xref: /linux/drivers/net/can/rcar/rcar_canfd.c (revision 8f7aa3d3c7323f4ca2768a9e74ebbe359c4f8f88)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Renesas R-Car CAN FD device driver
3  *
4  * Copyright (C) 2015 Renesas Electronics Corp.
5  */
6 
7 /* The R-Car CAN FD controller can operate in either one of the below two modes
8  *  - CAN FD only mode
9  *  - Classical CAN (CAN 2.0) only mode
10  *
11  * This driver puts the controller in CAN FD only mode by default. In this
12  * mode, the controller acts as a CAN FD node that can also interoperate with
13  * CAN 2.0 nodes.
14  *
15  * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16  * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17  * also required to switch modes.
18  *
19  * Note: The h/w manual register naming convention is clumsy and not acceptable
20  * to use as it is in the driver. However, those names are added as comments
21  * wherever it is modified to a readable name.
22  */
23 
24 #include <linux/bitfield.h>
25 #include <linux/bitmap.h>
26 #include <linux/bitops.h>
27 #include <linux/can/dev.h>
28 #include <linux/clk.h>
29 #include <linux/errno.h>
30 #include <linux/ethtool.h>
31 #include <linux/interrupt.h>
32 #include <linux/iopoll.h>
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/netdevice.h>
37 #include <linux/of.h>
38 #include <linux/phy/phy.h>
39 #include <linux/platform_device.h>
40 #include <linux/reset.h>
41 #include <linux/types.h>
42 
43 #define RCANFD_DRV_NAME			"rcar_canfd"
44 
45 /* Global register bits */
46 
47 /* RSCFDnCFDGRMCFG */
48 #define RCANFD_GRMCFG_RCMC		BIT(0)
49 
50 /* RSCFDnCFDGCFG / RSCFDnGCFG */
51 #define RCANFD_GCFG_EEFE		BIT(6)
52 #define RCANFD_GCFG_CMPOC		BIT(5)	/* CAN FD only */
53 #define RCANFD_GCFG_DCS			BIT(4)
54 #define RCANFD_GCFG_DCE			BIT(1)
55 #define RCANFD_GCFG_TPRI		BIT(0)
56 
57 /* RSCFDnCFDGCTR / RSCFDnGCTR */
58 #define RCANFD_GCTR_TSRST		BIT(16)
59 #define RCANFD_GCTR_CFMPOFIE		BIT(11)	/* CAN FD only */
60 #define RCANFD_GCTR_THLEIE		BIT(10)
61 #define RCANFD_GCTR_MEIE		BIT(9)
62 #define RCANFD_GCTR_DEIE		BIT(8)
63 #define RCANFD_GCTR_GSLPR		BIT(2)
64 #define RCANFD_GCTR_GMDC_MASK		(0x3)
65 #define RCANFD_GCTR_GMDC_GOPM		(0x0)
66 #define RCANFD_GCTR_GMDC_GRESET		(0x1)
67 #define RCANFD_GCTR_GMDC_GTEST		(0x2)
68 
69 /* RSCFDnCFDGSTS / RSCFDnGSTS */
70 #define RCANFD_GSTS_GRAMINIT		BIT(3)
71 #define RCANFD_GSTS_GSLPSTS		BIT(2)
72 #define RCANFD_GSTS_GHLTSTS		BIT(1)
73 #define RCANFD_GSTS_GRSTSTS		BIT(0)
74 /* Non-operational status */
75 #define RCANFD_GSTS_GNOPM		(BIT(0) | BIT(1) | BIT(2) | BIT(3))
76 
77 /* RSCFDnCFDGERFL / RSCFDnGERFL */
78 #define RCANFD_GERFL_EEF		GENMASK(23, 16)
79 #define RCANFD_GERFL_CMPOF		BIT(3)	/* CAN FD only */
80 #define RCANFD_GERFL_THLES		BIT(2)
81 #define RCANFD_GERFL_MES		BIT(1)
82 #define RCANFD_GERFL_DEF		BIT(0)
83 
84 #define RCANFD_GERFL_ERR(gpriv, x) \
85 ({\
86 	typeof(gpriv) (_gpriv) = (gpriv); \
87 	((x) & ((FIELD_PREP(RCANFD_GERFL_EEF, (_gpriv)->channels_mask)) | \
88 		RCANFD_GERFL_MES | ((_gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0))); \
89 })
90 
91 /* AFL Rx rules registers */
92 
93 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
94 #define RCANFD_GAFLECTR_AFLDAE		BIT(8)
95 #define RCANFD_GAFLECTR_AFLPN(gpriv, page_num)	((page_num) & (gpriv)->info->max_aflpn)
96 
97 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
98 #define RCANFD_GAFLID_GAFLLB		BIT(29)
99 
100 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
101 #define RCANFD_GAFLP1_GAFLFDP(x)	(1 << (x))
102 
103 /* Channel register bits */
104 
105 /* RSCFDnCmCFG - Classical CAN only */
106 #define RCANFD_CFG_SJW		GENMASK(25, 24)
107 #define RCANFD_CFG_TSEG2	GENMASK(22, 20)
108 #define RCANFD_CFG_TSEG1	GENMASK(19, 16)
109 #define RCANFD_CFG_BRP		GENMASK(9, 0)
110 
111 /* RSCFDnCFDCmNCFG - CAN FD only */
112 #define RCANFD_NCFG_NBRP	GENMASK(9, 0)
113 
114 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
115 #define RCANFD_CCTR_CTME		BIT(24)
116 #define RCANFD_CCTR_ERRD		BIT(23)
117 #define RCANFD_CCTR_BOM_MASK		(0x3 << 21)
118 #define RCANFD_CCTR_BOM_ISO		(0x0 << 21)
119 #define RCANFD_CCTR_BOM_BENTRY		(0x1 << 21)
120 #define RCANFD_CCTR_BOM_BEND		(0x2 << 21)
121 #define RCANFD_CCTR_TDCVFIE		BIT(19)
122 #define RCANFD_CCTR_SOCOIE		BIT(18)
123 #define RCANFD_CCTR_EOCOIE		BIT(17)
124 #define RCANFD_CCTR_TAIE		BIT(16)
125 #define RCANFD_CCTR_ALIE		BIT(15)
126 #define RCANFD_CCTR_BLIE		BIT(14)
127 #define RCANFD_CCTR_OLIE		BIT(13)
128 #define RCANFD_CCTR_BORIE		BIT(12)
129 #define RCANFD_CCTR_BOEIE		BIT(11)
130 #define RCANFD_CCTR_EPIE		BIT(10)
131 #define RCANFD_CCTR_EWIE		BIT(9)
132 #define RCANFD_CCTR_BEIE		BIT(8)
133 #define RCANFD_CCTR_CSLPR		BIT(2)
134 #define RCANFD_CCTR_CHMDC_MASK		(0x3)
135 #define RCANFD_CCTR_CHDMC_COPM		(0x0)
136 #define RCANFD_CCTR_CHDMC_CRESET	(0x1)
137 #define RCANFD_CCTR_CHDMC_CHLT		(0x2)
138 
139 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
140 #define RCANFD_CSTS_COMSTS		BIT(7)
141 #define RCANFD_CSTS_RECSTS		BIT(6)
142 #define RCANFD_CSTS_TRMSTS		BIT(5)
143 #define RCANFD_CSTS_BOSTS		BIT(4)
144 #define RCANFD_CSTS_EPSTS		BIT(3)
145 #define RCANFD_CSTS_SLPSTS		BIT(2)
146 #define RCANFD_CSTS_HLTSTS		BIT(1)
147 #define RCANFD_CSTS_CRSTSTS		BIT(0)
148 
149 #define RCANFD_CSTS_TECCNT(x)		(((x) >> 24) & 0xff)
150 #define RCANFD_CSTS_RECCNT(x)		(((x) >> 16) & 0xff)
151 
152 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
153 #define RCANFD_CERFL_ADERR		BIT(14)
154 #define RCANFD_CERFL_B0ERR		BIT(13)
155 #define RCANFD_CERFL_B1ERR		BIT(12)
156 #define RCANFD_CERFL_CERR		BIT(11)
157 #define RCANFD_CERFL_AERR		BIT(10)
158 #define RCANFD_CERFL_FERR		BIT(9)
159 #define RCANFD_CERFL_SERR		BIT(8)
160 #define RCANFD_CERFL_ALF		BIT(7)
161 #define RCANFD_CERFL_BLF		BIT(6)
162 #define RCANFD_CERFL_OVLF		BIT(5)
163 #define RCANFD_CERFL_BORF		BIT(4)
164 #define RCANFD_CERFL_BOEF		BIT(3)
165 #define RCANFD_CERFL_EPF		BIT(2)
166 #define RCANFD_CERFL_EWF		BIT(1)
167 #define RCANFD_CERFL_BEF		BIT(0)
168 
169 #define RCANFD_CERFL_ERR(x)		((x) & (0x7fff)) /* above bits 14:0 */
170 
171 /* RSCFDnCFDCmDCFG */
172 #define RCANFD_DCFG_DBRP		GENMASK(7, 0)
173 
174 /* RSCFDnCFDCmFDCFG */
175 #define RCANFD_GEN4_FDCFG_CLOE		BIT(30)
176 #define RCANFD_GEN4_FDCFG_FDOE		BIT(28)
177 #define RCANFD_FDCFG_TDCO		GENMASK(23, 16)
178 #define RCANFD_FDCFG_TDCE		BIT(9)
179 #define RCANFD_FDCFG_TDCOC		BIT(8)
180 
181 /* RSCFDnCFDCmFDSTS */
182 #define RCANFD_FDSTS_SOC		GENMASK(31, 24)
183 #define RCANFD_FDSTS_EOC		GENMASK(23, 16)
184 #define RCANFD_GEN4_FDSTS_TDCVF		BIT(15)
185 #define RCANFD_GEN4_FDSTS_PNSTS		GENMASK(13, 12)
186 #define RCANFD_FDSTS_SOCO		BIT(9)
187 #define RCANFD_FDSTS_EOCO		BIT(8)
188 #define RCANFD_FDSTS_TDCVF		BIT(7)
189 #define RCANFD_FDSTS_TDCR		GENMASK(7, 0)
190 
191 /* RSCFDnCFDRFCCx */
192 #define RCANFD_RFCC_RFIM		BIT(12)
193 #define RCANFD_RFCC_RFDC(x)		(((x) & 0x7) << 8)
194 #define RCANFD_RFCC_RFPLS(x)		(((x) & 0x7) << 4)
195 #define RCANFD_RFCC_RFIE		BIT(1)
196 #define RCANFD_RFCC_RFE			BIT(0)
197 
198 /* RSCFDnCFDRFSTSx */
199 #define RCANFD_RFSTS_RFIF		BIT(3)
200 #define RCANFD_RFSTS_RFMLT		BIT(2)
201 #define RCANFD_RFSTS_RFFLL		BIT(1)
202 #define RCANFD_RFSTS_RFEMP		BIT(0)
203 
204 /* RSCFDnCFDRFIDx */
205 #define RCANFD_RFID_RFIDE		BIT(31)
206 #define RCANFD_RFID_RFRTR		BIT(30)
207 
208 /* RSCFDnCFDRFPTRx */
209 #define RCANFD_RFPTR_RFDLC(x)		(((x) >> 28) & 0xf)
210 
211 /* RSCFDnCFDRFFDSTSx */
212 #define RCANFD_RFFDSTS_RFFDF		BIT(2)
213 #define RCANFD_RFFDSTS_RFBRS		BIT(1)
214 #define RCANFD_RFFDSTS_RFESI		BIT(0)
215 
216 /* Common FIFO bits */
217 
218 /* RSCFDnCFDCFCCk */
219 #define RCANFD_CFCC_CFTML(gpriv, cftml) \
220 ({\
221 	typeof(gpriv) (_gpriv) = (gpriv); \
222 	(((cftml) & (_gpriv)->info->max_cftml) << (_gpriv)->info->sh->cftml); \
223 })
224 #define RCANFD_CFCC_CFM(gpriv, x)	(((x) & 0x3) << (gpriv)->info->sh->cfm)
225 #define RCANFD_CFCC_CFIM		BIT(12)
226 #define RCANFD_CFCC_CFDC(gpriv, x)	(((x) & 0x7) << (gpriv)->info->sh->cfdc)
227 #define RCANFD_CFCC_CFPLS(x)		(((x) & 0x7) << 4)
228 #define RCANFD_CFCC_CFTXIE		BIT(2)
229 #define RCANFD_CFCC_CFE			BIT(0)
230 
231 /* RSCFDnCFDCFSTSk */
232 #define RCANFD_CFSTS_CFMC(x)		(((x) >> 8) & 0xff)
233 #define RCANFD_CFSTS_CFTXIF		BIT(4)
234 #define RCANFD_CFSTS_CFMLT		BIT(2)
235 #define RCANFD_CFSTS_CFFLL		BIT(1)
236 #define RCANFD_CFSTS_CFEMP		BIT(0)
237 
238 /* RSCFDnCFDCFIDk */
239 #define RCANFD_CFID_CFIDE		BIT(31)
240 #define RCANFD_CFID_CFRTR		BIT(30)
241 
242 /* RSCFDnCFDCFPTRk */
243 #define RCANFD_CFPTR_CFDLC(x)		(((x) & 0xf) << 28)
244 
245 /* RSCFDnCFDCFFDCSTSk */
246 #define RCANFD_CFFDCSTS_CFFDF		BIT(2)
247 #define RCANFD_CFFDCSTS_CFBRS		BIT(1)
248 #define RCANFD_CFFDCSTS_CFESI		BIT(0)
249 
250 /* This controller supports either Classical CAN only mode or CAN FD only mode.
251  * These modes are supported in two separate set of register maps & names.
252  * However, some of the register offsets are common for both modes. Those
253  * offsets are listed below as Common registers.
254  *
255  * The CAN FD only mode specific registers & Classical CAN only mode specific
256  * registers are listed separately. Their register names starts with
257  * RCANFD_F_xxx & RCANFD_C_xxx respectively.
258  */
259 
260 /* Common registers */
261 
262 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
263 #define RCANFD_CCFG(m)			(0x0000 + (0x10 * (m)))
264 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
265 #define RCANFD_CCTR(m)			(0x0004 + (0x10 * (m)))
266 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
267 #define RCANFD_CSTS(m)			(0x0008 + (0x10 * (m)))
268 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
269 #define RCANFD_CERFL(m)			(0x000C + (0x10 * (m)))
270 
271 /* RSCFDnCFDGCFG / RSCFDnGCFG */
272 #define RCANFD_GCFG			(0x0084)
273 /* RSCFDnCFDGCTR / RSCFDnGCTR */
274 #define RCANFD_GCTR			(0x0088)
275 /* RSCFDnCFDGCTS / RSCFDnGCTS */
276 #define RCANFD_GSTS			(0x008c)
277 /* RSCFDnCFDGERFL / RSCFDnGERFL */
278 #define RCANFD_GERFL			(0x0090)
279 /* RSCFDnCFDGTSC / RSCFDnGTSC */
280 #define RCANFD_GTSC			(0x0094)
281 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
282 #define RCANFD_GAFLECTR			(0x0098)
283 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
284 #define RCANFD_GAFLCFG(w)		(0x009c + (0x04 * (w)))
285 /* RSCFDnCFDRMNB / RSCFDnRMNB */
286 #define RCANFD_RMNB			(0x00a4)
287 /* RSCFDnCFDRMND / RSCFDnRMND */
288 #define RCANFD_RMND(y)			(0x00a8 + (0x04 * (y)))
289 
290 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
291 #define RCANFD_RFCC(gpriv, x)		((gpriv)->info->regs->rfcc + (0x04 * (x)))
292 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
293 #define RCANFD_RFSTS(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x20)
294 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
295 #define RCANFD_RFPCTR(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x40)
296 
297 /* Common FIFO Control registers */
298 
299 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
300 #define RCANFD_CFCC(gpriv, ch, idx) \
301 	((gpriv)->info->regs->cfcc + (0x0c * (ch)) + (0x04 * (idx)))
302 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
303 #define RCANFD_CFSTS(gpriv, ch, idx) \
304 	((gpriv)->info->regs->cfsts + (0x0c * (ch)) + (0x04 * (idx)))
305 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
306 #define RCANFD_CFPCTR(gpriv, ch, idx) \
307 	((gpriv)->info->regs->cfpctr + (0x0c * (ch)) + (0x04 * (idx)))
308 
309 /* RSCFDnCFDGRMCFG */
310 #define RCANFD_GRMCFG			(0x04fc)
311 
312 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
313 #define RCANFD_GAFLID(offset, j)	((offset) + (0x10 * (j)))
314 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
315 #define RCANFD_GAFLM(offset, j)		((offset) + 0x04 + (0x10 * (j)))
316 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
317 #define RCANFD_GAFLP0(offset, j)	((offset) + 0x08 + (0x10 * (j)))
318 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
319 #define RCANFD_GAFLP1(offset, j)	((offset) + 0x0c + (0x10 * (j)))
320 
321 /* Classical CAN only mode register map */
322 
323 /* RSCFDnGAFLXXXj offset */
324 #define RCANFD_C_GAFL_OFFSET		(0x0500)
325 
326 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
327 #define RCANFD_C_RFOFFSET	(0x0e00)
328 #define RCANFD_C_RFID(x)	(RCANFD_C_RFOFFSET + (0x10 * (x)))
329 #define RCANFD_C_RFPTR(x)	(RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
330 #define RCANFD_C_RFDF(x, df) \
331 		(RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
332 
333 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
334 #define RCANFD_C_CFOFFSET		(0x0e80)
335 
336 #define RCANFD_C_CFID(ch, idx) \
337 	(RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
338 
339 #define RCANFD_C_CFPTR(ch, idx)	\
340 	(RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
341 
342 #define RCANFD_C_CFDF(ch, idx, df) \
343 	(RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
344 
345 /* R-Car Gen4 Classical and CAN FD mode specific register map */
346 #define RCANFD_GEN4_GAFL_OFFSET		(0x1800)
347 
348 /* CAN FD mode specific register map */
349 
350 /* RSCFDnCFDCmXXX -> gpriv->fcbase[m].xxx */
351 struct rcar_canfd_f_c {
352 	u32 dcfg;
353 	u32 cfdcfg;
354 	u32 cfdctr;
355 	u32 cfdsts;
356 	u32 cfdcrc;
357 	u32 pad[3];
358 };
359 
360 /* RSCFDnCFDGAFLXXXj offset */
361 #define RCANFD_F_GAFL_OFFSET		(0x1000)
362 
363 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
364 #define RCANFD_F_RFOFFSET(gpriv)	((gpriv)->info->regs->rfoffset)
365 #define RCANFD_F_RFID(gpriv, x)		(RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
366 #define RCANFD_F_RFPTR(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
367 #define RCANFD_F_RFFDSTS(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
368 #define RCANFD_F_RFDF(gpriv, x, df) \
369 	(RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
370 
371 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
372 #define RCANFD_F_CFOFFSET(gpriv)	((gpriv)->info->regs->cfoffset)
373 
374 #define RCANFD_F_CFID(gpriv, ch, idx) \
375 	(RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
376 
377 #define RCANFD_F_CFPTR(gpriv, ch, idx) \
378 	(RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
379 
380 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
381 	(RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
382 
383 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \
384 	(RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
385 	 (0x04 * (df)))
386 
387 /* Constants */
388 #define RCANFD_FIFO_DEPTH		8	/* Tx FIFO depth */
389 #define RCANFD_NAPI_WEIGHT		8	/* Rx poll quota */
390 
391 #define RCANFD_NUM_CHANNELS		8	/* Eight channels max */
392 
393 #define RCANFD_GAFL_PAGENUM(entry)	((entry) / 16)
394 #define RCANFD_CHANNEL_NUMRULES		1	/* only one rule per channel */
395 
396 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
397  * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
398  * number is added to RFFIFO index.
399  */
400 #define RCANFD_RFFIFO_IDX		0
401 
402 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
403  * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
404  */
405 #define RCANFD_CFFIFO_IDX		0
406 
407 struct rcar_canfd_global;
408 
409 struct rcar_canfd_regs {
410 	u16 rfcc;	/* RX FIFO Configuration/Control Register */
411 	u16 cfcc;	/* Common FIFO Configuration/Control Register */
412 	u16 cfsts;	/* Common FIFO Status Register */
413 	u16 cfpctr;	/* Common FIFO Pointer Control Register */
414 	u16 coffset;	/* Channel Data Bitrate Configuration Register */
415 	u16 rfoffset;	/* Receive FIFO buffer access ID register */
416 	u16 cfoffset;	/* Transmit/receive FIFO buffer access ID register */
417 };
418 
419 struct rcar_canfd_shift_data {
420 	u8 ntseg2;	/* Nominal Bit Rate Time Segment 2 Control */
421 	u8 ntseg1;	/* Nominal Bit Rate Time Segment 1 Control */
422 	u8 nsjw;	/* Nominal Bit Rate Resynchronization Jump Width Control */
423 	u8 dtseg2;	/* Data Bit Rate Time Segment 2 Control */
424 	u8 dtseg1;	/* Data Bit Rate Time Segment 1 Control */
425 	u8 cftml;	/* Common FIFO TX Message Buffer Link */
426 	u8 cfm;		/* Common FIFO Mode */
427 	u8 cfdc;	/* Common FIFO Depth Configuration */
428 };
429 
430 struct rcar_canfd_hw_info {
431 	const struct can_bittiming_const *nom_bittiming;
432 	const struct can_bittiming_const *data_bittiming;
433 	const struct can_tdc_const *tdc_const;
434 	const struct rcar_canfd_regs *regs;
435 	const struct rcar_canfd_shift_data *sh;
436 	u8 rnc_field_width;
437 	u8 max_aflpn;
438 	u8 max_cftml;
439 	u8 max_channels;
440 	u8 postdiv;
441 	/* hardware features */
442 	unsigned shared_global_irqs:1;	/* Has shared global irqs */
443 	unsigned multi_channel_irqs:1;	/* Has multiple channel irqs */
444 	unsigned ch_interface_mode:1;	/* Has channel interface mode */
445 	unsigned shared_can_regs:1;	/* Has shared classical can registers */
446 	unsigned external_clk:1;	/* Has external clock */
447 };
448 
449 /* Channel priv data */
450 struct rcar_canfd_channel {
451 	struct can_priv can;			/* Must be the first member */
452 	struct net_device *ndev;
453 	struct rcar_canfd_global *gpriv;	/* Controller reference */
454 	void __iomem *base;			/* Register base address */
455 	struct phy *transceiver;		/* Optional transceiver */
456 	struct napi_struct napi;
457 	u32 tx_head;				/* Incremented on xmit */
458 	u32 tx_tail;				/* Incremented on xmit done */
459 	u32 channel;				/* Channel number */
460 	spinlock_t tx_lock;			/* To protect tx path */
461 };
462 
463 /* Global priv data */
464 struct rcar_canfd_global {
465 	struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
466 	void __iomem *base;		/* Register base address */
467 	struct rcar_canfd_f_c __iomem *fcbase;
468 	struct platform_device *pdev;	/* Respective platform device */
469 	struct clk *clkp;		/* Peripheral clock */
470 	struct clk *can_clk;		/* fCAN clock */
471 	struct clk *clk_ram;		/* Clock RAM */
472 	unsigned long channels_mask;	/* Enabled channels mask */
473 	bool extclk;			/* CANFD or Ext clock */
474 	bool fdmode;			/* CAN FD or Classical CAN only mode */
475 	struct reset_control *rstc1;
476 	struct reset_control *rstc2;
477 	const struct rcar_canfd_hw_info *info;
478 };
479 
480 /* CAN FD mode nominal rate constants */
481 static const struct can_bittiming_const rcar_canfd_gen3_nom_bittiming_const = {
482 	.name = RCANFD_DRV_NAME,
483 	.tseg1_min = 2,
484 	.tseg1_max = 128,
485 	.tseg2_min = 2,
486 	.tseg2_max = 32,
487 	.sjw_max = 32,
488 	.brp_min = 1,
489 	.brp_max = 1024,
490 	.brp_inc = 1,
491 };
492 
493 static const struct can_bittiming_const rcar_canfd_gen4_nom_bittiming_const = {
494 	.name = RCANFD_DRV_NAME,
495 	.tseg1_min = 2,
496 	.tseg1_max = 256,
497 	.tseg2_min = 2,
498 	.tseg2_max = 128,
499 	.sjw_max = 128,
500 	.brp_min = 1,
501 	.brp_max = 1024,
502 	.brp_inc = 1,
503 };
504 
505 /* CAN FD mode data rate constants */
506 static const struct can_bittiming_const rcar_canfd_gen3_data_bittiming_const = {
507 	.name = RCANFD_DRV_NAME,
508 	.tseg1_min = 2,
509 	.tseg1_max = 16,
510 	.tseg2_min = 2,
511 	.tseg2_max = 8,
512 	.sjw_max = 8,
513 	.brp_min = 1,
514 	.brp_max = 256,
515 	.brp_inc = 1,
516 };
517 
518 static const struct can_bittiming_const rcar_canfd_gen4_data_bittiming_const = {
519 	.name = RCANFD_DRV_NAME,
520 	.tseg1_min = 2,
521 	.tseg1_max = 32,
522 	.tseg2_min = 2,
523 	.tseg2_max = 16,
524 	.sjw_max = 16,
525 	.brp_min = 1,
526 	.brp_max = 256,
527 	.brp_inc = 1,
528 };
529 
530 /* Classical CAN mode bitrate constants */
531 static const struct can_bittiming_const rcar_canfd_bittiming_const = {
532 	.name = RCANFD_DRV_NAME,
533 	.tseg1_min = 4,
534 	.tseg1_max = 16,
535 	.tseg2_min = 2,
536 	.tseg2_max = 8,
537 	.sjw_max = 4,
538 	.brp_min = 1,
539 	.brp_max = 1024,
540 	.brp_inc = 1,
541 };
542 
543 /* CAN FD Transmission Delay Compensation constants */
544 static const struct can_tdc_const rcar_canfd_gen3_tdc_const = {
545 	.tdcv_min = 1,
546 	.tdcv_max = 128,
547 	.tdco_min = 1,
548 	.tdco_max = 128,
549 	.tdcf_min = 0,	/* Filter window not supported */
550 	.tdcf_max = 0,
551 };
552 
553 static const struct can_tdc_const rcar_canfd_gen4_tdc_const = {
554 	.tdcv_min = 1,
555 	.tdcv_max = 256,
556 	.tdco_min = 1,
557 	.tdco_max = 256,
558 	.tdcf_min = 0,	/* Filter window not supported */
559 	.tdcf_max = 0,
560 };
561 
562 static const struct rcar_canfd_regs rcar_gen3_regs = {
563 	.rfcc = 0x00b8,
564 	.cfcc = 0x0118,
565 	.cfsts = 0x0178,
566 	.cfpctr = 0x01d8,
567 	.coffset = 0x0500,
568 	.rfoffset = 0x3000,
569 	.cfoffset = 0x3400,
570 };
571 
572 static const struct rcar_canfd_regs rcar_gen4_regs = {
573 	.rfcc = 0x00c0,
574 	.cfcc = 0x0120,
575 	.cfsts = 0x01e0,
576 	.cfpctr = 0x0240,
577 	.coffset = 0x1400,
578 	.rfoffset = 0x6000,
579 	.cfoffset = 0x6400,
580 };
581 
582 static const struct rcar_canfd_shift_data rcar_gen3_shift_data = {
583 	.ntseg2 = 24,
584 	.ntseg1 = 16,
585 	.nsjw = 11,
586 	.dtseg2 = 20,
587 	.dtseg1 = 16,
588 	.cftml = 20,
589 	.cfm = 16,
590 	.cfdc = 8,
591 };
592 
593 static const struct rcar_canfd_shift_data rcar_gen4_shift_data = {
594 	.ntseg2 = 25,
595 	.ntseg1 = 17,
596 	.nsjw = 10,
597 	.dtseg2 = 16,
598 	.dtseg1 = 8,
599 	.cftml = 16,
600 	.cfm = 8,
601 	.cfdc = 21,
602 };
603 
604 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = {
605 	.nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const,
606 	.data_bittiming = &rcar_canfd_gen3_data_bittiming_const,
607 	.tdc_const = &rcar_canfd_gen3_tdc_const,
608 	.regs = &rcar_gen3_regs,
609 	.sh = &rcar_gen3_shift_data,
610 	.rnc_field_width = 8,
611 	.max_aflpn = 31,
612 	.max_cftml = 15,
613 	.max_channels = 2,
614 	.postdiv = 2,
615 	.shared_global_irqs = 1,
616 	.ch_interface_mode = 0,
617 	.shared_can_regs = 0,
618 	.external_clk = 1,
619 };
620 
621 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = {
622 	.nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const,
623 	.data_bittiming = &rcar_canfd_gen4_data_bittiming_const,
624 	.tdc_const = &rcar_canfd_gen4_tdc_const,
625 	.regs = &rcar_gen4_regs,
626 	.sh = &rcar_gen4_shift_data,
627 	.rnc_field_width = 16,
628 	.max_aflpn = 127,
629 	.max_cftml = 31,
630 	.max_channels = 8,
631 	.postdiv = 2,
632 	.shared_global_irqs = 1,
633 	.ch_interface_mode = 1,
634 	.shared_can_regs = 1,
635 	.external_clk = 1,
636 };
637 
638 static const struct rcar_canfd_hw_info rzg2l_hw_info = {
639 	.nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const,
640 	.data_bittiming = &rcar_canfd_gen3_data_bittiming_const,
641 	.tdc_const = &rcar_canfd_gen3_tdc_const,
642 	.regs = &rcar_gen3_regs,
643 	.sh = &rcar_gen3_shift_data,
644 	.rnc_field_width = 8,
645 	.max_aflpn = 31,
646 	.max_cftml = 15,
647 	.max_channels = 2,
648 	.postdiv = 1,
649 	.multi_channel_irqs = 1,
650 	.ch_interface_mode = 0,
651 	.shared_can_regs = 0,
652 	.external_clk = 1,
653 };
654 
655 static const struct rcar_canfd_hw_info r9a09g047_hw_info = {
656 	.nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const,
657 	.data_bittiming = &rcar_canfd_gen4_data_bittiming_const,
658 	.tdc_const = &rcar_canfd_gen4_tdc_const,
659 	.regs = &rcar_gen4_regs,
660 	.sh = &rcar_gen4_shift_data,
661 	.rnc_field_width = 16,
662 	.max_aflpn = 63,
663 	.max_cftml = 31,
664 	.max_channels = 6,
665 	.postdiv = 1,
666 	.multi_channel_irqs = 1,
667 	.ch_interface_mode = 1,
668 	.shared_can_regs = 1,
669 	.external_clk = 0,
670 };
671 
672 /* Helper functions */
673 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
674 {
675 	u32 data = readl(reg);
676 
677 	data &= ~mask;
678 	data |= (val & mask);
679 	writel(data, reg);
680 }
681 
682 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
683 {
684 	return readl(base + offset);
685 }
686 
687 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
688 {
689 	writel(val, base + offset);
690 }
691 
692 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
693 {
694 	rcar_canfd_update(val, val, base + reg);
695 }
696 
697 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
698 {
699 	rcar_canfd_update(val, 0, base + reg);
700 }
701 
702 static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
703 				  u32 mask, u32 val)
704 {
705 	rcar_canfd_update(mask, val, base + reg);
706 }
707 
708 static void rcar_canfd_set_bit_reg(void __iomem *addr, u32 val)
709 {
710 	rcar_canfd_update(val, val, addr);
711 }
712 
713 static void rcar_canfd_clear_bit_reg(void __iomem *addr, u32 val)
714 {
715 	rcar_canfd_update(val, 0, addr);
716 }
717 
718 static void rcar_canfd_update_bit_reg(void __iomem *addr, u32 mask, u32 val)
719 {
720 	rcar_canfd_update(mask, val, addr);
721 }
722 
723 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
724 				struct canfd_frame *cf, u32 off)
725 {
726 	u32 *data = (u32 *)cf->data;
727 	u32 i, lwords;
728 
729 	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
730 	for (i = 0; i < lwords; i++)
731 		data[i] = rcar_canfd_read(priv->base, off + i * sizeof(u32));
732 }
733 
734 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
735 				struct canfd_frame *cf, u32 off)
736 {
737 	const u32 *data = (u32 *)cf->data;
738 	u32 i, lwords;
739 
740 	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
741 	for (i = 0; i < lwords; i++)
742 		rcar_canfd_write(priv->base, off + i * sizeof(u32), data[i]);
743 }
744 
745 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
746 {
747 	u32 i;
748 
749 	for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
750 		can_free_echo_skb(ndev, i, NULL);
751 }
752 
753 static void rcar_canfd_set_rnc(struct rcar_canfd_global *gpriv, unsigned int ch,
754 			       unsigned int num_rules)
755 {
756 	unsigned int rnc_stride = 32 / gpriv->info->rnc_field_width;
757 	unsigned int shift = 32 - (ch % rnc_stride + 1) * gpriv->info->rnc_field_width;
758 	unsigned int w = ch / rnc_stride;
759 	u32 rnc = num_rules << shift;
760 
761 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(w), rnc);
762 }
763 
764 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
765 {
766 	struct device *dev = &gpriv->pdev->dev;
767 	u32 sts, ch;
768 	int err;
769 
770 	/* Check RAMINIT flag as CAN RAM initialization takes place
771 	 * after the MCU reset
772 	 */
773 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
774 				 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
775 	if (err) {
776 		dev_dbg(dev, "global raminit failed\n");
777 		return err;
778 	}
779 
780 	/* Transition to Global Reset mode */
781 	rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
782 	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
783 			      RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
784 
785 	/* Ensure Global reset mode */
786 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
787 				 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
788 	if (err) {
789 		dev_dbg(dev, "global reset failed\n");
790 		return err;
791 	}
792 
793 	/* Reset Global error flags */
794 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
795 
796 	/* Set the controller into appropriate mode */
797 	if (!gpriv->info->ch_interface_mode) {
798 		if (gpriv->fdmode)
799 			rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
800 					   RCANFD_GRMCFG_RCMC);
801 		else
802 			rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
803 					     RCANFD_GRMCFG_RCMC);
804 	}
805 
806 	/* Transition all Channels to reset mode */
807 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
808 		rcar_canfd_clear_bit(gpriv->base,
809 				     RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
810 
811 		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
812 				      RCANFD_CCTR_CHMDC_MASK,
813 				      RCANFD_CCTR_CHDMC_CRESET);
814 
815 		/* Ensure Channel reset mode */
816 		err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
817 					 (sts & RCANFD_CSTS_CRSTSTS),
818 					 2, 500000);
819 		if (err) {
820 			dev_dbg(dev, "channel %u reset failed\n", ch);
821 			return err;
822 		}
823 
824 		/* Set the controller into appropriate mode */
825 		if (gpriv->info->ch_interface_mode) {
826 			/* Do not set CLOE and FDOE simultaneously */
827 			if (!gpriv->fdmode) {
828 				rcar_canfd_clear_bit_reg(&gpriv->fcbase[ch].cfdcfg,
829 							 RCANFD_GEN4_FDCFG_FDOE);
830 				rcar_canfd_set_bit_reg(&gpriv->fcbase[ch].cfdcfg,
831 						       RCANFD_GEN4_FDCFG_CLOE);
832 			} else {
833 				rcar_canfd_clear_bit_reg(&gpriv->fcbase[ch].cfdcfg,
834 							 RCANFD_GEN4_FDCFG_FDOE);
835 				rcar_canfd_clear_bit_reg(&gpriv->fcbase[ch].cfdcfg,
836 							 RCANFD_GEN4_FDCFG_CLOE);
837 			}
838 		}
839 	}
840 
841 	return 0;
842 }
843 
844 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
845 {
846 	u32 cfg, ch;
847 
848 	/* Global configuration settings */
849 
850 	/* ECC Error flag Enable */
851 	cfg = RCANFD_GCFG_EEFE;
852 
853 	if (gpriv->fdmode)
854 		/* Truncate payload to configured message size RFPLS */
855 		cfg |= RCANFD_GCFG_CMPOC;
856 
857 	/* Set External Clock if selected */
858 	if (gpriv->extclk)
859 		cfg |= RCANFD_GCFG_DCS;
860 
861 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
862 
863 	/* Channel configuration settings */
864 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
865 		rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
866 				   RCANFD_CCTR_ERRD);
867 		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
868 				      RCANFD_CCTR_BOM_MASK,
869 				      RCANFD_CCTR_BOM_BENTRY);
870 	}
871 }
872 
873 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
874 					   u32 ch, u32 rule_entry)
875 {
876 	unsigned int offset, page, num_rules = RCANFD_CHANNEL_NUMRULES;
877 	u32 rule_entry_index = rule_entry % 16;
878 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
879 
880 	/* Enable write access to entry */
881 	page = RCANFD_GAFL_PAGENUM(rule_entry);
882 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
883 			   (RCANFD_GAFLECTR_AFLPN(gpriv, page) |
884 			    RCANFD_GAFLECTR_AFLDAE));
885 
886 	/* Write number of rules for channel */
887 	rcar_canfd_set_rnc(gpriv, ch, num_rules);
888 	if (gpriv->info->shared_can_regs)
889 		offset = RCANFD_GEN4_GAFL_OFFSET;
890 	else if (gpriv->fdmode)
891 		offset = RCANFD_F_GAFL_OFFSET;
892 	else
893 		offset = RCANFD_C_GAFL_OFFSET;
894 
895 	/* Accept all IDs */
896 	rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, rule_entry_index), 0);
897 	/* IDE or RTR is not considered for matching */
898 	rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, rule_entry_index), 0);
899 	/* Any data length accepted */
900 	rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, rule_entry_index), 0);
901 	/* Place the msg in corresponding Rx FIFO entry */
902 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, rule_entry_index),
903 			   RCANFD_GAFLP1_GAFLFDP(ridx));
904 
905 	/* Disable write access to page */
906 	rcar_canfd_clear_bit(gpriv->base,
907 			     RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
908 }
909 
910 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
911 {
912 	/* Rx FIFO is used for reception */
913 	u32 cfg;
914 	u16 rfdc, rfpls;
915 
916 	/* Select Rx FIFO based on channel */
917 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
918 
919 	rfdc = 2;		/* b010 - 8 messages Rx FIFO depth */
920 	if (gpriv->fdmode)
921 		rfpls = 7;	/* b111 - Max 64 bytes payload */
922 	else
923 		rfpls = 0;	/* b000 - Max 8 bytes payload */
924 
925 	cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
926 		RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
927 	rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
928 }
929 
930 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
931 {
932 	/* Tx/Rx(Common) FIFO configured in Tx mode is
933 	 * used for transmission
934 	 *
935 	 * Each channel has 3 Common FIFO dedicated to them.
936 	 * Use the 1st (index 0) out of 3
937 	 */
938 	u32 cfg;
939 	u16 cftml, cfm, cfdc, cfpls;
940 
941 	cftml = 0;		/* 0th buffer */
942 	cfm = 1;		/* b01 - Transmit mode */
943 	cfdc = 2;		/* b010 - 8 messages Tx FIFO depth */
944 	if (gpriv->fdmode)
945 		cfpls = 7;	/* b111 - Max 64 bytes payload */
946 	else
947 		cfpls = 0;	/* b000 - Max 8 bytes payload */
948 
949 	cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
950 		RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
951 		RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
952 	rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
953 
954 	if (gpriv->fdmode)
955 		/* Clear FD mode specific control/status register */
956 		rcar_canfd_write(gpriv->base,
957 				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
958 }
959 
960 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
961 {
962 	u32 ctr;
963 
964 	/* Clear any stray error interrupt flags */
965 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
966 
967 	/* Global interrupts setup */
968 	ctr = RCANFD_GCTR_MEIE;
969 	if (gpriv->fdmode)
970 		ctr |= RCANFD_GCTR_CFMPOFIE;
971 
972 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
973 }
974 
975 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
976 						 *gpriv)
977 {
978 	/* Disable all interrupts */
979 	rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
980 
981 	/* Clear any stray error interrupt flags */
982 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
983 }
984 
985 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
986 						 *priv)
987 {
988 	u32 ctr, ch = priv->channel;
989 
990 	/* Clear any stray error flags */
991 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
992 
993 	/* Channel interrupts setup */
994 	ctr = (RCANFD_CCTR_TAIE |
995 	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
996 	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
997 	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
998 	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
999 	rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
1000 }
1001 
1002 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
1003 						  *priv)
1004 {
1005 	u32 ctr, ch = priv->channel;
1006 
1007 	ctr = (RCANFD_CCTR_TAIE |
1008 	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
1009 	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
1010 	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
1011 	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
1012 	rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
1013 
1014 	/* Clear any stray error flags */
1015 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
1016 }
1017 
1018 static void rcar_canfd_global_error(struct net_device *ndev)
1019 {
1020 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1021 	struct rcar_canfd_global *gpriv = priv->gpriv;
1022 	struct net_device_stats *stats = &ndev->stats;
1023 	u32 ch = priv->channel;
1024 	u32 gerfl, sts;
1025 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1026 
1027 	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1028 	if (gerfl & FIELD_PREP(RCANFD_GERFL_EEF, BIT(ch))) {
1029 		netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch);
1030 		stats->tx_dropped++;
1031 	}
1032 	if (gerfl & RCANFD_GERFL_MES) {
1033 		sts = rcar_canfd_read(priv->base,
1034 				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1035 		if (sts & RCANFD_CFSTS_CFMLT) {
1036 			netdev_dbg(ndev, "Tx Message Lost flag\n");
1037 			stats->tx_dropped++;
1038 			rcar_canfd_write(priv->base,
1039 					 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1040 					 sts & ~RCANFD_CFSTS_CFMLT);
1041 		}
1042 
1043 		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1044 		if (sts & RCANFD_RFSTS_RFMLT) {
1045 			netdev_dbg(ndev, "Rx Message Lost flag\n");
1046 			stats->rx_dropped++;
1047 			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1048 					 sts & ~RCANFD_RFSTS_RFMLT);
1049 		}
1050 	}
1051 	if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
1052 		/* Message Lost flag will be set for respective channel
1053 		 * when this condition happens with counters and flags
1054 		 * already updated.
1055 		 */
1056 		netdev_dbg(ndev, "global payload overflow interrupt\n");
1057 	}
1058 
1059 	/* Clear all global error interrupts. Only affected channels bits
1060 	 * get cleared
1061 	 */
1062 	rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
1063 }
1064 
1065 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
1066 			     u16 txerr, u16 rxerr)
1067 {
1068 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1069 	struct net_device_stats *stats = &ndev->stats;
1070 	struct can_frame *cf;
1071 	struct sk_buff *skb;
1072 	u32 ch = priv->channel;
1073 
1074 	netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
1075 
1076 	/* Propagate the error condition to the CAN stack */
1077 	skb = alloc_can_err_skb(ndev, &cf);
1078 	if (!skb) {
1079 		stats->rx_dropped++;
1080 		return;
1081 	}
1082 
1083 	/* Channel error interrupts */
1084 	if (cerfl & RCANFD_CERFL_BEF) {
1085 		netdev_dbg(ndev, "Bus error\n");
1086 		cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
1087 		cf->data[2] = CAN_ERR_PROT_UNSPEC;
1088 		priv->can.can_stats.bus_error++;
1089 	}
1090 	if (cerfl & RCANFD_CERFL_ADERR) {
1091 		netdev_dbg(ndev, "ACK Delimiter Error\n");
1092 		stats->tx_errors++;
1093 		cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
1094 	}
1095 	if (cerfl & RCANFD_CERFL_B0ERR) {
1096 		netdev_dbg(ndev, "Bit Error (dominant)\n");
1097 		stats->tx_errors++;
1098 		cf->data[2] |= CAN_ERR_PROT_BIT0;
1099 	}
1100 	if (cerfl & RCANFD_CERFL_B1ERR) {
1101 		netdev_dbg(ndev, "Bit Error (recessive)\n");
1102 		stats->tx_errors++;
1103 		cf->data[2] |= CAN_ERR_PROT_BIT1;
1104 	}
1105 	if (cerfl & RCANFD_CERFL_CERR) {
1106 		netdev_dbg(ndev, "CRC Error\n");
1107 		stats->rx_errors++;
1108 		cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1109 	}
1110 	if (cerfl & RCANFD_CERFL_AERR) {
1111 		netdev_dbg(ndev, "ACK Error\n");
1112 		stats->tx_errors++;
1113 		cf->can_id |= CAN_ERR_ACK;
1114 		cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
1115 	}
1116 	if (cerfl & RCANFD_CERFL_FERR) {
1117 		netdev_dbg(ndev, "Form Error\n");
1118 		stats->rx_errors++;
1119 		cf->data[2] |= CAN_ERR_PROT_FORM;
1120 	}
1121 	if (cerfl & RCANFD_CERFL_SERR) {
1122 		netdev_dbg(ndev, "Stuff Error\n");
1123 		stats->rx_errors++;
1124 		cf->data[2] |= CAN_ERR_PROT_STUFF;
1125 	}
1126 	if (cerfl & RCANFD_CERFL_ALF) {
1127 		netdev_dbg(ndev, "Arbitration lost Error\n");
1128 		priv->can.can_stats.arbitration_lost++;
1129 		cf->can_id |= CAN_ERR_LOSTARB;
1130 		cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
1131 	}
1132 	if (cerfl & RCANFD_CERFL_BLF) {
1133 		netdev_dbg(ndev, "Bus Lock Error\n");
1134 		stats->rx_errors++;
1135 		cf->can_id |= CAN_ERR_BUSERROR;
1136 	}
1137 	if (cerfl & RCANFD_CERFL_EWF) {
1138 		netdev_dbg(ndev, "Error warning interrupt\n");
1139 		priv->can.state = CAN_STATE_ERROR_WARNING;
1140 		priv->can.can_stats.error_warning++;
1141 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1142 		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
1143 			CAN_ERR_CRTL_RX_WARNING;
1144 		cf->data[6] = txerr;
1145 		cf->data[7] = rxerr;
1146 	}
1147 	if (cerfl & RCANFD_CERFL_EPF) {
1148 		netdev_dbg(ndev, "Error passive interrupt\n");
1149 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
1150 		priv->can.can_stats.error_passive++;
1151 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1152 		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1153 			CAN_ERR_CRTL_RX_PASSIVE;
1154 		cf->data[6] = txerr;
1155 		cf->data[7] = rxerr;
1156 	}
1157 	if (cerfl & RCANFD_CERFL_BOEF) {
1158 		netdev_dbg(ndev, "Bus-off entry interrupt\n");
1159 		rcar_canfd_tx_failure_cleanup(ndev);
1160 		priv->can.state = CAN_STATE_BUS_OFF;
1161 		priv->can.can_stats.bus_off++;
1162 		can_bus_off(ndev);
1163 		cf->can_id |= CAN_ERR_BUSOFF;
1164 	}
1165 	if (cerfl & RCANFD_CERFL_OVLF) {
1166 		netdev_dbg(ndev,
1167 			   "Overload Frame Transmission error interrupt\n");
1168 		stats->tx_errors++;
1169 		cf->can_id |= CAN_ERR_PROT;
1170 		cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1171 	}
1172 
1173 	/* Clear channel error interrupts that are handled */
1174 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1175 			 RCANFD_CERFL_ERR(~cerfl));
1176 	netif_rx(skb);
1177 }
1178 
1179 static void rcar_canfd_tx_done(struct net_device *ndev)
1180 {
1181 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1182 	struct rcar_canfd_global *gpriv = priv->gpriv;
1183 	struct net_device_stats *stats = &ndev->stats;
1184 	u32 sts;
1185 	unsigned long flags;
1186 	u32 ch = priv->channel;
1187 
1188 	do {
1189 		u8 unsent, sent;
1190 
1191 		sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1192 		stats->tx_packets++;
1193 		stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
1194 
1195 		spin_lock_irqsave(&priv->tx_lock, flags);
1196 		priv->tx_tail++;
1197 		sts = rcar_canfd_read(priv->base,
1198 				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1199 		unsent = RCANFD_CFSTS_CFMC(sts);
1200 
1201 		/* Wake producer only when there is room */
1202 		if (unsent != RCANFD_FIFO_DEPTH)
1203 			netif_wake_queue(ndev);
1204 
1205 		if (priv->tx_head - priv->tx_tail <= unsent) {
1206 			spin_unlock_irqrestore(&priv->tx_lock, flags);
1207 			break;
1208 		}
1209 		spin_unlock_irqrestore(&priv->tx_lock, flags);
1210 
1211 	} while (1);
1212 
1213 	/* Clear interrupt */
1214 	rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1215 			 sts & ~RCANFD_CFSTS_CFTXIF);
1216 }
1217 
1218 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
1219 {
1220 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1221 	struct net_device *ndev = priv->ndev;
1222 	u32 gerfl;
1223 
1224 	/* Handle global error interrupts */
1225 	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1226 	if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1227 		rcar_canfd_global_error(ndev);
1228 }
1229 
1230 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
1231 {
1232 	struct rcar_canfd_global *gpriv = dev_id;
1233 	u32 ch;
1234 
1235 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1236 		rcar_canfd_handle_global_err(gpriv, ch);
1237 
1238 	return IRQ_HANDLED;
1239 }
1240 
1241 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
1242 {
1243 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1244 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1245 	u32 sts, cc;
1246 
1247 	/* Handle Rx interrupts */
1248 	sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1249 	cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx));
1250 	if (likely(sts & RCANFD_RFSTS_RFIF &&
1251 		   cc & RCANFD_RFCC_RFIE)) {
1252 		if (napi_schedule_prep(&priv->napi)) {
1253 			/* Disable Rx FIFO interrupts */
1254 			rcar_canfd_clear_bit(priv->base,
1255 					     RCANFD_RFCC(gpriv, ridx),
1256 					     RCANFD_RFCC_RFIE);
1257 			__napi_schedule(&priv->napi);
1258 		}
1259 	}
1260 }
1261 
1262 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
1263 {
1264 	struct rcar_canfd_global *gpriv = dev_id;
1265 	u32 ch;
1266 
1267 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1268 		rcar_canfd_handle_global_receive(gpriv, ch);
1269 
1270 	return IRQ_HANDLED;
1271 }
1272 
1273 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1274 {
1275 	struct rcar_canfd_global *gpriv = dev_id;
1276 	u32 ch;
1277 
1278 	/* Global error interrupts still indicate a condition specific
1279 	 * to a channel. RxFIFO interrupt is a global interrupt.
1280 	 */
1281 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1282 		rcar_canfd_handle_global_err(gpriv, ch);
1283 		rcar_canfd_handle_global_receive(gpriv, ch);
1284 	}
1285 	return IRQ_HANDLED;
1286 }
1287 
1288 static void rcar_canfd_state_change(struct net_device *ndev,
1289 				    u16 txerr, u16 rxerr)
1290 {
1291 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1292 	struct net_device_stats *stats = &ndev->stats;
1293 	enum can_state rx_state, tx_state, state = priv->can.state;
1294 	struct can_frame *cf;
1295 	struct sk_buff *skb;
1296 
1297 	/* Handle transition from error to normal states */
1298 	if (txerr < 96 && rxerr < 96)
1299 		state = CAN_STATE_ERROR_ACTIVE;
1300 	else if (txerr < 128 && rxerr < 128)
1301 		state = CAN_STATE_ERROR_WARNING;
1302 
1303 	if (state != priv->can.state) {
1304 		netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1305 			   state, priv->can.state, txerr, rxerr);
1306 		skb = alloc_can_err_skb(ndev, &cf);
1307 		if (!skb) {
1308 			stats->rx_dropped++;
1309 			return;
1310 		}
1311 		tx_state = txerr >= rxerr ? state : 0;
1312 		rx_state = txerr <= rxerr ? state : 0;
1313 
1314 		can_change_state(ndev, cf, tx_state, rx_state);
1315 		netif_rx(skb);
1316 	}
1317 }
1318 
1319 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
1320 {
1321 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1322 	struct net_device *ndev = priv->ndev;
1323 	u32 sts;
1324 
1325 	/* Handle Tx interrupts */
1326 	sts = rcar_canfd_read(priv->base,
1327 			      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1328 	if (likely(sts & RCANFD_CFSTS_CFTXIF))
1329 		rcar_canfd_tx_done(ndev);
1330 }
1331 
1332 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
1333 {
1334 	struct rcar_canfd_channel *priv = dev_id;
1335 
1336 	rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel);
1337 
1338 	return IRQ_HANDLED;
1339 }
1340 
1341 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
1342 {
1343 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1344 	struct net_device *ndev = priv->ndev;
1345 	u16 txerr, rxerr;
1346 	u32 sts, cerfl;
1347 
1348 	/* Handle channel error interrupts */
1349 	cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1350 	sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1351 	txerr = RCANFD_CSTS_TECCNT(sts);
1352 	rxerr = RCANFD_CSTS_RECCNT(sts);
1353 	if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1354 		rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1355 
1356 	/* Handle state change to lower states */
1357 	if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
1358 		     priv->can.state != CAN_STATE_BUS_OFF))
1359 		rcar_canfd_state_change(ndev, txerr, rxerr);
1360 }
1361 
1362 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
1363 {
1364 	struct rcar_canfd_channel *priv = dev_id;
1365 
1366 	rcar_canfd_handle_channel_err(priv->gpriv, priv->channel);
1367 
1368 	return IRQ_HANDLED;
1369 }
1370 
1371 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1372 {
1373 	struct rcar_canfd_global *gpriv = dev_id;
1374 	u32 ch;
1375 
1376 	/* Common FIFO is a per channel resource */
1377 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1378 		rcar_canfd_handle_channel_err(gpriv, ch);
1379 		rcar_canfd_handle_channel_tx(gpriv, ch);
1380 	}
1381 
1382 	return IRQ_HANDLED;
1383 }
1384 
1385 static inline u32 rcar_canfd_compute_nominal_bit_rate_cfg(struct rcar_canfd_channel *priv,
1386 							  u16 tseg1, u16 tseg2, u16 sjw, u16 brp)
1387 {
1388 	struct rcar_canfd_global *gpriv = priv->gpriv;
1389 	const struct rcar_canfd_hw_info *info = gpriv->info;
1390 	u32 ntseg1, ntseg2, nsjw, nbrp;
1391 
1392 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) {
1393 		ntseg1 = (tseg1 & (info->nom_bittiming->tseg1_max - 1)) << info->sh->ntseg1;
1394 		ntseg2 = (tseg2 & (info->nom_bittiming->tseg2_max - 1)) << info->sh->ntseg2;
1395 		nsjw = (sjw & (info->nom_bittiming->sjw_max - 1)) << info->sh->nsjw;
1396 		nbrp = FIELD_PREP(RCANFD_NCFG_NBRP, brp);
1397 	} else {
1398 		ntseg1 = FIELD_PREP(RCANFD_CFG_TSEG1, tseg1);
1399 		ntseg2 = FIELD_PREP(RCANFD_CFG_TSEG2, tseg2);
1400 		nsjw = FIELD_PREP(RCANFD_CFG_SJW, sjw);
1401 		nbrp = FIELD_PREP(RCANFD_CFG_BRP, brp);
1402 	}
1403 
1404 	return (ntseg1 | ntseg2 | nsjw | nbrp);
1405 }
1406 
1407 static inline u32 rcar_canfd_compute_data_bit_rate_cfg(const struct rcar_canfd_hw_info *info,
1408 						       u16 tseg1, u16 tseg2, u16 sjw, u16 brp)
1409 {
1410 	u32 dtseg1, dtseg2, dsjw, dbrp;
1411 
1412 	dtseg1 = (tseg1 & (info->data_bittiming->tseg1_max - 1)) << info->sh->dtseg1;
1413 	dtseg2 = (tseg2 & (info->data_bittiming->tseg2_max - 1)) << info->sh->dtseg2;
1414 	dsjw = (sjw & (info->data_bittiming->sjw_max - 1)) << 24;
1415 	dbrp = FIELD_PREP(RCANFD_DCFG_DBRP, brp);
1416 
1417 	return (dtseg1 | dtseg2 | dsjw | dbrp);
1418 }
1419 
1420 static void rcar_canfd_set_bittiming(struct net_device *ndev)
1421 {
1422 	u32 mask = RCANFD_FDCFG_TDCO | RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC;
1423 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1424 	struct rcar_canfd_global *gpriv = priv->gpriv;
1425 	const struct can_bittiming *bt = &priv->can.bittiming;
1426 	const struct can_bittiming *dbt = &priv->can.fd.data_bittiming;
1427 	const struct can_tdc_const *tdc_const = priv->can.fd.tdc_const;
1428 	const struct can_tdc *tdc = &priv->can.fd.tdc;
1429 	u32 cfg, tdcmode = 0, tdco = 0;
1430 	u16 brp, sjw, tseg1, tseg2;
1431 	u32 ch = priv->channel;
1432 
1433 	/* Nominal bit timing settings */
1434 	brp = bt->brp - 1;
1435 	sjw = bt->sjw - 1;
1436 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1437 	tseg2 = bt->phase_seg2 - 1;
1438 	cfg = rcar_canfd_compute_nominal_bit_rate_cfg(priv, tseg1, tseg2, sjw, brp);
1439 	rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1440 
1441 	if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD))
1442 		return;
1443 
1444 	/* Data bit timing settings */
1445 	brp = dbt->brp - 1;
1446 	sjw = dbt->sjw - 1;
1447 	tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1448 	tseg2 = dbt->phase_seg2 - 1;
1449 	cfg = rcar_canfd_compute_data_bit_rate_cfg(gpriv->info, tseg1, tseg2, sjw, brp);
1450 	writel(cfg, &gpriv->fcbase[ch].dcfg);
1451 
1452 	/* Transceiver Delay Compensation */
1453 	if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_AUTO) {
1454 		/* TDC enabled, measured + offset */
1455 		tdcmode = RCANFD_FDCFG_TDCE;
1456 		tdco = tdc->tdco - 1;
1457 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_MANUAL) {
1458 		/* TDC enabled, offset only */
1459 		tdcmode = RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC;
1460 		tdco = min(tdc->tdcv + tdc->tdco, tdc_const->tdco_max) - 1;
1461 	}
1462 
1463 	rcar_canfd_update_bit_reg(&gpriv->fcbase[ch].cfdcfg, mask,
1464 				  tdcmode | FIELD_PREP(RCANFD_FDCFG_TDCO, tdco));
1465 }
1466 
1467 static int rcar_canfd_start(struct net_device *ndev)
1468 {
1469 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1470 	struct rcar_canfd_global *gpriv = priv->gpriv;
1471 	int err = -EOPNOTSUPP;
1472 	u32 sts, ch = priv->channel;
1473 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1474 
1475 	rcar_canfd_set_bittiming(ndev);
1476 
1477 	rcar_canfd_enable_channel_interrupts(priv);
1478 
1479 	/* Set channel to Operational mode */
1480 	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1481 			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1482 
1483 	/* Verify channel mode change */
1484 	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1485 				 (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1486 	if (err) {
1487 		netdev_err(ndev, "channel %u communication state failed\n", ch);
1488 		goto fail_mode_change;
1489 	}
1490 
1491 	/* Enable Common & Rx FIFO */
1492 	rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1493 			   RCANFD_CFCC_CFE);
1494 	rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1495 
1496 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1497 	return 0;
1498 
1499 fail_mode_change:
1500 	rcar_canfd_disable_channel_interrupts(priv);
1501 	return err;
1502 }
1503 
1504 static int rcar_canfd_open(struct net_device *ndev)
1505 {
1506 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1507 	struct rcar_canfd_global *gpriv = priv->gpriv;
1508 	int err;
1509 
1510 	err = phy_power_on(priv->transceiver);
1511 	if (err) {
1512 		netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err));
1513 		return err;
1514 	}
1515 
1516 	/* Peripheral clock is already enabled in probe */
1517 	err = clk_prepare_enable(gpriv->can_clk);
1518 	if (err) {
1519 		netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err));
1520 		goto out_phy;
1521 	}
1522 
1523 	err = open_candev(ndev);
1524 	if (err) {
1525 		netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err));
1526 		goto out_can_clock;
1527 	}
1528 
1529 	napi_enable(&priv->napi);
1530 	err = rcar_canfd_start(ndev);
1531 	if (err)
1532 		goto out_close;
1533 	netif_start_queue(ndev);
1534 	return 0;
1535 out_close:
1536 	napi_disable(&priv->napi);
1537 	close_candev(ndev);
1538 out_can_clock:
1539 	clk_disable_unprepare(gpriv->can_clk);
1540 out_phy:
1541 	phy_power_off(priv->transceiver);
1542 	return err;
1543 }
1544 
1545 static void rcar_canfd_stop(struct net_device *ndev)
1546 {
1547 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1548 	struct rcar_canfd_global *gpriv = priv->gpriv;
1549 	int err;
1550 	u32 sts, ch = priv->channel;
1551 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1552 
1553 	/* Transition to channel reset mode  */
1554 	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1555 			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1556 
1557 	/* Check Channel reset mode */
1558 	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1559 				 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1560 	if (err)
1561 		netdev_err(ndev, "channel %u reset failed\n", ch);
1562 
1563 	rcar_canfd_disable_channel_interrupts(priv);
1564 
1565 	/* Disable Common & Rx FIFO */
1566 	rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1567 			     RCANFD_CFCC_CFE);
1568 	rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1569 
1570 	/* Set the state as STOPPED */
1571 	priv->can.state = CAN_STATE_STOPPED;
1572 }
1573 
1574 static int rcar_canfd_close(struct net_device *ndev)
1575 {
1576 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1577 	struct rcar_canfd_global *gpriv = priv->gpriv;
1578 
1579 	netif_stop_queue(ndev);
1580 	rcar_canfd_stop(ndev);
1581 	napi_disable(&priv->napi);
1582 	close_candev(ndev);
1583 	clk_disable_unprepare(gpriv->can_clk);
1584 	phy_power_off(priv->transceiver);
1585 	return 0;
1586 }
1587 
1588 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1589 					 struct net_device *ndev)
1590 {
1591 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1592 	struct rcar_canfd_global *gpriv = priv->gpriv;
1593 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1594 	u32 sts = 0, id, dlc;
1595 	unsigned long flags;
1596 	u32 ch = priv->channel;
1597 
1598 	if (can_dev_dropped_skb(ndev, skb))
1599 		return NETDEV_TX_OK;
1600 
1601 	if (cf->can_id & CAN_EFF_FLAG) {
1602 		id = cf->can_id & CAN_EFF_MASK;
1603 		id |= RCANFD_CFID_CFIDE;
1604 	} else {
1605 		id = cf->can_id & CAN_SFF_MASK;
1606 	}
1607 
1608 	if (cf->can_id & CAN_RTR_FLAG)
1609 		id |= RCANFD_CFID_CFRTR;
1610 
1611 	dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
1612 
1613 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) {
1614 		rcar_canfd_write(priv->base,
1615 				 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
1616 		rcar_canfd_write(priv->base,
1617 				 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
1618 
1619 		if (can_is_canfd_skb(skb)) {
1620 			/* CAN FD frame format */
1621 			sts |= RCANFD_CFFDCSTS_CFFDF;
1622 			if (cf->flags & CANFD_BRS)
1623 				sts |= RCANFD_CFFDCSTS_CFBRS;
1624 
1625 			if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1626 				sts |= RCANFD_CFFDCSTS_CFESI;
1627 		}
1628 
1629 		rcar_canfd_write(priv->base,
1630 				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
1631 
1632 		rcar_canfd_put_data(priv, cf,
1633 				    RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
1634 	} else {
1635 		rcar_canfd_write(priv->base,
1636 				 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1637 		rcar_canfd_write(priv->base,
1638 				 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1639 		rcar_canfd_put_data(priv, cf,
1640 				    RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1641 	}
1642 
1643 	can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
1644 
1645 	spin_lock_irqsave(&priv->tx_lock, flags);
1646 	priv->tx_head++;
1647 
1648 	/* Stop the queue if we've filled all FIFO entries */
1649 	if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1650 		netif_stop_queue(ndev);
1651 
1652 	/* Start Tx: Write 0xff to CFPC to increment the CPU-side
1653 	 * pointer for the Common FIFO
1654 	 */
1655 	rcar_canfd_write(priv->base,
1656 			 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
1657 
1658 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1659 	return NETDEV_TX_OK;
1660 }
1661 
1662 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1663 {
1664 	struct net_device *ndev = priv->ndev;
1665 	struct net_device_stats *stats = &ndev->stats;
1666 	struct rcar_canfd_global *gpriv = priv->gpriv;
1667 	struct canfd_frame *cf;
1668 	struct sk_buff *skb;
1669 	u32 sts = 0, id, dlc;
1670 	u32 ch = priv->channel;
1671 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1672 
1673 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) {
1674 		id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
1675 		dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
1676 
1677 		sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
1678 
1679 		if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
1680 		    sts & RCANFD_RFFDSTS_RFFDF)
1681 			skb = alloc_canfd_skb(ndev, &cf);
1682 		else
1683 			skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
1684 	} else {
1685 		id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1686 		dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1687 		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
1688 	}
1689 
1690 	if (!skb) {
1691 		stats->rx_dropped++;
1692 		return;
1693 	}
1694 
1695 	if (id & RCANFD_RFID_RFIDE)
1696 		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1697 	else
1698 		cf->can_id = id & CAN_SFF_MASK;
1699 
1700 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1701 		if (sts & RCANFD_RFFDSTS_RFFDF)
1702 			cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1703 		else
1704 			cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1705 
1706 		if (sts & RCANFD_RFFDSTS_RFESI) {
1707 			cf->flags |= CANFD_ESI;
1708 			netdev_dbg(ndev, "ESI Error\n");
1709 		}
1710 
1711 		if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1712 			cf->can_id |= CAN_RTR_FLAG;
1713 		} else {
1714 			if (sts & RCANFD_RFFDSTS_RFBRS)
1715 				cf->flags |= CANFD_BRS;
1716 
1717 			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1718 		}
1719 	} else {
1720 		cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1721 		if (id & RCANFD_RFID_RFRTR)
1722 			cf->can_id |= CAN_RTR_FLAG;
1723 		else if (gpriv->info->shared_can_regs)
1724 			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1725 		else
1726 			rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1727 	}
1728 
1729 	/* Write 0xff to RFPC to increment the CPU-side
1730 	 * pointer of the Rx FIFO
1731 	 */
1732 	rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
1733 
1734 	if (!(cf->can_id & CAN_RTR_FLAG))
1735 		stats->rx_bytes += cf->len;
1736 	stats->rx_packets++;
1737 	netif_receive_skb(skb);
1738 }
1739 
1740 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1741 {
1742 	struct rcar_canfd_channel *priv =
1743 		container_of(napi, struct rcar_canfd_channel, napi);
1744 	struct rcar_canfd_global *gpriv = priv->gpriv;
1745 	int num_pkts;
1746 	u32 sts;
1747 	u32 ch = priv->channel;
1748 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1749 
1750 	for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1751 		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1752 		/* Check FIFO empty condition */
1753 		if (sts & RCANFD_RFSTS_RFEMP)
1754 			break;
1755 
1756 		rcar_canfd_rx_pkt(priv);
1757 
1758 		/* Clear interrupt bit */
1759 		if (sts & RCANFD_RFSTS_RFIF)
1760 			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1761 					 sts & ~RCANFD_RFSTS_RFIF);
1762 	}
1763 
1764 	/* All packets processed */
1765 	if (num_pkts < quota) {
1766 		if (napi_complete_done(napi, num_pkts)) {
1767 			/* Enable Rx FIFO interrupts */
1768 			rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
1769 					   RCANFD_RFCC_RFIE);
1770 		}
1771 	}
1772 	return num_pkts;
1773 }
1774 
1775 static unsigned int rcar_canfd_get_tdcr(struct rcar_canfd_global *gpriv,
1776 					unsigned int ch)
1777 {
1778 	u32 sts = readl(&gpriv->fcbase[ch].cfdsts);
1779 	u32 tdcr = FIELD_GET(RCANFD_FDSTS_TDCR, sts);
1780 
1781 	return tdcr & (gpriv->info->tdc_const->tdcv_max - 1);
1782 }
1783 
1784 static int rcar_canfd_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv)
1785 {
1786 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1787 	u32 tdco = priv->can.fd.tdc.tdco;
1788 	u32 tdcr;
1789 
1790 	/* Transceiver Delay Compensation Result */
1791 	tdcr = rcar_canfd_get_tdcr(priv->gpriv, priv->channel) + 1;
1792 
1793 	*tdcv = tdcr < tdco ? 0 : tdcr - tdco;
1794 
1795 	return 0;
1796 }
1797 
1798 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1799 {
1800 	int err;
1801 
1802 	switch (mode) {
1803 	case CAN_MODE_START:
1804 		err = rcar_canfd_start(ndev);
1805 		if (err)
1806 			return err;
1807 		netif_wake_queue(ndev);
1808 		return 0;
1809 	default:
1810 		return -EOPNOTSUPP;
1811 	}
1812 }
1813 
1814 static int rcar_canfd_get_berr_counter(const struct net_device *ndev,
1815 				       struct can_berr_counter *bec)
1816 {
1817 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1818 	u32 val, ch = priv->channel;
1819 
1820 	/* Peripheral clock is already enabled in probe */
1821 	val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1822 	bec->txerr = RCANFD_CSTS_TECCNT(val);
1823 	bec->rxerr = RCANFD_CSTS_RECCNT(val);
1824 	return 0;
1825 }
1826 
1827 static const struct net_device_ops rcar_canfd_netdev_ops = {
1828 	.ndo_open = rcar_canfd_open,
1829 	.ndo_stop = rcar_canfd_close,
1830 	.ndo_start_xmit = rcar_canfd_start_xmit,
1831 };
1832 
1833 static const struct ethtool_ops rcar_canfd_ethtool_ops = {
1834 	.get_ts_info = ethtool_op_get_ts_info,
1835 };
1836 
1837 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1838 				    u32 fcan_freq, struct phy *transceiver)
1839 {
1840 	const struct rcar_canfd_hw_info *info = gpriv->info;
1841 	struct platform_device *pdev = gpriv->pdev;
1842 	struct device *dev = &pdev->dev;
1843 	struct rcar_canfd_channel *priv;
1844 	struct net_device *ndev;
1845 	int err = -ENODEV;
1846 
1847 	ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1848 	if (!ndev)
1849 		return -ENOMEM;
1850 
1851 	priv = netdev_priv(ndev);
1852 
1853 	ndev->netdev_ops = &rcar_canfd_netdev_ops;
1854 	ndev->ethtool_ops = &rcar_canfd_ethtool_ops;
1855 	ndev->flags |= IFF_ECHO;
1856 	priv->ndev = ndev;
1857 	priv->base = gpriv->base;
1858 	priv->transceiver = transceiver;
1859 	priv->channel = ch;
1860 	priv->gpriv = gpriv;
1861 	if (transceiver)
1862 		priv->can.bitrate_max = transceiver->attrs.max_link_rate;
1863 	priv->can.clock.freq = fcan_freq;
1864 	dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq);
1865 
1866 	if (info->multi_channel_irqs) {
1867 		char *irq_name;
1868 		char name[10];
1869 		int err_irq;
1870 		int tx_irq;
1871 
1872 		scnprintf(name, sizeof(name), "ch%u_err", ch);
1873 		err_irq = platform_get_irq_byname(pdev, name);
1874 		if (err_irq < 0) {
1875 			err = err_irq;
1876 			goto fail;
1877 		}
1878 
1879 		scnprintf(name, sizeof(name), "ch%u_trx", ch);
1880 		tx_irq = platform_get_irq_byname(pdev, name);
1881 		if (tx_irq < 0) {
1882 			err = tx_irq;
1883 			goto fail;
1884 		}
1885 
1886 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err",
1887 					  ch);
1888 		if (!irq_name) {
1889 			err = -ENOMEM;
1890 			goto fail;
1891 		}
1892 		err = devm_request_irq(dev, err_irq,
1893 				       rcar_canfd_channel_err_interrupt, 0,
1894 				       irq_name, priv);
1895 		if (err) {
1896 			dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n",
1897 				err_irq, ERR_PTR(err));
1898 			goto fail;
1899 		}
1900 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx",
1901 					  ch);
1902 		if (!irq_name) {
1903 			err = -ENOMEM;
1904 			goto fail;
1905 		}
1906 		err = devm_request_irq(dev, tx_irq,
1907 				       rcar_canfd_channel_tx_interrupt, 0,
1908 				       irq_name, priv);
1909 		if (err) {
1910 			dev_err(dev, "devm_request_irq Tx %d failed: %pe\n",
1911 				tx_irq, ERR_PTR(err));
1912 			goto fail;
1913 		}
1914 	}
1915 
1916 	if (gpriv->fdmode) {
1917 		priv->can.bittiming_const = gpriv->info->nom_bittiming;
1918 		priv->can.fd.data_bittiming_const = gpriv->info->data_bittiming;
1919 		priv->can.fd.tdc_const = gpriv->info->tdc_const;
1920 
1921 		/* Controller starts in CAN FD only mode */
1922 		err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1923 		if (err)
1924 			goto fail;
1925 
1926 		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING |
1927 					       CAN_CTRLMODE_TDC_AUTO |
1928 					       CAN_CTRLMODE_TDC_MANUAL;
1929 		priv->can.fd.do_get_auto_tdcv = rcar_canfd_get_auto_tdcv;
1930 	} else {
1931 		/* Controller starts in Classical CAN only mode */
1932 		if (gpriv->info->shared_can_regs)
1933 			priv->can.bittiming_const = gpriv->info->nom_bittiming;
1934 		else
1935 			priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1936 		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1937 	}
1938 
1939 	priv->can.do_set_mode = rcar_canfd_do_set_mode;
1940 	priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1941 	SET_NETDEV_DEV(ndev, dev);
1942 
1943 	netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
1944 			      RCANFD_NAPI_WEIGHT);
1945 	spin_lock_init(&priv->tx_lock);
1946 	gpriv->ch[priv->channel] = priv;
1947 	err = register_candev(ndev);
1948 	if (err) {
1949 		dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err));
1950 		goto fail_candev;
1951 	}
1952 	dev_info(dev, "device registered (channel %u)\n", priv->channel);
1953 	return 0;
1954 
1955 fail_candev:
1956 	netif_napi_del(&priv->napi);
1957 fail:
1958 	free_candev(ndev);
1959 	return err;
1960 }
1961 
1962 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1963 {
1964 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1965 
1966 	if (priv) {
1967 		unregister_candev(priv->ndev);
1968 		netif_napi_del(&priv->napi);
1969 		free_candev(priv->ndev);
1970 	}
1971 }
1972 
1973 static int rcar_canfd_global_init(struct rcar_canfd_global *gpriv)
1974 {
1975 	struct device *dev = &gpriv->pdev->dev;
1976 	u32 rule_entry = 0;
1977 	u32 ch, sts;
1978 	int err;
1979 
1980 	err = reset_control_reset(gpriv->rstc1);
1981 	if (err)
1982 		return err;
1983 
1984 	err = reset_control_reset(gpriv->rstc2);
1985 	if (err)
1986 		goto fail_reset1;
1987 
1988 	/* Enable peripheral clock for register access */
1989 	err = clk_prepare_enable(gpriv->clkp);
1990 	if (err) {
1991 		dev_err(dev, "failed to enable peripheral clock: %pe\n",
1992 			ERR_PTR(err));
1993 		goto fail_reset2;
1994 	}
1995 
1996 	/* Enable RAM clock */
1997 	err = clk_prepare_enable(gpriv->clk_ram);
1998 	if (err) {
1999 		dev_err(dev,
2000 			"failed to enable RAM clock, error %d\n", err);
2001 		goto fail_clk;
2002 	}
2003 
2004 	err = rcar_canfd_reset_controller(gpriv);
2005 	if (err) {
2006 		dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err));
2007 		goto fail_ram_clk;
2008 	}
2009 
2010 	/* Controller in Global reset & Channel reset mode */
2011 	rcar_canfd_configure_controller(gpriv);
2012 
2013 	/* Configure per channel attributes */
2014 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
2015 		/* Configure Channel's Rx fifo */
2016 		rcar_canfd_configure_rx(gpriv, ch);
2017 
2018 		/* Configure Channel's Tx (Common) fifo */
2019 		rcar_canfd_configure_tx(gpriv, ch);
2020 
2021 		/* Configure receive rules */
2022 		rcar_canfd_configure_afl_rules(gpriv, ch, rule_entry);
2023 		rule_entry += RCANFD_CHANNEL_NUMRULES;
2024 	}
2025 
2026 	/* Configure common interrupts */
2027 	rcar_canfd_enable_global_interrupts(gpriv);
2028 
2029 	/* Start Global operation mode */
2030 	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
2031 			      RCANFD_GCTR_GMDC_GOPM);
2032 
2033 	/* Verify mode change */
2034 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
2035 				 !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
2036 	if (err) {
2037 		dev_err(dev, "global operational mode failed\n");
2038 		goto fail_mode;
2039 	}
2040 
2041 	return 0;
2042 
2043 fail_mode:
2044 	rcar_canfd_disable_global_interrupts(gpriv);
2045 fail_ram_clk:
2046 	clk_disable_unprepare(gpriv->clk_ram);
2047 fail_clk:
2048 	clk_disable_unprepare(gpriv->clkp);
2049 fail_reset2:
2050 	reset_control_assert(gpriv->rstc2);
2051 fail_reset1:
2052 	reset_control_assert(gpriv->rstc1);
2053 	return err;
2054 }
2055 
2056 static void rcar_canfd_global_deinit(struct rcar_canfd_global *gpriv, bool full)
2057 {
2058 	rcar_canfd_disable_global_interrupts(gpriv);
2059 
2060 	if (full) {
2061 		rcar_canfd_reset_controller(gpriv);
2062 
2063 		/* Enter global sleep mode */
2064 		rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
2065 	}
2066 
2067 	clk_disable_unprepare(gpriv->clk_ram);
2068 	clk_disable_unprepare(gpriv->clkp);
2069 	reset_control_assert(gpriv->rstc2);
2070 	reset_control_assert(gpriv->rstc1);
2071 }
2072 
2073 static int rcar_canfd_probe(struct platform_device *pdev)
2074 {
2075 	struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, };
2076 	const struct rcar_canfd_hw_info *info;
2077 	struct device *dev = &pdev->dev;
2078 	void __iomem *addr;
2079 	struct rcar_canfd_global *gpriv;
2080 	struct device_node *of_child;
2081 	unsigned long channels_mask = 0;
2082 	int err, ch_irq, g_irq;
2083 	int g_err_irq, g_recc_irq;
2084 	bool fdmode = true;			/* CAN FD only mode - default */
2085 	char name[9] = "channelX";
2086 	u32 ch, fcan_freq;
2087 	int i;
2088 
2089 	info = of_device_get_match_data(dev);
2090 
2091 	if (of_property_read_bool(dev->of_node, "renesas,no-can-fd"))
2092 		fdmode = false;			/* Classical CAN only mode */
2093 
2094 	for (i = 0; i < info->max_channels; ++i) {
2095 		name[7] = '0' + i;
2096 		of_child = of_get_available_child_by_name(dev->of_node, name);
2097 		if (of_child) {
2098 			channels_mask |= BIT(i);
2099 			transceivers[i] = devm_of_phy_optional_get(dev,
2100 							of_child, NULL);
2101 			of_node_put(of_child);
2102 		}
2103 		if (IS_ERR(transceivers[i]))
2104 			return PTR_ERR(transceivers[i]);
2105 	}
2106 
2107 	if (info->shared_global_irqs) {
2108 		ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
2109 		if (ch_irq < 0) {
2110 			/* For backward compatibility get irq by index */
2111 			ch_irq = platform_get_irq(pdev, 0);
2112 			if (ch_irq < 0)
2113 				return ch_irq;
2114 		}
2115 
2116 		g_irq = platform_get_irq_byname_optional(pdev, "g_int");
2117 		if (g_irq < 0) {
2118 			/* For backward compatibility get irq by index */
2119 			g_irq = platform_get_irq(pdev, 1);
2120 			if (g_irq < 0)
2121 				return g_irq;
2122 		}
2123 	} else {
2124 		g_err_irq = platform_get_irq_byname(pdev, "g_err");
2125 		if (g_err_irq < 0)
2126 			return g_err_irq;
2127 
2128 		g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
2129 		if (g_recc_irq < 0)
2130 			return g_recc_irq;
2131 	}
2132 
2133 	/* Global controller context */
2134 	gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL);
2135 	if (!gpriv)
2136 		return -ENOMEM;
2137 
2138 	gpriv->pdev = pdev;
2139 	gpriv->channels_mask = channels_mask;
2140 	gpriv->fdmode = fdmode;
2141 	gpriv->info = info;
2142 
2143 	gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n");
2144 	if (IS_ERR(gpriv->rstc1))
2145 		return dev_err_probe(dev, PTR_ERR(gpriv->rstc1),
2146 				     "failed to get rstp_n\n");
2147 
2148 	gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n");
2149 	if (IS_ERR(gpriv->rstc2))
2150 		return dev_err_probe(dev, PTR_ERR(gpriv->rstc2),
2151 				     "failed to get rstc_n\n");
2152 
2153 	/* Peripheral clock */
2154 	gpriv->clkp = devm_clk_get(dev, "fck");
2155 	if (IS_ERR(gpriv->clkp))
2156 		return dev_err_probe(dev, PTR_ERR(gpriv->clkp),
2157 				     "cannot get peripheral clock\n");
2158 
2159 	/* fCAN clock: Pick External clock. If not available fallback to
2160 	 * CANFD clock
2161 	 */
2162 	gpriv->can_clk = devm_clk_get(dev, "can_clk");
2163 	if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
2164 		gpriv->can_clk = devm_clk_get(dev, "canfd");
2165 		if (IS_ERR(gpriv->can_clk))
2166 			return dev_err_probe(dev, PTR_ERR(gpriv->can_clk),
2167 					     "cannot get canfd clock\n");
2168 
2169 		/* CANFD clock may be further divided within the IP */
2170 		fcan_freq = clk_get_rate(gpriv->can_clk) / info->postdiv;
2171 	} else {
2172 		fcan_freq = clk_get_rate(gpriv->can_clk);
2173 		gpriv->extclk = gpriv->info->external_clk;
2174 	}
2175 
2176 	gpriv->clk_ram = devm_clk_get_optional(dev, "ram_clk");
2177 	if (IS_ERR(gpriv->clk_ram))
2178 		return dev_err_probe(dev, PTR_ERR(gpriv->clk_ram),
2179 				     "cannot get ram clock\n");
2180 
2181 	addr = devm_platform_ioremap_resource(pdev, 0);
2182 	if (IS_ERR(addr)) {
2183 		err = PTR_ERR(addr);
2184 		goto fail_dev;
2185 	}
2186 	gpriv->base = addr;
2187 	gpriv->fcbase = addr + gpriv->info->regs->coffset;
2188 
2189 	/* Request IRQ that's common for both channels */
2190 	if (info->shared_global_irqs) {
2191 		err = devm_request_irq(dev, ch_irq,
2192 				       rcar_canfd_channel_interrupt, 0,
2193 				       "canfd.ch_int", gpriv);
2194 		if (err) {
2195 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
2196 				ch_irq, ERR_PTR(err));
2197 			goto fail_dev;
2198 		}
2199 
2200 		err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt,
2201 				       0, "canfd.g_int", gpriv);
2202 		if (err) {
2203 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
2204 				g_irq, ERR_PTR(err));
2205 			goto fail_dev;
2206 		}
2207 	} else {
2208 		err = devm_request_irq(dev, g_recc_irq,
2209 				       rcar_canfd_global_receive_fifo_interrupt, 0,
2210 				       "canfd.g_recc", gpriv);
2211 
2212 		if (err) {
2213 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
2214 				g_recc_irq, ERR_PTR(err));
2215 			goto fail_dev;
2216 		}
2217 
2218 		err = devm_request_irq(dev, g_err_irq,
2219 				       rcar_canfd_global_err_interrupt, 0,
2220 				       "canfd.g_err", gpriv);
2221 		if (err) {
2222 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
2223 				g_err_irq, ERR_PTR(err));
2224 			goto fail_dev;
2225 		}
2226 	}
2227 
2228 	err = rcar_canfd_global_init(gpriv);
2229 	if (err)
2230 		goto fail_mode;
2231 
2232 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2233 		err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq,
2234 					       transceivers[ch]);
2235 		if (err)
2236 			goto fail_channel;
2237 	}
2238 
2239 	platform_set_drvdata(pdev, gpriv);
2240 	dev_info(dev, "global operational state (%s clk, %s mode)\n",
2241 		 gpriv->extclk ? "ext" : "canfd",
2242 		 gpriv->fdmode ? "fd" : "classical");
2243 	return 0;
2244 
2245 fail_channel:
2246 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels)
2247 		rcar_canfd_channel_remove(gpriv, ch);
2248 fail_mode:
2249 	rcar_canfd_global_deinit(gpriv, false);
2250 fail_dev:
2251 	return err;
2252 }
2253 
2254 static void rcar_canfd_remove(struct platform_device *pdev)
2255 {
2256 	struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
2257 	u32 ch;
2258 
2259 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
2260 		rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
2261 		rcar_canfd_channel_remove(gpriv, ch);
2262 	}
2263 
2264 	rcar_canfd_global_deinit(gpriv, true);
2265 }
2266 
2267 static int rcar_canfd_suspend(struct device *dev)
2268 {
2269 	struct rcar_canfd_global *gpriv = dev_get_drvdata(dev);
2270 	int err;
2271 	u32 ch;
2272 
2273 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
2274 		struct rcar_canfd_channel *priv = gpriv->ch[ch];
2275 		struct net_device *ndev = priv->ndev;
2276 
2277 		if (!netif_running(ndev))
2278 			continue;
2279 
2280 		netif_device_detach(ndev);
2281 
2282 		err = rcar_canfd_close(ndev);
2283 		if (err) {
2284 			netdev_err(ndev, "rcar_canfd_close() failed %pe\n",
2285 				   ERR_PTR(err));
2286 			return err;
2287 		}
2288 
2289 		priv->can.state = CAN_STATE_SLEEPING;
2290 	}
2291 
2292 	/* TODO Skip if wake-up (which is not yet supported) is enabled */
2293 	rcar_canfd_global_deinit(gpriv, false);
2294 
2295 	return 0;
2296 }
2297 
2298 static int rcar_canfd_resume(struct device *dev)
2299 {
2300 	struct rcar_canfd_global *gpriv = dev_get_drvdata(dev);
2301 	int err;
2302 	u32 ch;
2303 
2304 	err = rcar_canfd_global_init(gpriv);
2305 	if (err) {
2306 		dev_err(dev, "rcar_canfd_global_init() failed %pe\n", ERR_PTR(err));
2307 		return err;
2308 	}
2309 
2310 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
2311 		struct rcar_canfd_channel *priv = gpriv->ch[ch];
2312 		struct net_device *ndev = priv->ndev;
2313 
2314 		if (!netif_running(ndev))
2315 			continue;
2316 
2317 		err = rcar_canfd_open(ndev);
2318 		if (err) {
2319 			netdev_err(ndev, "rcar_canfd_open() failed %pe\n",
2320 				   ERR_PTR(err));
2321 			return err;
2322 		}
2323 
2324 		netif_device_attach(ndev);
2325 	}
2326 
2327 	return 0;
2328 }
2329 
2330 static DEFINE_SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
2331 				rcar_canfd_resume);
2332 
2333 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
2334 	{ .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info },
2335 	{ .compatible = "renesas,r9a09g047-canfd", .data = &r9a09g047_hw_info },
2336 	{ .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info },
2337 	{ .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info },
2338 	{ .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info },
2339 	{ }
2340 };
2341 
2342 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
2343 
2344 static struct platform_driver rcar_canfd_driver = {
2345 	.driver = {
2346 		.name = RCANFD_DRV_NAME,
2347 		.of_match_table = of_match_ptr(rcar_canfd_of_table),
2348 		.pm = pm_sleep_ptr(&rcar_canfd_pm_ops),
2349 	},
2350 	.probe = rcar_canfd_probe,
2351 	.remove = rcar_canfd_remove,
2352 };
2353 
2354 module_platform_driver(rcar_canfd_driver);
2355 
2356 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
2357 MODULE_LICENSE("GPL");
2358 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
2359 MODULE_ALIAS("platform:" RCANFD_DRV_NAME);
2360