1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2012 Garrett D'Amore <garrett@damore.org>
25 * Copyright 2014 Pluribus Networks, Inc.
26 */
27
28 /*
29 * PC specific DDI implementation
30 */
31 #include <sys/types.h>
32 #include <sys/autoconf.h>
33 #include <sys/avintr.h>
34 #include <sys/bootconf.h>
35 #include <sys/conf.h>
36 #include <sys/cpuvar.h>
37 #include <sys/ddi_impldefs.h>
38 #include <sys/ddi_subrdefs.h>
39 #include <sys/ethernet.h>
40 #include <sys/fp.h>
41 #include <sys/instance.h>
42 #include <sys/kmem.h>
43 #include <sys/machsystm.h>
44 #include <sys/modctl.h>
45 #include <sys/promif.h>
46 #include <sys/prom_plat.h>
47 #include <sys/sunndi.h>
48 #include <sys/ndi_impldefs.h>
49 #include <sys/ddi_impldefs.h>
50 #include <sys/sysmacros.h>
51 #include <sys/systeminfo.h>
52 #include <sys/utsname.h>
53 #include <sys/atomic.h>
54 #include <sys/spl.h>
55 #include <sys/archsystm.h>
56 #include <vm/seg_kmem.h>
57 #include <sys/ontrap.h>
58 #include <sys/fm/protocol.h>
59 #include <sys/ramdisk.h>
60 #include <sys/sunndi.h>
61 #include <sys/vmem.h>
62 #include <sys/pci_impl.h>
63 #if defined(__xpv)
64 #include <sys/hypervisor.h>
65 #endif
66 #include <sys/mach_intr.h>
67 #include <vm/hat_i86.h>
68 #include <sys/x86_archext.h>
69 #include <sys/avl.h>
70
71 /*
72 * DDI Boot Configuration
73 */
74
75 /*
76 * Platform drivers on this platform
77 */
78 char *platform_module_list[] = {
79 "acpippm",
80 "ppm",
81 (char *)0
82 };
83
84 /* pci bus resource maps */
85 struct pci_bus_resource *pci_bus_res;
86
87 size_t dma_max_copybuf_size = 0x101000; /* 1M + 4K */
88
89 uint64_t ramdisk_start, ramdisk_end;
90
91 int pseudo_isa = 0;
92
93 /*
94 * Forward declarations
95 */
96 static int getlongprop_buf();
97 static void get_boot_properties(void);
98 static void impl_bus_initialprobe(void);
99 static void impl_bus_reprobe(void);
100
101 static int poke_mem(peekpoke_ctlops_t *in_args);
102 static int peek_mem(peekpoke_ctlops_t *in_args);
103
104 static int kmem_override_cache_attrs(caddr_t, size_t, uint_t);
105
106 #if defined(__amd64) && !defined(__xpv)
107 extern void immu_init(void);
108 #endif
109
110 /*
111 * We use an AVL tree to store contiguous address allocations made with the
112 * kalloca() routine, so that we can return the size to free with kfreea().
113 * Note that in the future it would be vastly faster if we could eliminate
114 * this lookup by insisting that all callers keep track of their own sizes,
115 * just as for kmem_alloc().
116 */
117 struct ctgas {
118 avl_node_t ctg_link;
119 void *ctg_addr;
120 size_t ctg_size;
121 };
122
123 static avl_tree_t ctgtree;
124
125 static kmutex_t ctgmutex;
126 #define CTGLOCK() mutex_enter(&ctgmutex)
127 #define CTGUNLOCK() mutex_exit(&ctgmutex)
128
129 /*
130 * Minimum pfn value of page_t's put on the free list. This is to simplify
131 * support of ddi dma memory requests which specify small, non-zero addr_lo
132 * values.
133 *
134 * The default value of 2, which corresponds to the only known non-zero addr_lo
135 * value used, means a single page will be sacrificed (pfn typically starts
136 * at 1). ddiphysmin can be set to 0 to disable. It cannot be set above 0x100
137 * otherwise mp startup panics.
138 */
139 pfn_t ddiphysmin = 2;
140
141 static void
check_driver_disable(void)142 check_driver_disable(void)
143 {
144 int proplen = 128;
145 char *prop_name;
146 char *drv_name, *propval;
147 major_t major;
148
149 prop_name = kmem_alloc(proplen, KM_SLEEP);
150 for (major = 0; major < devcnt; major++) {
151 drv_name = ddi_major_to_name(major);
152 if (drv_name == NULL)
153 continue;
154 (void) snprintf(prop_name, proplen, "disable-%s", drv_name);
155 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
156 DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) {
157 if (strcmp(propval, "true") == 0) {
158 devnamesp[major].dn_flags |= DN_DRIVER_REMOVED;
159 cmn_err(CE_NOTE, "driver %s disabled",
160 drv_name);
161 }
162 ddi_prop_free(propval);
163 }
164 }
165 kmem_free(prop_name, proplen);
166 }
167
168
169 /*
170 * Configure the hardware on the system.
171 * Called before the rootfs is mounted
172 */
173 void
configure(void)174 configure(void)
175 {
176 extern void i_ddi_init_root();
177
178 #if defined(__i386)
179 extern int fpu_pentium_fdivbug;
180 #endif /* __i386 */
181 extern int fpu_ignored;
182
183 /*
184 * Determine if an FPU is attached
185 */
186
187 fpu_probe();
188
189 #if defined(__i386)
190 if (fpu_pentium_fdivbug) {
191 printf("\
192 FP hardware exhibits Pentium floating point divide problem\n");
193 }
194 #endif /* __i386 */
195
196 if (fpu_ignored) {
197 printf("FP hardware will not be used\n");
198 } else if (!fpu_exists) {
199 printf("No FPU in configuration\n");
200 }
201
202 /*
203 * Initialize devices on the machine.
204 * Uses configuration tree built by the PROMs to determine what
205 * is present, and builds a tree of prototype dev_info nodes
206 * corresponding to the hardware which identified itself.
207 */
208
209 /*
210 * Initialize root node.
211 */
212 i_ddi_init_root();
213
214 /* reprogram devices not set up by firmware (BIOS) */
215 impl_bus_reprobe();
216
217 #if defined(__amd64) && !defined(__xpv)
218 /*
219 * Setup but don't startup the IOMMU
220 * Startup happens later via a direct call
221 * to IOMMU code by boot code.
222 * At this point, all PCI bus renumbering
223 * is done, so safe to init the IMMU
224 * AKA Intel IOMMU.
225 */
226 immu_init();
227 #endif
228
229 /*
230 * attach the isa nexus to get ACPI resource usage
231 * isa is "kind of" a pseudo node
232 */
233 #if defined(__xpv)
234 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
235 if (pseudo_isa)
236 (void) i_ddi_attach_pseudo_node("isa");
237 else
238 (void) i_ddi_attach_hw_nodes("isa");
239 }
240 #else
241 if (pseudo_isa)
242 (void) i_ddi_attach_pseudo_node("isa");
243 else
244 (void) i_ddi_attach_hw_nodes("isa");
245 #endif
246 }
247
248 /*
249 * The "status" property indicates the operational status of a device.
250 * If this property is present, the value is a string indicating the
251 * status of the device as follows:
252 *
253 * "okay" operational.
254 * "disabled" not operational, but might become operational.
255 * "fail" not operational because a fault has been detected,
256 * and it is unlikely that the device will become
257 * operational without repair. no additional details
258 * are available.
259 * "fail-xxx" not operational because a fault has been detected,
260 * and it is unlikely that the device will become
261 * operational without repair. "xxx" is additional
262 * human-readable information about the particular
263 * fault condition that was detected.
264 *
265 * The absence of this property means that the operational status is
266 * unknown or okay.
267 *
268 * This routine checks the status property of the specified device node
269 * and returns 0 if the operational status indicates failure, and 1 otherwise.
270 *
271 * The property may exist on plug-in cards the existed before IEEE 1275-1994.
272 * And, in that case, the property may not even be a string. So we carefully
273 * check for the value "fail", in the beginning of the string, noting
274 * the property length.
275 */
276 int
status_okay(int id,char * buf,int buflen)277 status_okay(int id, char *buf, int buflen)
278 {
279 char status_buf[OBP_MAXPROPNAME];
280 char *bufp = buf;
281 int len = buflen;
282 int proplen;
283 static const char *status = "status";
284 static const char *fail = "fail";
285 int fail_len = (int)strlen(fail);
286
287 /*
288 * Get the proplen ... if it's smaller than "fail",
289 * or doesn't exist ... then we don't care, since
290 * the value can't begin with the char string "fail".
291 *
292 * NB: proplen, if it's a string, includes the NULL in the
293 * the size of the property, and fail_len does not.
294 */
295 proplen = prom_getproplen((pnode_t)id, (caddr_t)status);
296 if (proplen <= fail_len) /* nonexistant or uninteresting len */
297 return (1);
298
299 /*
300 * if a buffer was provided, use it
301 */
302 if ((buf == (char *)NULL) || (buflen <= 0)) {
303 bufp = status_buf;
304 len = sizeof (status_buf);
305 }
306 *bufp = (char)0;
307
308 /*
309 * Get the property into the buffer, to the extent of the buffer,
310 * and in case the buffer is smaller than the property size,
311 * NULL terminate the buffer. (This handles the case where
312 * a buffer was passed in and the caller wants to print the
313 * value, but the buffer was too small).
314 */
315 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status,
316 (caddr_t)bufp, len);
317 *(bufp + len - 1) = (char)0;
318
319 /*
320 * If the value begins with the char string "fail",
321 * then it means the node is failed. We don't care
322 * about any other values. We assume the node is ok
323 * although it might be 'disabled'.
324 */
325 if (strncmp(bufp, fail, fail_len) == 0)
326 return (0);
327
328 return (1);
329 }
330
331 /*
332 * Check the status of the device node passed as an argument.
333 *
334 * if ((status is OKAY) || (status is DISABLED))
335 * return DDI_SUCCESS
336 * else
337 * print a warning and return DDI_FAILURE
338 */
339 /*ARGSUSED1*/
340 int
check_status(int id,char * name,dev_info_t * parent)341 check_status(int id, char *name, dev_info_t *parent)
342 {
343 char status_buf[64];
344 char devtype_buf[OBP_MAXPROPNAME];
345 int retval = DDI_FAILURE;
346
347 /*
348 * is the status okay?
349 */
350 if (status_okay(id, status_buf, sizeof (status_buf)))
351 return (DDI_SUCCESS);
352
353 /*
354 * a status property indicating bad memory will be associated
355 * with a node which has a "device_type" property with a value of
356 * "memory-controller". in this situation, return DDI_SUCCESS
357 */
358 if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf,
359 sizeof (devtype_buf)) > 0) {
360 if (strcmp(devtype_buf, "memory-controller") == 0)
361 retval = DDI_SUCCESS;
362 }
363
364 /*
365 * print the status property information
366 */
367 cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name);
368 return (retval);
369 }
370
371 /*ARGSUSED*/
372 uint_t
softlevel1(caddr_t arg1,caddr_t arg2)373 softlevel1(caddr_t arg1, caddr_t arg2)
374 {
375 softint();
376 return (1);
377 }
378
379 /*
380 * Allow for implementation specific correction of PROM property values.
381 */
382
383 /*ARGSUSED*/
384 void
impl_fix_props(dev_info_t * dip,dev_info_t * ch_dip,char * name,int len,caddr_t buffer)385 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len,
386 caddr_t buffer)
387 {
388 /*
389 * There are no adjustments needed in this implementation.
390 */
391 }
392
393 static int
getlongprop_buf(int id,char * name,char * buf,int maxlen)394 getlongprop_buf(int id, char *name, char *buf, int maxlen)
395 {
396 int size;
397
398 size = prom_getproplen((pnode_t)id, name);
399 if (size <= 0 || (size > maxlen - 1))
400 return (-1);
401
402 if (-1 == prom_getprop((pnode_t)id, name, buf))
403 return (-1);
404
405 if (strcmp("name", name) == 0) {
406 if (buf[size - 1] != '\0') {
407 buf[size] = '\0';
408 size += 1;
409 }
410 }
411
412 return (size);
413 }
414
415 static int
get_prop_int_array(dev_info_t * di,char * pname,int ** pval,uint_t * plen)416 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen)
417 {
418 int ret;
419
420 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di,
421 DDI_PROP_DONTPASS, pname, pval, plen))
422 == DDI_PROP_SUCCESS) {
423 *plen = (*plen) * (sizeof (int));
424 }
425 return (ret);
426 }
427
428
429 /*
430 * Node Configuration
431 */
432
433 struct prop_ispec {
434 uint_t pri, vec;
435 };
436
437 /*
438 * For the x86, we're prepared to claim that the interrupt string
439 * is in the form of a list of <ipl,vec> specifications.
440 */
441
442 #define VEC_MIN 1
443 #define VEC_MAX 255
444
445 static int
impl_xlate_intrs(dev_info_t * child,int * in,struct ddi_parent_private_data * pdptr)446 impl_xlate_intrs(dev_info_t *child, int *in,
447 struct ddi_parent_private_data *pdptr)
448 {
449 size_t size;
450 int n;
451 struct intrspec *new;
452 caddr_t got_prop;
453 int *inpri;
454 int got_len;
455 extern int ignore_hardware_nodes; /* force flag from ddi_impl.c */
456
457 static char bad_intr_fmt[] =
458 "bad interrupt spec from %s%d - ipl %d, irq %d\n";
459
460 /*
461 * determine if the driver is expecting the new style "interrupts"
462 * property which just contains the IRQ, or the old style which
463 * contains pairs of <IPL,IRQ>. if it is the new style, we always
464 * assign IPL 5 unless an "interrupt-priorities" property exists.
465 * in that case, the "interrupt-priorities" property contains the
466 * IPL values that match, one for one, the IRQ values in the
467 * "interrupts" property.
468 */
469 inpri = NULL;
470 if ((ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
471 "ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes) {
472 /* the old style "interrupts" property... */
473
474 /*
475 * The list consists of <ipl,vec> elements
476 */
477 if ((n = (*in++ >> 1)) < 1)
478 return (DDI_FAILURE);
479
480 pdptr->par_nintr = n;
481 size = n * sizeof (struct intrspec);
482 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
483
484 while (n--) {
485 int level = *in++;
486 int vec = *in++;
487
488 if (level < 1 || level > MAXIPL ||
489 vec < VEC_MIN || vec > VEC_MAX) {
490 cmn_err(CE_CONT, bad_intr_fmt,
491 DEVI(child)->devi_name,
492 DEVI(child)->devi_instance, level, vec);
493 goto broken;
494 }
495 new->intrspec_pri = level;
496 if (vec != 2)
497 new->intrspec_vec = vec;
498 else
499 /*
500 * irq 2 on the PC bus is tied to irq 9
501 * on ISA, EISA and MicroChannel
502 */
503 new->intrspec_vec = 9;
504 new++;
505 }
506
507 return (DDI_SUCCESS);
508 } else {
509 /* the new style "interrupts" property... */
510
511 /*
512 * The list consists of <vec> elements
513 */
514 if ((n = (*in++)) < 1)
515 return (DDI_FAILURE);
516
517 pdptr->par_nintr = n;
518 size = n * sizeof (struct intrspec);
519 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
520
521 /* XXX check for "interrupt-priorities" property... */
522 if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
523 "interrupt-priorities", (caddr_t)&got_prop, &got_len)
524 == DDI_PROP_SUCCESS) {
525 if (n != (got_len / sizeof (int))) {
526 cmn_err(CE_CONT,
527 "bad interrupt-priorities length"
528 " from %s%d: expected %d, got %d\n",
529 DEVI(child)->devi_name,
530 DEVI(child)->devi_instance, n,
531 (int)(got_len / sizeof (int)));
532 goto broken;
533 }
534 inpri = (int *)got_prop;
535 }
536
537 while (n--) {
538 int level;
539 int vec = *in++;
540
541 if (inpri == NULL)
542 level = 5;
543 else
544 level = *inpri++;
545
546 if (level < 1 || level > MAXIPL ||
547 vec < VEC_MIN || vec > VEC_MAX) {
548 cmn_err(CE_CONT, bad_intr_fmt,
549 DEVI(child)->devi_name,
550 DEVI(child)->devi_instance, level, vec);
551 goto broken;
552 }
553 new->intrspec_pri = level;
554 if (vec != 2)
555 new->intrspec_vec = vec;
556 else
557 /*
558 * irq 2 on the PC bus is tied to irq 9
559 * on ISA, EISA and MicroChannel
560 */
561 new->intrspec_vec = 9;
562 new++;
563 }
564
565 if (inpri != NULL)
566 kmem_free(got_prop, got_len);
567 return (DDI_SUCCESS);
568 }
569
570 broken:
571 kmem_free(pdptr->par_intr, size);
572 pdptr->par_intr = NULL;
573 pdptr->par_nintr = 0;
574 if (inpri != NULL)
575 kmem_free(got_prop, got_len);
576
577 return (DDI_FAILURE);
578 }
579
580 /*
581 * Create a ddi_parent_private_data structure from the ddi properties of
582 * the dev_info node.
583 *
584 * The "reg" and either an "intr" or "interrupts" properties are required
585 * if the driver wishes to create mappings or field interrupts on behalf
586 * of the device.
587 *
588 * The "reg" property is assumed to be a list of at least one triple
589 *
590 * <bustype, address, size>*1
591 *
592 * The "intr" property is assumed to be a list of at least one duple
593 *
594 * <SPARC ipl, vector#>*1
595 *
596 * The "interrupts" property is assumed to be a list of at least one
597 * n-tuples that describes the interrupt capabilities of the bus the device
598 * is connected to. For SBus, this looks like
599 *
600 * <SBus-level>*1
601 *
602 * (This property obsoletes the 'intr' property).
603 *
604 * The "ranges" property is optional.
605 */
606 void
make_ddi_ppd(dev_info_t * child,struct ddi_parent_private_data ** ppd)607 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd)
608 {
609 struct ddi_parent_private_data *pdptr;
610 int n;
611 int *reg_prop, *rng_prop, *intr_prop, *irupts_prop;
612 uint_t reg_len, rng_len, intr_len, irupts_len;
613
614 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
615
616 /*
617 * Handle the 'reg' property.
618 */
619 if ((get_prop_int_array(child, "reg", ®_prop, ®_len) ==
620 DDI_PROP_SUCCESS) && (reg_len != 0)) {
621 pdptr->par_nreg = reg_len / (int)sizeof (struct regspec);
622 pdptr->par_reg = (struct regspec *)reg_prop;
623 }
624
625 /*
626 * See if I have a range (adding one where needed - this
627 * means to add one for sbus node in sun4c, when romvec > 0,
628 * if no range is already defined in the PROM node.
629 * (Currently no sun4c PROMS define range properties,
630 * but they should and may in the future.) For the SBus
631 * node, the range is defined by the SBus reg property.
632 */
633 if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len)
634 == DDI_PROP_SUCCESS) {
635 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
636 pdptr->par_rng = (struct rangespec *)rng_prop;
637 }
638
639 /*
640 * Handle the 'intr' and 'interrupts' properties
641 */
642
643 /*
644 * For backwards compatibility
645 * we first look for the 'intr' property for the device.
646 */
647 if (get_prop_int_array(child, "intr", &intr_prop, &intr_len)
648 != DDI_PROP_SUCCESS) {
649 intr_len = 0;
650 }
651
652 /*
653 * If we're to support bus adapters and future platforms cleanly,
654 * we need to support the generalized 'interrupts' property.
655 */
656 if (get_prop_int_array(child, "interrupts", &irupts_prop,
657 &irupts_len) != DDI_PROP_SUCCESS) {
658 irupts_len = 0;
659 } else if (intr_len != 0) {
660 /*
661 * If both 'intr' and 'interrupts' are defined,
662 * then 'interrupts' wins and we toss the 'intr' away.
663 */
664 ddi_prop_free((void *)intr_prop);
665 intr_len = 0;
666 }
667
668 if (intr_len != 0) {
669
670 /*
671 * Translate the 'intr' property into an array
672 * an array of struct intrspec's. There's not really
673 * very much to do here except copy what's out there.
674 */
675
676 struct intrspec *new;
677 struct prop_ispec *l;
678
679 n = pdptr->par_nintr = intr_len / sizeof (struct prop_ispec);
680 l = (struct prop_ispec *)intr_prop;
681 pdptr->par_intr =
682 new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP);
683 while (n--) {
684 new->intrspec_pri = l->pri;
685 new->intrspec_vec = l->vec;
686 new++;
687 l++;
688 }
689 ddi_prop_free((void *)intr_prop);
690
691 } else if ((n = irupts_len) != 0) {
692 size_t size;
693 int *out;
694
695 /*
696 * Translate the 'interrupts' property into an array
697 * of intrspecs for the rest of the DDI framework to
698 * toy with. Only our ancestors really know how to
699 * do this, so ask 'em. We massage the 'interrupts'
700 * property so that it is pre-pended by a count of
701 * the number of integers in the argument.
702 */
703 size = sizeof (int) + n;
704 out = kmem_alloc(size, KM_SLEEP);
705 *out = n / sizeof (int);
706 bcopy(irupts_prop, out + 1, (size_t)n);
707 ddi_prop_free((void *)irupts_prop);
708 if (impl_xlate_intrs(child, out, pdptr) != DDI_SUCCESS) {
709 cmn_err(CE_CONT,
710 "Unable to translate 'interrupts' for %s%d\n",
711 DEVI(child)->devi_binding_name,
712 DEVI(child)->devi_instance);
713 }
714 kmem_free(out, size);
715 }
716 }
717
718 /*
719 * Name a child
720 */
721 static int
impl_sunbus_name_child(dev_info_t * child,char * name,int namelen)722 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen)
723 {
724 /*
725 * Fill in parent-private data and this function returns to us
726 * an indication if it used "registers" to fill in the data.
727 */
728 if (ddi_get_parent_data(child) == NULL) {
729 struct ddi_parent_private_data *pdptr;
730 make_ddi_ppd(child, &pdptr);
731 ddi_set_parent_data(child, pdptr);
732 }
733
734 name[0] = '\0';
735 if (sparc_pd_getnreg(child) > 0) {
736 (void) snprintf(name, namelen, "%x,%x",
737 (uint_t)sparc_pd_getreg(child, 0)->regspec_bustype,
738 (uint_t)sparc_pd_getreg(child, 0)->regspec_addr);
739 }
740
741 return (DDI_SUCCESS);
742 }
743
744 /*
745 * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers
746 * to implement the DDI_CTLOPS_INITCHILD operation. That is, it names
747 * the children of sun busses based on the reg spec.
748 *
749 * Handles the following properties (in make_ddi_ppd):
750 * Property value
751 * Name type
752 * reg register spec
753 * intr old-form interrupt spec
754 * interrupts new (bus-oriented) interrupt spec
755 * ranges range spec
756 */
757 int
impl_ddi_sunbus_initchild(dev_info_t * child)758 impl_ddi_sunbus_initchild(dev_info_t *child)
759 {
760 char name[MAXNAMELEN];
761 void impl_ddi_sunbus_removechild(dev_info_t *);
762
763 /*
764 * Name the child, also makes parent private data
765 */
766 (void) impl_sunbus_name_child(child, name, MAXNAMELEN);
767 ddi_set_name_addr(child, name);
768
769 /*
770 * Attempt to merge a .conf node; if successful, remove the
771 * .conf node.
772 */
773 if ((ndi_dev_is_persistent_node(child) == 0) &&
774 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) {
775 /*
776 * Return failure to remove node
777 */
778 impl_ddi_sunbus_removechild(child);
779 return (DDI_FAILURE);
780 }
781 return (DDI_SUCCESS);
782 }
783
784 void
impl_free_ddi_ppd(dev_info_t * dip)785 impl_free_ddi_ppd(dev_info_t *dip)
786 {
787 struct ddi_parent_private_data *pdptr;
788 size_t n;
789
790 if ((pdptr = ddi_get_parent_data(dip)) == NULL)
791 return;
792
793 if ((n = (size_t)pdptr->par_nintr) != 0)
794 /*
795 * Note that kmem_free is used here (instead of
796 * ddi_prop_free) because the contents of the
797 * property were placed into a separate buffer and
798 * mucked with a bit before being stored in par_intr.
799 * The actual return value from the prop lookup
800 * was freed with ddi_prop_free previously.
801 */
802 kmem_free(pdptr->par_intr, n * sizeof (struct intrspec));
803
804 if ((n = (size_t)pdptr->par_nrng) != 0)
805 ddi_prop_free((void *)pdptr->par_rng);
806
807 if ((n = pdptr->par_nreg) != 0)
808 ddi_prop_free((void *)pdptr->par_reg);
809
810 kmem_free(pdptr, sizeof (*pdptr));
811 ddi_set_parent_data(dip, NULL);
812 }
813
814 void
impl_ddi_sunbus_removechild(dev_info_t * dip)815 impl_ddi_sunbus_removechild(dev_info_t *dip)
816 {
817 impl_free_ddi_ppd(dip);
818 ddi_set_name_addr(dip, NULL);
819 /*
820 * Strip the node to properly convert it back to prototype form
821 */
822 impl_rem_dev_props(dip);
823 }
824
825 /*
826 * DDI Interrupt
827 */
828
829 /*
830 * turn this on to force isa, eisa, and mca device to ignore the new
831 * hardware nodes in the device tree (normally turned on only for
832 * drivers that need it by setting the property "ignore-hardware-nodes"
833 * in their driver.conf file).
834 *
835 * 7/31/96 -- Turned off globally. Leaving variable in for the moment
836 * as safety valve.
837 */
838 int ignore_hardware_nodes = 0;
839
840 /*
841 * Local data
842 */
843 static struct impl_bus_promops *impl_busp;
844
845
846 /*
847 * New DDI interrupt framework
848 */
849
850 /*
851 * i_ddi_intr_ops:
852 *
853 * This is the interrupt operator function wrapper for the bus function
854 * bus_intr_op.
855 */
856 int
i_ddi_intr_ops(dev_info_t * dip,dev_info_t * rdip,ddi_intr_op_t op,ddi_intr_handle_impl_t * hdlp,void * result)857 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
858 ddi_intr_handle_impl_t *hdlp, void * result)
859 {
860 dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent;
861 int ret = DDI_FAILURE;
862
863 /* request parent to process this interrupt op */
864 if (NEXUS_HAS_INTR_OP(pdip))
865 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))(
866 pdip, rdip, op, hdlp, result);
867 else
868 cmn_err(CE_WARN, "Failed to process interrupt "
869 "for %s%d due to down-rev nexus driver %s%d",
870 ddi_get_name(rdip), ddi_get_instance(rdip),
871 ddi_get_name(pdip), ddi_get_instance(pdip));
872 return (ret);
873 }
874
875 /*
876 * i_ddi_add_softint - allocate and add a soft interrupt to the system
877 */
878 int
i_ddi_add_softint(ddi_softint_hdl_impl_t * hdlp)879 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp)
880 {
881 int ret;
882
883 /* add soft interrupt handler */
884 ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func,
885 DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2);
886 return (ret ? DDI_SUCCESS : DDI_FAILURE);
887 }
888
889
890 void
i_ddi_remove_softint(ddi_softint_hdl_impl_t * hdlp)891 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp)
892 {
893 (void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func);
894 }
895
896
897 extern void (*setsoftint)(int, struct av_softinfo *);
898 extern boolean_t av_check_softint_pending(struct av_softinfo *, boolean_t);
899
900 int
i_ddi_trigger_softint(ddi_softint_hdl_impl_t * hdlp,void * arg2)901 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2)
902 {
903 if (av_check_softint_pending(hdlp->ih_pending, B_FALSE))
904 return (DDI_EPENDING);
905
906 update_avsoftintr_args((void *)hdlp, hdlp->ih_pri, arg2);
907
908 (*setsoftint)(hdlp->ih_pri, hdlp->ih_pending);
909 return (DDI_SUCCESS);
910 }
911
912 /*
913 * i_ddi_set_softint_pri:
914 *
915 * The way this works is that it first tries to add a softint vector
916 * at the new priority in hdlp. If that succeeds; then it removes the
917 * existing softint vector at the old priority.
918 */
919 int
i_ddi_set_softint_pri(ddi_softint_hdl_impl_t * hdlp,uint_t old_pri)920 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri)
921 {
922 int ret;
923
924 /*
925 * If a softint is pending at the old priority then fail the request.
926 */
927 if (av_check_softint_pending(hdlp->ih_pending, B_TRUE))
928 return (DDI_FAILURE);
929
930 ret = av_softint_movepri((void *)hdlp, old_pri);
931 return (ret ? DDI_SUCCESS : DDI_FAILURE);
932 }
933
934 void
i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t * hdlp)935 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp)
936 {
937 hdlp->ih_private = (void *)kmem_zalloc(sizeof (ihdl_plat_t), KM_SLEEP);
938 }
939
940 void
i_ddi_free_intr_phdl(ddi_intr_handle_impl_t * hdlp)941 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp)
942 {
943 kmem_free(hdlp->ih_private, sizeof (ihdl_plat_t));
944 hdlp->ih_private = NULL;
945 }
946
947 int
i_ddi_get_intx_nintrs(dev_info_t * dip)948 i_ddi_get_intx_nintrs(dev_info_t *dip)
949 {
950 struct ddi_parent_private_data *pdp;
951
952 if ((pdp = ddi_get_parent_data(dip)) == NULL)
953 return (0);
954
955 return (pdp->par_nintr);
956 }
957
958 /*
959 * DDI Memory/DMA
960 */
961
962 /*
963 * Support for allocating DMAable memory to implement
964 * ddi_dma_mem_alloc(9F) interface.
965 */
966
967 #define KA_ALIGN_SHIFT 7
968 #define KA_ALIGN (1 << KA_ALIGN_SHIFT)
969 #define KA_NCACHE (PAGESHIFT + 1 - KA_ALIGN_SHIFT)
970
971 /*
972 * Dummy DMA attribute template for kmem_io[].kmem_io_attr. We only
973 * care about addr_lo, addr_hi, and align. addr_hi will be dynamically set.
974 */
975
976 static ddi_dma_attr_t kmem_io_attr = {
977 DMA_ATTR_V0,
978 0x0000000000000000ULL, /* dma_attr_addr_lo */
979 0x0000000000000000ULL, /* dma_attr_addr_hi */
980 0x00ffffff,
981 0x1000, /* dma_attr_align */
982 1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0
983 };
984
985 /* kmem io memory ranges and indices */
986 enum {
987 IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M,
988 IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES
989 };
990
991 static struct {
992 vmem_t *kmem_io_arena;
993 kmem_cache_t *kmem_io_cache[KA_NCACHE];
994 ddi_dma_attr_t kmem_io_attr;
995 } kmem_io[MAX_MEM_RANGES];
996
997 static int kmem_io_idx; /* index of first populated kmem_io[] */
998
999 static page_t *
page_create_io_wrapper(void * addr,size_t len,int vmflag,void * arg)1000 page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg)
1001 {
1002 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
1003 uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
1004
1005 return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len,
1006 PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg));
1007 }
1008
1009 #ifdef __xpv
1010 static void
segkmem_free_io(vmem_t * vmp,void * ptr,size_t size)1011 segkmem_free_io(vmem_t *vmp, void * ptr, size_t size)
1012 {
1013 extern void page_destroy_io(page_t *);
1014 segkmem_xfree(vmp, ptr, size, page_destroy_io);
1015 }
1016 #endif
1017
1018 static void *
segkmem_alloc_io_4P(vmem_t * vmp,size_t size,int vmflag)1019 segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag)
1020 {
1021 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1022 page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr));
1023 }
1024
1025 static void *
segkmem_alloc_io_64G(vmem_t * vmp,size_t size,int vmflag)1026 segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag)
1027 {
1028 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1029 page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr));
1030 }
1031
1032 static void *
segkmem_alloc_io_4G(vmem_t * vmp,size_t size,int vmflag)1033 segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag)
1034 {
1035 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1036 page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr));
1037 }
1038
1039 static void *
segkmem_alloc_io_2G(vmem_t * vmp,size_t size,int vmflag)1040 segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag)
1041 {
1042 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1043 page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr));
1044 }
1045
1046 static void *
segkmem_alloc_io_1G(vmem_t * vmp,size_t size,int vmflag)1047 segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag)
1048 {
1049 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1050 page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr));
1051 }
1052
1053 static void *
segkmem_alloc_io_512M(vmem_t * vmp,size_t size,int vmflag)1054 segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag)
1055 {
1056 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1057 page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr));
1058 }
1059
1060 static void *
segkmem_alloc_io_256M(vmem_t * vmp,size_t size,int vmflag)1061 segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag)
1062 {
1063 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1064 page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr));
1065 }
1066
1067 static void *
segkmem_alloc_io_128M(vmem_t * vmp,size_t size,int vmflag)1068 segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag)
1069 {
1070 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1071 page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr));
1072 }
1073
1074 static void *
segkmem_alloc_io_64M(vmem_t * vmp,size_t size,int vmflag)1075 segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag)
1076 {
1077 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1078 page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr));
1079 }
1080
1081 static void *
segkmem_alloc_io_32M(vmem_t * vmp,size_t size,int vmflag)1082 segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag)
1083 {
1084 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1085 page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr));
1086 }
1087
1088 static void *
segkmem_alloc_io_16M(vmem_t * vmp,size_t size,int vmflag)1089 segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag)
1090 {
1091 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1092 page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr));
1093 }
1094
1095 struct {
1096 uint64_t io_limit;
1097 char *io_name;
1098 void *(*io_alloc)(vmem_t *, size_t, int);
1099 int io_initial; /* kmem_io_init during startup */
1100 } io_arena_params[MAX_MEM_RANGES] = {
1101 {0x000fffffffffffffULL, "kmem_io_4P", segkmem_alloc_io_4P, 1},
1102 {0x0000000fffffffffULL, "kmem_io_64G", segkmem_alloc_io_64G, 0},
1103 {0x00000000ffffffffULL, "kmem_io_4G", segkmem_alloc_io_4G, 1},
1104 {0x000000007fffffffULL, "kmem_io_2G", segkmem_alloc_io_2G, 1},
1105 {0x000000003fffffffULL, "kmem_io_1G", segkmem_alloc_io_1G, 0},
1106 {0x000000001fffffffULL, "kmem_io_512M", segkmem_alloc_io_512M, 0},
1107 {0x000000000fffffffULL, "kmem_io_256M", segkmem_alloc_io_256M, 0},
1108 {0x0000000007ffffffULL, "kmem_io_128M", segkmem_alloc_io_128M, 0},
1109 {0x0000000003ffffffULL, "kmem_io_64M", segkmem_alloc_io_64M, 0},
1110 {0x0000000001ffffffULL, "kmem_io_32M", segkmem_alloc_io_32M, 0},
1111 {0x0000000000ffffffULL, "kmem_io_16M", segkmem_alloc_io_16M, 1}
1112 };
1113
1114 void
kmem_io_init(int a)1115 kmem_io_init(int a)
1116 {
1117 int c;
1118 char name[40];
1119
1120 kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name,
1121 NULL, 0, PAGESIZE, io_arena_params[a].io_alloc,
1122 #ifdef __xpv
1123 segkmem_free_io,
1124 #else
1125 segkmem_free,
1126 #endif
1127 heap_arena, 0, VM_SLEEP);
1128
1129 for (c = 0; c < KA_NCACHE; c++) {
1130 size_t size = KA_ALIGN << c;
1131 (void) sprintf(name, "%s_%lu",
1132 io_arena_params[a].io_name, size);
1133 kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name,
1134 size, size, NULL, NULL, NULL, NULL,
1135 kmem_io[a].kmem_io_arena, 0);
1136 }
1137 }
1138
1139 /*
1140 * Return the index of the highest memory range for addr.
1141 */
1142 static int
kmem_io_index(uint64_t addr)1143 kmem_io_index(uint64_t addr)
1144 {
1145 int n;
1146
1147 for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) {
1148 if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) {
1149 if (kmem_io[n].kmem_io_arena == NULL)
1150 kmem_io_init(n);
1151 return (n);
1152 }
1153 }
1154 panic("kmem_io_index: invalid addr - must be at least 16m");
1155
1156 /*NOTREACHED*/
1157 }
1158
1159 /*
1160 * Return the index of the next kmem_io populated memory range
1161 * after curindex.
1162 */
1163 static int
kmem_io_index_next(int curindex)1164 kmem_io_index_next(int curindex)
1165 {
1166 int n;
1167
1168 for (n = curindex + 1; n < MAX_MEM_RANGES; n++) {
1169 if (kmem_io[n].kmem_io_arena)
1170 return (n);
1171 }
1172 return (-1);
1173 }
1174
1175 /*
1176 * allow kmem to be mapped in with different PTE cache attribute settings.
1177 * Used by i_ddi_mem_alloc()
1178 */
1179 int
kmem_override_cache_attrs(caddr_t kva,size_t size,uint_t order)1180 kmem_override_cache_attrs(caddr_t kva, size_t size, uint_t order)
1181 {
1182 uint_t hat_flags;
1183 caddr_t kva_end;
1184 uint_t hat_attr;
1185 pfn_t pfn;
1186
1187 if (hat_getattr(kas.a_hat, kva, &hat_attr) == -1) {
1188 return (-1);
1189 }
1190
1191 hat_attr &= ~HAT_ORDER_MASK;
1192 hat_attr |= order | HAT_NOSYNC;
1193 hat_flags = HAT_LOAD_LOCK;
1194
1195 kva_end = (caddr_t)(((uintptr_t)kva + size + PAGEOFFSET) &
1196 (uintptr_t)PAGEMASK);
1197 kva = (caddr_t)((uintptr_t)kva & (uintptr_t)PAGEMASK);
1198
1199 while (kva < kva_end) {
1200 pfn = hat_getpfnum(kas.a_hat, kva);
1201 hat_unload(kas.a_hat, kva, PAGESIZE, HAT_UNLOAD_UNLOCK);
1202 hat_devload(kas.a_hat, kva, PAGESIZE, pfn, hat_attr, hat_flags);
1203 kva += MMU_PAGESIZE;
1204 }
1205
1206 return (0);
1207 }
1208
1209 static int
ctgcompare(const void * a1,const void * a2)1210 ctgcompare(const void *a1, const void *a2)
1211 {
1212 /* we just want to compare virtual addresses */
1213 a1 = ((struct ctgas *)a1)->ctg_addr;
1214 a2 = ((struct ctgas *)a2)->ctg_addr;
1215 return (a1 == a2 ? 0 : (a1 < a2 ? -1 : 1));
1216 }
1217
1218 void
ka_init(void)1219 ka_init(void)
1220 {
1221 int a;
1222 paddr_t maxphysaddr;
1223 #if !defined(__xpv)
1224 extern pfn_t physmax;
1225
1226 maxphysaddr = mmu_ptob((paddr_t)physmax) + MMU_PAGEOFFSET;
1227 #else
1228 maxphysaddr = mmu_ptob((paddr_t)HYPERVISOR_memory_op(
1229 XENMEM_maximum_ram_page, NULL)) + MMU_PAGEOFFSET;
1230 #endif
1231
1232 ASSERT(maxphysaddr <= io_arena_params[0].io_limit);
1233
1234 for (a = 0; a < MAX_MEM_RANGES; a++) {
1235 if (maxphysaddr >= io_arena_params[a + 1].io_limit) {
1236 if (maxphysaddr > io_arena_params[a + 1].io_limit)
1237 io_arena_params[a].io_limit = maxphysaddr;
1238 else
1239 a++;
1240 break;
1241 }
1242 }
1243 kmem_io_idx = a;
1244
1245 for (; a < MAX_MEM_RANGES; a++) {
1246 kmem_io[a].kmem_io_attr = kmem_io_attr;
1247 kmem_io[a].kmem_io_attr.dma_attr_addr_hi =
1248 io_arena_params[a].io_limit;
1249 /*
1250 * initialize kmem_io[] arena/cache corresponding to
1251 * maxphysaddr and to the "common" io memory ranges that
1252 * have io_initial set to a non-zero value.
1253 */
1254 if (io_arena_params[a].io_initial || a == kmem_io_idx)
1255 kmem_io_init(a);
1256 }
1257
1258 /* initialize ctgtree */
1259 avl_create(&ctgtree, ctgcompare, sizeof (struct ctgas),
1260 offsetof(struct ctgas, ctg_link));
1261 }
1262
1263 /*
1264 * put contig address/size
1265 */
1266 static void *
putctgas(void * addr,size_t size)1267 putctgas(void *addr, size_t size)
1268 {
1269 struct ctgas *ctgp;
1270 if ((ctgp = kmem_zalloc(sizeof (*ctgp), KM_NOSLEEP)) != NULL) {
1271 ctgp->ctg_addr = addr;
1272 ctgp->ctg_size = size;
1273 CTGLOCK();
1274 avl_add(&ctgtree, ctgp);
1275 CTGUNLOCK();
1276 }
1277 return (ctgp);
1278 }
1279
1280 /*
1281 * get contig size by addr
1282 */
1283 static size_t
getctgsz(void * addr)1284 getctgsz(void *addr)
1285 {
1286 struct ctgas *ctgp;
1287 struct ctgas find;
1288 size_t sz = 0;
1289
1290 find.ctg_addr = addr;
1291 CTGLOCK();
1292 if ((ctgp = avl_find(&ctgtree, &find, NULL)) != NULL) {
1293 avl_remove(&ctgtree, ctgp);
1294 }
1295 CTGUNLOCK();
1296
1297 if (ctgp != NULL) {
1298 sz = ctgp->ctg_size;
1299 kmem_free(ctgp, sizeof (*ctgp));
1300 }
1301
1302 return (sz);
1303 }
1304
1305 /*
1306 * contig_alloc:
1307 *
1308 * allocates contiguous memory to satisfy the 'size' and dma attributes
1309 * specified in 'attr'.
1310 *
1311 * Not all of memory need to be physically contiguous if the
1312 * scatter-gather list length is greater than 1.
1313 */
1314
1315 /*ARGSUSED*/
1316 void *
contig_alloc(size_t size,ddi_dma_attr_t * attr,uintptr_t align,int cansleep)1317 contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep)
1318 {
1319 pgcnt_t pgcnt = btopr(size);
1320 size_t asize = pgcnt * PAGESIZE;
1321 page_t *ppl;
1322 int pflag;
1323 void *addr;
1324
1325 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
1326 uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
1327
1328 /* segkmem_xalloc */
1329
1330 if (align <= PAGESIZE)
1331 addr = vmem_alloc(heap_arena, asize,
1332 (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1333 else
1334 addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL,
1335 (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1336 if (addr) {
1337 ASSERT(!((uintptr_t)addr & (align - 1)));
1338
1339 if (page_resv(pgcnt, (cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) {
1340 vmem_free(heap_arena, addr, asize);
1341 return (NULL);
1342 }
1343 pflag = PG_EXCL;
1344
1345 if (cansleep)
1346 pflag |= PG_WAIT;
1347
1348 /* 4k req gets from freelists rather than pfn search */
1349 if (pgcnt > 1 || align > PAGESIZE)
1350 pflag |= PG_PHYSCONTIG;
1351
1352 ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr,
1353 asize, pflag, &kas, (caddr_t)addr, attr);
1354
1355 if (!ppl) {
1356 vmem_free(heap_arena, addr, asize);
1357 page_unresv(pgcnt);
1358 return (NULL);
1359 }
1360
1361 while (ppl != NULL) {
1362 page_t *pp = ppl;
1363 page_sub(&ppl, pp);
1364 ASSERT(page_iolock_assert(pp));
1365 page_io_unlock(pp);
1366 page_downgrade(pp);
1367 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset,
1368 pp, (PROT_ALL & ~PROT_USER) |
1369 HAT_NOSYNC, HAT_LOAD_LOCK);
1370 }
1371 }
1372 return (addr);
1373 }
1374
1375 void
contig_free(void * addr,size_t size)1376 contig_free(void *addr, size_t size)
1377 {
1378 pgcnt_t pgcnt = btopr(size);
1379 size_t asize = pgcnt * PAGESIZE;
1380 caddr_t a, ea;
1381 page_t *pp;
1382
1383 hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK);
1384
1385 for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) {
1386 pp = page_find(&kvp, (u_offset_t)(uintptr_t)a);
1387 if (!pp)
1388 panic("contig_free: contig pp not found");
1389
1390 if (!page_tryupgrade(pp)) {
1391 page_unlock(pp);
1392 pp = page_lookup(&kvp,
1393 (u_offset_t)(uintptr_t)a, SE_EXCL);
1394 if (pp == NULL)
1395 panic("contig_free: page freed");
1396 }
1397 page_destroy(pp, 0);
1398 }
1399
1400 page_unresv(pgcnt);
1401 vmem_free(heap_arena, addr, asize);
1402 }
1403
1404 /*
1405 * Allocate from the system, aligned on a specific boundary.
1406 * The alignment, if non-zero, must be a power of 2.
1407 */
1408 static void *
kalloca(size_t size,size_t align,int cansleep,int physcontig,ddi_dma_attr_t * attr)1409 kalloca(size_t size, size_t align, int cansleep, int physcontig,
1410 ddi_dma_attr_t *attr)
1411 {
1412 size_t *addr, *raddr, rsize;
1413 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */
1414 int a, i, c;
1415 vmem_t *vmp;
1416 kmem_cache_t *cp = NULL;
1417
1418 if (attr->dma_attr_addr_lo > mmu_ptob((uint64_t)ddiphysmin))
1419 return (NULL);
1420
1421 align = MAX(align, hdrsize);
1422 ASSERT((align & (align - 1)) == 0);
1423
1424 /*
1425 * All of our allocators guarantee 16-byte alignment, so we don't
1426 * need to reserve additional space for the header.
1427 * To simplify picking the correct kmem_io_cache, we round up to
1428 * a multiple of KA_ALIGN.
1429 */
1430 rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t);
1431
1432 if (physcontig && rsize > PAGESIZE) {
1433 if (addr = contig_alloc(size, attr, align, cansleep)) {
1434 if (!putctgas(addr, size))
1435 contig_free(addr, size);
1436 else
1437 return (addr);
1438 }
1439 return (NULL);
1440 }
1441
1442 a = kmem_io_index(attr->dma_attr_addr_hi);
1443
1444 if (rsize > PAGESIZE) {
1445 vmp = kmem_io[a].kmem_io_arena;
1446 raddr = vmem_alloc(vmp, rsize,
1447 (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1448 } else {
1449 c = highbit((rsize >> KA_ALIGN_SHIFT) - 1);
1450 cp = kmem_io[a].kmem_io_cache[c];
1451 raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP :
1452 KM_NOSLEEP);
1453 }
1454
1455 if (raddr == NULL) {
1456 int na;
1457
1458 ASSERT(cansleep == 0);
1459 if (rsize > PAGESIZE)
1460 return (NULL);
1461 /*
1462 * System does not have memory in the requested range.
1463 * Try smaller kmem io ranges and larger cache sizes
1464 * to see if there might be memory available in
1465 * these other caches.
1466 */
1467
1468 for (na = kmem_io_index_next(a); na >= 0;
1469 na = kmem_io_index_next(na)) {
1470 ASSERT(kmem_io[na].kmem_io_arena);
1471 cp = kmem_io[na].kmem_io_cache[c];
1472 raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1473 if (raddr)
1474 goto kallocdone;
1475 }
1476 /* now try the larger kmem io cache sizes */
1477 for (na = a; na >= 0; na = kmem_io_index_next(na)) {
1478 for (i = c + 1; i < KA_NCACHE; i++) {
1479 cp = kmem_io[na].kmem_io_cache[i];
1480 raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1481 if (raddr)
1482 goto kallocdone;
1483 }
1484 }
1485 return (NULL);
1486 }
1487
1488 kallocdone:
1489 ASSERT(!P2BOUNDARY((uintptr_t)raddr, rsize, PAGESIZE) ||
1490 rsize > PAGESIZE);
1491
1492 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align);
1493 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize);
1494
1495 addr[-4] = (size_t)cp;
1496 addr[-3] = (size_t)vmp;
1497 addr[-2] = (size_t)raddr;
1498 addr[-1] = rsize;
1499
1500 return (addr);
1501 }
1502
1503 static void
kfreea(void * addr)1504 kfreea(void *addr)
1505 {
1506 size_t size;
1507
1508 if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) {
1509 contig_free(addr, size);
1510 } else {
1511 size_t *saddr = addr;
1512 if (saddr[-4] == 0)
1513 vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2],
1514 saddr[-1]);
1515 else
1516 kmem_cache_free((kmem_cache_t *)saddr[-4],
1517 (void *)saddr[-2]);
1518 }
1519 }
1520
1521 /*ARGSUSED*/
1522 void
i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t * devaccp,uint_t * hataccp)1523 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp)
1524 {
1525 }
1526
1527 /*
1528 * Check if the specified cache attribute is supported on the platform.
1529 * This function must be called before i_ddi_cacheattr_to_hatacc().
1530 */
1531 boolean_t
i_ddi_check_cache_attr(uint_t flags)1532 i_ddi_check_cache_attr(uint_t flags)
1533 {
1534 /*
1535 * The cache attributes are mutually exclusive. Any combination of
1536 * the attributes leads to a failure.
1537 */
1538 uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1539 if ((cache_attr != 0) && !ISP2(cache_attr))
1540 return (B_FALSE);
1541
1542 /* All cache attributes are supported on X86/X64 */
1543 if (cache_attr & (IOMEM_DATA_UNCACHED | IOMEM_DATA_CACHED |
1544 IOMEM_DATA_UC_WR_COMBINE))
1545 return (B_TRUE);
1546
1547 /* undefined attributes */
1548 return (B_FALSE);
1549 }
1550
1551 /* set HAT cache attributes from the cache attributes */
1552 void
i_ddi_cacheattr_to_hatacc(uint_t flags,uint_t * hataccp)1553 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp)
1554 {
1555 uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1556 static char *fname = "i_ddi_cacheattr_to_hatacc";
1557
1558 /*
1559 * If write-combining is not supported, then it falls back
1560 * to uncacheable.
1561 */
1562 if (cache_attr == IOMEM_DATA_UC_WR_COMBINE &&
1563 !is_x86_feature(x86_featureset, X86FSET_PAT))
1564 cache_attr = IOMEM_DATA_UNCACHED;
1565
1566 /*
1567 * set HAT attrs according to the cache attrs.
1568 */
1569 switch (cache_attr) {
1570 case IOMEM_DATA_UNCACHED:
1571 *hataccp &= ~HAT_ORDER_MASK;
1572 *hataccp |= (HAT_STRICTORDER | HAT_PLAT_NOCACHE);
1573 break;
1574 case IOMEM_DATA_UC_WR_COMBINE:
1575 *hataccp &= ~HAT_ORDER_MASK;
1576 *hataccp |= (HAT_MERGING_OK | HAT_PLAT_NOCACHE);
1577 break;
1578 case IOMEM_DATA_CACHED:
1579 *hataccp &= ~HAT_ORDER_MASK;
1580 *hataccp |= HAT_UNORDERED_OK;
1581 break;
1582 /*
1583 * This case must not occur because the cache attribute is scrutinized
1584 * before this function is called.
1585 */
1586 default:
1587 /*
1588 * set cacheable to hat attrs.
1589 */
1590 *hataccp &= ~HAT_ORDER_MASK;
1591 *hataccp |= HAT_UNORDERED_OK;
1592 cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.",
1593 fname, cache_attr);
1594 }
1595 }
1596
1597 /*
1598 * This should actually be called i_ddi_dma_mem_alloc. There should
1599 * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call
1600 * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to
1601 * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc
1602 * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc
1603 * so far which is used for both, DMA and PIO, we have to use the DMA
1604 * ctl ops to make everybody happy.
1605 */
1606 /*ARGSUSED*/
1607 int
i_ddi_mem_alloc(dev_info_t * dip,ddi_dma_attr_t * attr,size_t length,int cansleep,int flags,ddi_device_acc_attr_t * accattrp,caddr_t * kaddrp,size_t * real_length,ddi_acc_hdl_t * ap)1608 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr,
1609 size_t length, int cansleep, int flags,
1610 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1611 size_t *real_length, ddi_acc_hdl_t *ap)
1612 {
1613 caddr_t a;
1614 int iomin;
1615 ddi_acc_impl_t *iap;
1616 int physcontig = 0;
1617 pgcnt_t npages;
1618 pgcnt_t minctg;
1619 uint_t order;
1620 int e;
1621
1622 /*
1623 * Check legality of arguments
1624 */
1625 if (length == 0 || kaddrp == NULL || attr == NULL) {
1626 return (DDI_FAILURE);
1627 }
1628
1629 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 ||
1630 !ISP2(attr->dma_attr_align) || !ISP2(attr->dma_attr_minxfer)) {
1631 return (DDI_FAILURE);
1632 }
1633
1634 /*
1635 * figure out most restrictive alignment requirement
1636 */
1637 iomin = attr->dma_attr_minxfer;
1638 iomin = maxbit(iomin, attr->dma_attr_align);
1639 if (iomin == 0)
1640 return (DDI_FAILURE);
1641
1642 ASSERT((iomin & (iomin - 1)) == 0);
1643
1644 /*
1645 * if we allocate memory with IOMEM_DATA_UNCACHED or
1646 * IOMEM_DATA_UC_WR_COMBINE, make sure we allocate a page aligned
1647 * memory that ends on a page boundry.
1648 * Don't want to have to different cache mappings to the same
1649 * physical page.
1650 */
1651 if (OVERRIDE_CACHE_ATTR(flags)) {
1652 iomin = (iomin + MMU_PAGEOFFSET) & MMU_PAGEMASK;
1653 length = (length + MMU_PAGEOFFSET) & (size_t)MMU_PAGEMASK;
1654 }
1655
1656 /*
1657 * Determine if we need to satisfy the request for physically
1658 * contiguous memory or alignments larger than pagesize.
1659 */
1660 npages = btopr(length + attr->dma_attr_align);
1661 minctg = howmany(npages, attr->dma_attr_sgllen);
1662
1663 if (minctg > 1) {
1664 uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT;
1665 /*
1666 * verify that the minimum contig requirement for the
1667 * actual length does not cross segment boundary.
1668 */
1669 length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer,
1670 size_t);
1671 npages = btopr(length);
1672 minctg = howmany(npages, attr->dma_attr_sgllen);
1673 if (minctg > pfnseg + 1)
1674 return (DDI_FAILURE);
1675 physcontig = 1;
1676 } else {
1677 length = P2ROUNDUP_TYPED(length, iomin, size_t);
1678 }
1679
1680 /*
1681 * Allocate the requested amount from the system.
1682 */
1683 a = kalloca(length, iomin, cansleep, physcontig, attr);
1684
1685 if ((*kaddrp = a) == NULL)
1686 return (DDI_FAILURE);
1687
1688 /*
1689 * if we to modify the cache attributes, go back and muck with the
1690 * mappings.
1691 */
1692 if (OVERRIDE_CACHE_ATTR(flags)) {
1693 order = 0;
1694 i_ddi_cacheattr_to_hatacc(flags, &order);
1695 e = kmem_override_cache_attrs(a, length, order);
1696 if (e != 0) {
1697 kfreea(a);
1698 return (DDI_FAILURE);
1699 }
1700 }
1701
1702 if (real_length) {
1703 *real_length = length;
1704 }
1705 if (ap) {
1706 /*
1707 * initialize access handle
1708 */
1709 iap = (ddi_acc_impl_t *)ap->ah_platform_private;
1710 iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR;
1711 impl_acc_hdl_init(ap);
1712 }
1713
1714 return (DDI_SUCCESS);
1715 }
1716
1717 /* ARGSUSED */
1718 void
i_ddi_mem_free(caddr_t kaddr,ddi_acc_hdl_t * ap)1719 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap)
1720 {
1721 if (ap != NULL) {
1722 /*
1723 * if we modified the cache attributes on alloc, go back and
1724 * fix them since this memory could be returned to the
1725 * general pool.
1726 */
1727 if (OVERRIDE_CACHE_ATTR(ap->ah_xfermodes)) {
1728 uint_t order = 0;
1729 int e;
1730 i_ddi_cacheattr_to_hatacc(IOMEM_DATA_CACHED, &order);
1731 e = kmem_override_cache_attrs(kaddr, ap->ah_len, order);
1732 if (e != 0) {
1733 cmn_err(CE_WARN, "i_ddi_mem_free() failed to "
1734 "override cache attrs, memory leaked\n");
1735 return;
1736 }
1737 }
1738 }
1739 kfreea(kaddr);
1740 }
1741
1742 /*
1743 * Access Barriers
1744 *
1745 */
1746 /*ARGSUSED*/
1747 int
i_ddi_ontrap(ddi_acc_handle_t hp)1748 i_ddi_ontrap(ddi_acc_handle_t hp)
1749 {
1750 return (DDI_FAILURE);
1751 }
1752
1753 /*ARGSUSED*/
1754 void
i_ddi_notrap(ddi_acc_handle_t hp)1755 i_ddi_notrap(ddi_acc_handle_t hp)
1756 {
1757 }
1758
1759
1760 /*
1761 * Misc Functions
1762 */
1763
1764 /*
1765 * Implementation instance override functions
1766 *
1767 * No override on i86pc
1768 */
1769 /*ARGSUSED*/
1770 uint_t
impl_assign_instance(dev_info_t * dip)1771 impl_assign_instance(dev_info_t *dip)
1772 {
1773 return ((uint_t)-1);
1774 }
1775
1776 /*ARGSUSED*/
1777 int
impl_keep_instance(dev_info_t * dip)1778 impl_keep_instance(dev_info_t *dip)
1779 {
1780
1781 #if defined(__xpv)
1782 /*
1783 * Do not persist instance numbers assigned to devices in dom0
1784 */
1785 dev_info_t *pdip;
1786 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1787 if (((pdip = ddi_get_parent(dip)) != NULL) &&
1788 (strcmp(ddi_get_name(pdip), "xpvd") == 0))
1789 return (DDI_SUCCESS);
1790 }
1791 #endif
1792 return (DDI_FAILURE);
1793 }
1794
1795 /*ARGSUSED*/
1796 int
impl_free_instance(dev_info_t * dip)1797 impl_free_instance(dev_info_t *dip)
1798 {
1799 return (DDI_FAILURE);
1800 }
1801
1802 /*ARGSUSED*/
1803 int
impl_check_cpu(dev_info_t * devi)1804 impl_check_cpu(dev_info_t *devi)
1805 {
1806 return (DDI_SUCCESS);
1807 }
1808
1809 /*
1810 * Referenced in common/cpr_driver.c: Power off machine.
1811 * Don't know how to power off i86pc.
1812 */
1813 void
arch_power_down()1814 arch_power_down()
1815 {}
1816
1817 /*
1818 * Copy name to property_name, since name
1819 * is in the low address range below kernelbase.
1820 */
1821 static void
copy_boot_str(const char * boot_str,char * kern_str,int len)1822 copy_boot_str(const char *boot_str, char *kern_str, int len)
1823 {
1824 int i = 0;
1825
1826 while (i < len - 1 && boot_str[i] != '\0') {
1827 kern_str[i] = boot_str[i];
1828 i++;
1829 }
1830
1831 kern_str[i] = 0; /* null terminate */
1832 if (boot_str[i] != '\0')
1833 cmn_err(CE_WARN,
1834 "boot property string is truncated to %s", kern_str);
1835 }
1836
1837 static void
get_boot_properties(void)1838 get_boot_properties(void)
1839 {
1840 extern char hw_provider[];
1841 dev_info_t *devi;
1842 char *name;
1843 int length;
1844 char property_name[50], property_val[50];
1845 void *bop_staging_area;
1846
1847 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP);
1848
1849 /*
1850 * Import "root" properties from the boot.
1851 *
1852 * We do this by invoking BOP_NEXTPROP until the list
1853 * is completely copied in.
1854 */
1855
1856 devi = ddi_root_node();
1857 for (name = BOP_NEXTPROP(bootops, ""); /* get first */
1858 name; /* NULL => DONE */
1859 name = BOP_NEXTPROP(bootops, name)) { /* get next */
1860
1861 /* copy string to memory above kernelbase */
1862 copy_boot_str(name, property_name, 50);
1863
1864 /*
1865 * Skip vga properties. They will be picked up later
1866 * by get_vga_properties.
1867 */
1868 if (strcmp(property_name, "display-edif-block") == 0 ||
1869 strcmp(property_name, "display-edif-id") == 0) {
1870 continue;
1871 }
1872
1873 length = BOP_GETPROPLEN(bootops, property_name);
1874 if (length == 0)
1875 continue;
1876 if (length > MMU_PAGESIZE) {
1877 cmn_err(CE_NOTE,
1878 "boot property %s longer than 0x%x, ignored\n",
1879 property_name, MMU_PAGESIZE);
1880 continue;
1881 }
1882 BOP_GETPROP(bootops, property_name, bop_staging_area);
1883
1884 /*
1885 * special properties:
1886 * si-machine, si-hw-provider
1887 * goes to kernel data structures.
1888 * bios-boot-device and stdout
1889 * goes to hardware property list so it may show up
1890 * in the prtconf -vp output. This is needed by
1891 * Install/Upgrade. Once we fix install upgrade,
1892 * this can be taken out.
1893 */
1894 if (strcmp(name, "si-machine") == 0) {
1895 (void) strncpy(utsname.machine, bop_staging_area,
1896 SYS_NMLN);
1897 utsname.machine[SYS_NMLN - 1] = (char)NULL;
1898 } else if (strcmp(name, "si-hw-provider") == 0) {
1899 (void) strncpy(hw_provider, bop_staging_area, SYS_NMLN);
1900 hw_provider[SYS_NMLN - 1] = (char)NULL;
1901 } else if (strcmp(name, "bios-boot-device") == 0) {
1902 copy_boot_str(bop_staging_area, property_val, 50);
1903 (void) ndi_prop_update_string(DDI_DEV_T_NONE, devi,
1904 property_name, property_val);
1905 } else if (strcmp(name, "stdout") == 0) {
1906 (void) ndi_prop_update_int(DDI_DEV_T_NONE, devi,
1907 property_name, *((int *)bop_staging_area));
1908 } else {
1909 /* Property type unknown, use old prop interface */
1910 (void) e_ddi_prop_create(DDI_DEV_T_NONE, devi,
1911 DDI_PROP_CANSLEEP, property_name, bop_staging_area,
1912 length);
1913 }
1914 }
1915
1916 kmem_free(bop_staging_area, MMU_PAGESIZE);
1917 }
1918
1919 static void
get_vga_properties(void)1920 get_vga_properties(void)
1921 {
1922 dev_info_t *devi;
1923 major_t major;
1924 char *name;
1925 int length;
1926 char property_val[50];
1927 void *bop_staging_area;
1928
1929 /*
1930 * XXXX Hack Allert!
1931 * There really needs to be a better way for identifying various
1932 * console framebuffers and their related issues. Till then,
1933 * check for this one as a replacement to vgatext.
1934 */
1935 major = ddi_name_to_major("ragexl");
1936 if (major == (major_t)-1) {
1937 major = ddi_name_to_major("vgatext");
1938 if (major == (major_t)-1)
1939 return;
1940 }
1941 devi = devnamesp[major].dn_head;
1942 if (devi == NULL)
1943 return;
1944
1945 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
1946
1947 /*
1948 * Import "vga" properties from the boot.
1949 */
1950 name = "display-edif-block";
1951 length = BOP_GETPROPLEN(bootops, name);
1952 if (length > 0 && length < MMU_PAGESIZE) {
1953 BOP_GETPROP(bootops, name, bop_staging_area);
1954 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE,
1955 devi, name, bop_staging_area, length);
1956 }
1957
1958 /*
1959 * kdmconfig is also looking for display-type and
1960 * video-adapter-type. We default to color and svga.
1961 *
1962 * Could it be "monochrome", "vga"?
1963 * Nah, you've got to come to the 21st century...
1964 * And you can set monitor type manually in kdmconfig
1965 * if you are really an old junky.
1966 */
1967 (void) ndi_prop_update_string(DDI_DEV_T_NONE,
1968 devi, "display-type", "color");
1969 (void) ndi_prop_update_string(DDI_DEV_T_NONE,
1970 devi, "video-adapter-type", "svga");
1971
1972 name = "display-edif-id";
1973 length = BOP_GETPROPLEN(bootops, name);
1974 if (length > 0 && length < MMU_PAGESIZE) {
1975 BOP_GETPROP(bootops, name, bop_staging_area);
1976 copy_boot_str(bop_staging_area, property_val, length);
1977 (void) ndi_prop_update_string(DDI_DEV_T_NONE,
1978 devi, name, property_val);
1979 }
1980
1981 kmem_free(bop_staging_area, MMU_PAGESIZE);
1982 }
1983
1984
1985 /*
1986 * This is temporary, but absolutely necessary. If we are being
1987 * booted with a device tree created by the DevConf project's bootconf
1988 * program, then we have device information nodes that reflect
1989 * reality. At this point in time in the Solaris release schedule, the
1990 * kernel drivers aren't prepared for reality. They still depend on their
1991 * own ad-hoc interpretations of the properties created when their .conf
1992 * files were interpreted. These drivers use an "ignore-hardware-nodes"
1993 * property to prevent them from using the nodes passed up from the bootconf
1994 * device tree.
1995 *
1996 * Trying to assemble root file system drivers as we are booting from
1997 * devconf will fail if the kernel driver is basing its name_addr's on the
1998 * psuedo-node device info while the bootpath passed up from bootconf is using
1999 * reality-based name_addrs. We help the boot along in this case by
2000 * looking at the pre-bootconf bootpath and determining if we would have
2001 * successfully matched if that had been the bootpath we had chosen.
2002 *
2003 * Note that we only even perform this extra check if we've booted
2004 * using bootconf's 1275 compliant bootpath, this is the boot device, and
2005 * we're trying to match the name_addr specified in the 1275 bootpath.
2006 */
2007
2008 #define MAXCOMPONENTLEN 32
2009
2010 int
x86_old_bootpath_name_addr_match(dev_info_t * cdip,char * caddr,char * naddr)2011 x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr)
2012 {
2013 /*
2014 * There are multiple criteria to be met before we can even
2015 * consider allowing a name_addr match here.
2016 *
2017 * 1) We must have been booted such that the bootconf program
2018 * created device tree nodes and properties. This can be
2019 * determined by examining the 'bootpath' property. This
2020 * property will be a non-null string iff bootconf was
2021 * involved in the boot.
2022 *
2023 * 2) The module that we want to match must be the boot device.
2024 *
2025 * 3) The instance of the module we are thinking of letting be
2026 * our match must be ignoring hardware nodes.
2027 *
2028 * 4) The name_addr we want to match must be the name_addr
2029 * specified in the 1275 bootpath.
2030 */
2031 static char bootdev_module[MAXCOMPONENTLEN];
2032 static char bootdev_oldmod[MAXCOMPONENTLEN];
2033 static char bootdev_newaddr[MAXCOMPONENTLEN];
2034 static char bootdev_oldaddr[MAXCOMPONENTLEN];
2035 static int quickexit;
2036
2037 char *daddr;
2038 int dlen;
2039
2040 char *lkupname;
2041 int rv = DDI_FAILURE;
2042
2043 if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2044 "devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) &&
2045 (ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2046 "ignore-hardware-nodes", -1) != -1)) {
2047 if (strcmp(daddr, caddr) == 0) {
2048 return (DDI_SUCCESS);
2049 }
2050 }
2051
2052 if (quickexit)
2053 return (rv);
2054
2055 if (bootdev_module[0] == '\0') {
2056 char *addrp, *eoaddrp;
2057 char *busp, *modp, *atp;
2058 char *bp1275, *bp;
2059 int bp1275len, bplen;
2060
2061 bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL;
2062
2063 if (ddi_getlongprop(DDI_DEV_T_ANY,
2064 ddi_root_node(), 0, "bootpath",
2065 (caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS ||
2066 bp1275len <= 1) {
2067 /*
2068 * We didn't boot from bootconf so we never need to
2069 * do any special matches.
2070 */
2071 quickexit = 1;
2072 if (bp1275)
2073 kmem_free(bp1275, bp1275len);
2074 return (rv);
2075 }
2076
2077 if (ddi_getlongprop(DDI_DEV_T_ANY,
2078 ddi_root_node(), 0, "boot-path",
2079 (caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) {
2080 /*
2081 * No fallback position for matching. This is
2082 * certainly unexpected, but we'll handle it
2083 * just in case.
2084 */
2085 quickexit = 1;
2086 kmem_free(bp1275, bp1275len);
2087 if (bp)
2088 kmem_free(bp, bplen);
2089 return (rv);
2090 }
2091
2092 /*
2093 * Determine boot device module and 1275 name_addr
2094 *
2095 * bootpath assumed to be of the form /bus/module@name_addr
2096 */
2097 if (busp = strchr(bp1275, '/')) {
2098 if (modp = strchr(busp + 1, '/')) {
2099 if (atp = strchr(modp + 1, '@')) {
2100 *atp = '\0';
2101 addrp = atp + 1;
2102 if (eoaddrp = strchr(addrp, '/'))
2103 *eoaddrp = '\0';
2104 }
2105 }
2106 }
2107
2108 if (modp && addrp) {
2109 (void) strncpy(bootdev_module, modp + 1,
2110 MAXCOMPONENTLEN);
2111 bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
2112
2113 (void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN);
2114 bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0';
2115 } else {
2116 quickexit = 1;
2117 kmem_free(bp1275, bp1275len);
2118 kmem_free(bp, bplen);
2119 return (rv);
2120 }
2121
2122 /*
2123 * Determine fallback name_addr
2124 *
2125 * 10/3/96 - Also save fallback module name because it
2126 * might actually be different than the current module
2127 * name. E.G., ISA pnp drivers have new names.
2128 *
2129 * bootpath assumed to be of the form /bus/module@name_addr
2130 */
2131 addrp = NULL;
2132 if (busp = strchr(bp, '/')) {
2133 if (modp = strchr(busp + 1, '/')) {
2134 if (atp = strchr(modp + 1, '@')) {
2135 *atp = '\0';
2136 addrp = atp + 1;
2137 if (eoaddrp = strchr(addrp, '/'))
2138 *eoaddrp = '\0';
2139 }
2140 }
2141 }
2142
2143 if (modp && addrp) {
2144 (void) strncpy(bootdev_oldmod, modp + 1,
2145 MAXCOMPONENTLEN);
2146 bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
2147
2148 (void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN);
2149 bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0';
2150 }
2151
2152 /* Free up the bootpath storage now that we're done with it. */
2153 kmem_free(bp1275, bp1275len);
2154 kmem_free(bp, bplen);
2155
2156 if (bootdev_oldaddr[0] == '\0') {
2157 quickexit = 1;
2158 return (rv);
2159 }
2160 }
2161
2162 if (((lkupname = ddi_get_name(cdip)) != NULL) &&
2163 (strcmp(bootdev_module, lkupname) == 0 ||
2164 strcmp(bootdev_oldmod, lkupname) == 0) &&
2165 ((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2166 "ignore-hardware-nodes", -1) != -1) ||
2167 ignore_hardware_nodes) &&
2168 strcmp(bootdev_newaddr, caddr) == 0 &&
2169 strcmp(bootdev_oldaddr, naddr) == 0) {
2170 rv = DDI_SUCCESS;
2171 }
2172
2173 return (rv);
2174 }
2175
2176 /*
2177 * Perform a copy from a memory mapped device (whose devinfo pointer is devi)
2178 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr.
2179 */
2180 /*ARGSUSED*/
2181 int
e_ddi_copyfromdev(dev_info_t * devi,off_t off,const void * devaddr,void * kaddr,size_t len)2182 e_ddi_copyfromdev(dev_info_t *devi,
2183 off_t off, const void *devaddr, void *kaddr, size_t len)
2184 {
2185 bcopy(devaddr, kaddr, len);
2186 return (0);
2187 }
2188
2189 /*
2190 * Perform a copy to a memory mapped device (whose devinfo pointer is devi)
2191 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr.
2192 */
2193 /*ARGSUSED*/
2194 int
e_ddi_copytodev(dev_info_t * devi,off_t off,const void * kaddr,void * devaddr,size_t len)2195 e_ddi_copytodev(dev_info_t *devi,
2196 off_t off, const void *kaddr, void *devaddr, size_t len)
2197 {
2198 bcopy(kaddr, devaddr, len);
2199 return (0);
2200 }
2201
2202
2203 static int
poke_mem(peekpoke_ctlops_t * in_args)2204 poke_mem(peekpoke_ctlops_t *in_args)
2205 {
2206 int err = DDI_SUCCESS;
2207 on_trap_data_t otd;
2208
2209 /* Set up protected environment. */
2210 if (!on_trap(&otd, OT_DATA_ACCESS)) {
2211 switch (in_args->size) {
2212 case sizeof (uint8_t):
2213 *(uint8_t *)(in_args->dev_addr) =
2214 *(uint8_t *)in_args->host_addr;
2215 break;
2216
2217 case sizeof (uint16_t):
2218 *(uint16_t *)(in_args->dev_addr) =
2219 *(uint16_t *)in_args->host_addr;
2220 break;
2221
2222 case sizeof (uint32_t):
2223 *(uint32_t *)(in_args->dev_addr) =
2224 *(uint32_t *)in_args->host_addr;
2225 break;
2226
2227 case sizeof (uint64_t):
2228 *(uint64_t *)(in_args->dev_addr) =
2229 *(uint64_t *)in_args->host_addr;
2230 break;
2231
2232 default:
2233 err = DDI_FAILURE;
2234 break;
2235 }
2236 } else
2237 err = DDI_FAILURE;
2238
2239 /* Take down protected environment. */
2240 no_trap();
2241
2242 return (err);
2243 }
2244
2245
2246 static int
peek_mem(peekpoke_ctlops_t * in_args)2247 peek_mem(peekpoke_ctlops_t *in_args)
2248 {
2249 int err = DDI_SUCCESS;
2250 on_trap_data_t otd;
2251
2252 if (!on_trap(&otd, OT_DATA_ACCESS)) {
2253 switch (in_args->size) {
2254 case sizeof (uint8_t):
2255 *(uint8_t *)in_args->host_addr =
2256 *(uint8_t *)in_args->dev_addr;
2257 break;
2258
2259 case sizeof (uint16_t):
2260 *(uint16_t *)in_args->host_addr =
2261 *(uint16_t *)in_args->dev_addr;
2262 break;
2263
2264 case sizeof (uint32_t):
2265 *(uint32_t *)in_args->host_addr =
2266 *(uint32_t *)in_args->dev_addr;
2267 break;
2268
2269 case sizeof (uint64_t):
2270 *(uint64_t *)in_args->host_addr =
2271 *(uint64_t *)in_args->dev_addr;
2272 break;
2273
2274 default:
2275 err = DDI_FAILURE;
2276 break;
2277 }
2278 } else
2279 err = DDI_FAILURE;
2280
2281 no_trap();
2282 return (err);
2283 }
2284
2285
2286 /*
2287 * This is called only to process peek/poke when the DIP is NULL.
2288 * Assume that this is for memory, as nexi take care of device safe accesses.
2289 */
2290 int
peekpoke_mem(ddi_ctl_enum_t cmd,peekpoke_ctlops_t * in_args)2291 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args)
2292 {
2293 return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args));
2294 }
2295
2296 /*
2297 * we've just done a cautious put/get. Check if it was successful by
2298 * calling pci_ereport_post() on all puts and for any gets that return -1
2299 */
2300 static int
pci_peekpoke_check_fma(dev_info_t * dip,void * arg,ddi_ctl_enum_t ctlop,void (* scan)(dev_info_t *,ddi_fm_error_t *))2301 pci_peekpoke_check_fma(dev_info_t *dip, void *arg, ddi_ctl_enum_t ctlop,
2302 void (*scan)(dev_info_t *, ddi_fm_error_t *))
2303 {
2304 int rval = DDI_SUCCESS;
2305 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2306 ddi_fm_error_t de;
2307 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2308 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
2309 int check_err = 0;
2310 int repcount = in_args->repcount;
2311
2312 if (ctlop == DDI_CTLOPS_POKE &&
2313 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC)
2314 return (DDI_SUCCESS);
2315
2316 if (ctlop == DDI_CTLOPS_PEEK &&
2317 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) {
2318 for (; repcount; repcount--) {
2319 switch (in_args->size) {
2320 case sizeof (uint8_t):
2321 if (*(uint8_t *)in_args->host_addr == 0xff)
2322 check_err = 1;
2323 break;
2324 case sizeof (uint16_t):
2325 if (*(uint16_t *)in_args->host_addr == 0xffff)
2326 check_err = 1;
2327 break;
2328 case sizeof (uint32_t):
2329 if (*(uint32_t *)in_args->host_addr ==
2330 0xffffffff)
2331 check_err = 1;
2332 break;
2333 case sizeof (uint64_t):
2334 if (*(uint64_t *)in_args->host_addr ==
2335 0xffffffffffffffff)
2336 check_err = 1;
2337 break;
2338 }
2339 }
2340 if (check_err == 0)
2341 return (DDI_SUCCESS);
2342 }
2343 /*
2344 * for a cautious put or get or a non-cautious get that returned -1 call
2345 * io framework to see if there really was an error
2346 */
2347 bzero(&de, sizeof (ddi_fm_error_t));
2348 de.fme_version = DDI_FME_VERSION;
2349 de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1);
2350 if (hdlp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) {
2351 de.fme_flag = DDI_FM_ERR_EXPECTED;
2352 de.fme_acc_handle = in_args->handle;
2353 } else if (hdlp->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) {
2354 /*
2355 * We only get here with DDI_DEFAULT_ACC for config space gets.
2356 * Non-hardened drivers may be probing the hardware and
2357 * expecting -1 returned. So need to treat errors on
2358 * DDI_DEFAULT_ACC as DDI_FM_ERR_EXPECTED.
2359 */
2360 de.fme_flag = DDI_FM_ERR_EXPECTED;
2361 de.fme_acc_handle = in_args->handle;
2362 } else {
2363 /*
2364 * Hardened driver doing protected accesses shouldn't
2365 * get errors unless there's a hardware problem. Treat
2366 * as nonfatal if there's an error, but set UNEXPECTED
2367 * so we raise ereports on any errors and potentially
2368 * fault the device
2369 */
2370 de.fme_flag = DDI_FM_ERR_UNEXPECTED;
2371 }
2372 (void) scan(dip, &de);
2373 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC &&
2374 de.fme_status != DDI_FM_OK) {
2375 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err;
2376 rval = DDI_FAILURE;
2377 errp->err_ena = de.fme_ena;
2378 errp->err_expected = de.fme_flag;
2379 errp->err_status = DDI_FM_NONFATAL;
2380 }
2381 return (rval);
2382 }
2383
2384 /*
2385 * pci_peekpoke_check_nofma() is for when an error occurs on a register access
2386 * during pci_ereport_post(). We can't call pci_ereport_post() again or we'd
2387 * recurse, so assume all puts are OK and gets have failed if they return -1
2388 */
2389 static int
pci_peekpoke_check_nofma(void * arg,ddi_ctl_enum_t ctlop)2390 pci_peekpoke_check_nofma(void *arg, ddi_ctl_enum_t ctlop)
2391 {
2392 int rval = DDI_SUCCESS;
2393 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2394 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2395 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
2396 int repcount = in_args->repcount;
2397
2398 if (ctlop == DDI_CTLOPS_POKE)
2399 return (rval);
2400
2401 for (; repcount; repcount--) {
2402 switch (in_args->size) {
2403 case sizeof (uint8_t):
2404 if (*(uint8_t *)in_args->host_addr == 0xff)
2405 rval = DDI_FAILURE;
2406 break;
2407 case sizeof (uint16_t):
2408 if (*(uint16_t *)in_args->host_addr == 0xffff)
2409 rval = DDI_FAILURE;
2410 break;
2411 case sizeof (uint32_t):
2412 if (*(uint32_t *)in_args->host_addr == 0xffffffff)
2413 rval = DDI_FAILURE;
2414 break;
2415 case sizeof (uint64_t):
2416 if (*(uint64_t *)in_args->host_addr ==
2417 0xffffffffffffffff)
2418 rval = DDI_FAILURE;
2419 break;
2420 }
2421 }
2422 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC &&
2423 rval == DDI_FAILURE) {
2424 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err;
2425 errp->err_ena = fm_ena_generate(0, FM_ENA_FMT1);
2426 errp->err_expected = DDI_FM_ERR_UNEXPECTED;
2427 errp->err_status = DDI_FM_NONFATAL;
2428 }
2429 return (rval);
2430 }
2431
2432 int
pci_peekpoke_check(dev_info_t * dip,dev_info_t * rdip,ddi_ctl_enum_t ctlop,void * arg,void * result,int (* handler)(dev_info_t *,dev_info_t *,ddi_ctl_enum_t,void *,void *),kmutex_t * err_mutexp,kmutex_t * peek_poke_mutexp,void (* scan)(dev_info_t *,ddi_fm_error_t *))2433 pci_peekpoke_check(dev_info_t *dip, dev_info_t *rdip,
2434 ddi_ctl_enum_t ctlop, void *arg, void *result,
2435 int (*handler)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *,
2436 void *), kmutex_t *err_mutexp, kmutex_t *peek_poke_mutexp,
2437 void (*scan)(dev_info_t *, ddi_fm_error_t *))
2438 {
2439 int rval;
2440 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2441 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2442
2443 /*
2444 * this function only supports cautious accesses, not peeks/pokes
2445 * which don't have a handle
2446 */
2447 if (hp == NULL)
2448 return (DDI_FAILURE);
2449
2450 if (hp->ahi_acc_attr & DDI_ACCATTR_CONFIG_SPACE) {
2451 if (!mutex_tryenter(err_mutexp)) {
2452 /*
2453 * As this may be a recursive call from within
2454 * pci_ereport_post() we can't wait for the mutexes.
2455 * Fortunately we know someone is already calling
2456 * pci_ereport_post() which will handle the error bits
2457 * for us, and as this is a config space access we can
2458 * just do the access and check return value for -1
2459 * using pci_peekpoke_check_nofma().
2460 */
2461 rval = handler(dip, rdip, ctlop, arg, result);
2462 if (rval == DDI_SUCCESS)
2463 rval = pci_peekpoke_check_nofma(arg, ctlop);
2464 return (rval);
2465 }
2466 /*
2467 * This can't be a recursive call. Drop the err_mutex and get
2468 * both mutexes in the right order. If an error hasn't already
2469 * been detected by the ontrap code, use pci_peekpoke_check_fma
2470 * which will call pci_ereport_post() to check error status.
2471 */
2472 mutex_exit(err_mutexp);
2473 }
2474 mutex_enter(peek_poke_mutexp);
2475 rval = handler(dip, rdip, ctlop, arg, result);
2476 if (rval == DDI_SUCCESS) {
2477 mutex_enter(err_mutexp);
2478 rval = pci_peekpoke_check_fma(dip, arg, ctlop, scan);
2479 mutex_exit(err_mutexp);
2480 }
2481 mutex_exit(peek_poke_mutexp);
2482 return (rval);
2483 }
2484
2485 void
impl_setup_ddi(void)2486 impl_setup_ddi(void)
2487 {
2488 #if !defined(__xpv)
2489 extern void startup_bios_disk(void);
2490 extern int post_fastreboot;
2491 #endif
2492 dev_info_t *xdip, *isa_dip;
2493 rd_existing_t rd_mem_prop;
2494 int err;
2495
2496 ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk",
2497 (pnode_t)DEVI_SID_NODEID, &xdip);
2498
2499 (void) BOP_GETPROP(bootops,
2500 "ramdisk_start", (void *)&ramdisk_start);
2501 (void) BOP_GETPROP(bootops,
2502 "ramdisk_end", (void *)&ramdisk_end);
2503
2504 #ifdef __xpv
2505 ramdisk_start -= ONE_GIG;
2506 ramdisk_end -= ONE_GIG;
2507 #endif
2508 rd_mem_prop.phys = ramdisk_start;
2509 rd_mem_prop.size = ramdisk_end - ramdisk_start + 1;
2510
2511 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip,
2512 RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop,
2513 sizeof (rd_mem_prop));
2514 err = ndi_devi_bind_driver(xdip, 0);
2515 ASSERT(err == 0);
2516
2517 /* isa node */
2518 if (pseudo_isa) {
2519 ndi_devi_alloc_sleep(ddi_root_node(), "isa",
2520 (pnode_t)DEVI_SID_NODEID, &isa_dip);
2521 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
2522 "device_type", "isa");
2523 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
2524 "bus-type", "isa");
2525 (void) ndi_devi_bind_driver(isa_dip, 0);
2526 }
2527
2528 /*
2529 * Read in the properties from the boot.
2530 */
2531 get_boot_properties();
2532
2533 /* not framebuffer should be enumerated, if present */
2534 get_vga_properties();
2535
2536 /*
2537 * Check for administratively disabled drivers.
2538 */
2539 check_driver_disable();
2540
2541 #if !defined(__xpv)
2542 if (!post_fastreboot)
2543 startup_bios_disk();
2544 #endif
2545 /* do bus dependent probes. */
2546 impl_bus_initialprobe();
2547 }
2548
2549 dev_t
getrootdev(void)2550 getrootdev(void)
2551 {
2552 /*
2553 * Precedence given to rootdev if set in /etc/system
2554 */
2555 if (root_is_svm == B_TRUE) {
2556 return (ddi_pathname_to_dev_t(svm_bootpath));
2557 }
2558
2559 /*
2560 * Usually rootfs.bo_name is initialized by the
2561 * the bootpath property from bootenv.rc, but
2562 * defaults to "/ramdisk:a" otherwise.
2563 */
2564 return (ddi_pathname_to_dev_t(rootfs.bo_name));
2565 }
2566
2567 static struct bus_probe {
2568 struct bus_probe *next;
2569 void (*probe)(int);
2570 } *bus_probes;
2571
2572 void
impl_bus_add_probe(void (* func)(int))2573 impl_bus_add_probe(void (*func)(int))
2574 {
2575 struct bus_probe *probe;
2576 struct bus_probe *lastprobe = NULL;
2577
2578 probe = kmem_alloc(sizeof (*probe), KM_SLEEP);
2579 probe->probe = func;
2580 probe->next = NULL;
2581
2582 if (!bus_probes) {
2583 bus_probes = probe;
2584 return;
2585 }
2586
2587 lastprobe = bus_probes;
2588 while (lastprobe->next)
2589 lastprobe = lastprobe->next;
2590 lastprobe->next = probe;
2591 }
2592
2593 /*ARGSUSED*/
2594 void
impl_bus_delete_probe(void (* func)(int))2595 impl_bus_delete_probe(void (*func)(int))
2596 {
2597 struct bus_probe *prev = NULL;
2598 struct bus_probe *probe = bus_probes;
2599
2600 while (probe) {
2601 if (probe->probe == func)
2602 break;
2603 prev = probe;
2604 probe = probe->next;
2605 }
2606
2607 if (probe == NULL)
2608 return;
2609
2610 if (prev)
2611 prev->next = probe->next;
2612 else
2613 bus_probes = probe->next;
2614
2615 kmem_free(probe, sizeof (struct bus_probe));
2616 }
2617
2618 /*
2619 * impl_bus_initialprobe
2620 * Modload the prom simulator, then let it probe to verify existence
2621 * and type of PCI support.
2622 */
2623 static void
impl_bus_initialprobe(void)2624 impl_bus_initialprobe(void)
2625 {
2626 struct bus_probe *probe;
2627
2628 /* load modules to install bus probes */
2629 #if defined(__xpv)
2630 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2631 if (modload("misc", "pci_autoconfig") < 0) {
2632 panic("failed to load misc/pci_autoconfig");
2633 }
2634
2635 if (modload("drv", "isa") < 0)
2636 panic("failed to load drv/isa");
2637 }
2638
2639 (void) modload("misc", "xpv_autoconfig");
2640 #else
2641 if (modload("misc", "pci_autoconfig") < 0) {
2642 panic("failed to load misc/pci_autoconfig");
2643 }
2644
2645 (void) modload("misc", "acpidev");
2646
2647 if (modload("drv", "isa") < 0)
2648 panic("failed to load drv/isa");
2649 #endif
2650
2651 probe = bus_probes;
2652 while (probe) {
2653 /* run the probe functions */
2654 (*probe->probe)(0);
2655 probe = probe->next;
2656 }
2657 }
2658
2659 /*
2660 * impl_bus_reprobe
2661 * Reprogram devices not set up by firmware.
2662 */
2663 static void
impl_bus_reprobe(void)2664 impl_bus_reprobe(void)
2665 {
2666 struct bus_probe *probe;
2667
2668 probe = bus_probes;
2669 while (probe) {
2670 /* run the probe function */
2671 (*probe->probe)(1);
2672 probe = probe->next;
2673 }
2674 }
2675
2676
2677 /*
2678 * The following functions ready a cautious request to go up to the nexus
2679 * driver. It is up to the nexus driver to decide how to process the request.
2680 * It may choose to call i_ddi_do_caut_get/put in this file, or do it
2681 * differently.
2682 */
2683
2684 static void
i_ddi_caut_getput_ctlops(ddi_acc_impl_t * hp,uint64_t host_addr,uint64_t dev_addr,size_t size,size_t repcount,uint_t flags,ddi_ctl_enum_t cmd)2685 i_ddi_caut_getput_ctlops(ddi_acc_impl_t *hp, uint64_t host_addr,
2686 uint64_t dev_addr, size_t size, size_t repcount, uint_t flags,
2687 ddi_ctl_enum_t cmd)
2688 {
2689 peekpoke_ctlops_t cautacc_ctlops_arg;
2690
2691 cautacc_ctlops_arg.size = size;
2692 cautacc_ctlops_arg.dev_addr = dev_addr;
2693 cautacc_ctlops_arg.host_addr = host_addr;
2694 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp;
2695 cautacc_ctlops_arg.repcount = repcount;
2696 cautacc_ctlops_arg.flags = flags;
2697
2698 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd,
2699 &cautacc_ctlops_arg, NULL);
2700 }
2701
2702 uint8_t
i_ddi_caut_get8(ddi_acc_impl_t * hp,uint8_t * addr)2703 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr)
2704 {
2705 uint8_t value;
2706 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2707 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK);
2708
2709 return (value);
2710 }
2711
2712 uint16_t
i_ddi_caut_get16(ddi_acc_impl_t * hp,uint16_t * addr)2713 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr)
2714 {
2715 uint16_t value;
2716 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2717 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK);
2718
2719 return (value);
2720 }
2721
2722 uint32_t
i_ddi_caut_get32(ddi_acc_impl_t * hp,uint32_t * addr)2723 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr)
2724 {
2725 uint32_t value;
2726 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2727 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK);
2728
2729 return (value);
2730 }
2731
2732 uint64_t
i_ddi_caut_get64(ddi_acc_impl_t * hp,uint64_t * addr)2733 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr)
2734 {
2735 uint64_t value;
2736 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2737 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK);
2738
2739 return (value);
2740 }
2741
2742 void
i_ddi_caut_put8(ddi_acc_impl_t * hp,uint8_t * addr,uint8_t value)2743 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value)
2744 {
2745 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2746 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE);
2747 }
2748
2749 void
i_ddi_caut_put16(ddi_acc_impl_t * hp,uint16_t * addr,uint16_t value)2750 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value)
2751 {
2752 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2753 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE);
2754 }
2755
2756 void
i_ddi_caut_put32(ddi_acc_impl_t * hp,uint32_t * addr,uint32_t value)2757 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value)
2758 {
2759 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2760 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE);
2761 }
2762
2763 void
i_ddi_caut_put64(ddi_acc_impl_t * hp,uint64_t * addr,uint64_t value)2764 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value)
2765 {
2766 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2767 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE);
2768 }
2769
2770 void
i_ddi_caut_rep_get8(ddi_acc_impl_t * hp,uint8_t * host_addr,uint8_t * dev_addr,size_t repcount,uint_t flags)2771 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
2772 size_t repcount, uint_t flags)
2773 {
2774 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2775 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK);
2776 }
2777
2778 void
i_ddi_caut_rep_get16(ddi_acc_impl_t * hp,uint16_t * host_addr,uint16_t * dev_addr,size_t repcount,uint_t flags)2779 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr,
2780 uint16_t *dev_addr, size_t repcount, uint_t flags)
2781 {
2782 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2783 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK);
2784 }
2785
2786 void
i_ddi_caut_rep_get32(ddi_acc_impl_t * hp,uint32_t * host_addr,uint32_t * dev_addr,size_t repcount,uint_t flags)2787 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr,
2788 uint32_t *dev_addr, size_t repcount, uint_t flags)
2789 {
2790 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2791 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK);
2792 }
2793
2794 void
i_ddi_caut_rep_get64(ddi_acc_impl_t * hp,uint64_t * host_addr,uint64_t * dev_addr,size_t repcount,uint_t flags)2795 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr,
2796 uint64_t *dev_addr, size_t repcount, uint_t flags)
2797 {
2798 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2799 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK);
2800 }
2801
2802 void
i_ddi_caut_rep_put8(ddi_acc_impl_t * hp,uint8_t * host_addr,uint8_t * dev_addr,size_t repcount,uint_t flags)2803 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
2804 size_t repcount, uint_t flags)
2805 {
2806 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2807 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE);
2808 }
2809
2810 void
i_ddi_caut_rep_put16(ddi_acc_impl_t * hp,uint16_t * host_addr,uint16_t * dev_addr,size_t repcount,uint_t flags)2811 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr,
2812 uint16_t *dev_addr, size_t repcount, uint_t flags)
2813 {
2814 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2815 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE);
2816 }
2817
2818 void
i_ddi_caut_rep_put32(ddi_acc_impl_t * hp,uint32_t * host_addr,uint32_t * dev_addr,size_t repcount,uint_t flags)2819 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr,
2820 uint32_t *dev_addr, size_t repcount, uint_t flags)
2821 {
2822 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2823 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE);
2824 }
2825
2826 void
i_ddi_caut_rep_put64(ddi_acc_impl_t * hp,uint64_t * host_addr,uint64_t * dev_addr,size_t repcount,uint_t flags)2827 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr,
2828 uint64_t *dev_addr, size_t repcount, uint_t flags)
2829 {
2830 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2831 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE);
2832 }
2833
2834 boolean_t
i_ddi_copybuf_required(ddi_dma_attr_t * attrp)2835 i_ddi_copybuf_required(ddi_dma_attr_t *attrp)
2836 {
2837 uint64_t hi_pa;
2838
2839 hi_pa = ((uint64_t)physmax + 1ull) << PAGESHIFT;
2840 if (attrp->dma_attr_addr_hi < hi_pa) {
2841 return (B_TRUE);
2842 }
2843
2844 return (B_FALSE);
2845 }
2846
2847 size_t
i_ddi_copybuf_size()2848 i_ddi_copybuf_size()
2849 {
2850 return (dma_max_copybuf_size);
2851 }
2852
2853 /*
2854 * i_ddi_dma_max()
2855 * returns the maximum DMA size which can be performed in a single DMA
2856 * window taking into account the devices DMA contraints (attrp), the
2857 * maximum copy buffer size (if applicable), and the worse case buffer
2858 * fragmentation.
2859 */
2860 /*ARGSUSED*/
2861 uint32_t
i_ddi_dma_max(dev_info_t * dip,ddi_dma_attr_t * attrp)2862 i_ddi_dma_max(dev_info_t *dip, ddi_dma_attr_t *attrp)
2863 {
2864 uint64_t maxxfer;
2865
2866
2867 /*
2868 * take the min of maxxfer and the the worse case fragementation
2869 * (e.g. every cookie <= 1 page)
2870 */
2871 maxxfer = MIN(attrp->dma_attr_maxxfer,
2872 ((uint64_t)(attrp->dma_attr_sgllen - 1) << PAGESHIFT));
2873
2874 /*
2875 * If the DMA engine can't reach all off memory, we also need to take
2876 * the max size of the copybuf into consideration.
2877 */
2878 if (i_ddi_copybuf_required(attrp)) {
2879 maxxfer = MIN(i_ddi_copybuf_size(), maxxfer);
2880 }
2881
2882 /*
2883 * we only return a 32-bit value. Make sure it's not -1. Round to a
2884 * page so it won't be mistaken for an error value during debug.
2885 */
2886 if (maxxfer >= 0xFFFFFFFF) {
2887 maxxfer = 0xFFFFF000;
2888 }
2889
2890 /*
2891 * make sure the value we return is a whole multiple of the
2892 * granlarity.
2893 */
2894 if (attrp->dma_attr_granular > 1) {
2895 maxxfer = maxxfer - (maxxfer % attrp->dma_attr_granular);
2896 }
2897
2898 return ((uint32_t)maxxfer);
2899 }
2900
2901 /*ARGSUSED*/
2902 void
translate_devid(dev_info_t * dip)2903 translate_devid(dev_info_t *dip)
2904 {
2905 }
2906
2907 pfn_t
i_ddi_paddr_to_pfn(paddr_t paddr)2908 i_ddi_paddr_to_pfn(paddr_t paddr)
2909 {
2910 pfn_t pfn;
2911
2912 #ifdef __xpv
2913 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2914 pfn = xen_assign_pfn(mmu_btop(paddr));
2915 } else {
2916 pfn = mmu_btop(paddr);
2917 }
2918 #else
2919 pfn = mmu_btop(paddr);
2920 #endif
2921
2922 return (pfn);
2923 }
2924