRMNB */ 286 #define RCANFD_RMNB (0x00a4) 287 /* RSCFDnCFDRMND / RSCFDnRMND */ 288 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y))) 289 290 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */ 291 #define RCANFD_RFCC(gpriv, x) ((gpriv)->info->regs->rfcc + (0x04 * (x))) 292 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */ 293 #define RCANFD_RFSTS(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x20) 294 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */ 295 #define RCANFD_RFPCTR(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x40) 296 297 /* Common FIFO Control registers */ 298 299 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */ 300 #define RCANFD_CFCC(gpriv, ch, idx) \ 301 ((gpriv)->info->regs->cfcc + (0x0c * (ch)) + (0x04 * (idx))) 302 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */ 303 #define RCANFD_CFSTS(gpriv, ch, idx) \ 304 ((gpriv)->info->regs->cfsts + (0x0c * (ch)) + (0x04 * (idx))) 305 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */ 306 #define RCANFD_CFPCTR(gpriv, ch, idx) \ 307 ((gpriv)->info->regs->cfpctr + (0x0c * (ch)) + (0x04 * (idx))) 308 309 /* RSCFDnCFDGRMCFG */ 310 #define RCANFD_GRMCFG (0x04fc) 311 312 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 313 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j))) 314 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */ 315 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j))) 316 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */ 317 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j))) 318 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */ 319 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j))) 320 321 /* Classical CAN only mode register map */ 322 323 /* RSCFDnGAFLXXXj offset */ 324 #define RCANFD_C_GAFL_OFFSET (0x0500) 325 326 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */ 327 #define RCANFD_C_RFOFFSET (0x0e00) 328 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x))) 329 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x))) 330 #define RCANFD_C_RFDF(x, df) \ 331 (RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df))) 332 333 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */ 334 #define RCANFD_C_CFOFFSET (0x0e80) 335 336 #define RCANFD_C_CFID(ch, idx) \ 337 (RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx))) 338 339 #define RCANFD_C_CFPTR(ch, idx) \ 340 (RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx))) 341 342 #define RCANFD_C_CFDF(ch, idx, df) \ 343 (RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df))) 344 345 /* R-Car Gen4 Classical and CAN FD mode specific register map */ 346 #define RCANFD_GEN4_GAFL_OFFSET (0x1800) 347 348 /* CAN FD mode specific register map */ 349 350 /* RSCFDnCFDCmXXX -> gpriv->fcbase[m].xxx */ 351 struct rcar_canfd_f_c { 352 u32 dcfg; 353 u32 cfdcfg; 354 u32 cfdctr; 355 u32 cfdsts; 356 u32 cfdcrc; 357 u32 pad[3]; 358 }; 359 360 /* RSCFDnCFDGAFLXXXj offset */ 361 #define RCANFD_F_GAFL_OFFSET (0x1000) 362 363 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */ 364 #define RCANFD_F_RFOFFSET(gpriv) ((gpriv)->info->regs->rfoffset) 365 #define RCANFD_F_RFID(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x))) 366 #define RCANFD_F_RFPTR(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x))) 367 #define RCANFD_F_RFFDSTS(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x))) 368 #define RCANFD_F_RFDF(gpriv, x, df) \ 369 (RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df))) 370 371 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */ 372 #define RCANFD_F_CFOFFSET(gpriv) ((gpriv)->info->regs->cfoffset) 373 374 #define RCANFD_F_CFID(gpriv, ch, idx) \ 375 (RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx))) 376 377 #define RCANFD_F_CFPTR(gpriv, ch, idx) \ 378 (RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx))) 379 380 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \ 381 (RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx))) 382 383 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \ 384 (RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \ 385 (0x04 * (df))) 386 387 /* Constants */ 388 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */ 389 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */ 390 391 #define RCANFD_NUM_CHANNELS 8 /* Eight channels max */ 392 393 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16) 394 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */ 395 396 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs 397 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel 398 * number is added to RFFIFO index. 399 */ 400 #define RCANFD_RFFIFO_IDX 0 401 402 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common 403 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx. 404 */ 405 #define RCANFD_CFFIFO_IDX 0 406 407 struct rcar_canfd_global; 408 409 struct rcar_canfd_regs { 410 u16 rfcc; /* RX FIFO Configuration/Control Register */ 411 u16 cfcc; /* Common FIFO Configuration/Control Register */ 412 u16 cfsts; /* Common FIFO Status Register */ 413 u16 cfpctr; /* Common FIFO Pointer Control Register */ 414 u16 coffset; /* Channel Data Bitrate Configuration Register */ 415 u16 rfoffset; /* Receive FIFO buffer access ID register */ 416 u16 cfoffset; /* Transmit/receive FIFO buffer access ID register */ 417 }; 418 419 struct rcar_canfd_shift_data { 420 u8 ntseg2; /* Nominal Bit Rate Time Segment 2 Control */ 421 u8 ntseg1; /* Nominal Bit Rate Time Segment 1 Control */ 422 u8 nsjw; /* Nominal Bit Rate Resynchronization Jump Width Control */ 423 u8 dtseg2; /* Data Bit Rate Time Segment 2 Control */ 424 u8 dtseg1; /* Data Bit Rate Time Segment 1 Control */ 425 u8 cftml; /* Common FIFO TX Message Buffer Link */ 426 u8 cfm; /* Common FIFO Mode */ 427 u8 cfdc; /* Common FIFO Depth Configuration */ 428 }; 429 430 struct rcar_canfd_hw_info { 431 const struct can_bittiming_const *nom_bittiming; 432 const struct can_bittiming_const *data_bittiming; 433 const struct can_tdc_const *tdc_const; 434 const struct rcar_canfd_regs *regs; 435 const struct rcar_canfd_shift_data *sh; 436 u8 rnc_field_width; 437 u8 max_aflpn; 438 u8 max_cftml; 439 u8 max_channels; 440 u8 postdiv; 441 /* hardware features */ 442 unsigned shared_global_irqs:1; /* Has shared global irqs */ 443 unsigned multi_channel_irqs:1; /* Has multiple channel irqs */ 444 unsigned ch_interface_mode:1; /* Has channel interface mode */ 445 unsigned shared_can_regs:1; /* Has shared classical can registers */ 446 unsigned external_clk:1; /* Has external clock */ 447 }; 448 449 /* Channel priv data */ 450 struct rcar_canfd_channel { 451 struct can_priv can; /* Must be the first member */ 452 struct net_device *ndev; 453 struct rcar_canfd_global *gpriv; /* Controller reference */ 454 void __iomem *base; /* Register base address */ 455 struct phy *transceiver; /* Optional transceiver */ 456 struct napi_struct napi; 457 u32 tx_head; /* Incremented on xmit */ 458 u32 tx_tail; /* Incremented on xmit done */ 459 u32 channel; /* Channel number */ 460 spinlock_t tx_lock; /* To protect tx path */ 461 }; 462 463 /* Global priv data */ 464 struct rcar_canfd_global { 465 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS]; 466 void __iomem *base; /* Register base address */ 467 struct rcar_canfd_f_c __iomem *fcbase; 468 struct platform_device *pdev; /* Respective platform device */ 469 struct clk *clkp; /* Peripheral clock */ 470 struct clk *can_clk; /* fCAN clock */ 471 struct clk *clk_ram; /* Clock RAM */ 472 unsigned long channels_mask; /* Enabled channels mask */ 473 bool extclk; /* CANFD or Ext clock */ 474 bool fdmode; /* CAN FD or Classical CAN only mode */ 475 struct reset_control *rstc1; 476 struct reset_control *rstc2; 477 const struct rcar_canfd_hw_info *info; 478 }; 479 480 /* CAN FD mode nominal rate constants */ 481 static const struct can_bittiming_const rcar_canfd_gen3_nom_bittiming_const = { 482 .name = RCANFD_DRV_NAME, 483 .tseg1_min = 2, 484 .tseg1_max = 128, 485 .tseg2_min = 2, 486 .tseg2_max = 32, 487 .sjw_max = 32, 488 .brp_min = 1, 489 .brp_max = 1024, 490 .brp_inc = 1, 491 }; 492 493 static const struct can_bittiming_const rcar_canfd_gen4_nom_bittiming_const = { 494 .name = RCANFD_DRV_NAME, 495 .tseg1_min = 2, 496 .tseg1_max = 256, 497 .tseg2_min = 2, 498 .tseg2_max = 128, 499 .sjw_max = 128, 500 .brp_min = 1, 501 .brp_max = 1024, 502 .brp_inc = 1, 503 }; 504 505 /* CAN FD mode data rate constants */ 506 static const struct can_bittiming_const rcar_canfd_gen3_data_bittiming_const = { 507 .name = RCANFD_DRV_NAME, 508 .tseg1_min = 2, 509 .tseg1_max = 16, 510 .tseg2_min = 2, 511 .tseg2_max = 8, 512 .sjw_max = 8, 513 .brp_min = 1, 514 .brp_max = 256, 515 .brp_inc = 1, 516 }; 517 518 static const struct can_bittiming_const rcar_canfd_gen4_data_bittiming_const = { 519 .name = RCANFD_DRV_NAME, 520 .tseg1_min = 2, 521 .tseg1_max = 32, 522 .tseg2_min = 2, 523 .tseg2_max = 16, 524 .sjw_max = 16, 525 .brp_min = 1, 526 .brp_max = 256, 527 .brp_inc = 1, 528 }; 529 530 /* Classical CAN mode bitrate constants */ 531 static const struct can_bittiming_const rcar_canfd_bittiming_const = { 532 .name = RCANFD_DRV_NAME, 533 .tseg1_min = 4, 534 .tseg1_max = 16, 535 .tseg2_min = 2, 536 .tseg2_max = 8, 537 .sjw_max = 4, 538 .brp_min = 1, 539 .brp_max = 1024, 540 .brp_inc = 1, 541 }; 542 543 /* CAN FD Transmission Delay Compensation constants */ 544 static const struct can_tdc_const rcar_canfd_gen3_tdc_const = { 545 .tdcv_min = 1, 546 .tdcv_max = 128, 547 .tdco_min = 1, 548 .tdco_max = 128, 549 .tdcf_min = 0, /* Filter window not supported */ 550 .tdcf_max = 0, 551 }; 552 553 static const struct can_tdc_const rcar_canfd_gen4_tdc_const = { 554 .tdcv_min = 1, 555 .tdcv_max = 256, 556 .tdco_min = 1, 557 .tdco_max = 256, 558 .tdcf_min = 0, /* Filter window not supported */ 559 .tdcf_max = 0, 560 }; 561 562 static const struct rcar_canfd_regs rcar_gen3_regs = { 563 .rfcc = 0x00b8, 564 .cfcc = 0x0118, 565 .cfsts = 0x0178, 566 .cfpctr = 0x01d8, 567 .coffset = 0x0500, 568 .rfoffset = 0x3000, 569 .cfoffset = 0x3400, 570 }; 571 572 static const struct rcar_canfd_regs rcar_gen4_regs = { 573 .rfcc = 0x00c0, 574 .cfcc = 0x0120, 575 .cfsts = 0x01e0, 576 .cfpctr = 0x0240, 577 .coffset = 0x1400, 578 .rfoffset = 0x6000, 579 .cfoffset = 0x6400, 580 }; 581 582 static const struct rcar_canfd_shift_data rcar_gen3_shift_data = { 583 .ntseg2 = 24, 584 .ntseg1 = 16, 585 .nsjw = 11, 586 .dtseg2 = 20, 587 .dtseg1 = 16, 588 .cftml = 20, 589 .cfm = 16, 590 .cfdc = 8, 591 }; 592 593 static const struct rcar_canfd_shift_data rcar_gen4_shift_data = { 594 .ntseg2 = 25, 595 .ntseg1 = 17, 596 .nsjw = 10, 597 .dtseg2 = 16, 598 .dtseg1 = 8, 599 .cftml = 16, 600 .cfm = 8, 601 .cfdc = 21, 602 }; 603 604 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = { 605 .nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const, 606 .data_bittiming = &rcar_canfd_gen3_data_bittiming_const, 607 .tdc_const = &rcar_canfd_gen3_tdc_const, 608 .regs = &rcar_gen3_regs, 609 .sh = &rcar_gen3_shift_data, 610 .rnc_field_width = 8, 611 .max_aflpn = 31, 612 .max_cftml = 15, 613 .max_channels = 2, 614 .postdiv = 2, 615 .shared_global_irqs = 1, 616 .ch_interface_mode = 0, 617 .shared_can_regs = 0, 618 .external_clk = 1, 619 }; 620 621 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = { 622 .nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const, 623 .data_bittiming = &rcar_canfd_gen4_data_bittiming_const, 624 .tdc_const = &rcar_canfd_gen4_tdc_const, 625 .regs = &rcar_gen4_regs, 626 .sh = &rcar_gen4_shift_data, 627 .rnc_field_width = 16, 628 .max_aflpn = 127, 629 .max_cftml = 31, 630 .max_channels = 8, 631 .postdiv = 2, 632 .shared_global_irqs = 1, 633 .ch_interface_mode = 1, 634 .shared_can_regs = 1, 635 .external_clk = 1, 636 }; 637 638 static const struct rcar_canfd_hw_info rzg2l_hw_info = { 639 .nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const, 640 .data_bittiming = &rcar_canfd_gen3_data_bittiming_const, 641 .tdc_const = &rcar_canfd_gen3_tdc_const, 642 .regs = &rcar_gen3_regs, 643 .sh = &rcar_gen3_shift_data, 644 .rnc_field_width = 8, 645 .max_aflpn = 31, 646 .max_cftml = 15, 647 .max_channels = 2, 648 .postdiv = 1, 649 .multi_channel_irqs = 1, 650 .ch_interface_mode = 0, 651 .shared_can_regs = 0, 652 .external_clk = 1, 653 }; 654 655 static const struct rcar_canfd_hw_info r9a09g047_hw_info = { 656 .nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const, 657 .data_bittiming = &rcar_canfd_gen4_data_bittiming_const, 658 .tdc_const = &rcar_canfd_gen4_tdc_const, 659 .regs = &rcar_gen4_regs, 660 .sh = &rcar_gen4_shift_data, 661 .rnc_field_width = 16, 662 .max_aflpn = 63, 663 .max_cftml = 31, 664 .max_channels = 6, 665 .postdiv = 1, 666 .multi_channel_irqs = 1, 667 .ch_interface_mode = 1, 668 .shared_can_regs = 1, 669 .external_clk = 0, 670 }; 671 672 /* Helper functions */ 673 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg) 674 { 675 u32 data = readl(reg); 676 677 data &= ~mask; 678 data |= (val & mask); 679 writel(data, reg); 680 } 681 682 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset) 683 { 684 return readl(base + offset); 685 } 686 687 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val) 688 { 689 writel(val, base + offset); 690 } 691 692 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val) 693 { 694 rcar_canfd_update(val, val, base + reg); 695 } 696 697 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val) 698 { 699 rcar_canfd_update(val, 0, base + reg); 700 } 701 702 static void rcar_canfd_update_bit(void __iomem *base, u32 reg, 703 u32 mask, u32 val) 704 { 705 rcar_canfd_update(mask, val, base + reg); 706 } 707 708 static void rcar_canfd_set_bit_reg(void __iomem *addr, u32 val) 709 { 710 rcar_canfd_update(val, val, addr); 711 } 712 713 static void rcar_canfd_clear_bit_reg(void __iomem *addr, u32 val) 714 { 715 rcar_canfd_update(val, 0, addr); 716 } 717 718 static void rcar_canfd_update_bit_reg(void __iomem *addr, u32 mask, u32 val) 719 { 720 rcar_canfd_update(mask, val, addr); 721 } 722 723 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv, 724 struct canfd_frame *cf, u32 off) 725 { 726 u32 *data = (u32 *)cf->data; 727 u32 i, lwords; 728 729 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 730 for (i = 0; i < lwords; i++) 731 data[i] = rcar_canfd_read(priv->base, off + i * sizeof(u32)); 732 } 733 734 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv, 735 struct canfd_frame *cf, u32 off) 736 { 737 const u32 *data = (u32 *)cf->data; 738 u32 i, lwords; 739 740 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 741 for (i = 0; i < lwords; i++) 742 rcar_canfd_write(priv->base, off + i * sizeof(u32), data[i]); 743 } 744 745 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev) 746 { 747 u32 i; 748 749 for (i = 0; i < RCANFD_FIFO_DEPTH; i++) 750 can_free_echo_skb(ndev, i, NULL); 751 } 752 753 static void rcar_canfd_set_rnc(struct rcar_canfd_global *gpriv, unsigned int ch, 754 unsigned int num_rules) 755 { 756 unsigned int rnc_stride = 32 / gpriv->info->rnc_field_width; 757 unsigned int shift = 32 - (ch % rnc_stride + 1) * gpriv->info->rnc_field_width; 758 unsigned int w = ch / rnc_stride; 759 u32 rnc = num_rules << shift; 760 761 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(w), rnc); 762 } 763 764 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv) 765 { 766 struct device *dev = &gpriv->pdev->dev; 767 u32 sts, ch; 768 int err; 769 770 /* Check RAMINIT flag as CAN RAM initialization takes place 771 * after the MCU reset 772 */ 773 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 774 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000); 775 if (err) { 776 dev_dbg(dev, "global raminit failed\n"); 777 return err; 778 } 779 780 /* Transition to Global Reset mode */ 781 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 782 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, 783 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET); 784 785 /* Ensure Global reset mode */ 786 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 787 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000); 788 if (err) { 789 dev_dbg(dev, "global reset failed\n"); 790 return err; 791 } 792 793 /* Reset Global error flags */ 794 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0); 795 796 /* Set the controller into appropriate mode */ 797 if (!gpriv->info->ch_interface_mode) { 798 if (gpriv->fdmode) 799 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG, 800 RCANFD_GRMCFG_RCMC); 801 else 802 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG, 803 RCANFD_GRMCFG_RCMC); 804 } 805 806 /* Transition all Channels to reset mode */ 807 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 808 rcar_canfd_clear_bit(gpriv->base, 809 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR); 810 811 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 812 RCANFD_CCTR_CHMDC_MASK, 813 RCANFD_CCTR_CHDMC_CRESET); 814 815 /* Ensure Channel reset mode */ 816 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts, 817 (sts & RCANFD_CSTS_CRSTSTS), 818 2, 500000); 819 if (err) { 820 dev_dbg(dev, "channel %u reset failed\n", ch); 821 return err; 822 } 823 824 /* Set the controller into appropriate mode */ 825 if (gpriv->info->ch_interface_mode) { 826 /* Do not set CLOE and FDOE simultaneously */ 827 if (!gpriv->fdmode) { 828 rcar_canfd_clear_bit_reg(&gpriv->fcbase[ch].cfdcfg, 829 RCANFD_GEN4_FDCFG_FDOE); 830 rcar_canfd_set_bit_reg(&gpriv->fcbase[ch].cfdcfg, 831 RCANFD_GEN4_FDCFG_CLOE); 832 } else { 833 rcar_canfd_clear_bit_reg(&gpriv->fcbase[ch].cfdcfg, 834 RCANFD_GEN4_FDCFG_FDOE); 835 rcar_canfd_clear_bit_reg(&gpriv->fcbase[ch].cfdcfg, 836 RCANFD_GEN4_FDCFG_CLOE); 837 } 838 } 839 } 840 841 return 0; 842 } 843 844 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv) 845 { 846 u32 cfg, ch; 847 848 /* Global configuration settings */ 849 850 /* ECC Error flag Enable */ 851 cfg = RCANFD_GCFG_EEFE; 852 853 if (gpriv->fdmode) 854 /* Truncate payload to configured message size RFPLS */ 855 cfg |= RCANFD_GCFG_CMPOC; 856 857 /* Set External Clock if selected */ 858 if (gpriv->extclk) 859 cfg |= RCANFD_GCFG_DCS; 860 861 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg); 862 863 /* Channel configuration settings */ 864 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 865 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch), 866 RCANFD_CCTR_ERRD); 867 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 868 RCANFD_CCTR_BOM_MASK, 869 RCANFD_CCTR_BOM_BENTRY); 870 } 871 } 872 873 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv, 874 u32 ch, u32 rule_entry) 875 { 876 unsigned int offset, page, num_rules = RCANFD_CHANNEL_NUMRULES; 877 u32 rule_entry_index = rule_entry % 16; 878 u32 ridx = ch + RCANFD_RFFIFO_IDX; 879 880 /* Enable write access to entry */ 881 page = RCANFD_GAFL_PAGENUM(rule_entry); 882 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR, 883 (RCANFD_GAFLECTR_AFLPN(gpriv, page) | 884 RCANFD_GAFLECTR_AFLDAE)); 885 886 /* Write number of rules for channel */ 887 rcar_canfd_set_rnc(gpriv, ch, num_rules); 888 if (gpriv->info->shared_can_regs) 889 offset = RCANFD_GEN4_GAFL_OFFSET; 890 else if (gpriv->fdmode) 891 offset = RCANFD_F_GAFL_OFFSET; 892 else 893 offset = RCANFD_C_GAFL_OFFSET; 894 895 /* Accept all IDs */ 896 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, rule_entry_index), 0); 897 /* IDE or RTR is not considered for matching */ 898 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, rule_entry_index), 0); 899 /* Any data length accepted */ 900 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, rule_entry_index), 0); 901 /* Place the msg in corresponding Rx FIFO entry */ 902 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, rule_entry_index), 903 RCANFD_GAFLP1_GAFLFDP(ridx)); 904 905 /* Disable write access to page */ 906 rcar_canfd_clear_bit(gpriv->base, 907 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE); 908 } 909 910 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch) 911 { 912 /* Rx FIFO is used for reception */ 913 u32 cfg; 914 u16 rfdc, rfpls; 915 916 /* Select Rx FIFO based on channel */ 917 u32 ridx = ch + RCANFD_RFFIFO_IDX; 918 919 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */ 920 if (gpriv->fdmode) 921 rfpls = 7; /* b111 - Max 64 bytes payload */ 922 else 923 rfpls = 0; /* b000 - Max 8 bytes payload */ 924 925 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) | 926 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE); 927 rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg); 928 } 929 930 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch) 931 { 932 /* Tx/Rx(Common) FIFO configured in Tx mode is 933 * used for transmission 934 * 935 * Each channel has 3 Common FIFO dedicated to them. 936 * Use the 1st (index 0) out of 3 937 */ 938 u32 cfg; 939 u16 cftml, cfm, cfdc, cfpls; 940 941 cftml = 0; /* 0th buffer */ 942 cfm = 1; /* b01 - Transmit mode */ 943 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */ 944 if (gpriv->fdmode) 945 cfpls = 7; /* b111 - Max 64 bytes payload */ 946 else 947 cfpls = 0; /* b000 - Max 8 bytes payload */ 948 949 cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) | 950 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) | 951 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE); 952 rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg); 953 954 if (gpriv->fdmode) 955 /* Clear FD mode specific control/status register */ 956 rcar_canfd_write(gpriv->base, 957 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0); 958 } 959 960 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv) 961 { 962 u32 ctr; 963 964 /* Clear any stray error interrupt flags */ 965 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 966 967 /* Global interrupts setup */ 968 ctr = RCANFD_GCTR_MEIE; 969 if (gpriv->fdmode) 970 ctr |= RCANFD_GCTR_CFMPOFIE; 971 972 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr); 973 } 974 975 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global 976 *gpriv) 977 { 978 /* Disable all interrupts */ 979 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0); 980 981 /* Clear any stray error interrupt flags */ 982 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 983 } 984 985 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel 986 *priv) 987 { 988 u32 ctr, ch = priv->channel; 989 990 /* Clear any stray error flags */ 991 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 992 993 /* Channel interrupts setup */ 994 ctr = (RCANFD_CCTR_TAIE | 995 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 996 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 997 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 998 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 999 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr); 1000 } 1001 1002 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel 1003 *priv) 1004 { 1005 u32 ctr, ch = priv->channel; 1006 1007 ctr = (RCANFD_CCTR_TAIE | 1008 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 1009 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 1010 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 1011 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 1012 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr); 1013 1014 /* Clear any stray error flags */ 1015 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 1016 } 1017 1018 static void rcar_canfd_global_error(struct net_device *ndev) 1019 { 1020 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1021 struct rcar_canfd_global *gpriv = priv->gpriv; 1022 struct net_device_stats *stats = &ndev->stats; 1023 u32 ch = priv->channel; 1024 u32 gerfl, sts; 1025 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1026 1027 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1028 if (gerfl & FIELD_PREP(RCANFD_GERFL_EEF, BIT(ch))) { 1029 netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch); 1030 stats->tx_dropped++; 1031 } 1032 if (gerfl & RCANFD_GERFL_MES) { 1033 sts = rcar_canfd_read(priv->base, 1034 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1035 if (sts & RCANFD_CFSTS_CFMLT) { 1036 netdev_dbg(ndev, "Tx Message Lost flag\n"); 1037 stats->tx_dropped++; 1038 rcar_canfd_write(priv->base, 1039 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 1040 sts & ~RCANFD_CFSTS_CFMLT); 1041 } 1042 1043 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1044 if (sts & RCANFD_RFSTS_RFMLT) { 1045 netdev_dbg(ndev, "Rx Message Lost flag\n"); 1046 stats->rx_dropped++; 1047 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 1048 sts & ~RCANFD_RFSTS_RFMLT); 1049 } 1050 } 1051 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) { 1052 /* Message Lost flag will be set for respective channel 1053 * when this condition happens with counters and flags 1054 * already updated. 1055 */ 1056 netdev_dbg(ndev, "global payload overflow interrupt\n"); 1057 } 1058 1059 /* Clear all global error interrupts. Only affected channels bits 1060 * get cleared 1061 */ 1062 rcar_canfd_write(priv->base, RCANFD_GERFL, 0); 1063 } 1064 1065 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl, 1066 u16 txerr, u16 rxerr) 1067 { 1068 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1069 struct net_device_stats *stats = &ndev->stats; 1070 struct can_frame *cf; 1071 struct sk_buff *skb; 1072 u32 ch = priv->channel; 1073 1074 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr); 1075 1076 /* Propagate the error condition to the CAN stack */ 1077 skb = alloc_can_err_skb(ndev, &cf); 1078 if (!skb) { 1079 stats->rx_dropped++; 1080 return; 1081 } 1082 1083 /* Channel error interrupts */ 1084 if (cerfl & RCANFD_CERFL_BEF) { 1085 netdev_dbg(ndev, "Bus error\n"); 1086 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT; 1087 cf->data[2] = CAN_ERR_PROT_UNSPEC; 1088 priv->can.can_stats.bus_error++; 1089 } 1090 if (cerfl & RCANFD_CERFL_ADERR) { 1091 netdev_dbg(ndev, "ACK Delimiter Error\n"); 1092 stats->tx_errors++; 1093 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL; 1094 } 1095 if (cerfl & RCANFD_CERFL_B0ERR) { 1096 netdev_dbg(ndev, "Bit Error (dominant)\n"); 1097 stats->tx_errors++; 1098 cf->data[2] |= CAN_ERR_PROT_BIT0; 1099 } 1100 if (cerfl & RCANFD_CERFL_B1ERR) { 1101 netdev_dbg(ndev, "Bit Error (recessive)\n"); 1102 stats->tx_errors++; 1103 cf->data[2] |= CAN_ERR_PROT_BIT1; 1104 } 1105 if (cerfl & RCANFD_CERFL_CERR) { 1106 netdev_dbg(ndev, "CRC Error\n"); 1107 stats->rx_errors++; 1108 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ; 1109 } 1110 if (cerfl & RCANFD_CERFL_AERR) { 1111 netdev_dbg(ndev, "ACK Error\n"); 1112 stats->tx_errors++; 1113 cf->can_id |= CAN_ERR_ACK; 1114 cf->data[3] |= CAN_ERR_PROT_LOC_ACK; 1115 } 1116 if (cerfl & RCANFD_CERFL_FERR) { 1117 netdev_dbg(ndev, "Form Error\n"); 1118 stats->rx_errors++; 1119 cf->data[2] |= CAN_ERR_PROT_FORM; 1120 } 1121 if (cerfl & RCANFD_CERFL_SERR) { 1122 netdev_dbg(ndev, "Stuff Error\n"); 1123 stats->rx_errors++; 1124 cf->data[2] |= CAN_ERR_PROT_STUFF; 1125 } 1126 if (cerfl & RCANFD_CERFL_ALF) { 1127 netdev_dbg(ndev, "Arbitration lost Error\n"); 1128 priv->can.can_stats.arbitration_lost++; 1129 cf->can_id |= CAN_ERR_LOSTARB; 1130 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 1131 } 1132 if (cerfl & RCANFD_CERFL_BLF) { 1133 netdev_dbg(ndev, "Bus Lock Error\n"); 1134 stats->rx_errors++; 1135 cf->can_id |= CAN_ERR_BUSERROR; 1136 } 1137 if (cerfl & RCANFD_CERFL_EWF) { 1138 netdev_dbg(ndev, "Error warning interrupt\n"); 1139 priv->can.state = CAN_STATE_ERROR_WARNING; 1140 priv->can.can_stats.error_warning++; 1141 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1142 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING : 1143 CAN_ERR_CRTL_RX_WARNING; 1144 cf->data[6] = txerr; 1145 cf->data[7] = rxerr; 1146 } 1147 if (cerfl & RCANFD_CERFL_EPF) { 1148 netdev_dbg(ndev, "Error passive interrupt\n"); 1149 priv->can.state = CAN_STATE_ERROR_PASSIVE; 1150 priv->can.can_stats.error_passive++; 1151 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1152 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE : 1153 CAN_ERR_CRTL_RX_PASSIVE; 1154 cf->data[6] = txerr; 1155 cf->data[7] = rxerr; 1156 } 1157 if (cerfl & RCANFD_CERFL_BOEF) { 1158 netdev_dbg(ndev, "Bus-off entry interrupt\n"); 1159 rcar_canfd_tx_failure_cleanup(ndev); 1160 priv->can.state = CAN_STATE_BUS_OFF; 1161 priv->can.can_stats.bus_off++; 1162 can_bus_off(ndev); 1163 cf->can_id |= CAN_ERR_BUSOFF; 1164 } 1165 if (cerfl & RCANFD_CERFL_OVLF) { 1166 netdev_dbg(ndev, 1167 "Overload Frame Transmission error interrupt\n"); 1168 stats->tx_errors++; 1169 cf->can_id |= CAN_ERR_PROT; 1170 cf->data[2] |= CAN_ERR_PROT_OVERLOAD; 1171 } 1172 1173 /* Clear channel error interrupts that are handled */ 1174 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 1175 RCANFD_CERFL_ERR(~cerfl)); 1176 netif_rx(skb); 1177 } 1178 1179 static void rcar_canfd_tx_done(struct net_device *ndev) 1180 { 1181 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1182 struct rcar_canfd_global *gpriv = priv->gpriv; 1183 struct net_device_stats *stats = &ndev->stats; 1184 u32 sts; 1185 unsigned long flags; 1186 u32 ch = priv->channel; 1187 1188 do { 1189 u8 unsent, sent; 1190 1191 sent = priv->tx_tail % RCANFD_FIFO_DEPTH; 1192 stats->tx_packets++; 1193 stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL); 1194 1195 spin_lock_irqsave(&priv->tx_lock, flags); 1196 priv->tx_tail++; 1197 sts = rcar_canfd_read(priv->base, 1198 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1199 unsent = RCANFD_CFSTS_CFMC(sts); 1200 1201 /* Wake producer only when there is room */ 1202 if (unsent != RCANFD_FIFO_DEPTH) 1203 netif_wake_queue(ndev); 1204 1205 if (priv->tx_head - priv->tx_tail <= unsent) { 1206 spin_unlock_irqrestore(&priv->tx_lock, flags); 1207 break; 1208 } 1209 spin_unlock_irqrestore(&priv->tx_lock, flags); 1210 1211 } while (1); 1212 1213 /* Clear interrupt */ 1214 rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 1215 sts & ~RCANFD_CFSTS_CFTXIF); 1216 } 1217 1218 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch) 1219 { 1220 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1221 struct net_device *ndev = priv->ndev; 1222 u32 gerfl; 1223 1224 /* Handle global error interrupts */ 1225 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1226 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl))) 1227 rcar_canfd_global_error(ndev); 1228 } 1229 1230 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id) 1231 { 1232 struct rcar_canfd_global *gpriv = dev_id; 1233 u32 ch; 1234 1235 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1236 rcar_canfd_handle_global_err(gpriv, ch); 1237 1238 return IRQ_HANDLED; 1239 } 1240 1241 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch) 1242 { 1243 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1244 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1245 u32 sts, cc; 1246 1247 /* Handle Rx interrupts */ 1248 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1249 cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx)); 1250 if (likely(sts & RCANFD_RFSTS_RFIF && 1251 cc & RCANFD_RFCC_RFIE)) { 1252 if (napi_schedule_prep(&priv->napi)) { 1253 /* Disable Rx FIFO interrupts */ 1254 rcar_canfd_clear_bit(priv->base, 1255 RCANFD_RFCC(gpriv, ridx), 1256 RCANFD_RFCC_RFIE); 1257 __napi_schedule(&priv->napi); 1258 } 1259 } 1260 } 1261 1262 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id) 1263 { 1264 struct rcar_canfd_global *gpriv = dev_id; 1265 u32 ch; 1266 1267 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1268 rcar_canfd_handle_global_receive(gpriv, ch); 1269 1270 return IRQ_HANDLED; 1271 } 1272 1273 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id) 1274 { 1275 struct rcar_canfd_global *gpriv = dev_id; 1276 u32 ch; 1277 1278 /* Global error interrupts still indicate a condition specific 1279 * to a channel. RxFIFO interrupt is a global interrupt. 1280 */ 1281 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1282 rcar_canfd_handle_global_err(gpriv, ch); 1283 rcar_canfd_handle_global_receive(gpriv, ch); 1284 } 1285 return IRQ_HANDLED; 1286 } 1287 1288 static void rcar_canfd_state_change(struct net_device *ndev, 1289 u16 txerr, u16 rxerr) 1290 { 1291 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1292 struct net_device_stats *stats = &ndev->stats; 1293 enum can_state rx_state, tx_state, state = priv->can.state; 1294 struct can_frame *cf; 1295 struct sk_buff *skb; 1296 1297 /* Handle transition from error to normal states */ 1298 if (txerr < 96 && rxerr < 96) 1299 state = CAN_STATE_ERROR_ACTIVE; 1300 else if (txerr < 128 && rxerr < 128) 1301 state = CAN_STATE_ERROR_WARNING; 1302 1303 if (state != priv->can.state) { 1304 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n", 1305 state, priv->can.state, txerr, rxerr); 1306 skb = alloc_can_err_skb(ndev, &cf); 1307 if (!skb) { 1308 stats->rx_dropped++; 1309 return; 1310 } 1311 tx_state = txerr >= rxerr ? state : 0; 1312 rx_state = txerr <= rxerr ? state : 0; 1313 1314 can_change_state(ndev, cf, tx_state, rx_state); 1315 netif_rx(skb); 1316 } 1317 } 1318 1319 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch) 1320 { 1321 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1322 struct net_device *ndev = priv->ndev; 1323 u32 sts; 1324 1325 /* Handle Tx interrupts */ 1326 sts = rcar_canfd_read(priv->base, 1327 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1328 if (likely(sts & RCANFD_CFSTS_CFTXIF)) 1329 rcar_canfd_tx_done(ndev); 1330 } 1331 1332 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id) 1333 { 1334 struct rcar_canfd_channel *priv = dev_id; 1335 1336 rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel); 1337 1338 return IRQ_HANDLED; 1339 } 1340 1341 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch) 1342 { 1343 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1344 struct net_device *ndev = priv->ndev; 1345 u16 txerr, rxerr; 1346 u32 sts, cerfl; 1347 1348 /* Handle channel error interrupts */ 1349 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch)); 1350 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1351 txerr = RCANFD_CSTS_TECCNT(sts); 1352 rxerr = RCANFD_CSTS_RECCNT(sts); 1353 if (unlikely(RCANFD_CERFL_ERR(cerfl))) 1354 rcar_canfd_error(ndev, cerfl, txerr, rxerr); 1355 1356 /* Handle state change to lower states */ 1357 if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE && 1358 priv->can.state != CAN_STATE_BUS_OFF)) 1359 rcar_canfd_state_change(ndev, txerr, rxerr); 1360 } 1361 1362 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id) 1363 { 1364 struct rcar_canfd_channel *priv = dev_id; 1365 1366 rcar_canfd_handle_channel_err(priv->gpriv, priv->channel); 1367 1368 return IRQ_HANDLED; 1369 } 1370 1371 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id) 1372 { 1373 struct rcar_canfd_global *gpriv = dev_id; 1374 u32 ch; 1375 1376 /* Common FIFO is a per channel resource */ 1377 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1378 rcar_canfd_handle_channel_err(gpriv, ch); 1379 rcar_canfd_handle_channel_tx(gpriv, ch); 1380 } 1381 1382 return IRQ_HANDLED; 1383 } 1384 1385 static inline u32 rcar_canfd_compute_nominal_bit_rate_cfg(struct rcar_canfd_channel *priv, 1386 u16 tseg1, u16 tseg2, u16 sjw, u16 brp) 1387 { 1388 struct rcar_canfd_global *gpriv = priv->gpriv; 1389 const struct rcar_canfd_hw_info *info = gpriv->info; 1390 u32 ntseg1, ntseg2, nsjw, nbrp; 1391 1392 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) { 1393 ntseg1 = (tseg1 & (info->nom_bittiming->tseg1_max - 1)) << info->sh->ntseg1; 1394 ntseg2 = (tseg2 & (info->nom_bittiming->tseg2_max - 1)) << info->sh->ntseg2; 1395 nsjw = (sjw & (info->nom_bittiming->sjw_max - 1)) << info->sh->nsjw; 1396 nbrp = FIELD_PREP(RCANFD_NCFG_NBRP, brp); 1397 } else { 1398 ntseg1 = FIELD_PREP(RCANFD_CFG_TSEG1, tseg1); 1399 ntseg2 = FIELD_PREP(RCANFD_CFG_TSEG2, tseg2); 1400 nsjw = FIELD_PREP(RCANFD_CFG_SJW, sjw); 1401 nbrp = FIELD_PREP(RCANFD_CFG_BRP, brp); 1402 } 1403 1404 return (ntseg1 | ntseg2 | nsjw | nbrp); 1405 } 1406 1407 static inline u32 rcar_canfd_compute_data_bit_rate_cfg(const struct rcar_canfd_hw_info *info, 1408 u16 tseg1, u16 tseg2, u16 sjw, u16 brp) 1409 { 1410 u32 dtseg1, dtseg2, dsjw, dbrp; 1411 1412 dtseg1 = (tseg1 & (info->data_bittiming->tseg1_max - 1)) << info->sh->dtseg1; 1413 dtseg2 = (tseg2 & (info->data_bittiming->tseg2_max - 1)) << info->sh->dtseg2; 1414 dsjw = (sjw & (info->data_bittiming->sjw_max - 1)) << 24; 1415 dbrp = FIELD_PREP(RCANFD_DCFG_DBRP, brp); 1416 1417 return (dtseg1 | dtseg2 | dsjw | dbrp); 1418 } 1419 1420 static void rcar_canfd_set_bittiming(struct net_device *ndev) 1421 { 1422 u32 mask = RCANFD_FDCFG_TDCO | RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC; 1423 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1424 struct rcar_canfd_global *gpriv = priv->gpriv; 1425 const struct can_bittiming *bt = &priv->can.bittiming; 1426 const struct can_bittiming *dbt = &priv->can.fd.data_bittiming; 1427 const struct can_tdc_const *tdc_const = priv->can.fd.tdc_const; 1428 const struct can_tdc *tdc = &priv->can.fd.tdc; 1429 u32 cfg, tdcmode = 0, tdco = 0; 1430 u16 brp, sjw, tseg1, tseg2; 1431 u32 ch = priv->channel; 1432 1433 /* Nominal bit timing settings */ 1434 brp = bt->brp - 1; 1435 sjw = bt->sjw - 1; 1436 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1437 tseg2 = bt->phase_seg2 - 1; 1438 cfg = rcar_canfd_compute_nominal_bit_rate_cfg(priv, tseg1, tseg2, sjw, brp); 1439 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1440 1441 if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD)) 1442 return; 1443 1444 /* Data bit timing settings */ 1445 brp = dbt->brp - 1; 1446 sjw = dbt->sjw - 1; 1447 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1448 tseg2 = dbt->phase_seg2 - 1; 1449 cfg = rcar_canfd_compute_data_bit_rate_cfg(gpriv->info, tseg1, tseg2, sjw, brp); 1450 writel(cfg, &gpriv->fcbase[ch].dcfg); 1451 1452 /* Transceiver Delay Compensation */ 1453 if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_AUTO) { 1454 /* TDC enabled, measured + offset */ 1455 tdcmode = RCANFD_FDCFG_TDCE; 1456 tdco = tdc->tdco - 1; 1457 } else if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_MANUAL) { 1458 /* TDC enabled, offset only */ 1459 tdcmode = RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC; 1460 tdco = min(tdc->tdcv + tdc->tdco, tdc_const->tdco_max) - 1; 1461 } 1462 1463 rcar_canfd_update_bit_reg(&gpriv->fcbase[ch].cfdcfg, mask, 1464 tdcmode | FIELD_PREP(RCANFD_FDCFG_TDCO, tdco)); 1465 } 1466 1467 static int rcar_canfd_start(struct net_device *ndev) 1468 { 1469 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1470 struct rcar_canfd_global *gpriv = priv->gpriv; 1471 int err = -EOPNOTSUPP; 1472 u32 sts, ch = priv->channel; 1473 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1474 1475 rcar_canfd_set_bittiming(ndev); 1476 1477 rcar_canfd_enable_channel_interrupts(priv); 1478 1479 /* Set channel to Operational mode */ 1480 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1481 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM); 1482 1483 /* Verify channel mode change */ 1484 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1485 (sts & RCANFD_CSTS_COMSTS), 2, 500000); 1486 if (err) { 1487 netdev_err(ndev, "channel %u communication state failed\n", ch); 1488 goto fail_mode_change; 1489 } 1490 1491 /* Enable Common & Rx FIFO */ 1492 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1493 RCANFD_CFCC_CFE); 1494 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1495 1496 priv->can.state = CAN_STATE_ERROR_ACTIVE; 1497 return 0; 1498 1499 fail_mode_change: 1500 rcar_canfd_disable_channel_interrupts(priv); 1501 return err; 1502 } 1503 1504 static int rcar_canfd_open(struct net_device *ndev) 1505 { 1506 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1507 struct rcar_canfd_global *gpriv = priv->gpriv; 1508 int err; 1509 1510 err = phy_power_on(priv->transceiver); 1511 if (err) { 1512 netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err)); 1513 return err; 1514 } 1515 1516 /* Peripheral clock is already enabled in probe */ 1517 err = clk_prepare_enable(gpriv->can_clk); 1518 if (err) { 1519 netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err)); 1520 goto out_phy; 1521 } 1522 1523 err = open_candev(ndev); 1524 if (err) { 1525 netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err)); 1526 goto out_can_clock; 1527 } 1528 1529 napi_enable(&priv->napi); 1530 err = rcar_canfd_start(ndev); 1531 if (err) 1532 goto out_close; 1533 netif_start_queue(ndev); 1534 return 0; 1535 out_close: 1536 napi_disable(&priv->napi); 1537 close_candev(ndev); 1538 out_can_clock: 1539 clk_disable_unprepare(gpriv->can_clk); 1540 out_phy: 1541 phy_power_off(priv->transceiver); 1542 return err; 1543 } 1544 1545 static void rcar_canfd_stop(struct net_device *ndev) 1546 { 1547 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1548 struct rcar_canfd_global *gpriv = priv->gpriv; 1549 int err; 1550 u32 sts, ch = priv->channel; 1551 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1552 1553 /* Transition to channel reset mode */ 1554 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1555 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET); 1556 1557 /* Check Channel reset mode */ 1558 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1559 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000); 1560 if (err) 1561 netdev_err(ndev, "channel %u reset failed\n", ch); 1562 1563 rcar_canfd_disable_channel_interrupts(priv); 1564 1565 /* Disable Common & Rx FIFO */ 1566 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1567 RCANFD_CFCC_CFE); 1568 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1569 1570 /* Set the state as STOPPED */ 1571 priv->can.state = CAN_STATE_STOPPED; 1572 } 1573 1574 static int rcar_canfd_close(struct net_device *ndev) 1575 { 1576 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1577 struct rcar_canfd_global *gpriv = priv->gpriv; 1578 1579 netif_stop_queue(ndev); 1580 rcar_canfd_stop(ndev); 1581 napi_disable(&priv->napi); 1582 close_candev(ndev); 1583 clk_disable_unprepare(gpriv->can_clk); 1584 phy_power_off(priv->transceiver); 1585 return 0; 1586 } 1587 1588 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb, 1589 struct net_device *ndev) 1590 { 1591 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1592 struct rcar_canfd_global *gpriv = priv->gpriv; 1593 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 1594 u32 sts = 0, id, dlc; 1595 unsigned long flags; 1596 u32 ch = priv->channel; 1597 1598 if (can_dev_dropped_skb(ndev, skb)) 1599 return NETDEV_TX_OK; 1600 1601 if (cf->can_id & CAN_EFF_FLAG) { 1602 id = cf->can_id & CAN_EFF_MASK; 1603 id |= RCANFD_CFID_CFIDE; 1604 } else { 1605 id = cf->can_id & CAN_SFF_MASK; 1606 } 1607 1608 if (cf->can_id & CAN_RTR_FLAG) 1609 id |= RCANFD_CFID_CFRTR; 1610 1611 dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len)); 1612 1613 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) { 1614 rcar_canfd_write(priv->base, 1615 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id); 1616 rcar_canfd_write(priv->base, 1617 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc); 1618 1619 if (can_is_canfd_skb(skb)) { 1620 /* CAN FD frame format */ 1621 sts |= RCANFD_CFFDCSTS_CFFDF; 1622 if (cf->flags & CANFD_BRS) 1623 sts |= RCANFD_CFFDCSTS_CFBRS; 1624 1625 if (priv->can.state == CAN_STATE_ERROR_PASSIVE) 1626 sts |= RCANFD_CFFDCSTS_CFESI; 1627 } 1628 1629 rcar_canfd_write(priv->base, 1630 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts); 1631 1632 rcar_canfd_put_data(priv, cf, 1633 RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0)); 1634 } else { 1635 rcar_canfd_write(priv->base, 1636 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id); 1637 rcar_canfd_write(priv->base, 1638 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); 1639 rcar_canfd_put_data(priv, cf, 1640 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); 1641 } 1642 1643 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0); 1644 1645 spin_lock_irqsave(&priv->tx_lock, flags); 1646 priv->tx_head++; 1647 1648 /* Stop the queue if we've filled all FIFO entries */ 1649 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH) 1650 netif_stop_queue(ndev); 1651 1652 /* Start Tx: Write 0xff to CFPC to increment the CPU-side 1653 * pointer for the Common FIFO 1654 */ 1655 rcar_canfd_write(priv->base, 1656 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff); 1657 1658 spin_unlock_irqrestore(&priv->tx_lock, flags); 1659 return NETDEV_TX_OK; 1660 } 1661 1662 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv) 1663 { 1664 struct net_device *ndev = priv->ndev; 1665 struct net_device_stats *stats = &ndev->stats; 1666 struct rcar_canfd_global *gpriv = priv->gpriv; 1667 struct canfd_frame *cf; 1668 struct sk_buff *skb; 1669 u32 sts = 0, id, dlc; 1670 u32 ch = priv->channel; 1671 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1672 1673 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) { 1674 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx)); 1675 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx)); 1676 1677 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx)); 1678 1679 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) && 1680 sts & RCANFD_RFFDSTS_RFFDF) 1681 skb = alloc_canfd_skb(ndev, &cf); 1682 else 1683 skb = alloc_can_skb(ndev, (struct can_frame **)&cf); 1684 } else { 1685 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx)); 1686 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx)); 1687 skb = alloc_can_skb(ndev, (struct can_frame **)&cf); 1688 } 1689 1690 if (!skb) { 1691 stats->rx_dropped++; 1692 return; 1693 } 1694 1695 if (id & RCANFD_RFID_RFIDE) 1696 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 1697 else 1698 cf->can_id = id & CAN_SFF_MASK; 1699 1700 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1701 if (sts & RCANFD_RFFDSTS_RFFDF) 1702 cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1703 else 1704 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1705 1706 if (sts & RCANFD_RFFDSTS_RFESI) { 1707 cf->flags |= CANFD_ESI; 1708 netdev_dbg(ndev, "ESI Error\n"); 1709 } 1710 1711 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) { 1712 cf->can_id |= CAN_RTR_FLAG; 1713 } else { 1714 if (sts & RCANFD_RFFDSTS_RFBRS) 1715 cf->flags |= CANFD_BRS; 1716 1717 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1718 } 1719 } else { 1720 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1721 if (id & RCANFD_RFID_RFRTR) 1722 cf->can_id |= CAN_RTR_FLAG; 1723 else if (gpriv->info->shared_can_regs) 1724 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1725 else 1726 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0)); 1727 } 1728 1729 /* Write 0xff to RFPC to increment the CPU-side 1730 * pointer of the Rx FIFO 1731 */ 1732 rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff); 1733 1734 if (!(cf->can_id & CAN_RTR_FLAG)) 1735 stats->rx_bytes += cf->len; 1736 stats->rx_packets++; 1737 netif_receive_skb(skb); 1738 } 1739 1740 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota) 1741 { 1742 struct rcar_canfd_channel *priv = 1743 container_of(napi, struct rcar_canfd_channel, napi); 1744 struct rcar_canfd_global *gpriv = priv->gpriv; 1745 int num_pkts; 1746 u32 sts; 1747 u32 ch = priv->channel; 1748 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1749 1750 for (num_pkts = 0; num_pkts < quota; num_pkts++) { 1751 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1752 /* Check FIFO empty condition */ 1753 if (sts & RCANFD_RFSTS_RFEMP) 1754 break; 1755 1756 rcar_canfd_rx_pkt(priv); 1757 1758 /* Clear interrupt bit */ 1759 if (sts & RCANFD_RFSTS_RFIF) 1760 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 1761 sts & ~RCANFD_RFSTS_RFIF); 1762 } 1763 1764 /* All packets processed */ 1765 if (num_pkts < quota) { 1766 if (napi_complete_done(napi, num_pkts)) { 1767 /* Enable Rx FIFO interrupts */ 1768 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), 1769 RCANFD_RFCC_RFIE); 1770 } 1771 } 1772 return num_pkts; 1773 } 1774 1775 static unsigned int rcar_canfd_get_tdcr(struct rcar_canfd_global *gpriv, 1776 unsigned int ch) 1777 { 1778 u32 sts = readl(&gpriv->fcbase[ch].cfdsts); 1779 u32 tdcr = FIELD_GET(RCANFD_FDSTS_TDCR, sts); 1780 1781 return tdcr & (gpriv->info->tdc_const->tdcv_max - 1); 1782 } 1783 1784 static int rcar_canfd_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv) 1785 { 1786 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1787 u32 tdco = priv->can.fd.tdc.tdco; 1788 u32 tdcr; 1789 1790 /* Transceiver Delay Compensation Result */ 1791 tdcr = rcar_canfd_get_tdcr(priv->gpriv, priv->channel) + 1; 1792 1793 *tdcv = tdcr < tdco ? 0 : tdcr - tdco; 1794 1795 return 0; 1796 } 1797 1798 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode) 1799 { 1800 int err; 1801 1802 switch (mode) { 1803 case CAN_MODE_START: 1804 err = rcar_canfd_start(ndev); 1805 if (err) 1806 return err; 1807 netif_wake_queue(ndev); 1808 return 0; 1809 default: 1810 return -EOPNOTSUPP; 1811 } 1812 } 1813 1814 static int rcar_canfd_get_berr_counter(const struct net_device *ndev, 1815 struct can_berr_counter *bec) 1816 { 1817 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1818 u32 val, ch = priv->channel; 1819 1820 /* Peripheral clock is already enabled in probe */ 1821 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1822 bec->txerr = RCANFD_CSTS_TECCNT(val); 1823 bec->rxerr = RCANFD_CSTS_RECCNT(val); 1824 return 0; 1825 } 1826 1827 static const struct net_device_ops rcar_canfd_netdev_ops = { 1828 .ndo_open = rcar_canfd_open, 1829 .ndo_stop = rcar_canfd_close, 1830 .ndo_start_xmit = rcar_canfd_start_xmit, 1831 }; 1832 1833 static const struct ethtool_ops rcar_canfd_ethtool_ops = { 1834 .get_ts_info = ethtool_op_get_ts_info, 1835 }; 1836 1837 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch, 1838 u32 fcan_freq, struct phy *transceiver) 1839 { 1840 const struct rcar_canfd_hw_info *info = gpriv->info; 1841 struct platform_device *pdev = gpriv->pdev; 1842 struct device *dev = &pdev->dev; 1843 struct rcar_canfd_channel *priv; 1844 struct net_device *ndev; 1845 int err = -ENODEV; 1846 1847 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH); 1848 if (!ndev) 1849 return -ENOMEM; 1850 1851 priv = netdev_priv(ndev); 1852 1853 ndev->netdev_ops = &rcar_canfd_netdev_ops; 1854 ndev->ethtool_ops = &rcar_canfd_ethtool_ops; 1855 ndev->flags |= IFF_ECHO; 1856 priv->ndev = ndev; 1857 priv->base = gpriv->base; 1858 priv->transceiver = transceiver; 1859 priv->channel = ch; 1860 priv->gpriv = gpriv; 1861 if (transceiver) 1862 priv->can.bitrate_max = transceiver->attrs.max_link_rate; 1863 priv->can.clock.freq = fcan_freq; 1864 dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq); 1865 1866 if (info->multi_channel_irqs) { 1867 char *irq_name; 1868 char name[10]; 1869 int err_irq; 1870 int tx_irq; 1871 1872 scnprintf(name, sizeof(name), "ch%u_err", ch); 1873 err_irq = platform_get_irq_byname(pdev, name); 1874 if (err_irq < 0) { 1875 err = err_irq; 1876 goto fail; 1877 } 1878 1879 scnprintf(name, sizeof(name), "ch%u_trx", ch); 1880 tx_irq = platform_get_irq_byname(pdev, name); 1881 if (tx_irq < 0) { 1882 err = tx_irq; 1883 goto fail; 1884 } 1885 1886 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err", 1887 ch); 1888 if (!irq_name) { 1889 err = -ENOMEM; 1890 goto fail; 1891 } 1892 err = devm_request_irq(dev, err_irq, 1893 rcar_canfd_channel_err_interrupt, 0, 1894 irq_name, priv); 1895 if (err) { 1896 dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n", 1897 err_irq, ERR_PTR(err)); 1898 goto fail; 1899 } 1900 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx", 1901 ch); 1902 if (!irq_name) { 1903 err = -ENOMEM; 1904 goto fail; 1905 } 1906 err = devm_request_irq(dev, tx_irq, 1907 rcar_canfd_channel_tx_interrupt, 0, 1908 irq_name, priv); 1909 if (err) { 1910 dev_err(dev, "devm_request_irq Tx %d failed: %pe\n", 1911 tx_irq, ERR_PTR(err)); 1912 goto fail; 1913 } 1914 } 1915 1916 if (gpriv->fdmode) { 1917 priv->can.bittiming_const = gpriv->info->nom_bittiming; 1918 priv->can.fd.data_bittiming_const = gpriv->info->data_bittiming; 1919 priv->can.fd.tdc_const = gpriv->info->tdc_const; 1920 1921 /* Controller starts in CAN FD only mode */ 1922 err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD); 1923 if (err) 1924 goto fail; 1925 1926 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING | 1927 CAN_CTRLMODE_TDC_AUTO | 1928 CAN_CTRLMODE_TDC_MANUAL; 1929 priv->can.fd.do_get_auto_tdcv = rcar_canfd_get_auto_tdcv; 1930 } else { 1931 /* Controller starts in Classical CAN only mode */ 1932 if (gpriv->info->shared_can_regs) 1933 priv->can.bittiming_const = gpriv->info->nom_bittiming; 1934 else 1935 priv->can.bittiming_const = &rcar_canfd_bittiming_const; 1936 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1937 } 1938 1939 priv->can.do_set_mode = rcar_canfd_do_set_mode; 1940 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter; 1941 SET_NETDEV_DEV(ndev, dev); 1942 1943 netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll, 1944 RCANFD_NAPI_WEIGHT); 1945 spin_lock_init(&priv->tx_lock); 1946 gpriv->ch[priv->channel] = priv; 1947 err = register_candev(ndev); 1948 if (err) { 1949 dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err)); 1950 goto fail_candev; 1951 } 1952 dev_info(dev, "device registered (channel %u)\n", priv->channel); 1953 return 0; 1954 1955 fail_candev: 1956 netif_napi_del(&priv->napi); 1957 fail: 1958 free_candev(ndev); 1959 return err; 1960 } 1961 1962 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch) 1963 { 1964 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1965 1966 if (priv) { 1967 unregister_candev(priv->ndev); 1968 netif_napi_del(&priv->napi); 1969 free_candev(priv->ndev); 1970 } 1971 } 1972 1973 static int rcar_canfd_global_init(struct rcar_canfd_global *gpriv) 1974 { 1975 struct device *dev = &gpriv->pdev->dev; 1976 u32 rule_entry = 0; 1977 u32 ch, sts; 1978 int err; 1979 1980 err = reset_control_reset(gpriv->rstc1); 1981 if (err) 1982 return err; 1983 1984 err = reset_control_reset(gpriv->rstc2); 1985 if (err) 1986 goto fail_reset1; 1987 1988 /* Enable peripheral clock for register access */ 1989 err = clk_prepare_enable(gpriv->clkp); 1990 if (err) { 1991 dev_err(dev, "failed to enable peripheral clock: %pe\n", 1992 ERR_PTR(err)); 1993 goto fail_reset2; 1994 } 1995 1996 /* Enable RAM clock */ 1997 err = clk_prepare_enable(gpriv->clk_ram); 1998 if (err) { 1999 dev_err(dev, 2000 "failed to enable RAM clock, error %d\n", err); 2001 goto fail_clk; 2002 } 2003 2004 err = rcar_canfd_reset_controller(gpriv); 2005 if (err) { 2006 dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err)); 2007 goto fail_ram_clk; 2008 } 2009 2010 /* Controller in Global reset & Channel reset mode */ 2011 rcar_canfd_configure_controller(gpriv); 2012 2013 /* Configure per channel attributes */ 2014 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 2015 /* Configure Channel's Rx fifo */ 2016 rcar_canfd_configure_rx(gpriv, ch); 2017 2018 /* Configure Channel's Tx (Common) fifo */ 2019 rcar_canfd_configure_tx(gpriv, ch); 2020 2021 /* Configure receive rules */ 2022 rcar_canfd_configure_afl_rules(gpriv, ch, rule_entry); 2023 rule_entry += RCANFD_CHANNEL_NUMRULES; 2024 } 2025 2026 /* Configure common interrupts */ 2027 rcar_canfd_enable_global_interrupts(gpriv); 2028 2029 /* Start Global operation mode */ 2030 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK, 2031 RCANFD_GCTR_GMDC_GOPM); 2032 2033 /* Verify mode change */ 2034 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 2035 !(sts & RCANFD_GSTS_GNOPM), 2, 500000); 2036 if (err) { 2037 dev_err(dev, "global operational mode failed\n"); 2038 goto fail_mode; 2039 } 2040 2041 return 0; 2042 2043 fail_mode: 2044 rcar_canfd_disable_global_interrupts(gpriv); 2045 fail_ram_clk: 2046 clk_disable_unprepare(gpriv->clk_ram); 2047 fail_clk: 2048 clk_disable_unprepare(gpriv->clkp); 2049 fail_reset2: 2050 reset_control_assert(gpriv->rstc2); 2051 fail_reset1: 2052 reset_control_assert(gpriv->rstc1); 2053 return err; 2054 } 2055 2056 static void rcar_canfd_global_deinit(struct rcar_canfd_global *gpriv, bool full) 2057 { 2058 rcar_canfd_disable_global_interrupts(gpriv); 2059 2060 if (full) { 2061 rcar_canfd_reset_controller(gpriv); 2062 2063 /* Enter global sleep mode */ 2064 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 2065 } 2066 2067 clk_disable_unprepare(gpriv->clk_ram); 2068 clk_disable_unprepare(gpriv->clkp); 2069 reset_control_assert(gpriv->rstc2); 2070 reset_control_assert(gpriv->rstc1); 2071 } 2072 2073 static int rcar_canfd_probe(struct platform_device *pdev) 2074 { 2075 struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, }; 2076 const struct rcar_canfd_hw_info *info; 2077 struct device *dev = &pdev->dev; 2078 void __iomem *addr; 2079 struct rcar_canfd_global *gpriv; 2080 struct device_node *of_child; 2081 unsigned long channels_mask = 0; 2082 int err, ch_irq, g_irq; 2083 int g_err_irq, g_recc_irq; 2084 bool fdmode = true; /* CAN FD only mode - default */ 2085 char name[9] = "channelX"; 2086 u32 ch, fcan_freq; 2087 int i; 2088 2089 info = of_device_get_match_data(dev); 2090 2091 if (of_property_read_bool(dev->of_node, "renesas,no-can-fd")) 2092 fdmode = false; /* Classical CAN only mode */ 2093 2094 for (i = 0; i < info->max_channels; ++i) { 2095 name[7] = '0' + i; 2096 of_child = of_get_available_child_by_name(dev->of_node, name); 2097 if (of_child) { 2098 channels_mask |= BIT(i); 2099 transceivers[i] = devm_of_phy_optional_get(dev, 2100 of_child, NULL); 2101 of_node_put(of_child); 2102 } 2103 if (IS_ERR(transceivers[i])) 2104 return PTR_ERR(transceivers[i]); 2105 } 2106 2107 if (info->shared_global_irqs) { 2108 ch_irq = platform_get_irq_byname_optional(pdev, "ch_int"); 2109 if (ch_irq < 0) { 2110 /* For backward compatibility get irq by index */ 2111 ch_irq = platform_get_irq(pdev, 0); 2112 if (ch_irq < 0) 2113 return ch_irq; 2114 } 2115 2116 g_irq = platform_get_irq_byname_optional(pdev, "g_int"); 2117 if (g_irq < 0) { 2118 /* For backward compatibility get irq by index */ 2119 g_irq = platform_get_irq(pdev, 1); 2120 if (g_irq < 0) 2121 return g_irq; 2122 } 2123 } else { 2124 g_err_irq = platform_get_irq_byname(pdev, "g_err"); 2125 if (g_err_irq < 0) 2126 return g_err_irq; 2127 2128 g_recc_irq = platform_get_irq_byname(pdev, "g_recc"); 2129 if (g_recc_irq < 0) 2130 return g_recc_irq; 2131 } 2132 2133 /* Global controller context */ 2134 gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL); 2135 if (!gpriv) 2136 return -ENOMEM; 2137 2138 gpriv->pdev = pdev; 2139 gpriv->channels_mask = channels_mask; 2140 gpriv->fdmode = fdmode; 2141 gpriv->info = info; 2142 2143 gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n"); 2144 if (IS_ERR(gpriv->rstc1)) 2145 return dev_err_probe(dev, PTR_ERR(gpriv->rstc1), 2146 "failed to get rstp_n\n"); 2147 2148 gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n"); 2149 if (IS_ERR(gpriv->rstc2)) 2150 return dev_err_probe(dev, PTR_ERR(gpriv->rstc2), 2151 "failed to get rstc_n\n"); 2152 2153 /* Peripheral clock */ 2154 gpriv->clkp = devm_clk_get(dev, "fck"); 2155 if (IS_ERR(gpriv->clkp)) 2156 return dev_err_probe(dev, PTR_ERR(gpriv->clkp), 2157 "cannot get peripheral clock\n"); 2158 2159 /* fCAN clock: Pick External clock. If not available fallback to 2160 * CANFD clock 2161 */ 2162 gpriv->can_clk = devm_clk_get(dev, "can_clk"); 2163 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) { 2164 gpriv->can_clk = devm_clk_get(dev, "canfd"); 2165 if (IS_ERR(gpriv->can_clk)) 2166 return dev_err_probe(dev, PTR_ERR(gpriv->can_clk), 2167 "cannot get canfd clock\n"); 2168 2169 /* CANFD clock may be further divided within the IP */ 2170 fcan_freq = clk_get_rate(gpriv->can_clk) / info->postdiv; 2171 } else { 2172 fcan_freq = clk_get_rate(gpriv->can_clk); 2173 gpriv->extclk = gpriv->info->external_clk; 2174 } 2175 2176 gpriv->clk_ram = devm_clk_get_optional(dev, "ram_clk"); 2177 if (IS_ERR(gpriv->clk_ram)) 2178 return dev_err_probe(dev, PTR_ERR(gpriv->clk_ram), 2179 "cannot get ram clock\n"); 2180 2181 addr = devm_platform_ioremap_resource(pdev, 0); 2182 if (IS_ERR(addr)) { 2183 err = PTR_ERR(addr); 2184 goto fail_dev; 2185 } 2186 gpriv->base = addr; 2187 gpriv->fcbase = addr + gpriv->info->regs->coffset; 2188 2189 /* Request IRQ that's common for both channels */ 2190 if (info->shared_global_irqs) { 2191 err = devm_request_irq(dev, ch_irq, 2192 rcar_canfd_channel_interrupt, 0, 2193 "canfd.ch_int", gpriv); 2194 if (err) { 2195 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2196 ch_irq, ERR_PTR(err)); 2197 goto fail_dev; 2198 } 2199 2200 err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt, 2201 0, "canfd.g_int", gpriv); 2202 if (err) { 2203 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2204 g_irq, ERR_PTR(err)); 2205 goto fail_dev; 2206 } 2207 } else { 2208 err = devm_request_irq(dev, g_recc_irq, 2209 rcar_canfd_global_receive_fifo_interrupt, 0, 2210 "canfd.g_recc", gpriv); 2211 2212 if (err) { 2213 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2214 g_recc_irq, ERR_PTR(err)); 2215 goto fail_dev; 2216 } 2217 2218 err = devm_request_irq(dev, g_err_irq, 2219 rcar_canfd_global_err_interrupt, 0, 2220 "canfd.g_err", gpriv); 2221 if (err) { 2222 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2223 g_err_irq, ERR_PTR(err)); 2224 goto fail_dev; 2225 } 2226 } 2227 2228 err = rcar_canfd_global_init(gpriv); 2229 if (err) 2230 goto fail_mode; 2231 2232 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) { 2233 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq, 2234 transceivers[ch]); 2235 if (err) 2236 goto fail_channel; 2237 } 2238 2239 platform_set_drvdata(pdev, gpriv); 2240 dev_info(dev, "global operational state (%s clk, %s mode)\n", 2241 gpriv->extclk ? "ext" : "canfd", 2242 gpriv->fdmode ? "fd" : "classical"); 2243 return 0; 2244 2245 fail_channel: 2246 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) 2247 rcar_canfd_channel_remove(gpriv, ch); 2248 fail_mode: 2249 rcar_canfd_global_deinit(gpriv, false); 2250 fail_dev: 2251 return err; 2252 } 2253 2254 static void rcar_canfd_remove(struct platform_device *pdev) 2255 { 2256 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev); 2257 u32 ch; 2258 2259 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 2260 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]); 2261 rcar_canfd_channel_remove(gpriv, ch); 2262 } 2263 2264 rcar_canfd_global_deinit(gpriv, true); 2265 } 2266 2267 static int rcar_canfd_suspend(struct device *dev) 2268 { 2269 struct rcar_canfd_global *gpriv = dev_get_drvdata(dev); 2270 int err; 2271 u32 ch; 2272 2273 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 2274 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 2275 struct net_device *ndev = priv->ndev; 2276 2277 if (!netif_running(ndev)) 2278 continue; 2279 2280 netif_device_detach(ndev); 2281 2282 err = rcar_canfd_close(ndev); 2283 if (err) { 2284 netdev_err(ndev, "rcar_canfd_close() failed %pe\n", 2285 ERR_PTR(err)); 2286 return err; 2287 } 2288 2289 priv->can.state = CAN_STATE_SLEEPING; 2290 } 2291 2292 /* TODO Skip if wake-up (which is not yet supported) is enabled */ 2293 rcar_canfd_global_deinit(gpriv, false); 2294 2295 return 0; 2296 } 2297 2298 static int rcar_canfd_resume(struct device *dev) 2299 { 2300 struct rcar_canfd_global *gpriv = dev_get_drvdata(dev); 2301 int err; 2302 u32 ch; 2303 2304 err = rcar_canfd_global_init(gpriv); 2305 if (err) { 2306 dev_err(dev, "rcar_canfd_global_init() failed %pe\n", ERR_PTR(err)); 2307 return err; 2308 } 2309 2310 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 2311 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 2312 struct net_device *ndev = priv->ndev; 2313 2314 if (!netif_running(ndev)) 2315 continue; 2316 2317 err = rcar_canfd_open(ndev); 2318 if (err) { 2319 netdev_err(ndev, "rcar_canfd_open() failed %pe\n", 2320 ERR_PTR(err)); 2321 return err; 2322 } 2323 2324 netif_device_attach(ndev); 2325 } 2326 2327 return 0; 2328 } 2329 2330 static DEFINE_SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend, 2331 rcar_canfd_resume); 2332 2333 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = { 2334 { .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info }, 2335 { .compatible = "renesas,r9a09g047-canfd", .data = &r9a09g047_hw_info }, 2336 { .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info }, 2337 { .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info }, 2338 { .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info }, 2339 { } 2340 }; 2341 2342 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table); 2343 2344 static struct platform_driver rcar_canfd_driver = { 2345 .driver = { 2346 .name = RCANFD_DRV_NAME, 2347 .of_match_table = of_match_ptr(rcar_canfd_of_table), 2348 .pm = pm_sleep_ptr(&rcar_canfd_pm_ops), 2349 }, 2350 .probe = rcar_canfd_probe, 2351 .remove = rcar_canfd_remove, 2352 }; 2353 2354 module_platform_driver(rcar_canfd_driver); 2355 2356 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>"); 2357 MODULE_LICENSE("GPL"); 2358 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC"); 2359 MODULE_ALIAS("platform:" RCANFD_DRV_NAME); 2360