1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2013, 2019 by Delphix. All rights reserved.
28 */
29
30 #ifndef _SYS_RANGE_TREE_H
31 #define _SYS_RANGE_TREE_H
32
33 #include <sys/btree.h>
34 #include <sys/dmu.h>
35
36 #ifdef __cplusplus
37 extern "C" {
38 #endif
39
40 #define RANGE_TREE_HISTOGRAM_SIZE 64
41
42 typedef struct range_tree_ops range_tree_ops_t;
43
44 typedef enum range_seg_type {
45 RANGE_SEG32,
46 RANGE_SEG64,
47 RANGE_SEG_GAP,
48 RANGE_SEG_NUM_TYPES,
49 } range_seg_type_t;
50
51 /*
52 * Note: the range_tree may not be accessed concurrently; consumers
53 * must provide external locking if required.
54 */
55 typedef struct range_tree {
56 zfs_btree_t rt_root; /* offset-ordered segment b-tree */
57 uint64_t rt_space; /* sum of all segments in the map */
58 range_seg_type_t rt_type; /* type of range_seg_t in use */
59 /*
60 * All data that is stored in the range tree must have a start higher
61 * than or equal to rt_start, and all sizes and offsets must be
62 * multiples of 1 << rt_shift.
63 */
64 uint8_t rt_shift;
65 uint64_t rt_start;
66 range_tree_ops_t *rt_ops;
67
68 /* rt_btree_compare should only be set if rt_arg is a b-tree */
69 void *rt_arg;
70 int (*rt_btree_compare)(const void *, const void *);
71
72 uint64_t rt_gap; /* allowable inter-segment gap */
73
74 /*
75 * The rt_histogram maintains a histogram of ranges. Each bucket,
76 * rt_histogram[i], contains the number of ranges whose size is:
77 * 2^i <= size of range in bytes < 2^(i+1)
78 */
79 uint64_t rt_histogram[RANGE_TREE_HISTOGRAM_SIZE];
80 } range_tree_t;
81
82 typedef struct range_seg32 {
83 uint32_t rs_start; /* starting offset of this segment */
84 uint32_t rs_end; /* ending offset (non-inclusive) */
85 } range_seg32_t;
86
87 /*
88 * Extremely large metaslabs, vdev-wide trees, and dnode-wide trees may
89 * require 64-bit integers for ranges.
90 */
91 typedef struct range_seg64 {
92 uint64_t rs_start; /* starting offset of this segment */
93 uint64_t rs_end; /* ending offset (non-inclusive) */
94 } range_seg64_t;
95
96 typedef struct range_seg_gap {
97 uint64_t rs_start; /* starting offset of this segment */
98 uint64_t rs_end; /* ending offset (non-inclusive) */
99 uint64_t rs_fill; /* actual fill if gap mode is on */
100 } range_seg_gap_t;
101
102 /*
103 * This type needs to be the largest of the range segs, since it will be stack
104 * allocated and then cast the actual type to do tree operations.
105 */
106 typedef range_seg_gap_t range_seg_max_t;
107
108 /*
109 * This is just for clarity of code purposes, so we can make it clear that a
110 * pointer is to a range seg of some type; when we need to do the actual math,
111 * we'll figure out the real type.
112 */
113 typedef void range_seg_t;
114
115 struct range_tree_ops {
116 void (*rtop_create)(range_tree_t *rt, void *arg);
117 void (*rtop_destroy)(range_tree_t *rt, void *arg);
118 void (*rtop_add)(range_tree_t *rt, void *rs, void *arg);
119 void (*rtop_remove)(range_tree_t *rt, void *rs, void *arg);
120 void (*rtop_vacate)(range_tree_t *rt, void *arg);
121 };
122
123 static inline uint64_t
rs_get_start_raw(const range_seg_t * rs,const range_tree_t * rt)124 rs_get_start_raw(const range_seg_t *rs, const range_tree_t *rt)
125 {
126 ASSERT3U(rt->rt_type, <=, RANGE_SEG_NUM_TYPES);
127 switch (rt->rt_type) {
128 case RANGE_SEG32:
129 return (((const range_seg32_t *)rs)->rs_start);
130 case RANGE_SEG64:
131 return (((const range_seg64_t *)rs)->rs_start);
132 case RANGE_SEG_GAP:
133 return (((const range_seg_gap_t *)rs)->rs_start);
134 default:
135 VERIFY(0);
136 return (0);
137 }
138 }
139
140 static inline uint64_t
rs_get_end_raw(const range_seg_t * rs,const range_tree_t * rt)141 rs_get_end_raw(const range_seg_t *rs, const range_tree_t *rt)
142 {
143 ASSERT3U(rt->rt_type, <=, RANGE_SEG_NUM_TYPES);
144 switch (rt->rt_type) {
145 case RANGE_SEG32:
146 return (((const range_seg32_t *)rs)->rs_end);
147 case RANGE_SEG64:
148 return (((const range_seg64_t *)rs)->rs_end);
149 case RANGE_SEG_GAP:
150 return (((const range_seg_gap_t *)rs)->rs_end);
151 default:
152 VERIFY(0);
153 return (0);
154 }
155 }
156
157 static inline uint64_t
rs_get_fill_raw(const range_seg_t * rs,const range_tree_t * rt)158 rs_get_fill_raw(const range_seg_t *rs, const range_tree_t *rt)
159 {
160 ASSERT3U(rt->rt_type, <=, RANGE_SEG_NUM_TYPES);
161 switch (rt->rt_type) {
162 case RANGE_SEG32: {
163 const range_seg32_t *r32 = rs;
164 return (r32->rs_end - r32->rs_start);
165 }
166 case RANGE_SEG64: {
167 const range_seg64_t *r64 = rs;
168 return (r64->rs_end - r64->rs_start);
169 }
170 case RANGE_SEG_GAP:
171 return (((range_seg_gap_t *)rs)->rs_fill);
172 default:
173 VERIFY(0);
174 return (0);
175 }
176
177 }
178
179 static inline uint64_t
rs_get_start(const range_seg_t * rs,const range_tree_t * rt)180 rs_get_start(const range_seg_t *rs, const range_tree_t *rt)
181 {
182 return ((rs_get_start_raw(rs, rt) << rt->rt_shift) + rt->rt_start);
183 }
184
185 static inline uint64_t
rs_get_end(const range_seg_t * rs,const range_tree_t * rt)186 rs_get_end(const range_seg_t *rs, const range_tree_t *rt)
187 {
188 return ((rs_get_end_raw(rs, rt) << rt->rt_shift) + rt->rt_start);
189 }
190
191 static inline uint64_t
rs_get_fill(const range_seg_t * rs,const range_tree_t * rt)192 rs_get_fill(const range_seg_t *rs, const range_tree_t *rt)
193 {
194 return (rs_get_fill_raw(rs, rt) << rt->rt_shift);
195 }
196
197 static inline void
rs_set_start_raw(range_seg_t * rs,range_tree_t * rt,uint64_t start)198 rs_set_start_raw(range_seg_t *rs, range_tree_t *rt, uint64_t start)
199 {
200 ASSERT3U(rt->rt_type, <=, RANGE_SEG_NUM_TYPES);
201 switch (rt->rt_type) {
202 case RANGE_SEG32:
203 ASSERT3U(start, <=, UINT32_MAX);
204 ((range_seg32_t *)rs)->rs_start = (uint32_t)start;
205 break;
206 case RANGE_SEG64:
207 ((range_seg64_t *)rs)->rs_start = start;
208 break;
209 case RANGE_SEG_GAP:
210 ((range_seg_gap_t *)rs)->rs_start = start;
211 break;
212 default:
213 VERIFY(0);
214 }
215 }
216
217 static inline void
rs_set_end_raw(range_seg_t * rs,range_tree_t * rt,uint64_t end)218 rs_set_end_raw(range_seg_t *rs, range_tree_t *rt, uint64_t end)
219 {
220 ASSERT3U(rt->rt_type, <=, RANGE_SEG_NUM_TYPES);
221 switch (rt->rt_type) {
222 case RANGE_SEG32:
223 ASSERT3U(end, <=, UINT32_MAX);
224 ((range_seg32_t *)rs)->rs_end = (uint32_t)end;
225 break;
226 case RANGE_SEG64:
227 ((range_seg64_t *)rs)->rs_end = end;
228 break;
229 case RANGE_SEG_GAP:
230 ((range_seg_gap_t *)rs)->rs_end = end;
231 break;
232 default:
233 VERIFY(0);
234 }
235 }
236
237 static inline void
rs_set_fill_raw(range_seg_t * rs,range_tree_t * rt,uint64_t fill)238 rs_set_fill_raw(range_seg_t *rs, range_tree_t *rt, uint64_t fill)
239 {
240 ASSERT3U(rt->rt_type, <=, RANGE_SEG_NUM_TYPES);
241 switch (rt->rt_type) {
242 case RANGE_SEG32:
243 /* fall through */
244 case RANGE_SEG64:
245 ASSERT3U(fill, ==, rs_get_end_raw(rs, rt) - rs_get_start_raw(rs,
246 rt));
247 break;
248 case RANGE_SEG_GAP:
249 ((range_seg_gap_t *)rs)->rs_fill = fill;
250 break;
251 default:
252 VERIFY(0);
253 }
254 }
255
256 static inline void
rs_set_start(range_seg_t * rs,range_tree_t * rt,uint64_t start)257 rs_set_start(range_seg_t *rs, range_tree_t *rt, uint64_t start)
258 {
259 ASSERT3U(start, >=, rt->rt_start);
260 ASSERT(IS_P2ALIGNED(start, 1ULL << rt->rt_shift));
261 rs_set_start_raw(rs, rt, (start - rt->rt_start) >> rt->rt_shift);
262 }
263
264 static inline void
rs_set_end(range_seg_t * rs,range_tree_t * rt,uint64_t end)265 rs_set_end(range_seg_t *rs, range_tree_t *rt, uint64_t end)
266 {
267 ASSERT3U(end, >=, rt->rt_start);
268 ASSERT(IS_P2ALIGNED(end, 1ULL << rt->rt_shift));
269 rs_set_end_raw(rs, rt, (end - rt->rt_start) >> rt->rt_shift);
270 }
271
272 static inline void
rs_set_fill(range_seg_t * rs,range_tree_t * rt,uint64_t fill)273 rs_set_fill(range_seg_t *rs, range_tree_t *rt, uint64_t fill)
274 {
275 ASSERT(IS_P2ALIGNED(fill, 1ULL << rt->rt_shift));
276 rs_set_fill_raw(rs, rt, fill >> rt->rt_shift);
277 }
278
279 typedef void range_tree_func_t(void *arg, uint64_t start, uint64_t size);
280
281 range_tree_t *range_tree_create_impl(range_tree_ops_t *ops,
282 range_seg_type_t type, void *arg, uint64_t start, uint64_t shift,
283 int (*zfs_btree_compare) (const void *, const void *), uint64_t gap);
284 range_tree_t *range_tree_create(range_tree_ops_t *ops, range_seg_type_t type,
285 void *arg, uint64_t start, uint64_t shift);
286 void range_tree_destroy(range_tree_t *rt);
287 boolean_t range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size);
288 range_seg_t *range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size);
289 boolean_t range_tree_find_in(range_tree_t *rt, uint64_t start, uint64_t size,
290 uint64_t *ostart, uint64_t *osize);
291 void range_tree_verify_not_present(range_tree_t *rt,
292 uint64_t start, uint64_t size);
293 void range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs,
294 uint64_t newstart, uint64_t newsize);
295 uint64_t range_tree_space(range_tree_t *rt);
296 uint64_t range_tree_numsegs(range_tree_t *rt);
297 boolean_t range_tree_is_empty(range_tree_t *rt);
298 void range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst);
299 void range_tree_stat_verify(range_tree_t *rt);
300 uint64_t range_tree_min(range_tree_t *rt);
301 uint64_t range_tree_max(range_tree_t *rt);
302 uint64_t range_tree_span(range_tree_t *rt);
303
304 void range_tree_add(void *arg, uint64_t start, uint64_t size);
305 void range_tree_remove(void *arg, uint64_t start, uint64_t size);
306 void range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size);
307 void range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta);
308 void range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size);
309
310 void range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg);
311 void range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg);
312 range_seg_t *range_tree_first(range_tree_t *rt);
313
314 void range_tree_remove_xor_add_segment(uint64_t start, uint64_t end,
315 range_tree_t *removefrom, range_tree_t *addto);
316 void range_tree_remove_xor_add(range_tree_t *rt, range_tree_t *removefrom,
317 range_tree_t *addto);
318
319 void rt_btree_create(range_tree_t *rt, void *arg);
320 void rt_btree_destroy(range_tree_t *rt, void *arg);
321 void rt_btree_add(range_tree_t *rt, range_seg_t *rs, void *arg);
322 void rt_btree_remove(range_tree_t *rt, range_seg_t *rs, void *arg);
323 void rt_btree_vacate(range_tree_t *rt, void *arg);
324 extern range_tree_ops_t rt_btree_ops;
325
326 #ifdef __cplusplus
327 }
328 #endif
329
330 #endif /* _SYS_RANGE_TREE_H */
331