1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2019 Joyent, Inc.
25 * Copyright 2017 OmniTI Computer Consulting, Inc. All rights reserved.
26 * Copyright 2020 RackTop Systems, Inc.
27 * Copyright 2025 Oxide Computer Company
28 */
29
30 #include <sys/types.h>
31 #include <sys/conf.h>
32 #include <sys/id_space.h>
33 #include <sys/esunddi.h>
34 #include <sys/stat.h>
35 #include <sys/mkdev.h>
36 #include <sys/stream.h>
37 #include <sys/strsubr.h>
38 #include <sys/dlpi.h>
39 #include <sys/modhash.h>
40 #include <sys/mac.h>
41 #include <sys/mac_provider.h>
42 #include <sys/mac_impl.h>
43 #include <sys/mac_client_impl.h>
44 #include <sys/mac_client_priv.h>
45 #include <sys/mac_soft_ring.h>
46 #include <sys/mac_stat.h>
47 #include <sys/dld.h>
48 #include <sys/modctl.h>
49 #include <sys/fs/dv_node.h>
50 #include <sys/thread.h>
51 #include <sys/proc.h>
52 #include <sys/callb.h>
53 #include <sys/cpuvar.h>
54 #include <sys/atomic.h>
55 #include <sys/sdt.h>
56 #include <sys/mac_flow.h>
57 #include <sys/ddi_intr_impl.h>
58 #include <sys/disp.h>
59 #include <sys/sdt.h>
60 #include <sys/stdbool.h>
61 #include <sys/pattr.h>
62 #include <sys/strsun.h>
63 #include <sys/vlan.h>
64 #include <inet/ip.h>
65 #include <inet/tcp.h>
66 #include <netinet/udp.h>
67 #include <netinet/sctp.h>
68 #include <netinet/ip_icmp.h>
69 #include <netinet/icmp6.h>
70
71 /*
72 * MAC Provider Interface.
73 *
74 * Interface for GLDv3 compatible NIC drivers.
75 */
76
77 static void i_mac_notify_thread(void *);
78
79 typedef void (*mac_notify_default_cb_fn_t)(mac_impl_t *);
80
81 static const mac_notify_default_cb_fn_t mac_notify_cb_list[MAC_NNOTE] = {
82 mac_fanout_recompute, /* MAC_NOTE_LINK */
83 NULL, /* MAC_NOTE_UNICST */
84 NULL, /* MAC_NOTE_TX */
85 NULL, /* MAC_NOTE_DEVPROMISC */
86 NULL, /* MAC_NOTE_FASTPATH_FLUSH */
87 NULL, /* MAC_NOTE_SDU_SIZE */
88 NULL, /* MAC_NOTE_MARGIN */
89 NULL, /* MAC_NOTE_CAPAB_CHG */
90 NULL /* MAC_NOTE_LOWLINK */
91 };
92
93 /*
94 * Driver support functions.
95 */
96
97 /* REGISTRATION */
98
99 mac_register_t *
mac_alloc(uint_t mac_version)100 mac_alloc(uint_t mac_version)
101 {
102 mac_register_t *mregp;
103
104 /*
105 * Make sure there isn't a version mismatch between the driver and
106 * the framework. In the future, if multiple versions are
107 * supported, this check could become more sophisticated.
108 */
109 if (mac_version != MAC_VERSION)
110 return (NULL);
111
112 mregp = kmem_zalloc(sizeof (mac_register_t), KM_SLEEP);
113 mregp->m_version = mac_version;
114 return (mregp);
115 }
116
117 void
mac_free(mac_register_t * mregp)118 mac_free(mac_register_t *mregp)
119 {
120 kmem_free(mregp, sizeof (mac_register_t));
121 }
122
123 /*
124 * Convert a MAC's offload features into the equivalent DB_CKSUMFLAGS
125 * value.
126 */
127 static uint16_t
mac_features_to_flags(mac_handle_t mh)128 mac_features_to_flags(mac_handle_t mh)
129 {
130 uint16_t flags = 0;
131 uint32_t cap_sum = 0;
132 mac_capab_lso_t cap_lso;
133
134 if (mac_capab_get(mh, MAC_CAPAB_HCKSUM, &cap_sum)) {
135 if (cap_sum & HCKSUM_IPHDRCKSUM)
136 flags |= HCK_IPV4_HDRCKSUM;
137
138 if (cap_sum & HCKSUM_INET_PARTIAL)
139 flags |= HCK_PARTIALCKSUM;
140 else if (cap_sum & (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
141 flags |= HCK_FULLCKSUM;
142 }
143
144 /*
145 * We don't need the information stored in 'cap_lso', but we
146 * need to pass a non-NULL pointer to appease the driver.
147 */
148 if (mac_capab_get(mh, MAC_CAPAB_LSO, &cap_lso))
149 flags |= HW_LSO;
150
151 return (flags);
152 }
153
154 /*
155 * mac_register() is how drivers register new MACs with the GLDv3
156 * framework. The mregp argument is allocated by drivers using the
157 * mac_alloc() function, and can be freed using mac_free() immediately upon
158 * return from mac_register(). Upon success (0 return value), the mhp
159 * opaque pointer becomes the driver's handle to its MAC interface, and is
160 * the argument to all other mac module entry points.
161 */
162 /* ARGSUSED */
163 int
mac_register(mac_register_t * mregp,mac_handle_t * mhp)164 mac_register(mac_register_t *mregp, mac_handle_t *mhp)
165 {
166 mac_impl_t *mip;
167 mactype_t *mtype;
168 int err = EINVAL;
169 struct devnames *dnp = NULL;
170 uint_t instance;
171 boolean_t style1_created = B_FALSE;
172 boolean_t style2_created = B_FALSE;
173 char *driver;
174 minor_t minor = 0;
175
176 /* A successful call to mac_init_ops() sets the DN_GLDV3_DRIVER flag. */
177 if (!GLDV3_DRV(ddi_driver_major(mregp->m_dip)))
178 return (EINVAL);
179
180 /* Find the required MAC-Type plugin. */
181 if ((mtype = mactype_getplugin(mregp->m_type_ident)) == NULL)
182 return (EINVAL);
183
184 /* Create a mac_impl_t to represent this MAC. */
185 mip = kmem_cache_alloc(i_mac_impl_cachep, KM_SLEEP);
186
187 /*
188 * The mac is not ready for open yet.
189 */
190 mip->mi_state_flags |= MIS_DISABLED;
191
192 /*
193 * When a mac is registered, the m_instance field can be set to:
194 *
195 * 0: Get the mac's instance number from m_dip.
196 * This is usually used for physical device dips.
197 *
198 * [1 .. MAC_MAX_MINOR-1]: Use the value as the mac's instance number.
199 * For example, when an aggregation is created with the key option,
200 * "key" will be used as the instance number.
201 *
202 * -1: Assign an instance number from [MAC_MAX_MINOR .. MAXMIN-1].
203 * This is often used when a MAC of a virtual link is registered
204 * (e.g., aggregation when "key" is not specified, or vnic).
205 *
206 * Note that the instance number is used to derive the mi_minor field
207 * of mac_impl_t, which will then be used to derive the name of kstats
208 * and the devfs nodes. The first 2 cases are needed to preserve
209 * backward compatibility.
210 */
211 switch (mregp->m_instance) {
212 case 0:
213 instance = ddi_get_instance(mregp->m_dip);
214 break;
215 case ((uint_t)-1):
216 minor = mac_minor_hold(B_TRUE);
217 if (minor == 0) {
218 err = ENOSPC;
219 goto fail;
220 }
221 instance = minor - 1;
222 break;
223 default:
224 instance = mregp->m_instance;
225 if (instance >= MAC_MAX_MINOR) {
226 err = EINVAL;
227 goto fail;
228 }
229 break;
230 }
231
232 mip->mi_minor = (minor_t)(instance + 1);
233 mip->mi_dip = mregp->m_dip;
234 mip->mi_clients_list = NULL;
235 mip->mi_nclients = 0;
236
237 /* Set the default IEEE Port VLAN Identifier */
238 mip->mi_pvid = 1;
239
240 /* Default bridge link learning protection values */
241 mip->mi_llimit = 1000;
242 mip->mi_ldecay = 200;
243
244 driver = (char *)ddi_driver_name(mip->mi_dip);
245
246 /* Construct the MAC name as <drvname><instance> */
247 (void) snprintf(mip->mi_name, sizeof (mip->mi_name), "%s%d",
248 driver, instance);
249
250 mip->mi_driver = mregp->m_driver;
251
252 mip->mi_type = mtype;
253 mip->mi_margin = mregp->m_margin;
254 mip->mi_info.mi_media = mtype->mt_type;
255 mip->mi_info.mi_nativemedia = mtype->mt_nativetype;
256 if (mregp->m_max_sdu <= mregp->m_min_sdu)
257 goto fail;
258 if (mregp->m_multicast_sdu == 0)
259 mregp->m_multicast_sdu = mregp->m_max_sdu;
260 if (mregp->m_multicast_sdu < mregp->m_min_sdu ||
261 mregp->m_multicast_sdu > mregp->m_max_sdu)
262 goto fail;
263 mip->mi_sdu_min = mregp->m_min_sdu;
264 mip->mi_sdu_max = mregp->m_max_sdu;
265 mip->mi_sdu_multicast = mregp->m_multicast_sdu;
266 mip->mi_info.mi_addr_length = mip->mi_type->mt_addr_length;
267 /*
268 * If the media supports a broadcast address, cache a pointer to it
269 * in the mac_info_t so that upper layers can use it.
270 */
271 mip->mi_info.mi_brdcst_addr = mip->mi_type->mt_brdcst_addr;
272
273 mip->mi_v12n_level = mregp->m_v12n;
274
275 /*
276 * Copy the unicast source address into the mac_info_t, but only if
277 * the MAC-Type defines a non-zero address length. We need to
278 * handle MAC-Types that have an address length of 0
279 * (point-to-point protocol MACs for example).
280 */
281 if (mip->mi_type->mt_addr_length > 0) {
282 if (mregp->m_src_addr == NULL)
283 goto fail;
284 mip->mi_info.mi_unicst_addr =
285 kmem_alloc(mip->mi_type->mt_addr_length, KM_SLEEP);
286 bcopy(mregp->m_src_addr, mip->mi_info.mi_unicst_addr,
287 mip->mi_type->mt_addr_length);
288
289 /*
290 * Copy the fixed 'factory' MAC address from the immutable
291 * info. This is taken to be the MAC address currently in
292 * use.
293 */
294 bcopy(mip->mi_info.mi_unicst_addr, mip->mi_addr,
295 mip->mi_type->mt_addr_length);
296
297 /*
298 * At this point, we should set up the classification
299 * rules etc but we delay it till mac_open() so that
300 * the resource discovery has taken place and we
301 * know someone wants to use the device. Otherwise
302 * memory gets allocated for Rx ring structures even
303 * during probe.
304 */
305
306 /* Copy the destination address if one is provided. */
307 if (mregp->m_dst_addr != NULL) {
308 bcopy(mregp->m_dst_addr, mip->mi_dstaddr,
309 mip->mi_type->mt_addr_length);
310 mip->mi_dstaddr_set = B_TRUE;
311 }
312 } else if (mregp->m_src_addr != NULL) {
313 goto fail;
314 }
315
316 /*
317 * The format of the m_pdata is specific to the plugin. It is
318 * passed in as an argument to all of the plugin callbacks. The
319 * driver can update this information by calling
320 * mac_pdata_update().
321 */
322 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY) {
323 /*
324 * Verify if the supplied plugin data is valid. Note that
325 * even if the caller passed in a NULL pointer as plugin data,
326 * we still need to verify if that's valid as the plugin may
327 * require plugin data to function.
328 */
329 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mregp->m_pdata,
330 mregp->m_pdata_size)) {
331 goto fail;
332 }
333 if (mregp->m_pdata != NULL) {
334 mip->mi_pdata =
335 kmem_alloc(mregp->m_pdata_size, KM_SLEEP);
336 bcopy(mregp->m_pdata, mip->mi_pdata,
337 mregp->m_pdata_size);
338 mip->mi_pdata_size = mregp->m_pdata_size;
339 }
340 } else if (mregp->m_pdata != NULL) {
341 /*
342 * The caller supplied non-NULL plugin data, but the plugin
343 * does not recognize plugin data.
344 */
345 err = EINVAL;
346 goto fail;
347 }
348
349 /*
350 * Register the private properties.
351 */
352 mac_register_priv_prop(mip, mregp->m_priv_props);
353
354 /*
355 * Stash the driver callbacks into the mac_impl_t, but first sanity
356 * check to make sure all mandatory callbacks are set.
357 */
358 if (mregp->m_callbacks->mc_getstat == NULL ||
359 mregp->m_callbacks->mc_start == NULL ||
360 mregp->m_callbacks->mc_stop == NULL ||
361 mregp->m_callbacks->mc_setpromisc == NULL ||
362 mregp->m_callbacks->mc_multicst == NULL) {
363 goto fail;
364 }
365 mip->mi_callbacks = mregp->m_callbacks;
366
367 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LEGACY,
368 &mip->mi_capab_legacy)) {
369 mip->mi_state_flags |= MIS_LEGACY;
370 mip->mi_phy_dev = mip->mi_capab_legacy.ml_dev;
371 } else {
372 mip->mi_phy_dev = makedevice(ddi_driver_major(mip->mi_dip),
373 mip->mi_minor);
374 }
375
376 /*
377 * Allocate a notification thread. thread_create blocks for memory
378 * if needed, it never fails.
379 */
380 mip->mi_notify_thread = thread_create(NULL, 0, i_mac_notify_thread,
381 mip, 0, &p0, TS_RUN, minclsyspri);
382
383 /*
384 * Cache the DB_CKSUMFLAGS that this MAC supports.
385 */
386 mip->mi_tx_cksum_flags = mac_features_to_flags((mac_handle_t)mip);
387
388 /*
389 * Initialize the capabilities
390 */
391 bzero(&mip->mi_rx_rings_cap, sizeof (mac_capab_rings_t));
392 bzero(&mip->mi_tx_rings_cap, sizeof (mac_capab_rings_t));
393
394 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, NULL))
395 mip->mi_state_flags |= MIS_IS_VNIC;
396
397 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, NULL))
398 mip->mi_state_flags |= MIS_IS_AGGR;
399
400 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_OVERLAY, NULL))
401 mip->mi_state_flags |= MIS_IS_OVERLAY;
402
403 mac_addr_factory_init(mip);
404
405 mac_transceiver_init(mip);
406
407 mac_led_init(mip);
408
409 /*
410 * Enforce the virtrualization level registered.
411 */
412 if (mip->mi_v12n_level & MAC_VIRT_LEVEL1) {
413 if (mac_init_rings(mip, MAC_RING_TYPE_RX) != 0 ||
414 mac_init_rings(mip, MAC_RING_TYPE_TX) != 0)
415 goto fail;
416
417 /*
418 * The driver needs to register at least rx rings for this
419 * virtualization level.
420 */
421 if (mip->mi_rx_groups == NULL)
422 goto fail;
423 }
424
425 /*
426 * The driver must set mc_unicst entry point to NULL when it advertises
427 * CAP_RINGS for rx groups.
428 */
429 if (mip->mi_rx_groups != NULL) {
430 if (mregp->m_callbacks->mc_unicst != NULL)
431 goto fail;
432 } else {
433 if (mregp->m_callbacks->mc_unicst == NULL)
434 goto fail;
435 }
436
437 /*
438 * Initialize MAC addresses. Must be called after mac_init_rings().
439 */
440 mac_init_macaddr(mip);
441
442 mip->mi_share_capab.ms_snum = 0;
443 if (mip->mi_v12n_level & MAC_VIRT_HIO) {
444 (void) mac_capab_get((mac_handle_t)mip, MAC_CAPAB_SHARES,
445 &mip->mi_share_capab);
446 }
447
448 /*
449 * Initialize the kstats for this device.
450 */
451 mac_driver_stat_create(mip);
452
453 /* Zero out any properties. */
454 bzero(&mip->mi_resource_props, sizeof (mac_resource_props_t));
455
456 if (mip->mi_minor <= MAC_MAX_MINOR) {
457 /* Create a style-2 DLPI device */
458 if (ddi_create_minor_node(mip->mi_dip, driver, S_IFCHR, 0,
459 DDI_NT_NET, CLONE_DEV) != DDI_SUCCESS)
460 goto fail;
461 style2_created = B_TRUE;
462
463 /* Create a style-1 DLPI device */
464 if (ddi_create_minor_node(mip->mi_dip, mip->mi_name, S_IFCHR,
465 mip->mi_minor, DDI_NT_NET, 0) != DDI_SUCCESS)
466 goto fail;
467 style1_created = B_TRUE;
468 }
469
470 mac_flow_l2tab_create(mip, &mip->mi_flow_tab);
471
472 rw_enter(&i_mac_impl_lock, RW_WRITER);
473 if (mod_hash_insert(i_mac_impl_hash,
474 (mod_hash_key_t)mip->mi_name, (mod_hash_val_t)mip) != 0) {
475 rw_exit(&i_mac_impl_lock);
476 err = EEXIST;
477 goto fail;
478 }
479
480 DTRACE_PROBE2(mac__register, struct devnames *, dnp,
481 (mac_impl_t *), mip);
482
483 /*
484 * Mark the MAC to be ready for open.
485 */
486 mip->mi_state_flags &= ~MIS_DISABLED;
487 rw_exit(&i_mac_impl_lock);
488
489 atomic_inc_32(&i_mac_impl_count);
490
491 cmn_err(CE_NOTE, "!%s registered", mip->mi_name);
492 *mhp = (mac_handle_t)mip;
493 return (0);
494
495 fail:
496 if (style1_created)
497 ddi_remove_minor_node(mip->mi_dip, mip->mi_name);
498
499 if (style2_created)
500 ddi_remove_minor_node(mip->mi_dip, driver);
501
502 mac_addr_factory_fini(mip);
503
504 /* Clean up registered MAC addresses */
505 mac_fini_macaddr(mip);
506
507 /* Clean up registered rings */
508 mac_free_rings(mip, MAC_RING_TYPE_RX);
509 mac_free_rings(mip, MAC_RING_TYPE_TX);
510
511 /* Clean up notification thread */
512 if (mip->mi_notify_thread != NULL)
513 i_mac_notify_exit(mip);
514
515 if (mip->mi_info.mi_unicst_addr != NULL) {
516 kmem_free(mip->mi_info.mi_unicst_addr,
517 mip->mi_type->mt_addr_length);
518 mip->mi_info.mi_unicst_addr = NULL;
519 }
520
521 mac_driver_stat_delete(mip);
522
523 if (mip->mi_type != NULL) {
524 atomic_dec_32(&mip->mi_type->mt_ref);
525 mip->mi_type = NULL;
526 }
527
528 if (mip->mi_pdata != NULL) {
529 kmem_free(mip->mi_pdata, mip->mi_pdata_size);
530 mip->mi_pdata = NULL;
531 mip->mi_pdata_size = 0;
532 }
533
534 if (minor != 0) {
535 ASSERT(minor > MAC_MAX_MINOR);
536 mac_minor_rele(minor);
537 }
538
539 mip->mi_state_flags = 0;
540 mac_unregister_priv_prop(mip);
541
542 /*
543 * Clear the state before destroying the mac_impl_t
544 */
545 mip->mi_state_flags = 0;
546
547 kmem_cache_free(i_mac_impl_cachep, mip);
548 return (err);
549 }
550
551 /*
552 * Unregister from the GLDv3 framework
553 */
554 int
mac_unregister(mac_handle_t mh)555 mac_unregister(mac_handle_t mh)
556 {
557 int err;
558 mac_impl_t *mip = (mac_impl_t *)mh;
559 mod_hash_val_t val;
560 mac_margin_req_t *mmr, *nextmmr;
561
562 /* Fail the unregister if there are any open references to this mac. */
563 if ((err = mac_disable_nowait(mh)) != 0)
564 return (err);
565
566 /*
567 * Clean up notification thread and wait for it to exit.
568 */
569 i_mac_notify_exit(mip);
570
571 /*
572 * Prior to acquiring the MAC perimeter, remove the MAC instance from
573 * the internal hash table. Such removal means table-walkers that
574 * acquire the perimeter will not do so on behalf of what we are
575 * unregistering, which prevents a deadlock.
576 */
577 rw_enter(&i_mac_impl_lock, RW_WRITER);
578 (void) mod_hash_remove(i_mac_impl_hash,
579 (mod_hash_key_t)mip->mi_name, &val);
580 rw_exit(&i_mac_impl_lock);
581 ASSERT(mip == (mac_impl_t *)val);
582
583 i_mac_perim_enter(mip);
584
585 /*
586 * There is still resource properties configured over this mac.
587 */
588 if (mip->mi_resource_props.mrp_mask != 0)
589 mac_fastpath_enable((mac_handle_t)mip);
590
591 if (mip->mi_minor < MAC_MAX_MINOR + 1) {
592 ddi_remove_minor_node(mip->mi_dip, mip->mi_name);
593 ddi_remove_minor_node(mip->mi_dip,
594 (char *)ddi_driver_name(mip->mi_dip));
595 }
596
597 ASSERT(mip->mi_nactiveclients == 0 && !(mip->mi_state_flags &
598 MIS_EXCLUSIVE));
599
600 mac_driver_stat_delete(mip);
601
602 ASSERT(i_mac_impl_count > 0);
603 atomic_dec_32(&i_mac_impl_count);
604
605 if (mip->mi_pdata != NULL)
606 kmem_free(mip->mi_pdata, mip->mi_pdata_size);
607 mip->mi_pdata = NULL;
608 mip->mi_pdata_size = 0;
609
610 /*
611 * Free the list of margin request.
612 */
613 for (mmr = mip->mi_mmrp; mmr != NULL; mmr = nextmmr) {
614 nextmmr = mmr->mmr_nextp;
615 kmem_free(mmr, sizeof (mac_margin_req_t));
616 }
617 mip->mi_mmrp = NULL;
618
619 mip->mi_linkstate = mip->mi_lowlinkstate = LINK_STATE_UNKNOWN;
620 kmem_free(mip->mi_info.mi_unicst_addr, mip->mi_type->mt_addr_length);
621 mip->mi_info.mi_unicst_addr = NULL;
622
623 atomic_dec_32(&mip->mi_type->mt_ref);
624 mip->mi_type = NULL;
625
626 /*
627 * Free the primary MAC address.
628 */
629 mac_fini_macaddr(mip);
630
631 /*
632 * free all rings
633 */
634 mac_free_rings(mip, MAC_RING_TYPE_RX);
635 mac_free_rings(mip, MAC_RING_TYPE_TX);
636
637 mac_addr_factory_fini(mip);
638
639 bzero(mip->mi_addr, MAXMACADDRLEN);
640 bzero(mip->mi_dstaddr, MAXMACADDRLEN);
641 mip->mi_dstaddr_set = B_FALSE;
642
643 /* and the flows */
644 mac_flow_tab_destroy(mip->mi_flow_tab);
645 mip->mi_flow_tab = NULL;
646
647 if (mip->mi_minor > MAC_MAX_MINOR)
648 mac_minor_rele(mip->mi_minor);
649
650 cmn_err(CE_NOTE, "!%s unregistered", mip->mi_name);
651
652 /*
653 * Reset the perim related fields to default values before
654 * kmem_cache_free
655 */
656 i_mac_perim_exit(mip);
657 mip->mi_state_flags = 0;
658
659 mac_unregister_priv_prop(mip);
660
661 ASSERT(mip->mi_bridge_link == NULL);
662 kmem_cache_free(i_mac_impl_cachep, mip);
663
664 return (0);
665 }
666
667 /* DATA RECEPTION */
668
669 /*
670 * This function is invoked for packets received by the MAC driver in
671 * interrupt context. The ring generation number provided by the driver
672 * is matched with the ring generation number held in MAC. If they do not
673 * match, received packets are considered stale packets coming from an older
674 * assignment of the ring. Drop them.
675 */
676 void
mac_rx_ring(mac_handle_t mh,mac_ring_handle_t mrh,mblk_t * mp_chain,uint64_t mr_gen_num)677 mac_rx_ring(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp_chain,
678 uint64_t mr_gen_num)
679 {
680 mac_ring_t *mr = (mac_ring_t *)mrh;
681
682 if ((mr != NULL) && (mr->mr_gen_num != mr_gen_num)) {
683 DTRACE_PROBE2(mac__rx__rings__stale__packet, uint64_t,
684 mr->mr_gen_num, uint64_t, mr_gen_num);
685 freemsgchain(mp_chain);
686 return;
687 }
688 mac_rx(mh, (mac_resource_handle_t)mrh, mp_chain);
689 }
690
691 /*
692 * This function is invoked for each packet received by the underlying driver.
693 */
694 void
mac_rx(mac_handle_t mh,mac_resource_handle_t mrh,mblk_t * mp_chain)695 mac_rx(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
696 {
697 mac_impl_t *mip = (mac_impl_t *)mh;
698
699 /*
700 * Check if the link is part of a bridge. If not, then we don't need
701 * to take the lock to remain consistent. Make this common case
702 * lock-free and tail-call optimized.
703 */
704 if (mip->mi_bridge_link == NULL) {
705 mac_rx_common(mh, mrh, mp_chain);
706 } else {
707 /*
708 * Once we take a reference on the bridge link, the bridge
709 * module itself can't unload, so the callback pointers are
710 * stable.
711 */
712 mutex_enter(&mip->mi_bridge_lock);
713 if ((mh = mip->mi_bridge_link) != NULL)
714 mac_bridge_ref_cb(mh, B_TRUE);
715 mutex_exit(&mip->mi_bridge_lock);
716 if (mh == NULL) {
717 mac_rx_common((mac_handle_t)mip, mrh, mp_chain);
718 } else {
719 mac_bridge_rx_cb(mh, mrh, mp_chain);
720 mac_bridge_ref_cb(mh, B_FALSE);
721 }
722 }
723 }
724
725 /*
726 * Special case function: this allows snooping of packets transmitted and
727 * received by TRILL. By design, they go directly into the TRILL module.
728 */
729 void
mac_trill_snoop(mac_handle_t mh,mblk_t * mp)730 mac_trill_snoop(mac_handle_t mh, mblk_t *mp)
731 {
732 mac_impl_t *mip = (mac_impl_t *)mh;
733
734 if (mip->mi_promisc_list != NULL)
735 mac_promisc_dispatch(mip, mp, NULL, B_FALSE);
736 }
737
738 /*
739 * This is the upward reentry point for packets arriving from the bridging
740 * module and from mac_rx for links not part of a bridge.
741 */
742 void
mac_rx_common(mac_handle_t mh,mac_resource_handle_t mrh,mblk_t * mp_chain)743 mac_rx_common(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
744 {
745 mac_impl_t *mip = (mac_impl_t *)mh;
746 mac_ring_t *mr = (mac_ring_t *)mrh;
747 mac_soft_ring_set_t *mac_srs;
748 mblk_t *bp = mp_chain;
749
750 /*
751 * If there are any promiscuous mode callbacks defined for
752 * this MAC, pass them a copy if appropriate.
753 */
754 if (mip->mi_promisc_list != NULL)
755 mac_promisc_dispatch(mip, mp_chain, NULL, B_FALSE);
756
757 if (mr != NULL) {
758 /*
759 * If the SRS teardown has started, just return. The 'mr'
760 * continues to be valid until the driver unregisters the MAC.
761 * Hardware classified packets will not make their way up
762 * beyond this point once the teardown has started. The driver
763 * is never passed a pointer to a flow entry or SRS or any
764 * structure that can be freed much before mac_unregister.
765 */
766 mutex_enter(&mr->mr_lock);
767 if ((mr->mr_state != MR_INUSE) || (mr->mr_flag &
768 (MR_INCIPIENT | MR_CONDEMNED | MR_QUIESCE))) {
769 mutex_exit(&mr->mr_lock);
770 freemsgchain(mp_chain);
771 return;
772 }
773
774 /*
775 * The ring is in passthru mode; pass the chain up to
776 * the pseudo ring.
777 */
778 if (mr->mr_classify_type == MAC_PASSTHRU_CLASSIFIER) {
779 MR_REFHOLD_LOCKED(mr);
780 mutex_exit(&mr->mr_lock);
781 mr->mr_pt_fn(mr->mr_pt_arg1, mr->mr_pt_arg2, mp_chain,
782 B_FALSE);
783 MR_REFRELE(mr);
784 return;
785 }
786
787 /*
788 * The passthru callback should only be set when in
789 * MAC_PASSTHRU_CLASSIFIER mode.
790 */
791 ASSERT3P(mr->mr_pt_fn, ==, NULL);
792
793 /*
794 * We check if an SRS is controlling this ring.
795 * If so, we can directly call the srs_lower_proc
796 * routine otherwise we need to go through mac_rx_classify
797 * to reach the right place.
798 */
799 if (mr->mr_classify_type == MAC_HW_CLASSIFIER) {
800 MR_REFHOLD_LOCKED(mr);
801 mutex_exit(&mr->mr_lock);
802 ASSERT3P(mr->mr_srs, !=, NULL);
803 mac_srs = mr->mr_srs;
804
805 /*
806 * This is the fast path. All packets received
807 * on this ring are hardware classified and
808 * share the same MAC header info.
809 */
810 mac_srs->srs_rx.sr_lower_proc(mh,
811 (mac_resource_handle_t)mac_srs, mp_chain, B_FALSE);
812 MR_REFRELE(mr);
813 return;
814 }
815
816 mutex_exit(&mr->mr_lock);
817 /* We'll fall through to software classification */
818 } else {
819 flow_entry_t *flent;
820 int err;
821
822 rw_enter(&mip->mi_rw_lock, RW_READER);
823 if (mip->mi_single_active_client != NULL) {
824 flent = mip->mi_single_active_client->mci_flent_list;
825 FLOW_TRY_REFHOLD(flent, err);
826 rw_exit(&mip->mi_rw_lock);
827 if (err == 0) {
828 (flent->fe_cb_fn)(flent->fe_cb_arg1,
829 flent->fe_cb_arg2, mp_chain, B_FALSE);
830 FLOW_REFRELE(flent);
831 return;
832 }
833 } else {
834 rw_exit(&mip->mi_rw_lock);
835 }
836 }
837
838 if (!FLOW_TAB_EMPTY(mip->mi_flow_tab)) {
839 if ((bp = mac_rx_flow(mh, mrh, bp)) == NULL)
840 return;
841 }
842
843 freemsgchain(bp);
844 }
845
846 /* DATA TRANSMISSION */
847
848 /*
849 * A driver's notification to resume transmission, in case of a provider
850 * without TX rings.
851 */
852 void
mac_tx_update(mac_handle_t mh)853 mac_tx_update(mac_handle_t mh)
854 {
855 mac_tx_ring_update(mh, NULL);
856 }
857
858 /*
859 * A driver's notification to resume transmission on the specified TX ring.
860 */
861 void
mac_tx_ring_update(mac_handle_t mh,mac_ring_handle_t rh)862 mac_tx_ring_update(mac_handle_t mh, mac_ring_handle_t rh)
863 {
864 i_mac_tx_srs_notify((mac_impl_t *)mh, rh);
865 }
866
867 /* LINK STATE */
868 /*
869 * Notify the MAC layer about a link state change
870 */
871 void
mac_link_update(mac_handle_t mh,link_state_t link)872 mac_link_update(mac_handle_t mh, link_state_t link)
873 {
874 mac_impl_t *mip = (mac_impl_t *)mh;
875
876 /*
877 * Save the link state.
878 */
879 mip->mi_lowlinkstate = link;
880
881 /*
882 * Send a MAC_NOTE_LOWLINK notification. This tells the notification
883 * thread to deliver both lower and upper notifications.
884 */
885 i_mac_notify(mip, MAC_NOTE_LOWLINK);
886 }
887
888 /*
889 * Notify the MAC layer about a link state change due to bridging.
890 */
891 void
mac_link_redo(mac_handle_t mh,link_state_t link)892 mac_link_redo(mac_handle_t mh, link_state_t link)
893 {
894 mac_impl_t *mip = (mac_impl_t *)mh;
895
896 /*
897 * Save the link state.
898 */
899 mip->mi_linkstate = link;
900
901 /*
902 * Send a MAC_NOTE_LINK notification. Only upper notifications are
903 * made.
904 */
905 i_mac_notify(mip, MAC_NOTE_LINK);
906 }
907
908 /* MINOR NODE HANDLING */
909
910 /*
911 * Given a dev_t, return the instance number (PPA) associated with it.
912 * Drivers can use this in their getinfo(9e) implementation to lookup
913 * the instance number (i.e. PPA) of the device, to use as an index to
914 * their own array of soft state structures.
915 *
916 * Returns -1 on error.
917 */
918 int
mac_devt_to_instance(dev_t devt)919 mac_devt_to_instance(dev_t devt)
920 {
921 return (dld_devt_to_instance(devt));
922 }
923
924 /*
925 * Drivers that make use of the private minor number space are expected to
926 * provide their own getinfo(9e) entry point. This function simply forwards
927 * to the default MAC framework getinfo(9e) implementation as a convenience
928 * if they don't need any special mapping (mac instance != ddi_get_instance())
929 */
930 int
mac_getinfo(dev_info_t * dip,ddi_info_cmd_t cmd,void * arg,void ** resp)931 mac_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **resp)
932 {
933 return (dld_getinfo(dip, cmd, arg, resp));
934 }
935
936 /*
937 * This function returns the first minor number that is available for
938 * driver private use. All minor numbers smaller than this are
939 * reserved for GLDv3 use.
940 */
941 minor_t
mac_private_minor(void)942 mac_private_minor(void)
943 {
944 return (MAC_PRIVATE_MINOR);
945 }
946
947 /* OTHER CONTROL INFORMATION */
948
949 /*
950 * A driver notified us that its primary MAC address has changed.
951 */
952 void
mac_unicst_update(mac_handle_t mh,const uint8_t * addr)953 mac_unicst_update(mac_handle_t mh, const uint8_t *addr)
954 {
955 mac_impl_t *mip = (mac_impl_t *)mh;
956
957 if (mip->mi_type->mt_addr_length == 0)
958 return;
959
960 i_mac_perim_enter(mip);
961
962 /*
963 * If address changes, freshen the MAC address value and update
964 * all MAC clients that share this MAC address.
965 */
966 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) != 0) {
967 mac_freshen_macaddr(mac_find_macaddr(mip, mip->mi_addr),
968 (uint8_t *)addr);
969 }
970
971 i_mac_perim_exit(mip);
972
973 /*
974 * Send a MAC_NOTE_UNICST notification.
975 */
976 i_mac_notify(mip, MAC_NOTE_UNICST);
977 }
978
979 void
mac_dst_update(mac_handle_t mh,const uint8_t * addr)980 mac_dst_update(mac_handle_t mh, const uint8_t *addr)
981 {
982 mac_impl_t *mip = (mac_impl_t *)mh;
983
984 if (mip->mi_type->mt_addr_length == 0)
985 return;
986
987 i_mac_perim_enter(mip);
988 bcopy(addr, mip->mi_dstaddr, mip->mi_type->mt_addr_length);
989 i_mac_perim_exit(mip);
990 i_mac_notify(mip, MAC_NOTE_DEST);
991 }
992
993 /*
994 * MAC plugin information changed.
995 */
996 int
mac_pdata_update(mac_handle_t mh,void * mac_pdata,size_t dsize)997 mac_pdata_update(mac_handle_t mh, void *mac_pdata, size_t dsize)
998 {
999 mac_impl_t *mip = (mac_impl_t *)mh;
1000
1001 /*
1002 * Verify that the plugin supports MAC plugin data and that the
1003 * supplied data is valid.
1004 */
1005 if (!(mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY))
1006 return (EINVAL);
1007 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mac_pdata, dsize))
1008 return (EINVAL);
1009
1010 if (mip->mi_pdata != NULL)
1011 kmem_free(mip->mi_pdata, mip->mi_pdata_size);
1012
1013 mip->mi_pdata = kmem_alloc(dsize, KM_SLEEP);
1014 bcopy(mac_pdata, mip->mi_pdata, dsize);
1015 mip->mi_pdata_size = dsize;
1016
1017 /*
1018 * Since the MAC plugin data is used to construct MAC headers that
1019 * were cached in fast-path headers, we need to flush fast-path
1020 * information for links associated with this mac.
1021 */
1022 i_mac_notify(mip, MAC_NOTE_FASTPATH_FLUSH);
1023 return (0);
1024 }
1025
1026 /*
1027 * The mac provider or mac frameowrk calls this function when it wants
1028 * to notify upstream consumers that the capabilities have changed and
1029 * that they should modify their own internal state accordingly.
1030 *
1031 * We currently have no regard for the fact that a provider could
1032 * decide to drop capabilities which would invalidate pending traffic.
1033 * For example, if one was to disable the Tx checksum offload while
1034 * TCP/IP traffic was being sent by mac clients relying on that
1035 * feature, then those packets would hit the write with missing or
1036 * partial checksums. A proper solution involves not only providing
1037 * notfication, but also performing client quiescing. That is, a capab
1038 * change should be treated as an atomic transaction that forms a
1039 * barrier between traffic relying on the current capabs and traffic
1040 * relying on the new capabs. In practice, simnet is currently the
1041 * only provider that could hit this, and it's an easily avoidable
1042 * situation (and at worst it should only lead to some dropped
1043 * packets). But if we ever want better on-the-fly capab change to
1044 * actual hardware providers, then we should give this update
1045 * mechanism a proper implementation.
1046 */
1047 void
mac_capab_update(mac_handle_t mh)1048 mac_capab_update(mac_handle_t mh)
1049 {
1050 /*
1051 * Send a MAC_NOTE_CAPAB_CHG notification to alert upstream
1052 * clients to renegotiate capabilities.
1053 */
1054 i_mac_notify((mac_impl_t *)mh, MAC_NOTE_CAPAB_CHG);
1055 }
1056
1057 /*
1058 * Used by normal drivers to update the max sdu size.
1059 * We need to handle the case of a smaller mi_sdu_multicast
1060 * since this is called by mac_set_mtu() even for drivers that
1061 * have differing unicast and multicast mtu and we don't want to
1062 * increase the multicast mtu by accident in that case.
1063 */
1064 int
mac_maxsdu_update(mac_handle_t mh,uint_t sdu_max)1065 mac_maxsdu_update(mac_handle_t mh, uint_t sdu_max)
1066 {
1067 mac_impl_t *mip = (mac_impl_t *)mh;
1068
1069 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min)
1070 return (EINVAL);
1071 mip->mi_sdu_max = sdu_max;
1072 if (mip->mi_sdu_multicast > mip->mi_sdu_max)
1073 mip->mi_sdu_multicast = mip->mi_sdu_max;
1074
1075 /* Send a MAC_NOTE_SDU_SIZE notification. */
1076 i_mac_notify(mip, MAC_NOTE_SDU_SIZE);
1077 return (0);
1078 }
1079
1080 /*
1081 * Version of the above function that is used by drivers that have a different
1082 * max sdu size for multicast/broadcast vs. unicast.
1083 */
1084 int
mac_maxsdu_update2(mac_handle_t mh,uint_t sdu_max,uint_t sdu_multicast)1085 mac_maxsdu_update2(mac_handle_t mh, uint_t sdu_max, uint_t sdu_multicast)
1086 {
1087 mac_impl_t *mip = (mac_impl_t *)mh;
1088
1089 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min)
1090 return (EINVAL);
1091 if (sdu_multicast == 0)
1092 sdu_multicast = sdu_max;
1093 if (sdu_multicast > sdu_max || sdu_multicast < mip->mi_sdu_min)
1094 return (EINVAL);
1095 mip->mi_sdu_max = sdu_max;
1096 mip->mi_sdu_multicast = sdu_multicast;
1097
1098 /* Send a MAC_NOTE_SDU_SIZE notification. */
1099 i_mac_notify(mip, MAC_NOTE_SDU_SIZE);
1100 return (0);
1101 }
1102
1103 static void
mac_ring_intr_retarget(mac_group_t * group,mac_ring_t * ring)1104 mac_ring_intr_retarget(mac_group_t *group, mac_ring_t *ring)
1105 {
1106 mac_client_impl_t *mcip;
1107 flow_entry_t *flent;
1108 mac_soft_ring_set_t *mac_rx_srs;
1109 mac_cpus_t *srs_cpu;
1110 int i;
1111
1112 if (((mcip = MAC_GROUP_ONLY_CLIENT(group)) != NULL) &&
1113 (!ring->mr_info.mri_intr.mi_ddi_shared)) {
1114 /* interrupt can be re-targeted */
1115 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
1116 flent = mcip->mci_flent;
1117 if (ring->mr_type == MAC_RING_TYPE_RX) {
1118 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1119 mac_rx_srs = flent->fe_rx_srs[i];
1120 if (mac_rx_srs->srs_ring != ring)
1121 continue;
1122 srs_cpu = &mac_rx_srs->srs_cpu;
1123 mutex_enter(&cpu_lock);
1124 mac_rx_srs_retarget_intr(mac_rx_srs,
1125 srs_cpu->mc_rx_intr_cpu);
1126 mutex_exit(&cpu_lock);
1127 break;
1128 }
1129 } else {
1130 if (flent->fe_tx_srs != NULL) {
1131 mutex_enter(&cpu_lock);
1132 mac_tx_srs_retarget_intr(
1133 flent->fe_tx_srs);
1134 mutex_exit(&cpu_lock);
1135 }
1136 }
1137 }
1138 }
1139
1140 /*
1141 * Clients like aggr create pseudo rings (mac_ring_t) and expose them to
1142 * their clients. There is a 1-1 mapping pseudo ring and the hardware
1143 * ring. ddi interrupt handles are exported from the hardware ring to
1144 * the pseudo ring. Thus when the interrupt handle changes, clients of
1145 * aggr that are using the handle need to use the new handle and
1146 * re-target their interrupts.
1147 */
1148 static void
mac_pseudo_ring_intr_retarget(mac_impl_t * mip,mac_ring_t * ring,ddi_intr_handle_t ddh)1149 mac_pseudo_ring_intr_retarget(mac_impl_t *mip, mac_ring_t *ring,
1150 ddi_intr_handle_t ddh)
1151 {
1152 mac_ring_t *pring;
1153 mac_group_t *pgroup;
1154 mac_impl_t *pmip;
1155 char macname[MAXNAMELEN];
1156 mac_perim_handle_t p_mph;
1157 uint64_t saved_gen_num;
1158
1159 again:
1160 pring = (mac_ring_t *)ring->mr_prh;
1161 pgroup = (mac_group_t *)pring->mr_gh;
1162 pmip = (mac_impl_t *)pgroup->mrg_mh;
1163 saved_gen_num = ring->mr_gen_num;
1164 (void) strlcpy(macname, pmip->mi_name, MAXNAMELEN);
1165 /*
1166 * We need to enter aggr's perimeter. The locking hierarchy
1167 * dictates that aggr's perimeter should be entered first
1168 * and then the port's perimeter. So drop the port's
1169 * perimeter, enter aggr's and then re-enter port's
1170 * perimeter.
1171 */
1172 i_mac_perim_exit(mip);
1173 /*
1174 * While we know pmip is the aggr's mip, there is a
1175 * possibility that aggr could have unregistered by
1176 * the time we exit port's perimeter (mip) and
1177 * enter aggr's perimeter (pmip). To avoid that
1178 * scenario, enter aggr's perimeter using its name.
1179 */
1180 if (mac_perim_enter_by_macname(macname, &p_mph) != 0)
1181 return;
1182 i_mac_perim_enter(mip);
1183 /*
1184 * Check if the ring got assigned to another aggregation before
1185 * be could enter aggr's and the port's perimeter. When a ring
1186 * gets deleted from an aggregation, it calls mac_stop_ring()
1187 * which increments the generation number. So checking
1188 * generation number will be enough.
1189 */
1190 if (ring->mr_gen_num != saved_gen_num && ring->mr_prh != NULL) {
1191 i_mac_perim_exit(mip);
1192 mac_perim_exit(p_mph);
1193 i_mac_perim_enter(mip);
1194 goto again;
1195 }
1196
1197 /* Check if pseudo ring is still present */
1198 if (ring->mr_prh != NULL) {
1199 pring->mr_info.mri_intr.mi_ddi_handle = ddh;
1200 pring->mr_info.mri_intr.mi_ddi_shared =
1201 ring->mr_info.mri_intr.mi_ddi_shared;
1202 if (ddh != NULL)
1203 mac_ring_intr_retarget(pgroup, pring);
1204 }
1205 i_mac_perim_exit(mip);
1206 mac_perim_exit(p_mph);
1207 }
1208 /*
1209 * API called by driver to provide new interrupt handle for TX/RX rings.
1210 * This usually happens when IRM (Interrupt Resource Manangement)
1211 * framework either gives the driver more MSI-x interrupts or takes
1212 * away MSI-x interrupts from the driver.
1213 */
1214 void
mac_ring_intr_set(mac_ring_handle_t mrh,ddi_intr_handle_t ddh)1215 mac_ring_intr_set(mac_ring_handle_t mrh, ddi_intr_handle_t ddh)
1216 {
1217 mac_ring_t *ring = (mac_ring_t *)mrh;
1218 mac_group_t *group = (mac_group_t *)ring->mr_gh;
1219 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1220
1221 i_mac_perim_enter(mip);
1222 ring->mr_info.mri_intr.mi_ddi_handle = ddh;
1223 if (ddh == NULL) {
1224 /* Interrupts being reset */
1225 ring->mr_info.mri_intr.mi_ddi_shared = B_FALSE;
1226 if (ring->mr_prh != NULL) {
1227 mac_pseudo_ring_intr_retarget(mip, ring, ddh);
1228 return;
1229 }
1230 } else {
1231 /* New interrupt handle */
1232 mac_compare_ddi_handle(mip->mi_rx_groups,
1233 mip->mi_rx_group_count, ring);
1234 if (!ring->mr_info.mri_intr.mi_ddi_shared) {
1235 mac_compare_ddi_handle(mip->mi_tx_groups,
1236 mip->mi_tx_group_count, ring);
1237 }
1238 if (ring->mr_prh != NULL) {
1239 mac_pseudo_ring_intr_retarget(mip, ring, ddh);
1240 return;
1241 } else {
1242 mac_ring_intr_retarget(group, ring);
1243 }
1244 }
1245 i_mac_perim_exit(mip);
1246 }
1247
1248 /* PRIVATE FUNCTIONS, FOR INTERNAL USE ONLY */
1249
1250 /*
1251 * Updates the mac_impl structure with the current state of the link
1252 */
1253 static void
i_mac_log_link_state(mac_impl_t * mip)1254 i_mac_log_link_state(mac_impl_t *mip)
1255 {
1256 /*
1257 * If no change, then it is not interesting.
1258 */
1259 if (mip->mi_lastlowlinkstate == mip->mi_lowlinkstate)
1260 return;
1261
1262 switch (mip->mi_lowlinkstate) {
1263 case LINK_STATE_UP:
1264 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_LINK_DETAILS) {
1265 char det[200];
1266
1267 mip->mi_type->mt_ops.mtops_link_details(det,
1268 sizeof (det), (mac_handle_t)mip, mip->mi_pdata);
1269
1270 cmn_err(CE_NOTE, "!%s link up, %s", mip->mi_name, det);
1271 } else {
1272 cmn_err(CE_NOTE, "!%s link up", mip->mi_name);
1273 }
1274 break;
1275
1276 case LINK_STATE_DOWN:
1277 /*
1278 * Only transitions from UP to DOWN are interesting
1279 */
1280 if (mip->mi_lastlowlinkstate != LINK_STATE_UNKNOWN)
1281 cmn_err(CE_NOTE, "!%s link down", mip->mi_name);
1282 break;
1283
1284 case LINK_STATE_UNKNOWN:
1285 /*
1286 * This case is normally not interesting.
1287 */
1288 break;
1289 }
1290 mip->mi_lastlowlinkstate = mip->mi_lowlinkstate;
1291 }
1292
1293 /*
1294 * Main routine for the callbacks notifications thread
1295 */
1296 static void
i_mac_notify_thread(void * arg)1297 i_mac_notify_thread(void *arg)
1298 {
1299 mac_impl_t *mip = arg;
1300 callb_cpr_t cprinfo;
1301 mac_cb_t *mcb;
1302 mac_cb_info_t *mcbi;
1303 mac_notify_cb_t *mncb;
1304
1305 mcbi = &mip->mi_notify_cb_info;
1306 CALLB_CPR_INIT(&cprinfo, mcbi->mcbi_lockp, callb_generic_cpr,
1307 "i_mac_notify_thread");
1308
1309 mutex_enter(mcbi->mcbi_lockp);
1310
1311 for (;;) {
1312 uint32_t bits;
1313 uint32_t type;
1314
1315 bits = mip->mi_notify_bits;
1316 if (bits == 0) {
1317 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1318 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
1319 CALLB_CPR_SAFE_END(&cprinfo, mcbi->mcbi_lockp);
1320 continue;
1321 }
1322 mip->mi_notify_bits = 0;
1323 if ((bits & (1 << MAC_NNOTE)) != 0) {
1324 /* request to quit */
1325 ASSERT(mip->mi_state_flags & MIS_DISABLED);
1326 break;
1327 }
1328
1329 mutex_exit(mcbi->mcbi_lockp);
1330
1331 /*
1332 * Log link changes on the actual link, but then do reports on
1333 * synthetic state (if part of a bridge).
1334 */
1335 if ((bits & (1 << MAC_NOTE_LOWLINK)) != 0) {
1336 link_state_t newstate;
1337 mac_handle_t mh;
1338
1339 i_mac_log_link_state(mip);
1340 newstate = mip->mi_lowlinkstate;
1341 if (mip->mi_bridge_link != NULL) {
1342 mutex_enter(&mip->mi_bridge_lock);
1343 if ((mh = mip->mi_bridge_link) != NULL) {
1344 newstate = mac_bridge_ls_cb(mh,
1345 newstate);
1346 }
1347 mutex_exit(&mip->mi_bridge_lock);
1348 }
1349 if (newstate != mip->mi_linkstate) {
1350 mip->mi_linkstate = newstate;
1351 bits |= 1 << MAC_NOTE_LINK;
1352 }
1353 }
1354
1355 /*
1356 * Depending on which capabs have changed, the Tx
1357 * checksum flags may also need to be updated.
1358 */
1359 if ((bits & (1 << MAC_NOTE_CAPAB_CHG)) != 0) {
1360 mac_perim_handle_t mph;
1361 mac_handle_t mh = (mac_handle_t)mip;
1362
1363 mac_perim_enter_by_mh(mh, &mph);
1364 mip->mi_tx_cksum_flags = mac_features_to_flags(mh);
1365 mac_perim_exit(mph);
1366 }
1367
1368 /*
1369 * Do notification callbacks for each notification type.
1370 */
1371 for (type = 0; type < MAC_NNOTE; type++) {
1372 if ((bits & (1 << type)) == 0) {
1373 continue;
1374 }
1375
1376 if (mac_notify_cb_list[type] != NULL)
1377 (*mac_notify_cb_list[type])(mip);
1378
1379 /*
1380 * Walk the list of notifications.
1381 */
1382 MAC_CALLBACK_WALKER_INC(&mip->mi_notify_cb_info);
1383 for (mcb = mip->mi_notify_cb_list; mcb != NULL;
1384 mcb = mcb->mcb_nextp) {
1385 mncb = (mac_notify_cb_t *)mcb->mcb_objp;
1386 mncb->mncb_fn(mncb->mncb_arg, type);
1387 }
1388 MAC_CALLBACK_WALKER_DCR(&mip->mi_notify_cb_info,
1389 &mip->mi_notify_cb_list);
1390 }
1391
1392 mutex_enter(mcbi->mcbi_lockp);
1393 }
1394
1395 mip->mi_state_flags |= MIS_NOTIFY_DONE;
1396 cv_broadcast(&mcbi->mcbi_cv);
1397
1398 /* CALLB_CPR_EXIT drops the lock */
1399 CALLB_CPR_EXIT(&cprinfo);
1400 thread_exit();
1401 }
1402
1403 /*
1404 * Signal the i_mac_notify_thread asking it to quit.
1405 * Then wait till it is done.
1406 */
1407 void
i_mac_notify_exit(mac_impl_t * mip)1408 i_mac_notify_exit(mac_impl_t *mip)
1409 {
1410 mac_cb_info_t *mcbi;
1411
1412 mcbi = &mip->mi_notify_cb_info;
1413
1414 mutex_enter(mcbi->mcbi_lockp);
1415 mip->mi_notify_bits = (1 << MAC_NNOTE);
1416 cv_broadcast(&mcbi->mcbi_cv);
1417
1418
1419 while ((mip->mi_notify_thread != NULL) &&
1420 !(mip->mi_state_flags & MIS_NOTIFY_DONE)) {
1421 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
1422 }
1423
1424 /* Necessary clean up before doing kmem_cache_free */
1425 mip->mi_state_flags &= ~MIS_NOTIFY_DONE;
1426 mip->mi_notify_bits = 0;
1427 mip->mi_notify_thread = NULL;
1428 mutex_exit(mcbi->mcbi_lockp);
1429 }
1430
1431 /*
1432 * Entry point invoked by drivers to dynamically add a ring to an
1433 * existing group.
1434 */
1435 int
mac_group_add_ring(mac_group_handle_t gh,int index)1436 mac_group_add_ring(mac_group_handle_t gh, int index)
1437 {
1438 mac_group_t *group = (mac_group_t *)gh;
1439 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1440 int ret;
1441
1442 i_mac_perim_enter(mip);
1443 ret = i_mac_group_add_ring(group, NULL, index);
1444 i_mac_perim_exit(mip);
1445 return (ret);
1446 }
1447
1448 /*
1449 * Entry point invoked by drivers to dynamically remove a ring
1450 * from an existing group. The specified ring handle must no longer
1451 * be used by the driver after a call to this function.
1452 */
1453 void
mac_group_rem_ring(mac_group_handle_t gh,mac_ring_handle_t rh)1454 mac_group_rem_ring(mac_group_handle_t gh, mac_ring_handle_t rh)
1455 {
1456 mac_group_t *group = (mac_group_t *)gh;
1457 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1458
1459 i_mac_perim_enter(mip);
1460 i_mac_group_rem_ring(group, (mac_ring_t *)rh, B_TRUE);
1461 i_mac_perim_exit(mip);
1462 }
1463
1464 /*
1465 * mac_prop_info_*() callbacks called from the driver's prefix_propinfo()
1466 * entry points.
1467 */
1468
1469 void
mac_prop_info_set_default_uint8(mac_prop_info_handle_t ph,uint8_t val)1470 mac_prop_info_set_default_uint8(mac_prop_info_handle_t ph, uint8_t val)
1471 {
1472 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1473
1474 /* nothing to do if the caller doesn't want the default value */
1475 if (pr->pr_default == NULL)
1476 return;
1477
1478 ASSERT(pr->pr_default_size >= sizeof (uint8_t));
1479
1480 *(uint8_t *)(pr->pr_default) = val;
1481 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1482 }
1483
1484 void
mac_prop_info_set_default_uint64(mac_prop_info_handle_t ph,uint64_t val)1485 mac_prop_info_set_default_uint64(mac_prop_info_handle_t ph, uint64_t val)
1486 {
1487 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1488
1489 /* nothing to do if the caller doesn't want the default value */
1490 if (pr->pr_default == NULL)
1491 return;
1492
1493 ASSERT(pr->pr_default_size >= sizeof (uint64_t));
1494
1495 bcopy(&val, pr->pr_default, sizeof (val));
1496
1497 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1498 }
1499
1500 void
mac_prop_info_set_default_uint32(mac_prop_info_handle_t ph,uint32_t val)1501 mac_prop_info_set_default_uint32(mac_prop_info_handle_t ph, uint32_t val)
1502 {
1503 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1504
1505 /* nothing to do if the caller doesn't want the default value */
1506 if (pr->pr_default == NULL)
1507 return;
1508
1509 ASSERT(pr->pr_default_size >= sizeof (uint32_t));
1510
1511 bcopy(&val, pr->pr_default, sizeof (val));
1512
1513 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1514 }
1515
1516 void
mac_prop_info_set_default_str(mac_prop_info_handle_t ph,const char * str)1517 mac_prop_info_set_default_str(mac_prop_info_handle_t ph, const char *str)
1518 {
1519 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1520
1521 /* nothing to do if the caller doesn't want the default value */
1522 if (pr->pr_default == NULL)
1523 return;
1524
1525 if (strlen(str) >= pr->pr_default_size)
1526 pr->pr_errno = ENOBUFS;
1527 else
1528 (void) strlcpy(pr->pr_default, str, pr->pr_default_size);
1529 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1530 }
1531
1532 void
mac_prop_info_set_default_link_flowctrl(mac_prop_info_handle_t ph,link_flowctrl_t val)1533 mac_prop_info_set_default_link_flowctrl(mac_prop_info_handle_t ph,
1534 link_flowctrl_t val)
1535 {
1536 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1537
1538 /* nothing to do if the caller doesn't want the default value */
1539 if (pr->pr_default == NULL)
1540 return;
1541
1542 ASSERT(pr->pr_default_size >= sizeof (link_flowctrl_t));
1543
1544 bcopy(&val, pr->pr_default, sizeof (val));
1545
1546 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1547 }
1548
1549 void
mac_prop_info_set_default_fec(mac_prop_info_handle_t ph,link_fec_t val)1550 mac_prop_info_set_default_fec(mac_prop_info_handle_t ph, link_fec_t val)
1551 {
1552 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1553
1554 /* nothing to do if the caller doesn't want the default value */
1555 if (pr->pr_default == NULL)
1556 return;
1557
1558 ASSERT(pr->pr_default_size >= sizeof (link_fec_t));
1559
1560 bcopy(&val, pr->pr_default, sizeof (val));
1561
1562 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1563 }
1564
1565 void
mac_prop_info_set_range_uint32(mac_prop_info_handle_t ph,uint32_t min,uint32_t max)1566 mac_prop_info_set_range_uint32(mac_prop_info_handle_t ph, uint32_t min,
1567 uint32_t max)
1568 {
1569 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1570 mac_propval_range_t *range = pr->pr_range;
1571 mac_propval_uint32_range_t *range32;
1572
1573 /* nothing to do if the caller doesn't want the range info */
1574 if (range == NULL)
1575 return;
1576
1577 if (pr->pr_range_cur_count++ == 0) {
1578 /* first range */
1579 pr->pr_flags |= MAC_PROP_INFO_RANGE;
1580 range->mpr_type = MAC_PROPVAL_UINT32;
1581 } else {
1582 /* all ranges of a property should be of the same type */
1583 ASSERT(range->mpr_type == MAC_PROPVAL_UINT32);
1584 if (pr->pr_range_cur_count > range->mpr_count) {
1585 pr->pr_errno = ENOSPC;
1586 return;
1587 }
1588 }
1589
1590 range32 = range->mpr_range_uint32;
1591 range32[pr->pr_range_cur_count - 1].mpur_min = min;
1592 range32[pr->pr_range_cur_count - 1].mpur_max = max;
1593 }
1594
1595 void
mac_prop_info_set_perm(mac_prop_info_handle_t ph,uint8_t perm)1596 mac_prop_info_set_perm(mac_prop_info_handle_t ph, uint8_t perm)
1597 {
1598 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1599
1600 pr->pr_perm = perm;
1601 pr->pr_flags |= MAC_PROP_INFO_PERM;
1602 }
1603
1604 void
mac_hcksum_get(const mblk_t * mp,uint32_t * start,uint32_t * stuff,uint32_t * end,uint32_t * value,uint32_t * flags_ptr)1605 mac_hcksum_get(const mblk_t *mp, uint32_t *start, uint32_t *stuff,
1606 uint32_t *end, uint32_t *value, uint32_t *flags_ptr)
1607 {
1608 uint32_t flags;
1609
1610 ASSERT(DB_TYPE(mp) == M_DATA);
1611
1612 flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS;
1613 if ((flags & (HCK_PARTIALCKSUM | HCK_FULLCKSUM)) != 0) {
1614 if (value != NULL)
1615 *value = (uint32_t)DB_CKSUM16(mp);
1616 if ((flags & HCK_PARTIALCKSUM) != 0) {
1617 if (start != NULL)
1618 *start = (uint32_t)DB_CKSUMSTART(mp);
1619 if (stuff != NULL)
1620 *stuff = (uint32_t)DB_CKSUMSTUFF(mp);
1621 if (end != NULL)
1622 *end = (uint32_t)DB_CKSUMEND(mp);
1623 }
1624 }
1625
1626 if (flags_ptr != NULL)
1627 *flags_ptr = flags;
1628 }
1629
1630 void
mac_hcksum_set(mblk_t * mp,uint32_t start,uint32_t stuff,uint32_t end,uint32_t value,uint32_t flags)1631 mac_hcksum_set(mblk_t *mp, uint32_t start, uint32_t stuff, uint32_t end,
1632 uint32_t value, uint32_t flags)
1633 {
1634 ASSERT(DB_TYPE(mp) == M_DATA);
1635
1636 DB_CKSUMSTART(mp) = (intptr_t)start;
1637 DB_CKSUMSTUFF(mp) = (intptr_t)stuff;
1638 DB_CKSUMEND(mp) = (intptr_t)end;
1639 DB_CKSUMFLAGS(mp) = (uint16_t)flags;
1640 DB_CKSUM16(mp) = (uint16_t)value;
1641 }
1642
1643 void
mac_hcksum_clone(const mblk_t * src,mblk_t * dst)1644 mac_hcksum_clone(const mblk_t *src, mblk_t *dst)
1645 {
1646 ASSERT3U(DB_TYPE(src), ==, M_DATA);
1647 ASSERT3U(DB_TYPE(dst), ==, M_DATA);
1648
1649 /*
1650 * Do these assignments unconditionally, rather than only when
1651 * flags is non-zero. This protects a situation where zeroed
1652 * hcksum data does not make the jump onto an mblk_t with
1653 * stale data in those fields. It's important to copy all
1654 * possible flags (HCK_* as well as HW_*) and not just the
1655 * checksum specific flags. Dropping flags during a clone
1656 * could result in dropped packets. If the caller has good
1657 * reason to drop those flags then it should do it manually,
1658 * after the clone.
1659 */
1660 DB_CKSUMFLAGS(dst) = DB_CKSUMFLAGS(src);
1661 DB_CKSUMSTART(dst) = DB_CKSUMSTART(src);
1662 DB_CKSUMSTUFF(dst) = DB_CKSUMSTUFF(src);
1663 DB_CKSUMEND(dst) = DB_CKSUMEND(src);
1664 DB_CKSUM16(dst) = DB_CKSUM16(src);
1665 DB_LSOMSS(dst) = DB_LSOMSS(src);
1666 }
1667
1668 void
mac_lso_get(mblk_t * mp,uint32_t * mss,uint32_t * flags)1669 mac_lso_get(mblk_t *mp, uint32_t *mss, uint32_t *flags)
1670 {
1671 ASSERT(DB_TYPE(mp) == M_DATA);
1672
1673 if (flags != NULL) {
1674 *flags = DB_CKSUMFLAGS(mp) & HW_LSO;
1675 if ((*flags != 0) && (mss != NULL))
1676 *mss = (uint32_t)DB_LSOMSS(mp);
1677 }
1678 }
1679
1680 void
mac_transceiver_info_set_present(mac_transceiver_info_t * infop,boolean_t present)1681 mac_transceiver_info_set_present(mac_transceiver_info_t *infop,
1682 boolean_t present)
1683 {
1684 infop->mti_present = present;
1685 }
1686
1687 void
mac_transceiver_info_set_usable(mac_transceiver_info_t * infop,boolean_t usable)1688 mac_transceiver_info_set_usable(mac_transceiver_info_t *infop,
1689 boolean_t usable)
1690 {
1691 infop->mti_usable = usable;
1692 }
1693
1694 static bool
mac_parse_is_ipv6eh(uint8_t id)1695 mac_parse_is_ipv6eh(uint8_t id)
1696 {
1697 switch (id) {
1698 case IPPROTO_HOPOPTS:
1699 case IPPROTO_ROUTING:
1700 case IPPROTO_FRAGMENT:
1701 case IPPROTO_AH:
1702 case IPPROTO_DSTOPTS:
1703 case IPPROTO_MH:
1704 case IPPROTO_HIP:
1705 case IPPROTO_SHIM6:
1706 /* Currently known extension headers */
1707 return (true);
1708 case IPPROTO_ESP:
1709 /*
1710 * While the IANA protocol numbers listing notes ESP as an IPv6
1711 * extension header, we cannot effectively parse it like one.
1712 *
1713 * For now, mac_ether_offload_info() will report it as the L4
1714 * protocol for a parsed packet containing this EH.
1715 */
1716 default:
1717 return (false);
1718 }
1719 }
1720
1721 typedef struct mac_mblk_cursor {
1722 mblk_t *mmc_head;
1723 mblk_t *mmc_cur;
1724 size_t mmc_off_total;
1725 size_t mmc_off_mp;
1726 } mac_mblk_cursor_t;
1727
1728 static void mac_mmc_advance(mac_mblk_cursor_t *, size_t);
1729 static void mac_mmc_reset(mac_mblk_cursor_t *);
1730
1731 static void
mac_mmc_init(mac_mblk_cursor_t * cursor,mblk_t * mp)1732 mac_mmc_init(mac_mblk_cursor_t *cursor, mblk_t *mp)
1733 {
1734 cursor->mmc_head = mp;
1735 mac_mmc_reset(cursor);
1736 }
1737
1738 static void
mac_mmc_reset(mac_mblk_cursor_t * cursor)1739 mac_mmc_reset(mac_mblk_cursor_t *cursor)
1740 {
1741 ASSERT(cursor->mmc_head != NULL);
1742
1743 cursor->mmc_cur = cursor->mmc_head;
1744 cursor->mmc_off_total = cursor->mmc_off_mp = 0;
1745
1746 /* Advance past any zero-length mblks at head */
1747 mac_mmc_advance(cursor, 0);
1748 }
1749
1750 static inline size_t
mac_mmc_mp_left(const mac_mblk_cursor_t * cursor)1751 mac_mmc_mp_left(const mac_mblk_cursor_t *cursor)
1752 {
1753 if (cursor->mmc_cur != NULL) {
1754 const size_t mp_len = MBLKL(cursor->mmc_cur);
1755
1756 ASSERT3U(mp_len, >=, cursor->mmc_off_mp);
1757
1758 return (mp_len - cursor->mmc_off_mp);
1759 } else {
1760 return (0);
1761 }
1762 }
1763
1764 static inline uint8_t *
mac_mmc_mp_ptr(const mac_mblk_cursor_t * cursor)1765 mac_mmc_mp_ptr(const mac_mblk_cursor_t *cursor)
1766 {
1767 return (cursor->mmc_cur->b_rptr + cursor->mmc_off_mp);
1768 }
1769
1770 static inline size_t
mac_mmc_offset(const mac_mblk_cursor_t * cursor)1771 mac_mmc_offset(const mac_mblk_cursor_t *cursor)
1772 {
1773 return (cursor->mmc_off_total);
1774 }
1775
1776 /*
1777 * Advance cursor forward `len` bytes.
1778 *
1779 * The length to advance must be no greater than the number of bytes remaining
1780 * in the current mblk. If the position reaches (exactly) the end of the
1781 * current mblk, the cursor will be pushed forward to the next non-zero-length
1782 * mblk in the chain.
1783 */
1784 static inline void
mac_mmc_advance(mac_mblk_cursor_t * cursor,size_t len)1785 mac_mmc_advance(mac_mblk_cursor_t *cursor, size_t len)
1786 {
1787 ASSERT(cursor->mmc_cur != NULL);
1788
1789 const size_t mp_len = MBLKL(cursor->mmc_cur);
1790
1791 ASSERT3U(cursor->mmc_off_mp + len, <=, mp_len);
1792
1793 cursor->mmc_off_total += len;
1794 cursor->mmc_off_mp += len;
1795
1796 if (cursor->mmc_off_mp == mp_len) {
1797 cursor->mmc_off_mp = 0;
1798 cursor->mmc_cur = cursor->mmc_cur->b_cont;
1799 }
1800
1801 /* Skip over any 0-length mblks */
1802 while (cursor->mmc_cur != NULL && MBLKL(cursor->mmc_cur) == 0) {
1803 cursor->mmc_cur = cursor->mmc_cur->b_cont;
1804 }
1805 }
1806
1807 /*
1808 * Attempt to seek to byte offset `off` in mblk chain.
1809 *
1810 * Returns true if the offset is <= the total chain length.
1811 */
1812 static bool
mac_mmc_seek(mac_mblk_cursor_t * cursor,const size_t off)1813 mac_mmc_seek(mac_mblk_cursor_t *cursor, const size_t off)
1814 {
1815 ASSERT(cursor->mmc_head != NULL);
1816
1817 if (off == cursor->mmc_off_total) {
1818 /*
1819 * Any prior init, reset, or seek operation will have advanced
1820 * past any zero-length mblks, making this short-circuit safe.
1821 */
1822 return (true);
1823 } else if (off < cursor->mmc_off_total) {
1824 /* Rewind to beginning if offset precedes current position */
1825 mac_mmc_reset(cursor);
1826 }
1827
1828 size_t seek_left = off - cursor->mmc_off_total;
1829 while (cursor->mmc_cur != NULL) {
1830 const size_t mp_left = mac_mmc_mp_left(cursor);
1831
1832 if (mp_left > seek_left) {
1833 /* Target position is within current mblk */
1834 cursor->mmc_off_mp += seek_left;
1835 cursor->mmc_off_total += seek_left;
1836 return (true);
1837 }
1838
1839 /* Move on to the next mblk... */
1840 mac_mmc_advance(cursor, mp_left);
1841 seek_left -= mp_left;
1842 }
1843
1844 /*
1845 * We have reached the end of the mblk chain, but there is a chance that
1846 * it corresponds to the target seek position.
1847 */
1848 return (cursor->mmc_off_total == off);
1849 }
1850
1851 /*
1852 * Attempt to read uint8_t at offset `pos` in mblk chain.
1853 *
1854 * Returns true (and sets value in `out`) if the offset is within the chain.
1855 */
1856 static bool
mac_mmc_get_uint8(mac_mblk_cursor_t * cursor,size_t pos,uint8_t * out)1857 mac_mmc_get_uint8(mac_mblk_cursor_t *cursor, size_t pos, uint8_t *out)
1858 {
1859 if (!mac_mmc_seek(cursor, pos)) {
1860 return (false);
1861 }
1862
1863 if (mac_mmc_mp_left(cursor) != 0) {
1864 *out = *(mac_mmc_mp_ptr(cursor));
1865 mac_mmc_advance(cursor, 1);
1866 return (true);
1867 }
1868
1869 return (false);
1870 }
1871
1872 /*
1873 * Attempt to read uint16_t at offset `pos` in mblk chain. The two
1874 * network-order bytes are converted into a host-order value.
1875 *
1876 * Returns true (and sets value in `out`) if the 16-bit region specified by the
1877 * offset is within the chain.
1878 */
1879 static bool
mac_mmc_get_uint16(mac_mblk_cursor_t * cursor,size_t pos,uint16_t * out)1880 mac_mmc_get_uint16(mac_mblk_cursor_t *cursor, size_t pos, uint16_t *out)
1881 {
1882 if (!mac_mmc_seek(cursor, pos)) {
1883 return (false);
1884 }
1885
1886 const size_t mp_left = mac_mmc_mp_left(cursor);
1887 uint16_t result = 0;
1888
1889 if (mp_left >= 2) {
1890 uint8_t *bp = mac_mmc_mp_ptr(cursor);
1891
1892 result = (uint16_t)bp[0] << 8;
1893 result |= bp[1];
1894 mac_mmc_advance(cursor, 2);
1895 *out = result;
1896 return (true);
1897 } else if (mp_left == 1) {
1898 result = (uint16_t)*(mac_mmc_mp_ptr(cursor));
1899 mac_mmc_advance(cursor, 1);
1900
1901 if (mac_mmc_mp_left(cursor) == 0) {
1902 return (false);
1903 }
1904
1905 result = result << 8;
1906 result |= (uint16_t)*(mac_mmc_mp_ptr(cursor));
1907 mac_mmc_advance(cursor, 1);
1908 *out = result;
1909 return (true);
1910 }
1911
1912 return (false);
1913 }
1914
1915 /*
1916 * Attempt to read `count` bytes at offset `pos` in mblk chain.
1917 *
1918 * Returns true (and copies data to `out`) if `count` length region is available
1919 * at offset within the chain.
1920 */
1921 static bool
mac_mmc_get_bytes(mac_mblk_cursor_t * cursor,size_t pos,uint8_t * out,size_t count)1922 mac_mmc_get_bytes(mac_mblk_cursor_t *cursor, size_t pos, uint8_t *out,
1923 size_t count)
1924 {
1925 if (!mac_mmc_seek(cursor, pos)) {
1926 return (false);
1927 }
1928
1929 while (count > 0) {
1930 const size_t mp_left = mac_mmc_mp_left(cursor);
1931
1932 if (mp_left == 0) {
1933 return (false);
1934 }
1935 const size_t to_copy = MIN(mp_left, count);
1936
1937 bcopy(mac_mmc_mp_ptr(cursor), out, to_copy);
1938 out += to_copy;
1939 mac_mmc_advance(cursor, to_copy);
1940 count -= to_copy;
1941 }
1942 return (true);
1943 }
1944
1945 /*
1946 * Attempt to parse ethernet header (VLAN or not) from mblk chain.
1947 *
1948 * Returns true if header was successfully parsed. Parsing will begin at
1949 * current offset of `cursor`. Any non-NULL arguments for VLAN, SAP, and header
1950 * size will be populated on success. A value of MEOI_VLAN_TCI_INVALID will be
1951 * reported for the TCI if the header does not bear VLAN infomation.
1952 */
1953 static bool
mac_mmc_parse_ether(mac_mblk_cursor_t * cursor,uint8_t * dst_addrp,uint32_t * vlan_tcip,uint16_t * ethertypep,uint16_t * hdr_sizep)1954 mac_mmc_parse_ether(mac_mblk_cursor_t *cursor, uint8_t *dst_addrp,
1955 uint32_t *vlan_tcip, uint16_t *ethertypep, uint16_t *hdr_sizep)
1956 {
1957 const size_t l2_off = mac_mmc_offset(cursor);
1958
1959 if (dst_addrp != NULL) {
1960 if (!mac_mmc_get_bytes(cursor, l2_off, dst_addrp, ETHERADDRL)) {
1961 return (false);
1962 }
1963 }
1964
1965 uint16_t ethertype = 0;
1966 if (!mac_mmc_get_uint16(cursor,
1967 l2_off + offsetof(struct ether_header, ether_type), ðertype)) {
1968 return (false);
1969 }
1970
1971 uint32_t tci = MEOI_VLAN_TCI_INVALID;
1972 uint16_t hdrsize = sizeof (struct ether_header);
1973
1974 if (ethertype == ETHERTYPE_VLAN) {
1975 uint16_t tci_val;
1976
1977 if (!mac_mmc_get_uint16(cursor,
1978 l2_off + offsetof(struct ether_vlan_header, ether_tci),
1979 &tci_val)) {
1980 return (false);
1981 }
1982 if (!mac_mmc_get_uint16(cursor,
1983 l2_off + offsetof(struct ether_vlan_header, ether_type),
1984 ðertype)) {
1985 return (false);
1986 }
1987 hdrsize = sizeof (struct ether_vlan_header);
1988 tci = (uint32_t)tci_val;
1989 }
1990
1991 if (vlan_tcip != NULL) {
1992 *vlan_tcip = tci;
1993 }
1994 if (ethertypep != NULL) {
1995 *ethertypep = ethertype;
1996 }
1997 if (hdr_sizep != NULL) {
1998 *hdr_sizep = hdrsize;
1999 }
2000 return (true);
2001 }
2002
2003 /*
2004 * Attempt to parse L3 protocol header from mblk chain.
2005 *
2006 * The SAP/ethertype of the containing header must be specified by the caller.
2007 *
2008 * Returns true if header was successfully parsed. Parsing will begin at
2009 * current offset of `cursor`. Any non-NULL arguments for IP protocol and
2010 * header size will be populated on success.
2011 */
2012 static bool
mac_mmc_parse_l3(mac_mblk_cursor_t * cursor,uint16_t l3_sap,uint8_t * ipprotop,bool * is_fragp,uint16_t * hdr_sizep)2013 mac_mmc_parse_l3(mac_mblk_cursor_t *cursor, uint16_t l3_sap, uint8_t *ipprotop,
2014 bool *is_fragp, uint16_t *hdr_sizep)
2015 {
2016 const size_t l3_off = mac_mmc_offset(cursor);
2017
2018 if (l3_sap == ETHERTYPE_IP) {
2019 uint8_t verlen, ipproto;
2020 uint16_t frag_off;
2021
2022 if (!mac_mmc_get_uint8(cursor, l3_off, &verlen)) {
2023 return (false);
2024 }
2025 verlen &= 0x0f;
2026 if (verlen < 5 || verlen > 0x0f) {
2027 return (false);
2028 }
2029
2030 if (!mac_mmc_get_uint16(cursor,
2031 l3_off + offsetof(ipha_t, ipha_fragment_offset_and_flags),
2032 &frag_off)) {
2033 return (false);
2034 }
2035
2036 if (!mac_mmc_get_uint8(cursor,
2037 l3_off + offsetof(ipha_t, ipha_protocol), &ipproto)) {
2038 return (false);
2039 }
2040
2041 if (ipprotop != NULL) {
2042 *ipprotop = ipproto;
2043 }
2044 if (is_fragp != NULL) {
2045 *is_fragp = ((frag_off & (IPH_MF | IPH_OFFSET)) != 0);
2046 }
2047 if (hdr_sizep != NULL) {
2048 *hdr_sizep = verlen * 4;
2049 }
2050 return (true);
2051 }
2052 if (l3_sap == ETHERTYPE_IPV6) {
2053 uint16_t ip_len = sizeof (ip6_t);
2054 uint8_t ipproto;
2055 bool found_frag_eh = false;
2056
2057 if (!mac_mmc_get_uint8(cursor,
2058 l3_off + offsetof(ip6_t, ip6_nxt), &ipproto)) {
2059 return (false);
2060 }
2061
2062 /* Chase any extension headers present in packet */
2063 while (mac_parse_is_ipv6eh(ipproto)) {
2064 uint8_t len_val, next_hdr;
2065 uint16_t eh_len;
2066
2067 const size_t hdr_off = l3_off + ip_len;
2068 if (!mac_mmc_get_uint8(cursor, hdr_off, &next_hdr)) {
2069 return (false);
2070 }
2071
2072 if (ipproto == IPPROTO_FRAGMENT) {
2073 /*
2074 * The Fragment extension header bears a
2075 * predefined fixed length, rather than
2076 * communicating it through the EH itself.
2077 */
2078 eh_len = 8;
2079 found_frag_eh = true;
2080 } else if (ipproto == IPPROTO_AH) {
2081 /*
2082 * The length of the IP Authentication EH is
2083 * stored as (n + 2) * 32-bits, where 'n' is the
2084 * recorded EH length field
2085 */
2086 if (!mac_mmc_get_uint8(cursor, hdr_off + 1,
2087 &len_val)) {
2088 return (false);
2089 }
2090 eh_len = ((uint16_t)len_val + 2) * 4;
2091 } else {
2092 /*
2093 * All other EHs should follow the sizing
2094 * formula of (n + 1) * 64-bits, where 'n' is
2095 * the recorded EH length field.
2096 */
2097 if (!mac_mmc_get_uint8(cursor, hdr_off + 1,
2098 &len_val)) {
2099 return (false);
2100 }
2101 eh_len = ((uint16_t)len_val + 1) * 8;
2102 }
2103 /*
2104 * Protect against overflow in the case of a very
2105 * contrived packet.
2106 */
2107 if ((ip_len + eh_len) < ip_len) {
2108 return (-1);
2109 }
2110
2111 ipproto = next_hdr;
2112 ip_len += eh_len;
2113 }
2114
2115 if (ipprotop != NULL) {
2116 *ipprotop = ipproto;
2117 }
2118 if (is_fragp != NULL) {
2119 *is_fragp = found_frag_eh;
2120 }
2121 if (hdr_sizep != NULL) {
2122 *hdr_sizep = ip_len;
2123 }
2124 return (true);
2125 }
2126
2127 return (false);
2128 }
2129
2130 /*
2131 * Attempt to parse L4 protocol header from mblk chain.
2132 *
2133 * The IP protocol of the containing header must be specified by the caller.
2134 *
2135 * Returns true if header was successfully parsed. Parsing will begin at
2136 * current offset of `cursor`. A non-NULL argument for header size will be
2137 * populated on success.
2138 */
2139 static bool
mac_mmc_parse_l4(mac_mblk_cursor_t * cursor,uint8_t ipproto,uint8_t * hdr_sizep)2140 mac_mmc_parse_l4(mac_mblk_cursor_t *cursor, uint8_t ipproto, uint8_t *hdr_sizep)
2141 {
2142 ASSERT(hdr_sizep != NULL);
2143
2144 const size_t l4_off = mac_mmc_offset(cursor);
2145 uint8_t tcp_doff;
2146
2147 switch (ipproto) {
2148 case IPPROTO_TCP:
2149 if (!mac_mmc_get_uint8(cursor,
2150 l4_off + offsetof(tcph_t, th_offset_and_rsrvd),
2151 &tcp_doff)) {
2152 return (false);
2153 }
2154 tcp_doff = (tcp_doff & 0xf0) >> 4;
2155 if (tcp_doff < 5 || tcp_doff > 0xf) {
2156 return (false);
2157 }
2158 *hdr_sizep = tcp_doff * 4;
2159 return (true);
2160 case IPPROTO_UDP:
2161 *hdr_sizep = sizeof (struct udphdr);
2162 return (true);
2163 case IPPROTO_ICMP:
2164 /*
2165 * Only count the parts of the header which are common to
2166 * message types.
2167 */
2168 *hdr_sizep = offsetof(struct icmp, icmp_hun);
2169 return (true);
2170 case IPPROTO_ICMPV6:
2171 *hdr_sizep = sizeof (icmp6_t);
2172 return (true);
2173 case IPPROTO_SCTP:
2174 *hdr_sizep = sizeof (sctp_hdr_t);
2175 return (true);
2176 default:
2177 return (false);
2178 }
2179 }
2180
2181 /*
2182 * Parse destination MAC address and VLAN TCI (if any) from mblk chain.
2183 *
2184 * If packet ethertype does not indicate that a VLAN is present,
2185 * MEOI_VLAN_TCI_INVALID will be returned for the TCI.
2186 *
2187 * Returns B_TRUE if header could be parsed for destination MAC address and VLAN
2188 * TCI, otherwise B_FALSE.
2189 */
2190 boolean_t
mac_ether_l2_info(mblk_t * mp,uint8_t * dst_addrp,uint32_t * vlan_tcip)2191 mac_ether_l2_info(mblk_t *mp, uint8_t *dst_addrp, uint32_t *vlan_tcip)
2192 {
2193 mac_mblk_cursor_t cursor;
2194
2195 mac_mmc_init(&cursor, mp);
2196 if (!mac_mmc_parse_ether(&cursor, dst_addrp, vlan_tcip, NULL, NULL)) {
2197 return (B_FALSE);
2198 }
2199
2200 return (B_TRUE);
2201 }
2202
2203 /*
2204 * Perform a partial parsing of offload info from a frame and/or packet.
2205 *
2206 * Beginning at the provided byte offset (`off`) in the mblk, attempt to parse
2207 * any offload info which has not yet been populated in `meoi`. The contents of
2208 * `meoi_flags` upon entry will be considered as "already parsed", their
2209 * corresponding data fields will be considered valid.
2210 *
2211 * A motivating example: A non-Ethernet packet could be parsed for L3/L4 offload
2212 * information by setting MEOI_L2INFO_SET in `meoi_flags`, and the L3 SAP in
2213 * `meoi_l3_proto`. With a value in `meoi_l2hlen` that, when combined with the
2214 * provided `off`, will direct the parser to the start of the L3 header in the
2215 * mblk, the rest of the logic will be free to run.
2216 *
2217 * Alternatively, this could be used to parse the headers in an encapsulated
2218 * Ethernet packet by simply specifying the start of its header in `off`.
2219 *
2220 * The degree to which parsing was able to proceed is stored in `meoi_flags`.
2221 */
2222 void
mac_partial_offload_info(mblk_t * mp,size_t off,mac_ether_offload_info_t * meoi)2223 mac_partial_offload_info(mblk_t *mp, size_t off, mac_ether_offload_info_t *meoi)
2224 {
2225 mac_mblk_cursor_t cursor;
2226
2227 mac_mmc_init(&cursor, mp);
2228
2229 if (!mac_mmc_seek(&cursor, off)) {
2230 return;
2231 }
2232
2233 if ((meoi->meoi_flags & MEOI_L2INFO_SET) == 0) {
2234 uint32_t vlan_tci;
2235 uint16_t l2_sz, ethertype;
2236 if (!mac_mmc_parse_ether(&cursor, NULL, &vlan_tci, ðertype,
2237 &l2_sz)) {
2238 return;
2239 }
2240
2241 meoi->meoi_flags |= MEOI_L2INFO_SET;
2242 meoi->meoi_l2hlen = l2_sz;
2243 meoi->meoi_l3proto = ethertype;
2244 if (vlan_tci != MEOI_VLAN_TCI_INVALID) {
2245 ASSERT3U(meoi->meoi_l2hlen, ==,
2246 sizeof (struct ether_vlan_header));
2247 meoi->meoi_flags |= MEOI_VLAN_TAGGED;
2248 }
2249 }
2250 const size_t l2_end = off + (size_t)meoi->meoi_l2hlen;
2251 if (!mac_mmc_seek(&cursor, l2_end)) {
2252 meoi->meoi_flags &= ~MEOI_L2INFO_SET;
2253 return;
2254 }
2255
2256 if ((meoi->meoi_flags & MEOI_L3INFO_SET) == 0) {
2257 uint8_t ipproto;
2258 uint16_t l3_sz;
2259 bool is_frag;
2260 if (!mac_mmc_parse_l3(&cursor, meoi->meoi_l3proto, &ipproto,
2261 &is_frag, &l3_sz)) {
2262 return;
2263 }
2264
2265 meoi->meoi_l3hlen = l3_sz;
2266 meoi->meoi_l4proto = ipproto;
2267 meoi->meoi_flags |= MEOI_L3INFO_SET;
2268 if (is_frag) {
2269 meoi->meoi_flags |= MEOI_L3_FRAGMENT;
2270 }
2271 }
2272 const size_t l3_end = l2_end + (size_t)meoi->meoi_l3hlen;
2273 if (!mac_mmc_seek(&cursor, l3_end)) {
2274 meoi->meoi_flags &= ~MEOI_L3INFO_SET;
2275 return;
2276 }
2277
2278 if ((meoi->meoi_flags & MEOI_L4INFO_SET) == 0) {
2279 uint8_t l4_sz;
2280 if (!mac_mmc_parse_l4(&cursor, meoi->meoi_l4proto, &l4_sz)) {
2281 return;
2282 }
2283
2284 meoi->meoi_l4hlen = l4_sz;
2285 meoi->meoi_flags |= MEOI_L4INFO_SET;
2286 }
2287 const size_t l4_end = l3_end + (size_t)meoi->meoi_l4hlen;
2288 if (!mac_mmc_seek(&cursor, l4_end)) {
2289 meoi->meoi_flags &= ~MEOI_L4INFO_SET;
2290 }
2291 }
2292
2293 /*
2294 * Attempt to parse packet headers to extract information useful for various
2295 * offloads. This includes header protocols and lengths.
2296 *
2297 * The meoi_flags field will indicate the extent to which parsing was able to
2298 * complete. Each in turn promises that subsequent fields are populated, and
2299 * that the mblk chain is large enough to contain the parsed header(s):
2300 *
2301 * - MEOI_L2INFO_SET: meoi_l3_proto and meoi_l2hlen
2302 * - MEOI_L3INFO_SET: meoi_l4_proto and meoi_l3hlen
2303 * - MEOI_L4INFO_SET: meoi_l4hlen
2304 *
2305 * When any of those flags are absent, their corresponding data fields will be
2306 * zeroed.
2307 *
2308 * These additional flags are set when certain conditions are met during
2309 * parsing:
2310 *
2311 * - MEOI_VLAN_TAGGED: Ethernet header is tagged with a VLAN
2312 * - MEOI_L3_FRAGMENT: L3 header indicated fragmentation
2313 */
2314 void
mac_ether_offload_info(mblk_t * mp,mac_ether_offload_info_t * meoi)2315 mac_ether_offload_info(mblk_t *mp, mac_ether_offload_info_t *meoi)
2316 {
2317 bzero(meoi, sizeof (mac_ether_offload_info_t));
2318 meoi->meoi_len = msgdsize(mp);
2319
2320 mac_partial_offload_info(mp, 0, meoi);
2321 }
2322