1 /*- 2 * Copyright (c) 2017 W. Dean Freeman 3 * Copyright (c) 2013-2015 Mark R V Murray 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer 11 * in this position and unchanged. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 */ 28 29 /* 30 * This implementation of Fortuna is based on the descriptions found in 31 * ISBN 978-0-470-47424-2 "Cryptography Engineering" by Ferguson, Schneier 32 * and Kohno ("FS&K"). 33 */ 34 35 #include <sys/param.h> 36 #include <sys/limits.h> 37 38 #ifdef _KERNEL 39 #include <sys/fail.h> 40 #include <sys/kernel.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mutex.h> 44 #include <sys/random.h> 45 #include <sys/sdt.h> 46 #include <sys/sysctl.h> 47 #include <sys/systm.h> 48 49 #include <machine/cpu.h> 50 #else /* !_KERNEL */ 51 #include <inttypes.h> 52 #include <stdbool.h> 53 #include <stdio.h> 54 #include <stdlib.h> 55 #include <string.h> 56 #include <threads.h> 57 58 #include "unit_test.h" 59 #endif /* _KERNEL */ 60 61 #include <crypto/chacha20/chacha.h> 62 #include <crypto/rijndael/rijndael-api-fst.h> 63 #include <crypto/sha2/sha256.h> 64 65 #include <dev/random/hash.h> 66 #include <dev/random/randomdev.h> 67 #ifdef _KERNEL 68 #include <dev/random/random_harvestq.h> 69 #endif 70 #include <dev/random/uint128.h> 71 #include <dev/random/fortuna.h> 72 73 /* Defined in FS&K */ 74 #define RANDOM_FORTUNA_MAX_READ (1 << 20) /* Max bytes from AES before rekeying */ 75 #define RANDOM_FORTUNA_BLOCKS_PER_KEY (1 << 16) /* Max blocks from AES before rekeying */ 76 CTASSERT(RANDOM_FORTUNA_BLOCKS_PER_KEY * RANDOM_BLOCKSIZE == 77 RANDOM_FORTUNA_MAX_READ); 78 79 /* 80 * The allowable range of RANDOM_FORTUNA_DEFPOOLSIZE. The default value is above. 81 * Making RANDOM_FORTUNA_DEFPOOLSIZE too large will mean a long time between reseeds, 82 * and too small may compromise initial security but get faster reseeds. 83 */ 84 #define RANDOM_FORTUNA_MINPOOLSIZE 16 85 #define RANDOM_FORTUNA_MAXPOOLSIZE INT_MAX 86 CTASSERT(RANDOM_FORTUNA_MINPOOLSIZE <= RANDOM_FORTUNA_DEFPOOLSIZE); 87 CTASSERT(RANDOM_FORTUNA_DEFPOOLSIZE <= RANDOM_FORTUNA_MAXPOOLSIZE); 88 89 /* This algorithm (and code) presumes that RANDOM_KEYSIZE is twice as large as RANDOM_BLOCKSIZE */ 90 CTASSERT(RANDOM_BLOCKSIZE == sizeof(uint128_t)); 91 CTASSERT(RANDOM_KEYSIZE == 2*RANDOM_BLOCKSIZE); 92 93 /* Probes for dtrace(1) */ 94 #ifdef _KERNEL 95 SDT_PROVIDER_DECLARE(random); 96 SDT_PROVIDER_DEFINE(random); 97 SDT_PROBE_DEFINE2(random, fortuna, event_processor, debug, "u_int", "struct fs_pool *"); 98 #endif /* _KERNEL */ 99 100 /* 101 * This is the beastie that needs protecting. It contains all of the 102 * state that we are excited about. Exactly one is instantiated. 103 */ 104 static struct fortuna_state { 105 struct fs_pool { /* P_i */ 106 u_int fsp_length; /* Only the first one is used by Fortuna */ 107 struct randomdev_hash fsp_hash; 108 } fs_pool[RANDOM_FORTUNA_NPOOLS]; 109 u_int fs_reseedcount; /* ReseedCnt */ 110 uint128_t fs_counter; /* C */ 111 union randomdev_key fs_key; /* K */ 112 u_int fs_minpoolsize; /* Extras */ 113 /* Extras for the OS */ 114 #ifdef _KERNEL 115 /* For use when 'pacing' the reseeds */ 116 sbintime_t fs_lasttime; 117 #endif 118 /* Reseed lock */ 119 mtx_t fs_mtx; 120 } fortuna_state; 121 122 /* 123 * This knob enables or disables the "Concurrent Reads" Fortuna feature. 124 * 125 * The benefit of Concurrent Reads is improved concurrency in Fortuna. That is 126 * reflected in two related aspects: 127 * 128 * 1. Concurrent full-rate devrandom readers can achieve similar throughput to 129 * a single reader thread (at least up to a modest number of cores; the 130 * non-concurrent design falls over at 2 readers). 131 * 132 * 2. The rand_harvestq process spends much less time spinning when one or more 133 * readers is processing a large request. Partially this is due to 134 * rand_harvestq / ra_event_processor design, which only passes one event at 135 * a time to the underlying algorithm. Each time, Fortuna must take its 136 * global state mutex, potentially blocking on a reader. Our adaptive 137 * mutexes assume that a lock holder currently on CPU will release the lock 138 * quickly, and spin if the owning thread is currently running. 139 * 140 * (There is no reason rand_harvestq necessarily has to use the same lock as 141 * the generator, or that it must necessarily drop and retake locks 142 * repeatedly, but that is the current status quo.) 143 * 144 * The concern is that the reduced lock scope might results in a less safe 145 * random(4) design. However, the reduced-lock scope design is still 146 * fundamentally Fortuna. This is discussed below. 147 * 148 * Fortuna Read() only needs mutual exclusion between readers to correctly 149 * update the shared read-side state: C, the 128-bit counter; and K, the 150 * current cipher/PRF key. 151 * 152 * In the Fortuna design, the global counter C should provide an independent 153 * range of values per request. 154 * 155 * Under lock, we can save a copy of C on the stack, and increment the global C 156 * by the number of blocks a Read request will require. 157 * 158 * Still under lock, we can save a copy of the key K on the stack, and then 159 * perform the usual key erasure K' <- Keystream(C, K, ...). This does require 160 * generating 256 bits (32 bytes) of cryptographic keystream output with the 161 * global lock held, but that's all; none of the API keystream generation must 162 * be performed under lock. 163 * 164 * At this point, we may unlock. 165 * 166 * Some example timelines below (to oversimplify, all requests are in units of 167 * native blocks, and the keysize happens to be equal or less to the native 168 * blocksize of the underlying cipher, and the same sequence of two requests 169 * arrive in the same order). The possibly expensive consumer keystream 170 * generation portion is marked with '**'. 171 * 172 * Status Quo fortuna_read() Reduced-scope locking 173 * ------------------------- --------------------- 174 * C=C_0, K=K_0 C=C_0, K=K_0 175 * <Thr 1 requests N blocks> <Thr 1 requests N blocks> 176 * 1:Lock() 1:Lock() 177 * <Thr 2 requests M blocks> <Thr 2 requests M blocks> 178 * 1:GenBytes() 1:stack_C := C_0 179 * 1: Keystream(C_0, K_0, N) 1:stack_K := K_0 180 * 1: <N blocks generated>** 1:C' := C_0 + N 181 * 1: C' := C_0 + N 1:K' := Keystream(C', K_0, 1) 182 * 1: <- Keystream 1: <1 block generated> 183 * 1: K' := Keystream(C', K_0, 1) 1: C'' := C' + 1 184 * 1: <1 block generated> 1: <- Keystream 185 * 1: C'' := C' + 1 1:Unlock() 186 * 1: <- Keystream 187 * 1: <- GenBytes() 188 * 1:Unlock() 189 * 190 * Just prior to unlock, shared state is identical: 191 * ------------------------------------------------ 192 * C'' == C_0 + N + 1 C'' == C_0 + N + 1 193 * K' == keystream generated from K' == keystream generated from 194 * C_0 + N, K_0. C_0 + N, K_0. 195 * K_0 has been erased. K_0 has been erased. 196 * 197 * After both designs unlock, the 2nd reader is unblocked. 198 * 199 * 2:Lock() 2:Lock() 200 * 2:GenBytes() 2:stack_C' := C'' 201 * 2: Keystream(C'', K', M) 2:stack_K' := K' 202 * 2: <M blocks generated>** 2:C''' := C'' + M 203 * 2: C''' := C'' + M 2:K'' := Keystream(C''', K', 1) 204 * 2: <- Keystream 2: <1 block generated> 205 * 2: K'' := Keystream(C''', K', 1) 2: C'''' := C''' + 1 206 * 2: <1 block generated> 2: <- Keystream 207 * 2: C'''' := C''' + 1 2:Unlock() 208 * 2: <- Keystream 209 * 2: <- GenBytes() 210 * 2:Unlock() 211 * 212 * Just prior to unlock, global state is identical: 213 * ------------------------------------------------------ 214 * 215 * C'''' == (C_0 + N + 1) + M + 1 C'''' == (C_0 + N + 1) + M + 1 216 * K'' == keystream generated from K'' == keystream generated from 217 * C_0 + N + 1 + M, K'. C_0 + N + 1 + M, K'. 218 * K' has been erased. K' has been erased. 219 * 220 * Finally, in the new design, the two consumer threads can finish the 221 * remainder of the generation at any time (including simultaneously): 222 * 223 * 1: GenBytes() 224 * 1: Keystream(stack_C, stack_K, N) 225 * 1: <N blocks generated>** 226 * 1: <- Keystream 227 * 1: <- GenBytes 228 * 1:ExplicitBzero(stack_C, stack_K) 229 * 230 * 2: GenBytes() 231 * 2: Keystream(stack_C', stack_K', M) 232 * 2: <M blocks generated>** 233 * 2: <- Keystream 234 * 2: <- GenBytes 235 * 2:ExplicitBzero(stack_C', stack_K') 236 * 237 * The generated user keystream for both threads is identical between the two 238 * implementations: 239 * 240 * 1: Keystream(C_0, K_0, N) 1: Keystream(stack_C, stack_K, N) 241 * 2: Keystream(C'', K', M) 2: Keystream(stack_C', stack_K', M) 242 * 243 * (stack_C == C_0; stack_K == K_0; stack_C' == C''; stack_K' == K'.) 244 */ 245 static bool fortuna_concurrent_read __read_frequently = true; 246 247 #ifdef _KERNEL 248 static struct sysctl_ctx_list random_clist; 249 RANDOM_CHECK_UINT(fs_minpoolsize, RANDOM_FORTUNA_MINPOOLSIZE, RANDOM_FORTUNA_MAXPOOLSIZE); 250 #else 251 static uint8_t zero_region[RANDOM_ZERO_BLOCKSIZE]; 252 #endif 253 254 static void random_fortuna_pre_read(void); 255 static void random_fortuna_read(uint8_t *, size_t); 256 static bool random_fortuna_seeded(void); 257 static bool random_fortuna_seeded_internal(void); 258 static void random_fortuna_process_event(struct harvest_event *); 259 260 static void random_fortuna_reseed_internal(uint32_t *entropy_data, u_int blockcount); 261 262 #ifdef RANDOM_LOADABLE 263 static 264 #endif 265 const struct random_algorithm random_alg_context = { 266 .ra_ident = "Fortuna", 267 .ra_pre_read = random_fortuna_pre_read, 268 .ra_read = random_fortuna_read, 269 .ra_seeded = random_fortuna_seeded, 270 .ra_event_processor = random_fortuna_process_event, 271 .ra_poolcount = RANDOM_FORTUNA_NPOOLS, 272 }; 273 274 /* ARGSUSED */ 275 static void 276 random_fortuna_init_alg(void *unused __unused) 277 { 278 int i; 279 #ifdef _KERNEL 280 struct sysctl_oid *random_fortuna_o; 281 #endif 282 283 #ifdef RANDOM_LOADABLE 284 p_random_alg_context = &random_alg_context; 285 #endif 286 287 RANDOM_RESEED_INIT_LOCK(); 288 /* 289 * Fortuna parameters. Do not adjust these unless you have 290 * have a very good clue about what they do! 291 */ 292 fortuna_state.fs_minpoolsize = RANDOM_FORTUNA_DEFPOOLSIZE; 293 #ifdef _KERNEL 294 fortuna_state.fs_lasttime = 0; 295 random_fortuna_o = SYSCTL_ADD_NODE(&random_clist, 296 SYSCTL_STATIC_CHILDREN(_kern_random), 297 OID_AUTO, "fortuna", CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 298 "Fortuna Parameters"); 299 SYSCTL_ADD_PROC(&random_clist, 300 SYSCTL_CHILDREN(random_fortuna_o), OID_AUTO, "minpoolsize", 301 CTLTYPE_UINT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 302 &fortuna_state.fs_minpoolsize, RANDOM_FORTUNA_DEFPOOLSIZE, 303 random_check_uint_fs_minpoolsize, "IU", 304 "Minimum pool size necessary to cause a reseed"); 305 KASSERT(fortuna_state.fs_minpoolsize > 0, ("random: Fortuna threshold must be > 0 at startup")); 306 307 SYSCTL_ADD_BOOL(&random_clist, SYSCTL_CHILDREN(random_fortuna_o), 308 OID_AUTO, "concurrent_read", CTLFLAG_RDTUN, 309 &fortuna_concurrent_read, 0, "If non-zero, enable " 310 "feature to improve concurrent Fortuna performance."); 311 #endif 312 313 /*- 314 * FS&K - InitializePRNG() 315 * - P_i = \epsilon 316 * - ReseedCNT = 0 317 */ 318 for (i = 0; i < RANDOM_FORTUNA_NPOOLS; i++) { 319 randomdev_hash_init(&fortuna_state.fs_pool[i].fsp_hash); 320 fortuna_state.fs_pool[i].fsp_length = 0; 321 } 322 fortuna_state.fs_reseedcount = 0; 323 /*- 324 * FS&K - InitializeGenerator() 325 * - C = 0 326 * - K = 0 327 */ 328 fortuna_state.fs_counter = UINT128_ZERO; 329 explicit_bzero(&fortuna_state.fs_key, sizeof(fortuna_state.fs_key)); 330 } 331 SYSINIT(random_alg, SI_SUB_RANDOM, SI_ORDER_SECOND, random_fortuna_init_alg, 332 NULL); 333 334 /*- 335 * FS&K - AddRandomEvent() 336 * Process a single stochastic event off the harvest queue 337 */ 338 static void 339 random_fortuna_process_event(struct harvest_event *event) 340 { 341 u_int pl; 342 343 RANDOM_RESEED_LOCK(); 344 /* 345 * Run SP 800-90B health tests on the source if so configured. 346 */ 347 if (!random_harvest_healthtest(event)) { 348 RANDOM_RESEED_UNLOCK(); 349 return; 350 } 351 /*- 352 * FS&K - P_i = P_i|<harvested stuff> 353 * Accumulate the event into the appropriate pool 354 * where each event carries the destination information. 355 * 356 * The hash_init() and hash_finish() calls are done in 357 * random_fortuna_pre_read(). 358 * 359 * We must be locked against pool state modification which can happen 360 * during accumulation/reseeding and reading/regating. 361 */ 362 pl = event->he_destination % RANDOM_FORTUNA_NPOOLS; 363 /* 364 * If a VM generation ID changes (clone and play or VM rewind), we want 365 * to incorporate that as soon as possible. Override destingation pool 366 * for immediate next use. 367 */ 368 if (event->he_source == RANDOM_PURE_VMGENID) 369 pl = 0; 370 /* 371 * We ignore low entropy static/counter fields towards the end of the 372 * he_event structure in order to increase measurable entropy when 373 * conducting SP800-90B entropy analysis measurements of seed material 374 * fed into PRNG. 375 * -- wdf 376 */ 377 KASSERT(event->he_size <= sizeof(event->he_entropy), 378 ("%s: event->he_size: %hhu > sizeof(event->he_entropy): %zu\n", 379 __func__, event->he_size, sizeof(event->he_entropy))); 380 randomdev_hash_iterate(&fortuna_state.fs_pool[pl].fsp_hash, 381 &event->he_somecounter, sizeof(event->he_somecounter)); 382 randomdev_hash_iterate(&fortuna_state.fs_pool[pl].fsp_hash, 383 event->he_entropy, event->he_size); 384 385 /*- 386 * Don't wrap the length. This is a "saturating" add. 387 * XXX: FIX!!: We don't actually need lengths for anything but fs_pool[0], 388 * but it's been useful debugging to see them all. 389 */ 390 fortuna_state.fs_pool[pl].fsp_length = MIN(RANDOM_FORTUNA_MAXPOOLSIZE, 391 fortuna_state.fs_pool[pl].fsp_length + 392 sizeof(event->he_somecounter) + event->he_size); 393 RANDOM_RESEED_UNLOCK(); 394 } 395 396 /*- 397 * FS&K - Reseed() 398 * This introduces new key material into the output generator. 399 * Additionally it increments the output generator's counter 400 * variable C. When C > 0, the output generator is seeded and 401 * will deliver output. 402 * The entropy_data buffer passed is a very specific size; the 403 * product of RANDOM_FORTUNA_NPOOLS and RANDOM_KEYSIZE. 404 */ 405 static void 406 random_fortuna_reseed_internal(uint32_t *entropy_data, u_int blockcount) 407 { 408 struct randomdev_hash context; 409 uint8_t hash[RANDOM_KEYSIZE]; 410 const void *keymaterial; 411 size_t keysz; 412 bool seeded; 413 414 RANDOM_RESEED_ASSERT_LOCK_OWNED(); 415 416 seeded = random_fortuna_seeded_internal(); 417 if (seeded) { 418 randomdev_getkey(&fortuna_state.fs_key, &keymaterial, &keysz); 419 KASSERT(keysz == RANDOM_KEYSIZE, ("%s: key size %zu not %u", 420 __func__, keysz, (unsigned)RANDOM_KEYSIZE)); 421 } 422 423 /*- 424 * FS&K - K = Hd(K|s) where Hd(m) is H(H(0^512|m)) 425 * - C = C + 1 426 */ 427 randomdev_hash_init(&context); 428 randomdev_hash_iterate(&context, zero_region, RANDOM_ZERO_BLOCKSIZE); 429 if (seeded) 430 randomdev_hash_iterate(&context, keymaterial, keysz); 431 randomdev_hash_iterate(&context, entropy_data, RANDOM_KEYSIZE*blockcount); 432 randomdev_hash_finish(&context, hash); 433 randomdev_hash_init(&context); 434 randomdev_hash_iterate(&context, hash, RANDOM_KEYSIZE); 435 randomdev_hash_finish(&context, hash); 436 randomdev_encrypt_init(&fortuna_state.fs_key, hash); 437 explicit_bzero(hash, sizeof(hash)); 438 /* Unblock the device if this is the first time we are reseeding. */ 439 if (uint128_is_zero(fortuna_state.fs_counter)) 440 randomdev_unblock(); 441 uint128_increment(&fortuna_state.fs_counter); 442 } 443 444 /*- 445 * FS&K - RandomData() (Part 1) 446 * Used to return processed entropy from the PRNG. There is a pre_read 447 * required to be present (but it can be a stub) in order to allow 448 * specific actions at the begin of the read. 449 */ 450 void 451 random_fortuna_pre_read(void) 452 { 453 #ifdef _KERNEL 454 sbintime_t now; 455 #endif 456 struct randomdev_hash context; 457 uint32_t s[RANDOM_FORTUNA_NPOOLS*RANDOM_KEYSIZE_WORDS]; 458 uint8_t temp[RANDOM_KEYSIZE]; 459 u_int i; 460 461 KASSERT(fortuna_state.fs_minpoolsize > 0, ("random: Fortuna threshold must be > 0")); 462 RANDOM_RESEED_LOCK(); 463 #ifdef _KERNEL 464 /* FS&K - Use 'getsbinuptime()' to prevent reseed-spamming. */ 465 now = getsbinuptime(); 466 #endif 467 468 if (fortuna_state.fs_pool[0].fsp_length < fortuna_state.fs_minpoolsize 469 #ifdef _KERNEL 470 /* 471 * FS&K - Use 'getsbinuptime()' to prevent reseed-spamming, but do 472 * not block initial seeding (fs_lasttime == 0). 473 */ 474 || (__predict_true(fortuna_state.fs_lasttime != 0) && 475 now - fortuna_state.fs_lasttime <= SBT_1S/10) 476 #endif 477 ) { 478 RANDOM_RESEED_UNLOCK(); 479 return; 480 } 481 482 #ifdef _KERNEL 483 /* 484 * When set, pretend we do not have enough entropy to reseed yet. 485 */ 486 KFAIL_POINT_CODE(DEBUG_FP, random_fortuna_pre_read, { 487 if (RETURN_VALUE != 0) { 488 RANDOM_RESEED_UNLOCK(); 489 return; 490 } 491 }); 492 #endif 493 494 #ifdef _KERNEL 495 fortuna_state.fs_lasttime = now; 496 #endif 497 498 /* FS&K - ReseedCNT = ReseedCNT + 1 */ 499 fortuna_state.fs_reseedcount++; 500 /* s = \epsilon at start */ 501 for (i = 0; i < RANDOM_FORTUNA_NPOOLS; i++) { 502 /* FS&K - if Divides(ReseedCnt, 2^i) ... */ 503 if ((fortuna_state.fs_reseedcount % (1 << i)) == 0) { 504 /*- 505 * FS&K - temp = (P_i) 506 * - P_i = \epsilon 507 * - s = s|H(temp) 508 */ 509 randomdev_hash_finish(&fortuna_state.fs_pool[i].fsp_hash, temp); 510 randomdev_hash_init(&fortuna_state.fs_pool[i].fsp_hash); 511 fortuna_state.fs_pool[i].fsp_length = 0; 512 randomdev_hash_init(&context); 513 randomdev_hash_iterate(&context, temp, RANDOM_KEYSIZE); 514 randomdev_hash_finish(&context, s + i*RANDOM_KEYSIZE_WORDS); 515 } else 516 break; 517 } 518 #ifdef _KERNEL 519 SDT_PROBE2(random, fortuna, event_processor, debug, fortuna_state.fs_reseedcount, fortuna_state.fs_pool); 520 #endif 521 /* FS&K */ 522 random_fortuna_reseed_internal(s, i); 523 RANDOM_RESEED_UNLOCK(); 524 525 /* Clean up and secure */ 526 explicit_bzero(s, sizeof(s)); 527 explicit_bzero(temp, sizeof(temp)); 528 } 529 530 /* 531 * This is basically GenerateBlocks() from FS&K. 532 * 533 * It differs in two ways: 534 * 535 * 1. Chacha20 is tolerant of non-block-multiple request sizes, so we do not 536 * need to handle any remainder bytes specially and can just pass the length 537 * directly to the PRF construction; and 538 * 539 * 2. Chacha20 is a 512-bit block size cipher (whereas AES has 128-bit block 540 * size, regardless of key size). This means Chacha does not require re-keying 541 * every 1MiB. This is implied by the math in FS&K 9.4 and mentioned 542 * explicitly in the conclusion, "If we had a block cipher with a 256-bit [or 543 * greater] block size, then the collisions would not have been an issue at 544 * all" (p. 144). 545 * 546 * 3. In conventional ("locked") mode, we produce a maximum of PAGE_SIZE output 547 * at a time before dropping the lock, to not bully the lock especially. This 548 * has been the status quo since 2015 (r284959). 549 * 550 * The upstream caller random_fortuna_read is responsible for zeroing out 551 * sensitive buffers provided as parameters to this routine. 552 */ 553 enum { 554 FORTUNA_UNLOCKED = false, 555 FORTUNA_LOCKED = true 556 }; 557 static void 558 random_fortuna_genbytes(uint8_t *buf, size_t bytecount, 559 uint8_t newkey[static RANDOM_KEYSIZE], uint128_t *p_counter, 560 union randomdev_key *p_key, bool locked) 561 { 562 uint8_t remainder_buf[RANDOM_BLOCKSIZE]; 563 size_t chunk_size; 564 565 if (locked) 566 RANDOM_RESEED_ASSERT_LOCK_OWNED(); 567 else 568 RANDOM_RESEED_ASSERT_LOCK_NOT_OWNED(); 569 570 /* 571 * Easy case: don't have to worry about bullying the global mutex, 572 * don't have to worry about rekeying Chacha; API is byte-oriented. 573 */ 574 if (!locked && random_chachamode) { 575 randomdev_keystream(p_key, p_counter, buf, bytecount); 576 return; 577 } 578 579 if (locked) { 580 /* 581 * While holding the global lock, limit PRF generation to 582 * mitigate, but not eliminate, bullying symptoms. 583 */ 584 chunk_size = PAGE_SIZE; 585 } else { 586 /* 587 * 128-bit block ciphers like AES must be re-keyed at 1MB 588 * intervals to avoid unacceptable statistical differentiation 589 * from true random data (FS&K 9.4, p. 143-144). 590 */ 591 MPASS(!random_chachamode); 592 chunk_size = RANDOM_FORTUNA_MAX_READ; 593 } 594 595 chunk_size = MIN(bytecount, chunk_size); 596 if (!random_chachamode) 597 chunk_size = rounddown(chunk_size, RANDOM_BLOCKSIZE); 598 599 while (bytecount >= chunk_size && chunk_size > 0) { 600 randomdev_keystream(p_key, p_counter, buf, chunk_size); 601 602 buf += chunk_size; 603 bytecount -= chunk_size; 604 605 /* We have to rekey if there is any data remaining to be 606 * generated, in two scenarios: 607 * 608 * locked: we need to rekey before we unlock and release the 609 * global state to another consumer; or 610 * 611 * unlocked: we need to rekey because we're in AES mode and are 612 * required to rekey at chunk_size==1MB. But we do not need to 613 * rekey during the last trailing <1MB chunk. 614 */ 615 if (bytecount > 0) { 616 if (locked || chunk_size == RANDOM_FORTUNA_MAX_READ) { 617 randomdev_keystream(p_key, p_counter, newkey, 618 RANDOM_KEYSIZE); 619 randomdev_encrypt_init(p_key, newkey); 620 } 621 622 /* 623 * If we're holding the global lock, yield it briefly 624 * now. 625 */ 626 if (locked) { 627 RANDOM_RESEED_UNLOCK(); 628 RANDOM_RESEED_LOCK(); 629 } 630 631 /* 632 * At the trailing end, scale down chunk_size from 1MB or 633 * PAGE_SIZE to all remaining full blocks (AES) or all 634 * remaining bytes (Chacha). 635 */ 636 if (bytecount < chunk_size) { 637 if (random_chachamode) 638 chunk_size = bytecount; 639 else if (bytecount >= RANDOM_BLOCKSIZE) 640 chunk_size = rounddown(bytecount, 641 RANDOM_BLOCKSIZE); 642 else 643 break; 644 } 645 } 646 } 647 648 /* 649 * Generate any partial AES block remaining into a temporary buffer and 650 * copy the desired substring out. 651 */ 652 if (bytecount > 0) { 653 MPASS(!random_chachamode); 654 655 randomdev_keystream(p_key, p_counter, remainder_buf, 656 sizeof(remainder_buf)); 657 } 658 659 /* 660 * In locked mode, re-key global K before dropping the lock, which we 661 * don't need for memcpy/bzero below. 662 */ 663 if (locked) { 664 randomdev_keystream(p_key, p_counter, newkey, RANDOM_KEYSIZE); 665 randomdev_encrypt_init(p_key, newkey); 666 RANDOM_RESEED_UNLOCK(); 667 } 668 669 if (bytecount > 0) { 670 memcpy(buf, remainder_buf, bytecount); 671 explicit_bzero(remainder_buf, sizeof(remainder_buf)); 672 } 673 } 674 675 676 /* 677 * Handle only "concurrency-enabled" Fortuna reads to simplify logic. 678 * 679 * Caller (random_fortuna_read) is responsible for zeroing out sensitive 680 * buffers provided as parameters to this routine. 681 */ 682 static void 683 random_fortuna_read_concurrent(uint8_t *buf, size_t bytecount, 684 uint8_t newkey[static RANDOM_KEYSIZE]) 685 { 686 union randomdev_key key_copy; 687 uint128_t counter_copy; 688 size_t blockcount; 689 690 MPASS(fortuna_concurrent_read); 691 692 /* 693 * Compute number of blocks required for the PRF request ('delta C'). 694 * We will step the global counter 'C' by this number under lock, and 695 * then actually consume the counter values outside the lock. 696 * 697 * This ensures that contemporaneous but independent requests for 698 * randomness receive distinct 'C' values and thus independent PRF 699 * results. 700 */ 701 if (random_chachamode) { 702 blockcount = howmany(bytecount, CHACHA_BLOCKLEN); 703 } else { 704 blockcount = howmany(bytecount, RANDOM_BLOCKSIZE); 705 706 /* 707 * Need to account for the additional blocks generated by 708 * rekeying when updating the global fs_counter. 709 */ 710 blockcount += RANDOM_KEYS_PER_BLOCK * 711 (blockcount / RANDOM_FORTUNA_BLOCKS_PER_KEY); 712 } 713 714 RANDOM_RESEED_LOCK(); 715 KASSERT(!uint128_is_zero(fortuna_state.fs_counter), ("FS&K: C != 0")); 716 717 /* 718 * Save the original counter and key values that will be used as the 719 * PRF for this particular consumer. 720 */ 721 memcpy(&counter_copy, &fortuna_state.fs_counter, sizeof(counter_copy)); 722 memcpy(&key_copy, &fortuna_state.fs_key, sizeof(key_copy)); 723 724 /* 725 * Step the counter as if we had generated 'bytecount' blocks for this 726 * consumer. I.e., ensure that the next consumer gets an independent 727 * range of counter values once we drop the global lock. 728 */ 729 uint128_add64(&fortuna_state.fs_counter, blockcount); 730 731 /* 732 * We still need to Rekey the global 'K' between independent calls; 733 * this is no different from conventional Fortuna. Note that 734 * 'randomdev_keystream()' will step the fs_counter 'C' appropriately 735 * for the blocks needed for the 'newkey'. 736 * 737 * (This is part of PseudoRandomData() in FS&K, 9.4.4.) 738 */ 739 randomdev_keystream(&fortuna_state.fs_key, &fortuna_state.fs_counter, 740 newkey, RANDOM_KEYSIZE); 741 randomdev_encrypt_init(&fortuna_state.fs_key, newkey); 742 743 /* 744 * We have everything we need to generate a unique PRF for this 745 * consumer without touching global state. 746 */ 747 RANDOM_RESEED_UNLOCK(); 748 749 random_fortuna_genbytes(buf, bytecount, newkey, &counter_copy, 750 &key_copy, FORTUNA_UNLOCKED); 751 RANDOM_RESEED_ASSERT_LOCK_NOT_OWNED(); 752 753 explicit_bzero(&counter_copy, sizeof(counter_copy)); 754 explicit_bzero(&key_copy, sizeof(key_copy)); 755 } 756 757 /*- 758 * FS&K - RandomData() (Part 2) 759 * Main read from Fortuna, continued. May be called multiple times after 760 * the random_fortuna_pre_read() above. 761 * 762 * The supplied buf MAY not be a multiple of RANDOM_BLOCKSIZE in size; it is 763 * the responsibility of the algorithm to accommodate partial block reads, if a 764 * block output mode is used. 765 */ 766 void 767 random_fortuna_read(uint8_t *buf, size_t bytecount) 768 { 769 uint8_t newkey[RANDOM_KEYSIZE]; 770 771 if (fortuna_concurrent_read) { 772 random_fortuna_read_concurrent(buf, bytecount, newkey); 773 goto out; 774 } 775 776 RANDOM_RESEED_LOCK(); 777 KASSERT(!uint128_is_zero(fortuna_state.fs_counter), ("FS&K: C != 0")); 778 779 random_fortuna_genbytes(buf, bytecount, newkey, 780 &fortuna_state.fs_counter, &fortuna_state.fs_key, FORTUNA_LOCKED); 781 /* Returns unlocked */ 782 RANDOM_RESEED_ASSERT_LOCK_NOT_OWNED(); 783 784 out: 785 explicit_bzero(newkey, sizeof(newkey)); 786 } 787 788 #ifdef _KERNEL 789 static bool block_seeded_status = false; 790 SYSCTL_BOOL(_kern_random, OID_AUTO, block_seeded_status, CTLFLAG_RWTUN, 791 &block_seeded_status, 0, 792 "If non-zero, pretend Fortuna is in an unseeded state. By setting " 793 "this as a tunable, boot can be tested as if the random device is " 794 "unavailable."); 795 #endif 796 797 static bool 798 random_fortuna_seeded_internal(void) 799 { 800 return (!uint128_is_zero(fortuna_state.fs_counter)); 801 } 802 803 static bool 804 random_fortuna_seeded(void) 805 { 806 807 #ifdef _KERNEL 808 if (block_seeded_status) 809 return (false); 810 #endif 811 812 if (__predict_true(random_fortuna_seeded_internal())) 813 return (true); 814 815 /* 816 * Maybe we have enough entropy in the zeroth pool but just haven't 817 * kicked the initial seed step. Do so now. 818 */ 819 random_fortuna_pre_read(); 820 821 return (random_fortuna_seeded_internal()); 822 } 823