xref: /freebsd/sys/dev/random/random_harvestq.c (revision 5e213d8a7462968e10370506a4905eab0dd48e65)
1 /*-
2  * Copyright (c) 2017 Oliver Pinter
3  * Copyright (c) 2017 W. Dean Freeman
4  * Copyright (c) 2000-2015 Mark R V Murray
5  * Copyright (c) 2013 Arthur Mesh
6  * Copyright (c) 2004 Robert N. M. Watson
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer
14  *    in this position and unchanged.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  *
30  */
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/ck.h>
35 #include <sys/conf.h>
36 #include <sys/epoch.h>
37 #include <sys/eventhandler.h>
38 #include <sys/hash.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/linker.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/mutex.h>
46 #include <sys/random.h>
47 #include <sys/sbuf.h>
48 #include <sys/sysctl.h>
49 #include <sys/unistd.h>
50 
51 #include <machine/atomic.h>
52 #include <machine/cpu.h>
53 
54 #include <crypto/rijndael/rijndael-api-fst.h>
55 #include <crypto/sha2/sha256.h>
56 
57 #include <dev/random/fortuna.h>
58 #include <dev/random/hash.h>
59 #include <dev/random/randomdev.h>
60 #include <dev/random/random_harvestq.h>
61 
62 #if defined(RANDOM_ENABLE_ETHER)
63 #define _RANDOM_HARVEST_ETHER_OFF 0
64 #else
65 #define _RANDOM_HARVEST_ETHER_OFF (1u << RANDOM_NET_ETHER)
66 #endif
67 #if defined(RANDOM_ENABLE_UMA)
68 #define _RANDOM_HARVEST_UMA_OFF 0
69 #else
70 #define _RANDOM_HARVEST_UMA_OFF (1u << RANDOM_UMA)
71 #endif
72 
73 /*
74  * Note that random_sources_feed() will also use this to try and split up
75  * entropy into a subset of pools per iteration with the goal of feeding
76  * HARVESTSIZE into every pool at least once per second.
77  */
78 #define	RANDOM_KTHREAD_HZ	10
79 
80 static void random_kthread(void);
81 static void random_sources_feed(void);
82 
83 /*
84  * Random must initialize much earlier than epoch, but we can initialize the
85  * epoch code before SMP starts.  Prior to SMP, we can safely bypass
86  * concurrency primitives.
87  */
88 static __read_mostly bool epoch_inited;
89 static __read_mostly epoch_t rs_epoch;
90 
91 /*
92  * How many events to queue up. We create this many items in
93  * an 'empty' queue, then transfer them to the 'harvest' queue with
94  * supplied junk. When used, they are transferred back to the
95  * 'empty' queue.
96  */
97 #define	RANDOM_RING_MAX		1024
98 #define	RANDOM_ACCUM_MAX	8
99 
100 /* 1 to let the kernel thread run, 0 to terminate, -1 to mark completion */
101 volatile int random_kthread_control;
102 
103 
104 /* Allow the sysadmin to select the broad category of
105  * entropy types to harvest.
106  */
107 __read_frequently u_int hc_source_mask;
108 
109 struct random_sources {
110 	CK_LIST_ENTRY(random_sources)	 rrs_entries;
111 	struct random_source		*rrs_source;
112 };
113 
114 static CK_LIST_HEAD(sources_head, random_sources) source_list =
115     CK_LIST_HEAD_INITIALIZER(source_list);
116 
117 SYSCTL_NODE(_kern_random, OID_AUTO, harvest, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
118     "Entropy Device Parameters");
119 
120 /*
121  * Put all the harvest queue context stuff in one place.
122  * this make is a bit easier to lock and protect.
123  */
124 static struct harvest_context {
125 	/* The harvest mutex protects all of harvest_context and
126 	 * the related data.
127 	 */
128 	struct mtx hc_mtx;
129 	/* Round-robin destination cache. */
130 	u_int hc_destination[ENTROPYSOURCE];
131 	/* The context of the kernel thread processing harvested entropy */
132 	struct proc *hc_kthread_proc;
133 	/*
134 	 * Lockless ring buffer holding entropy events
135 	 * If ring.in == ring.out,
136 	 *     the buffer is empty.
137 	 * If ring.in != ring.out,
138 	 *     the buffer contains harvested entropy.
139 	 * If (ring.in + 1) == ring.out (mod RANDOM_RING_MAX),
140 	 *     the buffer is full.
141 	 *
142 	 * NOTE: ring.in points to the last added element,
143 	 * and ring.out points to the last consumed element.
144 	 *
145 	 * The ring.in variable needs locking as there are multiple
146 	 * sources to the ring. Only the sources may change ring.in,
147 	 * but the consumer may examine it.
148 	 *
149 	 * The ring.out variable does not need locking as there is
150 	 * only one consumer. Only the consumer may change ring.out,
151 	 * but the sources may examine it.
152 	 */
153 	struct entropy_ring {
154 		struct harvest_event ring[RANDOM_RING_MAX];
155 		volatile u_int in;
156 		volatile u_int out;
157 	} hc_entropy_ring;
158 	struct fast_entropy_accumulator {
159 		volatile u_int pos;
160 		uint32_t buf[RANDOM_ACCUM_MAX];
161 	} hc_entropy_fast_accumulator;
162 } harvest_context;
163 
164 #define	RANDOM_HARVEST_INIT_LOCK()	mtx_init(&harvest_context.hc_mtx, \
165 					    "entropy harvest mutex", NULL, MTX_SPIN)
166 #define	RANDOM_HARVEST_LOCK()		mtx_lock_spin(&harvest_context.hc_mtx)
167 #define	RANDOM_HARVEST_UNLOCK()		mtx_unlock_spin(&harvest_context.hc_mtx)
168 
169 static struct kproc_desc random_proc_kp = {
170 	"rand_harvestq",
171 	random_kthread,
172 	&harvest_context.hc_kthread_proc,
173 };
174 
175 /* Pass the given event straight through to Fortuna/Whatever. */
176 static __inline void
random_harvestq_fast_process_event(struct harvest_event * event)177 random_harvestq_fast_process_event(struct harvest_event *event)
178 {
179 	p_random_alg_context->ra_event_processor(event);
180 	explicit_bzero(event, sizeof(*event));
181 }
182 
183 static void
random_kthread(void)184 random_kthread(void)
185 {
186         u_int maxloop, ring_out, i;
187 
188 	/*
189 	 * Locking is not needed as this is the only place we modify ring.out, and
190 	 * we only examine ring.in without changing it. Both of these are volatile,
191 	 * and this is a unique thread.
192 	 */
193 	for (random_kthread_control = 1; random_kthread_control;) {
194 		/* Deal with events, if any. Restrict the number we do in one go. */
195 		maxloop = RANDOM_RING_MAX;
196 		while (harvest_context.hc_entropy_ring.out != harvest_context.hc_entropy_ring.in) {
197 			ring_out = (harvest_context.hc_entropy_ring.out + 1)%RANDOM_RING_MAX;
198 			random_harvestq_fast_process_event(harvest_context.hc_entropy_ring.ring + ring_out);
199 			harvest_context.hc_entropy_ring.out = ring_out;
200 			if (!--maxloop)
201 				break;
202 		}
203 		random_sources_feed();
204 		/* XXX: FIX!! Increase the high-performance data rate? Need some measurements first. */
205 		for (i = 0; i < RANDOM_ACCUM_MAX; i++) {
206 			if (harvest_context.hc_entropy_fast_accumulator.buf[i]) {
207 				random_harvest_direct(harvest_context.hc_entropy_fast_accumulator.buf + i, sizeof(harvest_context.hc_entropy_fast_accumulator.buf[0]), RANDOM_UMA);
208 				harvest_context.hc_entropy_fast_accumulator.buf[i] = 0;
209 			}
210 		}
211 		/* XXX: FIX!! This is a *great* place to pass hardware/live entropy to random(9) */
212 		tsleep_sbt(&harvest_context.hc_kthread_proc, 0, "-",
213 		    SBT_1S/RANDOM_KTHREAD_HZ, 0, C_PREL(1));
214 	}
215 	random_kthread_control = -1;
216 	wakeup(&harvest_context.hc_kthread_proc);
217 	kproc_exit(0);
218 	/* NOTREACHED */
219 }
220 SYSINIT(random_device_h_proc, SI_SUB_KICK_SCHEDULER, SI_ORDER_ANY, kproc_start,
221     &random_proc_kp);
222 _Static_assert(SI_SUB_KICK_SCHEDULER > SI_SUB_RANDOM,
223     "random kthread starting before subsystem initialization");
224 
225 static void
rs_epoch_init(void * dummy __unused)226 rs_epoch_init(void *dummy __unused)
227 {
228 	rs_epoch = epoch_alloc("Random Sources", EPOCH_PREEMPT);
229 	epoch_inited = true;
230 }
231 SYSINIT(rs_epoch_init, SI_SUB_EPOCH, SI_ORDER_ANY, rs_epoch_init, NULL);
232 
233 /*
234  * Run through all fast sources reading entropy for the given
235  * number of rounds, which should be a multiple of the number
236  * of entropy accumulation pools in use; it is 32 for Fortuna.
237  */
238 static void
random_sources_feed(void)239 random_sources_feed(void)
240 {
241 	uint32_t entropy[HARVESTSIZE];
242 	struct epoch_tracker et;
243 	struct random_sources *rrs;
244 	u_int i, n, npools;
245 	bool rse_warm;
246 
247 	rse_warm = epoch_inited;
248 
249 	/*
250 	 * Evenly-ish distribute pool population across the second based on how
251 	 * frequently random_kthread iterates.
252 	 *
253 	 * For Fortuna, the math currently works out as such:
254 	 *
255 	 * 64 bits * 4 pools = 256 bits per iteration
256 	 * 256 bits * 10 Hz = 2560 bits per second, 320 B/s
257 	 *
258 	 */
259 	npools = howmany(p_random_alg_context->ra_poolcount, RANDOM_KTHREAD_HZ);
260 
261 	/*-
262 	 * If we're not seeded yet, attempt to perform a "full seed", filling
263 	 * all of the PRNG's pools with entropy; if there is enough entropy
264 	 * available from "fast" entropy sources this will allow us to finish
265 	 * seeding and unblock the boot process immediately rather than being
266 	 * stuck for a few seconds with random_kthread gradually collecting a
267 	 * small chunk of entropy every 1 / RANDOM_KTHREAD_HZ seconds.
268 	 *
269 	 * We collect RANDOM_FORTUNA_DEFPOOLSIZE bytes per pool, i.e. enough
270 	 * to fill Fortuna's pools in the default configuration.  With another
271 	 * PRNG or smaller pools for Fortuna, we might collect more entropy
272 	 * than needed to fill the pools, but this is harmless; alternatively,
273 	 * a different PRNG, larger pools, or fast entropy sources which are
274 	 * not able to provide as much entropy as we request may result in the
275 	 * not being fully seeded (and thus remaining blocked) but in that
276 	 * case we will return here after 1 / RANDOM_KTHREAD_HZ seconds and
277 	 * try again for a large amount of entropy.
278 	 */
279 	if (!p_random_alg_context->ra_seeded())
280 		npools = howmany(p_random_alg_context->ra_poolcount *
281 		    RANDOM_FORTUNA_DEFPOOLSIZE, sizeof(entropy));
282 
283 	/*
284 	 * Step over all of live entropy sources, and feed their output
285 	 * to the system-wide RNG.
286 	 */
287 	if (rse_warm)
288 		epoch_enter_preempt(rs_epoch, &et);
289 	CK_LIST_FOREACH(rrs, &source_list, rrs_entries) {
290 		for (i = 0; i < npools; i++) {
291 			n = rrs->rrs_source->rs_read(entropy, sizeof(entropy));
292 			KASSERT((n <= sizeof(entropy)), ("%s: rs_read returned too much data (%u > %zu)", __func__, n, sizeof(entropy)));
293 			/*
294 			 * Sometimes the HW entropy source doesn't have anything
295 			 * ready for us.  This isn't necessarily untrustworthy.
296 			 * We don't perform any other verification of an entropy
297 			 * source (i.e., length is allowed to be anywhere from 1
298 			 * to sizeof(entropy), quality is unchecked, etc), so
299 			 * don't balk verbosely at slow random sources either.
300 			 * There are reports that RDSEED on x86 metal falls
301 			 * behind the rate at which we query it, for example.
302 			 * But it's still a better entropy source than RDRAND.
303 			 */
304 			if (n == 0)
305 				continue;
306 			random_harvest_direct(entropy, n, rrs->rrs_source->rs_source);
307 		}
308 	}
309 	if (rse_warm)
310 		epoch_exit_preempt(rs_epoch, &et);
311 	explicit_bzero(entropy, sizeof(entropy));
312 }
313 
314 static int
random_check_uint_harvestmask(SYSCTL_HANDLER_ARGS)315 random_check_uint_harvestmask(SYSCTL_HANDLER_ARGS)
316 {
317 	static const u_int user_immutable_mask =
318 	    (((1 << ENTROPYSOURCE) - 1) & (-1UL << RANDOM_PURE_START)) |
319 	    _RANDOM_HARVEST_ETHER_OFF | _RANDOM_HARVEST_UMA_OFF;
320 
321 	int error;
322 	u_int value, orig_value;
323 
324 	orig_value = value = hc_source_mask;
325 	error = sysctl_handle_int(oidp, &value, 0, req);
326 	if (error != 0 || req->newptr == NULL)
327 		return (error);
328 
329 	if (flsl(value) > ENTROPYSOURCE)
330 		return (EINVAL);
331 
332 	/*
333 	 * Disallow userspace modification of pure entropy sources.
334 	 */
335 	hc_source_mask = (value & ~user_immutable_mask) |
336 	    (orig_value & user_immutable_mask);
337 	return (0);
338 }
339 SYSCTL_PROC(_kern_random_harvest, OID_AUTO, mask,
340     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
341     random_check_uint_harvestmask, "IU",
342     "Entropy harvesting mask");
343 
344 static int
random_print_harvestmask(SYSCTL_HANDLER_ARGS)345 random_print_harvestmask(SYSCTL_HANDLER_ARGS)
346 {
347 	struct sbuf sbuf;
348 	int error, i;
349 
350 	error = sysctl_wire_old_buffer(req, 0);
351 	if (error == 0) {
352 		sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
353 		for (i = ENTROPYSOURCE - 1; i >= 0; i--)
354 			sbuf_cat(&sbuf, (hc_source_mask & (1 << i)) ? "1" : "0");
355 		error = sbuf_finish(&sbuf);
356 		sbuf_delete(&sbuf);
357 	}
358 	return (error);
359 }
360 SYSCTL_PROC(_kern_random_harvest, OID_AUTO, mask_bin,
361     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
362     random_print_harvestmask, "A",
363     "Entropy harvesting mask (printable)");
364 
365 static const char *random_source_descr[ENTROPYSOURCE] = {
366 	[RANDOM_CACHED] = "CACHED",
367 	[RANDOM_ATTACH] = "ATTACH",
368 	[RANDOM_KEYBOARD] = "KEYBOARD",
369 	[RANDOM_MOUSE] = "MOUSE",
370 	[RANDOM_NET_TUN] = "NET_TUN",
371 	[RANDOM_NET_ETHER] = "NET_ETHER",
372 	[RANDOM_NET_NG] = "NET_NG",
373 	[RANDOM_INTERRUPT] = "INTERRUPT",
374 	[RANDOM_SWI] = "SWI",
375 	[RANDOM_FS_ATIME] = "FS_ATIME",
376 	[RANDOM_UMA] = "UMA",
377 	[RANDOM_CALLOUT] = "CALLOUT", /* ENVIRONMENTAL_END */
378 	[RANDOM_PURE_OCTEON] = "PURE_OCTEON", /* PURE_START */
379 	[RANDOM_PURE_SAFE] = "PURE_SAFE",
380 	[RANDOM_PURE_GLXSB] = "PURE_GLXSB",
381 	[RANDOM_PURE_HIFN] = "PURE_HIFN",
382 	[RANDOM_PURE_RDRAND] = "PURE_RDRAND",
383 	[RANDOM_PURE_NEHEMIAH] = "PURE_NEHEMIAH",
384 	[RANDOM_PURE_RNDTEST] = "PURE_RNDTEST",
385 	[RANDOM_PURE_VIRTIO] = "PURE_VIRTIO",
386 	[RANDOM_PURE_BROADCOM] = "PURE_BROADCOM",
387 	[RANDOM_PURE_CCP] = "PURE_CCP",
388 	[RANDOM_PURE_DARN] = "PURE_DARN",
389 	[RANDOM_PURE_TPM] = "PURE_TPM",
390 	[RANDOM_PURE_VMGENID] = "PURE_VMGENID",
391 	[RANDOM_PURE_QUALCOMM] = "PURE_QUALCOMM",
392 	[RANDOM_PURE_ARMV8] = "PURE_ARMV8",
393 	[RANDOM_PURE_ARM_TRNG] = "PURE_ARM_TRNG",
394 	/* "ENTROPYSOURCE" */
395 };
396 
397 static int
random_print_harvestmask_symbolic(SYSCTL_HANDLER_ARGS)398 random_print_harvestmask_symbolic(SYSCTL_HANDLER_ARGS)
399 {
400 	struct sbuf sbuf;
401 	int error, i;
402 	bool first;
403 
404 	first = true;
405 	error = sysctl_wire_old_buffer(req, 0);
406 	if (error == 0) {
407 		sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
408 		for (i = ENTROPYSOURCE - 1; i >= 0; i--) {
409 			if (i >= RANDOM_PURE_START &&
410 			    (hc_source_mask & (1 << i)) == 0)
411 				continue;
412 			if (!first)
413 				sbuf_cat(&sbuf, ",");
414 			sbuf_cat(&sbuf, !(hc_source_mask & (1 << i)) ? "[" : "");
415 			sbuf_cat(&sbuf, random_source_descr[i]);
416 			sbuf_cat(&sbuf, !(hc_source_mask & (1 << i)) ? "]" : "");
417 			first = false;
418 		}
419 		error = sbuf_finish(&sbuf);
420 		sbuf_delete(&sbuf);
421 	}
422 	return (error);
423 }
424 SYSCTL_PROC(_kern_random_harvest, OID_AUTO, mask_symbolic,
425     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
426     random_print_harvestmask_symbolic, "A",
427     "Entropy harvesting mask (symbolic)");
428 
429 static void
random_harvestq_init(void * unused __unused)430 random_harvestq_init(void *unused __unused)
431 {
432 	static const u_int almost_everything_mask =
433 	    (((1 << (RANDOM_ENVIRONMENTAL_END + 1)) - 1) &
434 	    ~_RANDOM_HARVEST_ETHER_OFF & ~_RANDOM_HARVEST_UMA_OFF);
435 
436 	hc_source_mask = almost_everything_mask;
437 	RANDOM_HARVEST_INIT_LOCK();
438 	harvest_context.hc_entropy_ring.in = harvest_context.hc_entropy_ring.out = 0;
439 }
440 SYSINIT(random_device_h_init, SI_SUB_RANDOM, SI_ORDER_THIRD, random_harvestq_init, NULL);
441 
442 /*
443  * Subroutine to slice up a contiguous chunk of 'entropy' and feed it into the
444  * underlying algorithm.  Returns number of bytes actually fed into underlying
445  * algorithm.
446  */
447 static size_t
random_early_prime(char * entropy,size_t len)448 random_early_prime(char *entropy, size_t len)
449 {
450 	struct harvest_event event;
451 	size_t i;
452 
453 	len = rounddown(len, sizeof(event.he_entropy));
454 	if (len == 0)
455 		return (0);
456 
457 	for (i = 0; i < len; i += sizeof(event.he_entropy)) {
458 		event.he_somecounter = random_get_cyclecount();
459 		event.he_size = sizeof(event.he_entropy);
460 		event.he_source = RANDOM_CACHED;
461 		event.he_destination =
462 		    harvest_context.hc_destination[RANDOM_CACHED]++;
463 		memcpy(event.he_entropy, entropy + i, sizeof(event.he_entropy));
464 		random_harvestq_fast_process_event(&event);
465 	}
466 	explicit_bzero(entropy, len);
467 	return (len);
468 }
469 
470 /*
471  * Subroutine to search for known loader-loaded files in memory and feed them
472  * into the underlying algorithm early in boot.  Returns the number of bytes
473  * loaded (zero if none were loaded).
474  */
475 static size_t
random_prime_loader_file(const char * type)476 random_prime_loader_file(const char *type)
477 {
478 	uint8_t *keyfile, *data;
479 	size_t size;
480 
481 	keyfile = preload_search_by_type(type);
482 	if (keyfile == NULL)
483 		return (0);
484 
485 	data = preload_fetch_addr(keyfile);
486 	size = preload_fetch_size(keyfile);
487 	if (data == NULL)
488 		return (0);
489 
490 	return (random_early_prime(data, size));
491 }
492 
493 /*
494  * This is used to prime the RNG by grabbing any early random stuff
495  * known to the kernel, and inserting it directly into the hashing
496  * module, currently Fortuna.
497  */
498 static void
random_harvestq_prime(void * unused __unused)499 random_harvestq_prime(void *unused __unused)
500 {
501 	size_t size;
502 
503 	/*
504 	 * Get entropy that may have been preloaded by loader(8)
505 	 * and use it to pre-charge the entropy harvest queue.
506 	 */
507 	size = random_prime_loader_file(RANDOM_CACHED_BOOT_ENTROPY_MODULE);
508 	if (bootverbose) {
509 		if (size > 0)
510 			printf("random: read %zu bytes from preloaded cache\n",
511 			    size);
512 		else
513 			printf("random: no preloaded entropy cache\n");
514 	}
515 	size = random_prime_loader_file(RANDOM_PLATFORM_BOOT_ENTROPY_MODULE);
516 	if (bootverbose) {
517 		if (size > 0)
518 			printf("random: read %zu bytes from platform bootloader\n",
519 			    size);
520 		else
521 			printf("random: no platform bootloader entropy\n");
522 	}
523 }
524 SYSINIT(random_device_prime, SI_SUB_RANDOM, SI_ORDER_MIDDLE, random_harvestq_prime, NULL);
525 
526 static void
random_harvestq_deinit(void * unused __unused)527 random_harvestq_deinit(void *unused __unused)
528 {
529 
530 	/* Command the hash/reseed thread to end and wait for it to finish */
531 	random_kthread_control = 0;
532 	while (random_kthread_control >= 0)
533 		tsleep(&harvest_context.hc_kthread_proc, 0, "harvqterm", hz/5);
534 }
535 SYSUNINIT(random_device_h_init, SI_SUB_RANDOM, SI_ORDER_THIRD, random_harvestq_deinit, NULL);
536 
537 /*-
538  * Entropy harvesting queue routine.
539  *
540  * This is supposed to be fast; do not do anything slow in here!
541  * It is also illegal (and morally reprehensible) to insert any
542  * high-rate data here. "High-rate" is defined as a data source
543  * that will usually cause lots of failures of the "Lockless read"
544  * check a few lines below. This includes the "always-on" sources
545  * like the Intel "rdrand" or the VIA Nehamiah "xstore" sources.
546  */
547 /* XXXRW: get_cyclecount() is cheap on most modern hardware, where cycle
548  * counters are built in, but on older hardware it will do a real time clock
549  * read which can be quite expensive.
550  */
551 void
random_harvest_queue_(const void * entropy,u_int size,enum random_entropy_source origin)552 random_harvest_queue_(const void *entropy, u_int size, enum random_entropy_source origin)
553 {
554 	struct harvest_event *event;
555 	u_int ring_in;
556 
557 	KASSERT(origin >= RANDOM_START && origin < ENTROPYSOURCE, ("%s: origin %d invalid\n", __func__, origin));
558 	RANDOM_HARVEST_LOCK();
559 	ring_in = (harvest_context.hc_entropy_ring.in + 1)%RANDOM_RING_MAX;
560 	if (ring_in != harvest_context.hc_entropy_ring.out) {
561 		/* The ring is not full */
562 		event = harvest_context.hc_entropy_ring.ring + ring_in;
563 		event->he_somecounter = random_get_cyclecount();
564 		event->he_source = origin;
565 		event->he_destination = harvest_context.hc_destination[origin]++;
566 		if (size <= sizeof(event->he_entropy)) {
567 			event->he_size = size;
568 			memcpy(event->he_entropy, entropy, size);
569 		}
570 		else {
571 			/* Big event, so squash it */
572 			event->he_size = sizeof(event->he_entropy[0]);
573 			event->he_entropy[0] = jenkins_hash(entropy, size, (uint32_t)(uintptr_t)event);
574 		}
575 		harvest_context.hc_entropy_ring.in = ring_in;
576 	}
577 	RANDOM_HARVEST_UNLOCK();
578 }
579 
580 /*-
581  * Entropy harvesting fast routine.
582  *
583  * This is supposed to be very fast; do not do anything slow in here!
584  * This is the right place for high-rate harvested data.
585  */
586 void
random_harvest_fast_(const void * entropy,u_int size)587 random_harvest_fast_(const void *entropy, u_int size)
588 {
589 	u_int pos;
590 
591 	pos = harvest_context.hc_entropy_fast_accumulator.pos;
592 	harvest_context.hc_entropy_fast_accumulator.buf[pos] ^=
593 	    jenkins_hash(entropy, size, random_get_cyclecount());
594 	harvest_context.hc_entropy_fast_accumulator.pos = (pos + 1)%RANDOM_ACCUM_MAX;
595 }
596 
597 /*-
598  * Entropy harvesting direct routine.
599  *
600  * This is not supposed to be fast, but will only be used during
601  * (e.g.) booting when initial entropy is being gathered.
602  */
603 void
random_harvest_direct_(const void * entropy,u_int size,enum random_entropy_source origin)604 random_harvest_direct_(const void *entropy, u_int size, enum random_entropy_source origin)
605 {
606 	struct harvest_event event;
607 
608 	KASSERT(origin >= RANDOM_START && origin < ENTROPYSOURCE, ("%s: origin %d invalid\n", __func__, origin));
609 	size = MIN(size, sizeof(event.he_entropy));
610 	event.he_somecounter = random_get_cyclecount();
611 	event.he_size = size;
612 	event.he_source = origin;
613 	event.he_destination = harvest_context.hc_destination[origin]++;
614 	memcpy(event.he_entropy, entropy, size);
615 	random_harvestq_fast_process_event(&event);
616 }
617 
618 void
random_harvest_register_source(enum random_entropy_source source)619 random_harvest_register_source(enum random_entropy_source source)
620 {
621 
622 	hc_source_mask |= (1 << source);
623 }
624 
625 void
random_harvest_deregister_source(enum random_entropy_source source)626 random_harvest_deregister_source(enum random_entropy_source source)
627 {
628 
629 	hc_source_mask &= ~(1 << source);
630 }
631 
632 void
random_source_register(struct random_source * rsource)633 random_source_register(struct random_source *rsource)
634 {
635 	struct random_sources *rrs;
636 
637 	KASSERT(rsource != NULL, ("invalid input to %s", __func__));
638 
639 	rrs = malloc(sizeof(*rrs), M_ENTROPY, M_WAITOK);
640 	rrs->rrs_source = rsource;
641 
642 	random_harvest_register_source(rsource->rs_source);
643 
644 	printf("random: registering fast source %s\n", rsource->rs_ident);
645 
646 	RANDOM_HARVEST_LOCK();
647 	CK_LIST_INSERT_HEAD(&source_list, rrs, rrs_entries);
648 	RANDOM_HARVEST_UNLOCK();
649 }
650 
651 void
random_source_deregister(struct random_source * rsource)652 random_source_deregister(struct random_source *rsource)
653 {
654 	struct random_sources *rrs = NULL;
655 
656 	KASSERT(rsource != NULL, ("invalid input to %s", __func__));
657 
658 	random_harvest_deregister_source(rsource->rs_source);
659 
660 	RANDOM_HARVEST_LOCK();
661 	CK_LIST_FOREACH(rrs, &source_list, rrs_entries)
662 		if (rrs->rrs_source == rsource) {
663 			CK_LIST_REMOVE(rrs, rrs_entries);
664 			break;
665 		}
666 	RANDOM_HARVEST_UNLOCK();
667 
668 	if (rrs != NULL && epoch_inited)
669 		epoch_wait_preempt(rs_epoch);
670 	free(rrs, M_ENTROPY);
671 }
672 
673 static int
random_source_handler(SYSCTL_HANDLER_ARGS)674 random_source_handler(SYSCTL_HANDLER_ARGS)
675 {
676 	struct epoch_tracker et;
677 	struct random_sources *rrs;
678 	struct sbuf sbuf;
679 	int error, count;
680 
681 	error = sysctl_wire_old_buffer(req, 0);
682 	if (error != 0)
683 		return (error);
684 
685 	sbuf_new_for_sysctl(&sbuf, NULL, 64, req);
686 	count = 0;
687 	epoch_enter_preempt(rs_epoch, &et);
688 	CK_LIST_FOREACH(rrs, &source_list, rrs_entries) {
689 		sbuf_cat(&sbuf, (count++ ? ",'" : "'"));
690 		sbuf_cat(&sbuf, rrs->rrs_source->rs_ident);
691 		sbuf_cat(&sbuf, "'");
692 	}
693 	epoch_exit_preempt(rs_epoch, &et);
694 	error = sbuf_finish(&sbuf);
695 	sbuf_delete(&sbuf);
696 	return (error);
697 }
698 SYSCTL_PROC(_kern_random, OID_AUTO, random_sources, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
699 	    NULL, 0, random_source_handler, "A",
700 	    "List of active fast entropy sources.");
701 
702 MODULE_VERSION(random_harvestq, 1);
703