1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <sys/atomic.h>
26 #include <sys/callb.h>
27 #include <sys/cmn_err.h>
28 #include <sys/exacct.h>
29 #include <sys/id_space.h>
30 #include <sys/kmem.h>
31 #include <sys/kstat.h>
32 #include <sys/modhash.h>
33 #include <sys/mutex.h>
34 #include <sys/proc.h>
35 #include <sys/project.h>
36 #include <sys/rctl.h>
37 #include <sys/systm.h>
38 #include <sys/task.h>
39 #include <sys/time.h>
40 #include <sys/types.h>
41 #include <sys/zone.h>
42 #include <sys/cpuvar.h>
43 #include <sys/fss.h>
44 #include <sys/class.h>
45 #include <sys/project.h>
46
47 /*
48 * Tasks
49 *
50 * A task is a collection of processes, associated with a common project ID
51 * and related by a common initial parent. The task primarily represents a
52 * natural process sequence with known resource usage, although it can also be
53 * viewed as a convenient grouping of processes for signal delivery, processor
54 * binding, and administrative operations.
55 *
56 * Membership and observership
57 * We can conceive of situations where processes outside of the task may wish
58 * to examine the resource usage of the task. Similarly, a number of the
59 * administrative operations on a task can be performed by processes who are
60 * not members of the task. Accordingly, we must design a locking strategy
61 * where observers of the task, who wish to examine or operate on the task,
62 * and members of task, who can perform the mentioned operations, as well as
63 * leave the task, see a consistent and correct representation of the task at
64 * all times.
65 *
66 * Locking
67 * Because the task membership is a new relation between processes, its
68 * locking becomes an additional responsibility of the pidlock/p_lock locking
69 * sequence; however, tasks closely resemble sessions and the session locking
70 * model is mostly appropriate for the interaction of tasks, processes, and
71 * procfs.
72 *
73 * kmutex_t task_hash_lock
74 * task_hash_lock is a global lock protecting the contents of the task
75 * ID-to-task pointer hash. Holders of task_hash_lock must not attempt to
76 * acquire pidlock or p_lock.
77 * uint_t tk_hold_count
78 * tk_hold_count, the number of members and observers of the current task,
79 * must be manipulated atomically.
80 * proc_t *tk_memb_list
81 * proc_t *p_tasknext
82 * proc_t *p_taskprev
83 * The task's membership list is protected by pidlock, and is therefore
84 * always acquired before any of its members' p_lock mutexes. The p_task
85 * member of the proc structure is protected by pidlock or p_lock for
86 * reading, and by both pidlock and p_lock for modification, as is done for
87 * p_sessp. The key point is that only the process can modify its p_task,
88 * and not any entity on the system. (/proc will use prlock() to prevent
89 * the process from leaving, as opposed to pidlock.)
90 * kmutex_t tk_usage_lock
91 * tk_usage_lock is a per-task lock protecting the contents of the task
92 * usage structure and tk_nlwps counter for the task.max-lwps resource
93 * control.
94 */
95
96 int task_hash_size = 256;
97 static kmutex_t task_hash_lock;
98 static mod_hash_t *task_hash;
99
100 static id_space_t *taskid_space; /* global taskid space */
101 static kmem_cache_t *task_cache; /* kmem cache for task structures */
102
103 rctl_hndl_t rc_task_lwps;
104 rctl_hndl_t rc_task_nprocs;
105 rctl_hndl_t rc_task_cpu_time;
106
107 /*
108 * Resource usage is committed using task queues; if taskq_dispatch() fails
109 * due to resource constraints, the task is placed on a list for background
110 * processing by the task_commit_thread() backup thread.
111 */
112 static kmutex_t task_commit_lock; /* protects list pointers and cv */
113 static kcondvar_t task_commit_cv; /* wakeup task_commit_thread */
114 static task_t *task_commit_head = NULL;
115 static task_t *task_commit_tail = NULL;
116 kthread_t *task_commit_thread;
117
118 static void task_commit();
119 static kstat_t *task_kstat_create(task_t *, zone_t *);
120 static void task_kstat_delete(task_t *);
121
122 /*
123 * static rctl_qty_t task_usage_lwps(void *taskp)
124 *
125 * Overview
126 * task_usage_lwps() is the usage operation for the resource control
127 * associated with the number of LWPs in a task.
128 *
129 * Return values
130 * The number of LWPs in the given task is returned.
131 *
132 * Caller's context
133 * The p->p_lock must be held across the call.
134 */
135 /*ARGSUSED*/
136 static rctl_qty_t
task_lwps_usage(rctl_t * r,proc_t * p)137 task_lwps_usage(rctl_t *r, proc_t *p)
138 {
139 task_t *t;
140 rctl_qty_t nlwps;
141
142 ASSERT(MUTEX_HELD(&p->p_lock));
143
144 t = p->p_task;
145 mutex_enter(&p->p_zone->zone_nlwps_lock);
146 nlwps = t->tk_nlwps;
147 mutex_exit(&p->p_zone->zone_nlwps_lock);
148
149 return (nlwps);
150 }
151
152 /*
153 * static int task_test_lwps(void *taskp, rctl_val_t *, int64_t incr,
154 * int flags)
155 *
156 * Overview
157 * task_test_lwps() is the test-if-valid-increment for the resource control
158 * for the number of processes in a task.
159 *
160 * Return values
161 * 0 if the threshold limit was not passed, 1 if the limit was passed.
162 *
163 * Caller's context
164 * p->p_lock must be held across the call.
165 */
166 /*ARGSUSED*/
167 static int
task_lwps_test(rctl_t * r,proc_t * p,rctl_entity_p_t * e,rctl_val_t * rcntl,rctl_qty_t incr,uint_t flags)168 task_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
169 rctl_qty_t incr,
170 uint_t flags)
171 {
172 rctl_qty_t nlwps;
173
174 ASSERT(MUTEX_HELD(&p->p_lock));
175 ASSERT(e->rcep_t == RCENTITY_TASK);
176 if (e->rcep_p.task == NULL)
177 return (0);
178
179 ASSERT(MUTEX_HELD(&(e->rcep_p.task->tk_zone->zone_nlwps_lock)));
180 nlwps = e->rcep_p.task->tk_nlwps;
181
182 if (nlwps + incr > rcntl->rcv_value)
183 return (1);
184
185 return (0);
186 }
187
188 /*ARGSUSED*/
189 static int
task_lwps_set(rctl_t * rctl,struct proc * p,rctl_entity_p_t * e,rctl_qty_t nv)190 task_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) {
191
192 ASSERT(MUTEX_HELD(&p->p_lock));
193 ASSERT(e->rcep_t == RCENTITY_TASK);
194 if (e->rcep_p.task == NULL)
195 return (0);
196
197 e->rcep_p.task->tk_nlwps_ctl = nv;
198 return (0);
199 }
200
201 /*ARGSUSED*/
202 static rctl_qty_t
task_nprocs_usage(rctl_t * r,proc_t * p)203 task_nprocs_usage(rctl_t *r, proc_t *p)
204 {
205 task_t *t;
206 rctl_qty_t nprocs;
207
208 ASSERT(MUTEX_HELD(&p->p_lock));
209
210 t = p->p_task;
211 mutex_enter(&p->p_zone->zone_nlwps_lock);
212 nprocs = t->tk_nprocs;
213 mutex_exit(&p->p_zone->zone_nlwps_lock);
214
215 return (nprocs);
216 }
217
218 /*ARGSUSED*/
219 static int
task_nprocs_test(rctl_t * r,proc_t * p,rctl_entity_p_t * e,rctl_val_t * rcntl,rctl_qty_t incr,uint_t flags)220 task_nprocs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
221 rctl_qty_t incr, uint_t flags)
222 {
223 rctl_qty_t nprocs;
224
225 ASSERT(MUTEX_HELD(&p->p_lock));
226 ASSERT(e->rcep_t == RCENTITY_TASK);
227 if (e->rcep_p.task == NULL)
228 return (0);
229
230 ASSERT(MUTEX_HELD(&(e->rcep_p.task->tk_zone->zone_nlwps_lock)));
231 nprocs = e->rcep_p.task->tk_nprocs;
232
233 if (nprocs + incr > rcntl->rcv_value)
234 return (1);
235
236 return (0);
237 }
238
239 /*ARGSUSED*/
240 static int
task_nprocs_set(rctl_t * rctl,struct proc * p,rctl_entity_p_t * e,rctl_qty_t nv)241 task_nprocs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
242 rctl_qty_t nv) {
243
244 ASSERT(MUTEX_HELD(&p->p_lock));
245 ASSERT(e->rcep_t == RCENTITY_TASK);
246 if (e->rcep_p.task == NULL)
247 return (0);
248
249 e->rcep_p.task->tk_nprocs_ctl = nv;
250 return (0);
251 }
252
253 /*
254 * static rctl_qty_t task_usage_cpu_secs(void *taskp)
255 *
256 * Overview
257 * task_usage_cpu_secs() is the usage operation for the resource control
258 * associated with the total accrued CPU seconds for a task.
259 *
260 * Return values
261 * The number of CPU seconds consumed by the task is returned.
262 *
263 * Caller's context
264 * The given task must be held across the call.
265 */
266 /*ARGSUSED*/
267 static rctl_qty_t
task_cpu_time_usage(rctl_t * r,proc_t * p)268 task_cpu_time_usage(rctl_t *r, proc_t *p)
269 {
270 task_t *t = p->p_task;
271
272 ASSERT(MUTEX_HELD(&p->p_lock));
273 return (t->tk_cpu_time);
274 }
275
276 /*
277 * int task_cpu_time_incr(task_t *t, rctl_qty_t incr)
278 *
279 * Overview
280 * task_cpu_time_incr() increments the amount of CPU time used
281 * by this task.
282 *
283 * Return values
284 * 1 if a second or more time is accumulated
285 * 0 otherwise
286 *
287 * Caller's context
288 * This is called by the clock tick accounting function to charge
289 * CPU time to a task.
290 */
291 rctl_qty_t
task_cpu_time_incr(task_t * t,rctl_qty_t incr)292 task_cpu_time_incr(task_t *t, rctl_qty_t incr)
293 {
294 rctl_qty_t ret = 0;
295
296 mutex_enter(&t->tk_cpu_time_lock);
297 t->tk_cpu_ticks += incr;
298 if (t->tk_cpu_ticks >= hz) {
299 t->tk_cpu_time += t->tk_cpu_ticks / hz;
300 t->tk_cpu_ticks = t->tk_cpu_ticks % hz;
301 ret = t->tk_cpu_time;
302 }
303 mutex_exit(&t->tk_cpu_time_lock);
304
305 return (ret);
306 }
307
308 /*
309 * static int task_test_cpu_secs(void *taskp, rctl_val_t *, int64_t incr,
310 * int flags)
311 *
312 * Overview
313 * task_test_cpu_secs() is the test-if-valid-increment for the resource
314 * control for the total accrued CPU seconds for a task.
315 *
316 * Return values
317 * 0 if the threshold limit was not passed, 1 if the limit was passed.
318 *
319 * Caller's context
320 * The given task must be held across the call.
321 */
322 /*ARGSUSED*/
323 static int
task_cpu_time_test(rctl_t * r,proc_t * p,rctl_entity_p_t * e,struct rctl_val * rcntl,rctl_qty_t incr,uint_t flags)324 task_cpu_time_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
325 struct rctl_val *rcntl, rctl_qty_t incr, uint_t flags)
326 {
327 ASSERT(MUTEX_HELD(&p->p_lock));
328 ASSERT(e->rcep_t == RCENTITY_TASK);
329 if (e->rcep_p.task == NULL)
330 return (0);
331
332 if (incr >= rcntl->rcv_value)
333 return (1);
334
335 return (0);
336 }
337
338 static task_t *
task_find(taskid_t id,zoneid_t zoneid)339 task_find(taskid_t id, zoneid_t zoneid)
340 {
341 task_t *tk;
342
343 ASSERT(MUTEX_HELD(&task_hash_lock));
344
345 if (mod_hash_find(task_hash, (mod_hash_key_t)(uintptr_t)id,
346 (mod_hash_val_t *)&tk) == MH_ERR_NOTFOUND ||
347 (zoneid != ALL_ZONES && zoneid != tk->tk_zone->zone_id))
348 return (NULL);
349
350 return (tk);
351 }
352
353 /*
354 * task_hold_by_id(), task_hold_by_id_zone()
355 *
356 * Overview
357 * task_hold_by_id() is used to take a reference on a task by its task id,
358 * supporting the various system call interfaces for obtaining resource data,
359 * delivering signals, and so forth.
360 *
361 * Return values
362 * Returns a pointer to the task_t with taskid_t id. The task is returned
363 * with its hold count incremented by one. Returns NULL if there
364 * is no task with the requested id.
365 *
366 * Caller's context
367 * Caller must not be holding task_hash_lock. No restrictions on context.
368 */
369 task_t *
task_hold_by_id_zone(taskid_t id,zoneid_t zoneid)370 task_hold_by_id_zone(taskid_t id, zoneid_t zoneid)
371 {
372 task_t *tk;
373
374 mutex_enter(&task_hash_lock);
375 if ((tk = task_find(id, zoneid)) != NULL)
376 atomic_inc_32(&tk->tk_hold_count);
377 mutex_exit(&task_hash_lock);
378
379 return (tk);
380 }
381
382 task_t *
task_hold_by_id(taskid_t id)383 task_hold_by_id(taskid_t id)
384 {
385 zoneid_t zoneid;
386
387 if (INGLOBALZONE(curproc))
388 zoneid = ALL_ZONES;
389 else
390 zoneid = getzoneid();
391 return (task_hold_by_id_zone(id, zoneid));
392 }
393
394 /*
395 * void task_hold(task_t *)
396 *
397 * Overview
398 * task_hold() is used to take an additional reference to the given task.
399 *
400 * Return values
401 * None.
402 *
403 * Caller's context
404 * No restriction on context.
405 */
406 void
task_hold(task_t * tk)407 task_hold(task_t *tk)
408 {
409 atomic_inc_32(&tk->tk_hold_count);
410 }
411
412 /*
413 * void task_rele(task_t *)
414 *
415 * Overview
416 * task_rele() relinquishes a reference on the given task, which was acquired
417 * via task_hold() or task_hold_by_id(). If this is the last member or
418 * observer of the task, dispatch it for commitment via the accounting
419 * subsystem.
420 *
421 * Return values
422 * None.
423 *
424 * Caller's context
425 * Caller must not be holding the task_hash_lock.
426 */
427 void
task_rele(task_t * tk)428 task_rele(task_t *tk)
429 {
430 mutex_enter(&task_hash_lock);
431 if (atomic_add_32_nv(&tk->tk_hold_count, -1) > 0) {
432 mutex_exit(&task_hash_lock);
433 return;
434 }
435
436 ASSERT(tk->tk_nprocs == 0);
437
438 mutex_enter(&tk->tk_zone->zone_nlwps_lock);
439 tk->tk_proj->kpj_ntasks--;
440 mutex_exit(&tk->tk_zone->zone_nlwps_lock);
441
442 task_kstat_delete(tk);
443
444 if (mod_hash_destroy(task_hash,
445 (mod_hash_key_t)(uintptr_t)tk->tk_tkid) != 0)
446 panic("unable to delete task %d", tk->tk_tkid);
447 mutex_exit(&task_hash_lock);
448
449 /*
450 * At this point, there are no members or observers of the task, so we
451 * can safely send it on for commitment to the accounting subsystem.
452 * The task will be destroyed in task_end() subsequent to commitment.
453 * Since we may be called with pidlock held, taskq_dispatch() cannot
454 * sleep. Commitment is handled by a backup thread in case dispatching
455 * the task fails.
456 */
457 if (taskq_dispatch(exacct_queue, exacct_commit_task, tk,
458 TQ_NOSLEEP | TQ_NOQUEUE) == NULL) {
459 mutex_enter(&task_commit_lock);
460 if (task_commit_head == NULL) {
461 task_commit_head = task_commit_tail = tk;
462 } else {
463 task_commit_tail->tk_commit_next = tk;
464 task_commit_tail = tk;
465 }
466 cv_signal(&task_commit_cv);
467 mutex_exit(&task_commit_lock);
468 }
469 }
470
471 /*
472 * task_t *task_create(projid_t, zone *)
473 *
474 * Overview
475 * A process constructing a new task calls task_create() to construct and
476 * preinitialize the task for the appropriate destination project. Only one
477 * task, the primordial task0, is not created with task_create().
478 *
479 * Return values
480 * None.
481 *
482 * Caller's context
483 * Caller's context should be safe for KM_SLEEP allocations.
484 * The caller should appropriately bump the kpj_ntasks counter on the
485 * project that contains this task.
486 */
487 task_t *
task_create(projid_t projid,zone_t * zone)488 task_create(projid_t projid, zone_t *zone)
489 {
490 task_t *tk = kmem_cache_alloc(task_cache, KM_SLEEP);
491 task_t *ancestor_tk;
492 taskid_t tkid;
493 task_usage_t *tu = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
494 mod_hash_hndl_t hndl;
495 rctl_set_t *set = rctl_set_create();
496 rctl_alloc_gp_t *gp;
497 rctl_entity_p_t e;
498
499 bzero(tk, sizeof (task_t));
500
501 tk->tk_tkid = tkid = id_alloc(taskid_space);
502 tk->tk_nlwps = 0;
503 tk->tk_nlwps_ctl = INT_MAX;
504 tk->tk_nprocs = 0;
505 tk->tk_nprocs_ctl = INT_MAX;
506 tk->tk_usage = tu;
507 tk->tk_inherited = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
508 tk->tk_proj = project_hold_by_id(projid, zone, PROJECT_HOLD_INSERT);
509 tk->tk_flags = TASK_NORMAL;
510 tk->tk_commit_next = NULL;
511
512 /*
513 * Copy ancestor task's resource controls.
514 */
515 zone_task_hold(zone);
516 mutex_enter(&curproc->p_lock);
517 ancestor_tk = curproc->p_task;
518 task_hold(ancestor_tk);
519 tk->tk_zone = zone;
520 mutex_exit(&curproc->p_lock);
521
522 for (;;) {
523 gp = rctl_set_dup_prealloc(ancestor_tk->tk_rctls);
524
525 mutex_enter(&ancestor_tk->tk_rctls->rcs_lock);
526 if (rctl_set_dup_ready(ancestor_tk->tk_rctls, gp))
527 break;
528
529 mutex_exit(&ancestor_tk->tk_rctls->rcs_lock);
530
531 rctl_prealloc_destroy(gp);
532 }
533
534 /*
535 * At this point, curproc does not have the appropriate linkage
536 * through the task to the project. So, rctl_set_dup should only
537 * copy the rctls, and leave the callbacks for later.
538 */
539 e.rcep_p.task = tk;
540 e.rcep_t = RCENTITY_TASK;
541 tk->tk_rctls = rctl_set_dup(ancestor_tk->tk_rctls, curproc, curproc, &e,
542 set, gp, RCD_DUP);
543 mutex_exit(&ancestor_tk->tk_rctls->rcs_lock);
544
545 rctl_prealloc_destroy(gp);
546
547 /*
548 * Record the ancestor task's ID for use by extended accounting.
549 */
550 tu->tu_anctaskid = ancestor_tk->tk_tkid;
551 task_rele(ancestor_tk);
552
553 /*
554 * Put new task structure in the hash table.
555 */
556 (void) mod_hash_reserve(task_hash, &hndl);
557 mutex_enter(&task_hash_lock);
558 ASSERT(task_find(tkid, zone->zone_id) == NULL);
559 if (mod_hash_insert_reserve(task_hash, (mod_hash_key_t)(uintptr_t)tkid,
560 (mod_hash_val_t *)tk, hndl) != 0) {
561 mod_hash_cancel(task_hash, &hndl);
562 panic("unable to insert task %d(%p)", tkid, (void *)tk);
563 }
564 mutex_exit(&task_hash_lock);
565
566 tk->tk_nprocs_kstat = task_kstat_create(tk, zone);
567 return (tk);
568 }
569
570 /*
571 * void task_attach(task_t *, proc_t *)
572 *
573 * Overview
574 * task_attach() is used to attach a process to a task; this operation is only
575 * performed as a result of a fork() or settaskid() system call. The proc_t's
576 * p_tasknext and p_taskprev fields will be set such that the proc_t is a
577 * member of the doubly-linked list of proc_t's that make up the task.
578 *
579 * Return values
580 * None.
581 *
582 * Caller's context
583 * pidlock and p->p_lock must be held on entry.
584 */
585 void
task_attach(task_t * tk,proc_t * p)586 task_attach(task_t *tk, proc_t *p)
587 {
588 proc_t *first, *prev;
589 ASSERT(tk != NULL);
590 ASSERT(p != NULL);
591 ASSERT(MUTEX_HELD(&pidlock));
592 ASSERT(MUTEX_HELD(&p->p_lock));
593
594 if (tk->tk_memb_list == NULL) {
595 p->p_tasknext = p;
596 p->p_taskprev = p;
597 } else {
598 first = tk->tk_memb_list;
599 prev = first->p_taskprev;
600 first->p_taskprev = p;
601 p->p_tasknext = first;
602 p->p_taskprev = prev;
603 prev->p_tasknext = p;
604 }
605 tk->tk_memb_list = p;
606 task_hold(tk);
607 p->p_task = tk;
608 }
609
610 /*
611 * task_begin()
612 *
613 * Overview
614 * A process constructing a new task calls task_begin() to initialize the
615 * task, by attaching itself as a member.
616 *
617 * Return values
618 * None.
619 *
620 * Caller's context
621 * pidlock and p_lock must be held across the call to task_begin().
622 */
623 void
task_begin(task_t * tk,proc_t * p)624 task_begin(task_t *tk, proc_t *p)
625 {
626 timestruc_t ts;
627 task_usage_t *tu;
628 rctl_entity_p_t e;
629
630 ASSERT(MUTEX_HELD(&pidlock));
631 ASSERT(MUTEX_HELD(&p->p_lock));
632
633 mutex_enter(&tk->tk_usage_lock);
634 tu = tk->tk_usage;
635 gethrestime(&ts);
636 tu->tu_startsec = (uint64_t)ts.tv_sec;
637 tu->tu_startnsec = (uint64_t)ts.tv_nsec;
638 mutex_exit(&tk->tk_usage_lock);
639
640 /*
641 * Join process to the task as a member.
642 */
643 task_attach(tk, p);
644
645 /*
646 * Now that the linkage from process to task is complete, do the
647 * required callback for the task rctl set.
648 */
649 e.rcep_p.task = tk;
650 e.rcep_t = RCENTITY_TASK;
651 (void) rctl_set_dup(NULL, NULL, p, &e, tk->tk_rctls, NULL,
652 RCD_CALLBACK);
653 }
654
655 /*
656 * void task_detach(proc_t *)
657 *
658 * Overview
659 * task_detach() removes the specified process from its task. task_detach
660 * sets the process's task membership to NULL, in anticipation of a final exit
661 * or of joining a new task. Because task_rele() requires a context safe for
662 * KM_SLEEP allocations, a task_detach() is followed by a subsequent
663 * task_rele() once appropriate context is available.
664 *
665 * Because task_detach() involves relinquishing the process's membership in
666 * the project, any observational rctls the process may have had on the task
667 * or project are destroyed.
668 *
669 * Return values
670 * None.
671 *
672 * Caller's context
673 * pidlock and p_lock held across task_detach().
674 */
675 void
task_detach(proc_t * p)676 task_detach(proc_t *p)
677 {
678 task_t *tk = p->p_task;
679
680 ASSERT(MUTEX_HELD(&pidlock));
681 ASSERT(MUTEX_HELD(&p->p_lock));
682 ASSERT(p->p_task != NULL);
683 ASSERT(tk->tk_memb_list != NULL);
684
685 if (tk->tk_memb_list == p)
686 tk->tk_memb_list = p->p_tasknext;
687 if (tk->tk_memb_list == p)
688 tk->tk_memb_list = NULL;
689 p->p_taskprev->p_tasknext = p->p_tasknext;
690 p->p_tasknext->p_taskprev = p->p_taskprev;
691
692 rctl_set_tearoff(p->p_task->tk_rctls, p);
693 rctl_set_tearoff(p->p_task->tk_proj->kpj_rctls, p);
694
695 p->p_task = NULL;
696 p->p_tasknext = p->p_taskprev = NULL;
697 }
698
699 /*
700 * task_change(task_t *, proc_t *)
701 *
702 * Overview
703 * task_change() removes the specified process from its current task. The
704 * process is then attached to the specified task. This routine is called
705 * from settaskid() when process is being moved to a new task.
706 *
707 * Return values
708 * None.
709 *
710 * Caller's context
711 * pidlock and p_lock held across task_change()
712 */
713 void
task_change(task_t * newtk,proc_t * p)714 task_change(task_t *newtk, proc_t *p)
715 {
716 task_t *oldtk = p->p_task;
717
718 ASSERT(MUTEX_HELD(&pidlock));
719 ASSERT(MUTEX_HELD(&p->p_lock));
720 ASSERT(oldtk != NULL);
721 ASSERT(oldtk->tk_memb_list != NULL);
722
723 mutex_enter(&oldtk->tk_zone->zone_nlwps_lock);
724 oldtk->tk_nlwps -= p->p_lwpcnt;
725 oldtk->tk_nprocs--;
726 mutex_exit(&oldtk->tk_zone->zone_nlwps_lock);
727
728 mutex_enter(&newtk->tk_zone->zone_nlwps_lock);
729 newtk->tk_nlwps += p->p_lwpcnt;
730 newtk->tk_nprocs++;
731 mutex_exit(&newtk->tk_zone->zone_nlwps_lock);
732
733 task_detach(p);
734 task_begin(newtk, p);
735 exacct_move_mstate(p, oldtk, newtk);
736 }
737
738 /*
739 * task_end()
740 *
741 * Overview
742 * task_end() contains the actions executed once the final member of
743 * a task has released the task, and all actions connected with the task, such
744 * as committing an accounting record to a file, are completed. It is called
745 * by the known last consumer of the task information. Additionally,
746 * task_end() must never refer to any process in the system.
747 *
748 * Return values
749 * None.
750 *
751 * Caller's context
752 * No restrictions on context, beyond that given above.
753 */
754 void
task_end(task_t * tk)755 task_end(task_t *tk)
756 {
757 ASSERT(tk->tk_hold_count == 0);
758
759 project_rele(tk->tk_proj);
760 kmem_free(tk->tk_usage, sizeof (task_usage_t));
761 kmem_free(tk->tk_inherited, sizeof (task_usage_t));
762 if (tk->tk_prevusage != NULL)
763 kmem_free(tk->tk_prevusage, sizeof (task_usage_t));
764 if (tk->tk_zoneusage != NULL)
765 kmem_free(tk->tk_zoneusage, sizeof (task_usage_t));
766 rctl_set_free(tk->tk_rctls);
767 id_free(taskid_space, tk->tk_tkid);
768 zone_task_rele(tk->tk_zone);
769 kmem_cache_free(task_cache, tk);
770 }
771
772 static void
changeproj(proc_t * p,kproject_t * kpj,zone_t * zone,void * projbuf,void * zonebuf)773 changeproj(proc_t *p, kproject_t *kpj, zone_t *zone, void *projbuf,
774 void *zonebuf)
775 {
776 kproject_t *oldkpj;
777 kthread_t *t;
778
779 ASSERT(MUTEX_HELD(&pidlock));
780 ASSERT(MUTEX_HELD(&p->p_lock));
781
782 if ((t = p->p_tlist) != NULL) {
783 do {
784 (void) project_hold(kpj);
785
786 thread_lock(t);
787 oldkpj = ttoproj(t);
788
789 /*
790 * Kick this thread so that he doesn't sit
791 * on a wrong wait queue.
792 */
793 if (ISWAITING(t))
794 setrun_locked(t);
795
796 /*
797 * The thread wants to go on the project wait queue, but
798 * the waitq is changing.
799 */
800 if (t->t_schedflag & TS_PROJWAITQ)
801 t->t_schedflag &= ~ TS_PROJWAITQ;
802
803 t->t_proj = kpj;
804 t->t_pre_sys = 1; /* For cred update */
805 thread_unlock(t);
806 fss_changeproj(t, kpj, zone, projbuf, zonebuf);
807
808 project_rele(oldkpj);
809 } while ((t = t->t_forw) != p->p_tlist);
810 }
811 }
812
813 /*
814 * task_join()
815 *
816 * Overview
817 * task_join() contains the actions that must be executed when the first
818 * member (curproc) of a newly created task joins it. It may never fail.
819 *
820 * The caller must make sure holdlwps() is called so that all other lwps are
821 * stopped prior to calling this function.
822 *
823 * NB: It returns with curproc->p_lock held.
824 *
825 * Return values
826 * Pointer to the old task.
827 *
828 * Caller's context
829 * cpu_lock must be held entering the function. It will acquire pidlock,
830 * p_crlock and p_lock during execution.
831 */
832 task_t *
task_join(task_t * tk,uint_t flags)833 task_join(task_t *tk, uint_t flags)
834 {
835 proc_t *p = ttoproc(curthread);
836 task_t *prev_tk;
837 void *projbuf, *zonebuf;
838 zone_t *zone = tk->tk_zone;
839 projid_t projid = tk->tk_proj->kpj_id;
840 cred_t *oldcr;
841
842 /*
843 * We can't know for sure if holdlwps() was called, but we can check to
844 * ensure we're single-threaded.
845 */
846 ASSERT(curthread == p->p_agenttp || p->p_lwprcnt == 1);
847
848 /*
849 * Changing the credential is always hard because we cannot
850 * allocate memory when holding locks but we don't know whether
851 * we need to change it. We first get a reference to the current
852 * cred if we need to change it. Then we create a credential
853 * with an updated project id. Finally we install it, first
854 * releasing the reference we had on the p_cred at the time we
855 * acquired the lock the first time and later we release the
856 * reference to p_cred at the time we acquired the lock the
857 * second time.
858 */
859 mutex_enter(&p->p_crlock);
860 if (crgetprojid(p->p_cred) == projid)
861 oldcr = NULL;
862 else
863 crhold(oldcr = p->p_cred);
864 mutex_exit(&p->p_crlock);
865
866 if (oldcr != NULL) {
867 cred_t *newcr = crdup(oldcr);
868 crsetprojid(newcr, projid);
869 crfree(oldcr);
870
871 mutex_enter(&p->p_crlock);
872 oldcr = p->p_cred;
873 p->p_cred = newcr;
874 mutex_exit(&p->p_crlock);
875 crfree(oldcr);
876 }
877
878 /*
879 * Make sure that the number of processor sets is constant
880 * across this operation.
881 */
882 ASSERT(MUTEX_HELD(&cpu_lock));
883
884 projbuf = fss_allocbuf(FSS_NPSET_BUF, FSS_ALLOC_PROJ);
885 zonebuf = fss_allocbuf(FSS_NPSET_BUF, FSS_ALLOC_ZONE);
886
887 mutex_enter(&pidlock);
888 mutex_enter(&p->p_lock);
889
890 prev_tk = p->p_task;
891 task_change(tk, p);
892
893 /*
894 * Now move threads one by one to their new project.
895 */
896 changeproj(p, tk->tk_proj, zone, projbuf, zonebuf);
897 if (flags & TASK_FINAL)
898 p->p_task->tk_flags |= TASK_FINAL;
899
900 mutex_exit(&pidlock);
901
902 fss_freebuf(zonebuf, FSS_ALLOC_ZONE);
903 fss_freebuf(projbuf, FSS_ALLOC_PROJ);
904 return (prev_tk);
905 }
906
907 /*
908 * rctl ops vectors
909 */
910 static rctl_ops_t task_lwps_ops = {
911 rcop_no_action,
912 task_lwps_usage,
913 task_lwps_set,
914 task_lwps_test
915 };
916
917 static rctl_ops_t task_procs_ops = {
918 rcop_no_action,
919 task_nprocs_usage,
920 task_nprocs_set,
921 task_nprocs_test
922 };
923
924 static rctl_ops_t task_cpu_time_ops = {
925 rcop_no_action,
926 task_cpu_time_usage,
927 rcop_no_set,
928 task_cpu_time_test
929 };
930
931 /*ARGSUSED*/
932 /*
933 * void task_init(void)
934 *
935 * Overview
936 * task_init() initializes task-related hashes, caches, and the task id
937 * space. Additionally, task_init() establishes p0 as a member of task0.
938 * Called by main().
939 *
940 * Return values
941 * None.
942 *
943 * Caller's context
944 * task_init() must be called prior to MP startup.
945 */
946 void
task_init(void)947 task_init(void)
948 {
949 proc_t *p = &p0;
950 mod_hash_hndl_t hndl;
951 rctl_set_t *set;
952 rctl_alloc_gp_t *gp;
953 rctl_entity_p_t e;
954
955 /*
956 * Initialize task_cache and taskid_space.
957 */
958 task_cache = kmem_cache_create("task_cache", sizeof (task_t),
959 0, NULL, NULL, NULL, NULL, NULL, 0);
960 taskid_space = id_space_create("taskid_space", 0, MAX_TASKID);
961
962 /*
963 * Initialize task hash table.
964 */
965 task_hash = mod_hash_create_idhash("task_hash", task_hash_size,
966 mod_hash_null_valdtor);
967
968 /*
969 * Initialize task-based rctls.
970 */
971 rc_task_lwps = rctl_register("task.max-lwps", RCENTITY_TASK,
972 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_COUNT, INT_MAX, INT_MAX,
973 &task_lwps_ops);
974 rc_task_nprocs = rctl_register("task.max-processes", RCENTITY_TASK,
975 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_COUNT, INT_MAX, INT_MAX,
976 &task_procs_ops);
977 rc_task_cpu_time = rctl_register("task.max-cpu-time", RCENTITY_TASK,
978 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_DENY_NEVER |
979 RCTL_GLOBAL_CPU_TIME | RCTL_GLOBAL_INFINITE |
980 RCTL_GLOBAL_UNOBSERVABLE | RCTL_GLOBAL_SECONDS, UINT64_MAX,
981 UINT64_MAX, &task_cpu_time_ops);
982
983 /*
984 * Create task0 and place p0 in it as a member.
985 */
986 task0p = kmem_cache_alloc(task_cache, KM_SLEEP);
987 bzero(task0p, sizeof (task_t));
988
989 task0p->tk_tkid = id_alloc(taskid_space);
990 task0p->tk_usage = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
991 task0p->tk_inherited = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
992 task0p->tk_proj = project_hold_by_id(0, &zone0,
993 PROJECT_HOLD_INSERT);
994 task0p->tk_flags = TASK_NORMAL;
995 task0p->tk_nlwps = p->p_lwpcnt;
996 task0p->tk_nprocs = 1;
997 task0p->tk_zone = global_zone;
998 task0p->tk_commit_next = NULL;
999
1000 set = rctl_set_create();
1001 gp = rctl_set_init_prealloc(RCENTITY_TASK);
1002 mutex_enter(&curproc->p_lock);
1003 e.rcep_p.task = task0p;
1004 e.rcep_t = RCENTITY_TASK;
1005 task0p->tk_rctls = rctl_set_init(RCENTITY_TASK, curproc, &e, set, gp);
1006 mutex_exit(&curproc->p_lock);
1007 rctl_prealloc_destroy(gp);
1008
1009 (void) mod_hash_reserve(task_hash, &hndl);
1010 mutex_enter(&task_hash_lock);
1011 ASSERT(task_find(task0p->tk_tkid, GLOBAL_ZONEID) == NULL);
1012 if (mod_hash_insert_reserve(task_hash,
1013 (mod_hash_key_t)(uintptr_t)task0p->tk_tkid,
1014 (mod_hash_val_t *)task0p, hndl) != 0) {
1015 mod_hash_cancel(task_hash, &hndl);
1016 panic("unable to insert task %d(%p)", task0p->tk_tkid,
1017 (void *)task0p);
1018 }
1019 mutex_exit(&task_hash_lock);
1020
1021 task0p->tk_memb_list = p;
1022
1023 task0p->tk_nprocs_kstat = task_kstat_create(task0p, task0p->tk_zone);
1024
1025 /*
1026 * Initialize task pointers for p0, including doubly linked list of task
1027 * members.
1028 */
1029 p->p_task = task0p;
1030 p->p_taskprev = p->p_tasknext = p;
1031 task_hold(task0p);
1032 }
1033
1034 static int
task_nprocs_kstat_update(kstat_t * ksp,int rw)1035 task_nprocs_kstat_update(kstat_t *ksp, int rw)
1036 {
1037 task_t *tk = ksp->ks_private;
1038 task_kstat_t *ktk = ksp->ks_data;
1039
1040 if (rw == KSTAT_WRITE)
1041 return (EACCES);
1042
1043 ktk->ktk_usage.value.ui64 = tk->tk_nprocs;
1044 ktk->ktk_value.value.ui64 = tk->tk_nprocs_ctl;
1045 return (0);
1046 }
1047
1048 static kstat_t *
task_kstat_create(task_t * tk,zone_t * zone)1049 task_kstat_create(task_t *tk, zone_t *zone)
1050 {
1051 kstat_t *ksp;
1052 task_kstat_t *ktk;
1053 char *zonename = zone->zone_name;
1054
1055 ksp = rctl_kstat_create_task(tk, "nprocs", KSTAT_TYPE_NAMED,
1056 sizeof (task_kstat_t) / sizeof (kstat_named_t),
1057 KSTAT_FLAG_VIRTUAL);
1058
1059 if (ksp == NULL)
1060 return (NULL);
1061
1062 ktk = ksp->ks_data = kmem_alloc(sizeof (task_kstat_t), KM_SLEEP);
1063 ksp->ks_data_size += strlen(zonename) + 1;
1064 kstat_named_init(&ktk->ktk_zonename, "zonename", KSTAT_DATA_STRING);
1065 kstat_named_setstr(&ktk->ktk_zonename, zonename);
1066 kstat_named_init(&ktk->ktk_usage, "usage", KSTAT_DATA_UINT64);
1067 kstat_named_init(&ktk->ktk_value, "value", KSTAT_DATA_UINT64);
1068 ksp->ks_update = task_nprocs_kstat_update;
1069 ksp->ks_private = tk;
1070 kstat_install(ksp);
1071
1072 return (ksp);
1073 }
1074
1075 static void
task_kstat_delete(task_t * tk)1076 task_kstat_delete(task_t *tk)
1077 {
1078 void *data;
1079
1080 if (tk->tk_nprocs_kstat != NULL) {
1081 data = tk->tk_nprocs_kstat->ks_data;
1082 kstat_delete(tk->tk_nprocs_kstat);
1083 kmem_free(data, sizeof (task_kstat_t));
1084 tk->tk_nprocs_kstat = NULL;
1085 }
1086 }
1087
1088 void
task_commit_thread_init()1089 task_commit_thread_init()
1090 {
1091 mutex_init(&task_commit_lock, NULL, MUTEX_DEFAULT, NULL);
1092 cv_init(&task_commit_cv, NULL, CV_DEFAULT, NULL);
1093 task_commit_thread = thread_create(NULL, 0, task_commit, NULL, 0,
1094 &p0, TS_RUN, minclsyspri);
1095 }
1096
1097 /*
1098 * Backup thread to commit task resource usage when taskq_dispatch() fails.
1099 */
1100 static void
task_commit()1101 task_commit()
1102 {
1103 callb_cpr_t cprinfo;
1104
1105 CALLB_CPR_INIT(&cprinfo, &task_commit_lock, callb_generic_cpr,
1106 "task_commit_thread");
1107
1108 mutex_enter(&task_commit_lock);
1109
1110 for (;;) {
1111 while (task_commit_head == NULL) {
1112 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1113 cv_wait(&task_commit_cv, &task_commit_lock);
1114 CALLB_CPR_SAFE_END(&cprinfo, &task_commit_lock);
1115 }
1116 while (task_commit_head != NULL) {
1117 task_t *tk;
1118
1119 tk = task_commit_head;
1120 task_commit_head = task_commit_head->tk_commit_next;
1121 if (task_commit_head == NULL)
1122 task_commit_tail = NULL;
1123 mutex_exit(&task_commit_lock);
1124 exacct_commit_task(tk);
1125 mutex_enter(&task_commit_lock);
1126 }
1127 }
1128 }
1129