xref: /linux/drivers/nvme/target/tcp.c (revision 381af8d9f484c06d93e4a0b8459526e779b35a65)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/key.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/inet.h>
20 #include <linux/llist.h>
21 #include <crypto/hash.h>
22 #include <trace/events/sock.h>
23 
24 #include "nvmet.h"
25 
26 #define NVMET_TCP_DEF_INLINE_DATA_SIZE	(4 * PAGE_SIZE)
27 #define NVMET_TCP_MAXH2CDATA		0x400000 /* 16M arbitrary limit */
28 #define NVMET_TCP_BACKLOG 128
29 
param_store_val(const char * str,int * val,int min,int max)30 static int param_store_val(const char *str, int *val, int min, int max)
31 {
32 	int ret, new_val;
33 
34 	ret = kstrtoint(str, 10, &new_val);
35 	if (ret)
36 		return -EINVAL;
37 
38 	if (new_val < min || new_val > max)
39 		return -EINVAL;
40 
41 	*val = new_val;
42 	return 0;
43 }
44 
set_params(const char * str,const struct kernel_param * kp)45 static int set_params(const char *str, const struct kernel_param *kp)
46 {
47 	return param_store_val(str, kp->arg, 0, INT_MAX);
48 }
49 
50 static const struct kernel_param_ops set_param_ops = {
51 	.set	= set_params,
52 	.get	= param_get_int,
53 };
54 
55 /* Define the socket priority to use for connections were it is desirable
56  * that the NIC consider performing optimized packet processing or filtering.
57  * A non-zero value being sufficient to indicate general consideration of any
58  * possible optimization.  Making it a module param allows for alternative
59  * values that may be unique for some NIC implementations.
60  */
61 static int so_priority;
62 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644);
63 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0");
64 
65 /* Define a time period (in usecs) that io_work() shall sample an activated
66  * queue before determining it to be idle.  This optional module behavior
67  * can enable NIC solutions that support socket optimized packet processing
68  * using advanced interrupt moderation techniques.
69  */
70 static int idle_poll_period_usecs;
71 device_param_cb(idle_poll_period_usecs, &set_param_ops,
72 		&idle_poll_period_usecs, 0644);
73 MODULE_PARM_DESC(idle_poll_period_usecs,
74 		"nvmet tcp io_work poll till idle time period in usecs: Default 0");
75 
76 #ifdef CONFIG_NVME_TARGET_TCP_TLS
77 /*
78  * TLS handshake timeout
79  */
80 static int tls_handshake_timeout = 10;
81 module_param(tls_handshake_timeout, int, 0644);
82 MODULE_PARM_DESC(tls_handshake_timeout,
83 		 "nvme TLS handshake timeout in seconds (default 10)");
84 #endif
85 
86 #define NVMET_TCP_RECV_BUDGET		8
87 #define NVMET_TCP_SEND_BUDGET		8
88 #define NVMET_TCP_IO_WORK_BUDGET	64
89 
90 enum nvmet_tcp_send_state {
91 	NVMET_TCP_SEND_DATA_PDU,
92 	NVMET_TCP_SEND_DATA,
93 	NVMET_TCP_SEND_R2T,
94 	NVMET_TCP_SEND_DDGST,
95 	NVMET_TCP_SEND_RESPONSE
96 };
97 
98 enum nvmet_tcp_recv_state {
99 	NVMET_TCP_RECV_PDU,
100 	NVMET_TCP_RECV_DATA,
101 	NVMET_TCP_RECV_DDGST,
102 	NVMET_TCP_RECV_ERR,
103 };
104 
105 enum {
106 	NVMET_TCP_F_INIT_FAILED = (1 << 0),
107 };
108 
109 struct nvmet_tcp_cmd {
110 	struct nvmet_tcp_queue		*queue;
111 	struct nvmet_req		req;
112 
113 	struct nvme_tcp_cmd_pdu		*cmd_pdu;
114 	struct nvme_tcp_rsp_pdu		*rsp_pdu;
115 	struct nvme_tcp_data_pdu	*data_pdu;
116 	struct nvme_tcp_r2t_pdu		*r2t_pdu;
117 
118 	u32				rbytes_done;
119 	u32				wbytes_done;
120 
121 	u32				pdu_len;
122 	u32				pdu_recv;
123 	int				sg_idx;
124 	char				recv_cbuf[CMSG_LEN(sizeof(char))];
125 	struct msghdr			recv_msg;
126 	struct bio_vec			*iov;
127 	u32				flags;
128 
129 	struct list_head		entry;
130 	struct llist_node		lentry;
131 
132 	/* send state */
133 	u32				offset;
134 	struct scatterlist		*cur_sg;
135 	enum nvmet_tcp_send_state	state;
136 
137 	__le32				exp_ddgst;
138 	__le32				recv_ddgst;
139 };
140 
141 enum nvmet_tcp_queue_state {
142 	NVMET_TCP_Q_CONNECTING,
143 	NVMET_TCP_Q_TLS_HANDSHAKE,
144 	NVMET_TCP_Q_LIVE,
145 	NVMET_TCP_Q_DISCONNECTING,
146 	NVMET_TCP_Q_FAILED,
147 };
148 
149 struct nvmet_tcp_queue {
150 	struct socket		*sock;
151 	struct nvmet_tcp_port	*port;
152 	struct work_struct	io_work;
153 	struct nvmet_cq		nvme_cq;
154 	struct nvmet_sq		nvme_sq;
155 	struct kref		kref;
156 
157 	/* send state */
158 	struct nvmet_tcp_cmd	*cmds;
159 	unsigned int		nr_cmds;
160 	struct list_head	free_list;
161 	struct llist_head	resp_list;
162 	struct list_head	resp_send_list;
163 	int			send_list_len;
164 	struct nvmet_tcp_cmd	*snd_cmd;
165 
166 	/* recv state */
167 	int			offset;
168 	int			left;
169 	enum nvmet_tcp_recv_state rcv_state;
170 	struct nvmet_tcp_cmd	*cmd;
171 	union nvme_tcp_pdu	pdu;
172 
173 	/* digest state */
174 	bool			hdr_digest;
175 	bool			data_digest;
176 	struct ahash_request	*snd_hash;
177 	struct ahash_request	*rcv_hash;
178 
179 	/* TLS state */
180 	key_serial_t		tls_pskid;
181 	struct delayed_work	tls_handshake_tmo_work;
182 
183 	unsigned long           poll_end;
184 
185 	spinlock_t		state_lock;
186 	enum nvmet_tcp_queue_state state;
187 
188 	struct sockaddr_storage	sockaddr;
189 	struct sockaddr_storage	sockaddr_peer;
190 	struct work_struct	release_work;
191 
192 	int			idx;
193 	struct list_head	queue_list;
194 
195 	struct nvmet_tcp_cmd	connect;
196 
197 	struct page_frag_cache	pf_cache;
198 
199 	void (*data_ready)(struct sock *);
200 	void (*state_change)(struct sock *);
201 	void (*write_space)(struct sock *);
202 };
203 
204 struct nvmet_tcp_port {
205 	struct socket		*sock;
206 	struct work_struct	accept_work;
207 	struct nvmet_port	*nport;
208 	struct sockaddr_storage addr;
209 	void (*data_ready)(struct sock *);
210 };
211 
212 static DEFINE_IDA(nvmet_tcp_queue_ida);
213 static LIST_HEAD(nvmet_tcp_queue_list);
214 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
215 
216 static struct workqueue_struct *nvmet_tcp_wq;
217 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
218 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
219 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd);
220 
nvmet_tcp_cmd_tag(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd)221 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
222 		struct nvmet_tcp_cmd *cmd)
223 {
224 	if (unlikely(!queue->nr_cmds)) {
225 		/* We didn't allocate cmds yet, send 0xffff */
226 		return USHRT_MAX;
227 	}
228 
229 	return cmd - queue->cmds;
230 }
231 
nvmet_tcp_has_data_in(struct nvmet_tcp_cmd * cmd)232 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
233 {
234 	return nvme_is_write(cmd->req.cmd) &&
235 		cmd->rbytes_done < cmd->req.transfer_len;
236 }
237 
nvmet_tcp_need_data_in(struct nvmet_tcp_cmd * cmd)238 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
239 {
240 	return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
241 }
242 
nvmet_tcp_need_data_out(struct nvmet_tcp_cmd * cmd)243 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
244 {
245 	return !nvme_is_write(cmd->req.cmd) &&
246 		cmd->req.transfer_len > 0 &&
247 		!cmd->req.cqe->status;
248 }
249 
nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd * cmd)250 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
251 {
252 	return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
253 		!cmd->rbytes_done;
254 }
255 
256 static inline struct nvmet_tcp_cmd *
nvmet_tcp_get_cmd(struct nvmet_tcp_queue * queue)257 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
258 {
259 	struct nvmet_tcp_cmd *cmd;
260 
261 	cmd = list_first_entry_or_null(&queue->free_list,
262 				struct nvmet_tcp_cmd, entry);
263 	if (!cmd)
264 		return NULL;
265 	list_del_init(&cmd->entry);
266 
267 	cmd->rbytes_done = cmd->wbytes_done = 0;
268 	cmd->pdu_len = 0;
269 	cmd->pdu_recv = 0;
270 	cmd->iov = NULL;
271 	cmd->flags = 0;
272 	return cmd;
273 }
274 
nvmet_tcp_put_cmd(struct nvmet_tcp_cmd * cmd)275 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
276 {
277 	if (unlikely(cmd == &cmd->queue->connect))
278 		return;
279 
280 	list_add_tail(&cmd->entry, &cmd->queue->free_list);
281 }
282 
queue_cpu(struct nvmet_tcp_queue * queue)283 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
284 {
285 	return queue->sock->sk->sk_incoming_cpu;
286 }
287 
nvmet_tcp_hdgst_len(struct nvmet_tcp_queue * queue)288 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
289 {
290 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
291 }
292 
nvmet_tcp_ddgst_len(struct nvmet_tcp_queue * queue)293 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
294 {
295 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
296 }
297 
nvmet_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)298 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
299 		void *pdu, size_t len)
300 {
301 	struct scatterlist sg;
302 
303 	sg_init_one(&sg, pdu, len);
304 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
305 	crypto_ahash_digest(hash);
306 }
307 
nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue * queue,void * pdu,size_t len)308 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
309 	void *pdu, size_t len)
310 {
311 	struct nvme_tcp_hdr *hdr = pdu;
312 	__le32 recv_digest;
313 	__le32 exp_digest;
314 
315 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
316 		pr_err("queue %d: header digest enabled but no header digest\n",
317 			queue->idx);
318 		return -EPROTO;
319 	}
320 
321 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
322 	nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
323 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
324 	if (recv_digest != exp_digest) {
325 		pr_err("queue %d: header digest error: recv %#x expected %#x\n",
326 			queue->idx, le32_to_cpu(recv_digest),
327 			le32_to_cpu(exp_digest));
328 		return -EPROTO;
329 	}
330 
331 	return 0;
332 }
333 
nvmet_tcp_check_ddgst(struct nvmet_tcp_queue * queue,void * pdu)334 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
335 {
336 	struct nvme_tcp_hdr *hdr = pdu;
337 	u8 digest_len = nvmet_tcp_hdgst_len(queue);
338 	u32 len;
339 
340 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
341 		(hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
342 
343 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
344 		pr_err("queue %d: data digest flag is cleared\n", queue->idx);
345 		return -EPROTO;
346 	}
347 
348 	return 0;
349 }
350 
351 /* If cmd buffers are NULL, no operation is performed */
nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd * cmd)352 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd)
353 {
354 	kfree(cmd->iov);
355 	sgl_free(cmd->req.sg);
356 	cmd->iov = NULL;
357 	cmd->req.sg = NULL;
358 }
359 
nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd * cmd)360 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd)
361 {
362 	struct bio_vec *iov = cmd->iov;
363 	struct scatterlist *sg;
364 	u32 length, offset, sg_offset;
365 	int nr_pages;
366 
367 	length = cmd->pdu_len;
368 	nr_pages = DIV_ROUND_UP(length, PAGE_SIZE);
369 	offset = cmd->rbytes_done;
370 	cmd->sg_idx = offset / PAGE_SIZE;
371 	sg_offset = offset % PAGE_SIZE;
372 	sg = &cmd->req.sg[cmd->sg_idx];
373 
374 	while (length) {
375 		u32 iov_len = min_t(u32, length, sg->length - sg_offset);
376 
377 		bvec_set_page(iov, sg_page(sg), iov_len,
378 				sg->offset + sg_offset);
379 
380 		length -= iov_len;
381 		sg = sg_next(sg);
382 		iov++;
383 		sg_offset = 0;
384 	}
385 
386 	iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov,
387 		      nr_pages, cmd->pdu_len);
388 }
389 
nvmet_tcp_fatal_error(struct nvmet_tcp_queue * queue)390 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
391 {
392 	queue->rcv_state = NVMET_TCP_RECV_ERR;
393 	if (queue->nvme_sq.ctrl)
394 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
395 	else
396 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
397 }
398 
nvmet_tcp_socket_error(struct nvmet_tcp_queue * queue,int status)399 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
400 {
401 	queue->rcv_state = NVMET_TCP_RECV_ERR;
402 	if (status == -EPIPE || status == -ECONNRESET)
403 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
404 	else
405 		nvmet_tcp_fatal_error(queue);
406 }
407 
nvmet_tcp_map_data(struct nvmet_tcp_cmd * cmd)408 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
409 {
410 	struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
411 	u32 len = le32_to_cpu(sgl->length);
412 
413 	if (!len)
414 		return 0;
415 
416 	if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
417 			  NVME_SGL_FMT_OFFSET)) {
418 		if (!nvme_is_write(cmd->req.cmd))
419 			return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
420 
421 		if (len > cmd->req.port->inline_data_size)
422 			return NVME_SC_SGL_INVALID_OFFSET | NVME_STATUS_DNR;
423 		cmd->pdu_len = len;
424 	}
425 	cmd->req.transfer_len += len;
426 
427 	cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
428 	if (!cmd->req.sg)
429 		return NVME_SC_INTERNAL;
430 	cmd->cur_sg = cmd->req.sg;
431 
432 	if (nvmet_tcp_has_data_in(cmd)) {
433 		cmd->iov = kmalloc_array(cmd->req.sg_cnt,
434 				sizeof(*cmd->iov), GFP_KERNEL);
435 		if (!cmd->iov)
436 			goto err;
437 	}
438 
439 	return 0;
440 err:
441 	nvmet_tcp_free_cmd_buffers(cmd);
442 	return NVME_SC_INTERNAL;
443 }
444 
nvmet_tcp_calc_ddgst(struct ahash_request * hash,struct nvmet_tcp_cmd * cmd)445 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash,
446 		struct nvmet_tcp_cmd *cmd)
447 {
448 	ahash_request_set_crypt(hash, cmd->req.sg,
449 		(void *)&cmd->exp_ddgst, cmd->req.transfer_len);
450 	crypto_ahash_digest(hash);
451 }
452 
nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd * cmd)453 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
454 {
455 	struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
456 	struct nvmet_tcp_queue *queue = cmd->queue;
457 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
458 	u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
459 
460 	cmd->offset = 0;
461 	cmd->state = NVMET_TCP_SEND_DATA_PDU;
462 
463 	pdu->hdr.type = nvme_tcp_c2h_data;
464 	pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
465 						NVME_TCP_F_DATA_SUCCESS : 0);
466 	pdu->hdr.hlen = sizeof(*pdu);
467 	pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
468 	pdu->hdr.plen =
469 		cpu_to_le32(pdu->hdr.hlen + hdgst +
470 				cmd->req.transfer_len + ddgst);
471 	pdu->command_id = cmd->req.cqe->command_id;
472 	pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
473 	pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
474 
475 	if (queue->data_digest) {
476 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
477 		nvmet_tcp_calc_ddgst(queue->snd_hash, cmd);
478 	}
479 
480 	if (cmd->queue->hdr_digest) {
481 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
482 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
483 	}
484 }
485 
nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd * cmd)486 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
487 {
488 	struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
489 	struct nvmet_tcp_queue *queue = cmd->queue;
490 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
491 
492 	cmd->offset = 0;
493 	cmd->state = NVMET_TCP_SEND_R2T;
494 
495 	pdu->hdr.type = nvme_tcp_r2t;
496 	pdu->hdr.flags = 0;
497 	pdu->hdr.hlen = sizeof(*pdu);
498 	pdu->hdr.pdo = 0;
499 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
500 
501 	pdu->command_id = cmd->req.cmd->common.command_id;
502 	pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
503 	pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
504 	pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
505 	if (cmd->queue->hdr_digest) {
506 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
507 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
508 	}
509 }
510 
nvmet_setup_response_pdu(struct nvmet_tcp_cmd * cmd)511 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
512 {
513 	struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
514 	struct nvmet_tcp_queue *queue = cmd->queue;
515 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
516 
517 	cmd->offset = 0;
518 	cmd->state = NVMET_TCP_SEND_RESPONSE;
519 
520 	pdu->hdr.type = nvme_tcp_rsp;
521 	pdu->hdr.flags = 0;
522 	pdu->hdr.hlen = sizeof(*pdu);
523 	pdu->hdr.pdo = 0;
524 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
525 	if (cmd->queue->hdr_digest) {
526 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
527 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
528 	}
529 }
530 
nvmet_tcp_process_resp_list(struct nvmet_tcp_queue * queue)531 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
532 {
533 	struct llist_node *node;
534 	struct nvmet_tcp_cmd *cmd;
535 
536 	for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
537 		cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
538 		list_add(&cmd->entry, &queue->resp_send_list);
539 		queue->send_list_len++;
540 	}
541 }
542 
nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue * queue)543 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
544 {
545 	queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
546 				struct nvmet_tcp_cmd, entry);
547 	if (!queue->snd_cmd) {
548 		nvmet_tcp_process_resp_list(queue);
549 		queue->snd_cmd =
550 			list_first_entry_or_null(&queue->resp_send_list,
551 					struct nvmet_tcp_cmd, entry);
552 		if (unlikely(!queue->snd_cmd))
553 			return NULL;
554 	}
555 
556 	list_del_init(&queue->snd_cmd->entry);
557 	queue->send_list_len--;
558 
559 	if (nvmet_tcp_need_data_out(queue->snd_cmd))
560 		nvmet_setup_c2h_data_pdu(queue->snd_cmd);
561 	else if (nvmet_tcp_need_data_in(queue->snd_cmd))
562 		nvmet_setup_r2t_pdu(queue->snd_cmd);
563 	else
564 		nvmet_setup_response_pdu(queue->snd_cmd);
565 
566 	return queue->snd_cmd;
567 }
568 
nvmet_tcp_queue_response(struct nvmet_req * req)569 static void nvmet_tcp_queue_response(struct nvmet_req *req)
570 {
571 	struct nvmet_tcp_cmd *cmd =
572 		container_of(req, struct nvmet_tcp_cmd, req);
573 	struct nvmet_tcp_queue	*queue = cmd->queue;
574 	enum nvmet_tcp_recv_state queue_state;
575 	struct nvmet_tcp_cmd *queue_cmd;
576 	struct nvme_sgl_desc *sgl;
577 	u32 len;
578 
579 	/* Pairs with store_release in nvmet_prepare_receive_pdu() */
580 	queue_state = smp_load_acquire(&queue->rcv_state);
581 	queue_cmd = READ_ONCE(queue->cmd);
582 
583 	if (unlikely(cmd == queue_cmd)) {
584 		sgl = &cmd->req.cmd->common.dptr.sgl;
585 		len = le32_to_cpu(sgl->length);
586 
587 		/*
588 		 * Wait for inline data before processing the response.
589 		 * Avoid using helpers, this might happen before
590 		 * nvmet_req_init is completed.
591 		 */
592 		if (queue_state == NVMET_TCP_RECV_PDU &&
593 		    len && len <= cmd->req.port->inline_data_size &&
594 		    nvme_is_write(cmd->req.cmd))
595 			return;
596 	}
597 
598 	llist_add(&cmd->lentry, &queue->resp_list);
599 	queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
600 }
601 
nvmet_tcp_execute_request(struct nvmet_tcp_cmd * cmd)602 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
603 {
604 	if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
605 		nvmet_tcp_queue_response(&cmd->req);
606 	else
607 		cmd->req.execute(&cmd->req);
608 }
609 
nvmet_try_send_data_pdu(struct nvmet_tcp_cmd * cmd)610 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
611 {
612 	struct msghdr msg = {
613 		.msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES,
614 	};
615 	struct bio_vec bvec;
616 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
617 	int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
618 	int ret;
619 
620 	bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left);
621 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
622 	ret = sock_sendmsg(cmd->queue->sock, &msg);
623 	if (ret <= 0)
624 		return ret;
625 
626 	cmd->offset += ret;
627 	left -= ret;
628 
629 	if (left)
630 		return -EAGAIN;
631 
632 	cmd->state = NVMET_TCP_SEND_DATA;
633 	cmd->offset  = 0;
634 	return 1;
635 }
636 
nvmet_try_send_data(struct nvmet_tcp_cmd * cmd,bool last_in_batch)637 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
638 {
639 	struct nvmet_tcp_queue *queue = cmd->queue;
640 	int ret;
641 
642 	while (cmd->cur_sg) {
643 		struct msghdr msg = {
644 			.msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
645 		};
646 		struct page *page = sg_page(cmd->cur_sg);
647 		struct bio_vec bvec;
648 		u32 left = cmd->cur_sg->length - cmd->offset;
649 
650 		if ((!last_in_batch && cmd->queue->send_list_len) ||
651 		    cmd->wbytes_done + left < cmd->req.transfer_len ||
652 		    queue->data_digest || !queue->nvme_sq.sqhd_disabled)
653 			msg.msg_flags |= MSG_MORE;
654 
655 		bvec_set_page(&bvec, page, left, cmd->offset);
656 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
657 		ret = sock_sendmsg(cmd->queue->sock, &msg);
658 		if (ret <= 0)
659 			return ret;
660 
661 		cmd->offset += ret;
662 		cmd->wbytes_done += ret;
663 
664 		/* Done with sg?*/
665 		if (cmd->offset == cmd->cur_sg->length) {
666 			cmd->cur_sg = sg_next(cmd->cur_sg);
667 			cmd->offset = 0;
668 		}
669 	}
670 
671 	if (queue->data_digest) {
672 		cmd->state = NVMET_TCP_SEND_DDGST;
673 		cmd->offset = 0;
674 	} else {
675 		if (queue->nvme_sq.sqhd_disabled) {
676 			cmd->queue->snd_cmd = NULL;
677 			nvmet_tcp_put_cmd(cmd);
678 		} else {
679 			nvmet_setup_response_pdu(cmd);
680 		}
681 	}
682 
683 	if (queue->nvme_sq.sqhd_disabled)
684 		nvmet_tcp_free_cmd_buffers(cmd);
685 
686 	return 1;
687 
688 }
689 
nvmet_try_send_response(struct nvmet_tcp_cmd * cmd,bool last_in_batch)690 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
691 		bool last_in_batch)
692 {
693 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
694 	struct bio_vec bvec;
695 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
696 	int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
697 	int ret;
698 
699 	if (!last_in_batch && cmd->queue->send_list_len)
700 		msg.msg_flags |= MSG_MORE;
701 	else
702 		msg.msg_flags |= MSG_EOR;
703 
704 	bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left);
705 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
706 	ret = sock_sendmsg(cmd->queue->sock, &msg);
707 	if (ret <= 0)
708 		return ret;
709 	cmd->offset += ret;
710 	left -= ret;
711 
712 	if (left)
713 		return -EAGAIN;
714 
715 	nvmet_tcp_free_cmd_buffers(cmd);
716 	cmd->queue->snd_cmd = NULL;
717 	nvmet_tcp_put_cmd(cmd);
718 	return 1;
719 }
720 
nvmet_try_send_r2t(struct nvmet_tcp_cmd * cmd,bool last_in_batch)721 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
722 {
723 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
724 	struct bio_vec bvec;
725 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
726 	int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
727 	int ret;
728 
729 	if (!last_in_batch && cmd->queue->send_list_len)
730 		msg.msg_flags |= MSG_MORE;
731 	else
732 		msg.msg_flags |= MSG_EOR;
733 
734 	bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left);
735 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
736 	ret = sock_sendmsg(cmd->queue->sock, &msg);
737 	if (ret <= 0)
738 		return ret;
739 	cmd->offset += ret;
740 	left -= ret;
741 
742 	if (left)
743 		return -EAGAIN;
744 
745 	cmd->queue->snd_cmd = NULL;
746 	return 1;
747 }
748 
nvmet_try_send_ddgst(struct nvmet_tcp_cmd * cmd,bool last_in_batch)749 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
750 {
751 	struct nvmet_tcp_queue *queue = cmd->queue;
752 	int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
753 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
754 	struct kvec iov = {
755 		.iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
756 		.iov_len = left
757 	};
758 	int ret;
759 
760 	if (!last_in_batch && cmd->queue->send_list_len)
761 		msg.msg_flags |= MSG_MORE;
762 	else
763 		msg.msg_flags |= MSG_EOR;
764 
765 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
766 	if (unlikely(ret <= 0))
767 		return ret;
768 
769 	cmd->offset += ret;
770 	left -= ret;
771 
772 	if (left)
773 		return -EAGAIN;
774 
775 	if (queue->nvme_sq.sqhd_disabled) {
776 		cmd->queue->snd_cmd = NULL;
777 		nvmet_tcp_put_cmd(cmd);
778 	} else {
779 		nvmet_setup_response_pdu(cmd);
780 	}
781 	return 1;
782 }
783 
nvmet_tcp_try_send_one(struct nvmet_tcp_queue * queue,bool last_in_batch)784 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
785 		bool last_in_batch)
786 {
787 	struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
788 	int ret = 0;
789 
790 	if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
791 		cmd = nvmet_tcp_fetch_cmd(queue);
792 		if (unlikely(!cmd))
793 			return 0;
794 	}
795 
796 	if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
797 		ret = nvmet_try_send_data_pdu(cmd);
798 		if (ret <= 0)
799 			goto done_send;
800 	}
801 
802 	if (cmd->state == NVMET_TCP_SEND_DATA) {
803 		ret = nvmet_try_send_data(cmd, last_in_batch);
804 		if (ret <= 0)
805 			goto done_send;
806 	}
807 
808 	if (cmd->state == NVMET_TCP_SEND_DDGST) {
809 		ret = nvmet_try_send_ddgst(cmd, last_in_batch);
810 		if (ret <= 0)
811 			goto done_send;
812 	}
813 
814 	if (cmd->state == NVMET_TCP_SEND_R2T) {
815 		ret = nvmet_try_send_r2t(cmd, last_in_batch);
816 		if (ret <= 0)
817 			goto done_send;
818 	}
819 
820 	if (cmd->state == NVMET_TCP_SEND_RESPONSE)
821 		ret = nvmet_try_send_response(cmd, last_in_batch);
822 
823 done_send:
824 	if (ret < 0) {
825 		if (ret == -EAGAIN)
826 			return 0;
827 		return ret;
828 	}
829 
830 	return 1;
831 }
832 
nvmet_tcp_try_send(struct nvmet_tcp_queue * queue,int budget,int * sends)833 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
834 		int budget, int *sends)
835 {
836 	int i, ret = 0;
837 
838 	for (i = 0; i < budget; i++) {
839 		ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
840 		if (unlikely(ret < 0)) {
841 			nvmet_tcp_socket_error(queue, ret);
842 			goto done;
843 		} else if (ret == 0) {
844 			break;
845 		}
846 		(*sends)++;
847 	}
848 done:
849 	return ret;
850 }
851 
nvmet_prepare_receive_pdu(struct nvmet_tcp_queue * queue)852 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
853 {
854 	queue->offset = 0;
855 	queue->left = sizeof(struct nvme_tcp_hdr);
856 	WRITE_ONCE(queue->cmd, NULL);
857 	/* Ensure rcv_state is visible only after queue->cmd is set */
858 	smp_store_release(&queue->rcv_state, NVMET_TCP_RECV_PDU);
859 }
860 
nvmet_tcp_free_crypto(struct nvmet_tcp_queue * queue)861 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
862 {
863 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
864 
865 	ahash_request_free(queue->rcv_hash);
866 	ahash_request_free(queue->snd_hash);
867 	crypto_free_ahash(tfm);
868 }
869 
nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue * queue)870 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
871 {
872 	struct crypto_ahash *tfm;
873 
874 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
875 	if (IS_ERR(tfm))
876 		return PTR_ERR(tfm);
877 
878 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
879 	if (!queue->snd_hash)
880 		goto free_tfm;
881 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
882 
883 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
884 	if (!queue->rcv_hash)
885 		goto free_snd_hash;
886 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
887 
888 	return 0;
889 free_snd_hash:
890 	ahash_request_free(queue->snd_hash);
891 free_tfm:
892 	crypto_free_ahash(tfm);
893 	return -ENOMEM;
894 }
895 
896 
nvmet_tcp_handle_icreq(struct nvmet_tcp_queue * queue)897 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
898 {
899 	struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
900 	struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
901 	struct msghdr msg = {};
902 	struct kvec iov;
903 	int ret;
904 
905 	if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
906 		pr_err("bad nvme-tcp pdu length (%d)\n",
907 			le32_to_cpu(icreq->hdr.plen));
908 		nvmet_tcp_fatal_error(queue);
909 		return -EPROTO;
910 	}
911 
912 	if (icreq->pfv != NVME_TCP_PFV_1_0) {
913 		pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
914 		return -EPROTO;
915 	}
916 
917 	if (icreq->hpda != 0) {
918 		pr_err("queue %d: unsupported hpda %d\n", queue->idx,
919 			icreq->hpda);
920 		return -EPROTO;
921 	}
922 
923 	queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
924 	queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
925 	if (queue->hdr_digest || queue->data_digest) {
926 		ret = nvmet_tcp_alloc_crypto(queue);
927 		if (ret)
928 			return ret;
929 	}
930 
931 	memset(icresp, 0, sizeof(*icresp));
932 	icresp->hdr.type = nvme_tcp_icresp;
933 	icresp->hdr.hlen = sizeof(*icresp);
934 	icresp->hdr.pdo = 0;
935 	icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
936 	icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
937 	icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA);
938 	icresp->cpda = 0;
939 	if (queue->hdr_digest)
940 		icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
941 	if (queue->data_digest)
942 		icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
943 
944 	iov.iov_base = icresp;
945 	iov.iov_len = sizeof(*icresp);
946 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
947 	if (ret < 0) {
948 		queue->state = NVMET_TCP_Q_FAILED;
949 		return ret; /* queue removal will cleanup */
950 	}
951 
952 	queue->state = NVMET_TCP_Q_LIVE;
953 	nvmet_prepare_receive_pdu(queue);
954 	return 0;
955 }
956 
nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd,struct nvmet_req * req)957 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
958 		struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
959 {
960 	size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
961 	int ret;
962 
963 	/*
964 	 * This command has not been processed yet, hence we are trying to
965 	 * figure out if there is still pending data left to receive. If
966 	 * we don't, we can simply prepare for the next pdu and bail out,
967 	 * otherwise we will need to prepare a buffer and receive the
968 	 * stale data before continuing forward.
969 	 */
970 	if (!nvme_is_write(cmd->req.cmd) || !data_len ||
971 	    data_len > cmd->req.port->inline_data_size) {
972 		nvmet_prepare_receive_pdu(queue);
973 		return;
974 	}
975 
976 	ret = nvmet_tcp_map_data(cmd);
977 	if (unlikely(ret)) {
978 		pr_err("queue %d: failed to map data\n", queue->idx);
979 		nvmet_tcp_fatal_error(queue);
980 		return;
981 	}
982 
983 	queue->rcv_state = NVMET_TCP_RECV_DATA;
984 	nvmet_tcp_build_pdu_iovec(cmd);
985 	cmd->flags |= NVMET_TCP_F_INIT_FAILED;
986 }
987 
nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue * queue)988 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
989 {
990 	struct nvme_tcp_data_pdu *data = &queue->pdu.data;
991 	struct nvmet_tcp_cmd *cmd;
992 	unsigned int exp_data_len;
993 
994 	if (likely(queue->nr_cmds)) {
995 		if (unlikely(data->ttag >= queue->nr_cmds)) {
996 			pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
997 				queue->idx, data->ttag, queue->nr_cmds);
998 			goto err_proto;
999 		}
1000 		cmd = &queue->cmds[data->ttag];
1001 	} else {
1002 		cmd = &queue->connect;
1003 	}
1004 
1005 	if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
1006 		pr_err("ttag %u unexpected data offset %u (expected %u)\n",
1007 			data->ttag, le32_to_cpu(data->data_offset),
1008 			cmd->rbytes_done);
1009 		goto err_proto;
1010 	}
1011 
1012 	exp_data_len = le32_to_cpu(data->hdr.plen) -
1013 			nvmet_tcp_hdgst_len(queue) -
1014 			nvmet_tcp_ddgst_len(queue) -
1015 			sizeof(*data);
1016 
1017 	cmd->pdu_len = le32_to_cpu(data->data_length);
1018 	if (unlikely(cmd->pdu_len != exp_data_len ||
1019 		     cmd->pdu_len == 0 ||
1020 		     cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) {
1021 		pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len);
1022 		goto err_proto;
1023 	}
1024 	cmd->pdu_recv = 0;
1025 	nvmet_tcp_build_pdu_iovec(cmd);
1026 	queue->cmd = cmd;
1027 	queue->rcv_state = NVMET_TCP_RECV_DATA;
1028 
1029 	return 0;
1030 
1031 err_proto:
1032 	/* FIXME: use proper transport errors */
1033 	nvmet_tcp_fatal_error(queue);
1034 	return -EPROTO;
1035 }
1036 
nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue * queue)1037 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
1038 {
1039 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1040 	struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
1041 	struct nvmet_req *req;
1042 	int ret;
1043 
1044 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1045 		if (hdr->type != nvme_tcp_icreq) {
1046 			pr_err("unexpected pdu type (%d) before icreq\n",
1047 				hdr->type);
1048 			nvmet_tcp_fatal_error(queue);
1049 			return -EPROTO;
1050 		}
1051 		return nvmet_tcp_handle_icreq(queue);
1052 	}
1053 
1054 	if (unlikely(hdr->type == nvme_tcp_icreq)) {
1055 		pr_err("queue %d: received icreq pdu in state %d\n",
1056 			queue->idx, queue->state);
1057 		nvmet_tcp_fatal_error(queue);
1058 		return -EPROTO;
1059 	}
1060 
1061 	if (hdr->type == nvme_tcp_h2c_data) {
1062 		ret = nvmet_tcp_handle_h2c_data_pdu(queue);
1063 		if (unlikely(ret))
1064 			return ret;
1065 		return 0;
1066 	}
1067 
1068 	queue->cmd = nvmet_tcp_get_cmd(queue);
1069 	if (unlikely(!queue->cmd)) {
1070 		/* This should never happen */
1071 		pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
1072 			queue->idx, queue->nr_cmds, queue->send_list_len,
1073 			nvme_cmd->common.opcode);
1074 		nvmet_tcp_fatal_error(queue);
1075 		return -ENOMEM;
1076 	}
1077 
1078 	req = &queue->cmd->req;
1079 	memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
1080 
1081 	if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
1082 			&queue->nvme_sq, &nvmet_tcp_ops))) {
1083 		pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
1084 			req->cmd, req->cmd->common.command_id,
1085 			req->cmd->common.opcode,
1086 			le32_to_cpu(req->cmd->common.dptr.sgl.length));
1087 
1088 		nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1089 		return 0;
1090 	}
1091 
1092 	ret = nvmet_tcp_map_data(queue->cmd);
1093 	if (unlikely(ret)) {
1094 		pr_err("queue %d: failed to map data\n", queue->idx);
1095 		if (nvmet_tcp_has_inline_data(queue->cmd))
1096 			nvmet_tcp_fatal_error(queue);
1097 		else
1098 			nvmet_req_complete(req, ret);
1099 		ret = -EAGAIN;
1100 		goto out;
1101 	}
1102 
1103 	if (nvmet_tcp_need_data_in(queue->cmd)) {
1104 		if (nvmet_tcp_has_inline_data(queue->cmd)) {
1105 			queue->rcv_state = NVMET_TCP_RECV_DATA;
1106 			nvmet_tcp_build_pdu_iovec(queue->cmd);
1107 			return 0;
1108 		}
1109 		/* send back R2T */
1110 		nvmet_tcp_queue_response(&queue->cmd->req);
1111 		goto out;
1112 	}
1113 
1114 	queue->cmd->req.execute(&queue->cmd->req);
1115 out:
1116 	nvmet_prepare_receive_pdu(queue);
1117 	return ret;
1118 }
1119 
1120 static const u8 nvme_tcp_pdu_sizes[] = {
1121 	[nvme_tcp_icreq]	= sizeof(struct nvme_tcp_icreq_pdu),
1122 	[nvme_tcp_cmd]		= sizeof(struct nvme_tcp_cmd_pdu),
1123 	[nvme_tcp_h2c_data]	= sizeof(struct nvme_tcp_data_pdu),
1124 };
1125 
nvmet_tcp_pdu_size(u8 type)1126 static inline u8 nvmet_tcp_pdu_size(u8 type)
1127 {
1128 	size_t idx = type;
1129 
1130 	return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1131 		nvme_tcp_pdu_sizes[idx]) ?
1132 			nvme_tcp_pdu_sizes[idx] : 0;
1133 }
1134 
nvmet_tcp_pdu_valid(u8 type)1135 static inline bool nvmet_tcp_pdu_valid(u8 type)
1136 {
1137 	switch (type) {
1138 	case nvme_tcp_icreq:
1139 	case nvme_tcp_cmd:
1140 	case nvme_tcp_h2c_data:
1141 		/* fallthru */
1142 		return true;
1143 	}
1144 
1145 	return false;
1146 }
1147 
nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue * queue,struct msghdr * msg,char * cbuf)1148 static int nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue *queue,
1149 		struct msghdr *msg, char *cbuf)
1150 {
1151 	struct cmsghdr *cmsg = (struct cmsghdr *)cbuf;
1152 	u8 ctype, level, description;
1153 	int ret = 0;
1154 
1155 	ctype = tls_get_record_type(queue->sock->sk, cmsg);
1156 	switch (ctype) {
1157 	case 0:
1158 		break;
1159 	case TLS_RECORD_TYPE_DATA:
1160 		break;
1161 	case TLS_RECORD_TYPE_ALERT:
1162 		tls_alert_recv(queue->sock->sk, msg, &level, &description);
1163 		if (level == TLS_ALERT_LEVEL_FATAL) {
1164 			pr_err("queue %d: TLS Alert desc %u\n",
1165 			       queue->idx, description);
1166 			ret = -ENOTCONN;
1167 		} else {
1168 			pr_warn("queue %d: TLS Alert desc %u\n",
1169 			       queue->idx, description);
1170 			ret = -EAGAIN;
1171 		}
1172 		break;
1173 	default:
1174 		/* discard this record type */
1175 		pr_err("queue %d: TLS record %d unhandled\n",
1176 		       queue->idx, ctype);
1177 		ret = -EAGAIN;
1178 		break;
1179 	}
1180 	return ret;
1181 }
1182 
nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue * queue)1183 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1184 {
1185 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1186 	int len, ret;
1187 	struct kvec iov;
1188 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1189 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1190 
1191 recv:
1192 	iov.iov_base = (void *)&queue->pdu + queue->offset;
1193 	iov.iov_len = queue->left;
1194 	if (queue->tls_pskid) {
1195 		msg.msg_control = cbuf;
1196 		msg.msg_controllen = sizeof(cbuf);
1197 	}
1198 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1199 			iov.iov_len, msg.msg_flags);
1200 	if (unlikely(len < 0))
1201 		return len;
1202 	if (queue->tls_pskid) {
1203 		ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1204 		if (ret < 0)
1205 			return ret;
1206 	}
1207 
1208 	queue->offset += len;
1209 	queue->left -= len;
1210 	if (queue->left)
1211 		return -EAGAIN;
1212 
1213 	if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1214 		u8 hdgst = nvmet_tcp_hdgst_len(queue);
1215 
1216 		if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1217 			pr_err("unexpected pdu type %d\n", hdr->type);
1218 			nvmet_tcp_fatal_error(queue);
1219 			return -EIO;
1220 		}
1221 
1222 		if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1223 			pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1224 			return -EIO;
1225 		}
1226 
1227 		queue->left = hdr->hlen - queue->offset + hdgst;
1228 		goto recv;
1229 	}
1230 
1231 	if (queue->hdr_digest &&
1232 	    nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1233 		nvmet_tcp_fatal_error(queue); /* fatal */
1234 		return -EPROTO;
1235 	}
1236 
1237 	if (queue->data_digest &&
1238 	    nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1239 		nvmet_tcp_fatal_error(queue); /* fatal */
1240 		return -EPROTO;
1241 	}
1242 
1243 	return nvmet_tcp_done_recv_pdu(queue);
1244 }
1245 
nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd * cmd)1246 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1247 {
1248 	struct nvmet_tcp_queue *queue = cmd->queue;
1249 
1250 	nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd);
1251 	queue->offset = 0;
1252 	queue->left = NVME_TCP_DIGEST_LENGTH;
1253 	queue->rcv_state = NVMET_TCP_RECV_DDGST;
1254 }
1255 
nvmet_tcp_try_recv_data(struct nvmet_tcp_queue * queue)1256 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1257 {
1258 	struct nvmet_tcp_cmd  *cmd = queue->cmd;
1259 	int len, ret;
1260 
1261 	while (msg_data_left(&cmd->recv_msg)) {
1262 		len = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1263 			cmd->recv_msg.msg_flags);
1264 		if (len <= 0)
1265 			return len;
1266 		if (queue->tls_pskid) {
1267 			ret = nvmet_tcp_tls_record_ok(cmd->queue,
1268 					&cmd->recv_msg, cmd->recv_cbuf);
1269 			if (ret < 0)
1270 				return ret;
1271 		}
1272 
1273 		cmd->pdu_recv += len;
1274 		cmd->rbytes_done += len;
1275 	}
1276 
1277 	if (queue->data_digest) {
1278 		nvmet_tcp_prep_recv_ddgst(cmd);
1279 		return 0;
1280 	}
1281 
1282 	if (cmd->rbytes_done == cmd->req.transfer_len)
1283 		nvmet_tcp_execute_request(cmd);
1284 
1285 	nvmet_prepare_receive_pdu(queue);
1286 	return 0;
1287 }
1288 
nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue * queue)1289 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1290 {
1291 	struct nvmet_tcp_cmd *cmd = queue->cmd;
1292 	int ret, len;
1293 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1294 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1295 	struct kvec iov = {
1296 		.iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1297 		.iov_len = queue->left
1298 	};
1299 
1300 	if (queue->tls_pskid) {
1301 		msg.msg_control = cbuf;
1302 		msg.msg_controllen = sizeof(cbuf);
1303 	}
1304 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1305 			iov.iov_len, msg.msg_flags);
1306 	if (unlikely(len < 0))
1307 		return len;
1308 	if (queue->tls_pskid) {
1309 		ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1310 		if (ret < 0)
1311 			return ret;
1312 	}
1313 
1314 	queue->offset += len;
1315 	queue->left -= len;
1316 	if (queue->left)
1317 		return -EAGAIN;
1318 
1319 	if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1320 		pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1321 			queue->idx, cmd->req.cmd->common.command_id,
1322 			queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1323 			le32_to_cpu(cmd->exp_ddgst));
1324 		nvmet_req_uninit(&cmd->req);
1325 		nvmet_tcp_free_cmd_buffers(cmd);
1326 		nvmet_tcp_fatal_error(queue);
1327 		ret = -EPROTO;
1328 		goto out;
1329 	}
1330 
1331 	if (cmd->rbytes_done == cmd->req.transfer_len)
1332 		nvmet_tcp_execute_request(cmd);
1333 
1334 	ret = 0;
1335 out:
1336 	nvmet_prepare_receive_pdu(queue);
1337 	return ret;
1338 }
1339 
nvmet_tcp_try_recv_one(struct nvmet_tcp_queue * queue)1340 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1341 {
1342 	int result = 0;
1343 
1344 	if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1345 		return 0;
1346 
1347 	if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1348 		result = nvmet_tcp_try_recv_pdu(queue);
1349 		if (result != 0)
1350 			goto done_recv;
1351 	}
1352 
1353 	if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1354 		result = nvmet_tcp_try_recv_data(queue);
1355 		if (result != 0)
1356 			goto done_recv;
1357 	}
1358 
1359 	if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1360 		result = nvmet_tcp_try_recv_ddgst(queue);
1361 		if (result != 0)
1362 			goto done_recv;
1363 	}
1364 
1365 done_recv:
1366 	if (result < 0) {
1367 		if (result == -EAGAIN)
1368 			return 0;
1369 		return result;
1370 	}
1371 	return 1;
1372 }
1373 
nvmet_tcp_try_recv(struct nvmet_tcp_queue * queue,int budget,int * recvs)1374 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1375 		int budget, int *recvs)
1376 {
1377 	int i, ret = 0;
1378 
1379 	for (i = 0; i < budget; i++) {
1380 		ret = nvmet_tcp_try_recv_one(queue);
1381 		if (unlikely(ret < 0)) {
1382 			nvmet_tcp_socket_error(queue, ret);
1383 			goto done;
1384 		} else if (ret == 0) {
1385 			break;
1386 		}
1387 		(*recvs)++;
1388 	}
1389 done:
1390 	return ret;
1391 }
1392 
nvmet_tcp_release_queue(struct kref * kref)1393 static void nvmet_tcp_release_queue(struct kref *kref)
1394 {
1395 	struct nvmet_tcp_queue *queue =
1396 		container_of(kref, struct nvmet_tcp_queue, kref);
1397 
1398 	WARN_ON(queue->state != NVMET_TCP_Q_DISCONNECTING);
1399 	queue_work(nvmet_wq, &queue->release_work);
1400 }
1401 
nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue * queue)1402 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1403 {
1404 	spin_lock_bh(&queue->state_lock);
1405 	if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1406 		/* Socket closed during handshake */
1407 		tls_handshake_cancel(queue->sock->sk);
1408 	}
1409 	if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1410 		queue->state = NVMET_TCP_Q_DISCONNECTING;
1411 		kref_put(&queue->kref, nvmet_tcp_release_queue);
1412 	}
1413 	spin_unlock_bh(&queue->state_lock);
1414 }
1415 
nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue * queue)1416 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1417 {
1418 	queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
1419 }
1420 
nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue * queue,int ops)1421 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1422 		int ops)
1423 {
1424 	if (!idle_poll_period_usecs)
1425 		return false;
1426 
1427 	if (ops)
1428 		nvmet_tcp_arm_queue_deadline(queue);
1429 
1430 	return !time_after(jiffies, queue->poll_end);
1431 }
1432 
nvmet_tcp_io_work(struct work_struct * w)1433 static void nvmet_tcp_io_work(struct work_struct *w)
1434 {
1435 	struct nvmet_tcp_queue *queue =
1436 		container_of(w, struct nvmet_tcp_queue, io_work);
1437 	bool pending;
1438 	int ret, ops = 0;
1439 
1440 	do {
1441 		pending = false;
1442 
1443 		ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1444 		if (ret > 0)
1445 			pending = true;
1446 		else if (ret < 0)
1447 			return;
1448 
1449 		ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1450 		if (ret > 0)
1451 			pending = true;
1452 		else if (ret < 0)
1453 			return;
1454 
1455 	} while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1456 
1457 	/*
1458 	 * Requeue the worker if idle deadline period is in progress or any
1459 	 * ops activity was recorded during the do-while loop above.
1460 	 */
1461 	if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1462 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1463 }
1464 
nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * c)1465 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1466 		struct nvmet_tcp_cmd *c)
1467 {
1468 	u8 hdgst = nvmet_tcp_hdgst_len(queue);
1469 
1470 	c->queue = queue;
1471 	c->req.port = queue->port->nport;
1472 
1473 	c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1474 			sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1475 	if (!c->cmd_pdu)
1476 		return -ENOMEM;
1477 	c->req.cmd = &c->cmd_pdu->cmd;
1478 
1479 	c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1480 			sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1481 	if (!c->rsp_pdu)
1482 		goto out_free_cmd;
1483 	c->req.cqe = &c->rsp_pdu->cqe;
1484 
1485 	c->data_pdu = page_frag_alloc(&queue->pf_cache,
1486 			sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1487 	if (!c->data_pdu)
1488 		goto out_free_rsp;
1489 
1490 	c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1491 			sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1492 	if (!c->r2t_pdu)
1493 		goto out_free_data;
1494 
1495 	if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1496 		c->recv_msg.msg_control = c->recv_cbuf;
1497 		c->recv_msg.msg_controllen = sizeof(c->recv_cbuf);
1498 	}
1499 	c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1500 
1501 	list_add_tail(&c->entry, &queue->free_list);
1502 
1503 	return 0;
1504 out_free_data:
1505 	page_frag_free(c->data_pdu);
1506 out_free_rsp:
1507 	page_frag_free(c->rsp_pdu);
1508 out_free_cmd:
1509 	page_frag_free(c->cmd_pdu);
1510 	return -ENOMEM;
1511 }
1512 
nvmet_tcp_free_cmd(struct nvmet_tcp_cmd * c)1513 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1514 {
1515 	page_frag_free(c->r2t_pdu);
1516 	page_frag_free(c->data_pdu);
1517 	page_frag_free(c->rsp_pdu);
1518 	page_frag_free(c->cmd_pdu);
1519 }
1520 
nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue * queue)1521 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1522 {
1523 	struct nvmet_tcp_cmd *cmds;
1524 	int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1525 
1526 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1527 	if (!cmds)
1528 		goto out;
1529 
1530 	for (i = 0; i < nr_cmds; i++) {
1531 		ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1532 		if (ret)
1533 			goto out_free;
1534 	}
1535 
1536 	queue->cmds = cmds;
1537 
1538 	return 0;
1539 out_free:
1540 	while (--i >= 0)
1541 		nvmet_tcp_free_cmd(cmds + i);
1542 	kfree(cmds);
1543 out:
1544 	return ret;
1545 }
1546 
nvmet_tcp_free_cmds(struct nvmet_tcp_queue * queue)1547 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1548 {
1549 	struct nvmet_tcp_cmd *cmds = queue->cmds;
1550 	int i;
1551 
1552 	for (i = 0; i < queue->nr_cmds; i++)
1553 		nvmet_tcp_free_cmd(cmds + i);
1554 
1555 	nvmet_tcp_free_cmd(&queue->connect);
1556 	kfree(cmds);
1557 }
1558 
nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue * queue)1559 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1560 {
1561 	struct socket *sock = queue->sock;
1562 
1563 	write_lock_bh(&sock->sk->sk_callback_lock);
1564 	sock->sk->sk_data_ready =  queue->data_ready;
1565 	sock->sk->sk_state_change = queue->state_change;
1566 	sock->sk->sk_write_space = queue->write_space;
1567 	sock->sk->sk_user_data = NULL;
1568 	write_unlock_bh(&sock->sk->sk_callback_lock);
1569 }
1570 
nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue * queue)1571 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1572 {
1573 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1574 	int i;
1575 
1576 	for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1577 		if (nvmet_tcp_need_data_in(cmd))
1578 			nvmet_req_uninit(&cmd->req);
1579 	}
1580 
1581 	if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1582 		/* failed in connect */
1583 		nvmet_req_uninit(&queue->connect.req);
1584 	}
1585 }
1586 
nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue * queue)1587 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue)
1588 {
1589 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1590 	int i;
1591 
1592 	for (i = 0; i < queue->nr_cmds; i++, cmd++)
1593 		nvmet_tcp_free_cmd_buffers(cmd);
1594 	nvmet_tcp_free_cmd_buffers(&queue->connect);
1595 }
1596 
nvmet_tcp_release_queue_work(struct work_struct * w)1597 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1598 {
1599 	struct nvmet_tcp_queue *queue =
1600 		container_of(w, struct nvmet_tcp_queue, release_work);
1601 
1602 	mutex_lock(&nvmet_tcp_queue_mutex);
1603 	list_del_init(&queue->queue_list);
1604 	mutex_unlock(&nvmet_tcp_queue_mutex);
1605 
1606 	nvmet_tcp_restore_socket_callbacks(queue);
1607 	cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1608 	cancel_work_sync(&queue->io_work);
1609 	/* stop accepting incoming data */
1610 	queue->rcv_state = NVMET_TCP_RECV_ERR;
1611 
1612 	nvmet_tcp_uninit_data_in_cmds(queue);
1613 	nvmet_sq_destroy(&queue->nvme_sq);
1614 	cancel_work_sync(&queue->io_work);
1615 	nvmet_tcp_free_cmd_data_in_buffers(queue);
1616 	/* ->sock will be released by fput() */
1617 	fput(queue->sock->file);
1618 	nvmet_tcp_free_cmds(queue);
1619 	if (queue->hdr_digest || queue->data_digest)
1620 		nvmet_tcp_free_crypto(queue);
1621 	ida_free(&nvmet_tcp_queue_ida, queue->idx);
1622 	page_frag_cache_drain(&queue->pf_cache);
1623 	kfree(queue);
1624 }
1625 
nvmet_tcp_data_ready(struct sock * sk)1626 static void nvmet_tcp_data_ready(struct sock *sk)
1627 {
1628 	struct nvmet_tcp_queue *queue;
1629 
1630 	trace_sk_data_ready(sk);
1631 
1632 	read_lock_bh(&sk->sk_callback_lock);
1633 	queue = sk->sk_user_data;
1634 	if (likely(queue)) {
1635 		if (queue->data_ready)
1636 			queue->data_ready(sk);
1637 		if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)
1638 			queue_work_on(queue_cpu(queue), nvmet_tcp_wq,
1639 				      &queue->io_work);
1640 	}
1641 	read_unlock_bh(&sk->sk_callback_lock);
1642 }
1643 
nvmet_tcp_write_space(struct sock * sk)1644 static void nvmet_tcp_write_space(struct sock *sk)
1645 {
1646 	struct nvmet_tcp_queue *queue;
1647 
1648 	read_lock_bh(&sk->sk_callback_lock);
1649 	queue = sk->sk_user_data;
1650 	if (unlikely(!queue))
1651 		goto out;
1652 
1653 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1654 		queue->write_space(sk);
1655 		goto out;
1656 	}
1657 
1658 	if (sk_stream_is_writeable(sk)) {
1659 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1660 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1661 	}
1662 out:
1663 	read_unlock_bh(&sk->sk_callback_lock);
1664 }
1665 
nvmet_tcp_state_change(struct sock * sk)1666 static void nvmet_tcp_state_change(struct sock *sk)
1667 {
1668 	struct nvmet_tcp_queue *queue;
1669 
1670 	read_lock_bh(&sk->sk_callback_lock);
1671 	queue = sk->sk_user_data;
1672 	if (!queue)
1673 		goto done;
1674 
1675 	switch (sk->sk_state) {
1676 	case TCP_FIN_WAIT2:
1677 	case TCP_LAST_ACK:
1678 		break;
1679 	case TCP_FIN_WAIT1:
1680 	case TCP_CLOSE_WAIT:
1681 	case TCP_CLOSE:
1682 		/* FALLTHRU */
1683 		nvmet_tcp_schedule_release_queue(queue);
1684 		break;
1685 	default:
1686 		pr_warn("queue %d unhandled state %d\n",
1687 			queue->idx, sk->sk_state);
1688 	}
1689 done:
1690 	read_unlock_bh(&sk->sk_callback_lock);
1691 }
1692 
nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue * queue)1693 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1694 {
1695 	struct socket *sock = queue->sock;
1696 	struct inet_sock *inet = inet_sk(sock->sk);
1697 	int ret;
1698 
1699 	ret = kernel_getsockname(sock,
1700 		(struct sockaddr *)&queue->sockaddr);
1701 	if (ret < 0)
1702 		return ret;
1703 
1704 	ret = kernel_getpeername(sock,
1705 		(struct sockaddr *)&queue->sockaddr_peer);
1706 	if (ret < 0)
1707 		return ret;
1708 
1709 	/*
1710 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1711 	 * close. This is done to prevent stale data from being sent should
1712 	 * the network connection be restored before TCP times out.
1713 	 */
1714 	sock_no_linger(sock->sk);
1715 
1716 	if (so_priority > 0)
1717 		sock_set_priority(sock->sk, so_priority);
1718 
1719 	/* Set socket type of service */
1720 	if (inet->rcv_tos > 0)
1721 		ip_sock_set_tos(sock->sk, inet->rcv_tos);
1722 
1723 	ret = 0;
1724 	write_lock_bh(&sock->sk->sk_callback_lock);
1725 	if (sock->sk->sk_state != TCP_ESTABLISHED) {
1726 		/*
1727 		 * If the socket is already closing, don't even start
1728 		 * consuming it
1729 		 */
1730 		ret = -ENOTCONN;
1731 	} else {
1732 		sock->sk->sk_user_data = queue;
1733 		queue->data_ready = sock->sk->sk_data_ready;
1734 		sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1735 		queue->state_change = sock->sk->sk_state_change;
1736 		sock->sk->sk_state_change = nvmet_tcp_state_change;
1737 		queue->write_space = sock->sk->sk_write_space;
1738 		sock->sk->sk_write_space = nvmet_tcp_write_space;
1739 		if (idle_poll_period_usecs)
1740 			nvmet_tcp_arm_queue_deadline(queue);
1741 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1742 	}
1743 	write_unlock_bh(&sock->sk->sk_callback_lock);
1744 
1745 	return ret;
1746 }
1747 
1748 #ifdef CONFIG_NVME_TARGET_TCP_TLS
nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue * queue)1749 static int nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue *queue)
1750 {
1751 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1752 	int len, ret;
1753 	struct kvec iov = {
1754 		.iov_base = (u8 *)&queue->pdu + queue->offset,
1755 		.iov_len = sizeof(struct nvme_tcp_hdr),
1756 	};
1757 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1758 	struct msghdr msg = {
1759 		.msg_control = cbuf,
1760 		.msg_controllen = sizeof(cbuf),
1761 		.msg_flags = MSG_PEEK,
1762 	};
1763 
1764 	if (nvmet_port_secure_channel_required(queue->port->nport))
1765 		return 0;
1766 
1767 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1768 			iov.iov_len, msg.msg_flags);
1769 	if (unlikely(len < 0)) {
1770 		pr_debug("queue %d: peek error %d\n",
1771 			 queue->idx, len);
1772 		return len;
1773 	}
1774 
1775 	ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1776 	if (ret < 0)
1777 		return ret;
1778 
1779 	if (len < sizeof(struct nvme_tcp_hdr)) {
1780 		pr_debug("queue %d: short read, %d bytes missing\n",
1781 			 queue->idx, (int)iov.iov_len - len);
1782 		return -EAGAIN;
1783 	}
1784 	pr_debug("queue %d: hdr type %d hlen %d plen %d size %d\n",
1785 		 queue->idx, hdr->type, hdr->hlen, hdr->plen,
1786 		 (int)sizeof(struct nvme_tcp_icreq_pdu));
1787 	if (hdr->type == nvme_tcp_icreq &&
1788 	    hdr->hlen == sizeof(struct nvme_tcp_icreq_pdu) &&
1789 	    hdr->plen == cpu_to_le32(sizeof(struct nvme_tcp_icreq_pdu))) {
1790 		pr_debug("queue %d: icreq detected\n",
1791 			 queue->idx);
1792 		return len;
1793 	}
1794 	return 0;
1795 }
1796 
nvmet_tcp_tls_handshake_done(void * data,int status,key_serial_t peerid)1797 static void nvmet_tcp_tls_handshake_done(void *data, int status,
1798 					 key_serial_t peerid)
1799 {
1800 	struct nvmet_tcp_queue *queue = data;
1801 
1802 	pr_debug("queue %d: TLS handshake done, key %x, status %d\n",
1803 		 queue->idx, peerid, status);
1804 	spin_lock_bh(&queue->state_lock);
1805 	if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1806 		spin_unlock_bh(&queue->state_lock);
1807 		return;
1808 	}
1809 	if (!status) {
1810 		queue->tls_pskid = peerid;
1811 		queue->state = NVMET_TCP_Q_CONNECTING;
1812 	} else
1813 		queue->state = NVMET_TCP_Q_FAILED;
1814 	spin_unlock_bh(&queue->state_lock);
1815 
1816 	cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1817 	if (status)
1818 		nvmet_tcp_schedule_release_queue(queue);
1819 	else
1820 		nvmet_tcp_set_queue_sock(queue);
1821 	kref_put(&queue->kref, nvmet_tcp_release_queue);
1822 }
1823 
nvmet_tcp_tls_handshake_timeout(struct work_struct * w)1824 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w)
1825 {
1826 	struct nvmet_tcp_queue *queue = container_of(to_delayed_work(w),
1827 			struct nvmet_tcp_queue, tls_handshake_tmo_work);
1828 
1829 	pr_warn("queue %d: TLS handshake timeout\n", queue->idx);
1830 	/*
1831 	 * If tls_handshake_cancel() fails we've lost the race with
1832 	 * nvmet_tcp_tls_handshake_done() */
1833 	if (!tls_handshake_cancel(queue->sock->sk))
1834 		return;
1835 	spin_lock_bh(&queue->state_lock);
1836 	if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1837 		spin_unlock_bh(&queue->state_lock);
1838 		return;
1839 	}
1840 	queue->state = NVMET_TCP_Q_FAILED;
1841 	spin_unlock_bh(&queue->state_lock);
1842 	nvmet_tcp_schedule_release_queue(queue);
1843 	kref_put(&queue->kref, nvmet_tcp_release_queue);
1844 }
1845 
nvmet_tcp_tls_handshake(struct nvmet_tcp_queue * queue)1846 static int nvmet_tcp_tls_handshake(struct nvmet_tcp_queue *queue)
1847 {
1848 	int ret = -EOPNOTSUPP;
1849 	struct tls_handshake_args args;
1850 
1851 	if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE) {
1852 		pr_warn("cannot start TLS in state %d\n", queue->state);
1853 		return -EINVAL;
1854 	}
1855 
1856 	kref_get(&queue->kref);
1857 	pr_debug("queue %d: TLS ServerHello\n", queue->idx);
1858 	memset(&args, 0, sizeof(args));
1859 	args.ta_sock = queue->sock;
1860 	args.ta_done = nvmet_tcp_tls_handshake_done;
1861 	args.ta_data = queue;
1862 	args.ta_keyring = key_serial(queue->port->nport->keyring);
1863 	args.ta_timeout_ms = tls_handshake_timeout * 1000;
1864 
1865 	ret = tls_server_hello_psk(&args, GFP_KERNEL);
1866 	if (ret) {
1867 		kref_put(&queue->kref, nvmet_tcp_release_queue);
1868 		pr_err("failed to start TLS, err=%d\n", ret);
1869 	} else {
1870 		queue_delayed_work(nvmet_wq, &queue->tls_handshake_tmo_work,
1871 				   tls_handshake_timeout * HZ);
1872 	}
1873 	return ret;
1874 }
1875 #else
nvmet_tcp_tls_handshake_timeout(struct work_struct * w)1876 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w) {}
1877 #endif
1878 
nvmet_tcp_alloc_queue(struct nvmet_tcp_port * port,struct socket * newsock)1879 static void nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1880 		struct socket *newsock)
1881 {
1882 	struct nvmet_tcp_queue *queue;
1883 	struct file *sock_file = NULL;
1884 	int ret;
1885 
1886 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1887 	if (!queue) {
1888 		ret = -ENOMEM;
1889 		goto out_release;
1890 	}
1891 
1892 	INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1893 	INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1894 	kref_init(&queue->kref);
1895 	queue->sock = newsock;
1896 	queue->port = port;
1897 	queue->nr_cmds = 0;
1898 	spin_lock_init(&queue->state_lock);
1899 	if (queue->port->nport->disc_addr.tsas.tcp.sectype ==
1900 	    NVMF_TCP_SECTYPE_TLS13)
1901 		queue->state = NVMET_TCP_Q_TLS_HANDSHAKE;
1902 	else
1903 		queue->state = NVMET_TCP_Q_CONNECTING;
1904 	INIT_LIST_HEAD(&queue->free_list);
1905 	init_llist_head(&queue->resp_list);
1906 	INIT_LIST_HEAD(&queue->resp_send_list);
1907 
1908 	sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1909 	if (IS_ERR(sock_file)) {
1910 		ret = PTR_ERR(sock_file);
1911 		goto out_free_queue;
1912 	}
1913 
1914 	queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL);
1915 	if (queue->idx < 0) {
1916 		ret = queue->idx;
1917 		goto out_sock;
1918 	}
1919 
1920 	ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1921 	if (ret)
1922 		goto out_ida_remove;
1923 
1924 	ret = nvmet_sq_init(&queue->nvme_sq);
1925 	if (ret)
1926 		goto out_free_connect;
1927 
1928 	nvmet_prepare_receive_pdu(queue);
1929 
1930 	mutex_lock(&nvmet_tcp_queue_mutex);
1931 	list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1932 	mutex_unlock(&nvmet_tcp_queue_mutex);
1933 
1934 	INIT_DELAYED_WORK(&queue->tls_handshake_tmo_work,
1935 			  nvmet_tcp_tls_handshake_timeout);
1936 #ifdef CONFIG_NVME_TARGET_TCP_TLS
1937 	if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1938 		struct sock *sk = queue->sock->sk;
1939 
1940 		/* Restore the default callbacks before starting upcall */
1941 		read_lock_bh(&sk->sk_callback_lock);
1942 		sk->sk_user_data = NULL;
1943 		sk->sk_data_ready = port->data_ready;
1944 		read_unlock_bh(&sk->sk_callback_lock);
1945 		if (!nvmet_tcp_try_peek_pdu(queue)) {
1946 			if (!nvmet_tcp_tls_handshake(queue))
1947 				return;
1948 			/* TLS handshake failed, terminate the connection */
1949 			goto out_destroy_sq;
1950 		}
1951 		/* Not a TLS connection, continue with normal processing */
1952 		queue->state = NVMET_TCP_Q_CONNECTING;
1953 	}
1954 #endif
1955 
1956 	ret = nvmet_tcp_set_queue_sock(queue);
1957 	if (ret)
1958 		goto out_destroy_sq;
1959 
1960 	return;
1961 out_destroy_sq:
1962 	mutex_lock(&nvmet_tcp_queue_mutex);
1963 	list_del_init(&queue->queue_list);
1964 	mutex_unlock(&nvmet_tcp_queue_mutex);
1965 	nvmet_sq_destroy(&queue->nvme_sq);
1966 out_free_connect:
1967 	nvmet_tcp_free_cmd(&queue->connect);
1968 out_ida_remove:
1969 	ida_free(&nvmet_tcp_queue_ida, queue->idx);
1970 out_sock:
1971 	fput(queue->sock->file);
1972 out_free_queue:
1973 	kfree(queue);
1974 out_release:
1975 	pr_err("failed to allocate queue, error %d\n", ret);
1976 	if (!sock_file)
1977 		sock_release(newsock);
1978 }
1979 
nvmet_tcp_accept_work(struct work_struct * w)1980 static void nvmet_tcp_accept_work(struct work_struct *w)
1981 {
1982 	struct nvmet_tcp_port *port =
1983 		container_of(w, struct nvmet_tcp_port, accept_work);
1984 	struct socket *newsock;
1985 	int ret;
1986 
1987 	while (true) {
1988 		ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1989 		if (ret < 0) {
1990 			if (ret != -EAGAIN)
1991 				pr_warn("failed to accept err=%d\n", ret);
1992 			return;
1993 		}
1994 		nvmet_tcp_alloc_queue(port, newsock);
1995 	}
1996 }
1997 
nvmet_tcp_listen_data_ready(struct sock * sk)1998 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1999 {
2000 	struct nvmet_tcp_port *port;
2001 
2002 	trace_sk_data_ready(sk);
2003 
2004 	read_lock_bh(&sk->sk_callback_lock);
2005 	port = sk->sk_user_data;
2006 	if (!port)
2007 		goto out;
2008 
2009 	if (sk->sk_state == TCP_LISTEN)
2010 		queue_work(nvmet_wq, &port->accept_work);
2011 out:
2012 	read_unlock_bh(&sk->sk_callback_lock);
2013 }
2014 
nvmet_tcp_add_port(struct nvmet_port * nport)2015 static int nvmet_tcp_add_port(struct nvmet_port *nport)
2016 {
2017 	struct nvmet_tcp_port *port;
2018 	__kernel_sa_family_t af;
2019 	int ret;
2020 
2021 	port = kzalloc(sizeof(*port), GFP_KERNEL);
2022 	if (!port)
2023 		return -ENOMEM;
2024 
2025 	switch (nport->disc_addr.adrfam) {
2026 	case NVMF_ADDR_FAMILY_IP4:
2027 		af = AF_INET;
2028 		break;
2029 	case NVMF_ADDR_FAMILY_IP6:
2030 		af = AF_INET6;
2031 		break;
2032 	default:
2033 		pr_err("address family %d not supported\n",
2034 				nport->disc_addr.adrfam);
2035 		ret = -EINVAL;
2036 		goto err_port;
2037 	}
2038 
2039 	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
2040 			nport->disc_addr.trsvcid, &port->addr);
2041 	if (ret) {
2042 		pr_err("malformed ip/port passed: %s:%s\n",
2043 			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
2044 		goto err_port;
2045 	}
2046 
2047 	port->nport = nport;
2048 	INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
2049 	if (port->nport->inline_data_size < 0)
2050 		port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
2051 
2052 	ret = sock_create(port->addr.ss_family, SOCK_STREAM,
2053 				IPPROTO_TCP, &port->sock);
2054 	if (ret) {
2055 		pr_err("failed to create a socket\n");
2056 		goto err_port;
2057 	}
2058 
2059 	port->sock->sk->sk_user_data = port;
2060 	port->data_ready = port->sock->sk->sk_data_ready;
2061 	port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
2062 	sock_set_reuseaddr(port->sock->sk);
2063 	tcp_sock_set_nodelay(port->sock->sk);
2064 	if (so_priority > 0)
2065 		sock_set_priority(port->sock->sk, so_priority);
2066 
2067 	ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
2068 			sizeof(port->addr));
2069 	if (ret) {
2070 		pr_err("failed to bind port socket %d\n", ret);
2071 		goto err_sock;
2072 	}
2073 
2074 	ret = kernel_listen(port->sock, NVMET_TCP_BACKLOG);
2075 	if (ret) {
2076 		pr_err("failed to listen %d on port sock\n", ret);
2077 		goto err_sock;
2078 	}
2079 
2080 	nport->priv = port;
2081 	pr_info("enabling port %d (%pISpc)\n",
2082 		le16_to_cpu(nport->disc_addr.portid), &port->addr);
2083 
2084 	return 0;
2085 
2086 err_sock:
2087 	sock_release(port->sock);
2088 err_port:
2089 	kfree(port);
2090 	return ret;
2091 }
2092 
nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port * port)2093 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
2094 {
2095 	struct nvmet_tcp_queue *queue;
2096 
2097 	mutex_lock(&nvmet_tcp_queue_mutex);
2098 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2099 		if (queue->port == port)
2100 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2101 	mutex_unlock(&nvmet_tcp_queue_mutex);
2102 }
2103 
nvmet_tcp_remove_port(struct nvmet_port * nport)2104 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
2105 {
2106 	struct nvmet_tcp_port *port = nport->priv;
2107 
2108 	write_lock_bh(&port->sock->sk->sk_callback_lock);
2109 	port->sock->sk->sk_data_ready = port->data_ready;
2110 	port->sock->sk->sk_user_data = NULL;
2111 	write_unlock_bh(&port->sock->sk->sk_callback_lock);
2112 	cancel_work_sync(&port->accept_work);
2113 	/*
2114 	 * Destroy the remaining queues, which are not belong to any
2115 	 * controller yet.
2116 	 */
2117 	nvmet_tcp_destroy_port_queues(port);
2118 
2119 	sock_release(port->sock);
2120 	kfree(port);
2121 }
2122 
nvmet_tcp_delete_ctrl(struct nvmet_ctrl * ctrl)2123 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
2124 {
2125 	struct nvmet_tcp_queue *queue;
2126 
2127 	mutex_lock(&nvmet_tcp_queue_mutex);
2128 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2129 		if (queue->nvme_sq.ctrl == ctrl)
2130 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2131 	mutex_unlock(&nvmet_tcp_queue_mutex);
2132 }
2133 
nvmet_tcp_install_queue(struct nvmet_sq * sq)2134 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
2135 {
2136 	struct nvmet_tcp_queue *queue =
2137 		container_of(sq, struct nvmet_tcp_queue, nvme_sq);
2138 
2139 	if (sq->qid == 0) {
2140 		struct nvmet_tcp_queue *q;
2141 		int pending = 0;
2142 
2143 		/* Check for pending controller teardown */
2144 		mutex_lock(&nvmet_tcp_queue_mutex);
2145 		list_for_each_entry(q, &nvmet_tcp_queue_list, queue_list) {
2146 			if (q->nvme_sq.ctrl == sq->ctrl &&
2147 			    q->state == NVMET_TCP_Q_DISCONNECTING)
2148 				pending++;
2149 		}
2150 		mutex_unlock(&nvmet_tcp_queue_mutex);
2151 		if (pending > NVMET_TCP_BACKLOG)
2152 			return NVME_SC_CONNECT_CTRL_BUSY;
2153 	}
2154 
2155 	queue->nr_cmds = sq->size * 2;
2156 	if (nvmet_tcp_alloc_cmds(queue)) {
2157 		queue->nr_cmds = 0;
2158 		return NVME_SC_INTERNAL;
2159 	}
2160 	return 0;
2161 }
2162 
nvmet_tcp_disc_port_addr(struct nvmet_req * req,struct nvmet_port * nport,char * traddr)2163 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
2164 		struct nvmet_port *nport, char *traddr)
2165 {
2166 	struct nvmet_tcp_port *port = nport->priv;
2167 
2168 	if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
2169 		struct nvmet_tcp_cmd *cmd =
2170 			container_of(req, struct nvmet_tcp_cmd, req);
2171 		struct nvmet_tcp_queue *queue = cmd->queue;
2172 
2173 		sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
2174 	} else {
2175 		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
2176 	}
2177 }
2178 
nvmet_tcp_host_port_addr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_len)2179 static ssize_t nvmet_tcp_host_port_addr(struct nvmet_ctrl *ctrl,
2180 			char *traddr, size_t traddr_len)
2181 {
2182 	struct nvmet_sq *sq = ctrl->sqs[0];
2183 	struct nvmet_tcp_queue *queue =
2184 		container_of(sq, struct nvmet_tcp_queue, nvme_sq);
2185 
2186 	if (queue->sockaddr_peer.ss_family == AF_UNSPEC)
2187 		return -EINVAL;
2188 	return snprintf(traddr, traddr_len, "%pISc",
2189 			(struct sockaddr *)&queue->sockaddr_peer);
2190 }
2191 
2192 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
2193 	.owner			= THIS_MODULE,
2194 	.type			= NVMF_TRTYPE_TCP,
2195 	.msdbd			= 1,
2196 	.add_port		= nvmet_tcp_add_port,
2197 	.remove_port		= nvmet_tcp_remove_port,
2198 	.queue_response		= nvmet_tcp_queue_response,
2199 	.delete_ctrl		= nvmet_tcp_delete_ctrl,
2200 	.install_queue		= nvmet_tcp_install_queue,
2201 	.disc_traddr		= nvmet_tcp_disc_port_addr,
2202 	.host_traddr		= nvmet_tcp_host_port_addr,
2203 };
2204 
nvmet_tcp_init(void)2205 static int __init nvmet_tcp_init(void)
2206 {
2207 	int ret;
2208 
2209 	nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
2210 				WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2211 	if (!nvmet_tcp_wq)
2212 		return -ENOMEM;
2213 
2214 	ret = nvmet_register_transport(&nvmet_tcp_ops);
2215 	if (ret)
2216 		goto err;
2217 
2218 	return 0;
2219 err:
2220 	destroy_workqueue(nvmet_tcp_wq);
2221 	return ret;
2222 }
2223 
nvmet_tcp_exit(void)2224 static void __exit nvmet_tcp_exit(void)
2225 {
2226 	struct nvmet_tcp_queue *queue;
2227 
2228 	nvmet_unregister_transport(&nvmet_tcp_ops);
2229 
2230 	flush_workqueue(nvmet_wq);
2231 	mutex_lock(&nvmet_tcp_queue_mutex);
2232 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2233 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2234 	mutex_unlock(&nvmet_tcp_queue_mutex);
2235 	flush_workqueue(nvmet_wq);
2236 
2237 	destroy_workqueue(nvmet_tcp_wq);
2238 	ida_destroy(&nvmet_tcp_queue_ida);
2239 }
2240 
2241 module_init(nvmet_tcp_init);
2242 module_exit(nvmet_tcp_exit);
2243 
2244 MODULE_DESCRIPTION("NVMe target TCP transport driver");
2245 MODULE_LICENSE("GPL v2");
2246 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
2247