xref: /freebsd/sys/dev/random/fortuna.c (revision f92ff79720fb60ac5ea2488dfb3f1818361a1544)
1 /*-
2  * Copyright (c) 2017 W. Dean Freeman
3  * Copyright (c) 2013-2015 Mark R V Murray
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer
11  *    in this position and unchanged.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  */
28 
29 /*
30  * This implementation of Fortuna is based on the descriptions found in
31  * ISBN 978-0-470-47424-2 "Cryptography Engineering" by Ferguson, Schneier
32  * and Kohno ("FS&K").
33  */
34 
35 #include <sys/param.h>
36 #include <sys/limits.h>
37 
38 #ifdef _KERNEL
39 #include <sys/fail.h>
40 #include <sys/kernel.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mutex.h>
44 #include <sys/random.h>
45 #include <sys/sdt.h>
46 #include <sys/sysctl.h>
47 #include <sys/systm.h>
48 
49 #include <machine/cpu.h>
50 #else /* !_KERNEL */
51 #include <inttypes.h>
52 #include <stdbool.h>
53 #include <stdio.h>
54 #include <stdlib.h>
55 #include <string.h>
56 #include <threads.h>
57 
58 #include "unit_test.h"
59 #endif /* _KERNEL */
60 
61 #include <crypto/chacha20/chacha.h>
62 #include <crypto/rijndael/rijndael-api-fst.h>
63 #include <crypto/sha2/sha256.h>
64 
65 #include <dev/random/hash.h>
66 #include <dev/random/randomdev.h>
67 #ifdef _KERNEL
68 #include <dev/random/random_harvestq.h>
69 #endif
70 #include <dev/random/uint128.h>
71 #include <dev/random/fortuna.h>
72 
73 /* Defined in FS&K */
74 #define	RANDOM_FORTUNA_MAX_READ (1 << 20)	/* Max bytes from AES before rekeying */
75 #define	RANDOM_FORTUNA_BLOCKS_PER_KEY (1 << 16)	/* Max blocks from AES before rekeying */
76 CTASSERT(RANDOM_FORTUNA_BLOCKS_PER_KEY * RANDOM_BLOCKSIZE ==
77     RANDOM_FORTUNA_MAX_READ);
78 
79 /*
80  * The allowable range of RANDOM_FORTUNA_DEFPOOLSIZE. The default value is above.
81  * Making RANDOM_FORTUNA_DEFPOOLSIZE too large will mean a long time between reseeds,
82  * and too small may compromise initial security but get faster reseeds.
83  */
84 #define	RANDOM_FORTUNA_MINPOOLSIZE 16
85 #define	RANDOM_FORTUNA_MAXPOOLSIZE INT_MAX
86 CTASSERT(RANDOM_FORTUNA_MINPOOLSIZE <= RANDOM_FORTUNA_DEFPOOLSIZE);
87 CTASSERT(RANDOM_FORTUNA_DEFPOOLSIZE <= RANDOM_FORTUNA_MAXPOOLSIZE);
88 
89 /* This algorithm (and code) presumes that RANDOM_KEYSIZE is twice as large as RANDOM_BLOCKSIZE */
90 CTASSERT(RANDOM_BLOCKSIZE == sizeof(uint128_t));
91 CTASSERT(RANDOM_KEYSIZE == 2*RANDOM_BLOCKSIZE);
92 
93 /* Probes for dtrace(1) */
94 #ifdef _KERNEL
95 SDT_PROVIDER_DECLARE(random);
96 SDT_PROVIDER_DEFINE(random);
97 SDT_PROBE_DEFINE2(random, fortuna, event_processor, debug, "u_int", "struct fs_pool *");
98 #endif /* _KERNEL */
99 
100 /*
101  * This is the beastie that needs protecting. It contains all of the
102  * state that we are excited about. Exactly one is instantiated.
103  */
104 static struct fortuna_state {
105 	struct fs_pool {		/* P_i */
106 		u_int fsp_length;	/* Only the first one is used by Fortuna */
107 		struct randomdev_hash fsp_hash;
108 	} fs_pool[RANDOM_FORTUNA_NPOOLS];
109 	u_int fs_reseedcount;		/* ReseedCnt */
110 	uint128_t fs_counter;		/* C */
111 	union randomdev_key fs_key;	/* K */
112 	u_int fs_minpoolsize;		/* Extras */
113 	/* Extras for the OS */
114 #ifdef _KERNEL
115 	/* For use when 'pacing' the reseeds */
116 	sbintime_t fs_lasttime;
117 #endif
118 	/* Reseed lock */
119 	mtx_t fs_mtx;
120 } fortuna_state;
121 
122 /*
123  * This knob enables or disables the "Concurrent Reads" Fortuna feature.
124  *
125  * The benefit of Concurrent Reads is improved concurrency in Fortuna.  That is
126  * reflected in two related aspects:
127  *
128  * 1. Concurrent full-rate devrandom readers can achieve similar throughput to
129  *    a single reader thread (at least up to a modest number of cores; the
130  *    non-concurrent design falls over at 2 readers).
131  *
132  * 2. The rand_harvestq process spends much less time spinning when one or more
133  *    readers is processing a large request.  Partially this is due to
134  *    rand_harvestq / ra_event_processor design, which only passes one event at
135  *    a time to the underlying algorithm.  Each time, Fortuna must take its
136  *    global state mutex, potentially blocking on a reader.  Our adaptive
137  *    mutexes assume that a lock holder currently on CPU will release the lock
138  *    quickly, and spin if the owning thread is currently running.
139  *
140  *    (There is no reason rand_harvestq necessarily has to use the same lock as
141  *    the generator, or that it must necessarily drop and retake locks
142  *    repeatedly, but that is the current status quo.)
143  *
144  * The concern is that the reduced lock scope might results in a less safe
145  * random(4) design.  However, the reduced-lock scope design is still
146  * fundamentally Fortuna.  This is discussed below.
147  *
148  * Fortuna Read() only needs mutual exclusion between readers to correctly
149  * update the shared read-side state: C, the 128-bit counter; and K, the
150  * current cipher/PRF key.
151  *
152  * In the Fortuna design, the global counter C should provide an independent
153  * range of values per request.
154  *
155  * Under lock, we can save a copy of C on the stack, and increment the global C
156  * by the number of blocks a Read request will require.
157  *
158  * Still under lock, we can save a copy of the key K on the stack, and then
159  * perform the usual key erasure K' <- Keystream(C, K, ...).  This does require
160  * generating 256 bits (32 bytes) of cryptographic keystream output with the
161  * global lock held, but that's all; none of the API keystream generation must
162  * be performed under lock.
163  *
164  * At this point, we may unlock.
165  *
166  * Some example timelines below (to oversimplify, all requests are in units of
167  * native blocks, and the keysize happens to be equal or less to the native
168  * blocksize of the underlying cipher, and the same sequence of two requests
169  * arrive in the same order).  The possibly expensive consumer keystream
170  * generation portion is marked with '**'.
171  *
172  * Status Quo fortuna_read()           Reduced-scope locking
173  * -------------------------           ---------------------
174  * C=C_0, K=K_0                        C=C_0, K=K_0
175  * <Thr 1 requests N blocks>           <Thr 1 requests N blocks>
176  * 1:Lock()                            1:Lock()
177  * <Thr 2 requests M blocks>           <Thr 2 requests M blocks>
178  * 1:GenBytes()                        1:stack_C := C_0
179  * 1:  Keystream(C_0, K_0, N)          1:stack_K := K_0
180  * 1:    <N blocks generated>**        1:C' := C_0 + N
181  * 1:    C' := C_0 + N                 1:K' := Keystream(C', K_0, 1)
182  * 1:    <- Keystream                  1:  <1 block generated>
183  * 1:  K' := Keystream(C', K_0, 1)     1:  C'' := C' + 1
184  * 1:    <1 block generated>           1:  <- Keystream
185  * 1:    C'' := C' + 1                 1:Unlock()
186  * 1:    <- Keystream
187  * 1:  <- GenBytes()
188  * 1:Unlock()
189  *
190  * Just prior to unlock, shared state is identical:
191  * ------------------------------------------------
192  * C'' == C_0 + N + 1                  C'' == C_0 + N + 1
193  * K' == keystream generated from      K' == keystream generated from
194  *       C_0 + N, K_0.                       C_0 + N, K_0.
195  * K_0 has been erased.                K_0 has been erased.
196  *
197  * After both designs unlock, the 2nd reader is unblocked.
198  *
199  * 2:Lock()                            2:Lock()
200  * 2:GenBytes()                        2:stack_C' := C''
201  * 2:  Keystream(C'', K', M)           2:stack_K' := K'
202  * 2:    <M blocks generated>**        2:C''' := C'' + M
203  * 2:    C''' := C'' + M               2:K'' := Keystream(C''', K', 1)
204  * 2:    <- Keystream                  2:  <1 block generated>
205  * 2:  K'' := Keystream(C''', K', 1)   2:  C'''' := C''' + 1
206  * 2:    <1 block generated>           2:  <- Keystream
207  * 2:    C'''' := C''' + 1             2:Unlock()
208  * 2:    <- Keystream
209  * 2:  <- GenBytes()
210  * 2:Unlock()
211  *
212  * Just prior to unlock, global state is identical:
213  * ------------------------------------------------------
214  *
215  * C'''' == (C_0 + N + 1) + M + 1      C'''' == (C_0 + N + 1) + M + 1
216  * K'' == keystream generated from     K'' == keystream generated from
217  *        C_0 + N + 1 + M, K'.                C_0 + N + 1 + M, K'.
218  * K' has been erased.                 K' has been erased.
219  *
220  * Finally, in the new design, the two consumer threads can finish the
221  * remainder of the generation at any time (including simultaneously):
222  *
223  *                                     1:  GenBytes()
224  *                                     1:    Keystream(stack_C, stack_K, N)
225  *                                     1:      <N blocks generated>**
226  *                                     1:    <- Keystream
227  *                                     1:  <- GenBytes
228  *                                     1:ExplicitBzero(stack_C, stack_K)
229  *
230  *                                     2:  GenBytes()
231  *                                     2:    Keystream(stack_C', stack_K', M)
232  *                                     2:      <M blocks generated>**
233  *                                     2:    <- Keystream
234  *                                     2:  <- GenBytes
235  *                                     2:ExplicitBzero(stack_C', stack_K')
236  *
237  * The generated user keystream for both threads is identical between the two
238  * implementations:
239  *
240  * 1: Keystream(C_0, K_0, N)           1: Keystream(stack_C, stack_K, N)
241  * 2: Keystream(C'', K', M)            2: Keystream(stack_C', stack_K', M)
242  *
243  * (stack_C == C_0; stack_K == K_0; stack_C' == C''; stack_K' == K'.)
244  */
245 static bool fortuna_concurrent_read __read_frequently = true;
246 
247 #ifdef _KERNEL
248 static struct sysctl_ctx_list random_clist;
249 RANDOM_CHECK_UINT(fs_minpoolsize, RANDOM_FORTUNA_MINPOOLSIZE, RANDOM_FORTUNA_MAXPOOLSIZE);
250 #else
251 static uint8_t zero_region[RANDOM_ZERO_BLOCKSIZE];
252 #endif
253 
254 static void random_fortuna_pre_read(void);
255 static void random_fortuna_read(uint8_t *, size_t);
256 static bool random_fortuna_seeded(void);
257 static bool random_fortuna_seeded_internal(void);
258 static void random_fortuna_process_event(struct harvest_event *);
259 
260 static void random_fortuna_reseed_internal(uint32_t *entropy_data, u_int blockcount);
261 
262 #ifdef RANDOM_LOADABLE
263 static
264 #endif
265 const struct random_algorithm random_alg_context = {
266 	.ra_ident = "Fortuna",
267 	.ra_pre_read = random_fortuna_pre_read,
268 	.ra_read = random_fortuna_read,
269 	.ra_seeded = random_fortuna_seeded,
270 	.ra_event_processor = random_fortuna_process_event,
271 	.ra_poolcount = RANDOM_FORTUNA_NPOOLS,
272 };
273 
274 /* ARGSUSED */
275 static void
276 random_fortuna_init_alg(void *unused __unused)
277 {
278 	int i;
279 #ifdef _KERNEL
280 	struct sysctl_oid *random_fortuna_o;
281 #endif
282 
283 #ifdef RANDOM_LOADABLE
284 	p_random_alg_context = &random_alg_context;
285 #endif
286 
287 	RANDOM_RESEED_INIT_LOCK();
288 	/*
289 	 * Fortuna parameters. Do not adjust these unless you have
290 	 * have a very good clue about what they do!
291 	 */
292 	fortuna_state.fs_minpoolsize = RANDOM_FORTUNA_DEFPOOLSIZE;
293 #ifdef _KERNEL
294 	fortuna_state.fs_lasttime = 0;
295 	random_fortuna_o = SYSCTL_ADD_NODE(&random_clist,
296 		SYSCTL_STATIC_CHILDREN(_kern_random),
297 		OID_AUTO, "fortuna", CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
298 		"Fortuna Parameters");
299 	SYSCTL_ADD_PROC(&random_clist,
300 	    SYSCTL_CHILDREN(random_fortuna_o), OID_AUTO, "minpoolsize",
301 	    CTLTYPE_UINT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE,
302 	    &fortuna_state.fs_minpoolsize, RANDOM_FORTUNA_DEFPOOLSIZE,
303 	    random_check_uint_fs_minpoolsize, "IU",
304 	    "Minimum pool size necessary to cause a reseed");
305 	KASSERT(fortuna_state.fs_minpoolsize > 0, ("random: Fortuna threshold must be > 0 at startup"));
306 
307 	SYSCTL_ADD_BOOL(&random_clist, SYSCTL_CHILDREN(random_fortuna_o),
308 	    OID_AUTO, "concurrent_read", CTLFLAG_RDTUN,
309 	    &fortuna_concurrent_read, 0, "If non-zero, enable "
310 	    "feature to improve concurrent Fortuna performance.");
311 #endif
312 
313 	/*-
314 	 * FS&K - InitializePRNG()
315 	 *      - P_i = \epsilon
316 	 *      - ReseedCNT = 0
317 	 */
318 	for (i = 0; i < RANDOM_FORTUNA_NPOOLS; i++) {
319 		randomdev_hash_init(&fortuna_state.fs_pool[i].fsp_hash);
320 		fortuna_state.fs_pool[i].fsp_length = 0;
321 	}
322 	fortuna_state.fs_reseedcount = 0;
323 	/*-
324 	 * FS&K - InitializeGenerator()
325 	 *      - C = 0
326 	 *      - K = 0
327 	 */
328 	fortuna_state.fs_counter = UINT128_ZERO;
329 	explicit_bzero(&fortuna_state.fs_key, sizeof(fortuna_state.fs_key));
330 }
331 SYSINIT(random_alg, SI_SUB_RANDOM, SI_ORDER_SECOND, random_fortuna_init_alg,
332     NULL);
333 
334 /*-
335  * FS&K - AddRandomEvent()
336  * Process a single stochastic event off the harvest queue
337  */
338 static void
339 random_fortuna_process_event(struct harvest_event *event)
340 {
341 	u_int pl;
342 
343 	RANDOM_RESEED_LOCK();
344 	/*
345 	 * Run SP 800-90B health tests on the source if so configured.
346 	 */
347 	if (!random_harvest_healthtest(event)) {
348 		RANDOM_RESEED_UNLOCK();
349 		return;
350 	}
351 	/*-
352 	 * FS&K - P_i = P_i|<harvested stuff>
353 	 * Accumulate the event into the appropriate pool
354 	 * where each event carries the destination information.
355 	 *
356 	 * The hash_init() and hash_finish() calls are done in
357 	 * random_fortuna_pre_read().
358 	 *
359 	 * We must be locked against pool state modification which can happen
360 	 * during accumulation/reseeding and reading/regating.
361 	 */
362 	pl = event->he_destination % RANDOM_FORTUNA_NPOOLS;
363 	/*
364 	 * If a VM generation ID changes (clone and play or VM rewind), we want
365 	 * to incorporate that as soon as possible.  Override destingation pool
366 	 * for immediate next use.
367 	 */
368 	if (event->he_source == RANDOM_PURE_VMGENID)
369 		pl = 0;
370 	/*
371 	 * We ignore low entropy static/counter fields towards the end of the
372 	 * he_event structure in order to increase measurable entropy when
373 	 * conducting SP800-90B entropy analysis measurements of seed material
374 	 * fed into PRNG.
375 	 * -- wdf
376 	 */
377 	KASSERT(event->he_size <= sizeof(event->he_entropy),
378 	    ("%s: event->he_size: %hhu > sizeof(event->he_entropy): %zu\n",
379 	    __func__, event->he_size, sizeof(event->he_entropy)));
380 	randomdev_hash_iterate(&fortuna_state.fs_pool[pl].fsp_hash,
381 	    &event->he_somecounter, sizeof(event->he_somecounter));
382 	randomdev_hash_iterate(&fortuna_state.fs_pool[pl].fsp_hash,
383 	    event->he_entropy, event->he_size);
384 
385 	/*-
386 	 * Don't wrap the length.  This is a "saturating" add.
387 	 * XXX: FIX!!: We don't actually need lengths for anything but fs_pool[0],
388 	 * but it's been useful debugging to see them all.
389 	 */
390 	fortuna_state.fs_pool[pl].fsp_length = MIN(RANDOM_FORTUNA_MAXPOOLSIZE,
391 	    fortuna_state.fs_pool[pl].fsp_length +
392 	    sizeof(event->he_somecounter) + event->he_size);
393 	RANDOM_RESEED_UNLOCK();
394 }
395 
396 /*-
397  * FS&K - Reseed()
398  * This introduces new key material into the output generator.
399  * Additionally it increments the output generator's counter
400  * variable C. When C > 0, the output generator is seeded and
401  * will deliver output.
402  * The entropy_data buffer passed is a very specific size; the
403  * product of RANDOM_FORTUNA_NPOOLS and RANDOM_KEYSIZE.
404  */
405 static void
406 random_fortuna_reseed_internal(uint32_t *entropy_data, u_int blockcount)
407 {
408 	struct randomdev_hash context;
409 	uint8_t hash[RANDOM_KEYSIZE];
410 	const void *keymaterial;
411 	size_t keysz;
412 	bool seeded;
413 
414 	RANDOM_RESEED_ASSERT_LOCK_OWNED();
415 
416 	seeded = random_fortuna_seeded_internal();
417 	if (seeded) {
418 		randomdev_getkey(&fortuna_state.fs_key, &keymaterial, &keysz);
419 		KASSERT(keysz == RANDOM_KEYSIZE, ("%s: key size %zu not %u",
420 			__func__, keysz, (unsigned)RANDOM_KEYSIZE));
421 	}
422 
423 	/*-
424 	 * FS&K - K = Hd(K|s) where Hd(m) is H(H(0^512|m))
425 	 *      - C = C + 1
426 	 */
427 	randomdev_hash_init(&context);
428 	randomdev_hash_iterate(&context, zero_region, RANDOM_ZERO_BLOCKSIZE);
429 	if (seeded)
430 		randomdev_hash_iterate(&context, keymaterial, keysz);
431 	randomdev_hash_iterate(&context, entropy_data, RANDOM_KEYSIZE*blockcount);
432 	randomdev_hash_finish(&context, hash);
433 	randomdev_hash_init(&context);
434 	randomdev_hash_iterate(&context, hash, RANDOM_KEYSIZE);
435 	randomdev_hash_finish(&context, hash);
436 	randomdev_encrypt_init(&fortuna_state.fs_key, hash);
437 	explicit_bzero(hash, sizeof(hash));
438 	/* Unblock the device if this is the first time we are reseeding. */
439 	if (uint128_is_zero(fortuna_state.fs_counter))
440 		randomdev_unblock();
441 	uint128_increment(&fortuna_state.fs_counter);
442 }
443 
444 /*-
445  * FS&K - RandomData() (Part 1)
446  * Used to return processed entropy from the PRNG. There is a pre_read
447  * required to be present (but it can be a stub) in order to allow
448  * specific actions at the begin of the read.
449  */
450 void
451 random_fortuna_pre_read(void)
452 {
453 #ifdef _KERNEL
454 	sbintime_t now;
455 #endif
456 	struct randomdev_hash context;
457 	uint32_t s[RANDOM_FORTUNA_NPOOLS*RANDOM_KEYSIZE_WORDS];
458 	uint8_t temp[RANDOM_KEYSIZE];
459 	u_int i;
460 
461 	KASSERT(fortuna_state.fs_minpoolsize > 0, ("random: Fortuna threshold must be > 0"));
462 	RANDOM_RESEED_LOCK();
463 #ifdef _KERNEL
464 	/* FS&K - Use 'getsbinuptime()' to prevent reseed-spamming. */
465 	now = getsbinuptime();
466 #endif
467 
468 	if (fortuna_state.fs_pool[0].fsp_length < fortuna_state.fs_minpoolsize
469 #ifdef _KERNEL
470 	    /*
471 	     * FS&K - Use 'getsbinuptime()' to prevent reseed-spamming, but do
472 	     * not block initial seeding (fs_lasttime == 0).
473 	     */
474 	    || (__predict_true(fortuna_state.fs_lasttime != 0) &&
475 		now - fortuna_state.fs_lasttime <= SBT_1S/10)
476 #endif
477 	) {
478 		RANDOM_RESEED_UNLOCK();
479 		return;
480 	}
481 
482 #ifdef _KERNEL
483 	/*
484 	 * When set, pretend we do not have enough entropy to reseed yet.
485 	 */
486 	KFAIL_POINT_CODE(DEBUG_FP, random_fortuna_pre_read, {
487 		if (RETURN_VALUE != 0) {
488 			RANDOM_RESEED_UNLOCK();
489 			return;
490 		}
491 	});
492 #endif
493 
494 #ifdef _KERNEL
495 	fortuna_state.fs_lasttime = now;
496 #endif
497 
498 	/* FS&K - ReseedCNT = ReseedCNT + 1 */
499 	fortuna_state.fs_reseedcount++;
500 	/* s = \epsilon at start */
501 	for (i = 0; i < RANDOM_FORTUNA_NPOOLS; i++) {
502 		/* FS&K - if Divides(ReseedCnt, 2^i) ... */
503 		if ((fortuna_state.fs_reseedcount % (1 << i)) == 0) {
504 			/*-
505 			    * FS&K - temp = (P_i)
506 			    *      - P_i = \epsilon
507 			    *      - s = s|H(temp)
508 			    */
509 			randomdev_hash_finish(&fortuna_state.fs_pool[i].fsp_hash, temp);
510 			randomdev_hash_init(&fortuna_state.fs_pool[i].fsp_hash);
511 			fortuna_state.fs_pool[i].fsp_length = 0;
512 			randomdev_hash_init(&context);
513 			randomdev_hash_iterate(&context, temp, RANDOM_KEYSIZE);
514 			randomdev_hash_finish(&context, s + i*RANDOM_KEYSIZE_WORDS);
515 		} else
516 			break;
517 	}
518 #ifdef _KERNEL
519 	SDT_PROBE2(random, fortuna, event_processor, debug, fortuna_state.fs_reseedcount, fortuna_state.fs_pool);
520 #endif
521 	/* FS&K */
522 	random_fortuna_reseed_internal(s, i);
523 	RANDOM_RESEED_UNLOCK();
524 
525 	/* Clean up and secure */
526 	explicit_bzero(s, sizeof(s));
527 	explicit_bzero(temp, sizeof(temp));
528 }
529 
530 /*
531  * This is basically GenerateBlocks() from FS&K.
532  *
533  * It differs in two ways:
534  *
535  * 1. Chacha20 is tolerant of non-block-multiple request sizes, so we do not
536  * need to handle any remainder bytes specially and can just pass the length
537  * directly to the PRF construction; and
538  *
539  * 2. Chacha20 is a 512-bit block size cipher (whereas AES has 128-bit block
540  * size, regardless of key size).  This means Chacha does not require re-keying
541  * every 1MiB.  This is implied by the math in FS&K 9.4 and mentioned
542  * explicitly in the conclusion, "If we had a block cipher with a 256-bit [or
543  * greater] block size, then the collisions would not have been an issue at
544  * all" (p. 144).
545  *
546  * 3. In conventional ("locked") mode, we produce a maximum of PAGE_SIZE output
547  * at a time before dropping the lock, to not bully the lock especially.  This
548  * has been the status quo since 2015 (r284959).
549  *
550  * The upstream caller random_fortuna_read is responsible for zeroing out
551  * sensitive buffers provided as parameters to this routine.
552  */
553 enum {
554 	FORTUNA_UNLOCKED = false,
555 	FORTUNA_LOCKED = true
556 };
557 static void
558 random_fortuna_genbytes(uint8_t *buf, size_t bytecount,
559     uint8_t newkey[static RANDOM_KEYSIZE], uint128_t *p_counter,
560     union randomdev_key *p_key, bool locked)
561 {
562 	uint8_t remainder_buf[RANDOM_BLOCKSIZE];
563 	size_t chunk_size;
564 
565 	if (locked)
566 		RANDOM_RESEED_ASSERT_LOCK_OWNED();
567 	else
568 		RANDOM_RESEED_ASSERT_LOCK_NOT_OWNED();
569 
570 	/*
571 	 * Easy case: don't have to worry about bullying the global mutex,
572 	 * don't have to worry about rekeying Chacha; API is byte-oriented.
573 	 */
574 	if (!locked && random_chachamode) {
575 		randomdev_keystream(p_key, p_counter, buf, bytecount);
576 		return;
577 	}
578 
579 	if (locked) {
580 		/*
581 		 * While holding the global lock, limit PRF generation to
582 		 * mitigate, but not eliminate, bullying symptoms.
583 		 */
584 		chunk_size = PAGE_SIZE;
585 	} else {
586 		/*
587 		* 128-bit block ciphers like AES must be re-keyed at 1MB
588 		* intervals to avoid unacceptable statistical differentiation
589 		* from true random data (FS&K 9.4, p. 143-144).
590 		*/
591 		MPASS(!random_chachamode);
592 		chunk_size = RANDOM_FORTUNA_MAX_READ;
593 	}
594 
595 	chunk_size = MIN(bytecount, chunk_size);
596 	if (!random_chachamode)
597 		chunk_size = rounddown(chunk_size, RANDOM_BLOCKSIZE);
598 
599 	while (bytecount >= chunk_size && chunk_size > 0) {
600 		randomdev_keystream(p_key, p_counter, buf, chunk_size);
601 
602 		buf += chunk_size;
603 		bytecount -= chunk_size;
604 
605 		/* We have to rekey if there is any data remaining to be
606 		 * generated, in two scenarios:
607 		 *
608 		 * locked: we need to rekey before we unlock and release the
609 		 * global state to another consumer; or
610 		 *
611 		 * unlocked: we need to rekey because we're in AES mode and are
612 		 * required to rekey at chunk_size==1MB.  But we do not need to
613 		 * rekey during the last trailing <1MB chunk.
614 		 */
615 		if (bytecount > 0) {
616 			if (locked || chunk_size == RANDOM_FORTUNA_MAX_READ) {
617 				randomdev_keystream(p_key, p_counter, newkey,
618 				    RANDOM_KEYSIZE);
619 				randomdev_encrypt_init(p_key, newkey);
620 			}
621 
622 			/*
623 			 * If we're holding the global lock, yield it briefly
624 			 * now.
625 			 */
626 			if (locked) {
627 				RANDOM_RESEED_UNLOCK();
628 				RANDOM_RESEED_LOCK();
629 			}
630 
631 			/*
632 			 * At the trailing end, scale down chunk_size from 1MB or
633 			 * PAGE_SIZE to all remaining full blocks (AES) or all
634 			 * remaining bytes (Chacha).
635 			 */
636 			if (bytecount < chunk_size) {
637 				if (random_chachamode)
638 					chunk_size = bytecount;
639 				else if (bytecount >= RANDOM_BLOCKSIZE)
640 					chunk_size = rounddown(bytecount,
641 					    RANDOM_BLOCKSIZE);
642 				else
643 					break;
644 			}
645 		}
646 	}
647 
648 	/*
649 	 * Generate any partial AES block remaining into a temporary buffer and
650 	 * copy the desired substring out.
651 	 */
652 	if (bytecount > 0) {
653 		MPASS(!random_chachamode);
654 
655 		randomdev_keystream(p_key, p_counter, remainder_buf,
656 		    sizeof(remainder_buf));
657 	}
658 
659 	/*
660 	 * In locked mode, re-key global K before dropping the lock, which we
661 	 * don't need for memcpy/bzero below.
662 	 */
663 	if (locked) {
664 		randomdev_keystream(p_key, p_counter, newkey, RANDOM_KEYSIZE);
665 		randomdev_encrypt_init(p_key, newkey);
666 		RANDOM_RESEED_UNLOCK();
667 	}
668 
669 	if (bytecount > 0) {
670 		memcpy(buf, remainder_buf, bytecount);
671 		explicit_bzero(remainder_buf, sizeof(remainder_buf));
672 	}
673 }
674 
675 
676 /*
677  * Handle only "concurrency-enabled" Fortuna reads to simplify logic.
678  *
679  * Caller (random_fortuna_read) is responsible for zeroing out sensitive
680  * buffers provided as parameters to this routine.
681  */
682 static void
683 random_fortuna_read_concurrent(uint8_t *buf, size_t bytecount,
684     uint8_t newkey[static RANDOM_KEYSIZE])
685 {
686 	union randomdev_key key_copy;
687 	uint128_t counter_copy;
688 	size_t blockcount;
689 
690 	MPASS(fortuna_concurrent_read);
691 
692 	/*
693 	 * Compute number of blocks required for the PRF request ('delta C').
694 	 * We will step the global counter 'C' by this number under lock, and
695 	 * then actually consume the counter values outside the lock.
696 	 *
697 	 * This ensures that contemporaneous but independent requests for
698 	 * randomness receive distinct 'C' values and thus independent PRF
699 	 * results.
700 	 */
701 	if (random_chachamode) {
702 		blockcount = howmany(bytecount, CHACHA_BLOCKLEN);
703 	} else {
704 		blockcount = howmany(bytecount, RANDOM_BLOCKSIZE);
705 
706 		/*
707 		 * Need to account for the additional blocks generated by
708 		 * rekeying when updating the global fs_counter.
709 		 */
710 		blockcount += RANDOM_KEYS_PER_BLOCK *
711 		    (blockcount / RANDOM_FORTUNA_BLOCKS_PER_KEY);
712 	}
713 
714 	RANDOM_RESEED_LOCK();
715 	KASSERT(!uint128_is_zero(fortuna_state.fs_counter), ("FS&K: C != 0"));
716 
717 	/*
718 	 * Save the original counter and key values that will be used as the
719 	 * PRF for this particular consumer.
720 	 */
721 	memcpy(&counter_copy, &fortuna_state.fs_counter, sizeof(counter_copy));
722 	memcpy(&key_copy, &fortuna_state.fs_key, sizeof(key_copy));
723 
724 	/*
725 	 * Step the counter as if we had generated 'bytecount' blocks for this
726 	 * consumer.  I.e., ensure that the next consumer gets an independent
727 	 * range of counter values once we drop the global lock.
728 	 */
729 	uint128_add64(&fortuna_state.fs_counter, blockcount);
730 
731 	/*
732 	 * We still need to Rekey the global 'K' between independent calls;
733 	 * this is no different from conventional Fortuna.  Note that
734 	 * 'randomdev_keystream()' will step the fs_counter 'C' appropriately
735 	 * for the blocks needed for the 'newkey'.
736 	 *
737 	 * (This is part of PseudoRandomData() in FS&K, 9.4.4.)
738 	 */
739 	randomdev_keystream(&fortuna_state.fs_key, &fortuna_state.fs_counter,
740 	    newkey, RANDOM_KEYSIZE);
741 	randomdev_encrypt_init(&fortuna_state.fs_key, newkey);
742 
743 	/*
744 	 * We have everything we need to generate a unique PRF for this
745 	 * consumer without touching global state.
746 	 */
747 	RANDOM_RESEED_UNLOCK();
748 
749 	random_fortuna_genbytes(buf, bytecount, newkey, &counter_copy,
750 	    &key_copy, FORTUNA_UNLOCKED);
751 	RANDOM_RESEED_ASSERT_LOCK_NOT_OWNED();
752 
753 	explicit_bzero(&counter_copy, sizeof(counter_copy));
754 	explicit_bzero(&key_copy, sizeof(key_copy));
755 }
756 
757 /*-
758  * FS&K - RandomData() (Part 2)
759  * Main read from Fortuna, continued. May be called multiple times after
760  * the random_fortuna_pre_read() above.
761  *
762  * The supplied buf MAY not be a multiple of RANDOM_BLOCKSIZE in size; it is
763  * the responsibility of the algorithm to accommodate partial block reads, if a
764  * block output mode is used.
765  */
766 void
767 random_fortuna_read(uint8_t *buf, size_t bytecount)
768 {
769 	uint8_t newkey[RANDOM_KEYSIZE];
770 
771 	if (fortuna_concurrent_read) {
772 		random_fortuna_read_concurrent(buf, bytecount, newkey);
773 		goto out;
774 	}
775 
776 	RANDOM_RESEED_LOCK();
777 	KASSERT(!uint128_is_zero(fortuna_state.fs_counter), ("FS&K: C != 0"));
778 
779 	random_fortuna_genbytes(buf, bytecount, newkey,
780 	    &fortuna_state.fs_counter, &fortuna_state.fs_key, FORTUNA_LOCKED);
781 	/* Returns unlocked */
782 	RANDOM_RESEED_ASSERT_LOCK_NOT_OWNED();
783 
784 out:
785 	explicit_bzero(newkey, sizeof(newkey));
786 }
787 
788 #ifdef _KERNEL
789 static bool block_seeded_status = false;
790 SYSCTL_BOOL(_kern_random, OID_AUTO, block_seeded_status, CTLFLAG_RWTUN,
791     &block_seeded_status, 0,
792     "If non-zero, pretend Fortuna is in an unseeded state.  By setting "
793     "this as a tunable, boot can be tested as if the random device is "
794     "unavailable.");
795 #endif
796 
797 static bool
798 random_fortuna_seeded_internal(void)
799 {
800 	return (!uint128_is_zero(fortuna_state.fs_counter));
801 }
802 
803 static bool
804 random_fortuna_seeded(void)
805 {
806 
807 #ifdef _KERNEL
808 	if (block_seeded_status)
809 		return (false);
810 #endif
811 
812 	if (__predict_true(random_fortuna_seeded_internal()))
813 		return (true);
814 
815 	/*
816 	 * Maybe we have enough entropy in the zeroth pool but just haven't
817 	 * kicked the initial seed step.  Do so now.
818 	 */
819 	random_fortuna_pre_read();
820 
821 	return (random_fortuna_seeded_internal());
822 }
823