1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/slab.h> 8 #include <linux/bpf.h> 9 #include <linux/bpf_verifier.h> 10 #include <linux/bpf_perf_event.h> 11 #include <linux/btf.h> 12 #include <linux/filter.h> 13 #include <linux/uaccess.h> 14 #include <linux/ctype.h> 15 #include <linux/kprobes.h> 16 #include <linux/spinlock.h> 17 #include <linux/syscalls.h> 18 #include <linux/error-injection.h> 19 #include <linux/btf_ids.h> 20 #include <linux/bpf_lsm.h> 21 #include <linux/fprobe.h> 22 #include <linux/bsearch.h> 23 #include <linux/sort.h> 24 #include <linux/key.h> 25 #include <linux/verification.h> 26 #include <linux/namei.h> 27 28 #include <net/bpf_sk_storage.h> 29 30 #include <uapi/linux/bpf.h> 31 #include <uapi/linux/btf.h> 32 33 #include <asm/tlb.h> 34 35 #include "trace_probe.h" 36 #include "trace.h" 37 38 #define CREATE_TRACE_POINTS 39 #include "bpf_trace.h" 40 41 #define bpf_event_rcu_dereference(p) \ 42 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex)) 43 44 #define MAX_UPROBE_MULTI_CNT (1U << 20) 45 #define MAX_KPROBE_MULTI_CNT (1U << 20) 46 47 #ifdef CONFIG_MODULES 48 struct bpf_trace_module { 49 struct module *module; 50 struct list_head list; 51 }; 52 53 static LIST_HEAD(bpf_trace_modules); 54 static DEFINE_MUTEX(bpf_module_mutex); 55 56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 57 { 58 struct bpf_raw_event_map *btp, *ret = NULL; 59 struct bpf_trace_module *btm; 60 unsigned int i; 61 62 mutex_lock(&bpf_module_mutex); 63 list_for_each_entry(btm, &bpf_trace_modules, list) { 64 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) { 65 btp = &btm->module->bpf_raw_events[i]; 66 if (!strcmp(btp->tp->name, name)) { 67 if (try_module_get(btm->module)) 68 ret = btp; 69 goto out; 70 } 71 } 72 } 73 out: 74 mutex_unlock(&bpf_module_mutex); 75 return ret; 76 } 77 #else 78 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 79 { 80 return NULL; 81 } 82 #endif /* CONFIG_MODULES */ 83 84 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 85 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 86 87 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 88 u64 flags, const struct btf **btf, 89 s32 *btf_id); 90 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx); 91 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx); 92 93 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx); 94 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx); 95 96 /** 97 * trace_call_bpf - invoke BPF program 98 * @call: tracepoint event 99 * @ctx: opaque context pointer 100 * 101 * kprobe handlers execute BPF programs via this helper. 102 * Can be used from static tracepoints in the future. 103 * 104 * Return: BPF programs always return an integer which is interpreted by 105 * kprobe handler as: 106 * 0 - return from kprobe (event is filtered out) 107 * 1 - store kprobe event into ring buffer 108 * Other values are reserved and currently alias to 1 109 */ 110 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 111 { 112 unsigned int ret; 113 114 cant_sleep(); 115 116 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 117 /* 118 * since some bpf program is already running on this cpu, 119 * don't call into another bpf program (same or different) 120 * and don't send kprobe event into ring-buffer, 121 * so return zero here 122 */ 123 rcu_read_lock(); 124 bpf_prog_inc_misses_counters(rcu_dereference(call->prog_array)); 125 rcu_read_unlock(); 126 ret = 0; 127 goto out; 128 } 129 130 /* 131 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 132 * to all call sites, we did a bpf_prog_array_valid() there to check 133 * whether call->prog_array is empty or not, which is 134 * a heuristic to speed up execution. 135 * 136 * If bpf_prog_array_valid() fetched prog_array was 137 * non-NULL, we go into trace_call_bpf() and do the actual 138 * proper rcu_dereference() under RCU lock. 139 * If it turns out that prog_array is NULL then, we bail out. 140 * For the opposite, if the bpf_prog_array_valid() fetched pointer 141 * was NULL, you'll skip the prog_array with the risk of missing 142 * out of events when it was updated in between this and the 143 * rcu_dereference() which is accepted risk. 144 */ 145 rcu_read_lock(); 146 ret = bpf_prog_run_array(rcu_dereference(call->prog_array), 147 ctx, bpf_prog_run); 148 rcu_read_unlock(); 149 150 out: 151 __this_cpu_dec(bpf_prog_active); 152 153 return ret; 154 } 155 156 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 157 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 158 { 159 regs_set_return_value(regs, rc); 160 override_function_with_return(regs); 161 return 0; 162 } 163 164 static const struct bpf_func_proto bpf_override_return_proto = { 165 .func = bpf_override_return, 166 .gpl_only = true, 167 .ret_type = RET_INTEGER, 168 .arg1_type = ARG_PTR_TO_CTX, 169 .arg2_type = ARG_ANYTHING, 170 }; 171 #endif 172 173 static __always_inline int 174 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr) 175 { 176 int ret; 177 178 ret = copy_from_user_nofault(dst, unsafe_ptr, size); 179 if (unlikely(ret < 0)) 180 memset(dst, 0, size); 181 return ret; 182 } 183 184 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size, 185 const void __user *, unsafe_ptr) 186 { 187 return bpf_probe_read_user_common(dst, size, unsafe_ptr); 188 } 189 190 const struct bpf_func_proto bpf_probe_read_user_proto = { 191 .func = bpf_probe_read_user, 192 .gpl_only = true, 193 .ret_type = RET_INTEGER, 194 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 195 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 196 .arg3_type = ARG_ANYTHING, 197 }; 198 199 static __always_inline int 200 bpf_probe_read_user_str_common(void *dst, u32 size, 201 const void __user *unsafe_ptr) 202 { 203 int ret; 204 205 /* 206 * NB: We rely on strncpy_from_user() not copying junk past the NUL 207 * terminator into `dst`. 208 * 209 * strncpy_from_user() does long-sized strides in the fast path. If the 210 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`, 211 * then there could be junk after the NUL in `dst`. If user takes `dst` 212 * and keys a hash map with it, then semantically identical strings can 213 * occupy multiple entries in the map. 214 */ 215 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size); 216 if (unlikely(ret < 0)) 217 memset(dst, 0, size); 218 return ret; 219 } 220 221 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size, 222 const void __user *, unsafe_ptr) 223 { 224 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr); 225 } 226 227 const struct bpf_func_proto bpf_probe_read_user_str_proto = { 228 .func = bpf_probe_read_user_str, 229 .gpl_only = true, 230 .ret_type = RET_INTEGER, 231 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 232 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 233 .arg3_type = ARG_ANYTHING, 234 }; 235 236 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size, 237 const void *, unsafe_ptr) 238 { 239 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 240 } 241 242 const struct bpf_func_proto bpf_probe_read_kernel_proto = { 243 .func = bpf_probe_read_kernel, 244 .gpl_only = true, 245 .ret_type = RET_INTEGER, 246 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 247 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 248 .arg3_type = ARG_ANYTHING, 249 }; 250 251 static __always_inline int 252 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr) 253 { 254 int ret; 255 256 /* 257 * The strncpy_from_kernel_nofault() call will likely not fill the 258 * entire buffer, but that's okay in this circumstance as we're probing 259 * arbitrary memory anyway similar to bpf_probe_read_*() and might 260 * as well probe the stack. Thus, memory is explicitly cleared 261 * only in error case, so that improper users ignoring return 262 * code altogether don't copy garbage; otherwise length of string 263 * is returned that can be used for bpf_perf_event_output() et al. 264 */ 265 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size); 266 if (unlikely(ret < 0)) 267 memset(dst, 0, size); 268 return ret; 269 } 270 271 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size, 272 const void *, unsafe_ptr) 273 { 274 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 275 } 276 277 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = { 278 .func = bpf_probe_read_kernel_str, 279 .gpl_only = true, 280 .ret_type = RET_INTEGER, 281 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 282 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 283 .arg3_type = ARG_ANYTHING, 284 }; 285 286 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 287 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size, 288 const void *, unsafe_ptr) 289 { 290 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 291 return bpf_probe_read_user_common(dst, size, 292 (__force void __user *)unsafe_ptr); 293 } 294 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 295 } 296 297 static const struct bpf_func_proto bpf_probe_read_compat_proto = { 298 .func = bpf_probe_read_compat, 299 .gpl_only = true, 300 .ret_type = RET_INTEGER, 301 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 302 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 303 .arg3_type = ARG_ANYTHING, 304 }; 305 306 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size, 307 const void *, unsafe_ptr) 308 { 309 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 310 return bpf_probe_read_user_str_common(dst, size, 311 (__force void __user *)unsafe_ptr); 312 } 313 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 314 } 315 316 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = { 317 .func = bpf_probe_read_compat_str, 318 .gpl_only = true, 319 .ret_type = RET_INTEGER, 320 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 321 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 322 .arg3_type = ARG_ANYTHING, 323 }; 324 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */ 325 326 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src, 327 u32, size) 328 { 329 /* 330 * Ensure we're in user context which is safe for the helper to 331 * run. This helper has no business in a kthread. 332 * 333 * access_ok() should prevent writing to non-user memory, but in 334 * some situations (nommu, temporary switch, etc) access_ok() does 335 * not provide enough validation, hence the check on KERNEL_DS. 336 * 337 * nmi_uaccess_okay() ensures the probe is not run in an interim 338 * state, when the task or mm are switched. This is specifically 339 * required to prevent the use of temporary mm. 340 */ 341 342 if (unlikely(in_interrupt() || 343 current->flags & (PF_KTHREAD | PF_EXITING))) 344 return -EPERM; 345 if (unlikely(!nmi_uaccess_okay())) 346 return -EPERM; 347 348 return copy_to_user_nofault(unsafe_ptr, src, size); 349 } 350 351 static const struct bpf_func_proto bpf_probe_write_user_proto = { 352 .func = bpf_probe_write_user, 353 .gpl_only = true, 354 .ret_type = RET_INTEGER, 355 .arg1_type = ARG_ANYTHING, 356 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 357 .arg3_type = ARG_CONST_SIZE, 358 }; 359 360 #define MAX_TRACE_PRINTK_VARARGS 3 361 #define BPF_TRACE_PRINTK_SIZE 1024 362 363 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 364 u64, arg2, u64, arg3) 365 { 366 u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 }; 367 struct bpf_bprintf_data data = { 368 .get_bin_args = true, 369 .get_buf = true, 370 }; 371 int ret; 372 373 ret = bpf_bprintf_prepare(fmt, fmt_size, args, 374 MAX_TRACE_PRINTK_VARARGS, &data); 375 if (ret < 0) 376 return ret; 377 378 ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args); 379 380 trace_bpf_trace_printk(data.buf); 381 382 bpf_bprintf_cleanup(&data); 383 384 return ret; 385 } 386 387 static const struct bpf_func_proto bpf_trace_printk_proto = { 388 .func = bpf_trace_printk, 389 .gpl_only = true, 390 .ret_type = RET_INTEGER, 391 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 392 .arg2_type = ARG_CONST_SIZE, 393 }; 394 395 static void __set_printk_clr_event(void) 396 { 397 /* 398 * This program might be calling bpf_trace_printk, 399 * so enable the associated bpf_trace/bpf_trace_printk event. 400 * Repeat this each time as it is possible a user has 401 * disabled bpf_trace_printk events. By loading a program 402 * calling bpf_trace_printk() however the user has expressed 403 * the intent to see such events. 404 */ 405 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1)) 406 pr_warn_ratelimited("could not enable bpf_trace_printk events"); 407 } 408 409 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 410 { 411 __set_printk_clr_event(); 412 return &bpf_trace_printk_proto; 413 } 414 415 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args, 416 u32, data_len) 417 { 418 struct bpf_bprintf_data data = { 419 .get_bin_args = true, 420 .get_buf = true, 421 }; 422 int ret, num_args; 423 424 if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 || 425 (data_len && !args)) 426 return -EINVAL; 427 num_args = data_len / 8; 428 429 ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data); 430 if (ret < 0) 431 return ret; 432 433 ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args); 434 435 trace_bpf_trace_printk(data.buf); 436 437 bpf_bprintf_cleanup(&data); 438 439 return ret; 440 } 441 442 static const struct bpf_func_proto bpf_trace_vprintk_proto = { 443 .func = bpf_trace_vprintk, 444 .gpl_only = true, 445 .ret_type = RET_INTEGER, 446 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 447 .arg2_type = ARG_CONST_SIZE, 448 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 449 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 450 }; 451 452 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void) 453 { 454 __set_printk_clr_event(); 455 return &bpf_trace_vprintk_proto; 456 } 457 458 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size, 459 const void *, args, u32, data_len) 460 { 461 struct bpf_bprintf_data data = { 462 .get_bin_args = true, 463 }; 464 int err, num_args; 465 466 if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 || 467 (data_len && !args)) 468 return -EINVAL; 469 num_args = data_len / 8; 470 471 err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data); 472 if (err < 0) 473 return err; 474 475 seq_bprintf(m, fmt, data.bin_args); 476 477 bpf_bprintf_cleanup(&data); 478 479 return seq_has_overflowed(m) ? -EOVERFLOW : 0; 480 } 481 482 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file) 483 484 static const struct bpf_func_proto bpf_seq_printf_proto = { 485 .func = bpf_seq_printf, 486 .gpl_only = true, 487 .ret_type = RET_INTEGER, 488 .arg1_type = ARG_PTR_TO_BTF_ID, 489 .arg1_btf_id = &btf_seq_file_ids[0], 490 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 491 .arg3_type = ARG_CONST_SIZE, 492 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 493 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 494 }; 495 496 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len) 497 { 498 return seq_write(m, data, len) ? -EOVERFLOW : 0; 499 } 500 501 static const struct bpf_func_proto bpf_seq_write_proto = { 502 .func = bpf_seq_write, 503 .gpl_only = true, 504 .ret_type = RET_INTEGER, 505 .arg1_type = ARG_PTR_TO_BTF_ID, 506 .arg1_btf_id = &btf_seq_file_ids[0], 507 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 508 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 509 }; 510 511 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr, 512 u32, btf_ptr_size, u64, flags) 513 { 514 const struct btf *btf; 515 s32 btf_id; 516 int ret; 517 518 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 519 if (ret) 520 return ret; 521 522 return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags); 523 } 524 525 static const struct bpf_func_proto bpf_seq_printf_btf_proto = { 526 .func = bpf_seq_printf_btf, 527 .gpl_only = true, 528 .ret_type = RET_INTEGER, 529 .arg1_type = ARG_PTR_TO_BTF_ID, 530 .arg1_btf_id = &btf_seq_file_ids[0], 531 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 532 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 533 .arg4_type = ARG_ANYTHING, 534 }; 535 536 static __always_inline int 537 get_map_perf_counter(struct bpf_map *map, u64 flags, 538 u64 *value, u64 *enabled, u64 *running) 539 { 540 struct bpf_array *array = container_of(map, struct bpf_array, map); 541 unsigned int cpu = smp_processor_id(); 542 u64 index = flags & BPF_F_INDEX_MASK; 543 struct bpf_event_entry *ee; 544 545 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 546 return -EINVAL; 547 if (index == BPF_F_CURRENT_CPU) 548 index = cpu; 549 if (unlikely(index >= array->map.max_entries)) 550 return -E2BIG; 551 552 ee = READ_ONCE(array->ptrs[index]); 553 if (!ee) 554 return -ENOENT; 555 556 return perf_event_read_local(ee->event, value, enabled, running); 557 } 558 559 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 560 { 561 u64 value = 0; 562 int err; 563 564 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 565 /* 566 * this api is ugly since we miss [-22..-2] range of valid 567 * counter values, but that's uapi 568 */ 569 if (err) 570 return err; 571 return value; 572 } 573 574 static const struct bpf_func_proto bpf_perf_event_read_proto = { 575 .func = bpf_perf_event_read, 576 .gpl_only = true, 577 .ret_type = RET_INTEGER, 578 .arg1_type = ARG_CONST_MAP_PTR, 579 .arg2_type = ARG_ANYTHING, 580 }; 581 582 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 583 struct bpf_perf_event_value *, buf, u32, size) 584 { 585 int err = -EINVAL; 586 587 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 588 goto clear; 589 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 590 &buf->running); 591 if (unlikely(err)) 592 goto clear; 593 return 0; 594 clear: 595 memset(buf, 0, size); 596 return err; 597 } 598 599 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 600 .func = bpf_perf_event_read_value, 601 .gpl_only = true, 602 .ret_type = RET_INTEGER, 603 .arg1_type = ARG_CONST_MAP_PTR, 604 .arg2_type = ARG_ANYTHING, 605 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 606 .arg4_type = ARG_CONST_SIZE, 607 }; 608 609 static __always_inline u64 610 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 611 u64 flags, struct perf_raw_record *raw, 612 struct perf_sample_data *sd) 613 { 614 struct bpf_array *array = container_of(map, struct bpf_array, map); 615 unsigned int cpu = smp_processor_id(); 616 u64 index = flags & BPF_F_INDEX_MASK; 617 struct bpf_event_entry *ee; 618 struct perf_event *event; 619 620 if (index == BPF_F_CURRENT_CPU) 621 index = cpu; 622 if (unlikely(index >= array->map.max_entries)) 623 return -E2BIG; 624 625 ee = READ_ONCE(array->ptrs[index]); 626 if (!ee) 627 return -ENOENT; 628 629 event = ee->event; 630 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 631 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 632 return -EINVAL; 633 634 if (unlikely(event->oncpu != cpu)) 635 return -EOPNOTSUPP; 636 637 perf_sample_save_raw_data(sd, event, raw); 638 639 return perf_event_output(event, sd, regs); 640 } 641 642 /* 643 * Support executing tracepoints in normal, irq, and nmi context that each call 644 * bpf_perf_event_output 645 */ 646 struct bpf_trace_sample_data { 647 struct perf_sample_data sds[3]; 648 }; 649 650 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds); 651 static DEFINE_PER_CPU(int, bpf_trace_nest_level); 652 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 653 u64, flags, void *, data, u64, size) 654 { 655 struct bpf_trace_sample_data *sds; 656 struct perf_raw_record raw = { 657 .frag = { 658 .size = size, 659 .data = data, 660 }, 661 }; 662 struct perf_sample_data *sd; 663 int nest_level, err; 664 665 preempt_disable(); 666 sds = this_cpu_ptr(&bpf_trace_sds); 667 nest_level = this_cpu_inc_return(bpf_trace_nest_level); 668 669 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) { 670 err = -EBUSY; 671 goto out; 672 } 673 674 sd = &sds->sds[nest_level - 1]; 675 676 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) { 677 err = -EINVAL; 678 goto out; 679 } 680 681 perf_sample_data_init(sd, 0, 0); 682 683 err = __bpf_perf_event_output(regs, map, flags, &raw, sd); 684 out: 685 this_cpu_dec(bpf_trace_nest_level); 686 preempt_enable(); 687 return err; 688 } 689 690 static const struct bpf_func_proto bpf_perf_event_output_proto = { 691 .func = bpf_perf_event_output, 692 .gpl_only = true, 693 .ret_type = RET_INTEGER, 694 .arg1_type = ARG_PTR_TO_CTX, 695 .arg2_type = ARG_CONST_MAP_PTR, 696 .arg3_type = ARG_ANYTHING, 697 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 698 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 699 }; 700 701 static DEFINE_PER_CPU(int, bpf_event_output_nest_level); 702 struct bpf_nested_pt_regs { 703 struct pt_regs regs[3]; 704 }; 705 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs); 706 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds); 707 708 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 709 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 710 { 711 struct perf_raw_frag frag = { 712 .copy = ctx_copy, 713 .size = ctx_size, 714 .data = ctx, 715 }; 716 struct perf_raw_record raw = { 717 .frag = { 718 { 719 .next = ctx_size ? &frag : NULL, 720 }, 721 .size = meta_size, 722 .data = meta, 723 }, 724 }; 725 struct perf_sample_data *sd; 726 struct pt_regs *regs; 727 int nest_level; 728 u64 ret; 729 730 preempt_disable(); 731 nest_level = this_cpu_inc_return(bpf_event_output_nest_level); 732 733 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) { 734 ret = -EBUSY; 735 goto out; 736 } 737 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]); 738 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]); 739 740 perf_fetch_caller_regs(regs); 741 perf_sample_data_init(sd, 0, 0); 742 743 ret = __bpf_perf_event_output(regs, map, flags, &raw, sd); 744 out: 745 this_cpu_dec(bpf_event_output_nest_level); 746 preempt_enable(); 747 return ret; 748 } 749 750 BPF_CALL_0(bpf_get_current_task) 751 { 752 return (long) current; 753 } 754 755 const struct bpf_func_proto bpf_get_current_task_proto = { 756 .func = bpf_get_current_task, 757 .gpl_only = true, 758 .ret_type = RET_INTEGER, 759 }; 760 761 BPF_CALL_0(bpf_get_current_task_btf) 762 { 763 return (unsigned long) current; 764 } 765 766 const struct bpf_func_proto bpf_get_current_task_btf_proto = { 767 .func = bpf_get_current_task_btf, 768 .gpl_only = true, 769 .ret_type = RET_PTR_TO_BTF_ID_TRUSTED, 770 .ret_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 771 }; 772 773 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task) 774 { 775 return (unsigned long) task_pt_regs(task); 776 } 777 778 BTF_ID_LIST(bpf_task_pt_regs_ids) 779 BTF_ID(struct, pt_regs) 780 781 const struct bpf_func_proto bpf_task_pt_regs_proto = { 782 .func = bpf_task_pt_regs, 783 .gpl_only = true, 784 .arg1_type = ARG_PTR_TO_BTF_ID, 785 .arg1_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 786 .ret_type = RET_PTR_TO_BTF_ID, 787 .ret_btf_id = &bpf_task_pt_regs_ids[0], 788 }; 789 790 struct send_signal_irq_work { 791 struct irq_work irq_work; 792 struct task_struct *task; 793 u32 sig; 794 enum pid_type type; 795 bool has_siginfo; 796 struct kernel_siginfo info; 797 }; 798 799 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work); 800 801 static void do_bpf_send_signal(struct irq_work *entry) 802 { 803 struct send_signal_irq_work *work; 804 struct kernel_siginfo *siginfo; 805 806 work = container_of(entry, struct send_signal_irq_work, irq_work); 807 siginfo = work->has_siginfo ? &work->info : SEND_SIG_PRIV; 808 809 group_send_sig_info(work->sig, siginfo, work->task, work->type); 810 put_task_struct(work->task); 811 } 812 813 static int bpf_send_signal_common(u32 sig, enum pid_type type, struct task_struct *task, u64 value) 814 { 815 struct send_signal_irq_work *work = NULL; 816 struct kernel_siginfo info; 817 struct kernel_siginfo *siginfo; 818 819 if (!task) { 820 task = current; 821 siginfo = SEND_SIG_PRIV; 822 } else { 823 clear_siginfo(&info); 824 info.si_signo = sig; 825 info.si_errno = 0; 826 info.si_code = SI_KERNEL; 827 info.si_pid = 0; 828 info.si_uid = 0; 829 info.si_value.sival_ptr = (void *)(unsigned long)value; 830 siginfo = &info; 831 } 832 833 /* Similar to bpf_probe_write_user, task needs to be 834 * in a sound condition and kernel memory access be 835 * permitted in order to send signal to the current 836 * task. 837 */ 838 if (unlikely(task->flags & (PF_KTHREAD | PF_EXITING))) 839 return -EPERM; 840 if (unlikely(!nmi_uaccess_okay())) 841 return -EPERM; 842 /* Task should not be pid=1 to avoid kernel panic. */ 843 if (unlikely(is_global_init(task))) 844 return -EPERM; 845 846 if (!preemptible()) { 847 /* Do an early check on signal validity. Otherwise, 848 * the error is lost in deferred irq_work. 849 */ 850 if (unlikely(!valid_signal(sig))) 851 return -EINVAL; 852 853 work = this_cpu_ptr(&send_signal_work); 854 if (irq_work_is_busy(&work->irq_work)) 855 return -EBUSY; 856 857 /* Add the current task, which is the target of sending signal, 858 * to the irq_work. The current task may change when queued 859 * irq works get executed. 860 */ 861 work->task = get_task_struct(task); 862 work->has_siginfo = siginfo == &info; 863 if (work->has_siginfo) 864 copy_siginfo(&work->info, &info); 865 work->sig = sig; 866 work->type = type; 867 irq_work_queue(&work->irq_work); 868 return 0; 869 } 870 871 return group_send_sig_info(sig, siginfo, task, type); 872 } 873 874 BPF_CALL_1(bpf_send_signal, u32, sig) 875 { 876 return bpf_send_signal_common(sig, PIDTYPE_TGID, NULL, 0); 877 } 878 879 static const struct bpf_func_proto bpf_send_signal_proto = { 880 .func = bpf_send_signal, 881 .gpl_only = false, 882 .ret_type = RET_INTEGER, 883 .arg1_type = ARG_ANYTHING, 884 }; 885 886 BPF_CALL_1(bpf_send_signal_thread, u32, sig) 887 { 888 return bpf_send_signal_common(sig, PIDTYPE_PID, NULL, 0); 889 } 890 891 static const struct bpf_func_proto bpf_send_signal_thread_proto = { 892 .func = bpf_send_signal_thread, 893 .gpl_only = false, 894 .ret_type = RET_INTEGER, 895 .arg1_type = ARG_ANYTHING, 896 }; 897 898 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz) 899 { 900 struct path copy; 901 long len; 902 char *p; 903 904 if (!sz) 905 return 0; 906 907 /* 908 * The path pointer is verified as trusted and safe to use, 909 * but let's double check it's valid anyway to workaround 910 * potentially broken verifier. 911 */ 912 len = copy_from_kernel_nofault(©, path, sizeof(*path)); 913 if (len < 0) 914 return len; 915 916 p = d_path(©, buf, sz); 917 if (IS_ERR(p)) { 918 len = PTR_ERR(p); 919 } else { 920 len = buf + sz - p; 921 memmove(buf, p, len); 922 } 923 924 return len; 925 } 926 927 BTF_SET_START(btf_allowlist_d_path) 928 #ifdef CONFIG_SECURITY 929 BTF_ID(func, security_file_permission) 930 BTF_ID(func, security_inode_getattr) 931 BTF_ID(func, security_file_open) 932 #endif 933 #ifdef CONFIG_SECURITY_PATH 934 BTF_ID(func, security_path_truncate) 935 #endif 936 BTF_ID(func, vfs_truncate) 937 BTF_ID(func, vfs_fallocate) 938 BTF_ID(func, dentry_open) 939 BTF_ID(func, vfs_getattr) 940 BTF_ID(func, filp_close) 941 BTF_SET_END(btf_allowlist_d_path) 942 943 static bool bpf_d_path_allowed(const struct bpf_prog *prog) 944 { 945 if (prog->type == BPF_PROG_TYPE_TRACING && 946 prog->expected_attach_type == BPF_TRACE_ITER) 947 return true; 948 949 if (prog->type == BPF_PROG_TYPE_LSM) 950 return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id); 951 952 return btf_id_set_contains(&btf_allowlist_d_path, 953 prog->aux->attach_btf_id); 954 } 955 956 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path) 957 958 static const struct bpf_func_proto bpf_d_path_proto = { 959 .func = bpf_d_path, 960 .gpl_only = false, 961 .ret_type = RET_INTEGER, 962 .arg1_type = ARG_PTR_TO_BTF_ID, 963 .arg1_btf_id = &bpf_d_path_btf_ids[0], 964 .arg2_type = ARG_PTR_TO_MEM, 965 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 966 .allowed = bpf_d_path_allowed, 967 }; 968 969 #define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \ 970 BTF_F_PTR_RAW | BTF_F_ZERO) 971 972 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 973 u64 flags, const struct btf **btf, 974 s32 *btf_id) 975 { 976 const struct btf_type *t; 977 978 if (unlikely(flags & ~(BTF_F_ALL))) 979 return -EINVAL; 980 981 if (btf_ptr_size != sizeof(struct btf_ptr)) 982 return -EINVAL; 983 984 *btf = bpf_get_btf_vmlinux(); 985 986 if (IS_ERR_OR_NULL(*btf)) 987 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL; 988 989 if (ptr->type_id > 0) 990 *btf_id = ptr->type_id; 991 else 992 return -EINVAL; 993 994 if (*btf_id > 0) 995 t = btf_type_by_id(*btf, *btf_id); 996 if (*btf_id <= 0 || !t) 997 return -ENOENT; 998 999 return 0; 1000 } 1001 1002 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr, 1003 u32, btf_ptr_size, u64, flags) 1004 { 1005 const struct btf *btf; 1006 s32 btf_id; 1007 int ret; 1008 1009 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 1010 if (ret) 1011 return ret; 1012 1013 return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size, 1014 flags); 1015 } 1016 1017 const struct bpf_func_proto bpf_snprintf_btf_proto = { 1018 .func = bpf_snprintf_btf, 1019 .gpl_only = false, 1020 .ret_type = RET_INTEGER, 1021 .arg1_type = ARG_PTR_TO_MEM, 1022 .arg2_type = ARG_CONST_SIZE, 1023 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1024 .arg4_type = ARG_CONST_SIZE, 1025 .arg5_type = ARG_ANYTHING, 1026 }; 1027 1028 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx) 1029 { 1030 /* This helper call is inlined by verifier. */ 1031 return ((u64 *)ctx)[-2]; 1032 } 1033 1034 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = { 1035 .func = bpf_get_func_ip_tracing, 1036 .gpl_only = true, 1037 .ret_type = RET_INTEGER, 1038 .arg1_type = ARG_PTR_TO_CTX, 1039 }; 1040 1041 #ifdef CONFIG_X86_KERNEL_IBT 1042 static unsigned long get_entry_ip(unsigned long fentry_ip) 1043 { 1044 u32 instr; 1045 1046 /* We want to be extra safe in case entry ip is on the page edge, 1047 * but otherwise we need to avoid get_kernel_nofault()'s overhead. 1048 */ 1049 if ((fentry_ip & ~PAGE_MASK) < ENDBR_INSN_SIZE) { 1050 if (get_kernel_nofault(instr, (u32 *)(fentry_ip - ENDBR_INSN_SIZE))) 1051 return fentry_ip; 1052 } else { 1053 instr = *(u32 *)(fentry_ip - ENDBR_INSN_SIZE); 1054 } 1055 if (is_endbr(instr)) 1056 fentry_ip -= ENDBR_INSN_SIZE; 1057 return fentry_ip; 1058 } 1059 #else 1060 #define get_entry_ip(fentry_ip) fentry_ip 1061 #endif 1062 1063 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs) 1064 { 1065 struct bpf_trace_run_ctx *run_ctx __maybe_unused; 1066 struct kprobe *kp; 1067 1068 #ifdef CONFIG_UPROBES 1069 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx); 1070 if (run_ctx->is_uprobe) 1071 return ((struct uprobe_dispatch_data *)current->utask->vaddr)->bp_addr; 1072 #endif 1073 1074 kp = kprobe_running(); 1075 1076 if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY)) 1077 return 0; 1078 1079 return get_entry_ip((uintptr_t)kp->addr); 1080 } 1081 1082 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = { 1083 .func = bpf_get_func_ip_kprobe, 1084 .gpl_only = true, 1085 .ret_type = RET_INTEGER, 1086 .arg1_type = ARG_PTR_TO_CTX, 1087 }; 1088 1089 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs) 1090 { 1091 return bpf_kprobe_multi_entry_ip(current->bpf_ctx); 1092 } 1093 1094 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = { 1095 .func = bpf_get_func_ip_kprobe_multi, 1096 .gpl_only = false, 1097 .ret_type = RET_INTEGER, 1098 .arg1_type = ARG_PTR_TO_CTX, 1099 }; 1100 1101 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs) 1102 { 1103 return bpf_kprobe_multi_cookie(current->bpf_ctx); 1104 } 1105 1106 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = { 1107 .func = bpf_get_attach_cookie_kprobe_multi, 1108 .gpl_only = false, 1109 .ret_type = RET_INTEGER, 1110 .arg1_type = ARG_PTR_TO_CTX, 1111 }; 1112 1113 BPF_CALL_1(bpf_get_func_ip_uprobe_multi, struct pt_regs *, regs) 1114 { 1115 return bpf_uprobe_multi_entry_ip(current->bpf_ctx); 1116 } 1117 1118 static const struct bpf_func_proto bpf_get_func_ip_proto_uprobe_multi = { 1119 .func = bpf_get_func_ip_uprobe_multi, 1120 .gpl_only = false, 1121 .ret_type = RET_INTEGER, 1122 .arg1_type = ARG_PTR_TO_CTX, 1123 }; 1124 1125 BPF_CALL_1(bpf_get_attach_cookie_uprobe_multi, struct pt_regs *, regs) 1126 { 1127 return bpf_uprobe_multi_cookie(current->bpf_ctx); 1128 } 1129 1130 static const struct bpf_func_proto bpf_get_attach_cookie_proto_umulti = { 1131 .func = bpf_get_attach_cookie_uprobe_multi, 1132 .gpl_only = false, 1133 .ret_type = RET_INTEGER, 1134 .arg1_type = ARG_PTR_TO_CTX, 1135 }; 1136 1137 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx) 1138 { 1139 struct bpf_trace_run_ctx *run_ctx; 1140 1141 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx); 1142 return run_ctx->bpf_cookie; 1143 } 1144 1145 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = { 1146 .func = bpf_get_attach_cookie_trace, 1147 .gpl_only = false, 1148 .ret_type = RET_INTEGER, 1149 .arg1_type = ARG_PTR_TO_CTX, 1150 }; 1151 1152 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx) 1153 { 1154 return ctx->event->bpf_cookie; 1155 } 1156 1157 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = { 1158 .func = bpf_get_attach_cookie_pe, 1159 .gpl_only = false, 1160 .ret_type = RET_INTEGER, 1161 .arg1_type = ARG_PTR_TO_CTX, 1162 }; 1163 1164 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx) 1165 { 1166 struct bpf_trace_run_ctx *run_ctx; 1167 1168 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx); 1169 return run_ctx->bpf_cookie; 1170 } 1171 1172 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = { 1173 .func = bpf_get_attach_cookie_tracing, 1174 .gpl_only = false, 1175 .ret_type = RET_INTEGER, 1176 .arg1_type = ARG_PTR_TO_CTX, 1177 }; 1178 1179 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags) 1180 { 1181 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1182 u32 entry_cnt = size / br_entry_size; 1183 1184 entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt); 1185 1186 if (unlikely(flags)) 1187 return -EINVAL; 1188 1189 if (!entry_cnt) 1190 return -ENOENT; 1191 1192 return entry_cnt * br_entry_size; 1193 } 1194 1195 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = { 1196 .func = bpf_get_branch_snapshot, 1197 .gpl_only = true, 1198 .ret_type = RET_INTEGER, 1199 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1200 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1201 }; 1202 1203 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value) 1204 { 1205 /* This helper call is inlined by verifier. */ 1206 u64 nr_args = ((u64 *)ctx)[-1]; 1207 1208 if ((u64) n >= nr_args) 1209 return -EINVAL; 1210 *value = ((u64 *)ctx)[n]; 1211 return 0; 1212 } 1213 1214 static const struct bpf_func_proto bpf_get_func_arg_proto = { 1215 .func = get_func_arg, 1216 .ret_type = RET_INTEGER, 1217 .arg1_type = ARG_PTR_TO_CTX, 1218 .arg2_type = ARG_ANYTHING, 1219 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED, 1220 .arg3_size = sizeof(u64), 1221 }; 1222 1223 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value) 1224 { 1225 /* This helper call is inlined by verifier. */ 1226 u64 nr_args = ((u64 *)ctx)[-1]; 1227 1228 *value = ((u64 *)ctx)[nr_args]; 1229 return 0; 1230 } 1231 1232 static const struct bpf_func_proto bpf_get_func_ret_proto = { 1233 .func = get_func_ret, 1234 .ret_type = RET_INTEGER, 1235 .arg1_type = ARG_PTR_TO_CTX, 1236 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED, 1237 .arg2_size = sizeof(u64), 1238 }; 1239 1240 BPF_CALL_1(get_func_arg_cnt, void *, ctx) 1241 { 1242 /* This helper call is inlined by verifier. */ 1243 return ((u64 *)ctx)[-1]; 1244 } 1245 1246 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = { 1247 .func = get_func_arg_cnt, 1248 .ret_type = RET_INTEGER, 1249 .arg1_type = ARG_PTR_TO_CTX, 1250 }; 1251 1252 #ifdef CONFIG_KEYS 1253 __bpf_kfunc_start_defs(); 1254 1255 /** 1256 * bpf_lookup_user_key - lookup a key by its serial 1257 * @serial: key handle serial number 1258 * @flags: lookup-specific flags 1259 * 1260 * Search a key with a given *serial* and the provided *flags*. 1261 * If found, increment the reference count of the key by one, and 1262 * return it in the bpf_key structure. 1263 * 1264 * The bpf_key structure must be passed to bpf_key_put() when done 1265 * with it, so that the key reference count is decremented and the 1266 * bpf_key structure is freed. 1267 * 1268 * Permission checks are deferred to the time the key is used by 1269 * one of the available key-specific kfuncs. 1270 * 1271 * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested 1272 * special keyring (e.g. session keyring), if it doesn't yet exist. 1273 * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting 1274 * for the key construction, and to retrieve uninstantiated keys (keys 1275 * without data attached to them). 1276 * 1277 * Return: a bpf_key pointer with a valid key pointer if the key is found, a 1278 * NULL pointer otherwise. 1279 */ 1280 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags) 1281 { 1282 key_ref_t key_ref; 1283 struct bpf_key *bkey; 1284 1285 if (flags & ~KEY_LOOKUP_ALL) 1286 return NULL; 1287 1288 /* 1289 * Permission check is deferred until the key is used, as the 1290 * intent of the caller is unknown here. 1291 */ 1292 key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK); 1293 if (IS_ERR(key_ref)) 1294 return NULL; 1295 1296 bkey = kmalloc(sizeof(*bkey), GFP_KERNEL); 1297 if (!bkey) { 1298 key_put(key_ref_to_ptr(key_ref)); 1299 return NULL; 1300 } 1301 1302 bkey->key = key_ref_to_ptr(key_ref); 1303 bkey->has_ref = true; 1304 1305 return bkey; 1306 } 1307 1308 /** 1309 * bpf_lookup_system_key - lookup a key by a system-defined ID 1310 * @id: key ID 1311 * 1312 * Obtain a bpf_key structure with a key pointer set to the passed key ID. 1313 * The key pointer is marked as invalid, to prevent bpf_key_put() from 1314 * attempting to decrement the key reference count on that pointer. The key 1315 * pointer set in such way is currently understood only by 1316 * verify_pkcs7_signature(). 1317 * 1318 * Set *id* to one of the values defined in include/linux/verification.h: 1319 * 0 for the primary keyring (immutable keyring of system keys); 1320 * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring 1321 * (where keys can be added only if they are vouched for by existing keys 1322 * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform 1323 * keyring (primarily used by the integrity subsystem to verify a kexec'ed 1324 * kerned image and, possibly, the initramfs signature). 1325 * 1326 * Return: a bpf_key pointer with an invalid key pointer set from the 1327 * pre-determined ID on success, a NULL pointer otherwise 1328 */ 1329 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id) 1330 { 1331 struct bpf_key *bkey; 1332 1333 if (system_keyring_id_check(id) < 0) 1334 return NULL; 1335 1336 bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC); 1337 if (!bkey) 1338 return NULL; 1339 1340 bkey->key = (struct key *)(unsigned long)id; 1341 bkey->has_ref = false; 1342 1343 return bkey; 1344 } 1345 1346 /** 1347 * bpf_key_put - decrement key reference count if key is valid and free bpf_key 1348 * @bkey: bpf_key structure 1349 * 1350 * Decrement the reference count of the key inside *bkey*, if the pointer 1351 * is valid, and free *bkey*. 1352 */ 1353 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey) 1354 { 1355 if (bkey->has_ref) 1356 key_put(bkey->key); 1357 1358 kfree(bkey); 1359 } 1360 1361 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION 1362 /** 1363 * bpf_verify_pkcs7_signature - verify a PKCS#7 signature 1364 * @data_p: data to verify 1365 * @sig_p: signature of the data 1366 * @trusted_keyring: keyring with keys trusted for signature verification 1367 * 1368 * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr* 1369 * with keys in a keyring referenced by *trusted_keyring*. 1370 * 1371 * Return: 0 on success, a negative value on error. 1372 */ 1373 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p, 1374 struct bpf_dynptr *sig_p, 1375 struct bpf_key *trusted_keyring) 1376 { 1377 struct bpf_dynptr_kern *data_ptr = (struct bpf_dynptr_kern *)data_p; 1378 struct bpf_dynptr_kern *sig_ptr = (struct bpf_dynptr_kern *)sig_p; 1379 const void *data, *sig; 1380 u32 data_len, sig_len; 1381 int ret; 1382 1383 if (trusted_keyring->has_ref) { 1384 /* 1385 * Do the permission check deferred in bpf_lookup_user_key(). 1386 * See bpf_lookup_user_key() for more details. 1387 * 1388 * A call to key_task_permission() here would be redundant, as 1389 * it is already done by keyring_search() called by 1390 * find_asymmetric_key(). 1391 */ 1392 ret = key_validate(trusted_keyring->key); 1393 if (ret < 0) 1394 return ret; 1395 } 1396 1397 data_len = __bpf_dynptr_size(data_ptr); 1398 data = __bpf_dynptr_data(data_ptr, data_len); 1399 sig_len = __bpf_dynptr_size(sig_ptr); 1400 sig = __bpf_dynptr_data(sig_ptr, sig_len); 1401 1402 return verify_pkcs7_signature(data, data_len, sig, sig_len, 1403 trusted_keyring->key, 1404 VERIFYING_UNSPECIFIED_SIGNATURE, NULL, 1405 NULL); 1406 } 1407 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */ 1408 1409 __bpf_kfunc_end_defs(); 1410 1411 BTF_KFUNCS_START(key_sig_kfunc_set) 1412 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE) 1413 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL) 1414 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE) 1415 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION 1416 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE) 1417 #endif 1418 BTF_KFUNCS_END(key_sig_kfunc_set) 1419 1420 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = { 1421 .owner = THIS_MODULE, 1422 .set = &key_sig_kfunc_set, 1423 }; 1424 1425 static int __init bpf_key_sig_kfuncs_init(void) 1426 { 1427 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 1428 &bpf_key_sig_kfunc_set); 1429 } 1430 1431 late_initcall(bpf_key_sig_kfuncs_init); 1432 #endif /* CONFIG_KEYS */ 1433 1434 static const struct bpf_func_proto * 1435 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1436 { 1437 const struct bpf_func_proto *func_proto; 1438 1439 switch (func_id) { 1440 case BPF_FUNC_map_lookup_elem: 1441 return &bpf_map_lookup_elem_proto; 1442 case BPF_FUNC_map_update_elem: 1443 return &bpf_map_update_elem_proto; 1444 case BPF_FUNC_map_delete_elem: 1445 return &bpf_map_delete_elem_proto; 1446 case BPF_FUNC_map_push_elem: 1447 return &bpf_map_push_elem_proto; 1448 case BPF_FUNC_map_pop_elem: 1449 return &bpf_map_pop_elem_proto; 1450 case BPF_FUNC_map_peek_elem: 1451 return &bpf_map_peek_elem_proto; 1452 case BPF_FUNC_map_lookup_percpu_elem: 1453 return &bpf_map_lookup_percpu_elem_proto; 1454 case BPF_FUNC_ktime_get_ns: 1455 return &bpf_ktime_get_ns_proto; 1456 case BPF_FUNC_ktime_get_boot_ns: 1457 return &bpf_ktime_get_boot_ns_proto; 1458 case BPF_FUNC_tail_call: 1459 return &bpf_tail_call_proto; 1460 case BPF_FUNC_get_current_task: 1461 return &bpf_get_current_task_proto; 1462 case BPF_FUNC_get_current_task_btf: 1463 return &bpf_get_current_task_btf_proto; 1464 case BPF_FUNC_task_pt_regs: 1465 return &bpf_task_pt_regs_proto; 1466 case BPF_FUNC_get_current_uid_gid: 1467 return &bpf_get_current_uid_gid_proto; 1468 case BPF_FUNC_get_current_comm: 1469 return &bpf_get_current_comm_proto; 1470 case BPF_FUNC_trace_printk: 1471 return bpf_get_trace_printk_proto(); 1472 case BPF_FUNC_get_smp_processor_id: 1473 return &bpf_get_smp_processor_id_proto; 1474 case BPF_FUNC_get_numa_node_id: 1475 return &bpf_get_numa_node_id_proto; 1476 case BPF_FUNC_perf_event_read: 1477 return &bpf_perf_event_read_proto; 1478 case BPF_FUNC_get_prandom_u32: 1479 return &bpf_get_prandom_u32_proto; 1480 case BPF_FUNC_probe_read_user: 1481 return &bpf_probe_read_user_proto; 1482 case BPF_FUNC_probe_read_kernel: 1483 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1484 NULL : &bpf_probe_read_kernel_proto; 1485 case BPF_FUNC_probe_read_user_str: 1486 return &bpf_probe_read_user_str_proto; 1487 case BPF_FUNC_probe_read_kernel_str: 1488 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1489 NULL : &bpf_probe_read_kernel_str_proto; 1490 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 1491 case BPF_FUNC_probe_read: 1492 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1493 NULL : &bpf_probe_read_compat_proto; 1494 case BPF_FUNC_probe_read_str: 1495 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1496 NULL : &bpf_probe_read_compat_str_proto; 1497 #endif 1498 #ifdef CONFIG_CGROUPS 1499 case BPF_FUNC_cgrp_storage_get: 1500 return &bpf_cgrp_storage_get_proto; 1501 case BPF_FUNC_cgrp_storage_delete: 1502 return &bpf_cgrp_storage_delete_proto; 1503 case BPF_FUNC_current_task_under_cgroup: 1504 return &bpf_current_task_under_cgroup_proto; 1505 #endif 1506 case BPF_FUNC_send_signal: 1507 return &bpf_send_signal_proto; 1508 case BPF_FUNC_send_signal_thread: 1509 return &bpf_send_signal_thread_proto; 1510 case BPF_FUNC_perf_event_read_value: 1511 return &bpf_perf_event_read_value_proto; 1512 case BPF_FUNC_ringbuf_output: 1513 return &bpf_ringbuf_output_proto; 1514 case BPF_FUNC_ringbuf_reserve: 1515 return &bpf_ringbuf_reserve_proto; 1516 case BPF_FUNC_ringbuf_submit: 1517 return &bpf_ringbuf_submit_proto; 1518 case BPF_FUNC_ringbuf_discard: 1519 return &bpf_ringbuf_discard_proto; 1520 case BPF_FUNC_ringbuf_query: 1521 return &bpf_ringbuf_query_proto; 1522 case BPF_FUNC_jiffies64: 1523 return &bpf_jiffies64_proto; 1524 case BPF_FUNC_get_task_stack: 1525 return prog->sleepable ? &bpf_get_task_stack_sleepable_proto 1526 : &bpf_get_task_stack_proto; 1527 case BPF_FUNC_copy_from_user: 1528 return &bpf_copy_from_user_proto; 1529 case BPF_FUNC_copy_from_user_task: 1530 return &bpf_copy_from_user_task_proto; 1531 case BPF_FUNC_snprintf_btf: 1532 return &bpf_snprintf_btf_proto; 1533 case BPF_FUNC_per_cpu_ptr: 1534 return &bpf_per_cpu_ptr_proto; 1535 case BPF_FUNC_this_cpu_ptr: 1536 return &bpf_this_cpu_ptr_proto; 1537 case BPF_FUNC_task_storage_get: 1538 if (bpf_prog_check_recur(prog)) 1539 return &bpf_task_storage_get_recur_proto; 1540 return &bpf_task_storage_get_proto; 1541 case BPF_FUNC_task_storage_delete: 1542 if (bpf_prog_check_recur(prog)) 1543 return &bpf_task_storage_delete_recur_proto; 1544 return &bpf_task_storage_delete_proto; 1545 case BPF_FUNC_for_each_map_elem: 1546 return &bpf_for_each_map_elem_proto; 1547 case BPF_FUNC_snprintf: 1548 return &bpf_snprintf_proto; 1549 case BPF_FUNC_get_func_ip: 1550 return &bpf_get_func_ip_proto_tracing; 1551 case BPF_FUNC_get_branch_snapshot: 1552 return &bpf_get_branch_snapshot_proto; 1553 case BPF_FUNC_find_vma: 1554 return &bpf_find_vma_proto; 1555 case BPF_FUNC_trace_vprintk: 1556 return bpf_get_trace_vprintk_proto(); 1557 default: 1558 break; 1559 } 1560 1561 func_proto = bpf_base_func_proto(func_id, prog); 1562 if (func_proto) 1563 return func_proto; 1564 1565 if (!bpf_token_capable(prog->aux->token, CAP_SYS_ADMIN)) 1566 return NULL; 1567 1568 switch (func_id) { 1569 case BPF_FUNC_probe_write_user: 1570 return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ? 1571 NULL : &bpf_probe_write_user_proto; 1572 default: 1573 return NULL; 1574 } 1575 } 1576 1577 static bool is_kprobe_multi(const struct bpf_prog *prog) 1578 { 1579 return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI || 1580 prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION; 1581 } 1582 1583 static inline bool is_kprobe_session(const struct bpf_prog *prog) 1584 { 1585 return prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION; 1586 } 1587 1588 static inline bool is_uprobe_multi(const struct bpf_prog *prog) 1589 { 1590 return prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI || 1591 prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION; 1592 } 1593 1594 static inline bool is_uprobe_session(const struct bpf_prog *prog) 1595 { 1596 return prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION; 1597 } 1598 1599 static const struct bpf_func_proto * 1600 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1601 { 1602 switch (func_id) { 1603 case BPF_FUNC_perf_event_output: 1604 return &bpf_perf_event_output_proto; 1605 case BPF_FUNC_get_stackid: 1606 return &bpf_get_stackid_proto; 1607 case BPF_FUNC_get_stack: 1608 return prog->sleepable ? &bpf_get_stack_sleepable_proto : &bpf_get_stack_proto; 1609 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 1610 case BPF_FUNC_override_return: 1611 return &bpf_override_return_proto; 1612 #endif 1613 case BPF_FUNC_get_func_ip: 1614 if (is_kprobe_multi(prog)) 1615 return &bpf_get_func_ip_proto_kprobe_multi; 1616 if (is_uprobe_multi(prog)) 1617 return &bpf_get_func_ip_proto_uprobe_multi; 1618 return &bpf_get_func_ip_proto_kprobe; 1619 case BPF_FUNC_get_attach_cookie: 1620 if (is_kprobe_multi(prog)) 1621 return &bpf_get_attach_cookie_proto_kmulti; 1622 if (is_uprobe_multi(prog)) 1623 return &bpf_get_attach_cookie_proto_umulti; 1624 return &bpf_get_attach_cookie_proto_trace; 1625 default: 1626 return bpf_tracing_func_proto(func_id, prog); 1627 } 1628 } 1629 1630 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 1631 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1632 const struct bpf_prog *prog, 1633 struct bpf_insn_access_aux *info) 1634 { 1635 if (off < 0 || off >= sizeof(struct pt_regs)) 1636 return false; 1637 if (type != BPF_READ) 1638 return false; 1639 if (off % size != 0) 1640 return false; 1641 /* 1642 * Assertion for 32 bit to make sure last 8 byte access 1643 * (BPF_DW) to the last 4 byte member is disallowed. 1644 */ 1645 if (off + size > sizeof(struct pt_regs)) 1646 return false; 1647 1648 return true; 1649 } 1650 1651 const struct bpf_verifier_ops kprobe_verifier_ops = { 1652 .get_func_proto = kprobe_prog_func_proto, 1653 .is_valid_access = kprobe_prog_is_valid_access, 1654 }; 1655 1656 const struct bpf_prog_ops kprobe_prog_ops = { 1657 }; 1658 1659 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 1660 u64, flags, void *, data, u64, size) 1661 { 1662 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1663 1664 /* 1665 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 1666 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 1667 * from there and call the same bpf_perf_event_output() helper inline. 1668 */ 1669 return ____bpf_perf_event_output(regs, map, flags, data, size); 1670 } 1671 1672 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 1673 .func = bpf_perf_event_output_tp, 1674 .gpl_only = true, 1675 .ret_type = RET_INTEGER, 1676 .arg1_type = ARG_PTR_TO_CTX, 1677 .arg2_type = ARG_CONST_MAP_PTR, 1678 .arg3_type = ARG_ANYTHING, 1679 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1680 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1681 }; 1682 1683 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 1684 u64, flags) 1685 { 1686 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1687 1688 /* 1689 * Same comment as in bpf_perf_event_output_tp(), only that this time 1690 * the other helper's function body cannot be inlined due to being 1691 * external, thus we need to call raw helper function. 1692 */ 1693 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1694 flags, 0, 0); 1695 } 1696 1697 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 1698 .func = bpf_get_stackid_tp, 1699 .gpl_only = true, 1700 .ret_type = RET_INTEGER, 1701 .arg1_type = ARG_PTR_TO_CTX, 1702 .arg2_type = ARG_CONST_MAP_PTR, 1703 .arg3_type = ARG_ANYTHING, 1704 }; 1705 1706 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 1707 u64, flags) 1708 { 1709 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1710 1711 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1712 (unsigned long) size, flags, 0); 1713 } 1714 1715 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 1716 .func = bpf_get_stack_tp, 1717 .gpl_only = true, 1718 .ret_type = RET_INTEGER, 1719 .arg1_type = ARG_PTR_TO_CTX, 1720 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1721 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1722 .arg4_type = ARG_ANYTHING, 1723 }; 1724 1725 static const struct bpf_func_proto * 1726 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1727 { 1728 switch (func_id) { 1729 case BPF_FUNC_perf_event_output: 1730 return &bpf_perf_event_output_proto_tp; 1731 case BPF_FUNC_get_stackid: 1732 return &bpf_get_stackid_proto_tp; 1733 case BPF_FUNC_get_stack: 1734 return &bpf_get_stack_proto_tp; 1735 case BPF_FUNC_get_attach_cookie: 1736 return &bpf_get_attach_cookie_proto_trace; 1737 default: 1738 return bpf_tracing_func_proto(func_id, prog); 1739 } 1740 } 1741 1742 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1743 const struct bpf_prog *prog, 1744 struct bpf_insn_access_aux *info) 1745 { 1746 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 1747 return false; 1748 if (type != BPF_READ) 1749 return false; 1750 if (off % size != 0) 1751 return false; 1752 1753 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 1754 return true; 1755 } 1756 1757 const struct bpf_verifier_ops tracepoint_verifier_ops = { 1758 .get_func_proto = tp_prog_func_proto, 1759 .is_valid_access = tp_prog_is_valid_access, 1760 }; 1761 1762 const struct bpf_prog_ops tracepoint_prog_ops = { 1763 }; 1764 1765 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 1766 struct bpf_perf_event_value *, buf, u32, size) 1767 { 1768 int err = -EINVAL; 1769 1770 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 1771 goto clear; 1772 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 1773 &buf->running); 1774 if (unlikely(err)) 1775 goto clear; 1776 return 0; 1777 clear: 1778 memset(buf, 0, size); 1779 return err; 1780 } 1781 1782 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 1783 .func = bpf_perf_prog_read_value, 1784 .gpl_only = true, 1785 .ret_type = RET_INTEGER, 1786 .arg1_type = ARG_PTR_TO_CTX, 1787 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1788 .arg3_type = ARG_CONST_SIZE, 1789 }; 1790 1791 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx, 1792 void *, buf, u32, size, u64, flags) 1793 { 1794 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1795 struct perf_branch_stack *br_stack = ctx->data->br_stack; 1796 u32 to_copy; 1797 1798 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE)) 1799 return -EINVAL; 1800 1801 if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK))) 1802 return -ENOENT; 1803 1804 if (unlikely(!br_stack)) 1805 return -ENOENT; 1806 1807 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE) 1808 return br_stack->nr * br_entry_size; 1809 1810 if (!buf || (size % br_entry_size != 0)) 1811 return -EINVAL; 1812 1813 to_copy = min_t(u32, br_stack->nr * br_entry_size, size); 1814 memcpy(buf, br_stack->entries, to_copy); 1815 1816 return to_copy; 1817 } 1818 1819 static const struct bpf_func_proto bpf_read_branch_records_proto = { 1820 .func = bpf_read_branch_records, 1821 .gpl_only = true, 1822 .ret_type = RET_INTEGER, 1823 .arg1_type = ARG_PTR_TO_CTX, 1824 .arg2_type = ARG_PTR_TO_MEM_OR_NULL, 1825 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1826 .arg4_type = ARG_ANYTHING, 1827 }; 1828 1829 static const struct bpf_func_proto * 1830 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1831 { 1832 switch (func_id) { 1833 case BPF_FUNC_perf_event_output: 1834 return &bpf_perf_event_output_proto_tp; 1835 case BPF_FUNC_get_stackid: 1836 return &bpf_get_stackid_proto_pe; 1837 case BPF_FUNC_get_stack: 1838 return &bpf_get_stack_proto_pe; 1839 case BPF_FUNC_perf_prog_read_value: 1840 return &bpf_perf_prog_read_value_proto; 1841 case BPF_FUNC_read_branch_records: 1842 return &bpf_read_branch_records_proto; 1843 case BPF_FUNC_get_attach_cookie: 1844 return &bpf_get_attach_cookie_proto_pe; 1845 default: 1846 return bpf_tracing_func_proto(func_id, prog); 1847 } 1848 } 1849 1850 /* 1851 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 1852 * to avoid potential recursive reuse issue when/if tracepoints are added 1853 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack. 1854 * 1855 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage 1856 * in normal, irq, and nmi context. 1857 */ 1858 struct bpf_raw_tp_regs { 1859 struct pt_regs regs[3]; 1860 }; 1861 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs); 1862 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level); 1863 static struct pt_regs *get_bpf_raw_tp_regs(void) 1864 { 1865 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs); 1866 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level); 1867 1868 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) { 1869 this_cpu_dec(bpf_raw_tp_nest_level); 1870 return ERR_PTR(-EBUSY); 1871 } 1872 1873 return &tp_regs->regs[nest_level - 1]; 1874 } 1875 1876 static void put_bpf_raw_tp_regs(void) 1877 { 1878 this_cpu_dec(bpf_raw_tp_nest_level); 1879 } 1880 1881 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 1882 struct bpf_map *, map, u64, flags, void *, data, u64, size) 1883 { 1884 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1885 int ret; 1886 1887 if (IS_ERR(regs)) 1888 return PTR_ERR(regs); 1889 1890 perf_fetch_caller_regs(regs); 1891 ret = ____bpf_perf_event_output(regs, map, flags, data, size); 1892 1893 put_bpf_raw_tp_regs(); 1894 return ret; 1895 } 1896 1897 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 1898 .func = bpf_perf_event_output_raw_tp, 1899 .gpl_only = true, 1900 .ret_type = RET_INTEGER, 1901 .arg1_type = ARG_PTR_TO_CTX, 1902 .arg2_type = ARG_CONST_MAP_PTR, 1903 .arg3_type = ARG_ANYTHING, 1904 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1905 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1906 }; 1907 1908 extern const struct bpf_func_proto bpf_skb_output_proto; 1909 extern const struct bpf_func_proto bpf_xdp_output_proto; 1910 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto; 1911 1912 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 1913 struct bpf_map *, map, u64, flags) 1914 { 1915 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1916 int ret; 1917 1918 if (IS_ERR(regs)) 1919 return PTR_ERR(regs); 1920 1921 perf_fetch_caller_regs(regs); 1922 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 1923 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1924 flags, 0, 0); 1925 put_bpf_raw_tp_regs(); 1926 return ret; 1927 } 1928 1929 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 1930 .func = bpf_get_stackid_raw_tp, 1931 .gpl_only = true, 1932 .ret_type = RET_INTEGER, 1933 .arg1_type = ARG_PTR_TO_CTX, 1934 .arg2_type = ARG_CONST_MAP_PTR, 1935 .arg3_type = ARG_ANYTHING, 1936 }; 1937 1938 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 1939 void *, buf, u32, size, u64, flags) 1940 { 1941 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1942 int ret; 1943 1944 if (IS_ERR(regs)) 1945 return PTR_ERR(regs); 1946 1947 perf_fetch_caller_regs(regs); 1948 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1949 (unsigned long) size, flags, 0); 1950 put_bpf_raw_tp_regs(); 1951 return ret; 1952 } 1953 1954 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 1955 .func = bpf_get_stack_raw_tp, 1956 .gpl_only = true, 1957 .ret_type = RET_INTEGER, 1958 .arg1_type = ARG_PTR_TO_CTX, 1959 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1960 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1961 .arg4_type = ARG_ANYTHING, 1962 }; 1963 1964 static const struct bpf_func_proto * 1965 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1966 { 1967 switch (func_id) { 1968 case BPF_FUNC_perf_event_output: 1969 return &bpf_perf_event_output_proto_raw_tp; 1970 case BPF_FUNC_get_stackid: 1971 return &bpf_get_stackid_proto_raw_tp; 1972 case BPF_FUNC_get_stack: 1973 return &bpf_get_stack_proto_raw_tp; 1974 case BPF_FUNC_get_attach_cookie: 1975 return &bpf_get_attach_cookie_proto_tracing; 1976 default: 1977 return bpf_tracing_func_proto(func_id, prog); 1978 } 1979 } 1980 1981 const struct bpf_func_proto * 1982 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1983 { 1984 const struct bpf_func_proto *fn; 1985 1986 switch (func_id) { 1987 #ifdef CONFIG_NET 1988 case BPF_FUNC_skb_output: 1989 return &bpf_skb_output_proto; 1990 case BPF_FUNC_xdp_output: 1991 return &bpf_xdp_output_proto; 1992 case BPF_FUNC_skc_to_tcp6_sock: 1993 return &bpf_skc_to_tcp6_sock_proto; 1994 case BPF_FUNC_skc_to_tcp_sock: 1995 return &bpf_skc_to_tcp_sock_proto; 1996 case BPF_FUNC_skc_to_tcp_timewait_sock: 1997 return &bpf_skc_to_tcp_timewait_sock_proto; 1998 case BPF_FUNC_skc_to_tcp_request_sock: 1999 return &bpf_skc_to_tcp_request_sock_proto; 2000 case BPF_FUNC_skc_to_udp6_sock: 2001 return &bpf_skc_to_udp6_sock_proto; 2002 case BPF_FUNC_skc_to_unix_sock: 2003 return &bpf_skc_to_unix_sock_proto; 2004 case BPF_FUNC_skc_to_mptcp_sock: 2005 return &bpf_skc_to_mptcp_sock_proto; 2006 case BPF_FUNC_sk_storage_get: 2007 return &bpf_sk_storage_get_tracing_proto; 2008 case BPF_FUNC_sk_storage_delete: 2009 return &bpf_sk_storage_delete_tracing_proto; 2010 case BPF_FUNC_sock_from_file: 2011 return &bpf_sock_from_file_proto; 2012 case BPF_FUNC_get_socket_cookie: 2013 return &bpf_get_socket_ptr_cookie_proto; 2014 case BPF_FUNC_xdp_get_buff_len: 2015 return &bpf_xdp_get_buff_len_trace_proto; 2016 #endif 2017 case BPF_FUNC_seq_printf: 2018 return prog->expected_attach_type == BPF_TRACE_ITER ? 2019 &bpf_seq_printf_proto : 2020 NULL; 2021 case BPF_FUNC_seq_write: 2022 return prog->expected_attach_type == BPF_TRACE_ITER ? 2023 &bpf_seq_write_proto : 2024 NULL; 2025 case BPF_FUNC_seq_printf_btf: 2026 return prog->expected_attach_type == BPF_TRACE_ITER ? 2027 &bpf_seq_printf_btf_proto : 2028 NULL; 2029 case BPF_FUNC_d_path: 2030 return &bpf_d_path_proto; 2031 case BPF_FUNC_get_func_arg: 2032 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL; 2033 case BPF_FUNC_get_func_ret: 2034 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL; 2035 case BPF_FUNC_get_func_arg_cnt: 2036 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL; 2037 case BPF_FUNC_get_attach_cookie: 2038 if (prog->type == BPF_PROG_TYPE_TRACING && 2039 prog->expected_attach_type == BPF_TRACE_RAW_TP) 2040 return &bpf_get_attach_cookie_proto_tracing; 2041 return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL; 2042 default: 2043 fn = raw_tp_prog_func_proto(func_id, prog); 2044 if (!fn && prog->expected_attach_type == BPF_TRACE_ITER) 2045 fn = bpf_iter_get_func_proto(func_id, prog); 2046 return fn; 2047 } 2048 } 2049 2050 static bool raw_tp_prog_is_valid_access(int off, int size, 2051 enum bpf_access_type type, 2052 const struct bpf_prog *prog, 2053 struct bpf_insn_access_aux *info) 2054 { 2055 return bpf_tracing_ctx_access(off, size, type); 2056 } 2057 2058 static bool tracing_prog_is_valid_access(int off, int size, 2059 enum bpf_access_type type, 2060 const struct bpf_prog *prog, 2061 struct bpf_insn_access_aux *info) 2062 { 2063 return bpf_tracing_btf_ctx_access(off, size, type, prog, info); 2064 } 2065 2066 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog, 2067 const union bpf_attr *kattr, 2068 union bpf_attr __user *uattr) 2069 { 2070 return -ENOTSUPP; 2071 } 2072 2073 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 2074 .get_func_proto = raw_tp_prog_func_proto, 2075 .is_valid_access = raw_tp_prog_is_valid_access, 2076 }; 2077 2078 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 2079 #ifdef CONFIG_NET 2080 .test_run = bpf_prog_test_run_raw_tp, 2081 #endif 2082 }; 2083 2084 const struct bpf_verifier_ops tracing_verifier_ops = { 2085 .get_func_proto = tracing_prog_func_proto, 2086 .is_valid_access = tracing_prog_is_valid_access, 2087 }; 2088 2089 const struct bpf_prog_ops tracing_prog_ops = { 2090 .test_run = bpf_prog_test_run_tracing, 2091 }; 2092 2093 static bool raw_tp_writable_prog_is_valid_access(int off, int size, 2094 enum bpf_access_type type, 2095 const struct bpf_prog *prog, 2096 struct bpf_insn_access_aux *info) 2097 { 2098 if (off == 0) { 2099 if (size != sizeof(u64) || type != BPF_READ) 2100 return false; 2101 info->reg_type = PTR_TO_TP_BUFFER; 2102 } 2103 return raw_tp_prog_is_valid_access(off, size, type, prog, info); 2104 } 2105 2106 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = { 2107 .get_func_proto = raw_tp_prog_func_proto, 2108 .is_valid_access = raw_tp_writable_prog_is_valid_access, 2109 }; 2110 2111 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = { 2112 }; 2113 2114 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 2115 const struct bpf_prog *prog, 2116 struct bpf_insn_access_aux *info) 2117 { 2118 const int size_u64 = sizeof(u64); 2119 2120 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 2121 return false; 2122 if (type != BPF_READ) 2123 return false; 2124 if (off % size != 0) { 2125 if (sizeof(unsigned long) != 4) 2126 return false; 2127 if (size != 8) 2128 return false; 2129 if (off % size != 4) 2130 return false; 2131 } 2132 2133 switch (off) { 2134 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 2135 bpf_ctx_record_field_size(info, size_u64); 2136 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 2137 return false; 2138 break; 2139 case bpf_ctx_range(struct bpf_perf_event_data, addr): 2140 bpf_ctx_record_field_size(info, size_u64); 2141 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 2142 return false; 2143 break; 2144 default: 2145 if (size != sizeof(long)) 2146 return false; 2147 } 2148 2149 return true; 2150 } 2151 2152 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 2153 const struct bpf_insn *si, 2154 struct bpf_insn *insn_buf, 2155 struct bpf_prog *prog, u32 *target_size) 2156 { 2157 struct bpf_insn *insn = insn_buf; 2158 2159 switch (si->off) { 2160 case offsetof(struct bpf_perf_event_data, sample_period): 2161 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 2162 data), si->dst_reg, si->src_reg, 2163 offsetof(struct bpf_perf_event_data_kern, data)); 2164 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 2165 bpf_target_off(struct perf_sample_data, period, 8, 2166 target_size)); 2167 break; 2168 case offsetof(struct bpf_perf_event_data, addr): 2169 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 2170 data), si->dst_reg, si->src_reg, 2171 offsetof(struct bpf_perf_event_data_kern, data)); 2172 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 2173 bpf_target_off(struct perf_sample_data, addr, 8, 2174 target_size)); 2175 break; 2176 default: 2177 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 2178 regs), si->dst_reg, si->src_reg, 2179 offsetof(struct bpf_perf_event_data_kern, regs)); 2180 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 2181 si->off); 2182 break; 2183 } 2184 2185 return insn - insn_buf; 2186 } 2187 2188 const struct bpf_verifier_ops perf_event_verifier_ops = { 2189 .get_func_proto = pe_prog_func_proto, 2190 .is_valid_access = pe_prog_is_valid_access, 2191 .convert_ctx_access = pe_prog_convert_ctx_access, 2192 }; 2193 2194 const struct bpf_prog_ops perf_event_prog_ops = { 2195 }; 2196 2197 static DEFINE_MUTEX(bpf_event_mutex); 2198 2199 #define BPF_TRACE_MAX_PROGS 64 2200 2201 int perf_event_attach_bpf_prog(struct perf_event *event, 2202 struct bpf_prog *prog, 2203 u64 bpf_cookie) 2204 { 2205 struct bpf_prog_array *old_array; 2206 struct bpf_prog_array *new_array; 2207 int ret = -EEXIST; 2208 2209 /* 2210 * Kprobe override only works if they are on the function entry, 2211 * and only if they are on the opt-in list. 2212 */ 2213 if (prog->kprobe_override && 2214 (!trace_kprobe_on_func_entry(event->tp_event) || 2215 !trace_kprobe_error_injectable(event->tp_event))) 2216 return -EINVAL; 2217 2218 mutex_lock(&bpf_event_mutex); 2219 2220 if (event->prog) 2221 goto unlock; 2222 2223 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 2224 if (old_array && 2225 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 2226 ret = -E2BIG; 2227 goto unlock; 2228 } 2229 2230 ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array); 2231 if (ret < 0) 2232 goto unlock; 2233 2234 /* set the new array to event->tp_event and set event->prog */ 2235 event->prog = prog; 2236 event->bpf_cookie = bpf_cookie; 2237 rcu_assign_pointer(event->tp_event->prog_array, new_array); 2238 bpf_prog_array_free_sleepable(old_array); 2239 2240 unlock: 2241 mutex_unlock(&bpf_event_mutex); 2242 return ret; 2243 } 2244 2245 void perf_event_detach_bpf_prog(struct perf_event *event) 2246 { 2247 struct bpf_prog_array *old_array; 2248 struct bpf_prog_array *new_array; 2249 struct bpf_prog *prog = NULL; 2250 int ret; 2251 2252 mutex_lock(&bpf_event_mutex); 2253 2254 if (!event->prog) 2255 goto unlock; 2256 2257 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 2258 if (!old_array) 2259 goto put; 2260 2261 ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array); 2262 if (ret < 0) { 2263 bpf_prog_array_delete_safe(old_array, event->prog); 2264 } else { 2265 rcu_assign_pointer(event->tp_event->prog_array, new_array); 2266 bpf_prog_array_free_sleepable(old_array); 2267 } 2268 2269 put: 2270 prog = event->prog; 2271 event->prog = NULL; 2272 2273 unlock: 2274 mutex_unlock(&bpf_event_mutex); 2275 2276 if (prog) { 2277 /* 2278 * It could be that the bpf_prog is not sleepable (and will be freed 2279 * via normal RCU), but is called from a point that supports sleepable 2280 * programs and uses tasks-trace-RCU. 2281 */ 2282 synchronize_rcu_tasks_trace(); 2283 2284 bpf_prog_put(prog); 2285 } 2286 } 2287 2288 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 2289 { 2290 struct perf_event_query_bpf __user *uquery = info; 2291 struct perf_event_query_bpf query = {}; 2292 struct bpf_prog_array *progs; 2293 u32 *ids, prog_cnt, ids_len; 2294 int ret; 2295 2296 if (!perfmon_capable()) 2297 return -EPERM; 2298 if (event->attr.type != PERF_TYPE_TRACEPOINT) 2299 return -EINVAL; 2300 if (copy_from_user(&query, uquery, sizeof(query))) 2301 return -EFAULT; 2302 2303 ids_len = query.ids_len; 2304 if (ids_len > BPF_TRACE_MAX_PROGS) 2305 return -E2BIG; 2306 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 2307 if (!ids) 2308 return -ENOMEM; 2309 /* 2310 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 2311 * is required when user only wants to check for uquery->prog_cnt. 2312 * There is no need to check for it since the case is handled 2313 * gracefully in bpf_prog_array_copy_info. 2314 */ 2315 2316 mutex_lock(&bpf_event_mutex); 2317 progs = bpf_event_rcu_dereference(event->tp_event->prog_array); 2318 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt); 2319 mutex_unlock(&bpf_event_mutex); 2320 2321 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 2322 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 2323 ret = -EFAULT; 2324 2325 kfree(ids); 2326 return ret; 2327 } 2328 2329 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 2330 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 2331 2332 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) 2333 { 2334 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 2335 2336 for (; btp < __stop__bpf_raw_tp; btp++) { 2337 if (!strcmp(btp->tp->name, name)) 2338 return btp; 2339 } 2340 2341 return bpf_get_raw_tracepoint_module(name); 2342 } 2343 2344 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) 2345 { 2346 struct module *mod; 2347 2348 preempt_disable(); 2349 mod = __module_address((unsigned long)btp); 2350 module_put(mod); 2351 preempt_enable(); 2352 } 2353 2354 static __always_inline 2355 void __bpf_trace_run(struct bpf_raw_tp_link *link, u64 *args) 2356 { 2357 struct bpf_prog *prog = link->link.prog; 2358 struct bpf_run_ctx *old_run_ctx; 2359 struct bpf_trace_run_ctx run_ctx; 2360 2361 cant_sleep(); 2362 if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) { 2363 bpf_prog_inc_misses_counter(prog); 2364 goto out; 2365 } 2366 2367 run_ctx.bpf_cookie = link->cookie; 2368 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2369 2370 rcu_read_lock(); 2371 (void) bpf_prog_run(prog, args); 2372 rcu_read_unlock(); 2373 2374 bpf_reset_run_ctx(old_run_ctx); 2375 out: 2376 this_cpu_dec(*(prog->active)); 2377 } 2378 2379 #define UNPACK(...) __VA_ARGS__ 2380 #define REPEAT_1(FN, DL, X, ...) FN(X) 2381 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 2382 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 2383 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 2384 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 2385 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 2386 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 2387 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 2388 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 2389 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 2390 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 2391 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 2392 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 2393 2394 #define SARG(X) u64 arg##X 2395 #define COPY(X) args[X] = arg##X 2396 2397 #define __DL_COM (,) 2398 #define __DL_SEM (;) 2399 2400 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 2401 2402 #define BPF_TRACE_DEFN_x(x) \ 2403 void bpf_trace_run##x(struct bpf_raw_tp_link *link, \ 2404 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 2405 { \ 2406 u64 args[x]; \ 2407 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 2408 __bpf_trace_run(link, args); \ 2409 } \ 2410 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 2411 BPF_TRACE_DEFN_x(1); 2412 BPF_TRACE_DEFN_x(2); 2413 BPF_TRACE_DEFN_x(3); 2414 BPF_TRACE_DEFN_x(4); 2415 BPF_TRACE_DEFN_x(5); 2416 BPF_TRACE_DEFN_x(6); 2417 BPF_TRACE_DEFN_x(7); 2418 BPF_TRACE_DEFN_x(8); 2419 BPF_TRACE_DEFN_x(9); 2420 BPF_TRACE_DEFN_x(10); 2421 BPF_TRACE_DEFN_x(11); 2422 BPF_TRACE_DEFN_x(12); 2423 2424 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link) 2425 { 2426 struct tracepoint *tp = btp->tp; 2427 struct bpf_prog *prog = link->link.prog; 2428 2429 /* 2430 * check that program doesn't access arguments beyond what's 2431 * available in this tracepoint 2432 */ 2433 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 2434 return -EINVAL; 2435 2436 if (prog->aux->max_tp_access > btp->writable_size) 2437 return -EINVAL; 2438 2439 return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, link); 2440 } 2441 2442 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link) 2443 { 2444 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, link); 2445 } 2446 2447 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, 2448 u32 *fd_type, const char **buf, 2449 u64 *probe_offset, u64 *probe_addr, 2450 unsigned long *missed) 2451 { 2452 bool is_tracepoint, is_syscall_tp; 2453 struct bpf_prog *prog; 2454 int flags, err = 0; 2455 2456 prog = event->prog; 2457 if (!prog) 2458 return -ENOENT; 2459 2460 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ 2461 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) 2462 return -EOPNOTSUPP; 2463 2464 *prog_id = prog->aux->id; 2465 flags = event->tp_event->flags; 2466 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; 2467 is_syscall_tp = is_syscall_trace_event(event->tp_event); 2468 2469 if (is_tracepoint || is_syscall_tp) { 2470 *buf = is_tracepoint ? event->tp_event->tp->name 2471 : event->tp_event->name; 2472 /* We allow NULL pointer for tracepoint */ 2473 if (fd_type) 2474 *fd_type = BPF_FD_TYPE_TRACEPOINT; 2475 if (probe_offset) 2476 *probe_offset = 0x0; 2477 if (probe_addr) 2478 *probe_addr = 0x0; 2479 } else { 2480 /* kprobe/uprobe */ 2481 err = -EOPNOTSUPP; 2482 #ifdef CONFIG_KPROBE_EVENTS 2483 if (flags & TRACE_EVENT_FL_KPROBE) 2484 err = bpf_get_kprobe_info(event, fd_type, buf, 2485 probe_offset, probe_addr, missed, 2486 event->attr.type == PERF_TYPE_TRACEPOINT); 2487 #endif 2488 #ifdef CONFIG_UPROBE_EVENTS 2489 if (flags & TRACE_EVENT_FL_UPROBE) 2490 err = bpf_get_uprobe_info(event, fd_type, buf, 2491 probe_offset, probe_addr, 2492 event->attr.type == PERF_TYPE_TRACEPOINT); 2493 #endif 2494 } 2495 2496 return err; 2497 } 2498 2499 static int __init send_signal_irq_work_init(void) 2500 { 2501 int cpu; 2502 struct send_signal_irq_work *work; 2503 2504 for_each_possible_cpu(cpu) { 2505 work = per_cpu_ptr(&send_signal_work, cpu); 2506 init_irq_work(&work->irq_work, do_bpf_send_signal); 2507 } 2508 return 0; 2509 } 2510 2511 subsys_initcall(send_signal_irq_work_init); 2512 2513 #ifdef CONFIG_MODULES 2514 static int bpf_event_notify(struct notifier_block *nb, unsigned long op, 2515 void *module) 2516 { 2517 struct bpf_trace_module *btm, *tmp; 2518 struct module *mod = module; 2519 int ret = 0; 2520 2521 if (mod->num_bpf_raw_events == 0 || 2522 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 2523 goto out; 2524 2525 mutex_lock(&bpf_module_mutex); 2526 2527 switch (op) { 2528 case MODULE_STATE_COMING: 2529 btm = kzalloc(sizeof(*btm), GFP_KERNEL); 2530 if (btm) { 2531 btm->module = module; 2532 list_add(&btm->list, &bpf_trace_modules); 2533 } else { 2534 ret = -ENOMEM; 2535 } 2536 break; 2537 case MODULE_STATE_GOING: 2538 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) { 2539 if (btm->module == module) { 2540 list_del(&btm->list); 2541 kfree(btm); 2542 break; 2543 } 2544 } 2545 break; 2546 } 2547 2548 mutex_unlock(&bpf_module_mutex); 2549 2550 out: 2551 return notifier_from_errno(ret); 2552 } 2553 2554 static struct notifier_block bpf_module_nb = { 2555 .notifier_call = bpf_event_notify, 2556 }; 2557 2558 static int __init bpf_event_init(void) 2559 { 2560 register_module_notifier(&bpf_module_nb); 2561 return 0; 2562 } 2563 2564 fs_initcall(bpf_event_init); 2565 #endif /* CONFIG_MODULES */ 2566 2567 struct bpf_session_run_ctx { 2568 struct bpf_run_ctx run_ctx; 2569 bool is_return; 2570 void *data; 2571 }; 2572 2573 #ifdef CONFIG_FPROBE 2574 struct bpf_kprobe_multi_link { 2575 struct bpf_link link; 2576 struct fprobe fp; 2577 unsigned long *addrs; 2578 u64 *cookies; 2579 u32 cnt; 2580 u32 mods_cnt; 2581 struct module **mods; 2582 u32 flags; 2583 }; 2584 2585 struct bpf_kprobe_multi_run_ctx { 2586 struct bpf_session_run_ctx session_ctx; 2587 struct bpf_kprobe_multi_link *link; 2588 unsigned long entry_ip; 2589 }; 2590 2591 struct user_syms { 2592 const char **syms; 2593 char *buf; 2594 }; 2595 2596 #ifndef CONFIG_HAVE_FTRACE_REGS_HAVING_PT_REGS 2597 static DEFINE_PER_CPU(struct pt_regs, bpf_kprobe_multi_pt_regs); 2598 #define bpf_kprobe_multi_pt_regs_ptr() this_cpu_ptr(&bpf_kprobe_multi_pt_regs) 2599 #else 2600 #define bpf_kprobe_multi_pt_regs_ptr() (NULL) 2601 #endif 2602 2603 static unsigned long ftrace_get_entry_ip(unsigned long fentry_ip) 2604 { 2605 unsigned long ip = ftrace_get_symaddr(fentry_ip); 2606 2607 return ip ? : fentry_ip; 2608 } 2609 2610 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt) 2611 { 2612 unsigned long __user usymbol; 2613 const char **syms = NULL; 2614 char *buf = NULL, *p; 2615 int err = -ENOMEM; 2616 unsigned int i; 2617 2618 syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL); 2619 if (!syms) 2620 goto error; 2621 2622 buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL); 2623 if (!buf) 2624 goto error; 2625 2626 for (p = buf, i = 0; i < cnt; i++) { 2627 if (__get_user(usymbol, usyms + i)) { 2628 err = -EFAULT; 2629 goto error; 2630 } 2631 err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN); 2632 if (err == KSYM_NAME_LEN) 2633 err = -E2BIG; 2634 if (err < 0) 2635 goto error; 2636 syms[i] = p; 2637 p += err + 1; 2638 } 2639 2640 us->syms = syms; 2641 us->buf = buf; 2642 return 0; 2643 2644 error: 2645 if (err) { 2646 kvfree(syms); 2647 kvfree(buf); 2648 } 2649 return err; 2650 } 2651 2652 static void kprobe_multi_put_modules(struct module **mods, u32 cnt) 2653 { 2654 u32 i; 2655 2656 for (i = 0; i < cnt; i++) 2657 module_put(mods[i]); 2658 } 2659 2660 static void free_user_syms(struct user_syms *us) 2661 { 2662 kvfree(us->syms); 2663 kvfree(us->buf); 2664 } 2665 2666 static void bpf_kprobe_multi_link_release(struct bpf_link *link) 2667 { 2668 struct bpf_kprobe_multi_link *kmulti_link; 2669 2670 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link); 2671 unregister_fprobe(&kmulti_link->fp); 2672 kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt); 2673 } 2674 2675 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link) 2676 { 2677 struct bpf_kprobe_multi_link *kmulti_link; 2678 2679 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link); 2680 kvfree(kmulti_link->addrs); 2681 kvfree(kmulti_link->cookies); 2682 kfree(kmulti_link->mods); 2683 kfree(kmulti_link); 2684 } 2685 2686 static int bpf_kprobe_multi_link_fill_link_info(const struct bpf_link *link, 2687 struct bpf_link_info *info) 2688 { 2689 u64 __user *ucookies = u64_to_user_ptr(info->kprobe_multi.cookies); 2690 u64 __user *uaddrs = u64_to_user_ptr(info->kprobe_multi.addrs); 2691 struct bpf_kprobe_multi_link *kmulti_link; 2692 u32 ucount = info->kprobe_multi.count; 2693 int err = 0, i; 2694 2695 if (!uaddrs ^ !ucount) 2696 return -EINVAL; 2697 if (ucookies && !ucount) 2698 return -EINVAL; 2699 2700 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link); 2701 info->kprobe_multi.count = kmulti_link->cnt; 2702 info->kprobe_multi.flags = kmulti_link->flags; 2703 info->kprobe_multi.missed = kmulti_link->fp.nmissed; 2704 2705 if (!uaddrs) 2706 return 0; 2707 if (ucount < kmulti_link->cnt) 2708 err = -ENOSPC; 2709 else 2710 ucount = kmulti_link->cnt; 2711 2712 if (ucookies) { 2713 if (kmulti_link->cookies) { 2714 if (copy_to_user(ucookies, kmulti_link->cookies, ucount * sizeof(u64))) 2715 return -EFAULT; 2716 } else { 2717 for (i = 0; i < ucount; i++) { 2718 if (put_user(0, ucookies + i)) 2719 return -EFAULT; 2720 } 2721 } 2722 } 2723 2724 if (kallsyms_show_value(current_cred())) { 2725 if (copy_to_user(uaddrs, kmulti_link->addrs, ucount * sizeof(u64))) 2726 return -EFAULT; 2727 } else { 2728 for (i = 0; i < ucount; i++) { 2729 if (put_user(0, uaddrs + i)) 2730 return -EFAULT; 2731 } 2732 } 2733 return err; 2734 } 2735 2736 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = { 2737 .release = bpf_kprobe_multi_link_release, 2738 .dealloc_deferred = bpf_kprobe_multi_link_dealloc, 2739 .fill_link_info = bpf_kprobe_multi_link_fill_link_info, 2740 }; 2741 2742 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv) 2743 { 2744 const struct bpf_kprobe_multi_link *link = priv; 2745 unsigned long *addr_a = a, *addr_b = b; 2746 u64 *cookie_a, *cookie_b; 2747 2748 cookie_a = link->cookies + (addr_a - link->addrs); 2749 cookie_b = link->cookies + (addr_b - link->addrs); 2750 2751 /* swap addr_a/addr_b and cookie_a/cookie_b values */ 2752 swap(*addr_a, *addr_b); 2753 swap(*cookie_a, *cookie_b); 2754 } 2755 2756 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b) 2757 { 2758 const unsigned long *addr_a = a, *addr_b = b; 2759 2760 if (*addr_a == *addr_b) 2761 return 0; 2762 return *addr_a < *addr_b ? -1 : 1; 2763 } 2764 2765 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv) 2766 { 2767 return bpf_kprobe_multi_addrs_cmp(a, b); 2768 } 2769 2770 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx) 2771 { 2772 struct bpf_kprobe_multi_run_ctx *run_ctx; 2773 struct bpf_kprobe_multi_link *link; 2774 u64 *cookie, entry_ip; 2775 unsigned long *addr; 2776 2777 if (WARN_ON_ONCE(!ctx)) 2778 return 0; 2779 run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, 2780 session_ctx.run_ctx); 2781 link = run_ctx->link; 2782 if (!link->cookies) 2783 return 0; 2784 entry_ip = run_ctx->entry_ip; 2785 addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip), 2786 bpf_kprobe_multi_addrs_cmp); 2787 if (!addr) 2788 return 0; 2789 cookie = link->cookies + (addr - link->addrs); 2790 return *cookie; 2791 } 2792 2793 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 2794 { 2795 struct bpf_kprobe_multi_run_ctx *run_ctx; 2796 2797 run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, 2798 session_ctx.run_ctx); 2799 return run_ctx->entry_ip; 2800 } 2801 2802 static int 2803 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link, 2804 unsigned long entry_ip, struct ftrace_regs *fregs, 2805 bool is_return, void *data) 2806 { 2807 struct bpf_kprobe_multi_run_ctx run_ctx = { 2808 .session_ctx = { 2809 .is_return = is_return, 2810 .data = data, 2811 }, 2812 .link = link, 2813 .entry_ip = entry_ip, 2814 }; 2815 struct bpf_run_ctx *old_run_ctx; 2816 struct pt_regs *regs; 2817 int err; 2818 2819 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 2820 bpf_prog_inc_misses_counter(link->link.prog); 2821 err = 1; 2822 goto out; 2823 } 2824 2825 migrate_disable(); 2826 rcu_read_lock(); 2827 regs = ftrace_partial_regs(fregs, bpf_kprobe_multi_pt_regs_ptr()); 2828 old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx); 2829 err = bpf_prog_run(link->link.prog, regs); 2830 bpf_reset_run_ctx(old_run_ctx); 2831 rcu_read_unlock(); 2832 migrate_enable(); 2833 2834 out: 2835 __this_cpu_dec(bpf_prog_active); 2836 return err; 2837 } 2838 2839 static int 2840 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip, 2841 unsigned long ret_ip, struct ftrace_regs *fregs, 2842 void *data) 2843 { 2844 struct bpf_kprobe_multi_link *link; 2845 int err; 2846 2847 link = container_of(fp, struct bpf_kprobe_multi_link, fp); 2848 err = kprobe_multi_link_prog_run(link, ftrace_get_entry_ip(fentry_ip), 2849 fregs, false, data); 2850 return is_kprobe_session(link->link.prog) ? err : 0; 2851 } 2852 2853 static void 2854 kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip, 2855 unsigned long ret_ip, struct ftrace_regs *fregs, 2856 void *data) 2857 { 2858 struct bpf_kprobe_multi_link *link; 2859 2860 link = container_of(fp, struct bpf_kprobe_multi_link, fp); 2861 kprobe_multi_link_prog_run(link, ftrace_get_entry_ip(fentry_ip), 2862 fregs, true, data); 2863 } 2864 2865 static int symbols_cmp_r(const void *a, const void *b, const void *priv) 2866 { 2867 const char **str_a = (const char **) a; 2868 const char **str_b = (const char **) b; 2869 2870 return strcmp(*str_a, *str_b); 2871 } 2872 2873 struct multi_symbols_sort { 2874 const char **funcs; 2875 u64 *cookies; 2876 }; 2877 2878 static void symbols_swap_r(void *a, void *b, int size, const void *priv) 2879 { 2880 const struct multi_symbols_sort *data = priv; 2881 const char **name_a = a, **name_b = b; 2882 2883 swap(*name_a, *name_b); 2884 2885 /* If defined, swap also related cookies. */ 2886 if (data->cookies) { 2887 u64 *cookie_a, *cookie_b; 2888 2889 cookie_a = data->cookies + (name_a - data->funcs); 2890 cookie_b = data->cookies + (name_b - data->funcs); 2891 swap(*cookie_a, *cookie_b); 2892 } 2893 } 2894 2895 struct modules_array { 2896 struct module **mods; 2897 int mods_cnt; 2898 int mods_cap; 2899 }; 2900 2901 static int add_module(struct modules_array *arr, struct module *mod) 2902 { 2903 struct module **mods; 2904 2905 if (arr->mods_cnt == arr->mods_cap) { 2906 arr->mods_cap = max(16, arr->mods_cap * 3 / 2); 2907 mods = krealloc_array(arr->mods, arr->mods_cap, sizeof(*mods), GFP_KERNEL); 2908 if (!mods) 2909 return -ENOMEM; 2910 arr->mods = mods; 2911 } 2912 2913 arr->mods[arr->mods_cnt] = mod; 2914 arr->mods_cnt++; 2915 return 0; 2916 } 2917 2918 static bool has_module(struct modules_array *arr, struct module *mod) 2919 { 2920 int i; 2921 2922 for (i = arr->mods_cnt - 1; i >= 0; i--) { 2923 if (arr->mods[i] == mod) 2924 return true; 2925 } 2926 return false; 2927 } 2928 2929 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt) 2930 { 2931 struct modules_array arr = {}; 2932 u32 i, err = 0; 2933 2934 for (i = 0; i < addrs_cnt; i++) { 2935 struct module *mod; 2936 2937 preempt_disable(); 2938 mod = __module_address(addrs[i]); 2939 /* Either no module or we it's already stored */ 2940 if (!mod || has_module(&arr, mod)) { 2941 preempt_enable(); 2942 continue; 2943 } 2944 if (!try_module_get(mod)) 2945 err = -EINVAL; 2946 preempt_enable(); 2947 if (err) 2948 break; 2949 err = add_module(&arr, mod); 2950 if (err) { 2951 module_put(mod); 2952 break; 2953 } 2954 } 2955 2956 /* We return either err < 0 in case of error, ... */ 2957 if (err) { 2958 kprobe_multi_put_modules(arr.mods, arr.mods_cnt); 2959 kfree(arr.mods); 2960 return err; 2961 } 2962 2963 /* or number of modules found if everything is ok. */ 2964 *mods = arr.mods; 2965 return arr.mods_cnt; 2966 } 2967 2968 static int addrs_check_error_injection_list(unsigned long *addrs, u32 cnt) 2969 { 2970 u32 i; 2971 2972 for (i = 0; i < cnt; i++) { 2973 if (!within_error_injection_list(addrs[i])) 2974 return -EINVAL; 2975 } 2976 return 0; 2977 } 2978 2979 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 2980 { 2981 struct bpf_kprobe_multi_link *link = NULL; 2982 struct bpf_link_primer link_primer; 2983 void __user *ucookies; 2984 unsigned long *addrs; 2985 u32 flags, cnt, size; 2986 void __user *uaddrs; 2987 u64 *cookies = NULL; 2988 void __user *usyms; 2989 int err; 2990 2991 /* no support for 32bit archs yet */ 2992 if (sizeof(u64) != sizeof(void *)) 2993 return -EOPNOTSUPP; 2994 2995 if (!is_kprobe_multi(prog)) 2996 return -EINVAL; 2997 2998 flags = attr->link_create.kprobe_multi.flags; 2999 if (flags & ~BPF_F_KPROBE_MULTI_RETURN) 3000 return -EINVAL; 3001 3002 uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs); 3003 usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms); 3004 if (!!uaddrs == !!usyms) 3005 return -EINVAL; 3006 3007 cnt = attr->link_create.kprobe_multi.cnt; 3008 if (!cnt) 3009 return -EINVAL; 3010 if (cnt > MAX_KPROBE_MULTI_CNT) 3011 return -E2BIG; 3012 3013 size = cnt * sizeof(*addrs); 3014 addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL); 3015 if (!addrs) 3016 return -ENOMEM; 3017 3018 ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies); 3019 if (ucookies) { 3020 cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL); 3021 if (!cookies) { 3022 err = -ENOMEM; 3023 goto error; 3024 } 3025 if (copy_from_user(cookies, ucookies, size)) { 3026 err = -EFAULT; 3027 goto error; 3028 } 3029 } 3030 3031 if (uaddrs) { 3032 if (copy_from_user(addrs, uaddrs, size)) { 3033 err = -EFAULT; 3034 goto error; 3035 } 3036 } else { 3037 struct multi_symbols_sort data = { 3038 .cookies = cookies, 3039 }; 3040 struct user_syms us; 3041 3042 err = copy_user_syms(&us, usyms, cnt); 3043 if (err) 3044 goto error; 3045 3046 if (cookies) 3047 data.funcs = us.syms; 3048 3049 sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r, 3050 symbols_swap_r, &data); 3051 3052 err = ftrace_lookup_symbols(us.syms, cnt, addrs); 3053 free_user_syms(&us); 3054 if (err) 3055 goto error; 3056 } 3057 3058 if (prog->kprobe_override && addrs_check_error_injection_list(addrs, cnt)) { 3059 err = -EINVAL; 3060 goto error; 3061 } 3062 3063 link = kzalloc(sizeof(*link), GFP_KERNEL); 3064 if (!link) { 3065 err = -ENOMEM; 3066 goto error; 3067 } 3068 3069 bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI, 3070 &bpf_kprobe_multi_link_lops, prog); 3071 3072 err = bpf_link_prime(&link->link, &link_primer); 3073 if (err) 3074 goto error; 3075 3076 if (!(flags & BPF_F_KPROBE_MULTI_RETURN)) 3077 link->fp.entry_handler = kprobe_multi_link_handler; 3078 if ((flags & BPF_F_KPROBE_MULTI_RETURN) || is_kprobe_session(prog)) 3079 link->fp.exit_handler = kprobe_multi_link_exit_handler; 3080 if (is_kprobe_session(prog)) 3081 link->fp.entry_data_size = sizeof(u64); 3082 3083 link->addrs = addrs; 3084 link->cookies = cookies; 3085 link->cnt = cnt; 3086 link->flags = flags; 3087 3088 if (cookies) { 3089 /* 3090 * Sorting addresses will trigger sorting cookies as well 3091 * (check bpf_kprobe_multi_cookie_swap). This way we can 3092 * find cookie based on the address in bpf_get_attach_cookie 3093 * helper. 3094 */ 3095 sort_r(addrs, cnt, sizeof(*addrs), 3096 bpf_kprobe_multi_cookie_cmp, 3097 bpf_kprobe_multi_cookie_swap, 3098 link); 3099 } 3100 3101 err = get_modules_for_addrs(&link->mods, addrs, cnt); 3102 if (err < 0) { 3103 bpf_link_cleanup(&link_primer); 3104 return err; 3105 } 3106 link->mods_cnt = err; 3107 3108 err = register_fprobe_ips(&link->fp, addrs, cnt); 3109 if (err) { 3110 kprobe_multi_put_modules(link->mods, link->mods_cnt); 3111 bpf_link_cleanup(&link_primer); 3112 return err; 3113 } 3114 3115 return bpf_link_settle(&link_primer); 3116 3117 error: 3118 kfree(link); 3119 kvfree(addrs); 3120 kvfree(cookies); 3121 return err; 3122 } 3123 #else /* !CONFIG_FPROBE */ 3124 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 3125 { 3126 return -EOPNOTSUPP; 3127 } 3128 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx) 3129 { 3130 return 0; 3131 } 3132 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 3133 { 3134 return 0; 3135 } 3136 #endif 3137 3138 #ifdef CONFIG_UPROBES 3139 struct bpf_uprobe_multi_link; 3140 3141 struct bpf_uprobe { 3142 struct bpf_uprobe_multi_link *link; 3143 loff_t offset; 3144 unsigned long ref_ctr_offset; 3145 u64 cookie; 3146 struct uprobe *uprobe; 3147 struct uprobe_consumer consumer; 3148 bool session; 3149 }; 3150 3151 struct bpf_uprobe_multi_link { 3152 struct path path; 3153 struct bpf_link link; 3154 u32 cnt; 3155 u32 flags; 3156 struct bpf_uprobe *uprobes; 3157 struct task_struct *task; 3158 }; 3159 3160 struct bpf_uprobe_multi_run_ctx { 3161 struct bpf_session_run_ctx session_ctx; 3162 unsigned long entry_ip; 3163 struct bpf_uprobe *uprobe; 3164 }; 3165 3166 static void bpf_uprobe_unregister(struct bpf_uprobe *uprobes, u32 cnt) 3167 { 3168 u32 i; 3169 3170 for (i = 0; i < cnt; i++) 3171 uprobe_unregister_nosync(uprobes[i].uprobe, &uprobes[i].consumer); 3172 3173 if (cnt) 3174 uprobe_unregister_sync(); 3175 } 3176 3177 static void bpf_uprobe_multi_link_release(struct bpf_link *link) 3178 { 3179 struct bpf_uprobe_multi_link *umulti_link; 3180 3181 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link); 3182 bpf_uprobe_unregister(umulti_link->uprobes, umulti_link->cnt); 3183 if (umulti_link->task) 3184 put_task_struct(umulti_link->task); 3185 path_put(&umulti_link->path); 3186 } 3187 3188 static void bpf_uprobe_multi_link_dealloc(struct bpf_link *link) 3189 { 3190 struct bpf_uprobe_multi_link *umulti_link; 3191 3192 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link); 3193 kvfree(umulti_link->uprobes); 3194 kfree(umulti_link); 3195 } 3196 3197 static int bpf_uprobe_multi_link_fill_link_info(const struct bpf_link *link, 3198 struct bpf_link_info *info) 3199 { 3200 u64 __user *uref_ctr_offsets = u64_to_user_ptr(info->uprobe_multi.ref_ctr_offsets); 3201 u64 __user *ucookies = u64_to_user_ptr(info->uprobe_multi.cookies); 3202 u64 __user *uoffsets = u64_to_user_ptr(info->uprobe_multi.offsets); 3203 u64 __user *upath = u64_to_user_ptr(info->uprobe_multi.path); 3204 u32 upath_size = info->uprobe_multi.path_size; 3205 struct bpf_uprobe_multi_link *umulti_link; 3206 u32 ucount = info->uprobe_multi.count; 3207 int err = 0, i; 3208 char *p, *buf; 3209 long left = 0; 3210 3211 if (!upath ^ !upath_size) 3212 return -EINVAL; 3213 3214 if ((uoffsets || uref_ctr_offsets || ucookies) && !ucount) 3215 return -EINVAL; 3216 3217 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link); 3218 info->uprobe_multi.count = umulti_link->cnt; 3219 info->uprobe_multi.flags = umulti_link->flags; 3220 info->uprobe_multi.pid = umulti_link->task ? 3221 task_pid_nr_ns(umulti_link->task, task_active_pid_ns(current)) : 0; 3222 3223 upath_size = upath_size ? min_t(u32, upath_size, PATH_MAX) : PATH_MAX; 3224 buf = kmalloc(upath_size, GFP_KERNEL); 3225 if (!buf) 3226 return -ENOMEM; 3227 p = d_path(&umulti_link->path, buf, upath_size); 3228 if (IS_ERR(p)) { 3229 kfree(buf); 3230 return PTR_ERR(p); 3231 } 3232 upath_size = buf + upath_size - p; 3233 3234 if (upath) 3235 left = copy_to_user(upath, p, upath_size); 3236 kfree(buf); 3237 if (left) 3238 return -EFAULT; 3239 info->uprobe_multi.path_size = upath_size; 3240 3241 if (!uoffsets && !ucookies && !uref_ctr_offsets) 3242 return 0; 3243 3244 if (ucount < umulti_link->cnt) 3245 err = -ENOSPC; 3246 else 3247 ucount = umulti_link->cnt; 3248 3249 for (i = 0; i < ucount; i++) { 3250 if (uoffsets && 3251 put_user(umulti_link->uprobes[i].offset, uoffsets + i)) 3252 return -EFAULT; 3253 if (uref_ctr_offsets && 3254 put_user(umulti_link->uprobes[i].ref_ctr_offset, uref_ctr_offsets + i)) 3255 return -EFAULT; 3256 if (ucookies && 3257 put_user(umulti_link->uprobes[i].cookie, ucookies + i)) 3258 return -EFAULT; 3259 } 3260 3261 return err; 3262 } 3263 3264 static const struct bpf_link_ops bpf_uprobe_multi_link_lops = { 3265 .release = bpf_uprobe_multi_link_release, 3266 .dealloc_deferred = bpf_uprobe_multi_link_dealloc, 3267 .fill_link_info = bpf_uprobe_multi_link_fill_link_info, 3268 }; 3269 3270 static int uprobe_prog_run(struct bpf_uprobe *uprobe, 3271 unsigned long entry_ip, 3272 struct pt_regs *regs, 3273 bool is_return, void *data) 3274 { 3275 struct bpf_uprobe_multi_link *link = uprobe->link; 3276 struct bpf_uprobe_multi_run_ctx run_ctx = { 3277 .session_ctx = { 3278 .is_return = is_return, 3279 .data = data, 3280 }, 3281 .entry_ip = entry_ip, 3282 .uprobe = uprobe, 3283 }; 3284 struct bpf_prog *prog = link->link.prog; 3285 bool sleepable = prog->sleepable; 3286 struct bpf_run_ctx *old_run_ctx; 3287 int err; 3288 3289 if (link->task && !same_thread_group(current, link->task)) 3290 return 0; 3291 3292 if (sleepable) 3293 rcu_read_lock_trace(); 3294 else 3295 rcu_read_lock(); 3296 3297 migrate_disable(); 3298 3299 old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx); 3300 err = bpf_prog_run(link->link.prog, regs); 3301 bpf_reset_run_ctx(old_run_ctx); 3302 3303 migrate_enable(); 3304 3305 if (sleepable) 3306 rcu_read_unlock_trace(); 3307 else 3308 rcu_read_unlock(); 3309 return err; 3310 } 3311 3312 static bool 3313 uprobe_multi_link_filter(struct uprobe_consumer *con, struct mm_struct *mm) 3314 { 3315 struct bpf_uprobe *uprobe; 3316 3317 uprobe = container_of(con, struct bpf_uprobe, consumer); 3318 return uprobe->link->task->mm == mm; 3319 } 3320 3321 static int 3322 uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs, 3323 __u64 *data) 3324 { 3325 struct bpf_uprobe *uprobe; 3326 int ret; 3327 3328 uprobe = container_of(con, struct bpf_uprobe, consumer); 3329 ret = uprobe_prog_run(uprobe, instruction_pointer(regs), regs, false, data); 3330 if (uprobe->session) 3331 return ret ? UPROBE_HANDLER_IGNORE : 0; 3332 return 0; 3333 } 3334 3335 static int 3336 uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs, 3337 __u64 *data) 3338 { 3339 struct bpf_uprobe *uprobe; 3340 3341 uprobe = container_of(con, struct bpf_uprobe, consumer); 3342 uprobe_prog_run(uprobe, func, regs, true, data); 3343 return 0; 3344 } 3345 3346 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 3347 { 3348 struct bpf_uprobe_multi_run_ctx *run_ctx; 3349 3350 run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx, 3351 session_ctx.run_ctx); 3352 return run_ctx->entry_ip; 3353 } 3354 3355 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx) 3356 { 3357 struct bpf_uprobe_multi_run_ctx *run_ctx; 3358 3359 run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx, 3360 session_ctx.run_ctx); 3361 return run_ctx->uprobe->cookie; 3362 } 3363 3364 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 3365 { 3366 struct bpf_uprobe_multi_link *link = NULL; 3367 unsigned long __user *uref_ctr_offsets; 3368 struct bpf_link_primer link_primer; 3369 struct bpf_uprobe *uprobes = NULL; 3370 struct task_struct *task = NULL; 3371 unsigned long __user *uoffsets; 3372 u64 __user *ucookies; 3373 void __user *upath; 3374 u32 flags, cnt, i; 3375 struct path path; 3376 char *name; 3377 pid_t pid; 3378 int err; 3379 3380 /* no support for 32bit archs yet */ 3381 if (sizeof(u64) != sizeof(void *)) 3382 return -EOPNOTSUPP; 3383 3384 if (!is_uprobe_multi(prog)) 3385 return -EINVAL; 3386 3387 flags = attr->link_create.uprobe_multi.flags; 3388 if (flags & ~BPF_F_UPROBE_MULTI_RETURN) 3389 return -EINVAL; 3390 3391 /* 3392 * path, offsets and cnt are mandatory, 3393 * ref_ctr_offsets and cookies are optional 3394 */ 3395 upath = u64_to_user_ptr(attr->link_create.uprobe_multi.path); 3396 uoffsets = u64_to_user_ptr(attr->link_create.uprobe_multi.offsets); 3397 cnt = attr->link_create.uprobe_multi.cnt; 3398 pid = attr->link_create.uprobe_multi.pid; 3399 3400 if (!upath || !uoffsets || !cnt || pid < 0) 3401 return -EINVAL; 3402 if (cnt > MAX_UPROBE_MULTI_CNT) 3403 return -E2BIG; 3404 3405 uref_ctr_offsets = u64_to_user_ptr(attr->link_create.uprobe_multi.ref_ctr_offsets); 3406 ucookies = u64_to_user_ptr(attr->link_create.uprobe_multi.cookies); 3407 3408 name = strndup_user(upath, PATH_MAX); 3409 if (IS_ERR(name)) { 3410 err = PTR_ERR(name); 3411 return err; 3412 } 3413 3414 err = kern_path(name, LOOKUP_FOLLOW, &path); 3415 kfree(name); 3416 if (err) 3417 return err; 3418 3419 if (!d_is_reg(path.dentry)) { 3420 err = -EBADF; 3421 goto error_path_put; 3422 } 3423 3424 if (pid) { 3425 task = get_pid_task(find_vpid(pid), PIDTYPE_TGID); 3426 if (!task) { 3427 err = -ESRCH; 3428 goto error_path_put; 3429 } 3430 } 3431 3432 err = -ENOMEM; 3433 3434 link = kzalloc(sizeof(*link), GFP_KERNEL); 3435 uprobes = kvcalloc(cnt, sizeof(*uprobes), GFP_KERNEL); 3436 3437 if (!uprobes || !link) 3438 goto error_free; 3439 3440 for (i = 0; i < cnt; i++) { 3441 if (__get_user(uprobes[i].offset, uoffsets + i)) { 3442 err = -EFAULT; 3443 goto error_free; 3444 } 3445 if (uprobes[i].offset < 0) { 3446 err = -EINVAL; 3447 goto error_free; 3448 } 3449 if (uref_ctr_offsets && __get_user(uprobes[i].ref_ctr_offset, uref_ctr_offsets + i)) { 3450 err = -EFAULT; 3451 goto error_free; 3452 } 3453 if (ucookies && __get_user(uprobes[i].cookie, ucookies + i)) { 3454 err = -EFAULT; 3455 goto error_free; 3456 } 3457 3458 uprobes[i].link = link; 3459 3460 if (!(flags & BPF_F_UPROBE_MULTI_RETURN)) 3461 uprobes[i].consumer.handler = uprobe_multi_link_handler; 3462 if (flags & BPF_F_UPROBE_MULTI_RETURN || is_uprobe_session(prog)) 3463 uprobes[i].consumer.ret_handler = uprobe_multi_link_ret_handler; 3464 if (is_uprobe_session(prog)) 3465 uprobes[i].session = true; 3466 if (pid) 3467 uprobes[i].consumer.filter = uprobe_multi_link_filter; 3468 } 3469 3470 link->cnt = cnt; 3471 link->uprobes = uprobes; 3472 link->path = path; 3473 link->task = task; 3474 link->flags = flags; 3475 3476 bpf_link_init(&link->link, BPF_LINK_TYPE_UPROBE_MULTI, 3477 &bpf_uprobe_multi_link_lops, prog); 3478 3479 for (i = 0; i < cnt; i++) { 3480 uprobes[i].uprobe = uprobe_register(d_real_inode(link->path.dentry), 3481 uprobes[i].offset, 3482 uprobes[i].ref_ctr_offset, 3483 &uprobes[i].consumer); 3484 if (IS_ERR(uprobes[i].uprobe)) { 3485 err = PTR_ERR(uprobes[i].uprobe); 3486 link->cnt = i; 3487 goto error_unregister; 3488 } 3489 } 3490 3491 err = bpf_link_prime(&link->link, &link_primer); 3492 if (err) 3493 goto error_unregister; 3494 3495 return bpf_link_settle(&link_primer); 3496 3497 error_unregister: 3498 bpf_uprobe_unregister(uprobes, link->cnt); 3499 3500 error_free: 3501 kvfree(uprobes); 3502 kfree(link); 3503 if (task) 3504 put_task_struct(task); 3505 error_path_put: 3506 path_put(&path); 3507 return err; 3508 } 3509 #else /* !CONFIG_UPROBES */ 3510 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 3511 { 3512 return -EOPNOTSUPP; 3513 } 3514 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx) 3515 { 3516 return 0; 3517 } 3518 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 3519 { 3520 return 0; 3521 } 3522 #endif /* CONFIG_UPROBES */ 3523 3524 __bpf_kfunc_start_defs(); 3525 3526 __bpf_kfunc bool bpf_session_is_return(void) 3527 { 3528 struct bpf_session_run_ctx *session_ctx; 3529 3530 session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx); 3531 return session_ctx->is_return; 3532 } 3533 3534 __bpf_kfunc __u64 *bpf_session_cookie(void) 3535 { 3536 struct bpf_session_run_ctx *session_ctx; 3537 3538 session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx); 3539 return session_ctx->data; 3540 } 3541 3542 __bpf_kfunc_end_defs(); 3543 3544 BTF_KFUNCS_START(kprobe_multi_kfunc_set_ids) 3545 BTF_ID_FLAGS(func, bpf_session_is_return) 3546 BTF_ID_FLAGS(func, bpf_session_cookie) 3547 BTF_KFUNCS_END(kprobe_multi_kfunc_set_ids) 3548 3549 static int bpf_kprobe_multi_filter(const struct bpf_prog *prog, u32 kfunc_id) 3550 { 3551 if (!btf_id_set8_contains(&kprobe_multi_kfunc_set_ids, kfunc_id)) 3552 return 0; 3553 3554 if (!is_kprobe_session(prog) && !is_uprobe_session(prog)) 3555 return -EACCES; 3556 3557 return 0; 3558 } 3559 3560 static const struct btf_kfunc_id_set bpf_kprobe_multi_kfunc_set = { 3561 .owner = THIS_MODULE, 3562 .set = &kprobe_multi_kfunc_set_ids, 3563 .filter = bpf_kprobe_multi_filter, 3564 }; 3565 3566 static int __init bpf_kprobe_multi_kfuncs_init(void) 3567 { 3568 return register_btf_kfunc_id_set(BPF_PROG_TYPE_KPROBE, &bpf_kprobe_multi_kfunc_set); 3569 } 3570 3571 late_initcall(bpf_kprobe_multi_kfuncs_init); 3572 3573 __bpf_kfunc_start_defs(); 3574 3575 __bpf_kfunc int bpf_send_signal_task(struct task_struct *task, int sig, enum pid_type type, 3576 u64 value) 3577 { 3578 if (type != PIDTYPE_PID && type != PIDTYPE_TGID) 3579 return -EINVAL; 3580 3581 return bpf_send_signal_common(sig, type, task, value); 3582 } 3583 3584 __bpf_kfunc_end_defs(); 3585