1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
7 *
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
11 */
12
13 /*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
37
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
49
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
52
53 #include "md.h"
54 #include "raid5.h"
55 #include "raid0.h"
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
58
59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
60
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
63
64 #define RAID5_MAX_REQ_STRIPES 256
65
66 static bool devices_handle_discard_safely = false;
67 module_param(devices_handle_discard_safely, bool, 0644);
68 MODULE_PARM_DESC(devices_handle_discard_safely,
69 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
70 static struct workqueue_struct *raid5_wq;
71
72 static void raid5_quiesce(struct mddev *mddev, int quiesce);
73
stripe_hash(struct r5conf * conf,sector_t sect)74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
77 return &conf->stripe_hashtbl[hash];
78 }
79
stripe_hash_locks_hash(struct r5conf * conf,sector_t sect)80 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
81 {
82 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
83 }
84
lock_device_hash_lock(struct r5conf * conf,int hash)85 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
86 __acquires(&conf->device_lock)
87 {
88 spin_lock_irq(conf->hash_locks + hash);
89 spin_lock(&conf->device_lock);
90 }
91
unlock_device_hash_lock(struct r5conf * conf,int hash)92 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
93 __releases(&conf->device_lock)
94 {
95 spin_unlock(&conf->device_lock);
96 spin_unlock_irq(conf->hash_locks + hash);
97 }
98
lock_all_device_hash_locks_irq(struct r5conf * conf)99 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
100 __acquires(&conf->device_lock)
101 {
102 int i;
103 spin_lock_irq(conf->hash_locks);
104 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
105 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
106 spin_lock(&conf->device_lock);
107 }
108
unlock_all_device_hash_locks_irq(struct r5conf * conf)109 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
110 __releases(&conf->device_lock)
111 {
112 int i;
113 spin_unlock(&conf->device_lock);
114 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
115 spin_unlock(conf->hash_locks + i);
116 spin_unlock_irq(conf->hash_locks);
117 }
118
119 /* Find first data disk in a raid6 stripe */
raid6_d0(struct stripe_head * sh)120 static inline int raid6_d0(struct stripe_head *sh)
121 {
122 if (sh->ddf_layout)
123 /* ddf always start from first device */
124 return 0;
125 /* md starts just after Q block */
126 if (sh->qd_idx == sh->disks - 1)
127 return 0;
128 else
129 return sh->qd_idx + 1;
130 }
raid6_next_disk(int disk,int raid_disks)131 static inline int raid6_next_disk(int disk, int raid_disks)
132 {
133 disk++;
134 return (disk < raid_disks) ? disk : 0;
135 }
136
137 /* When walking through the disks in a raid5, starting at raid6_d0,
138 * We need to map each disk to a 'slot', where the data disks are slot
139 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
140 * is raid_disks-1. This help does that mapping.
141 */
raid6_idx_to_slot(int idx,struct stripe_head * sh,int * count,int syndrome_disks)142 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
143 int *count, int syndrome_disks)
144 {
145 int slot = *count;
146
147 if (sh->ddf_layout)
148 (*count)++;
149 if (idx == sh->pd_idx)
150 return syndrome_disks;
151 if (idx == sh->qd_idx)
152 return syndrome_disks + 1;
153 if (!sh->ddf_layout)
154 (*count)++;
155 return slot;
156 }
157
158 static void print_raid5_conf(struct r5conf *conf);
159
stripe_operations_active(struct stripe_head * sh)160 static int stripe_operations_active(struct stripe_head *sh)
161 {
162 return sh->check_state || sh->reconstruct_state ||
163 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
164 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
165 }
166
stripe_is_lowprio(struct stripe_head * sh)167 static bool stripe_is_lowprio(struct stripe_head *sh)
168 {
169 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
170 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
171 !test_bit(STRIPE_R5C_CACHING, &sh->state);
172 }
173
raid5_wakeup_stripe_thread(struct stripe_head * sh)174 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
175 __must_hold(&sh->raid_conf->device_lock)
176 {
177 struct r5conf *conf = sh->raid_conf;
178 struct r5worker_group *group;
179 int thread_cnt;
180 int i, cpu = sh->cpu;
181
182 if (!cpu_online(cpu)) {
183 cpu = cpumask_any(cpu_online_mask);
184 sh->cpu = cpu;
185 }
186
187 if (list_empty(&sh->lru)) {
188 struct r5worker_group *group;
189 group = conf->worker_groups + cpu_to_group(cpu);
190 if (stripe_is_lowprio(sh))
191 list_add_tail(&sh->lru, &group->loprio_list);
192 else
193 list_add_tail(&sh->lru, &group->handle_list);
194 group->stripes_cnt++;
195 sh->group = group;
196 }
197
198 if (conf->worker_cnt_per_group == 0) {
199 md_wakeup_thread(conf->mddev->thread);
200 return;
201 }
202
203 group = conf->worker_groups + cpu_to_group(sh->cpu);
204
205 group->workers[0].working = true;
206 /* at least one worker should run to avoid race */
207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208
209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 /* wakeup more workers */
211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 if (group->workers[i].working == false) {
213 group->workers[i].working = true;
214 queue_work_on(sh->cpu, raid5_wq,
215 &group->workers[i].work);
216 thread_cnt--;
217 }
218 }
219 }
220
do_release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 struct list_head *temp_inactive_list)
223 __must_hold(&conf->device_lock)
224 {
225 int i;
226 int injournal = 0; /* number of date pages with R5_InJournal */
227
228 BUG_ON(!list_empty(&sh->lru));
229 BUG_ON(atomic_read(&conf->active_stripes)==0);
230
231 if (r5c_is_writeback(conf->log))
232 for (i = sh->disks; i--; )
233 if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 injournal++;
235 /*
236 * In the following cases, the stripe cannot be released to cached
237 * lists. Therefore, we make the stripe write out and set
238 * STRIPE_HANDLE:
239 * 1. when quiesce in r5c write back;
240 * 2. when resync is requested fot the stripe.
241 */
242 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243 (conf->quiesce && r5c_is_writeback(conf->log) &&
244 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
245 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246 r5c_make_stripe_write_out(sh);
247 set_bit(STRIPE_HANDLE, &sh->state);
248 }
249
250 if (test_bit(STRIPE_HANDLE, &sh->state)) {
251 if (test_bit(STRIPE_DELAYED, &sh->state) &&
252 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
253 list_add_tail(&sh->lru, &conf->delayed_list);
254 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
255 sh->bm_seq - conf->seq_write > 0)
256 list_add_tail(&sh->lru, &conf->bitmap_list);
257 else {
258 clear_bit(STRIPE_DELAYED, &sh->state);
259 clear_bit(STRIPE_BIT_DELAY, &sh->state);
260 if (conf->worker_cnt_per_group == 0) {
261 if (stripe_is_lowprio(sh))
262 list_add_tail(&sh->lru,
263 &conf->loprio_list);
264 else
265 list_add_tail(&sh->lru,
266 &conf->handle_list);
267 } else {
268 raid5_wakeup_stripe_thread(sh);
269 return;
270 }
271 }
272 md_wakeup_thread(conf->mddev->thread);
273 } else {
274 BUG_ON(stripe_operations_active(sh));
275 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276 if (atomic_dec_return(&conf->preread_active_stripes)
277 < IO_THRESHOLD)
278 md_wakeup_thread(conf->mddev->thread);
279 atomic_dec(&conf->active_stripes);
280 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281 if (!r5c_is_writeback(conf->log))
282 list_add_tail(&sh->lru, temp_inactive_list);
283 else {
284 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285 if (injournal == 0)
286 list_add_tail(&sh->lru, temp_inactive_list);
287 else if (injournal == conf->raid_disks - conf->max_degraded) {
288 /* full stripe */
289 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290 atomic_inc(&conf->r5c_cached_full_stripes);
291 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292 atomic_dec(&conf->r5c_cached_partial_stripes);
293 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
294 r5c_check_cached_full_stripe(conf);
295 } else
296 /*
297 * STRIPE_R5C_PARTIAL_STRIPE is set in
298 * r5c_try_caching_write(). No need to
299 * set it again.
300 */
301 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
302 }
303 }
304 }
305 }
306
__release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)307 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308 struct list_head *temp_inactive_list)
309 __must_hold(&conf->device_lock)
310 {
311 if (atomic_dec_and_test(&sh->count))
312 do_release_stripe(conf, sh, temp_inactive_list);
313 }
314
315 /*
316 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
317 *
318 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
319 * given time. Adding stripes only takes device lock, while deleting stripes
320 * only takes hash lock.
321 */
release_inactive_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list,int hash)322 static void release_inactive_stripe_list(struct r5conf *conf,
323 struct list_head *temp_inactive_list,
324 int hash)
325 {
326 int size;
327 bool do_wakeup = false;
328 unsigned long flags;
329
330 if (hash == NR_STRIPE_HASH_LOCKS) {
331 size = NR_STRIPE_HASH_LOCKS;
332 hash = NR_STRIPE_HASH_LOCKS - 1;
333 } else
334 size = 1;
335 while (size) {
336 struct list_head *list = &temp_inactive_list[size - 1];
337
338 /*
339 * We don't hold any lock here yet, raid5_get_active_stripe() might
340 * remove stripes from the list
341 */
342 if (!list_empty_careful(list)) {
343 spin_lock_irqsave(conf->hash_locks + hash, flags);
344 if (list_empty(conf->inactive_list + hash) &&
345 !list_empty(list))
346 atomic_dec(&conf->empty_inactive_list_nr);
347 list_splice_tail_init(list, conf->inactive_list + hash);
348 do_wakeup = true;
349 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
350 }
351 size--;
352 hash--;
353 }
354
355 if (do_wakeup) {
356 wake_up(&conf->wait_for_stripe);
357 if (atomic_read(&conf->active_stripes) == 0)
358 wake_up(&conf->wait_for_quiescent);
359 if (conf->retry_read_aligned)
360 md_wakeup_thread(conf->mddev->thread);
361 }
362 }
363
release_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list)364 static int release_stripe_list(struct r5conf *conf,
365 struct list_head *temp_inactive_list)
366 __must_hold(&conf->device_lock)
367 {
368 struct stripe_head *sh, *t;
369 int count = 0;
370 struct llist_node *head;
371
372 head = llist_del_all(&conf->released_stripes);
373 head = llist_reverse_order(head);
374 llist_for_each_entry_safe(sh, t, head, release_list) {
375 int hash;
376
377 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
378 smp_mb();
379 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
380 /*
381 * Don't worry the bit is set here, because if the bit is set
382 * again, the count is always > 1. This is true for
383 * STRIPE_ON_UNPLUG_LIST bit too.
384 */
385 hash = sh->hash_lock_index;
386 __release_stripe(conf, sh, &temp_inactive_list[hash]);
387 count++;
388 }
389
390 return count;
391 }
392
raid5_release_stripe(struct stripe_head * sh)393 void raid5_release_stripe(struct stripe_head *sh)
394 {
395 struct r5conf *conf = sh->raid_conf;
396 unsigned long flags;
397 struct list_head list;
398 int hash;
399 bool wakeup;
400
401 /* Avoid release_list until the last reference.
402 */
403 if (atomic_add_unless(&sh->count, -1, 1))
404 return;
405
406 if (unlikely(!conf->mddev->thread) ||
407 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
408 goto slow_path;
409 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
410 if (wakeup)
411 md_wakeup_thread(conf->mddev->thread);
412 return;
413 slow_path:
414 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
415 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
416 INIT_LIST_HEAD(&list);
417 hash = sh->hash_lock_index;
418 do_release_stripe(conf, sh, &list);
419 spin_unlock_irqrestore(&conf->device_lock, flags);
420 release_inactive_stripe_list(conf, &list, hash);
421 }
422 }
423
remove_hash(struct stripe_head * sh)424 static inline void remove_hash(struct stripe_head *sh)
425 {
426 pr_debug("remove_hash(), stripe %llu\n",
427 (unsigned long long)sh->sector);
428
429 hlist_del_init(&sh->hash);
430 }
431
insert_hash(struct r5conf * conf,struct stripe_head * sh)432 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
433 {
434 struct hlist_head *hp = stripe_hash(conf, sh->sector);
435
436 pr_debug("insert_hash(), stripe %llu\n",
437 (unsigned long long)sh->sector);
438
439 hlist_add_head(&sh->hash, hp);
440 }
441
442 /* find an idle stripe, make sure it is unhashed, and return it. */
get_free_stripe(struct r5conf * conf,int hash)443 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
444 {
445 struct stripe_head *sh = NULL;
446 struct list_head *first;
447
448 if (list_empty(conf->inactive_list + hash))
449 goto out;
450 first = (conf->inactive_list + hash)->next;
451 sh = list_entry(first, struct stripe_head, lru);
452 list_del_init(first);
453 remove_hash(sh);
454 atomic_inc(&conf->active_stripes);
455 BUG_ON(hash != sh->hash_lock_index);
456 if (list_empty(conf->inactive_list + hash))
457 atomic_inc(&conf->empty_inactive_list_nr);
458 out:
459 return sh;
460 }
461
462 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
free_stripe_pages(struct stripe_head * sh)463 static void free_stripe_pages(struct stripe_head *sh)
464 {
465 int i;
466 struct page *p;
467
468 /* Have not allocate page pool */
469 if (!sh->pages)
470 return;
471
472 for (i = 0; i < sh->nr_pages; i++) {
473 p = sh->pages[i];
474 if (p)
475 put_page(p);
476 sh->pages[i] = NULL;
477 }
478 }
479
alloc_stripe_pages(struct stripe_head * sh,gfp_t gfp)480 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
481 {
482 int i;
483 struct page *p;
484
485 for (i = 0; i < sh->nr_pages; i++) {
486 /* The page have allocated. */
487 if (sh->pages[i])
488 continue;
489
490 p = alloc_page(gfp);
491 if (!p) {
492 free_stripe_pages(sh);
493 return -ENOMEM;
494 }
495 sh->pages[i] = p;
496 }
497 return 0;
498 }
499
500 static int
init_stripe_shared_pages(struct stripe_head * sh,struct r5conf * conf,int disks)501 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
502 {
503 int nr_pages, cnt;
504
505 if (sh->pages)
506 return 0;
507
508 /* Each of the sh->dev[i] need one conf->stripe_size */
509 cnt = PAGE_SIZE / conf->stripe_size;
510 nr_pages = (disks + cnt - 1) / cnt;
511
512 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
513 if (!sh->pages)
514 return -ENOMEM;
515 sh->nr_pages = nr_pages;
516 sh->stripes_per_page = cnt;
517 return 0;
518 }
519 #endif
520
shrink_buffers(struct stripe_head * sh)521 static void shrink_buffers(struct stripe_head *sh)
522 {
523 int i;
524 int num = sh->raid_conf->pool_size;
525
526 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
527 for (i = 0; i < num ; i++) {
528 struct page *p;
529
530 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
531 p = sh->dev[i].page;
532 if (!p)
533 continue;
534 sh->dev[i].page = NULL;
535 put_page(p);
536 }
537 #else
538 for (i = 0; i < num; i++)
539 sh->dev[i].page = NULL;
540 free_stripe_pages(sh); /* Free pages */
541 #endif
542 }
543
grow_buffers(struct stripe_head * sh,gfp_t gfp)544 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
545 {
546 int i;
547 int num = sh->raid_conf->pool_size;
548
549 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
550 for (i = 0; i < num; i++) {
551 struct page *page;
552
553 if (!(page = alloc_page(gfp))) {
554 return 1;
555 }
556 sh->dev[i].page = page;
557 sh->dev[i].orig_page = page;
558 sh->dev[i].offset = 0;
559 }
560 #else
561 if (alloc_stripe_pages(sh, gfp))
562 return -ENOMEM;
563
564 for (i = 0; i < num; i++) {
565 sh->dev[i].page = raid5_get_dev_page(sh, i);
566 sh->dev[i].orig_page = sh->dev[i].page;
567 sh->dev[i].offset = raid5_get_page_offset(sh, i);
568 }
569 #endif
570 return 0;
571 }
572
573 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
574 struct stripe_head *sh);
575
init_stripe(struct stripe_head * sh,sector_t sector,int previous)576 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
577 {
578 struct r5conf *conf = sh->raid_conf;
579 int i, seq;
580
581 BUG_ON(atomic_read(&sh->count) != 0);
582 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
583 BUG_ON(stripe_operations_active(sh));
584 BUG_ON(sh->batch_head);
585
586 pr_debug("init_stripe called, stripe %llu\n",
587 (unsigned long long)sector);
588 retry:
589 seq = read_seqcount_begin(&conf->gen_lock);
590 sh->generation = conf->generation - previous;
591 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
592 sh->sector = sector;
593 stripe_set_idx(sector, conf, previous, sh);
594 sh->state = 0;
595
596 for (i = sh->disks; i--; ) {
597 struct r5dev *dev = &sh->dev[i];
598
599 if (dev->toread || dev->read || dev->towrite || dev->written ||
600 test_bit(R5_LOCKED, &dev->flags)) {
601 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
602 (unsigned long long)sh->sector, i, dev->toread,
603 dev->read, dev->towrite, dev->written,
604 test_bit(R5_LOCKED, &dev->flags));
605 WARN_ON(1);
606 }
607 dev->flags = 0;
608 dev->sector = raid5_compute_blocknr(sh, i, previous);
609 }
610 if (read_seqcount_retry(&conf->gen_lock, seq))
611 goto retry;
612 sh->overwrite_disks = 0;
613 insert_hash(conf, sh);
614 sh->cpu = smp_processor_id();
615 set_bit(STRIPE_BATCH_READY, &sh->state);
616 }
617
__find_stripe(struct r5conf * conf,sector_t sector,short generation)618 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
619 short generation)
620 {
621 struct stripe_head *sh;
622
623 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
624 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
625 if (sh->sector == sector && sh->generation == generation)
626 return sh;
627 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
628 return NULL;
629 }
630
find_get_stripe(struct r5conf * conf,sector_t sector,short generation,int hash)631 static struct stripe_head *find_get_stripe(struct r5conf *conf,
632 sector_t sector, short generation, int hash)
633 {
634 int inc_empty_inactive_list_flag;
635 struct stripe_head *sh;
636
637 sh = __find_stripe(conf, sector, generation);
638 if (!sh)
639 return NULL;
640
641 if (atomic_inc_not_zero(&sh->count))
642 return sh;
643
644 /*
645 * Slow path. The reference count is zero which means the stripe must
646 * be on a list (sh->lru). Must remove the stripe from the list that
647 * references it with the device_lock held.
648 */
649
650 spin_lock(&conf->device_lock);
651 if (!atomic_read(&sh->count)) {
652 if (!test_bit(STRIPE_HANDLE, &sh->state))
653 atomic_inc(&conf->active_stripes);
654 BUG_ON(list_empty(&sh->lru) &&
655 !test_bit(STRIPE_EXPANDING, &sh->state));
656 inc_empty_inactive_list_flag = 0;
657 if (!list_empty(conf->inactive_list + hash))
658 inc_empty_inactive_list_flag = 1;
659 list_del_init(&sh->lru);
660 if (list_empty(conf->inactive_list + hash) &&
661 inc_empty_inactive_list_flag)
662 atomic_inc(&conf->empty_inactive_list_nr);
663 if (sh->group) {
664 sh->group->stripes_cnt--;
665 sh->group = NULL;
666 }
667 }
668 atomic_inc(&sh->count);
669 spin_unlock(&conf->device_lock);
670
671 return sh;
672 }
673
674 /*
675 * Need to check if array has failed when deciding whether to:
676 * - start an array
677 * - remove non-faulty devices
678 * - add a spare
679 * - allow a reshape
680 * This determination is simple when no reshape is happening.
681 * However if there is a reshape, we need to carefully check
682 * both the before and after sections.
683 * This is because some failed devices may only affect one
684 * of the two sections, and some non-in_sync devices may
685 * be insync in the section most affected by failed devices.
686 *
687 * Most calls to this function hold &conf->device_lock. Calls
688 * in raid5_run() do not require the lock as no other threads
689 * have been started yet.
690 */
raid5_calc_degraded(struct r5conf * conf)691 int raid5_calc_degraded(struct r5conf *conf)
692 {
693 int degraded, degraded2;
694 int i;
695
696 degraded = 0;
697 for (i = 0; i < conf->previous_raid_disks; i++) {
698 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
699
700 if (rdev && test_bit(Faulty, &rdev->flags))
701 rdev = READ_ONCE(conf->disks[i].replacement);
702 if (!rdev || test_bit(Faulty, &rdev->flags))
703 degraded++;
704 else if (test_bit(In_sync, &rdev->flags))
705 ;
706 else
707 /* not in-sync or faulty.
708 * If the reshape increases the number of devices,
709 * this is being recovered by the reshape, so
710 * this 'previous' section is not in_sync.
711 * If the number of devices is being reduced however,
712 * the device can only be part of the array if
713 * we are reverting a reshape, so this section will
714 * be in-sync.
715 */
716 if (conf->raid_disks >= conf->previous_raid_disks)
717 degraded++;
718 }
719 if (conf->raid_disks == conf->previous_raid_disks)
720 return degraded;
721 degraded2 = 0;
722 for (i = 0; i < conf->raid_disks; i++) {
723 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
724
725 if (rdev && test_bit(Faulty, &rdev->flags))
726 rdev = READ_ONCE(conf->disks[i].replacement);
727 if (!rdev || test_bit(Faulty, &rdev->flags))
728 degraded2++;
729 else if (test_bit(In_sync, &rdev->flags))
730 ;
731 else
732 /* not in-sync or faulty.
733 * If reshape increases the number of devices, this
734 * section has already been recovered, else it
735 * almost certainly hasn't.
736 */
737 if (conf->raid_disks <= conf->previous_raid_disks)
738 degraded2++;
739 }
740 if (degraded2 > degraded)
741 return degraded2;
742 return degraded;
743 }
744
has_failed(struct r5conf * conf)745 static bool has_failed(struct r5conf *conf)
746 {
747 int degraded = conf->mddev->degraded;
748
749 if (test_bit(MD_BROKEN, &conf->mddev->flags))
750 return true;
751
752 if (conf->mddev->reshape_position != MaxSector)
753 degraded = raid5_calc_degraded(conf);
754
755 return degraded > conf->max_degraded;
756 }
757
758 enum stripe_result {
759 STRIPE_SUCCESS = 0,
760 STRIPE_RETRY,
761 STRIPE_SCHEDULE_AND_RETRY,
762 STRIPE_FAIL,
763 STRIPE_WAIT_RESHAPE,
764 };
765
766 struct stripe_request_ctx {
767 /* a reference to the last stripe_head for batching */
768 struct stripe_head *batch_last;
769
770 /* first sector in the request */
771 sector_t first_sector;
772
773 /* last sector in the request */
774 sector_t last_sector;
775
776 /*
777 * bitmap to track stripe sectors that have been added to stripes
778 * add one to account for unaligned requests
779 */
780 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
781
782 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */
783 bool do_flush;
784 };
785
786 /*
787 * Block until another thread clears R5_INACTIVE_BLOCKED or
788 * there are fewer than 3/4 the maximum number of active stripes
789 * and there is an inactive stripe available.
790 */
is_inactive_blocked(struct r5conf * conf,int hash)791 static bool is_inactive_blocked(struct r5conf *conf, int hash)
792 {
793 if (list_empty(conf->inactive_list + hash))
794 return false;
795
796 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
797 return true;
798
799 return (atomic_read(&conf->active_stripes) <
800 (conf->max_nr_stripes * 3 / 4));
801 }
802
raid5_get_active_stripe(struct r5conf * conf,struct stripe_request_ctx * ctx,sector_t sector,unsigned int flags)803 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
804 struct stripe_request_ctx *ctx, sector_t sector,
805 unsigned int flags)
806 {
807 struct stripe_head *sh;
808 int hash = stripe_hash_locks_hash(conf, sector);
809 int previous = !!(flags & R5_GAS_PREVIOUS);
810
811 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
812
813 spin_lock_irq(conf->hash_locks + hash);
814
815 for (;;) {
816 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
817 /*
818 * Must release the reference to batch_last before
819 * waiting, on quiesce, otherwise the batch_last will
820 * hold a reference to a stripe and raid5_quiesce()
821 * will deadlock waiting for active_stripes to go to
822 * zero.
823 */
824 if (ctx && ctx->batch_last) {
825 raid5_release_stripe(ctx->batch_last);
826 ctx->batch_last = NULL;
827 }
828
829 wait_event_lock_irq(conf->wait_for_quiescent,
830 !conf->quiesce,
831 *(conf->hash_locks + hash));
832 }
833
834 sh = find_get_stripe(conf, sector, conf->generation - previous,
835 hash);
836 if (sh)
837 break;
838
839 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
840 sh = get_free_stripe(conf, hash);
841 if (sh) {
842 r5c_check_stripe_cache_usage(conf);
843 init_stripe(sh, sector, previous);
844 atomic_inc(&sh->count);
845 break;
846 }
847
848 if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
849 set_bit(R5_ALLOC_MORE, &conf->cache_state);
850 }
851
852 if (flags & R5_GAS_NOBLOCK)
853 break;
854
855 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
856 r5l_wake_reclaim(conf->log, 0);
857
858 /* release batch_last before wait to avoid risk of deadlock */
859 if (ctx && ctx->batch_last) {
860 raid5_release_stripe(ctx->batch_last);
861 ctx->batch_last = NULL;
862 }
863
864 wait_event_lock_irq(conf->wait_for_stripe,
865 is_inactive_blocked(conf, hash),
866 *(conf->hash_locks + hash));
867 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
868 }
869
870 spin_unlock_irq(conf->hash_locks + hash);
871 return sh;
872 }
873
is_full_stripe_write(struct stripe_head * sh)874 static bool is_full_stripe_write(struct stripe_head *sh)
875 {
876 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
877 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
878 }
879
lock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)880 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
881 __acquires(&sh1->stripe_lock)
882 __acquires(&sh2->stripe_lock)
883 {
884 if (sh1 > sh2) {
885 spin_lock_irq(&sh2->stripe_lock);
886 spin_lock_nested(&sh1->stripe_lock, 1);
887 } else {
888 spin_lock_irq(&sh1->stripe_lock);
889 spin_lock_nested(&sh2->stripe_lock, 1);
890 }
891 }
892
unlock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)893 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
894 __releases(&sh1->stripe_lock)
895 __releases(&sh2->stripe_lock)
896 {
897 spin_unlock(&sh1->stripe_lock);
898 spin_unlock_irq(&sh2->stripe_lock);
899 }
900
901 /* Only freshly new full stripe normal write stripe can be added to a batch list */
stripe_can_batch(struct stripe_head * sh)902 static bool stripe_can_batch(struct stripe_head *sh)
903 {
904 struct r5conf *conf = sh->raid_conf;
905
906 if (raid5_has_log(conf) || raid5_has_ppl(conf))
907 return false;
908 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
909 is_full_stripe_write(sh);
910 }
911
912 /* we only do back search */
stripe_add_to_batch_list(struct r5conf * conf,struct stripe_head * sh,struct stripe_head * last_sh)913 static void stripe_add_to_batch_list(struct r5conf *conf,
914 struct stripe_head *sh, struct stripe_head *last_sh)
915 {
916 struct stripe_head *head;
917 sector_t head_sector, tmp_sec;
918 int hash;
919 int dd_idx;
920
921 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
922 tmp_sec = sh->sector;
923 if (!sector_div(tmp_sec, conf->chunk_sectors))
924 return;
925 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
926
927 if (last_sh && head_sector == last_sh->sector) {
928 head = last_sh;
929 atomic_inc(&head->count);
930 } else {
931 hash = stripe_hash_locks_hash(conf, head_sector);
932 spin_lock_irq(conf->hash_locks + hash);
933 head = find_get_stripe(conf, head_sector, conf->generation,
934 hash);
935 spin_unlock_irq(conf->hash_locks + hash);
936 if (!head)
937 return;
938 if (!stripe_can_batch(head))
939 goto out;
940 }
941
942 lock_two_stripes(head, sh);
943 /* clear_batch_ready clear the flag */
944 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
945 goto unlock_out;
946
947 if (sh->batch_head)
948 goto unlock_out;
949
950 dd_idx = 0;
951 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
952 dd_idx++;
953 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
954 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
955 goto unlock_out;
956
957 if (head->batch_head) {
958 spin_lock(&head->batch_head->batch_lock);
959 /* This batch list is already running */
960 if (!stripe_can_batch(head)) {
961 spin_unlock(&head->batch_head->batch_lock);
962 goto unlock_out;
963 }
964 /*
965 * We must assign batch_head of this stripe within the
966 * batch_lock, otherwise clear_batch_ready of batch head
967 * stripe could clear BATCH_READY bit of this stripe and
968 * this stripe->batch_head doesn't get assigned, which
969 * could confuse clear_batch_ready for this stripe
970 */
971 sh->batch_head = head->batch_head;
972
973 /*
974 * at this point, head's BATCH_READY could be cleared, but we
975 * can still add the stripe to batch list
976 */
977 list_add(&sh->batch_list, &head->batch_list);
978 spin_unlock(&head->batch_head->batch_lock);
979 } else {
980 head->batch_head = head;
981 sh->batch_head = head->batch_head;
982 spin_lock(&head->batch_lock);
983 list_add_tail(&sh->batch_list, &head->batch_list);
984 spin_unlock(&head->batch_lock);
985 }
986
987 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
988 if (atomic_dec_return(&conf->preread_active_stripes)
989 < IO_THRESHOLD)
990 md_wakeup_thread(conf->mddev->thread);
991
992 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
993 int seq = sh->bm_seq;
994 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
995 sh->batch_head->bm_seq > seq)
996 seq = sh->batch_head->bm_seq;
997 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
998 sh->batch_head->bm_seq = seq;
999 }
1000
1001 atomic_inc(&sh->count);
1002 unlock_out:
1003 unlock_two_stripes(head, sh);
1004 out:
1005 raid5_release_stripe(head);
1006 }
1007
1008 /* Determine if 'data_offset' or 'new_data_offset' should be used
1009 * in this stripe_head.
1010 */
use_new_offset(struct r5conf * conf,struct stripe_head * sh)1011 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1012 {
1013 sector_t progress = conf->reshape_progress;
1014 /* Need a memory barrier to make sure we see the value
1015 * of conf->generation, or ->data_offset that was set before
1016 * reshape_progress was updated.
1017 */
1018 smp_rmb();
1019 if (progress == MaxSector)
1020 return 0;
1021 if (sh->generation == conf->generation - 1)
1022 return 0;
1023 /* We are in a reshape, and this is a new-generation stripe,
1024 * so use new_data_offset.
1025 */
1026 return 1;
1027 }
1028
dispatch_bio_list(struct bio_list * tmp)1029 static void dispatch_bio_list(struct bio_list *tmp)
1030 {
1031 struct bio *bio;
1032
1033 while ((bio = bio_list_pop(tmp)))
1034 submit_bio_noacct(bio);
1035 }
1036
cmp_stripe(void * priv,const struct list_head * a,const struct list_head * b)1037 static int cmp_stripe(void *priv, const struct list_head *a,
1038 const struct list_head *b)
1039 {
1040 const struct r5pending_data *da = list_entry(a,
1041 struct r5pending_data, sibling);
1042 const struct r5pending_data *db = list_entry(b,
1043 struct r5pending_data, sibling);
1044 if (da->sector > db->sector)
1045 return 1;
1046 if (da->sector < db->sector)
1047 return -1;
1048 return 0;
1049 }
1050
dispatch_defer_bios(struct r5conf * conf,int target,struct bio_list * list)1051 static void dispatch_defer_bios(struct r5conf *conf, int target,
1052 struct bio_list *list)
1053 {
1054 struct r5pending_data *data;
1055 struct list_head *first, *next = NULL;
1056 int cnt = 0;
1057
1058 if (conf->pending_data_cnt == 0)
1059 return;
1060
1061 list_sort(NULL, &conf->pending_list, cmp_stripe);
1062
1063 first = conf->pending_list.next;
1064
1065 /* temporarily move the head */
1066 if (conf->next_pending_data)
1067 list_move_tail(&conf->pending_list,
1068 &conf->next_pending_data->sibling);
1069
1070 while (!list_empty(&conf->pending_list)) {
1071 data = list_first_entry(&conf->pending_list,
1072 struct r5pending_data, sibling);
1073 if (&data->sibling == first)
1074 first = data->sibling.next;
1075 next = data->sibling.next;
1076
1077 bio_list_merge(list, &data->bios);
1078 list_move(&data->sibling, &conf->free_list);
1079 cnt++;
1080 if (cnt >= target)
1081 break;
1082 }
1083 conf->pending_data_cnt -= cnt;
1084 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1085
1086 if (next != &conf->pending_list)
1087 conf->next_pending_data = list_entry(next,
1088 struct r5pending_data, sibling);
1089 else
1090 conf->next_pending_data = NULL;
1091 /* list isn't empty */
1092 if (first != &conf->pending_list)
1093 list_move_tail(&conf->pending_list, first);
1094 }
1095
flush_deferred_bios(struct r5conf * conf)1096 static void flush_deferred_bios(struct r5conf *conf)
1097 {
1098 struct bio_list tmp = BIO_EMPTY_LIST;
1099
1100 if (conf->pending_data_cnt == 0)
1101 return;
1102
1103 spin_lock(&conf->pending_bios_lock);
1104 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1105 BUG_ON(conf->pending_data_cnt != 0);
1106 spin_unlock(&conf->pending_bios_lock);
1107
1108 dispatch_bio_list(&tmp);
1109 }
1110
defer_issue_bios(struct r5conf * conf,sector_t sector,struct bio_list * bios)1111 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1112 struct bio_list *bios)
1113 {
1114 struct bio_list tmp = BIO_EMPTY_LIST;
1115 struct r5pending_data *ent;
1116
1117 spin_lock(&conf->pending_bios_lock);
1118 ent = list_first_entry(&conf->free_list, struct r5pending_data,
1119 sibling);
1120 list_move_tail(&ent->sibling, &conf->pending_list);
1121 ent->sector = sector;
1122 bio_list_init(&ent->bios);
1123 bio_list_merge(&ent->bios, bios);
1124 conf->pending_data_cnt++;
1125 if (conf->pending_data_cnt >= PENDING_IO_MAX)
1126 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1127
1128 spin_unlock(&conf->pending_bios_lock);
1129
1130 dispatch_bio_list(&tmp);
1131 }
1132
1133 static void
1134 raid5_end_read_request(struct bio *bi);
1135 static void
1136 raid5_end_write_request(struct bio *bi);
1137
ops_run_io(struct stripe_head * sh,struct stripe_head_state * s)1138 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1139 {
1140 struct r5conf *conf = sh->raid_conf;
1141 int i, disks = sh->disks;
1142 struct stripe_head *head_sh = sh;
1143 struct bio_list pending_bios = BIO_EMPTY_LIST;
1144 struct r5dev *dev;
1145 bool should_defer;
1146
1147 might_sleep();
1148
1149 if (log_stripe(sh, s) == 0)
1150 return;
1151
1152 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1153
1154 for (i = disks; i--; ) {
1155 enum req_op op;
1156 blk_opf_t op_flags = 0;
1157 int replace_only = 0;
1158 struct bio *bi, *rbi;
1159 struct md_rdev *rdev, *rrdev = NULL;
1160
1161 sh = head_sh;
1162 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1163 op = REQ_OP_WRITE;
1164 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1165 op_flags = REQ_FUA;
1166 if (test_bit(R5_Discard, &sh->dev[i].flags))
1167 op = REQ_OP_DISCARD;
1168 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1169 op = REQ_OP_READ;
1170 else if (test_and_clear_bit(R5_WantReplace,
1171 &sh->dev[i].flags)) {
1172 op = REQ_OP_WRITE;
1173 replace_only = 1;
1174 } else
1175 continue;
1176 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1177 op_flags |= REQ_SYNC;
1178
1179 again:
1180 dev = &sh->dev[i];
1181 bi = &dev->req;
1182 rbi = &dev->rreq; /* For writing to replacement */
1183
1184 rdev = conf->disks[i].rdev;
1185 rrdev = conf->disks[i].replacement;
1186 if (op_is_write(op)) {
1187 if (replace_only)
1188 rdev = NULL;
1189 if (rdev == rrdev)
1190 /* We raced and saw duplicates */
1191 rrdev = NULL;
1192 } else {
1193 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1194 rdev = rrdev;
1195 rrdev = NULL;
1196 }
1197
1198 if (rdev && test_bit(Faulty, &rdev->flags))
1199 rdev = NULL;
1200 if (rdev)
1201 atomic_inc(&rdev->nr_pending);
1202 if (rrdev && test_bit(Faulty, &rrdev->flags))
1203 rrdev = NULL;
1204 if (rrdev)
1205 atomic_inc(&rrdev->nr_pending);
1206
1207 /* We have already checked bad blocks for reads. Now
1208 * need to check for writes. We never accept write errors
1209 * on the replacement, so we don't to check rrdev.
1210 */
1211 while (op_is_write(op) && rdev &&
1212 test_bit(WriteErrorSeen, &rdev->flags)) {
1213 int bad = rdev_has_badblock(rdev, sh->sector,
1214 RAID5_STRIPE_SECTORS(conf));
1215 if (!bad)
1216 break;
1217
1218 if (bad < 0) {
1219 set_bit(BlockedBadBlocks, &rdev->flags);
1220 if (!conf->mddev->external &&
1221 conf->mddev->sb_flags) {
1222 /* It is very unlikely, but we might
1223 * still need to write out the
1224 * bad block log - better give it
1225 * a chance*/
1226 md_check_recovery(conf->mddev);
1227 }
1228 /*
1229 * Because md_wait_for_blocked_rdev
1230 * will dec nr_pending, we must
1231 * increment it first.
1232 */
1233 atomic_inc(&rdev->nr_pending);
1234 md_wait_for_blocked_rdev(rdev, conf->mddev);
1235 } else {
1236 /* Acknowledged bad block - skip the write */
1237 rdev_dec_pending(rdev, conf->mddev);
1238 rdev = NULL;
1239 }
1240 }
1241
1242 if (rdev) {
1243 if (s->syncing || s->expanding || s->expanded
1244 || s->replacing)
1245 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1246
1247 set_bit(STRIPE_IO_STARTED, &sh->state);
1248
1249 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1250 bi->bi_end_io = op_is_write(op)
1251 ? raid5_end_write_request
1252 : raid5_end_read_request;
1253 bi->bi_private = sh;
1254
1255 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1256 __func__, (unsigned long long)sh->sector,
1257 bi->bi_opf, i);
1258 atomic_inc(&sh->count);
1259 if (sh != head_sh)
1260 atomic_inc(&head_sh->count);
1261 if (use_new_offset(conf, sh))
1262 bi->bi_iter.bi_sector = (sh->sector
1263 + rdev->new_data_offset);
1264 else
1265 bi->bi_iter.bi_sector = (sh->sector
1266 + rdev->data_offset);
1267 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1268 bi->bi_opf |= REQ_NOMERGE;
1269
1270 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1271 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1272
1273 if (!op_is_write(op) &&
1274 test_bit(R5_InJournal, &sh->dev[i].flags))
1275 /*
1276 * issuing read for a page in journal, this
1277 * must be preparing for prexor in rmw; read
1278 * the data into orig_page
1279 */
1280 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1281 else
1282 sh->dev[i].vec.bv_page = sh->dev[i].page;
1283 bi->bi_vcnt = 1;
1284 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1285 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1286 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1287 /*
1288 * If this is discard request, set bi_vcnt 0. We don't
1289 * want to confuse SCSI because SCSI will replace payload
1290 */
1291 if (op == REQ_OP_DISCARD)
1292 bi->bi_vcnt = 0;
1293 if (rrdev)
1294 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1295
1296 mddev_trace_remap(conf->mddev, bi, sh->dev[i].sector);
1297 if (should_defer && op_is_write(op))
1298 bio_list_add(&pending_bios, bi);
1299 else
1300 submit_bio_noacct(bi);
1301 }
1302 if (rrdev) {
1303 if (s->syncing || s->expanding || s->expanded
1304 || s->replacing)
1305 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1306
1307 set_bit(STRIPE_IO_STARTED, &sh->state);
1308
1309 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1310 BUG_ON(!op_is_write(op));
1311 rbi->bi_end_io = raid5_end_write_request;
1312 rbi->bi_private = sh;
1313
1314 pr_debug("%s: for %llu schedule op %d on "
1315 "replacement disc %d\n",
1316 __func__, (unsigned long long)sh->sector,
1317 rbi->bi_opf, i);
1318 atomic_inc(&sh->count);
1319 if (sh != head_sh)
1320 atomic_inc(&head_sh->count);
1321 if (use_new_offset(conf, sh))
1322 rbi->bi_iter.bi_sector = (sh->sector
1323 + rrdev->new_data_offset);
1324 else
1325 rbi->bi_iter.bi_sector = (sh->sector
1326 + rrdev->data_offset);
1327 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1328 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1329 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1330 rbi->bi_vcnt = 1;
1331 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1332 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1333 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1334 /*
1335 * If this is discard request, set bi_vcnt 0. We don't
1336 * want to confuse SCSI because SCSI will replace payload
1337 */
1338 if (op == REQ_OP_DISCARD)
1339 rbi->bi_vcnt = 0;
1340 mddev_trace_remap(conf->mddev, rbi, sh->dev[i].sector);
1341 if (should_defer && op_is_write(op))
1342 bio_list_add(&pending_bios, rbi);
1343 else
1344 submit_bio_noacct(rbi);
1345 }
1346 if (!rdev && !rrdev) {
1347 pr_debug("skip op %d on disc %d for sector %llu\n",
1348 bi->bi_opf, i, (unsigned long long)sh->sector);
1349 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1350 set_bit(STRIPE_HANDLE, &sh->state);
1351 }
1352
1353 if (!head_sh->batch_head)
1354 continue;
1355 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1356 batch_list);
1357 if (sh != head_sh)
1358 goto again;
1359 }
1360
1361 if (should_defer && !bio_list_empty(&pending_bios))
1362 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1363 }
1364
1365 static struct dma_async_tx_descriptor *
async_copy_data(int frombio,struct bio * bio,struct page ** page,unsigned int poff,sector_t sector,struct dma_async_tx_descriptor * tx,struct stripe_head * sh,int no_skipcopy)1366 async_copy_data(int frombio, struct bio *bio, struct page **page,
1367 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1368 struct stripe_head *sh, int no_skipcopy)
1369 {
1370 struct bio_vec bvl;
1371 struct bvec_iter iter;
1372 struct page *bio_page;
1373 int page_offset;
1374 struct async_submit_ctl submit;
1375 enum async_tx_flags flags = 0;
1376 struct r5conf *conf = sh->raid_conf;
1377
1378 if (bio->bi_iter.bi_sector >= sector)
1379 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1380 else
1381 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1382
1383 if (frombio)
1384 flags |= ASYNC_TX_FENCE;
1385 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1386
1387 bio_for_each_segment(bvl, bio, iter) {
1388 int len = bvl.bv_len;
1389 int clen;
1390 int b_offset = 0;
1391
1392 if (page_offset < 0) {
1393 b_offset = -page_offset;
1394 page_offset += b_offset;
1395 len -= b_offset;
1396 }
1397
1398 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1399 clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1400 else
1401 clen = len;
1402
1403 if (clen > 0) {
1404 b_offset += bvl.bv_offset;
1405 bio_page = bvl.bv_page;
1406 if (frombio) {
1407 if (conf->skip_copy &&
1408 b_offset == 0 && page_offset == 0 &&
1409 clen == RAID5_STRIPE_SIZE(conf) &&
1410 !no_skipcopy)
1411 *page = bio_page;
1412 else
1413 tx = async_memcpy(*page, bio_page, page_offset + poff,
1414 b_offset, clen, &submit);
1415 } else
1416 tx = async_memcpy(bio_page, *page, b_offset,
1417 page_offset + poff, clen, &submit);
1418 }
1419 /* chain the operations */
1420 submit.depend_tx = tx;
1421
1422 if (clen < len) /* hit end of page */
1423 break;
1424 page_offset += len;
1425 }
1426
1427 return tx;
1428 }
1429
ops_complete_biofill(void * stripe_head_ref)1430 static void ops_complete_biofill(void *stripe_head_ref)
1431 {
1432 struct stripe_head *sh = stripe_head_ref;
1433 int i;
1434 struct r5conf *conf = sh->raid_conf;
1435
1436 pr_debug("%s: stripe %llu\n", __func__,
1437 (unsigned long long)sh->sector);
1438
1439 /* clear completed biofills */
1440 for (i = sh->disks; i--; ) {
1441 struct r5dev *dev = &sh->dev[i];
1442
1443 /* acknowledge completion of a biofill operation */
1444 /* and check if we need to reply to a read request,
1445 * new R5_Wantfill requests are held off until
1446 * !STRIPE_BIOFILL_RUN
1447 */
1448 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1449 struct bio *rbi, *rbi2;
1450
1451 BUG_ON(!dev->read);
1452 rbi = dev->read;
1453 dev->read = NULL;
1454 while (rbi && rbi->bi_iter.bi_sector <
1455 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1456 rbi2 = r5_next_bio(conf, rbi, dev->sector);
1457 bio_endio(rbi);
1458 rbi = rbi2;
1459 }
1460 }
1461 }
1462 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1463
1464 set_bit(STRIPE_HANDLE, &sh->state);
1465 raid5_release_stripe(sh);
1466 }
1467
ops_run_biofill(struct stripe_head * sh)1468 static void ops_run_biofill(struct stripe_head *sh)
1469 {
1470 struct dma_async_tx_descriptor *tx = NULL;
1471 struct async_submit_ctl submit;
1472 int i;
1473 struct r5conf *conf = sh->raid_conf;
1474
1475 BUG_ON(sh->batch_head);
1476 pr_debug("%s: stripe %llu\n", __func__,
1477 (unsigned long long)sh->sector);
1478
1479 for (i = sh->disks; i--; ) {
1480 struct r5dev *dev = &sh->dev[i];
1481 if (test_bit(R5_Wantfill, &dev->flags)) {
1482 struct bio *rbi;
1483 spin_lock_irq(&sh->stripe_lock);
1484 dev->read = rbi = dev->toread;
1485 dev->toread = NULL;
1486 spin_unlock_irq(&sh->stripe_lock);
1487 while (rbi && rbi->bi_iter.bi_sector <
1488 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1489 tx = async_copy_data(0, rbi, &dev->page,
1490 dev->offset,
1491 dev->sector, tx, sh, 0);
1492 rbi = r5_next_bio(conf, rbi, dev->sector);
1493 }
1494 }
1495 }
1496
1497 atomic_inc(&sh->count);
1498 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1499 async_trigger_callback(&submit);
1500 }
1501
mark_target_uptodate(struct stripe_head * sh,int target)1502 static void mark_target_uptodate(struct stripe_head *sh, int target)
1503 {
1504 struct r5dev *tgt;
1505
1506 if (target < 0)
1507 return;
1508
1509 tgt = &sh->dev[target];
1510 set_bit(R5_UPTODATE, &tgt->flags);
1511 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1512 clear_bit(R5_Wantcompute, &tgt->flags);
1513 }
1514
ops_complete_compute(void * stripe_head_ref)1515 static void ops_complete_compute(void *stripe_head_ref)
1516 {
1517 struct stripe_head *sh = stripe_head_ref;
1518
1519 pr_debug("%s: stripe %llu\n", __func__,
1520 (unsigned long long)sh->sector);
1521
1522 /* mark the computed target(s) as uptodate */
1523 mark_target_uptodate(sh, sh->ops.target);
1524 mark_target_uptodate(sh, sh->ops.target2);
1525
1526 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1527 if (sh->check_state == check_state_compute_run)
1528 sh->check_state = check_state_compute_result;
1529 set_bit(STRIPE_HANDLE, &sh->state);
1530 raid5_release_stripe(sh);
1531 }
1532
1533 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_page(struct raid5_percpu * percpu,int i)1534 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1535 {
1536 return percpu->scribble + i * percpu->scribble_obj_size;
1537 }
1538
1539 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_conv(struct stripe_head * sh,struct raid5_percpu * percpu,int i)1540 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1541 struct raid5_percpu *percpu, int i)
1542 {
1543 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1544 }
1545
1546 /*
1547 * Return a pointer to record offset address.
1548 */
1549 static unsigned int *
to_addr_offs(struct stripe_head * sh,struct raid5_percpu * percpu)1550 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1551 {
1552 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1553 }
1554
1555 static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head * sh,struct raid5_percpu * percpu)1556 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1557 {
1558 int disks = sh->disks;
1559 struct page **xor_srcs = to_addr_page(percpu, 0);
1560 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1561 int target = sh->ops.target;
1562 struct r5dev *tgt = &sh->dev[target];
1563 struct page *xor_dest = tgt->page;
1564 unsigned int off_dest = tgt->offset;
1565 int count = 0;
1566 struct dma_async_tx_descriptor *tx;
1567 struct async_submit_ctl submit;
1568 int i;
1569
1570 BUG_ON(sh->batch_head);
1571
1572 pr_debug("%s: stripe %llu block: %d\n",
1573 __func__, (unsigned long long)sh->sector, target);
1574 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1575
1576 for (i = disks; i--; ) {
1577 if (i != target) {
1578 off_srcs[count] = sh->dev[i].offset;
1579 xor_srcs[count++] = sh->dev[i].page;
1580 }
1581 }
1582
1583 atomic_inc(&sh->count);
1584
1585 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1586 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1587 if (unlikely(count == 1))
1588 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1589 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1590 else
1591 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1592 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1593
1594 return tx;
1595 }
1596
1597 /* set_syndrome_sources - populate source buffers for gen_syndrome
1598 * @srcs - (struct page *) array of size sh->disks
1599 * @offs - (unsigned int) array of offset for each page
1600 * @sh - stripe_head to parse
1601 *
1602 * Populates srcs in proper layout order for the stripe and returns the
1603 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1604 * destination buffer is recorded in srcs[count] and the Q destination
1605 * is recorded in srcs[count+1]].
1606 */
set_syndrome_sources(struct page ** srcs,unsigned int * offs,struct stripe_head * sh,int srctype)1607 static int set_syndrome_sources(struct page **srcs,
1608 unsigned int *offs,
1609 struct stripe_head *sh,
1610 int srctype)
1611 {
1612 int disks = sh->disks;
1613 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1614 int d0_idx = raid6_d0(sh);
1615 int count;
1616 int i;
1617
1618 for (i = 0; i < disks; i++)
1619 srcs[i] = NULL;
1620
1621 count = 0;
1622 i = d0_idx;
1623 do {
1624 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1625 struct r5dev *dev = &sh->dev[i];
1626
1627 if (i == sh->qd_idx || i == sh->pd_idx ||
1628 (srctype == SYNDROME_SRC_ALL) ||
1629 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1630 (test_bit(R5_Wantdrain, &dev->flags) ||
1631 test_bit(R5_InJournal, &dev->flags))) ||
1632 (srctype == SYNDROME_SRC_WRITTEN &&
1633 (dev->written ||
1634 test_bit(R5_InJournal, &dev->flags)))) {
1635 if (test_bit(R5_InJournal, &dev->flags))
1636 srcs[slot] = sh->dev[i].orig_page;
1637 else
1638 srcs[slot] = sh->dev[i].page;
1639 /*
1640 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1641 * not shared page. In that case, dev[i].offset
1642 * is 0.
1643 */
1644 offs[slot] = sh->dev[i].offset;
1645 }
1646 i = raid6_next_disk(i, disks);
1647 } while (i != d0_idx);
1648
1649 return syndrome_disks;
1650 }
1651
1652 static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head * sh,struct raid5_percpu * percpu)1653 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1654 {
1655 int disks = sh->disks;
1656 struct page **blocks = to_addr_page(percpu, 0);
1657 unsigned int *offs = to_addr_offs(sh, percpu);
1658 int target;
1659 int qd_idx = sh->qd_idx;
1660 struct dma_async_tx_descriptor *tx;
1661 struct async_submit_ctl submit;
1662 struct r5dev *tgt;
1663 struct page *dest;
1664 unsigned int dest_off;
1665 int i;
1666 int count;
1667
1668 BUG_ON(sh->batch_head);
1669 if (sh->ops.target < 0)
1670 target = sh->ops.target2;
1671 else if (sh->ops.target2 < 0)
1672 target = sh->ops.target;
1673 else
1674 /* we should only have one valid target */
1675 BUG();
1676 BUG_ON(target < 0);
1677 pr_debug("%s: stripe %llu block: %d\n",
1678 __func__, (unsigned long long)sh->sector, target);
1679
1680 tgt = &sh->dev[target];
1681 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1682 dest = tgt->page;
1683 dest_off = tgt->offset;
1684
1685 atomic_inc(&sh->count);
1686
1687 if (target == qd_idx) {
1688 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1689 blocks[count] = NULL; /* regenerating p is not necessary */
1690 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1691 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1692 ops_complete_compute, sh,
1693 to_addr_conv(sh, percpu, 0));
1694 tx = async_gen_syndrome(blocks, offs, count+2,
1695 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1696 } else {
1697 /* Compute any data- or p-drive using XOR */
1698 count = 0;
1699 for (i = disks; i-- ; ) {
1700 if (i == target || i == qd_idx)
1701 continue;
1702 offs[count] = sh->dev[i].offset;
1703 blocks[count++] = sh->dev[i].page;
1704 }
1705
1706 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1707 NULL, ops_complete_compute, sh,
1708 to_addr_conv(sh, percpu, 0));
1709 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1710 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1711 }
1712
1713 return tx;
1714 }
1715
1716 static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head * sh,struct raid5_percpu * percpu)1717 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1718 {
1719 int i, count, disks = sh->disks;
1720 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1721 int d0_idx = raid6_d0(sh);
1722 int faila = -1, failb = -1;
1723 int target = sh->ops.target;
1724 int target2 = sh->ops.target2;
1725 struct r5dev *tgt = &sh->dev[target];
1726 struct r5dev *tgt2 = &sh->dev[target2];
1727 struct dma_async_tx_descriptor *tx;
1728 struct page **blocks = to_addr_page(percpu, 0);
1729 unsigned int *offs = to_addr_offs(sh, percpu);
1730 struct async_submit_ctl submit;
1731
1732 BUG_ON(sh->batch_head);
1733 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1734 __func__, (unsigned long long)sh->sector, target, target2);
1735 BUG_ON(target < 0 || target2 < 0);
1736 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1737 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1738
1739 /* we need to open-code set_syndrome_sources to handle the
1740 * slot number conversion for 'faila' and 'failb'
1741 */
1742 for (i = 0; i < disks ; i++) {
1743 offs[i] = 0;
1744 blocks[i] = NULL;
1745 }
1746 count = 0;
1747 i = d0_idx;
1748 do {
1749 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1750
1751 offs[slot] = sh->dev[i].offset;
1752 blocks[slot] = sh->dev[i].page;
1753
1754 if (i == target)
1755 faila = slot;
1756 if (i == target2)
1757 failb = slot;
1758 i = raid6_next_disk(i, disks);
1759 } while (i != d0_idx);
1760
1761 BUG_ON(faila == failb);
1762 if (failb < faila)
1763 swap(faila, failb);
1764 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1765 __func__, (unsigned long long)sh->sector, faila, failb);
1766
1767 atomic_inc(&sh->count);
1768
1769 if (failb == syndrome_disks+1) {
1770 /* Q disk is one of the missing disks */
1771 if (faila == syndrome_disks) {
1772 /* Missing P+Q, just recompute */
1773 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1774 ops_complete_compute, sh,
1775 to_addr_conv(sh, percpu, 0));
1776 return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1777 RAID5_STRIPE_SIZE(sh->raid_conf),
1778 &submit);
1779 } else {
1780 struct page *dest;
1781 unsigned int dest_off;
1782 int data_target;
1783 int qd_idx = sh->qd_idx;
1784
1785 /* Missing D+Q: recompute D from P, then recompute Q */
1786 if (target == qd_idx)
1787 data_target = target2;
1788 else
1789 data_target = target;
1790
1791 count = 0;
1792 for (i = disks; i-- ; ) {
1793 if (i == data_target || i == qd_idx)
1794 continue;
1795 offs[count] = sh->dev[i].offset;
1796 blocks[count++] = sh->dev[i].page;
1797 }
1798 dest = sh->dev[data_target].page;
1799 dest_off = sh->dev[data_target].offset;
1800 init_async_submit(&submit,
1801 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1802 NULL, NULL, NULL,
1803 to_addr_conv(sh, percpu, 0));
1804 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1805 RAID5_STRIPE_SIZE(sh->raid_conf),
1806 &submit);
1807
1808 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1809 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1810 ops_complete_compute, sh,
1811 to_addr_conv(sh, percpu, 0));
1812 return async_gen_syndrome(blocks, offs, count+2,
1813 RAID5_STRIPE_SIZE(sh->raid_conf),
1814 &submit);
1815 }
1816 } else {
1817 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1818 ops_complete_compute, sh,
1819 to_addr_conv(sh, percpu, 0));
1820 if (failb == syndrome_disks) {
1821 /* We're missing D+P. */
1822 return async_raid6_datap_recov(syndrome_disks+2,
1823 RAID5_STRIPE_SIZE(sh->raid_conf),
1824 faila,
1825 blocks, offs, &submit);
1826 } else {
1827 /* We're missing D+D. */
1828 return async_raid6_2data_recov(syndrome_disks+2,
1829 RAID5_STRIPE_SIZE(sh->raid_conf),
1830 faila, failb,
1831 blocks, offs, &submit);
1832 }
1833 }
1834 }
1835
ops_complete_prexor(void * stripe_head_ref)1836 static void ops_complete_prexor(void *stripe_head_ref)
1837 {
1838 struct stripe_head *sh = stripe_head_ref;
1839
1840 pr_debug("%s: stripe %llu\n", __func__,
1841 (unsigned long long)sh->sector);
1842
1843 if (r5c_is_writeback(sh->raid_conf->log))
1844 /*
1845 * raid5-cache write back uses orig_page during prexor.
1846 * After prexor, it is time to free orig_page
1847 */
1848 r5c_release_extra_page(sh);
1849 }
1850
1851 static struct dma_async_tx_descriptor *
ops_run_prexor5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1852 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1853 struct dma_async_tx_descriptor *tx)
1854 {
1855 int disks = sh->disks;
1856 struct page **xor_srcs = to_addr_page(percpu, 0);
1857 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1858 int count = 0, pd_idx = sh->pd_idx, i;
1859 struct async_submit_ctl submit;
1860
1861 /* existing parity data subtracted */
1862 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1863 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1864
1865 BUG_ON(sh->batch_head);
1866 pr_debug("%s: stripe %llu\n", __func__,
1867 (unsigned long long)sh->sector);
1868
1869 for (i = disks; i--; ) {
1870 struct r5dev *dev = &sh->dev[i];
1871 /* Only process blocks that are known to be uptodate */
1872 if (test_bit(R5_InJournal, &dev->flags)) {
1873 /*
1874 * For this case, PAGE_SIZE must be equal to 4KB and
1875 * page offset is zero.
1876 */
1877 off_srcs[count] = dev->offset;
1878 xor_srcs[count++] = dev->orig_page;
1879 } else if (test_bit(R5_Wantdrain, &dev->flags)) {
1880 off_srcs[count] = dev->offset;
1881 xor_srcs[count++] = dev->page;
1882 }
1883 }
1884
1885 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1886 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1887 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1888 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1889
1890 return tx;
1891 }
1892
1893 static struct dma_async_tx_descriptor *
ops_run_prexor6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1894 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1895 struct dma_async_tx_descriptor *tx)
1896 {
1897 struct page **blocks = to_addr_page(percpu, 0);
1898 unsigned int *offs = to_addr_offs(sh, percpu);
1899 int count;
1900 struct async_submit_ctl submit;
1901
1902 pr_debug("%s: stripe %llu\n", __func__,
1903 (unsigned long long)sh->sector);
1904
1905 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1906
1907 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1908 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1909 tx = async_gen_syndrome(blocks, offs, count+2,
1910 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1911
1912 return tx;
1913 }
1914
1915 static struct dma_async_tx_descriptor *
ops_run_biodrain(struct stripe_head * sh,struct dma_async_tx_descriptor * tx)1916 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1917 {
1918 struct r5conf *conf = sh->raid_conf;
1919 int disks = sh->disks;
1920 int i;
1921 struct stripe_head *head_sh = sh;
1922
1923 pr_debug("%s: stripe %llu\n", __func__,
1924 (unsigned long long)sh->sector);
1925
1926 for (i = disks; i--; ) {
1927 struct r5dev *dev;
1928 struct bio *chosen;
1929
1930 sh = head_sh;
1931 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1932 struct bio *wbi;
1933
1934 again:
1935 dev = &sh->dev[i];
1936 /*
1937 * clear R5_InJournal, so when rewriting a page in
1938 * journal, it is not skipped by r5l_log_stripe()
1939 */
1940 clear_bit(R5_InJournal, &dev->flags);
1941 spin_lock_irq(&sh->stripe_lock);
1942 chosen = dev->towrite;
1943 dev->towrite = NULL;
1944 sh->overwrite_disks = 0;
1945 BUG_ON(dev->written);
1946 wbi = dev->written = chosen;
1947 spin_unlock_irq(&sh->stripe_lock);
1948 WARN_ON(dev->page != dev->orig_page);
1949
1950 while (wbi && wbi->bi_iter.bi_sector <
1951 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1952 if (wbi->bi_opf & REQ_FUA)
1953 set_bit(R5_WantFUA, &dev->flags);
1954 if (wbi->bi_opf & REQ_SYNC)
1955 set_bit(R5_SyncIO, &dev->flags);
1956 if (bio_op(wbi) == REQ_OP_DISCARD)
1957 set_bit(R5_Discard, &dev->flags);
1958 else {
1959 tx = async_copy_data(1, wbi, &dev->page,
1960 dev->offset,
1961 dev->sector, tx, sh,
1962 r5c_is_writeback(conf->log));
1963 if (dev->page != dev->orig_page &&
1964 !r5c_is_writeback(conf->log)) {
1965 set_bit(R5_SkipCopy, &dev->flags);
1966 clear_bit(R5_UPTODATE, &dev->flags);
1967 clear_bit(R5_OVERWRITE, &dev->flags);
1968 }
1969 }
1970 wbi = r5_next_bio(conf, wbi, dev->sector);
1971 }
1972
1973 if (head_sh->batch_head) {
1974 sh = list_first_entry(&sh->batch_list,
1975 struct stripe_head,
1976 batch_list);
1977 if (sh == head_sh)
1978 continue;
1979 goto again;
1980 }
1981 }
1982 }
1983
1984 return tx;
1985 }
1986
ops_complete_reconstruct(void * stripe_head_ref)1987 static void ops_complete_reconstruct(void *stripe_head_ref)
1988 {
1989 struct stripe_head *sh = stripe_head_ref;
1990 int disks = sh->disks;
1991 int pd_idx = sh->pd_idx;
1992 int qd_idx = sh->qd_idx;
1993 int i;
1994 bool fua = false, sync = false, discard = false;
1995
1996 pr_debug("%s: stripe %llu\n", __func__,
1997 (unsigned long long)sh->sector);
1998
1999 for (i = disks; i--; ) {
2000 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
2001 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
2002 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
2003 }
2004
2005 for (i = disks; i--; ) {
2006 struct r5dev *dev = &sh->dev[i];
2007
2008 if (dev->written || i == pd_idx || i == qd_idx) {
2009 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
2010 set_bit(R5_UPTODATE, &dev->flags);
2011 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2012 set_bit(R5_Expanded, &dev->flags);
2013 }
2014 if (fua)
2015 set_bit(R5_WantFUA, &dev->flags);
2016 if (sync)
2017 set_bit(R5_SyncIO, &dev->flags);
2018 }
2019 }
2020
2021 if (sh->reconstruct_state == reconstruct_state_drain_run)
2022 sh->reconstruct_state = reconstruct_state_drain_result;
2023 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2024 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2025 else {
2026 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2027 sh->reconstruct_state = reconstruct_state_result;
2028 }
2029
2030 set_bit(STRIPE_HANDLE, &sh->state);
2031 raid5_release_stripe(sh);
2032 }
2033
2034 static void
ops_run_reconstruct5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)2035 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2036 struct dma_async_tx_descriptor *tx)
2037 {
2038 int disks = sh->disks;
2039 struct page **xor_srcs;
2040 unsigned int *off_srcs;
2041 struct async_submit_ctl submit;
2042 int count, pd_idx = sh->pd_idx, i;
2043 struct page *xor_dest;
2044 unsigned int off_dest;
2045 int prexor = 0;
2046 unsigned long flags;
2047 int j = 0;
2048 struct stripe_head *head_sh = sh;
2049 int last_stripe;
2050
2051 pr_debug("%s: stripe %llu\n", __func__,
2052 (unsigned long long)sh->sector);
2053
2054 for (i = 0; i < sh->disks; i++) {
2055 if (pd_idx == i)
2056 continue;
2057 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2058 break;
2059 }
2060 if (i >= sh->disks) {
2061 atomic_inc(&sh->count);
2062 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2063 ops_complete_reconstruct(sh);
2064 return;
2065 }
2066 again:
2067 count = 0;
2068 xor_srcs = to_addr_page(percpu, j);
2069 off_srcs = to_addr_offs(sh, percpu);
2070 /* check if prexor is active which means only process blocks
2071 * that are part of a read-modify-write (written)
2072 */
2073 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2074 prexor = 1;
2075 off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2076 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2077 for (i = disks; i--; ) {
2078 struct r5dev *dev = &sh->dev[i];
2079 if (head_sh->dev[i].written ||
2080 test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2081 off_srcs[count] = dev->offset;
2082 xor_srcs[count++] = dev->page;
2083 }
2084 }
2085 } else {
2086 xor_dest = sh->dev[pd_idx].page;
2087 off_dest = sh->dev[pd_idx].offset;
2088 for (i = disks; i--; ) {
2089 struct r5dev *dev = &sh->dev[i];
2090 if (i != pd_idx) {
2091 off_srcs[count] = dev->offset;
2092 xor_srcs[count++] = dev->page;
2093 }
2094 }
2095 }
2096
2097 /* 1/ if we prexor'd then the dest is reused as a source
2098 * 2/ if we did not prexor then we are redoing the parity
2099 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2100 * for the synchronous xor case
2101 */
2102 last_stripe = !head_sh->batch_head ||
2103 list_first_entry(&sh->batch_list,
2104 struct stripe_head, batch_list) == head_sh;
2105 if (last_stripe) {
2106 flags = ASYNC_TX_ACK |
2107 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2108
2109 atomic_inc(&head_sh->count);
2110 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2111 to_addr_conv(sh, percpu, j));
2112 } else {
2113 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2114 init_async_submit(&submit, flags, tx, NULL, NULL,
2115 to_addr_conv(sh, percpu, j));
2116 }
2117
2118 if (unlikely(count == 1))
2119 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2120 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2121 else
2122 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2123 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2124 if (!last_stripe) {
2125 j++;
2126 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2127 batch_list);
2128 goto again;
2129 }
2130 }
2131
2132 static void
ops_run_reconstruct6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)2133 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2134 struct dma_async_tx_descriptor *tx)
2135 {
2136 struct async_submit_ctl submit;
2137 struct page **blocks;
2138 unsigned int *offs;
2139 int count, i, j = 0;
2140 struct stripe_head *head_sh = sh;
2141 int last_stripe;
2142 int synflags;
2143 unsigned long txflags;
2144
2145 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2146
2147 for (i = 0; i < sh->disks; i++) {
2148 if (sh->pd_idx == i || sh->qd_idx == i)
2149 continue;
2150 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2151 break;
2152 }
2153 if (i >= sh->disks) {
2154 atomic_inc(&sh->count);
2155 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2156 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2157 ops_complete_reconstruct(sh);
2158 return;
2159 }
2160
2161 again:
2162 blocks = to_addr_page(percpu, j);
2163 offs = to_addr_offs(sh, percpu);
2164
2165 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2166 synflags = SYNDROME_SRC_WRITTEN;
2167 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2168 } else {
2169 synflags = SYNDROME_SRC_ALL;
2170 txflags = ASYNC_TX_ACK;
2171 }
2172
2173 count = set_syndrome_sources(blocks, offs, sh, synflags);
2174 last_stripe = !head_sh->batch_head ||
2175 list_first_entry(&sh->batch_list,
2176 struct stripe_head, batch_list) == head_sh;
2177
2178 if (last_stripe) {
2179 atomic_inc(&head_sh->count);
2180 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2181 head_sh, to_addr_conv(sh, percpu, j));
2182 } else
2183 init_async_submit(&submit, 0, tx, NULL, NULL,
2184 to_addr_conv(sh, percpu, j));
2185 tx = async_gen_syndrome(blocks, offs, count+2,
2186 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2187 if (!last_stripe) {
2188 j++;
2189 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2190 batch_list);
2191 goto again;
2192 }
2193 }
2194
ops_complete_check(void * stripe_head_ref)2195 static void ops_complete_check(void *stripe_head_ref)
2196 {
2197 struct stripe_head *sh = stripe_head_ref;
2198
2199 pr_debug("%s: stripe %llu\n", __func__,
2200 (unsigned long long)sh->sector);
2201
2202 sh->check_state = check_state_check_result;
2203 set_bit(STRIPE_HANDLE, &sh->state);
2204 raid5_release_stripe(sh);
2205 }
2206
ops_run_check_p(struct stripe_head * sh,struct raid5_percpu * percpu)2207 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2208 {
2209 int disks = sh->disks;
2210 int pd_idx = sh->pd_idx;
2211 int qd_idx = sh->qd_idx;
2212 struct page *xor_dest;
2213 unsigned int off_dest;
2214 struct page **xor_srcs = to_addr_page(percpu, 0);
2215 unsigned int *off_srcs = to_addr_offs(sh, percpu);
2216 struct dma_async_tx_descriptor *tx;
2217 struct async_submit_ctl submit;
2218 int count;
2219 int i;
2220
2221 pr_debug("%s: stripe %llu\n", __func__,
2222 (unsigned long long)sh->sector);
2223
2224 BUG_ON(sh->batch_head);
2225 count = 0;
2226 xor_dest = sh->dev[pd_idx].page;
2227 off_dest = sh->dev[pd_idx].offset;
2228 off_srcs[count] = off_dest;
2229 xor_srcs[count++] = xor_dest;
2230 for (i = disks; i--; ) {
2231 if (i == pd_idx || i == qd_idx)
2232 continue;
2233 off_srcs[count] = sh->dev[i].offset;
2234 xor_srcs[count++] = sh->dev[i].page;
2235 }
2236
2237 init_async_submit(&submit, 0, NULL, NULL, NULL,
2238 to_addr_conv(sh, percpu, 0));
2239 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2240 RAID5_STRIPE_SIZE(sh->raid_conf),
2241 &sh->ops.zero_sum_result, &submit);
2242
2243 atomic_inc(&sh->count);
2244 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2245 tx = async_trigger_callback(&submit);
2246 }
2247
ops_run_check_pq(struct stripe_head * sh,struct raid5_percpu * percpu,int checkp)2248 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2249 {
2250 struct page **srcs = to_addr_page(percpu, 0);
2251 unsigned int *offs = to_addr_offs(sh, percpu);
2252 struct async_submit_ctl submit;
2253 int count;
2254
2255 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2256 (unsigned long long)sh->sector, checkp);
2257
2258 BUG_ON(sh->batch_head);
2259 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2260 if (!checkp)
2261 srcs[count] = NULL;
2262
2263 atomic_inc(&sh->count);
2264 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2265 sh, to_addr_conv(sh, percpu, 0));
2266 async_syndrome_val(srcs, offs, count+2,
2267 RAID5_STRIPE_SIZE(sh->raid_conf),
2268 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2269 }
2270
raid_run_ops(struct stripe_head * sh,unsigned long ops_request)2271 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2272 {
2273 int overlap_clear = 0, i, disks = sh->disks;
2274 struct dma_async_tx_descriptor *tx = NULL;
2275 struct r5conf *conf = sh->raid_conf;
2276 int level = conf->level;
2277 struct raid5_percpu *percpu;
2278
2279 local_lock(&conf->percpu->lock);
2280 percpu = this_cpu_ptr(conf->percpu);
2281 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2282 ops_run_biofill(sh);
2283 overlap_clear++;
2284 }
2285
2286 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2287 if (level < 6)
2288 tx = ops_run_compute5(sh, percpu);
2289 else {
2290 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2291 tx = ops_run_compute6_1(sh, percpu);
2292 else
2293 tx = ops_run_compute6_2(sh, percpu);
2294 }
2295 /* terminate the chain if reconstruct is not set to be run */
2296 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2297 async_tx_ack(tx);
2298 }
2299
2300 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2301 if (level < 6)
2302 tx = ops_run_prexor5(sh, percpu, tx);
2303 else
2304 tx = ops_run_prexor6(sh, percpu, tx);
2305 }
2306
2307 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2308 tx = ops_run_partial_parity(sh, percpu, tx);
2309
2310 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2311 tx = ops_run_biodrain(sh, tx);
2312 overlap_clear++;
2313 }
2314
2315 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2316 if (level < 6)
2317 ops_run_reconstruct5(sh, percpu, tx);
2318 else
2319 ops_run_reconstruct6(sh, percpu, tx);
2320 }
2321
2322 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2323 if (sh->check_state == check_state_run)
2324 ops_run_check_p(sh, percpu);
2325 else if (sh->check_state == check_state_run_q)
2326 ops_run_check_pq(sh, percpu, 0);
2327 else if (sh->check_state == check_state_run_pq)
2328 ops_run_check_pq(sh, percpu, 1);
2329 else
2330 BUG();
2331 }
2332
2333 if (overlap_clear && !sh->batch_head) {
2334 for (i = disks; i--; ) {
2335 struct r5dev *dev = &sh->dev[i];
2336 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2337 wake_up_bit(&dev->flags, R5_Overlap);
2338 }
2339 }
2340 local_unlock(&conf->percpu->lock);
2341 }
2342
free_stripe(struct kmem_cache * sc,struct stripe_head * sh)2343 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2344 {
2345 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2346 kfree(sh->pages);
2347 #endif
2348 if (sh->ppl_page)
2349 __free_page(sh->ppl_page);
2350 kmem_cache_free(sc, sh);
2351 }
2352
alloc_stripe(struct kmem_cache * sc,gfp_t gfp,int disks,struct r5conf * conf)2353 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2354 int disks, struct r5conf *conf)
2355 {
2356 struct stripe_head *sh;
2357
2358 sh = kmem_cache_zalloc(sc, gfp);
2359 if (sh) {
2360 spin_lock_init(&sh->stripe_lock);
2361 spin_lock_init(&sh->batch_lock);
2362 INIT_LIST_HEAD(&sh->batch_list);
2363 INIT_LIST_HEAD(&sh->lru);
2364 INIT_LIST_HEAD(&sh->r5c);
2365 INIT_LIST_HEAD(&sh->log_list);
2366 atomic_set(&sh->count, 1);
2367 sh->raid_conf = conf;
2368 sh->log_start = MaxSector;
2369
2370 if (raid5_has_ppl(conf)) {
2371 sh->ppl_page = alloc_page(gfp);
2372 if (!sh->ppl_page) {
2373 free_stripe(sc, sh);
2374 return NULL;
2375 }
2376 }
2377 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2378 if (init_stripe_shared_pages(sh, conf, disks)) {
2379 free_stripe(sc, sh);
2380 return NULL;
2381 }
2382 #endif
2383 }
2384 return sh;
2385 }
grow_one_stripe(struct r5conf * conf,gfp_t gfp)2386 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2387 {
2388 struct stripe_head *sh;
2389
2390 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2391 if (!sh)
2392 return 0;
2393
2394 if (grow_buffers(sh, gfp)) {
2395 shrink_buffers(sh);
2396 free_stripe(conf->slab_cache, sh);
2397 return 0;
2398 }
2399 sh->hash_lock_index =
2400 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2401 /* we just created an active stripe so... */
2402 atomic_inc(&conf->active_stripes);
2403
2404 raid5_release_stripe(sh);
2405 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1);
2406 return 1;
2407 }
2408
grow_stripes(struct r5conf * conf,int num)2409 static int grow_stripes(struct r5conf *conf, int num)
2410 {
2411 struct kmem_cache *sc;
2412 size_t namelen = sizeof(conf->cache_name[0]);
2413 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2414
2415 if (mddev_is_dm(conf->mddev))
2416 snprintf(conf->cache_name[0], namelen,
2417 "raid%d-%p", conf->level, conf->mddev);
2418 else
2419 snprintf(conf->cache_name[0], namelen,
2420 "raid%d-%s", conf->level, mdname(conf->mddev));
2421 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2422
2423 conf->active_name = 0;
2424 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2425 struct_size_t(struct stripe_head, dev, devs),
2426 0, 0, NULL);
2427 if (!sc)
2428 return 1;
2429 conf->slab_cache = sc;
2430 conf->pool_size = devs;
2431 while (num--)
2432 if (!grow_one_stripe(conf, GFP_KERNEL))
2433 return 1;
2434
2435 return 0;
2436 }
2437
2438 /**
2439 * scribble_alloc - allocate percpu scribble buffer for required size
2440 * of the scribble region
2441 * @percpu: from for_each_present_cpu() of the caller
2442 * @num: total number of disks in the array
2443 * @cnt: scribble objs count for required size of the scribble region
2444 *
2445 * The scribble buffer size must be enough to contain:
2446 * 1/ a struct page pointer for each device in the array +2
2447 * 2/ room to convert each entry in (1) to its corresponding dma
2448 * (dma_map_page()) or page (page_address()) address.
2449 *
2450 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2451 * calculate over all devices (not just the data blocks), using zeros in place
2452 * of the P and Q blocks.
2453 */
scribble_alloc(struct raid5_percpu * percpu,int num,int cnt)2454 static int scribble_alloc(struct raid5_percpu *percpu,
2455 int num, int cnt)
2456 {
2457 size_t obj_size =
2458 sizeof(struct page *) * (num + 2) +
2459 sizeof(addr_conv_t) * (num + 2) +
2460 sizeof(unsigned int) * (num + 2);
2461 void *scribble;
2462
2463 /*
2464 * If here is in raid array suspend context, it is in memalloc noio
2465 * context as well, there is no potential recursive memory reclaim
2466 * I/Os with the GFP_KERNEL flag.
2467 */
2468 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2469 if (!scribble)
2470 return -ENOMEM;
2471
2472 kvfree(percpu->scribble);
2473
2474 percpu->scribble = scribble;
2475 percpu->scribble_obj_size = obj_size;
2476 return 0;
2477 }
2478
resize_chunks(struct r5conf * conf,int new_disks,int new_sectors)2479 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2480 {
2481 unsigned long cpu;
2482 int err = 0;
2483
2484 /* Never shrink. */
2485 if (conf->scribble_disks >= new_disks &&
2486 conf->scribble_sectors >= new_sectors)
2487 return 0;
2488
2489 raid5_quiesce(conf->mddev, true);
2490 cpus_read_lock();
2491
2492 for_each_present_cpu(cpu) {
2493 struct raid5_percpu *percpu;
2494
2495 percpu = per_cpu_ptr(conf->percpu, cpu);
2496 err = scribble_alloc(percpu, new_disks,
2497 new_sectors / RAID5_STRIPE_SECTORS(conf));
2498 if (err)
2499 break;
2500 }
2501
2502 cpus_read_unlock();
2503 raid5_quiesce(conf->mddev, false);
2504
2505 if (!err) {
2506 conf->scribble_disks = new_disks;
2507 conf->scribble_sectors = new_sectors;
2508 }
2509 return err;
2510 }
2511
resize_stripes(struct r5conf * conf,int newsize)2512 static int resize_stripes(struct r5conf *conf, int newsize)
2513 {
2514 /* Make all the stripes able to hold 'newsize' devices.
2515 * New slots in each stripe get 'page' set to a new page.
2516 *
2517 * This happens in stages:
2518 * 1/ create a new kmem_cache and allocate the required number of
2519 * stripe_heads.
2520 * 2/ gather all the old stripe_heads and transfer the pages across
2521 * to the new stripe_heads. This will have the side effect of
2522 * freezing the array as once all stripe_heads have been collected,
2523 * no IO will be possible. Old stripe heads are freed once their
2524 * pages have been transferred over, and the old kmem_cache is
2525 * freed when all stripes are done.
2526 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2527 * we simple return a failure status - no need to clean anything up.
2528 * 4/ allocate new pages for the new slots in the new stripe_heads.
2529 * If this fails, we don't bother trying the shrink the
2530 * stripe_heads down again, we just leave them as they are.
2531 * As each stripe_head is processed the new one is released into
2532 * active service.
2533 *
2534 * Once step2 is started, we cannot afford to wait for a write,
2535 * so we use GFP_NOIO allocations.
2536 */
2537 struct stripe_head *osh, *nsh;
2538 LIST_HEAD(newstripes);
2539 struct disk_info *ndisks;
2540 int err = 0;
2541 struct kmem_cache *sc;
2542 int i;
2543 int hash, cnt;
2544
2545 md_allow_write(conf->mddev);
2546
2547 /* Step 1 */
2548 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2549 struct_size_t(struct stripe_head, dev, newsize),
2550 0, 0, NULL);
2551 if (!sc)
2552 return -ENOMEM;
2553
2554 /* Need to ensure auto-resizing doesn't interfere */
2555 mutex_lock(&conf->cache_size_mutex);
2556
2557 for (i = conf->max_nr_stripes; i; i--) {
2558 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2559 if (!nsh)
2560 break;
2561
2562 list_add(&nsh->lru, &newstripes);
2563 }
2564 if (i) {
2565 /* didn't get enough, give up */
2566 while (!list_empty(&newstripes)) {
2567 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2568 list_del(&nsh->lru);
2569 free_stripe(sc, nsh);
2570 }
2571 kmem_cache_destroy(sc);
2572 mutex_unlock(&conf->cache_size_mutex);
2573 return -ENOMEM;
2574 }
2575 /* Step 2 - Must use GFP_NOIO now.
2576 * OK, we have enough stripes, start collecting inactive
2577 * stripes and copying them over
2578 */
2579 hash = 0;
2580 cnt = 0;
2581 list_for_each_entry(nsh, &newstripes, lru) {
2582 lock_device_hash_lock(conf, hash);
2583 wait_event_cmd(conf->wait_for_stripe,
2584 !list_empty(conf->inactive_list + hash),
2585 unlock_device_hash_lock(conf, hash),
2586 lock_device_hash_lock(conf, hash));
2587 osh = get_free_stripe(conf, hash);
2588 unlock_device_hash_lock(conf, hash);
2589
2590 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2591 for (i = 0; i < osh->nr_pages; i++) {
2592 nsh->pages[i] = osh->pages[i];
2593 osh->pages[i] = NULL;
2594 }
2595 #endif
2596 for(i=0; i<conf->pool_size; i++) {
2597 nsh->dev[i].page = osh->dev[i].page;
2598 nsh->dev[i].orig_page = osh->dev[i].page;
2599 nsh->dev[i].offset = osh->dev[i].offset;
2600 }
2601 nsh->hash_lock_index = hash;
2602 free_stripe(conf->slab_cache, osh);
2603 cnt++;
2604 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2605 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2606 hash++;
2607 cnt = 0;
2608 }
2609 }
2610 kmem_cache_destroy(conf->slab_cache);
2611
2612 /* Step 3.
2613 * At this point, we are holding all the stripes so the array
2614 * is completely stalled, so now is a good time to resize
2615 * conf->disks and the scribble region
2616 */
2617 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2618 if (ndisks) {
2619 for (i = 0; i < conf->pool_size; i++)
2620 ndisks[i] = conf->disks[i];
2621
2622 for (i = conf->pool_size; i < newsize; i++) {
2623 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2624 if (!ndisks[i].extra_page)
2625 err = -ENOMEM;
2626 }
2627
2628 if (err) {
2629 for (i = conf->pool_size; i < newsize; i++)
2630 if (ndisks[i].extra_page)
2631 put_page(ndisks[i].extra_page);
2632 kfree(ndisks);
2633 } else {
2634 kfree(conf->disks);
2635 conf->disks = ndisks;
2636 }
2637 } else
2638 err = -ENOMEM;
2639
2640 conf->slab_cache = sc;
2641 conf->active_name = 1-conf->active_name;
2642
2643 /* Step 4, return new stripes to service */
2644 while(!list_empty(&newstripes)) {
2645 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2646 list_del_init(&nsh->lru);
2647
2648 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2649 for (i = 0; i < nsh->nr_pages; i++) {
2650 if (nsh->pages[i])
2651 continue;
2652 nsh->pages[i] = alloc_page(GFP_NOIO);
2653 if (!nsh->pages[i])
2654 err = -ENOMEM;
2655 }
2656
2657 for (i = conf->raid_disks; i < newsize; i++) {
2658 if (nsh->dev[i].page)
2659 continue;
2660 nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2661 nsh->dev[i].orig_page = nsh->dev[i].page;
2662 nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2663 }
2664 #else
2665 for (i=conf->raid_disks; i < newsize; i++)
2666 if (nsh->dev[i].page == NULL) {
2667 struct page *p = alloc_page(GFP_NOIO);
2668 nsh->dev[i].page = p;
2669 nsh->dev[i].orig_page = p;
2670 nsh->dev[i].offset = 0;
2671 if (!p)
2672 err = -ENOMEM;
2673 }
2674 #endif
2675 raid5_release_stripe(nsh);
2676 }
2677 /* critical section pass, GFP_NOIO no longer needed */
2678
2679 if (!err)
2680 conf->pool_size = newsize;
2681 mutex_unlock(&conf->cache_size_mutex);
2682
2683 return err;
2684 }
2685
drop_one_stripe(struct r5conf * conf)2686 static int drop_one_stripe(struct r5conf *conf)
2687 {
2688 struct stripe_head *sh;
2689 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2690
2691 spin_lock_irq(conf->hash_locks + hash);
2692 sh = get_free_stripe(conf, hash);
2693 spin_unlock_irq(conf->hash_locks + hash);
2694 if (!sh)
2695 return 0;
2696 BUG_ON(atomic_read(&sh->count));
2697 shrink_buffers(sh);
2698 free_stripe(conf->slab_cache, sh);
2699 atomic_dec(&conf->active_stripes);
2700 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1);
2701 return 1;
2702 }
2703
shrink_stripes(struct r5conf * conf)2704 static void shrink_stripes(struct r5conf *conf)
2705 {
2706 while (conf->max_nr_stripes &&
2707 drop_one_stripe(conf))
2708 ;
2709
2710 kmem_cache_destroy(conf->slab_cache);
2711 conf->slab_cache = NULL;
2712 }
2713
raid5_end_read_request(struct bio * bi)2714 static void raid5_end_read_request(struct bio * bi)
2715 {
2716 struct stripe_head *sh = bi->bi_private;
2717 struct r5conf *conf = sh->raid_conf;
2718 int disks = sh->disks, i;
2719 struct md_rdev *rdev = NULL;
2720 sector_t s;
2721
2722 for (i=0 ; i<disks; i++)
2723 if (bi == &sh->dev[i].req)
2724 break;
2725
2726 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2727 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2728 bi->bi_status);
2729 if (i == disks) {
2730 BUG();
2731 return;
2732 }
2733 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2734 /* If replacement finished while this request was outstanding,
2735 * 'replacement' might be NULL already.
2736 * In that case it moved down to 'rdev'.
2737 * rdev is not removed until all requests are finished.
2738 */
2739 rdev = conf->disks[i].replacement;
2740 if (!rdev)
2741 rdev = conf->disks[i].rdev;
2742
2743 if (use_new_offset(conf, sh))
2744 s = sh->sector + rdev->new_data_offset;
2745 else
2746 s = sh->sector + rdev->data_offset;
2747 if (!bi->bi_status) {
2748 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2749 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2750 /* Note that this cannot happen on a
2751 * replacement device. We just fail those on
2752 * any error
2753 */
2754 pr_info_ratelimited(
2755 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2756 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2757 (unsigned long long)s,
2758 rdev->bdev);
2759 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2760 clear_bit(R5_ReadError, &sh->dev[i].flags);
2761 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2762 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2763 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2764
2765 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2766 /*
2767 * end read for a page in journal, this
2768 * must be preparing for prexor in rmw
2769 */
2770 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2771
2772 if (atomic_read(&rdev->read_errors))
2773 atomic_set(&rdev->read_errors, 0);
2774 } else {
2775 int retry = 0;
2776 int set_bad = 0;
2777
2778 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2779 if (!(bi->bi_status == BLK_STS_PROTECTION))
2780 atomic_inc(&rdev->read_errors);
2781 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2782 pr_warn_ratelimited(
2783 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2784 mdname(conf->mddev),
2785 (unsigned long long)s,
2786 rdev->bdev);
2787 else if (conf->mddev->degraded >= conf->max_degraded) {
2788 set_bad = 1;
2789 pr_warn_ratelimited(
2790 "md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2791 mdname(conf->mddev),
2792 (unsigned long long)s,
2793 rdev->bdev);
2794 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2795 /* Oh, no!!! */
2796 set_bad = 1;
2797 pr_warn_ratelimited(
2798 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2799 mdname(conf->mddev),
2800 (unsigned long long)s,
2801 rdev->bdev);
2802 } else if (atomic_read(&rdev->read_errors)
2803 > conf->max_nr_stripes) {
2804 if (!test_bit(Faulty, &rdev->flags)) {
2805 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2806 mdname(conf->mddev),
2807 atomic_read(&rdev->read_errors),
2808 conf->max_nr_stripes);
2809 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2810 mdname(conf->mddev), rdev->bdev);
2811 }
2812 } else
2813 retry = 1;
2814 if (set_bad && test_bit(In_sync, &rdev->flags)
2815 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2816 retry = 1;
2817 if (retry)
2818 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2819 set_bit(R5_ReadError, &sh->dev[i].flags);
2820 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2821 set_bit(R5_ReadError, &sh->dev[i].flags);
2822 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2823 } else
2824 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2825 else {
2826 clear_bit(R5_ReadError, &sh->dev[i].flags);
2827 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2828 if (!(set_bad
2829 && test_bit(In_sync, &rdev->flags)
2830 && rdev_set_badblocks(
2831 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2832 md_error(conf->mddev, rdev);
2833 }
2834 }
2835 rdev_dec_pending(rdev, conf->mddev);
2836 bio_uninit(bi);
2837 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2838 set_bit(STRIPE_HANDLE, &sh->state);
2839 raid5_release_stripe(sh);
2840 }
2841
raid5_end_write_request(struct bio * bi)2842 static void raid5_end_write_request(struct bio *bi)
2843 {
2844 struct stripe_head *sh = bi->bi_private;
2845 struct r5conf *conf = sh->raid_conf;
2846 int disks = sh->disks, i;
2847 struct md_rdev *rdev;
2848 int replacement = 0;
2849
2850 for (i = 0 ; i < disks; i++) {
2851 if (bi == &sh->dev[i].req) {
2852 rdev = conf->disks[i].rdev;
2853 break;
2854 }
2855 if (bi == &sh->dev[i].rreq) {
2856 rdev = conf->disks[i].replacement;
2857 if (rdev)
2858 replacement = 1;
2859 else
2860 /* rdev was removed and 'replacement'
2861 * replaced it. rdev is not removed
2862 * until all requests are finished.
2863 */
2864 rdev = conf->disks[i].rdev;
2865 break;
2866 }
2867 }
2868 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2869 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2870 bi->bi_status);
2871 if (i == disks) {
2872 BUG();
2873 return;
2874 }
2875
2876 if (replacement) {
2877 if (bi->bi_status)
2878 md_error(conf->mddev, rdev);
2879 else if (rdev_has_badblock(rdev, sh->sector,
2880 RAID5_STRIPE_SECTORS(conf)))
2881 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2882 } else {
2883 if (bi->bi_status) {
2884 set_bit(WriteErrorSeen, &rdev->flags);
2885 set_bit(R5_WriteError, &sh->dev[i].flags);
2886 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2887 set_bit(MD_RECOVERY_NEEDED,
2888 &rdev->mddev->recovery);
2889 } else if (rdev_has_badblock(rdev, sh->sector,
2890 RAID5_STRIPE_SECTORS(conf))) {
2891 set_bit(R5_MadeGood, &sh->dev[i].flags);
2892 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2893 /* That was a successful write so make
2894 * sure it looks like we already did
2895 * a re-write.
2896 */
2897 set_bit(R5_ReWrite, &sh->dev[i].flags);
2898 }
2899 }
2900 rdev_dec_pending(rdev, conf->mddev);
2901
2902 if (sh->batch_head && bi->bi_status && !replacement)
2903 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2904
2905 bio_uninit(bi);
2906 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2907 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2908 set_bit(STRIPE_HANDLE, &sh->state);
2909
2910 if (sh->batch_head && sh != sh->batch_head)
2911 raid5_release_stripe(sh->batch_head);
2912 raid5_release_stripe(sh);
2913 }
2914
raid5_error(struct mddev * mddev,struct md_rdev * rdev)2915 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2916 {
2917 struct r5conf *conf = mddev->private;
2918 unsigned long flags;
2919 pr_debug("raid456: error called\n");
2920
2921 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2922 mdname(mddev), rdev->bdev);
2923
2924 spin_lock_irqsave(&conf->device_lock, flags);
2925 set_bit(Faulty, &rdev->flags);
2926 clear_bit(In_sync, &rdev->flags);
2927 mddev->degraded = raid5_calc_degraded(conf);
2928
2929 if (has_failed(conf)) {
2930 set_bit(MD_BROKEN, &conf->mddev->flags);
2931 conf->recovery_disabled = mddev->recovery_disabled;
2932
2933 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2934 mdname(mddev), mddev->degraded, conf->raid_disks);
2935 } else {
2936 pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2937 mdname(mddev), conf->raid_disks - mddev->degraded);
2938 }
2939
2940 spin_unlock_irqrestore(&conf->device_lock, flags);
2941 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2942
2943 set_bit(Blocked, &rdev->flags);
2944 set_mask_bits(&mddev->sb_flags, 0,
2945 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2946 r5c_update_on_rdev_error(mddev, rdev);
2947 }
2948
2949 /*
2950 * Input: a 'big' sector number,
2951 * Output: index of the data and parity disk, and the sector # in them.
2952 */
raid5_compute_sector(struct r5conf * conf,sector_t r_sector,int previous,int * dd_idx,struct stripe_head * sh)2953 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2954 int previous, int *dd_idx,
2955 struct stripe_head *sh)
2956 {
2957 sector_t stripe, stripe2;
2958 sector_t chunk_number;
2959 unsigned int chunk_offset;
2960 int pd_idx, qd_idx;
2961 int ddf_layout = 0;
2962 sector_t new_sector;
2963 int algorithm = previous ? conf->prev_algo
2964 : conf->algorithm;
2965 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2966 : conf->chunk_sectors;
2967 int raid_disks = previous ? conf->previous_raid_disks
2968 : conf->raid_disks;
2969 int data_disks = raid_disks - conf->max_degraded;
2970
2971 /* First compute the information on this sector */
2972
2973 /*
2974 * Compute the chunk number and the sector offset inside the chunk
2975 */
2976 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2977 chunk_number = r_sector;
2978
2979 /*
2980 * Compute the stripe number
2981 */
2982 stripe = chunk_number;
2983 *dd_idx = sector_div(stripe, data_disks);
2984 stripe2 = stripe;
2985 /*
2986 * Select the parity disk based on the user selected algorithm.
2987 */
2988 pd_idx = qd_idx = -1;
2989 switch(conf->level) {
2990 case 4:
2991 pd_idx = data_disks;
2992 break;
2993 case 5:
2994 switch (algorithm) {
2995 case ALGORITHM_LEFT_ASYMMETRIC:
2996 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2997 if (*dd_idx >= pd_idx)
2998 (*dd_idx)++;
2999 break;
3000 case ALGORITHM_RIGHT_ASYMMETRIC:
3001 pd_idx = sector_div(stripe2, raid_disks);
3002 if (*dd_idx >= pd_idx)
3003 (*dd_idx)++;
3004 break;
3005 case ALGORITHM_LEFT_SYMMETRIC:
3006 pd_idx = data_disks - sector_div(stripe2, raid_disks);
3007 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3008 break;
3009 case ALGORITHM_RIGHT_SYMMETRIC:
3010 pd_idx = sector_div(stripe2, raid_disks);
3011 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3012 break;
3013 case ALGORITHM_PARITY_0:
3014 pd_idx = 0;
3015 (*dd_idx)++;
3016 break;
3017 case ALGORITHM_PARITY_N:
3018 pd_idx = data_disks;
3019 break;
3020 default:
3021 BUG();
3022 }
3023 break;
3024 case 6:
3025
3026 switch (algorithm) {
3027 case ALGORITHM_LEFT_ASYMMETRIC:
3028 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3029 qd_idx = pd_idx + 1;
3030 if (pd_idx == raid_disks-1) {
3031 (*dd_idx)++; /* Q D D D P */
3032 qd_idx = 0;
3033 } else if (*dd_idx >= pd_idx)
3034 (*dd_idx) += 2; /* D D P Q D */
3035 break;
3036 case ALGORITHM_RIGHT_ASYMMETRIC:
3037 pd_idx = sector_div(stripe2, raid_disks);
3038 qd_idx = pd_idx + 1;
3039 if (pd_idx == raid_disks-1) {
3040 (*dd_idx)++; /* Q D D D P */
3041 qd_idx = 0;
3042 } else if (*dd_idx >= pd_idx)
3043 (*dd_idx) += 2; /* D D P Q D */
3044 break;
3045 case ALGORITHM_LEFT_SYMMETRIC:
3046 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3047 qd_idx = (pd_idx + 1) % raid_disks;
3048 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3049 break;
3050 case ALGORITHM_RIGHT_SYMMETRIC:
3051 pd_idx = sector_div(stripe2, raid_disks);
3052 qd_idx = (pd_idx + 1) % raid_disks;
3053 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3054 break;
3055
3056 case ALGORITHM_PARITY_0:
3057 pd_idx = 0;
3058 qd_idx = 1;
3059 (*dd_idx) += 2;
3060 break;
3061 case ALGORITHM_PARITY_N:
3062 pd_idx = data_disks;
3063 qd_idx = data_disks + 1;
3064 break;
3065
3066 case ALGORITHM_ROTATING_ZERO_RESTART:
3067 /* Exactly the same as RIGHT_ASYMMETRIC, but or
3068 * of blocks for computing Q is different.
3069 */
3070 pd_idx = sector_div(stripe2, raid_disks);
3071 qd_idx = pd_idx + 1;
3072 if (pd_idx == raid_disks-1) {
3073 (*dd_idx)++; /* Q D D D P */
3074 qd_idx = 0;
3075 } else if (*dd_idx >= pd_idx)
3076 (*dd_idx) += 2; /* D D P Q D */
3077 ddf_layout = 1;
3078 break;
3079
3080 case ALGORITHM_ROTATING_N_RESTART:
3081 /* Same a left_asymmetric, by first stripe is
3082 * D D D P Q rather than
3083 * Q D D D P
3084 */
3085 stripe2 += 1;
3086 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3087 qd_idx = pd_idx + 1;
3088 if (pd_idx == raid_disks-1) {
3089 (*dd_idx)++; /* Q D D D P */
3090 qd_idx = 0;
3091 } else if (*dd_idx >= pd_idx)
3092 (*dd_idx) += 2; /* D D P Q D */
3093 ddf_layout = 1;
3094 break;
3095
3096 case ALGORITHM_ROTATING_N_CONTINUE:
3097 /* Same as left_symmetric but Q is before P */
3098 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3099 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3100 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3101 ddf_layout = 1;
3102 break;
3103
3104 case ALGORITHM_LEFT_ASYMMETRIC_6:
3105 /* RAID5 left_asymmetric, with Q on last device */
3106 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3107 if (*dd_idx >= pd_idx)
3108 (*dd_idx)++;
3109 qd_idx = raid_disks - 1;
3110 break;
3111
3112 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3113 pd_idx = sector_div(stripe2, raid_disks-1);
3114 if (*dd_idx >= pd_idx)
3115 (*dd_idx)++;
3116 qd_idx = raid_disks - 1;
3117 break;
3118
3119 case ALGORITHM_LEFT_SYMMETRIC_6:
3120 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3121 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3122 qd_idx = raid_disks - 1;
3123 break;
3124
3125 case ALGORITHM_RIGHT_SYMMETRIC_6:
3126 pd_idx = sector_div(stripe2, raid_disks-1);
3127 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3128 qd_idx = raid_disks - 1;
3129 break;
3130
3131 case ALGORITHM_PARITY_0_6:
3132 pd_idx = 0;
3133 (*dd_idx)++;
3134 qd_idx = raid_disks - 1;
3135 break;
3136
3137 default:
3138 BUG();
3139 }
3140 break;
3141 }
3142
3143 if (sh) {
3144 sh->pd_idx = pd_idx;
3145 sh->qd_idx = qd_idx;
3146 sh->ddf_layout = ddf_layout;
3147 }
3148 /*
3149 * Finally, compute the new sector number
3150 */
3151 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3152 return new_sector;
3153 }
3154
raid5_compute_blocknr(struct stripe_head * sh,int i,int previous)3155 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3156 {
3157 struct r5conf *conf = sh->raid_conf;
3158 int raid_disks = sh->disks;
3159 int data_disks = raid_disks - conf->max_degraded;
3160 sector_t new_sector = sh->sector, check;
3161 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3162 : conf->chunk_sectors;
3163 int algorithm = previous ? conf->prev_algo
3164 : conf->algorithm;
3165 sector_t stripe;
3166 int chunk_offset;
3167 sector_t chunk_number;
3168 int dummy1, dd_idx = i;
3169 sector_t r_sector;
3170 struct stripe_head sh2;
3171
3172 chunk_offset = sector_div(new_sector, sectors_per_chunk);
3173 stripe = new_sector;
3174
3175 if (i == sh->pd_idx)
3176 return 0;
3177 switch(conf->level) {
3178 case 4: break;
3179 case 5:
3180 switch (algorithm) {
3181 case ALGORITHM_LEFT_ASYMMETRIC:
3182 case ALGORITHM_RIGHT_ASYMMETRIC:
3183 if (i > sh->pd_idx)
3184 i--;
3185 break;
3186 case ALGORITHM_LEFT_SYMMETRIC:
3187 case ALGORITHM_RIGHT_SYMMETRIC:
3188 if (i < sh->pd_idx)
3189 i += raid_disks;
3190 i -= (sh->pd_idx + 1);
3191 break;
3192 case ALGORITHM_PARITY_0:
3193 i -= 1;
3194 break;
3195 case ALGORITHM_PARITY_N:
3196 break;
3197 default:
3198 BUG();
3199 }
3200 break;
3201 case 6:
3202 if (i == sh->qd_idx)
3203 return 0; /* It is the Q disk */
3204 switch (algorithm) {
3205 case ALGORITHM_LEFT_ASYMMETRIC:
3206 case ALGORITHM_RIGHT_ASYMMETRIC:
3207 case ALGORITHM_ROTATING_ZERO_RESTART:
3208 case ALGORITHM_ROTATING_N_RESTART:
3209 if (sh->pd_idx == raid_disks-1)
3210 i--; /* Q D D D P */
3211 else if (i > sh->pd_idx)
3212 i -= 2; /* D D P Q D */
3213 break;
3214 case ALGORITHM_LEFT_SYMMETRIC:
3215 case ALGORITHM_RIGHT_SYMMETRIC:
3216 if (sh->pd_idx == raid_disks-1)
3217 i--; /* Q D D D P */
3218 else {
3219 /* D D P Q D */
3220 if (i < sh->pd_idx)
3221 i += raid_disks;
3222 i -= (sh->pd_idx + 2);
3223 }
3224 break;
3225 case ALGORITHM_PARITY_0:
3226 i -= 2;
3227 break;
3228 case ALGORITHM_PARITY_N:
3229 break;
3230 case ALGORITHM_ROTATING_N_CONTINUE:
3231 /* Like left_symmetric, but P is before Q */
3232 if (sh->pd_idx == 0)
3233 i--; /* P D D D Q */
3234 else {
3235 /* D D Q P D */
3236 if (i < sh->pd_idx)
3237 i += raid_disks;
3238 i -= (sh->pd_idx + 1);
3239 }
3240 break;
3241 case ALGORITHM_LEFT_ASYMMETRIC_6:
3242 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3243 if (i > sh->pd_idx)
3244 i--;
3245 break;
3246 case ALGORITHM_LEFT_SYMMETRIC_6:
3247 case ALGORITHM_RIGHT_SYMMETRIC_6:
3248 if (i < sh->pd_idx)
3249 i += data_disks + 1;
3250 i -= (sh->pd_idx + 1);
3251 break;
3252 case ALGORITHM_PARITY_0_6:
3253 i -= 1;
3254 break;
3255 default:
3256 BUG();
3257 }
3258 break;
3259 }
3260
3261 chunk_number = stripe * data_disks + i;
3262 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3263
3264 check = raid5_compute_sector(conf, r_sector,
3265 previous, &dummy1, &sh2);
3266 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3267 || sh2.qd_idx != sh->qd_idx) {
3268 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3269 mdname(conf->mddev));
3270 return 0;
3271 }
3272 return r_sector;
3273 }
3274
3275 /*
3276 * There are cases where we want handle_stripe_dirtying() and
3277 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3278 *
3279 * This function checks whether we want to delay the towrite. Specifically,
3280 * we delay the towrite when:
3281 *
3282 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3283 * stripe has data in journal (for other devices).
3284 *
3285 * In this case, when reading data for the non-overwrite dev, it is
3286 * necessary to handle complex rmw of write back cache (prexor with
3287 * orig_page, and xor with page). To keep read path simple, we would
3288 * like to flush data in journal to RAID disks first, so complex rmw
3289 * is handled in the write patch (handle_stripe_dirtying).
3290 *
3291 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3292 *
3293 * It is important to be able to flush all stripes in raid5-cache.
3294 * Therefore, we need reserve some space on the journal device for
3295 * these flushes. If flush operation includes pending writes to the
3296 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3297 * for the flush out. If we exclude these pending writes from flush
3298 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3299 * Therefore, excluding pending writes in these cases enables more
3300 * efficient use of the journal device.
3301 *
3302 * Note: To make sure the stripe makes progress, we only delay
3303 * towrite for stripes with data already in journal (injournal > 0).
3304 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3305 * no_space_stripes list.
3306 *
3307 * 3. during journal failure
3308 * In journal failure, we try to flush all cached data to raid disks
3309 * based on data in stripe cache. The array is read-only to upper
3310 * layers, so we would skip all pending writes.
3311 *
3312 */
delay_towrite(struct r5conf * conf,struct r5dev * dev,struct stripe_head_state * s)3313 static inline bool delay_towrite(struct r5conf *conf,
3314 struct r5dev *dev,
3315 struct stripe_head_state *s)
3316 {
3317 /* case 1 above */
3318 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3319 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3320 return true;
3321 /* case 2 above */
3322 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3323 s->injournal > 0)
3324 return true;
3325 /* case 3 above */
3326 if (s->log_failed && s->injournal)
3327 return true;
3328 return false;
3329 }
3330
3331 static void
schedule_reconstruction(struct stripe_head * sh,struct stripe_head_state * s,int rcw,int expand)3332 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3333 int rcw, int expand)
3334 {
3335 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3336 struct r5conf *conf = sh->raid_conf;
3337 int level = conf->level;
3338
3339 if (rcw) {
3340 /*
3341 * In some cases, handle_stripe_dirtying initially decided to
3342 * run rmw and allocates extra page for prexor. However, rcw is
3343 * cheaper later on. We need to free the extra page now,
3344 * because we won't be able to do that in ops_complete_prexor().
3345 */
3346 r5c_release_extra_page(sh);
3347
3348 for (i = disks; i--; ) {
3349 struct r5dev *dev = &sh->dev[i];
3350
3351 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3352 set_bit(R5_LOCKED, &dev->flags);
3353 set_bit(R5_Wantdrain, &dev->flags);
3354 if (!expand)
3355 clear_bit(R5_UPTODATE, &dev->flags);
3356 s->locked++;
3357 } else if (test_bit(R5_InJournal, &dev->flags)) {
3358 set_bit(R5_LOCKED, &dev->flags);
3359 s->locked++;
3360 }
3361 }
3362 /* if we are not expanding this is a proper write request, and
3363 * there will be bios with new data to be drained into the
3364 * stripe cache
3365 */
3366 if (!expand) {
3367 if (!s->locked)
3368 /* False alarm, nothing to do */
3369 return;
3370 sh->reconstruct_state = reconstruct_state_drain_run;
3371 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3372 } else
3373 sh->reconstruct_state = reconstruct_state_run;
3374
3375 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3376
3377 if (s->locked + conf->max_degraded == disks)
3378 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3379 atomic_inc(&conf->pending_full_writes);
3380 } else {
3381 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3382 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3383 BUG_ON(level == 6 &&
3384 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3385 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3386
3387 for (i = disks; i--; ) {
3388 struct r5dev *dev = &sh->dev[i];
3389 if (i == pd_idx || i == qd_idx)
3390 continue;
3391
3392 if (dev->towrite &&
3393 (test_bit(R5_UPTODATE, &dev->flags) ||
3394 test_bit(R5_Wantcompute, &dev->flags))) {
3395 set_bit(R5_Wantdrain, &dev->flags);
3396 set_bit(R5_LOCKED, &dev->flags);
3397 clear_bit(R5_UPTODATE, &dev->flags);
3398 s->locked++;
3399 } else if (test_bit(R5_InJournal, &dev->flags)) {
3400 set_bit(R5_LOCKED, &dev->flags);
3401 s->locked++;
3402 }
3403 }
3404 if (!s->locked)
3405 /* False alarm - nothing to do */
3406 return;
3407 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3408 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3409 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3410 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3411 }
3412
3413 /* keep the parity disk(s) locked while asynchronous operations
3414 * are in flight
3415 */
3416 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3417 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3418 s->locked++;
3419
3420 if (level == 6) {
3421 int qd_idx = sh->qd_idx;
3422 struct r5dev *dev = &sh->dev[qd_idx];
3423
3424 set_bit(R5_LOCKED, &dev->flags);
3425 clear_bit(R5_UPTODATE, &dev->flags);
3426 s->locked++;
3427 }
3428
3429 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3430 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3431 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3432 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3433 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3434
3435 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3436 __func__, (unsigned long long)sh->sector,
3437 s->locked, s->ops_request);
3438 }
3439
stripe_bio_overlaps(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite)3440 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3441 int dd_idx, int forwrite)
3442 {
3443 struct r5conf *conf = sh->raid_conf;
3444 struct bio **bip;
3445
3446 pr_debug("checking bi b#%llu to stripe s#%llu\n",
3447 bi->bi_iter.bi_sector, sh->sector);
3448
3449 /* Don't allow new IO added to stripes in batch list */
3450 if (sh->batch_head)
3451 return true;
3452
3453 if (forwrite)
3454 bip = &sh->dev[dd_idx].towrite;
3455 else
3456 bip = &sh->dev[dd_idx].toread;
3457
3458 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3459 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3460 return true;
3461 bip = &(*bip)->bi_next;
3462 }
3463
3464 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3465 return true;
3466
3467 if (forwrite && raid5_has_ppl(conf)) {
3468 /*
3469 * With PPL only writes to consecutive data chunks within a
3470 * stripe are allowed because for a single stripe_head we can
3471 * only have one PPL entry at a time, which describes one data
3472 * range. Not really an overlap, but R5_Overlap can be
3473 * used to handle this.
3474 */
3475 sector_t sector;
3476 sector_t first = 0;
3477 sector_t last = 0;
3478 int count = 0;
3479 int i;
3480
3481 for (i = 0; i < sh->disks; i++) {
3482 if (i != sh->pd_idx &&
3483 (i == dd_idx || sh->dev[i].towrite)) {
3484 sector = sh->dev[i].sector;
3485 if (count == 0 || sector < first)
3486 first = sector;
3487 if (sector > last)
3488 last = sector;
3489 count++;
3490 }
3491 }
3492
3493 if (first + conf->chunk_sectors * (count - 1) != last)
3494 return true;
3495 }
3496
3497 return false;
3498 }
3499
__add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)3500 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3501 int dd_idx, int forwrite, int previous)
3502 {
3503 struct r5conf *conf = sh->raid_conf;
3504 struct bio **bip;
3505 int firstwrite = 0;
3506
3507 if (forwrite) {
3508 bip = &sh->dev[dd_idx].towrite;
3509 if (!*bip)
3510 firstwrite = 1;
3511 } else {
3512 bip = &sh->dev[dd_idx].toread;
3513 }
3514
3515 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3516 bip = &(*bip)->bi_next;
3517
3518 if (!forwrite || previous)
3519 clear_bit(STRIPE_BATCH_READY, &sh->state);
3520
3521 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3522 if (*bip)
3523 bi->bi_next = *bip;
3524 *bip = bi;
3525 bio_inc_remaining(bi);
3526 md_write_inc(conf->mddev, bi);
3527
3528 if (forwrite) {
3529 /* check if page is covered */
3530 sector_t sector = sh->dev[dd_idx].sector;
3531 for (bi=sh->dev[dd_idx].towrite;
3532 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3533 bi && bi->bi_iter.bi_sector <= sector;
3534 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3535 if (bio_end_sector(bi) >= sector)
3536 sector = bio_end_sector(bi);
3537 }
3538 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3539 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3540 sh->overwrite_disks++;
3541 }
3542
3543 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3544 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3545 sh->dev[dd_idx].sector);
3546
3547 if (conf->mddev->bitmap && firstwrite && !sh->batch_head) {
3548 sh->bm_seq = conf->seq_flush+1;
3549 set_bit(STRIPE_BIT_DELAY, &sh->state);
3550 }
3551 }
3552
3553 /*
3554 * Each stripe/dev can have one or more bios attached.
3555 * toread/towrite point to the first in a chain.
3556 * The bi_next chain must be in order.
3557 */
add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)3558 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3559 int dd_idx, int forwrite, int previous)
3560 {
3561 spin_lock_irq(&sh->stripe_lock);
3562
3563 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3564 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3565 spin_unlock_irq(&sh->stripe_lock);
3566 return false;
3567 }
3568
3569 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
3570 spin_unlock_irq(&sh->stripe_lock);
3571 return true;
3572 }
3573
3574 static void end_reshape(struct r5conf *conf);
3575
stripe_set_idx(sector_t stripe,struct r5conf * conf,int previous,struct stripe_head * sh)3576 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3577 struct stripe_head *sh)
3578 {
3579 int sectors_per_chunk =
3580 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3581 int dd_idx;
3582 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3583 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3584
3585 raid5_compute_sector(conf,
3586 stripe * (disks - conf->max_degraded)
3587 *sectors_per_chunk + chunk_offset,
3588 previous,
3589 &dd_idx, sh);
3590 }
3591
3592 static void
handle_failed_stripe(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3593 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3594 struct stripe_head_state *s, int disks)
3595 {
3596 int i;
3597 BUG_ON(sh->batch_head);
3598 for (i = disks; i--; ) {
3599 struct bio *bi;
3600
3601 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3602 struct md_rdev *rdev = conf->disks[i].rdev;
3603
3604 if (rdev && test_bit(In_sync, &rdev->flags) &&
3605 !test_bit(Faulty, &rdev->flags))
3606 atomic_inc(&rdev->nr_pending);
3607 else
3608 rdev = NULL;
3609 if (rdev) {
3610 if (!rdev_set_badblocks(
3611 rdev,
3612 sh->sector,
3613 RAID5_STRIPE_SECTORS(conf), 0))
3614 md_error(conf->mddev, rdev);
3615 rdev_dec_pending(rdev, conf->mddev);
3616 }
3617 }
3618 spin_lock_irq(&sh->stripe_lock);
3619 /* fail all writes first */
3620 bi = sh->dev[i].towrite;
3621 sh->dev[i].towrite = NULL;
3622 sh->overwrite_disks = 0;
3623 spin_unlock_irq(&sh->stripe_lock);
3624
3625 log_stripe_write_finished(sh);
3626
3627 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3628 wake_up_bit(&sh->dev[i].flags, R5_Overlap);
3629
3630 while (bi && bi->bi_iter.bi_sector <
3631 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3632 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3633
3634 md_write_end(conf->mddev);
3635 bio_io_error(bi);
3636 bi = nextbi;
3637 }
3638 /* and fail all 'written' */
3639 bi = sh->dev[i].written;
3640 sh->dev[i].written = NULL;
3641 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3642 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3643 sh->dev[i].page = sh->dev[i].orig_page;
3644 }
3645
3646 while (bi && bi->bi_iter.bi_sector <
3647 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3648 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3649
3650 md_write_end(conf->mddev);
3651 bio_io_error(bi);
3652 bi = bi2;
3653 }
3654
3655 /* fail any reads if this device is non-operational and
3656 * the data has not reached the cache yet.
3657 */
3658 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3659 s->failed > conf->max_degraded &&
3660 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3661 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3662 spin_lock_irq(&sh->stripe_lock);
3663 bi = sh->dev[i].toread;
3664 sh->dev[i].toread = NULL;
3665 spin_unlock_irq(&sh->stripe_lock);
3666 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3667 wake_up_bit(&sh->dev[i].flags, R5_Overlap);
3668 if (bi)
3669 s->to_read--;
3670 while (bi && bi->bi_iter.bi_sector <
3671 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3672 struct bio *nextbi =
3673 r5_next_bio(conf, bi, sh->dev[i].sector);
3674
3675 bio_io_error(bi);
3676 bi = nextbi;
3677 }
3678 }
3679 /* If we were in the middle of a write the parity block might
3680 * still be locked - so just clear all R5_LOCKED flags
3681 */
3682 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3683 }
3684 s->to_write = 0;
3685 s->written = 0;
3686
3687 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3688 if (atomic_dec_and_test(&conf->pending_full_writes))
3689 md_wakeup_thread(conf->mddev->thread);
3690 }
3691
3692 static void
handle_failed_sync(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s)3693 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3694 struct stripe_head_state *s)
3695 {
3696 int abort = 0;
3697 int i;
3698
3699 BUG_ON(sh->batch_head);
3700 clear_bit(STRIPE_SYNCING, &sh->state);
3701 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3702 wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
3703 s->syncing = 0;
3704 s->replacing = 0;
3705 /* There is nothing more to do for sync/check/repair.
3706 * Don't even need to abort as that is handled elsewhere
3707 * if needed, and not always wanted e.g. if there is a known
3708 * bad block here.
3709 * For recover/replace we need to record a bad block on all
3710 * non-sync devices, or abort the recovery
3711 */
3712 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3713 /* During recovery devices cannot be removed, so
3714 * locking and refcounting of rdevs is not needed
3715 */
3716 for (i = 0; i < conf->raid_disks; i++) {
3717 struct md_rdev *rdev = conf->disks[i].rdev;
3718
3719 if (rdev
3720 && !test_bit(Faulty, &rdev->flags)
3721 && !test_bit(In_sync, &rdev->flags)
3722 && !rdev_set_badblocks(rdev, sh->sector,
3723 RAID5_STRIPE_SECTORS(conf), 0))
3724 abort = 1;
3725 rdev = conf->disks[i].replacement;
3726
3727 if (rdev
3728 && !test_bit(Faulty, &rdev->flags)
3729 && !test_bit(In_sync, &rdev->flags)
3730 && !rdev_set_badblocks(rdev, sh->sector,
3731 RAID5_STRIPE_SECTORS(conf), 0))
3732 abort = 1;
3733 }
3734 if (abort)
3735 conf->recovery_disabled =
3736 conf->mddev->recovery_disabled;
3737 }
3738 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3739 }
3740
want_replace(struct stripe_head * sh,int disk_idx)3741 static int want_replace(struct stripe_head *sh, int disk_idx)
3742 {
3743 struct md_rdev *rdev;
3744 int rv = 0;
3745
3746 rdev = sh->raid_conf->disks[disk_idx].replacement;
3747 if (rdev
3748 && !test_bit(Faulty, &rdev->flags)
3749 && !test_bit(In_sync, &rdev->flags)
3750 && (rdev->recovery_offset <= sh->sector
3751 || rdev->mddev->recovery_cp <= sh->sector))
3752 rv = 1;
3753 return rv;
3754 }
3755
need_this_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3756 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3757 int disk_idx, int disks)
3758 {
3759 struct r5dev *dev = &sh->dev[disk_idx];
3760 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3761 &sh->dev[s->failed_num[1]] };
3762 int i;
3763 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3764
3765
3766 if (test_bit(R5_LOCKED, &dev->flags) ||
3767 test_bit(R5_UPTODATE, &dev->flags))
3768 /* No point reading this as we already have it or have
3769 * decided to get it.
3770 */
3771 return 0;
3772
3773 if (dev->toread ||
3774 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3775 /* We need this block to directly satisfy a request */
3776 return 1;
3777
3778 if (s->syncing || s->expanding ||
3779 (s->replacing && want_replace(sh, disk_idx)))
3780 /* When syncing, or expanding we read everything.
3781 * When replacing, we need the replaced block.
3782 */
3783 return 1;
3784
3785 if ((s->failed >= 1 && fdev[0]->toread) ||
3786 (s->failed >= 2 && fdev[1]->toread))
3787 /* If we want to read from a failed device, then
3788 * we need to actually read every other device.
3789 */
3790 return 1;
3791
3792 /* Sometimes neither read-modify-write nor reconstruct-write
3793 * cycles can work. In those cases we read every block we
3794 * can. Then the parity-update is certain to have enough to
3795 * work with.
3796 * This can only be a problem when we need to write something,
3797 * and some device has failed. If either of those tests
3798 * fail we need look no further.
3799 */
3800 if (!s->failed || !s->to_write)
3801 return 0;
3802
3803 if (test_bit(R5_Insync, &dev->flags) &&
3804 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3805 /* Pre-reads at not permitted until after short delay
3806 * to gather multiple requests. However if this
3807 * device is no Insync, the block could only be computed
3808 * and there is no need to delay that.
3809 */
3810 return 0;
3811
3812 for (i = 0; i < s->failed && i < 2; i++) {
3813 if (fdev[i]->towrite &&
3814 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3815 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3816 /* If we have a partial write to a failed
3817 * device, then we will need to reconstruct
3818 * the content of that device, so all other
3819 * devices must be read.
3820 */
3821 return 1;
3822
3823 if (s->failed >= 2 &&
3824 (fdev[i]->towrite ||
3825 s->failed_num[i] == sh->pd_idx ||
3826 s->failed_num[i] == sh->qd_idx) &&
3827 !test_bit(R5_UPTODATE, &fdev[i]->flags))
3828 /* In max degraded raid6, If the failed disk is P, Q,
3829 * or we want to read the failed disk, we need to do
3830 * reconstruct-write.
3831 */
3832 force_rcw = true;
3833 }
3834
3835 /* If we are forced to do a reconstruct-write, because parity
3836 * cannot be trusted and we are currently recovering it, there
3837 * is extra need to be careful.
3838 * If one of the devices that we would need to read, because
3839 * it is not being overwritten (and maybe not written at all)
3840 * is missing/faulty, then we need to read everything we can.
3841 */
3842 if (!force_rcw &&
3843 sh->sector < sh->raid_conf->mddev->recovery_cp)
3844 /* reconstruct-write isn't being forced */
3845 return 0;
3846 for (i = 0; i < s->failed && i < 2; i++) {
3847 if (s->failed_num[i] != sh->pd_idx &&
3848 s->failed_num[i] != sh->qd_idx &&
3849 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3850 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3851 return 1;
3852 }
3853
3854 return 0;
3855 }
3856
3857 /* fetch_block - checks the given member device to see if its data needs
3858 * to be read or computed to satisfy a request.
3859 *
3860 * Returns 1 when no more member devices need to be checked, otherwise returns
3861 * 0 to tell the loop in handle_stripe_fill to continue
3862 */
fetch_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3863 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3864 int disk_idx, int disks)
3865 {
3866 struct r5dev *dev = &sh->dev[disk_idx];
3867
3868 /* is the data in this block needed, and can we get it? */
3869 if (need_this_block(sh, s, disk_idx, disks)) {
3870 /* we would like to get this block, possibly by computing it,
3871 * otherwise read it if the backing disk is insync
3872 */
3873 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3874 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3875 BUG_ON(sh->batch_head);
3876
3877 /*
3878 * In the raid6 case if the only non-uptodate disk is P
3879 * then we already trusted P to compute the other failed
3880 * drives. It is safe to compute rather than re-read P.
3881 * In other cases we only compute blocks from failed
3882 * devices, otherwise check/repair might fail to detect
3883 * a real inconsistency.
3884 */
3885
3886 if ((s->uptodate == disks - 1) &&
3887 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3888 (s->failed && (disk_idx == s->failed_num[0] ||
3889 disk_idx == s->failed_num[1])))) {
3890 /* have disk failed, and we're requested to fetch it;
3891 * do compute it
3892 */
3893 pr_debug("Computing stripe %llu block %d\n",
3894 (unsigned long long)sh->sector, disk_idx);
3895 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3896 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3897 set_bit(R5_Wantcompute, &dev->flags);
3898 sh->ops.target = disk_idx;
3899 sh->ops.target2 = -1; /* no 2nd target */
3900 s->req_compute = 1;
3901 /* Careful: from this point on 'uptodate' is in the eye
3902 * of raid_run_ops which services 'compute' operations
3903 * before writes. R5_Wantcompute flags a block that will
3904 * be R5_UPTODATE by the time it is needed for a
3905 * subsequent operation.
3906 */
3907 s->uptodate++;
3908 return 1;
3909 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3910 /* Computing 2-failure is *very* expensive; only
3911 * do it if failed >= 2
3912 */
3913 int other;
3914 for (other = disks; other--; ) {
3915 if (other == disk_idx)
3916 continue;
3917 if (!test_bit(R5_UPTODATE,
3918 &sh->dev[other].flags))
3919 break;
3920 }
3921 BUG_ON(other < 0);
3922 pr_debug("Computing stripe %llu blocks %d,%d\n",
3923 (unsigned long long)sh->sector,
3924 disk_idx, other);
3925 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3926 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3927 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3928 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3929 sh->ops.target = disk_idx;
3930 sh->ops.target2 = other;
3931 s->uptodate += 2;
3932 s->req_compute = 1;
3933 return 1;
3934 } else if (test_bit(R5_Insync, &dev->flags)) {
3935 set_bit(R5_LOCKED, &dev->flags);
3936 set_bit(R5_Wantread, &dev->flags);
3937 s->locked++;
3938 pr_debug("Reading block %d (sync=%d)\n",
3939 disk_idx, s->syncing);
3940 }
3941 }
3942
3943 return 0;
3944 }
3945
3946 /*
3947 * handle_stripe_fill - read or compute data to satisfy pending requests.
3948 */
handle_stripe_fill(struct stripe_head * sh,struct stripe_head_state * s,int disks)3949 static void handle_stripe_fill(struct stripe_head *sh,
3950 struct stripe_head_state *s,
3951 int disks)
3952 {
3953 int i;
3954
3955 /* look for blocks to read/compute, skip this if a compute
3956 * is already in flight, or if the stripe contents are in the
3957 * midst of changing due to a write
3958 */
3959 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3960 !sh->reconstruct_state) {
3961
3962 /*
3963 * For degraded stripe with data in journal, do not handle
3964 * read requests yet, instead, flush the stripe to raid
3965 * disks first, this avoids handling complex rmw of write
3966 * back cache (prexor with orig_page, and then xor with
3967 * page) in the read path
3968 */
3969 if (s->to_read && s->injournal && s->failed) {
3970 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3971 r5c_make_stripe_write_out(sh);
3972 goto out;
3973 }
3974
3975 for (i = disks; i--; )
3976 if (fetch_block(sh, s, i, disks))
3977 break;
3978 }
3979 out:
3980 set_bit(STRIPE_HANDLE, &sh->state);
3981 }
3982
3983 static void break_stripe_batch_list(struct stripe_head *head_sh,
3984 unsigned long handle_flags);
3985 /* handle_stripe_clean_event
3986 * any written block on an uptodate or failed drive can be returned.
3987 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3988 * never LOCKED, so we don't need to test 'failed' directly.
3989 */
handle_stripe_clean_event(struct r5conf * conf,struct stripe_head * sh,int disks)3990 static void handle_stripe_clean_event(struct r5conf *conf,
3991 struct stripe_head *sh, int disks)
3992 {
3993 int i;
3994 struct r5dev *dev;
3995 int discard_pending = 0;
3996 struct stripe_head *head_sh = sh;
3997 bool do_endio = false;
3998
3999 for (i = disks; i--; )
4000 if (sh->dev[i].written) {
4001 dev = &sh->dev[i];
4002 if (!test_bit(R5_LOCKED, &dev->flags) &&
4003 (test_bit(R5_UPTODATE, &dev->flags) ||
4004 test_bit(R5_Discard, &dev->flags) ||
4005 test_bit(R5_SkipCopy, &dev->flags))) {
4006 /* We can return any write requests */
4007 struct bio *wbi, *wbi2;
4008 pr_debug("Return write for disc %d\n", i);
4009 if (test_and_clear_bit(R5_Discard, &dev->flags))
4010 clear_bit(R5_UPTODATE, &dev->flags);
4011 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4012 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
4013 }
4014 do_endio = true;
4015
4016 returnbi:
4017 dev->page = dev->orig_page;
4018 wbi = dev->written;
4019 dev->written = NULL;
4020 while (wbi && wbi->bi_iter.bi_sector <
4021 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4022 wbi2 = r5_next_bio(conf, wbi, dev->sector);
4023 md_write_end(conf->mddev);
4024 bio_endio(wbi);
4025 wbi = wbi2;
4026 }
4027
4028 if (head_sh->batch_head) {
4029 sh = list_first_entry(&sh->batch_list,
4030 struct stripe_head,
4031 batch_list);
4032 if (sh != head_sh) {
4033 dev = &sh->dev[i];
4034 goto returnbi;
4035 }
4036 }
4037 sh = head_sh;
4038 dev = &sh->dev[i];
4039 } else if (test_bit(R5_Discard, &dev->flags))
4040 discard_pending = 1;
4041 }
4042
4043 log_stripe_write_finished(sh);
4044
4045 if (!discard_pending &&
4046 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4047 int hash;
4048 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4049 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4050 if (sh->qd_idx >= 0) {
4051 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4052 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4053 }
4054 /* now that discard is done we can proceed with any sync */
4055 clear_bit(STRIPE_DISCARD, &sh->state);
4056 /*
4057 * SCSI discard will change some bio fields and the stripe has
4058 * no updated data, so remove it from hash list and the stripe
4059 * will be reinitialized
4060 */
4061 unhash:
4062 hash = sh->hash_lock_index;
4063 spin_lock_irq(conf->hash_locks + hash);
4064 remove_hash(sh);
4065 spin_unlock_irq(conf->hash_locks + hash);
4066 if (head_sh->batch_head) {
4067 sh = list_first_entry(&sh->batch_list,
4068 struct stripe_head, batch_list);
4069 if (sh != head_sh)
4070 goto unhash;
4071 }
4072 sh = head_sh;
4073
4074 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4075 set_bit(STRIPE_HANDLE, &sh->state);
4076
4077 }
4078
4079 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4080 if (atomic_dec_and_test(&conf->pending_full_writes))
4081 md_wakeup_thread(conf->mddev->thread);
4082
4083 if (head_sh->batch_head && do_endio)
4084 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4085 }
4086
4087 /*
4088 * For RMW in write back cache, we need extra page in prexor to store the
4089 * old data. This page is stored in dev->orig_page.
4090 *
4091 * This function checks whether we have data for prexor. The exact logic
4092 * is:
4093 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4094 */
uptodate_for_rmw(struct r5dev * dev)4095 static inline bool uptodate_for_rmw(struct r5dev *dev)
4096 {
4097 return (test_bit(R5_UPTODATE, &dev->flags)) &&
4098 (!test_bit(R5_InJournal, &dev->flags) ||
4099 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4100 }
4101
handle_stripe_dirtying(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4102 static int handle_stripe_dirtying(struct r5conf *conf,
4103 struct stripe_head *sh,
4104 struct stripe_head_state *s,
4105 int disks)
4106 {
4107 int rmw = 0, rcw = 0, i;
4108 sector_t recovery_cp = conf->mddev->recovery_cp;
4109
4110 /* Check whether resync is now happening or should start.
4111 * If yes, then the array is dirty (after unclean shutdown or
4112 * initial creation), so parity in some stripes might be inconsistent.
4113 * In this case, we need to always do reconstruct-write, to ensure
4114 * that in case of drive failure or read-error correction, we
4115 * generate correct data from the parity.
4116 */
4117 if (conf->rmw_level == PARITY_DISABLE_RMW ||
4118 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4119 s->failed == 0)) {
4120 /* Calculate the real rcw later - for now make it
4121 * look like rcw is cheaper
4122 */
4123 rcw = 1; rmw = 2;
4124 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4125 conf->rmw_level, (unsigned long long)recovery_cp,
4126 (unsigned long long)sh->sector);
4127 } else for (i = disks; i--; ) {
4128 /* would I have to read this buffer for read_modify_write */
4129 struct r5dev *dev = &sh->dev[i];
4130 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4131 i == sh->pd_idx || i == sh->qd_idx ||
4132 test_bit(R5_InJournal, &dev->flags)) &&
4133 !test_bit(R5_LOCKED, &dev->flags) &&
4134 !(uptodate_for_rmw(dev) ||
4135 test_bit(R5_Wantcompute, &dev->flags))) {
4136 if (test_bit(R5_Insync, &dev->flags))
4137 rmw++;
4138 else
4139 rmw += 2*disks; /* cannot read it */
4140 }
4141 /* Would I have to read this buffer for reconstruct_write */
4142 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4143 i != sh->pd_idx && i != sh->qd_idx &&
4144 !test_bit(R5_LOCKED, &dev->flags) &&
4145 !(test_bit(R5_UPTODATE, &dev->flags) ||
4146 test_bit(R5_Wantcompute, &dev->flags))) {
4147 if (test_bit(R5_Insync, &dev->flags))
4148 rcw++;
4149 else
4150 rcw += 2*disks;
4151 }
4152 }
4153
4154 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4155 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4156 set_bit(STRIPE_HANDLE, &sh->state);
4157 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4158 /* prefer read-modify-write, but need to get some data */
4159 mddev_add_trace_msg(conf->mddev, "raid5 rmw %llu %d",
4160 sh->sector, rmw);
4161
4162 for (i = disks; i--; ) {
4163 struct r5dev *dev = &sh->dev[i];
4164 if (test_bit(R5_InJournal, &dev->flags) &&
4165 dev->page == dev->orig_page &&
4166 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4167 /* alloc page for prexor */
4168 struct page *p = alloc_page(GFP_NOIO);
4169
4170 if (p) {
4171 dev->orig_page = p;
4172 continue;
4173 }
4174
4175 /*
4176 * alloc_page() failed, try use
4177 * disk_info->extra_page
4178 */
4179 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4180 &conf->cache_state)) {
4181 r5c_use_extra_page(sh);
4182 break;
4183 }
4184
4185 /* extra_page in use, add to delayed_list */
4186 set_bit(STRIPE_DELAYED, &sh->state);
4187 s->waiting_extra_page = 1;
4188 return -EAGAIN;
4189 }
4190 }
4191
4192 for (i = disks; i--; ) {
4193 struct r5dev *dev = &sh->dev[i];
4194 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4195 i == sh->pd_idx || i == sh->qd_idx ||
4196 test_bit(R5_InJournal, &dev->flags)) &&
4197 !test_bit(R5_LOCKED, &dev->flags) &&
4198 !(uptodate_for_rmw(dev) ||
4199 test_bit(R5_Wantcompute, &dev->flags)) &&
4200 test_bit(R5_Insync, &dev->flags)) {
4201 if (test_bit(STRIPE_PREREAD_ACTIVE,
4202 &sh->state)) {
4203 pr_debug("Read_old block %d for r-m-w\n",
4204 i);
4205 set_bit(R5_LOCKED, &dev->flags);
4206 set_bit(R5_Wantread, &dev->flags);
4207 s->locked++;
4208 } else
4209 set_bit(STRIPE_DELAYED, &sh->state);
4210 }
4211 }
4212 }
4213 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4214 /* want reconstruct write, but need to get some data */
4215 int qread =0;
4216 rcw = 0;
4217 for (i = disks; i--; ) {
4218 struct r5dev *dev = &sh->dev[i];
4219 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4220 i != sh->pd_idx && i != sh->qd_idx &&
4221 !test_bit(R5_LOCKED, &dev->flags) &&
4222 !(test_bit(R5_UPTODATE, &dev->flags) ||
4223 test_bit(R5_Wantcompute, &dev->flags))) {
4224 rcw++;
4225 if (test_bit(R5_Insync, &dev->flags) &&
4226 test_bit(STRIPE_PREREAD_ACTIVE,
4227 &sh->state)) {
4228 pr_debug("Read_old block "
4229 "%d for Reconstruct\n", i);
4230 set_bit(R5_LOCKED, &dev->flags);
4231 set_bit(R5_Wantread, &dev->flags);
4232 s->locked++;
4233 qread++;
4234 } else
4235 set_bit(STRIPE_DELAYED, &sh->state);
4236 }
4237 }
4238 if (rcw && !mddev_is_dm(conf->mddev))
4239 blk_add_trace_msg(conf->mddev->gendisk->queue,
4240 "raid5 rcw %llu %d %d %d",
4241 (unsigned long long)sh->sector, rcw, qread,
4242 test_bit(STRIPE_DELAYED, &sh->state));
4243 }
4244
4245 if (rcw > disks && rmw > disks &&
4246 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4247 set_bit(STRIPE_DELAYED, &sh->state);
4248
4249 /* now if nothing is locked, and if we have enough data,
4250 * we can start a write request
4251 */
4252 /* since handle_stripe can be called at any time we need to handle the
4253 * case where a compute block operation has been submitted and then a
4254 * subsequent call wants to start a write request. raid_run_ops only
4255 * handles the case where compute block and reconstruct are requested
4256 * simultaneously. If this is not the case then new writes need to be
4257 * held off until the compute completes.
4258 */
4259 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4260 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4261 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4262 schedule_reconstruction(sh, s, rcw == 0, 0);
4263 return 0;
4264 }
4265
handle_parity_checks5(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4266 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4267 struct stripe_head_state *s, int disks)
4268 {
4269 struct r5dev *dev = NULL;
4270
4271 BUG_ON(sh->batch_head);
4272 set_bit(STRIPE_HANDLE, &sh->state);
4273
4274 switch (sh->check_state) {
4275 case check_state_idle:
4276 /* start a new check operation if there are no failures */
4277 if (s->failed == 0) {
4278 BUG_ON(s->uptodate != disks);
4279 sh->check_state = check_state_run;
4280 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4281 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4282 s->uptodate--;
4283 break;
4284 }
4285 dev = &sh->dev[s->failed_num[0]];
4286 fallthrough;
4287 case check_state_compute_result:
4288 sh->check_state = check_state_idle;
4289 if (!dev)
4290 dev = &sh->dev[sh->pd_idx];
4291
4292 /* check that a write has not made the stripe insync */
4293 if (test_bit(STRIPE_INSYNC, &sh->state))
4294 break;
4295
4296 /* either failed parity check, or recovery is happening */
4297 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4298 BUG_ON(s->uptodate != disks);
4299
4300 set_bit(R5_LOCKED, &dev->flags);
4301 s->locked++;
4302 set_bit(R5_Wantwrite, &dev->flags);
4303
4304 set_bit(STRIPE_INSYNC, &sh->state);
4305 break;
4306 case check_state_run:
4307 break; /* we will be called again upon completion */
4308 case check_state_check_result:
4309 sh->check_state = check_state_idle;
4310
4311 /* if a failure occurred during the check operation, leave
4312 * STRIPE_INSYNC not set and let the stripe be handled again
4313 */
4314 if (s->failed)
4315 break;
4316
4317 /* handle a successful check operation, if parity is correct
4318 * we are done. Otherwise update the mismatch count and repair
4319 * parity if !MD_RECOVERY_CHECK
4320 */
4321 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4322 /* parity is correct (on disc,
4323 * not in buffer any more)
4324 */
4325 set_bit(STRIPE_INSYNC, &sh->state);
4326 else {
4327 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4328 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4329 /* don't try to repair!! */
4330 set_bit(STRIPE_INSYNC, &sh->state);
4331 pr_warn_ratelimited("%s: mismatch sector in range "
4332 "%llu-%llu\n", mdname(conf->mddev),
4333 (unsigned long long) sh->sector,
4334 (unsigned long long) sh->sector +
4335 RAID5_STRIPE_SECTORS(conf));
4336 } else {
4337 sh->check_state = check_state_compute_run;
4338 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4339 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4340 set_bit(R5_Wantcompute,
4341 &sh->dev[sh->pd_idx].flags);
4342 sh->ops.target = sh->pd_idx;
4343 sh->ops.target2 = -1;
4344 s->uptodate++;
4345 }
4346 }
4347 break;
4348 case check_state_compute_run:
4349 break;
4350 default:
4351 pr_err("%s: unknown check_state: %d sector: %llu\n",
4352 __func__, sh->check_state,
4353 (unsigned long long) sh->sector);
4354 BUG();
4355 }
4356 }
4357
handle_parity_checks6(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4358 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4359 struct stripe_head_state *s,
4360 int disks)
4361 {
4362 int pd_idx = sh->pd_idx;
4363 int qd_idx = sh->qd_idx;
4364 struct r5dev *dev;
4365
4366 BUG_ON(sh->batch_head);
4367 set_bit(STRIPE_HANDLE, &sh->state);
4368
4369 BUG_ON(s->failed > 2);
4370
4371 /* Want to check and possibly repair P and Q.
4372 * However there could be one 'failed' device, in which
4373 * case we can only check one of them, possibly using the
4374 * other to generate missing data
4375 */
4376
4377 switch (sh->check_state) {
4378 case check_state_idle:
4379 /* start a new check operation if there are < 2 failures */
4380 if (s->failed == s->q_failed) {
4381 /* The only possible failed device holds Q, so it
4382 * makes sense to check P (If anything else were failed,
4383 * we would have used P to recreate it).
4384 */
4385 sh->check_state = check_state_run;
4386 }
4387 if (!s->q_failed && s->failed < 2) {
4388 /* Q is not failed, and we didn't use it to generate
4389 * anything, so it makes sense to check it
4390 */
4391 if (sh->check_state == check_state_run)
4392 sh->check_state = check_state_run_pq;
4393 else
4394 sh->check_state = check_state_run_q;
4395 }
4396
4397 /* discard potentially stale zero_sum_result */
4398 sh->ops.zero_sum_result = 0;
4399
4400 if (sh->check_state == check_state_run) {
4401 /* async_xor_zero_sum destroys the contents of P */
4402 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4403 s->uptodate--;
4404 }
4405 if (sh->check_state >= check_state_run &&
4406 sh->check_state <= check_state_run_pq) {
4407 /* async_syndrome_zero_sum preserves P and Q, so
4408 * no need to mark them !uptodate here
4409 */
4410 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4411 break;
4412 }
4413
4414 /* we have 2-disk failure */
4415 BUG_ON(s->failed != 2);
4416 fallthrough;
4417 case check_state_compute_result:
4418 sh->check_state = check_state_idle;
4419
4420 /* check that a write has not made the stripe insync */
4421 if (test_bit(STRIPE_INSYNC, &sh->state))
4422 break;
4423
4424 /* now write out any block on a failed drive,
4425 * or P or Q if they were recomputed
4426 */
4427 dev = NULL;
4428 if (s->failed == 2) {
4429 dev = &sh->dev[s->failed_num[1]];
4430 s->locked++;
4431 set_bit(R5_LOCKED, &dev->flags);
4432 set_bit(R5_Wantwrite, &dev->flags);
4433 }
4434 if (s->failed >= 1) {
4435 dev = &sh->dev[s->failed_num[0]];
4436 s->locked++;
4437 set_bit(R5_LOCKED, &dev->flags);
4438 set_bit(R5_Wantwrite, &dev->flags);
4439 }
4440 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4441 dev = &sh->dev[pd_idx];
4442 s->locked++;
4443 set_bit(R5_LOCKED, &dev->flags);
4444 set_bit(R5_Wantwrite, &dev->flags);
4445 }
4446 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4447 dev = &sh->dev[qd_idx];
4448 s->locked++;
4449 set_bit(R5_LOCKED, &dev->flags);
4450 set_bit(R5_Wantwrite, &dev->flags);
4451 }
4452 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4453 "%s: disk%td not up to date\n",
4454 mdname(conf->mddev),
4455 dev - (struct r5dev *) &sh->dev)) {
4456 clear_bit(R5_LOCKED, &dev->flags);
4457 clear_bit(R5_Wantwrite, &dev->flags);
4458 s->locked--;
4459 }
4460
4461 set_bit(STRIPE_INSYNC, &sh->state);
4462 break;
4463 case check_state_run:
4464 case check_state_run_q:
4465 case check_state_run_pq:
4466 break; /* we will be called again upon completion */
4467 case check_state_check_result:
4468 sh->check_state = check_state_idle;
4469
4470 /* handle a successful check operation, if parity is correct
4471 * we are done. Otherwise update the mismatch count and repair
4472 * parity if !MD_RECOVERY_CHECK
4473 */
4474 if (sh->ops.zero_sum_result == 0) {
4475 /* both parities are correct */
4476 if (!s->failed)
4477 set_bit(STRIPE_INSYNC, &sh->state);
4478 else {
4479 /* in contrast to the raid5 case we can validate
4480 * parity, but still have a failure to write
4481 * back
4482 */
4483 sh->check_state = check_state_compute_result;
4484 /* Returning at this point means that we may go
4485 * off and bring p and/or q uptodate again so
4486 * we make sure to check zero_sum_result again
4487 * to verify if p or q need writeback
4488 */
4489 }
4490 } else {
4491 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4492 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4493 /* don't try to repair!! */
4494 set_bit(STRIPE_INSYNC, &sh->state);
4495 pr_warn_ratelimited("%s: mismatch sector in range "
4496 "%llu-%llu\n", mdname(conf->mddev),
4497 (unsigned long long) sh->sector,
4498 (unsigned long long) sh->sector +
4499 RAID5_STRIPE_SECTORS(conf));
4500 } else {
4501 int *target = &sh->ops.target;
4502
4503 sh->ops.target = -1;
4504 sh->ops.target2 = -1;
4505 sh->check_state = check_state_compute_run;
4506 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4507 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4508 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4509 set_bit(R5_Wantcompute,
4510 &sh->dev[pd_idx].flags);
4511 *target = pd_idx;
4512 target = &sh->ops.target2;
4513 s->uptodate++;
4514 }
4515 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4516 set_bit(R5_Wantcompute,
4517 &sh->dev[qd_idx].flags);
4518 *target = qd_idx;
4519 s->uptodate++;
4520 }
4521 }
4522 }
4523 break;
4524 case check_state_compute_run:
4525 break;
4526 default:
4527 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4528 __func__, sh->check_state,
4529 (unsigned long long) sh->sector);
4530 BUG();
4531 }
4532 }
4533
handle_stripe_expansion(struct r5conf * conf,struct stripe_head * sh)4534 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4535 {
4536 int i;
4537
4538 /* We have read all the blocks in this stripe and now we need to
4539 * copy some of them into a target stripe for expand.
4540 */
4541 struct dma_async_tx_descriptor *tx = NULL;
4542 BUG_ON(sh->batch_head);
4543 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4544 for (i = 0; i < sh->disks; i++)
4545 if (i != sh->pd_idx && i != sh->qd_idx) {
4546 int dd_idx, j;
4547 struct stripe_head *sh2;
4548 struct async_submit_ctl submit;
4549
4550 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4551 sector_t s = raid5_compute_sector(conf, bn, 0,
4552 &dd_idx, NULL);
4553 sh2 = raid5_get_active_stripe(conf, NULL, s,
4554 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
4555 if (sh2 == NULL)
4556 /* so far only the early blocks of this stripe
4557 * have been requested. When later blocks
4558 * get requested, we will try again
4559 */
4560 continue;
4561 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4562 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4563 /* must have already done this block */
4564 raid5_release_stripe(sh2);
4565 continue;
4566 }
4567
4568 /* place all the copies on one channel */
4569 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4570 tx = async_memcpy(sh2->dev[dd_idx].page,
4571 sh->dev[i].page, sh2->dev[dd_idx].offset,
4572 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4573 &submit);
4574
4575 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4576 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4577 for (j = 0; j < conf->raid_disks; j++)
4578 if (j != sh2->pd_idx &&
4579 j != sh2->qd_idx &&
4580 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4581 break;
4582 if (j == conf->raid_disks) {
4583 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4584 set_bit(STRIPE_HANDLE, &sh2->state);
4585 }
4586 raid5_release_stripe(sh2);
4587
4588 }
4589 /* done submitting copies, wait for them to complete */
4590 async_tx_quiesce(&tx);
4591 }
4592
4593 /*
4594 * handle_stripe - do things to a stripe.
4595 *
4596 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4597 * state of various bits to see what needs to be done.
4598 * Possible results:
4599 * return some read requests which now have data
4600 * return some write requests which are safely on storage
4601 * schedule a read on some buffers
4602 * schedule a write of some buffers
4603 * return confirmation of parity correctness
4604 *
4605 */
4606
analyse_stripe(struct stripe_head * sh,struct stripe_head_state * s)4607 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4608 {
4609 struct r5conf *conf = sh->raid_conf;
4610 int disks = sh->disks;
4611 struct r5dev *dev;
4612 int i;
4613 int do_recovery = 0;
4614
4615 memset(s, 0, sizeof(*s));
4616
4617 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4618 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4619 s->failed_num[0] = -1;
4620 s->failed_num[1] = -1;
4621 s->log_failed = r5l_log_disk_error(conf);
4622
4623 /* Now to look around and see what can be done */
4624 for (i=disks; i--; ) {
4625 struct md_rdev *rdev;
4626 int is_bad = 0;
4627
4628 dev = &sh->dev[i];
4629
4630 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4631 i, dev->flags,
4632 dev->toread, dev->towrite, dev->written);
4633 /* maybe we can reply to a read
4634 *
4635 * new wantfill requests are only permitted while
4636 * ops_complete_biofill is guaranteed to be inactive
4637 */
4638 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4639 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4640 set_bit(R5_Wantfill, &dev->flags);
4641
4642 /* now count some things */
4643 if (test_bit(R5_LOCKED, &dev->flags))
4644 s->locked++;
4645 if (test_bit(R5_UPTODATE, &dev->flags))
4646 s->uptodate++;
4647 if (test_bit(R5_Wantcompute, &dev->flags)) {
4648 s->compute++;
4649 BUG_ON(s->compute > 2);
4650 }
4651
4652 if (test_bit(R5_Wantfill, &dev->flags))
4653 s->to_fill++;
4654 else if (dev->toread)
4655 s->to_read++;
4656 if (dev->towrite) {
4657 s->to_write++;
4658 if (!test_bit(R5_OVERWRITE, &dev->flags))
4659 s->non_overwrite++;
4660 }
4661 if (dev->written)
4662 s->written++;
4663 /* Prefer to use the replacement for reads, but only
4664 * if it is recovered enough and has no bad blocks.
4665 */
4666 rdev = conf->disks[i].replacement;
4667 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4668 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4669 !rdev_has_badblock(rdev, sh->sector,
4670 RAID5_STRIPE_SECTORS(conf)))
4671 set_bit(R5_ReadRepl, &dev->flags);
4672 else {
4673 if (rdev && !test_bit(Faulty, &rdev->flags))
4674 set_bit(R5_NeedReplace, &dev->flags);
4675 else
4676 clear_bit(R5_NeedReplace, &dev->flags);
4677 rdev = conf->disks[i].rdev;
4678 clear_bit(R5_ReadRepl, &dev->flags);
4679 }
4680 if (rdev && test_bit(Faulty, &rdev->flags))
4681 rdev = NULL;
4682 if (rdev) {
4683 is_bad = rdev_has_badblock(rdev, sh->sector,
4684 RAID5_STRIPE_SECTORS(conf));
4685 if (s->blocked_rdev == NULL) {
4686 if (is_bad < 0)
4687 set_bit(BlockedBadBlocks, &rdev->flags);
4688 if (rdev_blocked(rdev)) {
4689 s->blocked_rdev = rdev;
4690 atomic_inc(&rdev->nr_pending);
4691 }
4692 }
4693 }
4694 clear_bit(R5_Insync, &dev->flags);
4695 if (!rdev)
4696 /* Not in-sync */;
4697 else if (is_bad) {
4698 /* also not in-sync */
4699 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4700 test_bit(R5_UPTODATE, &dev->flags)) {
4701 /* treat as in-sync, but with a read error
4702 * which we can now try to correct
4703 */
4704 set_bit(R5_Insync, &dev->flags);
4705 set_bit(R5_ReadError, &dev->flags);
4706 }
4707 } else if (test_bit(In_sync, &rdev->flags))
4708 set_bit(R5_Insync, &dev->flags);
4709 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4710 /* in sync if before recovery_offset */
4711 set_bit(R5_Insync, &dev->flags);
4712 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4713 test_bit(R5_Expanded, &dev->flags))
4714 /* If we've reshaped into here, we assume it is Insync.
4715 * We will shortly update recovery_offset to make
4716 * it official.
4717 */
4718 set_bit(R5_Insync, &dev->flags);
4719
4720 if (test_bit(R5_WriteError, &dev->flags)) {
4721 /* This flag does not apply to '.replacement'
4722 * only to .rdev, so make sure to check that*/
4723 struct md_rdev *rdev2 = conf->disks[i].rdev;
4724
4725 if (rdev2 == rdev)
4726 clear_bit(R5_Insync, &dev->flags);
4727 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4728 s->handle_bad_blocks = 1;
4729 atomic_inc(&rdev2->nr_pending);
4730 } else
4731 clear_bit(R5_WriteError, &dev->flags);
4732 }
4733 if (test_bit(R5_MadeGood, &dev->flags)) {
4734 /* This flag does not apply to '.replacement'
4735 * only to .rdev, so make sure to check that*/
4736 struct md_rdev *rdev2 = conf->disks[i].rdev;
4737
4738 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4739 s->handle_bad_blocks = 1;
4740 atomic_inc(&rdev2->nr_pending);
4741 } else
4742 clear_bit(R5_MadeGood, &dev->flags);
4743 }
4744 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4745 struct md_rdev *rdev2 = conf->disks[i].replacement;
4746
4747 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4748 s->handle_bad_blocks = 1;
4749 atomic_inc(&rdev2->nr_pending);
4750 } else
4751 clear_bit(R5_MadeGoodRepl, &dev->flags);
4752 }
4753 if (!test_bit(R5_Insync, &dev->flags)) {
4754 /* The ReadError flag will just be confusing now */
4755 clear_bit(R5_ReadError, &dev->flags);
4756 clear_bit(R5_ReWrite, &dev->flags);
4757 }
4758 if (test_bit(R5_ReadError, &dev->flags))
4759 clear_bit(R5_Insync, &dev->flags);
4760 if (!test_bit(R5_Insync, &dev->flags)) {
4761 if (s->failed < 2)
4762 s->failed_num[s->failed] = i;
4763 s->failed++;
4764 if (rdev && !test_bit(Faulty, &rdev->flags))
4765 do_recovery = 1;
4766 else if (!rdev) {
4767 rdev = conf->disks[i].replacement;
4768 if (rdev && !test_bit(Faulty, &rdev->flags))
4769 do_recovery = 1;
4770 }
4771 }
4772
4773 if (test_bit(R5_InJournal, &dev->flags))
4774 s->injournal++;
4775 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4776 s->just_cached++;
4777 }
4778 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4779 /* If there is a failed device being replaced,
4780 * we must be recovering.
4781 * else if we are after recovery_cp, we must be syncing
4782 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4783 * else we can only be replacing
4784 * sync and recovery both need to read all devices, and so
4785 * use the same flag.
4786 */
4787 if (do_recovery ||
4788 sh->sector >= conf->mddev->recovery_cp ||
4789 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4790 s->syncing = 1;
4791 else
4792 s->replacing = 1;
4793 }
4794 }
4795
4796 /*
4797 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4798 * a head which can now be handled.
4799 */
clear_batch_ready(struct stripe_head * sh)4800 static int clear_batch_ready(struct stripe_head *sh)
4801 {
4802 struct stripe_head *tmp;
4803 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4804 return (sh->batch_head && sh->batch_head != sh);
4805 spin_lock(&sh->stripe_lock);
4806 if (!sh->batch_head) {
4807 spin_unlock(&sh->stripe_lock);
4808 return 0;
4809 }
4810
4811 /*
4812 * this stripe could be added to a batch list before we check
4813 * BATCH_READY, skips it
4814 */
4815 if (sh->batch_head != sh) {
4816 spin_unlock(&sh->stripe_lock);
4817 return 1;
4818 }
4819 spin_lock(&sh->batch_lock);
4820 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4821 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4822 spin_unlock(&sh->batch_lock);
4823 spin_unlock(&sh->stripe_lock);
4824
4825 /*
4826 * BATCH_READY is cleared, no new stripes can be added.
4827 * batch_list can be accessed without lock
4828 */
4829 return 0;
4830 }
4831
break_stripe_batch_list(struct stripe_head * head_sh,unsigned long handle_flags)4832 static void break_stripe_batch_list(struct stripe_head *head_sh,
4833 unsigned long handle_flags)
4834 {
4835 struct stripe_head *sh, *next;
4836 int i;
4837
4838 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4839
4840 list_del_init(&sh->batch_list);
4841
4842 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4843 (1 << STRIPE_SYNCING) |
4844 (1 << STRIPE_REPLACED) |
4845 (1 << STRIPE_DELAYED) |
4846 (1 << STRIPE_BIT_DELAY) |
4847 (1 << STRIPE_FULL_WRITE) |
4848 (1 << STRIPE_BIOFILL_RUN) |
4849 (1 << STRIPE_COMPUTE_RUN) |
4850 (1 << STRIPE_DISCARD) |
4851 (1 << STRIPE_BATCH_READY) |
4852 (1 << STRIPE_BATCH_ERR)),
4853 "stripe state: %lx\n", sh->state);
4854 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4855 (1 << STRIPE_REPLACED)),
4856 "head stripe state: %lx\n", head_sh->state);
4857
4858 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4859 (1 << STRIPE_PREREAD_ACTIVE) |
4860 (1 << STRIPE_ON_UNPLUG_LIST)),
4861 head_sh->state & (1 << STRIPE_INSYNC));
4862
4863 sh->check_state = head_sh->check_state;
4864 sh->reconstruct_state = head_sh->reconstruct_state;
4865 spin_lock_irq(&sh->stripe_lock);
4866 sh->batch_head = NULL;
4867 spin_unlock_irq(&sh->stripe_lock);
4868 for (i = 0; i < sh->disks; i++) {
4869 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4870 wake_up_bit(&sh->dev[i].flags, R5_Overlap);
4871 sh->dev[i].flags = head_sh->dev[i].flags &
4872 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4873 }
4874 if (handle_flags == 0 ||
4875 sh->state & handle_flags)
4876 set_bit(STRIPE_HANDLE, &sh->state);
4877 raid5_release_stripe(sh);
4878 }
4879 spin_lock_irq(&head_sh->stripe_lock);
4880 head_sh->batch_head = NULL;
4881 spin_unlock_irq(&head_sh->stripe_lock);
4882 for (i = 0; i < head_sh->disks; i++)
4883 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4884 wake_up_bit(&head_sh->dev[i].flags, R5_Overlap);
4885 if (head_sh->state & handle_flags)
4886 set_bit(STRIPE_HANDLE, &head_sh->state);
4887 }
4888
handle_stripe(struct stripe_head * sh)4889 static void handle_stripe(struct stripe_head *sh)
4890 {
4891 struct stripe_head_state s;
4892 struct r5conf *conf = sh->raid_conf;
4893 int i;
4894 int prexor;
4895 int disks = sh->disks;
4896 struct r5dev *pdev, *qdev;
4897
4898 clear_bit(STRIPE_HANDLE, &sh->state);
4899
4900 /*
4901 * handle_stripe should not continue handle the batched stripe, only
4902 * the head of batch list or lone stripe can continue. Otherwise we
4903 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4904 * is set for the batched stripe.
4905 */
4906 if (clear_batch_ready(sh))
4907 return;
4908
4909 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4910 /* already being handled, ensure it gets handled
4911 * again when current action finishes */
4912 set_bit(STRIPE_HANDLE, &sh->state);
4913 return;
4914 }
4915
4916 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4917 break_stripe_batch_list(sh, 0);
4918
4919 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4920 spin_lock(&sh->stripe_lock);
4921 /*
4922 * Cannot process 'sync' concurrently with 'discard'.
4923 * Flush data in r5cache before 'sync'.
4924 */
4925 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4926 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4927 !test_bit(STRIPE_DISCARD, &sh->state) &&
4928 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4929 set_bit(STRIPE_SYNCING, &sh->state);
4930 clear_bit(STRIPE_INSYNC, &sh->state);
4931 clear_bit(STRIPE_REPLACED, &sh->state);
4932 }
4933 spin_unlock(&sh->stripe_lock);
4934 }
4935 clear_bit(STRIPE_DELAYED, &sh->state);
4936
4937 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4938 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4939 (unsigned long long)sh->sector, sh->state,
4940 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4941 sh->check_state, sh->reconstruct_state);
4942
4943 analyse_stripe(sh, &s);
4944
4945 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4946 goto finish;
4947
4948 if (s.handle_bad_blocks ||
4949 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4950 set_bit(STRIPE_HANDLE, &sh->state);
4951 goto finish;
4952 }
4953
4954 if (unlikely(s.blocked_rdev)) {
4955 if (s.syncing || s.expanding || s.expanded ||
4956 s.replacing || s.to_write || s.written) {
4957 set_bit(STRIPE_HANDLE, &sh->state);
4958 goto finish;
4959 }
4960 /* There is nothing for the blocked_rdev to block */
4961 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4962 s.blocked_rdev = NULL;
4963 }
4964
4965 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4966 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4967 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4968 }
4969
4970 pr_debug("locked=%d uptodate=%d to_read=%d"
4971 " to_write=%d failed=%d failed_num=%d,%d\n",
4972 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4973 s.failed_num[0], s.failed_num[1]);
4974 /*
4975 * check if the array has lost more than max_degraded devices and,
4976 * if so, some requests might need to be failed.
4977 *
4978 * When journal device failed (log_failed), we will only process
4979 * the stripe if there is data need write to raid disks
4980 */
4981 if (s.failed > conf->max_degraded ||
4982 (s.log_failed && s.injournal == 0)) {
4983 sh->check_state = 0;
4984 sh->reconstruct_state = 0;
4985 break_stripe_batch_list(sh, 0);
4986 if (s.to_read+s.to_write+s.written)
4987 handle_failed_stripe(conf, sh, &s, disks);
4988 if (s.syncing + s.replacing)
4989 handle_failed_sync(conf, sh, &s);
4990 }
4991
4992 /* Now we check to see if any write operations have recently
4993 * completed
4994 */
4995 prexor = 0;
4996 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4997 prexor = 1;
4998 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4999 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5000 sh->reconstruct_state = reconstruct_state_idle;
5001
5002 /* All the 'written' buffers and the parity block are ready to
5003 * be written back to disk
5004 */
5005 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5006 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
5007 BUG_ON(sh->qd_idx >= 0 &&
5008 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5009 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5010 for (i = disks; i--; ) {
5011 struct r5dev *dev = &sh->dev[i];
5012 if (test_bit(R5_LOCKED, &dev->flags) &&
5013 (i == sh->pd_idx || i == sh->qd_idx ||
5014 dev->written || test_bit(R5_InJournal,
5015 &dev->flags))) {
5016 pr_debug("Writing block %d\n", i);
5017 set_bit(R5_Wantwrite, &dev->flags);
5018 if (prexor)
5019 continue;
5020 if (s.failed > 1)
5021 continue;
5022 if (!test_bit(R5_Insync, &dev->flags) ||
5023 ((i == sh->pd_idx || i == sh->qd_idx) &&
5024 s.failed == 0))
5025 set_bit(STRIPE_INSYNC, &sh->state);
5026 }
5027 }
5028 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5029 s.dec_preread_active = 1;
5030 }
5031
5032 /*
5033 * might be able to return some write requests if the parity blocks
5034 * are safe, or on a failed drive
5035 */
5036 pdev = &sh->dev[sh->pd_idx];
5037 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5038 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5039 qdev = &sh->dev[sh->qd_idx];
5040 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5041 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5042 || conf->level < 6;
5043
5044 if (s.written &&
5045 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5046 && !test_bit(R5_LOCKED, &pdev->flags)
5047 && (test_bit(R5_UPTODATE, &pdev->flags) ||
5048 test_bit(R5_Discard, &pdev->flags))))) &&
5049 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5050 && !test_bit(R5_LOCKED, &qdev->flags)
5051 && (test_bit(R5_UPTODATE, &qdev->flags) ||
5052 test_bit(R5_Discard, &qdev->flags))))))
5053 handle_stripe_clean_event(conf, sh, disks);
5054
5055 if (s.just_cached)
5056 r5c_handle_cached_data_endio(conf, sh, disks);
5057 log_stripe_write_finished(sh);
5058
5059 /* Now we might consider reading some blocks, either to check/generate
5060 * parity, or to satisfy requests
5061 * or to load a block that is being partially written.
5062 */
5063 if (s.to_read || s.non_overwrite
5064 || (s.to_write && s.failed)
5065 || (s.syncing && (s.uptodate + s.compute < disks))
5066 || s.replacing
5067 || s.expanding)
5068 handle_stripe_fill(sh, &s, disks);
5069
5070 /*
5071 * When the stripe finishes full journal write cycle (write to journal
5072 * and raid disk), this is the clean up procedure so it is ready for
5073 * next operation.
5074 */
5075 r5c_finish_stripe_write_out(conf, sh, &s);
5076
5077 /*
5078 * Now to consider new write requests, cache write back and what else,
5079 * if anything should be read. We do not handle new writes when:
5080 * 1/ A 'write' operation (copy+xor) is already in flight.
5081 * 2/ A 'check' operation is in flight, as it may clobber the parity
5082 * block.
5083 * 3/ A r5c cache log write is in flight.
5084 */
5085
5086 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5087 if (!r5c_is_writeback(conf->log)) {
5088 if (s.to_write)
5089 handle_stripe_dirtying(conf, sh, &s, disks);
5090 } else { /* write back cache */
5091 int ret = 0;
5092
5093 /* First, try handle writes in caching phase */
5094 if (s.to_write)
5095 ret = r5c_try_caching_write(conf, sh, &s,
5096 disks);
5097 /*
5098 * If caching phase failed: ret == -EAGAIN
5099 * OR
5100 * stripe under reclaim: !caching && injournal
5101 *
5102 * fall back to handle_stripe_dirtying()
5103 */
5104 if (ret == -EAGAIN ||
5105 /* stripe under reclaim: !caching && injournal */
5106 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5107 s.injournal > 0)) {
5108 ret = handle_stripe_dirtying(conf, sh, &s,
5109 disks);
5110 if (ret == -EAGAIN)
5111 goto finish;
5112 }
5113 }
5114 }
5115
5116 /* maybe we need to check and possibly fix the parity for this stripe
5117 * Any reads will already have been scheduled, so we just see if enough
5118 * data is available. The parity check is held off while parity
5119 * dependent operations are in flight.
5120 */
5121 if (sh->check_state ||
5122 (s.syncing && s.locked == 0 &&
5123 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5124 !test_bit(STRIPE_INSYNC, &sh->state))) {
5125 if (conf->level == 6)
5126 handle_parity_checks6(conf, sh, &s, disks);
5127 else
5128 handle_parity_checks5(conf, sh, &s, disks);
5129 }
5130
5131 if ((s.replacing || s.syncing) && s.locked == 0
5132 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5133 && !test_bit(STRIPE_REPLACED, &sh->state)) {
5134 /* Write out to replacement devices where possible */
5135 for (i = 0; i < conf->raid_disks; i++)
5136 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5137 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5138 set_bit(R5_WantReplace, &sh->dev[i].flags);
5139 set_bit(R5_LOCKED, &sh->dev[i].flags);
5140 s.locked++;
5141 }
5142 if (s.replacing)
5143 set_bit(STRIPE_INSYNC, &sh->state);
5144 set_bit(STRIPE_REPLACED, &sh->state);
5145 }
5146 if ((s.syncing || s.replacing) && s.locked == 0 &&
5147 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5148 test_bit(STRIPE_INSYNC, &sh->state)) {
5149 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5150 clear_bit(STRIPE_SYNCING, &sh->state);
5151 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5152 wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
5153 }
5154
5155 /* If the failed drives are just a ReadError, then we might need
5156 * to progress the repair/check process
5157 */
5158 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5159 for (i = 0; i < s.failed; i++) {
5160 struct r5dev *dev = &sh->dev[s.failed_num[i]];
5161 if (test_bit(R5_ReadError, &dev->flags)
5162 && !test_bit(R5_LOCKED, &dev->flags)
5163 && test_bit(R5_UPTODATE, &dev->flags)
5164 ) {
5165 if (!test_bit(R5_ReWrite, &dev->flags)) {
5166 set_bit(R5_Wantwrite, &dev->flags);
5167 set_bit(R5_ReWrite, &dev->flags);
5168 } else
5169 /* let's read it back */
5170 set_bit(R5_Wantread, &dev->flags);
5171 set_bit(R5_LOCKED, &dev->flags);
5172 s.locked++;
5173 }
5174 }
5175
5176 /* Finish reconstruct operations initiated by the expansion process */
5177 if (sh->reconstruct_state == reconstruct_state_result) {
5178 struct stripe_head *sh_src
5179 = raid5_get_active_stripe(conf, NULL, sh->sector,
5180 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5181 R5_GAS_NOQUIESCE);
5182 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5183 /* sh cannot be written until sh_src has been read.
5184 * so arrange for sh to be delayed a little
5185 */
5186 set_bit(STRIPE_DELAYED, &sh->state);
5187 set_bit(STRIPE_HANDLE, &sh->state);
5188 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5189 &sh_src->state))
5190 atomic_inc(&conf->preread_active_stripes);
5191 raid5_release_stripe(sh_src);
5192 goto finish;
5193 }
5194 if (sh_src)
5195 raid5_release_stripe(sh_src);
5196
5197 sh->reconstruct_state = reconstruct_state_idle;
5198 clear_bit(STRIPE_EXPANDING, &sh->state);
5199 for (i = conf->raid_disks; i--; ) {
5200 set_bit(R5_Wantwrite, &sh->dev[i].flags);
5201 set_bit(R5_LOCKED, &sh->dev[i].flags);
5202 s.locked++;
5203 }
5204 }
5205
5206 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5207 !sh->reconstruct_state) {
5208 /* Need to write out all blocks after computing parity */
5209 sh->disks = conf->raid_disks;
5210 stripe_set_idx(sh->sector, conf, 0, sh);
5211 schedule_reconstruction(sh, &s, 1, 1);
5212 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5213 clear_bit(STRIPE_EXPAND_READY, &sh->state);
5214 atomic_dec(&conf->reshape_stripes);
5215 wake_up(&conf->wait_for_reshape);
5216 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5217 }
5218
5219 if (s.expanding && s.locked == 0 &&
5220 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5221 handle_stripe_expansion(conf, sh);
5222
5223 finish:
5224 /* wait for this device to become unblocked */
5225 if (unlikely(s.blocked_rdev)) {
5226 if (conf->mddev->external)
5227 md_wait_for_blocked_rdev(s.blocked_rdev,
5228 conf->mddev);
5229 else
5230 /* Internal metadata will immediately
5231 * be written by raid5d, so we don't
5232 * need to wait here.
5233 */
5234 rdev_dec_pending(s.blocked_rdev,
5235 conf->mddev);
5236 }
5237
5238 if (s.handle_bad_blocks)
5239 for (i = disks; i--; ) {
5240 struct md_rdev *rdev;
5241 struct r5dev *dev = &sh->dev[i];
5242 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5243 /* We own a safe reference to the rdev */
5244 rdev = conf->disks[i].rdev;
5245 if (!rdev_set_badblocks(rdev, sh->sector,
5246 RAID5_STRIPE_SECTORS(conf), 0))
5247 md_error(conf->mddev, rdev);
5248 rdev_dec_pending(rdev, conf->mddev);
5249 }
5250 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5251 rdev = conf->disks[i].rdev;
5252 rdev_clear_badblocks(rdev, sh->sector,
5253 RAID5_STRIPE_SECTORS(conf), 0);
5254 rdev_dec_pending(rdev, conf->mddev);
5255 }
5256 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5257 rdev = conf->disks[i].replacement;
5258 if (!rdev)
5259 /* rdev have been moved down */
5260 rdev = conf->disks[i].rdev;
5261 rdev_clear_badblocks(rdev, sh->sector,
5262 RAID5_STRIPE_SECTORS(conf), 0);
5263 rdev_dec_pending(rdev, conf->mddev);
5264 }
5265 }
5266
5267 if (s.ops_request)
5268 raid_run_ops(sh, s.ops_request);
5269
5270 ops_run_io(sh, &s);
5271
5272 if (s.dec_preread_active) {
5273 /* We delay this until after ops_run_io so that if make_request
5274 * is waiting on a flush, it won't continue until the writes
5275 * have actually been submitted.
5276 */
5277 atomic_dec(&conf->preread_active_stripes);
5278 if (atomic_read(&conf->preread_active_stripes) <
5279 IO_THRESHOLD)
5280 md_wakeup_thread(conf->mddev->thread);
5281 }
5282
5283 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5284 }
5285
raid5_activate_delayed(struct r5conf * conf)5286 static void raid5_activate_delayed(struct r5conf *conf)
5287 __must_hold(&conf->device_lock)
5288 {
5289 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5290 while (!list_empty(&conf->delayed_list)) {
5291 struct list_head *l = conf->delayed_list.next;
5292 struct stripe_head *sh;
5293 sh = list_entry(l, struct stripe_head, lru);
5294 list_del_init(l);
5295 clear_bit(STRIPE_DELAYED, &sh->state);
5296 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5297 atomic_inc(&conf->preread_active_stripes);
5298 list_add_tail(&sh->lru, &conf->hold_list);
5299 raid5_wakeup_stripe_thread(sh);
5300 }
5301 }
5302 }
5303
activate_bit_delay(struct r5conf * conf,struct list_head * temp_inactive_list)5304 static void activate_bit_delay(struct r5conf *conf,
5305 struct list_head *temp_inactive_list)
5306 __must_hold(&conf->device_lock)
5307 {
5308 struct list_head head;
5309 list_add(&head, &conf->bitmap_list);
5310 list_del_init(&conf->bitmap_list);
5311 while (!list_empty(&head)) {
5312 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5313 int hash;
5314 list_del_init(&sh->lru);
5315 atomic_inc(&sh->count);
5316 hash = sh->hash_lock_index;
5317 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5318 }
5319 }
5320
in_chunk_boundary(struct mddev * mddev,struct bio * bio)5321 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5322 {
5323 struct r5conf *conf = mddev->private;
5324 sector_t sector = bio->bi_iter.bi_sector;
5325 unsigned int chunk_sectors;
5326 unsigned int bio_sectors = bio_sectors(bio);
5327
5328 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5329 return chunk_sectors >=
5330 ((sector & (chunk_sectors - 1)) + bio_sectors);
5331 }
5332
5333 /*
5334 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5335 * later sampled by raid5d.
5336 */
add_bio_to_retry(struct bio * bi,struct r5conf * conf)5337 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5338 {
5339 unsigned long flags;
5340
5341 spin_lock_irqsave(&conf->device_lock, flags);
5342
5343 bi->bi_next = conf->retry_read_aligned_list;
5344 conf->retry_read_aligned_list = bi;
5345
5346 spin_unlock_irqrestore(&conf->device_lock, flags);
5347 md_wakeup_thread(conf->mddev->thread);
5348 }
5349
remove_bio_from_retry(struct r5conf * conf,unsigned int * offset)5350 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5351 unsigned int *offset)
5352 {
5353 struct bio *bi;
5354
5355 bi = conf->retry_read_aligned;
5356 if (bi) {
5357 *offset = conf->retry_read_offset;
5358 conf->retry_read_aligned = NULL;
5359 return bi;
5360 }
5361 bi = conf->retry_read_aligned_list;
5362 if(bi) {
5363 conf->retry_read_aligned_list = bi->bi_next;
5364 bi->bi_next = NULL;
5365 *offset = 0;
5366 }
5367
5368 return bi;
5369 }
5370
5371 /*
5372 * The "raid5_align_endio" should check if the read succeeded and if it
5373 * did, call bio_endio on the original bio (having bio_put the new bio
5374 * first).
5375 * If the read failed..
5376 */
raid5_align_endio(struct bio * bi)5377 static void raid5_align_endio(struct bio *bi)
5378 {
5379 struct bio *raid_bi = bi->bi_private;
5380 struct md_rdev *rdev = (void *)raid_bi->bi_next;
5381 struct mddev *mddev = rdev->mddev;
5382 struct r5conf *conf = mddev->private;
5383 blk_status_t error = bi->bi_status;
5384
5385 bio_put(bi);
5386 raid_bi->bi_next = NULL;
5387 rdev_dec_pending(rdev, conf->mddev);
5388
5389 if (!error) {
5390 bio_endio(raid_bi);
5391 if (atomic_dec_and_test(&conf->active_aligned_reads))
5392 wake_up(&conf->wait_for_quiescent);
5393 return;
5394 }
5395
5396 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5397
5398 add_bio_to_retry(raid_bi, conf);
5399 }
5400
raid5_read_one_chunk(struct mddev * mddev,struct bio * raid_bio)5401 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5402 {
5403 struct r5conf *conf = mddev->private;
5404 struct bio *align_bio;
5405 struct md_rdev *rdev;
5406 sector_t sector, end_sector;
5407 int dd_idx;
5408 bool did_inc;
5409
5410 if (!in_chunk_boundary(mddev, raid_bio)) {
5411 pr_debug("%s: non aligned\n", __func__);
5412 return 0;
5413 }
5414
5415 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5416 &dd_idx, NULL);
5417 end_sector = sector + bio_sectors(raid_bio);
5418
5419 if (r5c_big_stripe_cached(conf, sector))
5420 return 0;
5421
5422 rdev = conf->disks[dd_idx].replacement;
5423 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5424 rdev->recovery_offset < end_sector) {
5425 rdev = conf->disks[dd_idx].rdev;
5426 if (!rdev)
5427 return 0;
5428 if (test_bit(Faulty, &rdev->flags) ||
5429 !(test_bit(In_sync, &rdev->flags) ||
5430 rdev->recovery_offset >= end_sector))
5431 return 0;
5432 }
5433
5434 atomic_inc(&rdev->nr_pending);
5435
5436 if (rdev_has_badblock(rdev, sector, bio_sectors(raid_bio))) {
5437 rdev_dec_pending(rdev, mddev);
5438 return 0;
5439 }
5440
5441 md_account_bio(mddev, &raid_bio);
5442 raid_bio->bi_next = (void *)rdev;
5443
5444 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5445 &mddev->bio_set);
5446 align_bio->bi_end_io = raid5_align_endio;
5447 align_bio->bi_private = raid_bio;
5448 align_bio->bi_iter.bi_sector = sector;
5449
5450 /* No reshape active, so we can trust rdev->data_offset */
5451 align_bio->bi_iter.bi_sector += rdev->data_offset;
5452
5453 did_inc = false;
5454 if (conf->quiesce == 0) {
5455 atomic_inc(&conf->active_aligned_reads);
5456 did_inc = true;
5457 }
5458 /* need a memory barrier to detect the race with raid5_quiesce() */
5459 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5460 /* quiesce is in progress, so we need to undo io activation and wait
5461 * for it to finish
5462 */
5463 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5464 wake_up(&conf->wait_for_quiescent);
5465 spin_lock_irq(&conf->device_lock);
5466 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5467 conf->device_lock);
5468 atomic_inc(&conf->active_aligned_reads);
5469 spin_unlock_irq(&conf->device_lock);
5470 }
5471
5472 mddev_trace_remap(mddev, align_bio, raid_bio->bi_iter.bi_sector);
5473 submit_bio_noacct(align_bio);
5474 return 1;
5475 }
5476
chunk_aligned_read(struct mddev * mddev,struct bio * raid_bio)5477 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5478 {
5479 struct bio *split;
5480 sector_t sector = raid_bio->bi_iter.bi_sector;
5481 unsigned chunk_sects = mddev->chunk_sectors;
5482 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5483
5484 if (sectors < bio_sectors(raid_bio)) {
5485 struct r5conf *conf = mddev->private;
5486 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5487 bio_chain(split, raid_bio);
5488 submit_bio_noacct(raid_bio);
5489 raid_bio = split;
5490 }
5491
5492 if (!raid5_read_one_chunk(mddev, raid_bio))
5493 return raid_bio;
5494
5495 return NULL;
5496 }
5497
5498 /* __get_priority_stripe - get the next stripe to process
5499 *
5500 * Full stripe writes are allowed to pass preread active stripes up until
5501 * the bypass_threshold is exceeded. In general the bypass_count
5502 * increments when the handle_list is handled before the hold_list; however, it
5503 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5504 * stripe with in flight i/o. The bypass_count will be reset when the
5505 * head of the hold_list has changed, i.e. the head was promoted to the
5506 * handle_list.
5507 */
__get_priority_stripe(struct r5conf * conf,int group)5508 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5509 __must_hold(&conf->device_lock)
5510 {
5511 struct stripe_head *sh, *tmp;
5512 struct list_head *handle_list = NULL;
5513 struct r5worker_group *wg;
5514 bool second_try = !r5c_is_writeback(conf->log) &&
5515 !r5l_log_disk_error(conf);
5516 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5517 r5l_log_disk_error(conf);
5518
5519 again:
5520 wg = NULL;
5521 sh = NULL;
5522 if (conf->worker_cnt_per_group == 0) {
5523 handle_list = try_loprio ? &conf->loprio_list :
5524 &conf->handle_list;
5525 } else if (group != ANY_GROUP) {
5526 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5527 &conf->worker_groups[group].handle_list;
5528 wg = &conf->worker_groups[group];
5529 } else {
5530 int i;
5531 for (i = 0; i < conf->group_cnt; i++) {
5532 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5533 &conf->worker_groups[i].handle_list;
5534 wg = &conf->worker_groups[i];
5535 if (!list_empty(handle_list))
5536 break;
5537 }
5538 }
5539
5540 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5541 __func__,
5542 list_empty(handle_list) ? "empty" : "busy",
5543 list_empty(&conf->hold_list) ? "empty" : "busy",
5544 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5545
5546 if (!list_empty(handle_list)) {
5547 sh = list_entry(handle_list->next, typeof(*sh), lru);
5548
5549 if (list_empty(&conf->hold_list))
5550 conf->bypass_count = 0;
5551 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5552 if (conf->hold_list.next == conf->last_hold)
5553 conf->bypass_count++;
5554 else {
5555 conf->last_hold = conf->hold_list.next;
5556 conf->bypass_count -= conf->bypass_threshold;
5557 if (conf->bypass_count < 0)
5558 conf->bypass_count = 0;
5559 }
5560 }
5561 } else if (!list_empty(&conf->hold_list) &&
5562 ((conf->bypass_threshold &&
5563 conf->bypass_count > conf->bypass_threshold) ||
5564 atomic_read(&conf->pending_full_writes) == 0)) {
5565
5566 list_for_each_entry(tmp, &conf->hold_list, lru) {
5567 if (conf->worker_cnt_per_group == 0 ||
5568 group == ANY_GROUP ||
5569 !cpu_online(tmp->cpu) ||
5570 cpu_to_group(tmp->cpu) == group) {
5571 sh = tmp;
5572 break;
5573 }
5574 }
5575
5576 if (sh) {
5577 conf->bypass_count -= conf->bypass_threshold;
5578 if (conf->bypass_count < 0)
5579 conf->bypass_count = 0;
5580 }
5581 wg = NULL;
5582 }
5583
5584 if (!sh) {
5585 if (second_try)
5586 return NULL;
5587 second_try = true;
5588 try_loprio = !try_loprio;
5589 goto again;
5590 }
5591
5592 if (wg) {
5593 wg->stripes_cnt--;
5594 sh->group = NULL;
5595 }
5596 list_del_init(&sh->lru);
5597 BUG_ON(atomic_inc_return(&sh->count) != 1);
5598 return sh;
5599 }
5600
5601 struct raid5_plug_cb {
5602 struct blk_plug_cb cb;
5603 struct list_head list;
5604 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5605 };
5606
raid5_unplug(struct blk_plug_cb * blk_cb,bool from_schedule)5607 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5608 {
5609 struct raid5_plug_cb *cb = container_of(
5610 blk_cb, struct raid5_plug_cb, cb);
5611 struct stripe_head *sh;
5612 struct mddev *mddev = cb->cb.data;
5613 struct r5conf *conf = mddev->private;
5614 int cnt = 0;
5615 int hash;
5616
5617 if (cb->list.next && !list_empty(&cb->list)) {
5618 spin_lock_irq(&conf->device_lock);
5619 while (!list_empty(&cb->list)) {
5620 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5621 list_del_init(&sh->lru);
5622 /*
5623 * avoid race release_stripe_plug() sees
5624 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5625 * is still in our list
5626 */
5627 smp_mb__before_atomic();
5628 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5629 /*
5630 * STRIPE_ON_RELEASE_LIST could be set here. In that
5631 * case, the count is always > 1 here
5632 */
5633 hash = sh->hash_lock_index;
5634 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5635 cnt++;
5636 }
5637 spin_unlock_irq(&conf->device_lock);
5638 }
5639 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5640 NR_STRIPE_HASH_LOCKS);
5641 if (!mddev_is_dm(mddev))
5642 trace_block_unplug(mddev->gendisk->queue, cnt, !from_schedule);
5643 kfree(cb);
5644 }
5645
release_stripe_plug(struct mddev * mddev,struct stripe_head * sh)5646 static void release_stripe_plug(struct mddev *mddev,
5647 struct stripe_head *sh)
5648 {
5649 struct blk_plug_cb *blk_cb = blk_check_plugged(
5650 raid5_unplug, mddev,
5651 sizeof(struct raid5_plug_cb));
5652 struct raid5_plug_cb *cb;
5653
5654 if (!blk_cb) {
5655 raid5_release_stripe(sh);
5656 return;
5657 }
5658
5659 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5660
5661 if (cb->list.next == NULL) {
5662 int i;
5663 INIT_LIST_HEAD(&cb->list);
5664 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5665 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5666 }
5667
5668 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5669 list_add_tail(&sh->lru, &cb->list);
5670 else
5671 raid5_release_stripe(sh);
5672 }
5673
make_discard_request(struct mddev * mddev,struct bio * bi)5674 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5675 {
5676 struct r5conf *conf = mddev->private;
5677 sector_t logical_sector, last_sector;
5678 struct stripe_head *sh;
5679 int stripe_sectors;
5680
5681 /* We need to handle this when io_uring supports discard/trim */
5682 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5683 return;
5684
5685 if (mddev->reshape_position != MaxSector)
5686 /* Skip discard while reshape is happening */
5687 return;
5688
5689 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5690 last_sector = bio_end_sector(bi);
5691
5692 bi->bi_next = NULL;
5693
5694 stripe_sectors = conf->chunk_sectors *
5695 (conf->raid_disks - conf->max_degraded);
5696 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5697 stripe_sectors);
5698 sector_div(last_sector, stripe_sectors);
5699
5700 logical_sector *= conf->chunk_sectors;
5701 last_sector *= conf->chunk_sectors;
5702
5703 for (; logical_sector < last_sector;
5704 logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5705 DEFINE_WAIT(w);
5706 int d;
5707 again:
5708 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
5709 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5710 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5711 raid5_release_stripe(sh);
5712 wait_on_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap,
5713 TASK_UNINTERRUPTIBLE);
5714 goto again;
5715 }
5716 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5717 spin_lock_irq(&sh->stripe_lock);
5718 for (d = 0; d < conf->raid_disks; d++) {
5719 if (d == sh->pd_idx || d == sh->qd_idx)
5720 continue;
5721 if (sh->dev[d].towrite || sh->dev[d].toread) {
5722 set_bit(R5_Overlap, &sh->dev[d].flags);
5723 spin_unlock_irq(&sh->stripe_lock);
5724 raid5_release_stripe(sh);
5725 wait_on_bit(&sh->dev[d].flags, R5_Overlap,
5726 TASK_UNINTERRUPTIBLE);
5727 goto again;
5728 }
5729 }
5730 set_bit(STRIPE_DISCARD, &sh->state);
5731 sh->overwrite_disks = 0;
5732 for (d = 0; d < conf->raid_disks; d++) {
5733 if (d == sh->pd_idx || d == sh->qd_idx)
5734 continue;
5735 sh->dev[d].towrite = bi;
5736 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5737 bio_inc_remaining(bi);
5738 md_write_inc(mddev, bi);
5739 sh->overwrite_disks++;
5740 }
5741 spin_unlock_irq(&sh->stripe_lock);
5742 if (conf->mddev->bitmap) {
5743 sh->bm_seq = conf->seq_flush + 1;
5744 set_bit(STRIPE_BIT_DELAY, &sh->state);
5745 }
5746
5747 set_bit(STRIPE_HANDLE, &sh->state);
5748 clear_bit(STRIPE_DELAYED, &sh->state);
5749 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5750 atomic_inc(&conf->preread_active_stripes);
5751 release_stripe_plug(mddev, sh);
5752 }
5753
5754 bio_endio(bi);
5755 }
5756
ahead_of_reshape(struct mddev * mddev,sector_t sector,sector_t reshape_sector)5757 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5758 sector_t reshape_sector)
5759 {
5760 return mddev->reshape_backwards ? sector < reshape_sector :
5761 sector >= reshape_sector;
5762 }
5763
range_ahead_of_reshape(struct mddev * mddev,sector_t min,sector_t max,sector_t reshape_sector)5764 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5765 sector_t max, sector_t reshape_sector)
5766 {
5767 return mddev->reshape_backwards ? max < reshape_sector :
5768 min >= reshape_sector;
5769 }
5770
stripe_ahead_of_reshape(struct mddev * mddev,struct r5conf * conf,struct stripe_head * sh)5771 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5772 struct stripe_head *sh)
5773 {
5774 sector_t max_sector = 0, min_sector = MaxSector;
5775 bool ret = false;
5776 int dd_idx;
5777
5778 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5779 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5780 continue;
5781
5782 min_sector = min(min_sector, sh->dev[dd_idx].sector);
5783 max_sector = max(max_sector, sh->dev[dd_idx].sector);
5784 }
5785
5786 spin_lock_irq(&conf->device_lock);
5787
5788 if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
5789 conf->reshape_progress))
5790 /* mismatch, need to try again */
5791 ret = true;
5792
5793 spin_unlock_irq(&conf->device_lock);
5794
5795 return ret;
5796 }
5797
add_all_stripe_bios(struct r5conf * conf,struct stripe_request_ctx * ctx,struct stripe_head * sh,struct bio * bi,int forwrite,int previous)5798 static int add_all_stripe_bios(struct r5conf *conf,
5799 struct stripe_request_ctx *ctx, struct stripe_head *sh,
5800 struct bio *bi, int forwrite, int previous)
5801 {
5802 int dd_idx;
5803
5804 spin_lock_irq(&sh->stripe_lock);
5805
5806 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5807 struct r5dev *dev = &sh->dev[dd_idx];
5808
5809 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5810 continue;
5811
5812 if (dev->sector < ctx->first_sector ||
5813 dev->sector >= ctx->last_sector)
5814 continue;
5815
5816 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5817 set_bit(R5_Overlap, &dev->flags);
5818 spin_unlock_irq(&sh->stripe_lock);
5819 raid5_release_stripe(sh);
5820 /* release batch_last before wait to avoid risk of deadlock */
5821 if (ctx->batch_last) {
5822 raid5_release_stripe(ctx->batch_last);
5823 ctx->batch_last = NULL;
5824 }
5825 md_wakeup_thread(conf->mddev->thread);
5826 wait_on_bit(&dev->flags, R5_Overlap, TASK_UNINTERRUPTIBLE);
5827 return 0;
5828 }
5829 }
5830
5831 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5832 struct r5dev *dev = &sh->dev[dd_idx];
5833
5834 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5835 continue;
5836
5837 if (dev->sector < ctx->first_sector ||
5838 dev->sector >= ctx->last_sector)
5839 continue;
5840
5841 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5842 clear_bit((dev->sector - ctx->first_sector) >>
5843 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
5844 }
5845
5846 spin_unlock_irq(&sh->stripe_lock);
5847 return 1;
5848 }
5849
5850 enum reshape_loc {
5851 LOC_NO_RESHAPE,
5852 LOC_AHEAD_OF_RESHAPE,
5853 LOC_INSIDE_RESHAPE,
5854 LOC_BEHIND_RESHAPE,
5855 };
5856
get_reshape_loc(struct mddev * mddev,struct r5conf * conf,sector_t logical_sector)5857 static enum reshape_loc get_reshape_loc(struct mddev *mddev,
5858 struct r5conf *conf, sector_t logical_sector)
5859 {
5860 sector_t reshape_progress, reshape_safe;
5861
5862 if (likely(conf->reshape_progress == MaxSector))
5863 return LOC_NO_RESHAPE;
5864 /*
5865 * Spinlock is needed as reshape_progress may be
5866 * 64bit on a 32bit platform, and so it might be
5867 * possible to see a half-updated value
5868 * Of course reshape_progress could change after
5869 * the lock is dropped, so once we get a reference
5870 * to the stripe that we think it is, we will have
5871 * to check again.
5872 */
5873 spin_lock_irq(&conf->device_lock);
5874 reshape_progress = conf->reshape_progress;
5875 reshape_safe = conf->reshape_safe;
5876 spin_unlock_irq(&conf->device_lock);
5877 if (reshape_progress == MaxSector)
5878 return LOC_NO_RESHAPE;
5879 if (ahead_of_reshape(mddev, logical_sector, reshape_progress))
5880 return LOC_AHEAD_OF_RESHAPE;
5881 if (ahead_of_reshape(mddev, logical_sector, reshape_safe))
5882 return LOC_INSIDE_RESHAPE;
5883 return LOC_BEHIND_RESHAPE;
5884 }
5885
raid5_bitmap_sector(struct mddev * mddev,sector_t * offset,unsigned long * sectors)5886 static void raid5_bitmap_sector(struct mddev *mddev, sector_t *offset,
5887 unsigned long *sectors)
5888 {
5889 struct r5conf *conf = mddev->private;
5890 sector_t start = *offset;
5891 sector_t end = start + *sectors;
5892 sector_t prev_start = start;
5893 sector_t prev_end = end;
5894 int sectors_per_chunk;
5895 enum reshape_loc loc;
5896 int dd_idx;
5897
5898 sectors_per_chunk = conf->chunk_sectors *
5899 (conf->raid_disks - conf->max_degraded);
5900 start = round_down(start, sectors_per_chunk);
5901 end = round_up(end, sectors_per_chunk);
5902
5903 start = raid5_compute_sector(conf, start, 0, &dd_idx, NULL);
5904 end = raid5_compute_sector(conf, end, 0, &dd_idx, NULL);
5905
5906 /*
5907 * For LOC_INSIDE_RESHAPE, this IO will wait for reshape to make
5908 * progress, hence it's the same as LOC_BEHIND_RESHAPE.
5909 */
5910 loc = get_reshape_loc(mddev, conf, prev_start);
5911 if (likely(loc != LOC_AHEAD_OF_RESHAPE)) {
5912 *offset = start;
5913 *sectors = end - start;
5914 return;
5915 }
5916
5917 sectors_per_chunk = conf->prev_chunk_sectors *
5918 (conf->previous_raid_disks - conf->max_degraded);
5919 prev_start = round_down(prev_start, sectors_per_chunk);
5920 prev_end = round_down(prev_end, sectors_per_chunk);
5921
5922 prev_start = raid5_compute_sector(conf, prev_start, 1, &dd_idx, NULL);
5923 prev_end = raid5_compute_sector(conf, prev_end, 1, &dd_idx, NULL);
5924
5925 /*
5926 * for LOC_AHEAD_OF_RESHAPE, reshape can make progress before this IO
5927 * is handled in make_stripe_request(), we can't know this here hence
5928 * we set bits for both.
5929 */
5930 *offset = min(start, prev_start);
5931 *sectors = max(end, prev_end) - *offset;
5932 }
5933
make_stripe_request(struct mddev * mddev,struct r5conf * conf,struct stripe_request_ctx * ctx,sector_t logical_sector,struct bio * bi)5934 static enum stripe_result make_stripe_request(struct mddev *mddev,
5935 struct r5conf *conf, struct stripe_request_ctx *ctx,
5936 sector_t logical_sector, struct bio *bi)
5937 {
5938 const int rw = bio_data_dir(bi);
5939 enum stripe_result ret;
5940 struct stripe_head *sh;
5941 enum reshape_loc loc;
5942 sector_t new_sector;
5943 int previous = 0, flags = 0;
5944 int seq, dd_idx;
5945
5946 seq = read_seqcount_begin(&conf->gen_lock);
5947 loc = get_reshape_loc(mddev, conf, logical_sector);
5948 if (loc == LOC_INSIDE_RESHAPE) {
5949 ret = STRIPE_SCHEDULE_AND_RETRY;
5950 goto out;
5951 }
5952 if (loc == LOC_AHEAD_OF_RESHAPE)
5953 previous = 1;
5954
5955 new_sector = raid5_compute_sector(conf, logical_sector, previous,
5956 &dd_idx, NULL);
5957 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
5958 new_sector, logical_sector);
5959
5960 if (previous)
5961 flags |= R5_GAS_PREVIOUS;
5962 if (bi->bi_opf & REQ_RAHEAD)
5963 flags |= R5_GAS_NOBLOCK;
5964 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
5965 if (unlikely(!sh)) {
5966 /* cannot get stripe, just give-up */
5967 bi->bi_status = BLK_STS_IOERR;
5968 return STRIPE_FAIL;
5969 }
5970
5971 if (unlikely(previous) &&
5972 stripe_ahead_of_reshape(mddev, conf, sh)) {
5973 /*
5974 * Expansion moved on while waiting for a stripe.
5975 * Expansion could still move past after this
5976 * test, but as we are holding a reference to
5977 * 'sh', we know that if that happens,
5978 * STRIPE_EXPANDING will get set and the expansion
5979 * won't proceed until we finish with the stripe.
5980 */
5981 ret = STRIPE_SCHEDULE_AND_RETRY;
5982 goto out_release;
5983 }
5984
5985 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5986 /* Might have got the wrong stripe_head by accident */
5987 ret = STRIPE_RETRY;
5988 goto out_release;
5989 }
5990
5991 if (test_bit(STRIPE_EXPANDING, &sh->state)) {
5992 md_wakeup_thread(mddev->thread);
5993 ret = STRIPE_SCHEDULE_AND_RETRY;
5994 goto out_release;
5995 }
5996
5997 if (!add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
5998 ret = STRIPE_RETRY;
5999 goto out;
6000 }
6001
6002 if (stripe_can_batch(sh)) {
6003 stripe_add_to_batch_list(conf, sh, ctx->batch_last);
6004 if (ctx->batch_last)
6005 raid5_release_stripe(ctx->batch_last);
6006 atomic_inc(&sh->count);
6007 ctx->batch_last = sh;
6008 }
6009
6010 if (ctx->do_flush) {
6011 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
6012 /* we only need flush for one stripe */
6013 ctx->do_flush = false;
6014 }
6015
6016 set_bit(STRIPE_HANDLE, &sh->state);
6017 clear_bit(STRIPE_DELAYED, &sh->state);
6018 if ((!sh->batch_head || sh == sh->batch_head) &&
6019 (bi->bi_opf & REQ_SYNC) &&
6020 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
6021 atomic_inc(&conf->preread_active_stripes);
6022
6023 release_stripe_plug(mddev, sh);
6024 return STRIPE_SUCCESS;
6025
6026 out_release:
6027 raid5_release_stripe(sh);
6028 out:
6029 if (ret == STRIPE_SCHEDULE_AND_RETRY && reshape_interrupted(mddev)) {
6030 bi->bi_status = BLK_STS_RESOURCE;
6031 ret = STRIPE_WAIT_RESHAPE;
6032 pr_err_ratelimited("dm-raid456: io across reshape position while reshape can't make progress");
6033 }
6034 return ret;
6035 }
6036
6037 /*
6038 * If the bio covers multiple data disks, find sector within the bio that has
6039 * the lowest chunk offset in the first chunk.
6040 */
raid5_bio_lowest_chunk_sector(struct r5conf * conf,struct bio * bi)6041 static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf,
6042 struct bio *bi)
6043 {
6044 int sectors_per_chunk = conf->chunk_sectors;
6045 int raid_disks = conf->raid_disks;
6046 int dd_idx;
6047 struct stripe_head sh;
6048 unsigned int chunk_offset;
6049 sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6050 sector_t sector;
6051
6052 /* We pass in fake stripe_head to get back parity disk numbers */
6053 sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh);
6054 chunk_offset = sector_div(sector, sectors_per_chunk);
6055 if (sectors_per_chunk - chunk_offset >= bio_sectors(bi))
6056 return r_sector;
6057 /*
6058 * Bio crosses to the next data disk. Check whether it's in the same
6059 * chunk.
6060 */
6061 dd_idx++;
6062 while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx)
6063 dd_idx++;
6064 if (dd_idx >= raid_disks)
6065 return r_sector;
6066 return r_sector + sectors_per_chunk - chunk_offset;
6067 }
6068
raid5_make_request(struct mddev * mddev,struct bio * bi)6069 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
6070 {
6071 DEFINE_WAIT_FUNC(wait, woken_wake_function);
6072 bool on_wq;
6073 struct r5conf *conf = mddev->private;
6074 sector_t logical_sector;
6075 struct stripe_request_ctx ctx = {};
6076 const int rw = bio_data_dir(bi);
6077 enum stripe_result res;
6078 int s, stripe_cnt;
6079
6080 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
6081 int ret = log_handle_flush_request(conf, bi);
6082
6083 if (ret == 0)
6084 return true;
6085 if (ret == -ENODEV) {
6086 if (md_flush_request(mddev, bi))
6087 return true;
6088 }
6089 /* ret == -EAGAIN, fallback */
6090 /*
6091 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6092 * we need to flush journal device
6093 */
6094 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
6095 }
6096
6097 md_write_start(mddev, bi);
6098 /*
6099 * If array is degraded, better not do chunk aligned read because
6100 * later we might have to read it again in order to reconstruct
6101 * data on failed drives.
6102 */
6103 if (rw == READ && mddev->degraded == 0 &&
6104 mddev->reshape_position == MaxSector) {
6105 bi = chunk_aligned_read(mddev, bi);
6106 if (!bi)
6107 return true;
6108 }
6109
6110 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
6111 make_discard_request(mddev, bi);
6112 md_write_end(mddev);
6113 return true;
6114 }
6115
6116 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6117 ctx.first_sector = logical_sector;
6118 ctx.last_sector = bio_end_sector(bi);
6119 bi->bi_next = NULL;
6120
6121 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
6122 RAID5_STRIPE_SECTORS(conf));
6123 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt);
6124
6125 pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6126 bi->bi_iter.bi_sector, ctx.last_sector);
6127
6128 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6129 if ((bi->bi_opf & REQ_NOWAIT) &&
6130 get_reshape_loc(mddev, conf, logical_sector) == LOC_INSIDE_RESHAPE) {
6131 bio_wouldblock_error(bi);
6132 if (rw == WRITE)
6133 md_write_end(mddev);
6134 return true;
6135 }
6136 md_account_bio(mddev, &bi);
6137
6138 /*
6139 * Lets start with the stripe with the lowest chunk offset in the first
6140 * chunk. That has the best chances of creating IOs adjacent to
6141 * previous IOs in case of sequential IO and thus creates the most
6142 * sequential IO pattern. We don't bother with the optimization when
6143 * reshaping as the performance benefit is not worth the complexity.
6144 */
6145 if (likely(conf->reshape_progress == MaxSector)) {
6146 logical_sector = raid5_bio_lowest_chunk_sector(conf, bi);
6147 on_wq = false;
6148 } else {
6149 add_wait_queue(&conf->wait_for_reshape, &wait);
6150 on_wq = true;
6151 }
6152 s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf);
6153
6154 while (1) {
6155 res = make_stripe_request(mddev, conf, &ctx, logical_sector,
6156 bi);
6157 if (res == STRIPE_FAIL || res == STRIPE_WAIT_RESHAPE)
6158 break;
6159
6160 if (res == STRIPE_RETRY)
6161 continue;
6162
6163 if (res == STRIPE_SCHEDULE_AND_RETRY) {
6164 WARN_ON_ONCE(!on_wq);
6165 /*
6166 * Must release the reference to batch_last before
6167 * scheduling and waiting for work to be done,
6168 * otherwise the batch_last stripe head could prevent
6169 * raid5_activate_delayed() from making progress
6170 * and thus deadlocking.
6171 */
6172 if (ctx.batch_last) {
6173 raid5_release_stripe(ctx.batch_last);
6174 ctx.batch_last = NULL;
6175 }
6176
6177 wait_woken(&wait, TASK_UNINTERRUPTIBLE,
6178 MAX_SCHEDULE_TIMEOUT);
6179 continue;
6180 }
6181
6182 s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s);
6183 if (s == stripe_cnt)
6184 break;
6185
6186 logical_sector = ctx.first_sector +
6187 (s << RAID5_STRIPE_SHIFT(conf));
6188 }
6189 if (unlikely(on_wq))
6190 remove_wait_queue(&conf->wait_for_reshape, &wait);
6191
6192 if (ctx.batch_last)
6193 raid5_release_stripe(ctx.batch_last);
6194
6195 if (rw == WRITE)
6196 md_write_end(mddev);
6197 if (res == STRIPE_WAIT_RESHAPE) {
6198 md_free_cloned_bio(bi);
6199 return false;
6200 }
6201
6202 bio_endio(bi);
6203 return true;
6204 }
6205
6206 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
6207
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)6208 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
6209 {
6210 /* reshaping is quite different to recovery/resync so it is
6211 * handled quite separately ... here.
6212 *
6213 * On each call to sync_request, we gather one chunk worth of
6214 * destination stripes and flag them as expanding.
6215 * Then we find all the source stripes and request reads.
6216 * As the reads complete, handle_stripe will copy the data
6217 * into the destination stripe and release that stripe.
6218 */
6219 struct r5conf *conf = mddev->private;
6220 struct stripe_head *sh;
6221 struct md_rdev *rdev;
6222 sector_t first_sector, last_sector;
6223 int raid_disks = conf->previous_raid_disks;
6224 int data_disks = raid_disks - conf->max_degraded;
6225 int new_data_disks = conf->raid_disks - conf->max_degraded;
6226 int i;
6227 int dd_idx;
6228 sector_t writepos, readpos, safepos;
6229 sector_t stripe_addr;
6230 int reshape_sectors;
6231 struct list_head stripes;
6232 sector_t retn;
6233
6234 if (sector_nr == 0) {
6235 /* If restarting in the middle, skip the initial sectors */
6236 if (mddev->reshape_backwards &&
6237 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6238 sector_nr = raid5_size(mddev, 0, 0)
6239 - conf->reshape_progress;
6240 } else if (mddev->reshape_backwards &&
6241 conf->reshape_progress == MaxSector) {
6242 /* shouldn't happen, but just in case, finish up.*/
6243 sector_nr = MaxSector;
6244 } else if (!mddev->reshape_backwards &&
6245 conf->reshape_progress > 0)
6246 sector_nr = conf->reshape_progress;
6247 sector_div(sector_nr, new_data_disks);
6248 if (sector_nr) {
6249 mddev->curr_resync_completed = sector_nr;
6250 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6251 *skipped = 1;
6252 retn = sector_nr;
6253 goto finish;
6254 }
6255 }
6256
6257 /* We need to process a full chunk at a time.
6258 * If old and new chunk sizes differ, we need to process the
6259 * largest of these
6260 */
6261
6262 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6263
6264 /* We update the metadata at least every 10 seconds, or when
6265 * the data about to be copied would over-write the source of
6266 * the data at the front of the range. i.e. one new_stripe
6267 * along from reshape_progress new_maps to after where
6268 * reshape_safe old_maps to
6269 */
6270 writepos = conf->reshape_progress;
6271 sector_div(writepos, new_data_disks);
6272 readpos = conf->reshape_progress;
6273 sector_div(readpos, data_disks);
6274 safepos = conf->reshape_safe;
6275 sector_div(safepos, data_disks);
6276 if (mddev->reshape_backwards) {
6277 if (WARN_ON(writepos < reshape_sectors))
6278 return MaxSector;
6279
6280 writepos -= reshape_sectors;
6281 readpos += reshape_sectors;
6282 safepos += reshape_sectors;
6283 } else {
6284 writepos += reshape_sectors;
6285 /* readpos and safepos are worst-case calculations.
6286 * A negative number is overly pessimistic, and causes
6287 * obvious problems for unsigned storage. So clip to 0.
6288 */
6289 readpos -= min_t(sector_t, reshape_sectors, readpos);
6290 safepos -= min_t(sector_t, reshape_sectors, safepos);
6291 }
6292
6293 /* Having calculated the 'writepos' possibly use it
6294 * to set 'stripe_addr' which is where we will write to.
6295 */
6296 if (mddev->reshape_backwards) {
6297 if (WARN_ON(conf->reshape_progress == 0))
6298 return MaxSector;
6299
6300 stripe_addr = writepos;
6301 if (WARN_ON((mddev->dev_sectors &
6302 ~((sector_t)reshape_sectors - 1)) -
6303 reshape_sectors - stripe_addr != sector_nr))
6304 return MaxSector;
6305 } else {
6306 if (WARN_ON(writepos != sector_nr + reshape_sectors))
6307 return MaxSector;
6308
6309 stripe_addr = sector_nr;
6310 }
6311
6312 /* 'writepos' is the most advanced device address we might write.
6313 * 'readpos' is the least advanced device address we might read.
6314 * 'safepos' is the least address recorded in the metadata as having
6315 * been reshaped.
6316 * If there is a min_offset_diff, these are adjusted either by
6317 * increasing the safepos/readpos if diff is negative, or
6318 * increasing writepos if diff is positive.
6319 * If 'readpos' is then behind 'writepos', there is no way that we can
6320 * ensure safety in the face of a crash - that must be done by userspace
6321 * making a backup of the data. So in that case there is no particular
6322 * rush to update metadata.
6323 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6324 * update the metadata to advance 'safepos' to match 'readpos' so that
6325 * we can be safe in the event of a crash.
6326 * So we insist on updating metadata if safepos is behind writepos and
6327 * readpos is beyond writepos.
6328 * In any case, update the metadata every 10 seconds.
6329 * Maybe that number should be configurable, but I'm not sure it is
6330 * worth it.... maybe it could be a multiple of safemode_delay???
6331 */
6332 if (conf->min_offset_diff < 0) {
6333 safepos += -conf->min_offset_diff;
6334 readpos += -conf->min_offset_diff;
6335 } else
6336 writepos += conf->min_offset_diff;
6337
6338 if ((mddev->reshape_backwards
6339 ? (safepos > writepos && readpos < writepos)
6340 : (safepos < writepos && readpos > writepos)) ||
6341 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6342 /* Cannot proceed until we've updated the superblock... */
6343 wait_event(conf->wait_for_reshape,
6344 atomic_read(&conf->reshape_stripes)==0
6345 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6346 if (atomic_read(&conf->reshape_stripes) != 0)
6347 return 0;
6348 mddev->reshape_position = conf->reshape_progress;
6349 mddev->curr_resync_completed = sector_nr;
6350 if (!mddev->reshape_backwards)
6351 /* Can update recovery_offset */
6352 rdev_for_each(rdev, mddev)
6353 if (rdev->raid_disk >= 0 &&
6354 !test_bit(Journal, &rdev->flags) &&
6355 !test_bit(In_sync, &rdev->flags) &&
6356 rdev->recovery_offset < sector_nr)
6357 rdev->recovery_offset = sector_nr;
6358
6359 conf->reshape_checkpoint = jiffies;
6360 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6361 md_wakeup_thread(mddev->thread);
6362 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6363 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6364 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6365 return 0;
6366 spin_lock_irq(&conf->device_lock);
6367 conf->reshape_safe = mddev->reshape_position;
6368 spin_unlock_irq(&conf->device_lock);
6369 wake_up(&conf->wait_for_reshape);
6370 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6371 }
6372
6373 INIT_LIST_HEAD(&stripes);
6374 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6375 int j;
6376 int skipped_disk = 0;
6377 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
6378 R5_GAS_NOQUIESCE);
6379 set_bit(STRIPE_EXPANDING, &sh->state);
6380 atomic_inc(&conf->reshape_stripes);
6381 /* If any of this stripe is beyond the end of the old
6382 * array, then we need to zero those blocks
6383 */
6384 for (j=sh->disks; j--;) {
6385 sector_t s;
6386 if (j == sh->pd_idx)
6387 continue;
6388 if (conf->level == 6 &&
6389 j == sh->qd_idx)
6390 continue;
6391 s = raid5_compute_blocknr(sh, j, 0);
6392 if (s < raid5_size(mddev, 0, 0)) {
6393 skipped_disk = 1;
6394 continue;
6395 }
6396 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6397 set_bit(R5_Expanded, &sh->dev[j].flags);
6398 set_bit(R5_UPTODATE, &sh->dev[j].flags);
6399 }
6400 if (!skipped_disk) {
6401 set_bit(STRIPE_EXPAND_READY, &sh->state);
6402 set_bit(STRIPE_HANDLE, &sh->state);
6403 }
6404 list_add(&sh->lru, &stripes);
6405 }
6406 spin_lock_irq(&conf->device_lock);
6407 if (mddev->reshape_backwards)
6408 conf->reshape_progress -= reshape_sectors * new_data_disks;
6409 else
6410 conf->reshape_progress += reshape_sectors * new_data_disks;
6411 spin_unlock_irq(&conf->device_lock);
6412 /* Ok, those stripe are ready. We can start scheduling
6413 * reads on the source stripes.
6414 * The source stripes are determined by mapping the first and last
6415 * block on the destination stripes.
6416 */
6417 first_sector =
6418 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6419 1, &dd_idx, NULL);
6420 last_sector =
6421 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6422 * new_data_disks - 1),
6423 1, &dd_idx, NULL);
6424 if (last_sector >= mddev->dev_sectors)
6425 last_sector = mddev->dev_sectors - 1;
6426 while (first_sector <= last_sector) {
6427 sh = raid5_get_active_stripe(conf, NULL, first_sector,
6428 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
6429 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6430 set_bit(STRIPE_HANDLE, &sh->state);
6431 raid5_release_stripe(sh);
6432 first_sector += RAID5_STRIPE_SECTORS(conf);
6433 }
6434 /* Now that the sources are clearly marked, we can release
6435 * the destination stripes
6436 */
6437 while (!list_empty(&stripes)) {
6438 sh = list_entry(stripes.next, struct stripe_head, lru);
6439 list_del_init(&sh->lru);
6440 raid5_release_stripe(sh);
6441 }
6442 /* If this takes us to the resync_max point where we have to pause,
6443 * then we need to write out the superblock.
6444 */
6445 sector_nr += reshape_sectors;
6446 retn = reshape_sectors;
6447 finish:
6448 if (mddev->curr_resync_completed > mddev->resync_max ||
6449 (sector_nr - mddev->curr_resync_completed) * 2
6450 >= mddev->resync_max - mddev->curr_resync_completed) {
6451 /* Cannot proceed until we've updated the superblock... */
6452 wait_event(conf->wait_for_reshape,
6453 atomic_read(&conf->reshape_stripes) == 0
6454 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6455 if (atomic_read(&conf->reshape_stripes) != 0)
6456 goto ret;
6457 mddev->reshape_position = conf->reshape_progress;
6458 mddev->curr_resync_completed = sector_nr;
6459 if (!mddev->reshape_backwards)
6460 /* Can update recovery_offset */
6461 rdev_for_each(rdev, mddev)
6462 if (rdev->raid_disk >= 0 &&
6463 !test_bit(Journal, &rdev->flags) &&
6464 !test_bit(In_sync, &rdev->flags) &&
6465 rdev->recovery_offset < sector_nr)
6466 rdev->recovery_offset = sector_nr;
6467 conf->reshape_checkpoint = jiffies;
6468 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6469 md_wakeup_thread(mddev->thread);
6470 wait_event(mddev->sb_wait,
6471 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6472 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6473 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6474 goto ret;
6475 spin_lock_irq(&conf->device_lock);
6476 conf->reshape_safe = mddev->reshape_position;
6477 spin_unlock_irq(&conf->device_lock);
6478 wake_up(&conf->wait_for_reshape);
6479 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6480 }
6481 ret:
6482 return retn;
6483 }
6484
raid5_sync_request(struct mddev * mddev,sector_t sector_nr,sector_t max_sector,int * skipped)6485 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6486 sector_t max_sector, int *skipped)
6487 {
6488 struct r5conf *conf = mddev->private;
6489 struct stripe_head *sh;
6490 sector_t sync_blocks;
6491 bool still_degraded = false;
6492 int i;
6493
6494 if (sector_nr >= max_sector) {
6495 /* just being told to finish up .. nothing much to do */
6496
6497 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6498 end_reshape(conf);
6499 return 0;
6500 }
6501
6502 if (mddev->curr_resync < max_sector) /* aborted */
6503 mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
6504 &sync_blocks);
6505 else /* completed sync */
6506 conf->fullsync = 0;
6507 mddev->bitmap_ops->close_sync(mddev);
6508
6509 return 0;
6510 }
6511
6512 /* Allow raid5_quiesce to complete */
6513 wait_event(conf->wait_for_reshape, conf->quiesce != 2);
6514
6515 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6516 return reshape_request(mddev, sector_nr, skipped);
6517
6518 /* No need to check resync_max as we never do more than one
6519 * stripe, and as resync_max will always be on a chunk boundary,
6520 * if the check in md_do_sync didn't fire, there is no chance
6521 * of overstepping resync_max here
6522 */
6523
6524 /* if there is too many failed drives and we are trying
6525 * to resync, then assert that we are finished, because there is
6526 * nothing we can do.
6527 */
6528 if (mddev->degraded >= conf->max_degraded &&
6529 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6530 sector_t rv = mddev->dev_sectors - sector_nr;
6531 *skipped = 1;
6532 return rv;
6533 }
6534 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6535 !conf->fullsync &&
6536 !mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks,
6537 true) &&
6538 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6539 /* we can skip this block, and probably more */
6540 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6541 *skipped = 1;
6542 /* keep things rounded to whole stripes */
6543 return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6544 }
6545
6546 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, false);
6547
6548 sh = raid5_get_active_stripe(conf, NULL, sector_nr,
6549 R5_GAS_NOBLOCK);
6550 if (sh == NULL) {
6551 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
6552 /* make sure we don't swamp the stripe cache if someone else
6553 * is trying to get access
6554 */
6555 schedule_timeout_uninterruptible(1);
6556 }
6557 /* Need to check if array will still be degraded after recovery/resync
6558 * Note in case of > 1 drive failures it's possible we're rebuilding
6559 * one drive while leaving another faulty drive in array.
6560 */
6561 for (i = 0; i < conf->raid_disks; i++) {
6562 struct md_rdev *rdev = conf->disks[i].rdev;
6563
6564 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6565 still_degraded = true;
6566 }
6567
6568 mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks,
6569 still_degraded);
6570
6571 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6572 set_bit(STRIPE_HANDLE, &sh->state);
6573
6574 raid5_release_stripe(sh);
6575
6576 return RAID5_STRIPE_SECTORS(conf);
6577 }
6578
retry_aligned_read(struct r5conf * conf,struct bio * raid_bio,unsigned int offset)6579 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6580 unsigned int offset)
6581 {
6582 /* We may not be able to submit a whole bio at once as there
6583 * may not be enough stripe_heads available.
6584 * We cannot pre-allocate enough stripe_heads as we may need
6585 * more than exist in the cache (if we allow ever large chunks).
6586 * So we do one stripe head at a time and record in
6587 * ->bi_hw_segments how many have been done.
6588 *
6589 * We *know* that this entire raid_bio is in one chunk, so
6590 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6591 */
6592 struct stripe_head *sh;
6593 int dd_idx;
6594 sector_t sector, logical_sector, last_sector;
6595 int scnt = 0;
6596 int handled = 0;
6597
6598 logical_sector = raid_bio->bi_iter.bi_sector &
6599 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6600 sector = raid5_compute_sector(conf, logical_sector,
6601 0, &dd_idx, NULL);
6602 last_sector = bio_end_sector(raid_bio);
6603
6604 for (; logical_sector < last_sector;
6605 logical_sector += RAID5_STRIPE_SECTORS(conf),
6606 sector += RAID5_STRIPE_SECTORS(conf),
6607 scnt++) {
6608
6609 if (scnt < offset)
6610 /* already done this stripe */
6611 continue;
6612
6613 sh = raid5_get_active_stripe(conf, NULL, sector,
6614 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
6615 if (!sh) {
6616 /* failed to get a stripe - must wait */
6617 conf->retry_read_aligned = raid_bio;
6618 conf->retry_read_offset = scnt;
6619 return handled;
6620 }
6621
6622 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6623 raid5_release_stripe(sh);
6624 conf->retry_read_aligned = raid_bio;
6625 conf->retry_read_offset = scnt;
6626 return handled;
6627 }
6628
6629 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6630 handle_stripe(sh);
6631 raid5_release_stripe(sh);
6632 handled++;
6633 }
6634
6635 bio_endio(raid_bio);
6636
6637 if (atomic_dec_and_test(&conf->active_aligned_reads))
6638 wake_up(&conf->wait_for_quiescent);
6639 return handled;
6640 }
6641
handle_active_stripes(struct r5conf * conf,int group,struct r5worker * worker,struct list_head * temp_inactive_list)6642 static int handle_active_stripes(struct r5conf *conf, int group,
6643 struct r5worker *worker,
6644 struct list_head *temp_inactive_list)
6645 __must_hold(&conf->device_lock)
6646 {
6647 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6648 int i, batch_size = 0, hash;
6649 bool release_inactive = false;
6650
6651 while (batch_size < MAX_STRIPE_BATCH &&
6652 (sh = __get_priority_stripe(conf, group)) != NULL)
6653 batch[batch_size++] = sh;
6654
6655 if (batch_size == 0) {
6656 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6657 if (!list_empty(temp_inactive_list + i))
6658 break;
6659 if (i == NR_STRIPE_HASH_LOCKS) {
6660 spin_unlock_irq(&conf->device_lock);
6661 log_flush_stripe_to_raid(conf);
6662 spin_lock_irq(&conf->device_lock);
6663 return batch_size;
6664 }
6665 release_inactive = true;
6666 }
6667 spin_unlock_irq(&conf->device_lock);
6668
6669 release_inactive_stripe_list(conf, temp_inactive_list,
6670 NR_STRIPE_HASH_LOCKS);
6671
6672 r5l_flush_stripe_to_raid(conf->log);
6673 if (release_inactive) {
6674 spin_lock_irq(&conf->device_lock);
6675 return 0;
6676 }
6677
6678 for (i = 0; i < batch_size; i++)
6679 handle_stripe(batch[i]);
6680 log_write_stripe_run(conf);
6681
6682 cond_resched();
6683
6684 spin_lock_irq(&conf->device_lock);
6685 for (i = 0; i < batch_size; i++) {
6686 hash = batch[i]->hash_lock_index;
6687 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6688 }
6689 return batch_size;
6690 }
6691
raid5_do_work(struct work_struct * work)6692 static void raid5_do_work(struct work_struct *work)
6693 {
6694 struct r5worker *worker = container_of(work, struct r5worker, work);
6695 struct r5worker_group *group = worker->group;
6696 struct r5conf *conf = group->conf;
6697 struct mddev *mddev = conf->mddev;
6698 int group_id = group - conf->worker_groups;
6699 int handled;
6700 struct blk_plug plug;
6701
6702 pr_debug("+++ raid5worker active\n");
6703
6704 blk_start_plug(&plug);
6705 handled = 0;
6706 spin_lock_irq(&conf->device_lock);
6707 while (1) {
6708 int batch_size, released;
6709
6710 released = release_stripe_list(conf, worker->temp_inactive_list);
6711
6712 batch_size = handle_active_stripes(conf, group_id, worker,
6713 worker->temp_inactive_list);
6714 worker->working = false;
6715 if (!batch_size && !released)
6716 break;
6717 handled += batch_size;
6718 wait_event_lock_irq(mddev->sb_wait,
6719 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6720 conf->device_lock);
6721 }
6722 pr_debug("%d stripes handled\n", handled);
6723
6724 spin_unlock_irq(&conf->device_lock);
6725
6726 flush_deferred_bios(conf);
6727
6728 r5l_flush_stripe_to_raid(conf->log);
6729
6730 async_tx_issue_pending_all();
6731 blk_finish_plug(&plug);
6732
6733 pr_debug("--- raid5worker inactive\n");
6734 }
6735
6736 /*
6737 * This is our raid5 kernel thread.
6738 *
6739 * We scan the hash table for stripes which can be handled now.
6740 * During the scan, completed stripes are saved for us by the interrupt
6741 * handler, so that they will not have to wait for our next wakeup.
6742 */
raid5d(struct md_thread * thread)6743 static void raid5d(struct md_thread *thread)
6744 {
6745 struct mddev *mddev = thread->mddev;
6746 struct r5conf *conf = mddev->private;
6747 int handled;
6748 struct blk_plug plug;
6749
6750 pr_debug("+++ raid5d active\n");
6751
6752 md_check_recovery(mddev);
6753
6754 blk_start_plug(&plug);
6755 handled = 0;
6756 spin_lock_irq(&conf->device_lock);
6757 while (1) {
6758 struct bio *bio;
6759 int batch_size, released;
6760 unsigned int offset;
6761
6762 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6763 break;
6764
6765 released = release_stripe_list(conf, conf->temp_inactive_list);
6766 if (released)
6767 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6768
6769 if (
6770 !list_empty(&conf->bitmap_list)) {
6771 /* Now is a good time to flush some bitmap updates */
6772 conf->seq_flush++;
6773 spin_unlock_irq(&conf->device_lock);
6774 mddev->bitmap_ops->unplug(mddev, true);
6775 spin_lock_irq(&conf->device_lock);
6776 conf->seq_write = conf->seq_flush;
6777 activate_bit_delay(conf, conf->temp_inactive_list);
6778 }
6779 raid5_activate_delayed(conf);
6780
6781 while ((bio = remove_bio_from_retry(conf, &offset))) {
6782 int ok;
6783 spin_unlock_irq(&conf->device_lock);
6784 ok = retry_aligned_read(conf, bio, offset);
6785 spin_lock_irq(&conf->device_lock);
6786 if (!ok)
6787 break;
6788 handled++;
6789 }
6790
6791 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6792 conf->temp_inactive_list);
6793 if (!batch_size && !released)
6794 break;
6795 handled += batch_size;
6796
6797 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6798 spin_unlock_irq(&conf->device_lock);
6799 md_check_recovery(mddev);
6800 spin_lock_irq(&conf->device_lock);
6801 }
6802 }
6803 pr_debug("%d stripes handled\n", handled);
6804
6805 spin_unlock_irq(&conf->device_lock);
6806 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6807 mutex_trylock(&conf->cache_size_mutex)) {
6808 grow_one_stripe(conf, __GFP_NOWARN);
6809 /* Set flag even if allocation failed. This helps
6810 * slow down allocation requests when mem is short
6811 */
6812 set_bit(R5_DID_ALLOC, &conf->cache_state);
6813 mutex_unlock(&conf->cache_size_mutex);
6814 }
6815
6816 flush_deferred_bios(conf);
6817
6818 r5l_flush_stripe_to_raid(conf->log);
6819
6820 async_tx_issue_pending_all();
6821 blk_finish_plug(&plug);
6822
6823 pr_debug("--- raid5d inactive\n");
6824 }
6825
6826 static ssize_t
raid5_show_stripe_cache_size(struct mddev * mddev,char * page)6827 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6828 {
6829 struct r5conf *conf;
6830 int ret = 0;
6831 spin_lock(&mddev->lock);
6832 conf = mddev->private;
6833 if (conf)
6834 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6835 spin_unlock(&mddev->lock);
6836 return ret;
6837 }
6838
6839 int
raid5_set_cache_size(struct mddev * mddev,int size)6840 raid5_set_cache_size(struct mddev *mddev, int size)
6841 {
6842 int result = 0;
6843 struct r5conf *conf = mddev->private;
6844
6845 if (size <= 16 || size > 32768)
6846 return -EINVAL;
6847
6848 WRITE_ONCE(conf->min_nr_stripes, size);
6849 mutex_lock(&conf->cache_size_mutex);
6850 while (size < conf->max_nr_stripes &&
6851 drop_one_stripe(conf))
6852 ;
6853 mutex_unlock(&conf->cache_size_mutex);
6854
6855 md_allow_write(mddev);
6856
6857 mutex_lock(&conf->cache_size_mutex);
6858 while (size > conf->max_nr_stripes)
6859 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6860 WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes);
6861 result = -ENOMEM;
6862 break;
6863 }
6864 mutex_unlock(&conf->cache_size_mutex);
6865
6866 return result;
6867 }
6868 EXPORT_SYMBOL(raid5_set_cache_size);
6869
6870 static ssize_t
raid5_store_stripe_cache_size(struct mddev * mddev,const char * page,size_t len)6871 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6872 {
6873 struct r5conf *conf;
6874 unsigned long new;
6875 int err;
6876
6877 if (len >= PAGE_SIZE)
6878 return -EINVAL;
6879 if (kstrtoul(page, 10, &new))
6880 return -EINVAL;
6881 err = mddev_lock(mddev);
6882 if (err)
6883 return err;
6884 conf = mddev->private;
6885 if (!conf)
6886 err = -ENODEV;
6887 else
6888 err = raid5_set_cache_size(mddev, new);
6889 mddev_unlock(mddev);
6890
6891 return err ?: len;
6892 }
6893
6894 static struct md_sysfs_entry
6895 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6896 raid5_show_stripe_cache_size,
6897 raid5_store_stripe_cache_size);
6898
6899 static ssize_t
raid5_show_rmw_level(struct mddev * mddev,char * page)6900 raid5_show_rmw_level(struct mddev *mddev, char *page)
6901 {
6902 struct r5conf *conf = mddev->private;
6903 if (conf)
6904 return sprintf(page, "%d\n", conf->rmw_level);
6905 else
6906 return 0;
6907 }
6908
6909 static ssize_t
raid5_store_rmw_level(struct mddev * mddev,const char * page,size_t len)6910 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6911 {
6912 struct r5conf *conf = mddev->private;
6913 unsigned long new;
6914
6915 if (!conf)
6916 return -ENODEV;
6917
6918 if (len >= PAGE_SIZE)
6919 return -EINVAL;
6920
6921 if (kstrtoul(page, 10, &new))
6922 return -EINVAL;
6923
6924 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6925 return -EINVAL;
6926
6927 if (new != PARITY_DISABLE_RMW &&
6928 new != PARITY_ENABLE_RMW &&
6929 new != PARITY_PREFER_RMW)
6930 return -EINVAL;
6931
6932 conf->rmw_level = new;
6933 return len;
6934 }
6935
6936 static struct md_sysfs_entry
6937 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6938 raid5_show_rmw_level,
6939 raid5_store_rmw_level);
6940
6941 static ssize_t
raid5_show_stripe_size(struct mddev * mddev,char * page)6942 raid5_show_stripe_size(struct mddev *mddev, char *page)
6943 {
6944 struct r5conf *conf;
6945 int ret = 0;
6946
6947 spin_lock(&mddev->lock);
6948 conf = mddev->private;
6949 if (conf)
6950 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6951 spin_unlock(&mddev->lock);
6952 return ret;
6953 }
6954
6955 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6956 static ssize_t
raid5_store_stripe_size(struct mddev * mddev,const char * page,size_t len)6957 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
6958 {
6959 struct r5conf *conf;
6960 unsigned long new;
6961 int err;
6962 int size;
6963
6964 if (len >= PAGE_SIZE)
6965 return -EINVAL;
6966 if (kstrtoul(page, 10, &new))
6967 return -EINVAL;
6968
6969 /*
6970 * The value should not be bigger than PAGE_SIZE. It requires to
6971 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6972 * of two.
6973 */
6974 if (new % DEFAULT_STRIPE_SIZE != 0 ||
6975 new > PAGE_SIZE || new == 0 ||
6976 new != roundup_pow_of_two(new))
6977 return -EINVAL;
6978
6979 err = mddev_suspend_and_lock(mddev);
6980 if (err)
6981 return err;
6982
6983 conf = mddev->private;
6984 if (!conf) {
6985 err = -ENODEV;
6986 goto out_unlock;
6987 }
6988
6989 if (new == conf->stripe_size)
6990 goto out_unlock;
6991
6992 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6993 conf->stripe_size, new);
6994
6995 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6996 mddev->reshape_position != MaxSector || mddev->sysfs_active) {
6997 err = -EBUSY;
6998 goto out_unlock;
6999 }
7000
7001 mutex_lock(&conf->cache_size_mutex);
7002 size = conf->max_nr_stripes;
7003
7004 shrink_stripes(conf);
7005
7006 conf->stripe_size = new;
7007 conf->stripe_shift = ilog2(new) - 9;
7008 conf->stripe_sectors = new >> 9;
7009 if (grow_stripes(conf, size)) {
7010 pr_warn("md/raid:%s: couldn't allocate buffers\n",
7011 mdname(mddev));
7012 err = -ENOMEM;
7013 }
7014 mutex_unlock(&conf->cache_size_mutex);
7015
7016 out_unlock:
7017 mddev_unlock_and_resume(mddev);
7018 return err ?: len;
7019 }
7020
7021 static struct md_sysfs_entry
7022 raid5_stripe_size = __ATTR(stripe_size, 0644,
7023 raid5_show_stripe_size,
7024 raid5_store_stripe_size);
7025 #else
7026 static struct md_sysfs_entry
7027 raid5_stripe_size = __ATTR(stripe_size, 0444,
7028 raid5_show_stripe_size,
7029 NULL);
7030 #endif
7031
7032 static ssize_t
raid5_show_preread_threshold(struct mddev * mddev,char * page)7033 raid5_show_preread_threshold(struct mddev *mddev, char *page)
7034 {
7035 struct r5conf *conf;
7036 int ret = 0;
7037 spin_lock(&mddev->lock);
7038 conf = mddev->private;
7039 if (conf)
7040 ret = sprintf(page, "%d\n", conf->bypass_threshold);
7041 spin_unlock(&mddev->lock);
7042 return ret;
7043 }
7044
7045 static ssize_t
raid5_store_preread_threshold(struct mddev * mddev,const char * page,size_t len)7046 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
7047 {
7048 struct r5conf *conf;
7049 unsigned long new;
7050 int err;
7051
7052 if (len >= PAGE_SIZE)
7053 return -EINVAL;
7054 if (kstrtoul(page, 10, &new))
7055 return -EINVAL;
7056
7057 err = mddev_lock(mddev);
7058 if (err)
7059 return err;
7060 conf = mddev->private;
7061 if (!conf)
7062 err = -ENODEV;
7063 else if (new > conf->min_nr_stripes)
7064 err = -EINVAL;
7065 else
7066 conf->bypass_threshold = new;
7067 mddev_unlock(mddev);
7068 return err ?: len;
7069 }
7070
7071 static struct md_sysfs_entry
7072 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7073 S_IRUGO | S_IWUSR,
7074 raid5_show_preread_threshold,
7075 raid5_store_preread_threshold);
7076
7077 static ssize_t
raid5_show_skip_copy(struct mddev * mddev,char * page)7078 raid5_show_skip_copy(struct mddev *mddev, char *page)
7079 {
7080 struct r5conf *conf;
7081 int ret = 0;
7082 spin_lock(&mddev->lock);
7083 conf = mddev->private;
7084 if (conf)
7085 ret = sprintf(page, "%d\n", conf->skip_copy);
7086 spin_unlock(&mddev->lock);
7087 return ret;
7088 }
7089
7090 static ssize_t
raid5_store_skip_copy(struct mddev * mddev,const char * page,size_t len)7091 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7092 {
7093 struct r5conf *conf;
7094 unsigned long new;
7095 int err;
7096
7097 if (len >= PAGE_SIZE)
7098 return -EINVAL;
7099 if (kstrtoul(page, 10, &new))
7100 return -EINVAL;
7101 new = !!new;
7102
7103 err = mddev_suspend_and_lock(mddev);
7104 if (err)
7105 return err;
7106 conf = mddev->private;
7107 if (!conf)
7108 err = -ENODEV;
7109 else if (new != conf->skip_copy) {
7110 struct request_queue *q = mddev->gendisk->queue;
7111 struct queue_limits lim = queue_limits_start_update(q);
7112
7113 conf->skip_copy = new;
7114 if (new)
7115 lim.features |= BLK_FEAT_STABLE_WRITES;
7116 else
7117 lim.features &= ~BLK_FEAT_STABLE_WRITES;
7118 err = queue_limits_commit_update(q, &lim);
7119 }
7120 mddev_unlock_and_resume(mddev);
7121 return err ?: len;
7122 }
7123
7124 static struct md_sysfs_entry
7125 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7126 raid5_show_skip_copy,
7127 raid5_store_skip_copy);
7128
7129 static ssize_t
stripe_cache_active_show(struct mddev * mddev,char * page)7130 stripe_cache_active_show(struct mddev *mddev, char *page)
7131 {
7132 struct r5conf *conf = mddev->private;
7133 if (conf)
7134 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
7135 else
7136 return 0;
7137 }
7138
7139 static struct md_sysfs_entry
7140 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
7141
7142 static ssize_t
raid5_show_group_thread_cnt(struct mddev * mddev,char * page)7143 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7144 {
7145 struct r5conf *conf;
7146 int ret = 0;
7147 spin_lock(&mddev->lock);
7148 conf = mddev->private;
7149 if (conf)
7150 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
7151 spin_unlock(&mddev->lock);
7152 return ret;
7153 }
7154
7155 static int alloc_thread_groups(struct r5conf *conf, int cnt,
7156 int *group_cnt,
7157 struct r5worker_group **worker_groups);
7158 static ssize_t
raid5_store_group_thread_cnt(struct mddev * mddev,const char * page,size_t len)7159 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7160 {
7161 struct r5conf *conf;
7162 unsigned int new;
7163 int err;
7164 struct r5worker_group *new_groups, *old_groups;
7165 int group_cnt;
7166
7167 if (len >= PAGE_SIZE)
7168 return -EINVAL;
7169 if (kstrtouint(page, 10, &new))
7170 return -EINVAL;
7171 /* 8192 should be big enough */
7172 if (new > 8192)
7173 return -EINVAL;
7174
7175 err = mddev_suspend_and_lock(mddev);
7176 if (err)
7177 return err;
7178 raid5_quiesce(mddev, true);
7179
7180 conf = mddev->private;
7181 if (!conf)
7182 err = -ENODEV;
7183 else if (new != conf->worker_cnt_per_group) {
7184 old_groups = conf->worker_groups;
7185 if (old_groups)
7186 flush_workqueue(raid5_wq);
7187
7188 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
7189 if (!err) {
7190 spin_lock_irq(&conf->device_lock);
7191 conf->group_cnt = group_cnt;
7192 conf->worker_cnt_per_group = new;
7193 conf->worker_groups = new_groups;
7194 spin_unlock_irq(&conf->device_lock);
7195
7196 if (old_groups)
7197 kfree(old_groups[0].workers);
7198 kfree(old_groups);
7199 }
7200 }
7201
7202 raid5_quiesce(mddev, false);
7203 mddev_unlock_and_resume(mddev);
7204
7205 return err ?: len;
7206 }
7207
7208 static struct md_sysfs_entry
7209 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7210 raid5_show_group_thread_cnt,
7211 raid5_store_group_thread_cnt);
7212
7213 static struct attribute *raid5_attrs[] = {
7214 &raid5_stripecache_size.attr,
7215 &raid5_stripecache_active.attr,
7216 &raid5_preread_bypass_threshold.attr,
7217 &raid5_group_thread_cnt.attr,
7218 &raid5_skip_copy.attr,
7219 &raid5_rmw_level.attr,
7220 &raid5_stripe_size.attr,
7221 &r5c_journal_mode.attr,
7222 &ppl_write_hint.attr,
7223 NULL,
7224 };
7225 static const struct attribute_group raid5_attrs_group = {
7226 .name = NULL,
7227 .attrs = raid5_attrs,
7228 };
7229
alloc_thread_groups(struct r5conf * conf,int cnt,int * group_cnt,struct r5worker_group ** worker_groups)7230 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
7231 struct r5worker_group **worker_groups)
7232 {
7233 int i, j, k;
7234 ssize_t size;
7235 struct r5worker *workers;
7236
7237 if (cnt == 0) {
7238 *group_cnt = 0;
7239 *worker_groups = NULL;
7240 return 0;
7241 }
7242 *group_cnt = num_possible_nodes();
7243 size = sizeof(struct r5worker) * cnt;
7244 workers = kcalloc(size, *group_cnt, GFP_NOIO);
7245 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7246 GFP_NOIO);
7247 if (!*worker_groups || !workers) {
7248 kfree(workers);
7249 kfree(*worker_groups);
7250 return -ENOMEM;
7251 }
7252
7253 for (i = 0; i < *group_cnt; i++) {
7254 struct r5worker_group *group;
7255
7256 group = &(*worker_groups)[i];
7257 INIT_LIST_HEAD(&group->handle_list);
7258 INIT_LIST_HEAD(&group->loprio_list);
7259 group->conf = conf;
7260 group->workers = workers + i * cnt;
7261
7262 for (j = 0; j < cnt; j++) {
7263 struct r5worker *worker = group->workers + j;
7264 worker->group = group;
7265 INIT_WORK(&worker->work, raid5_do_work);
7266
7267 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7268 INIT_LIST_HEAD(worker->temp_inactive_list + k);
7269 }
7270 }
7271
7272 return 0;
7273 }
7274
free_thread_groups(struct r5conf * conf)7275 static void free_thread_groups(struct r5conf *conf)
7276 {
7277 if (conf->worker_groups)
7278 kfree(conf->worker_groups[0].workers);
7279 kfree(conf->worker_groups);
7280 conf->worker_groups = NULL;
7281 }
7282
7283 static sector_t
raid5_size(struct mddev * mddev,sector_t sectors,int raid_disks)7284 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7285 {
7286 struct r5conf *conf = mddev->private;
7287
7288 if (!sectors)
7289 sectors = mddev->dev_sectors;
7290 if (!raid_disks)
7291 /* size is defined by the smallest of previous and new size */
7292 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7293
7294 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7295 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7296 return sectors * (raid_disks - conf->max_degraded);
7297 }
7298
free_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)7299 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7300 {
7301 safe_put_page(percpu->spare_page);
7302 percpu->spare_page = NULL;
7303 kvfree(percpu->scribble);
7304 percpu->scribble = NULL;
7305 }
7306
alloc_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)7307 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7308 {
7309 if (conf->level == 6 && !percpu->spare_page) {
7310 percpu->spare_page = alloc_page(GFP_KERNEL);
7311 if (!percpu->spare_page)
7312 return -ENOMEM;
7313 }
7314
7315 if (scribble_alloc(percpu,
7316 max(conf->raid_disks,
7317 conf->previous_raid_disks),
7318 max(conf->chunk_sectors,
7319 conf->prev_chunk_sectors)
7320 / RAID5_STRIPE_SECTORS(conf))) {
7321 free_scratch_buffer(conf, percpu);
7322 return -ENOMEM;
7323 }
7324
7325 local_lock_init(&percpu->lock);
7326 return 0;
7327 }
7328
raid456_cpu_dead(unsigned int cpu,struct hlist_node * node)7329 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7330 {
7331 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7332
7333 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7334 return 0;
7335 }
7336
raid5_free_percpu(struct r5conf * conf)7337 static void raid5_free_percpu(struct r5conf *conf)
7338 {
7339 if (!conf->percpu)
7340 return;
7341
7342 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7343 free_percpu(conf->percpu);
7344 }
7345
free_conf(struct r5conf * conf)7346 static void free_conf(struct r5conf *conf)
7347 {
7348 int i;
7349
7350 log_exit(conf);
7351
7352 shrinker_free(conf->shrinker);
7353 free_thread_groups(conf);
7354 shrink_stripes(conf);
7355 raid5_free_percpu(conf);
7356 for (i = 0; i < conf->pool_size; i++)
7357 if (conf->disks[i].extra_page)
7358 put_page(conf->disks[i].extra_page);
7359 kfree(conf->disks);
7360 bioset_exit(&conf->bio_split);
7361 kfree(conf->stripe_hashtbl);
7362 kfree(conf->pending_data);
7363 kfree(conf);
7364 }
7365
raid456_cpu_up_prepare(unsigned int cpu,struct hlist_node * node)7366 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7367 {
7368 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7369 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7370
7371 if (alloc_scratch_buffer(conf, percpu)) {
7372 pr_warn("%s: failed memory allocation for cpu%u\n",
7373 __func__, cpu);
7374 return -ENOMEM;
7375 }
7376 return 0;
7377 }
7378
raid5_alloc_percpu(struct r5conf * conf)7379 static int raid5_alloc_percpu(struct r5conf *conf)
7380 {
7381 int err = 0;
7382
7383 conf->percpu = alloc_percpu(struct raid5_percpu);
7384 if (!conf->percpu)
7385 return -ENOMEM;
7386
7387 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7388 if (!err) {
7389 conf->scribble_disks = max(conf->raid_disks,
7390 conf->previous_raid_disks);
7391 conf->scribble_sectors = max(conf->chunk_sectors,
7392 conf->prev_chunk_sectors);
7393 }
7394 return err;
7395 }
7396
raid5_cache_scan(struct shrinker * shrink,struct shrink_control * sc)7397 static unsigned long raid5_cache_scan(struct shrinker *shrink,
7398 struct shrink_control *sc)
7399 {
7400 struct r5conf *conf = shrink->private_data;
7401 unsigned long ret = SHRINK_STOP;
7402
7403 if (mutex_trylock(&conf->cache_size_mutex)) {
7404 ret= 0;
7405 while (ret < sc->nr_to_scan &&
7406 conf->max_nr_stripes > conf->min_nr_stripes) {
7407 if (drop_one_stripe(conf) == 0) {
7408 ret = SHRINK_STOP;
7409 break;
7410 }
7411 ret++;
7412 }
7413 mutex_unlock(&conf->cache_size_mutex);
7414 }
7415 return ret;
7416 }
7417
raid5_cache_count(struct shrinker * shrink,struct shrink_control * sc)7418 static unsigned long raid5_cache_count(struct shrinker *shrink,
7419 struct shrink_control *sc)
7420 {
7421 struct r5conf *conf = shrink->private_data;
7422 int max_stripes = READ_ONCE(conf->max_nr_stripes);
7423 int min_stripes = READ_ONCE(conf->min_nr_stripes);
7424
7425 if (max_stripes < min_stripes)
7426 /* unlikely, but not impossible */
7427 return 0;
7428 return max_stripes - min_stripes;
7429 }
7430
setup_conf(struct mddev * mddev)7431 static struct r5conf *setup_conf(struct mddev *mddev)
7432 {
7433 struct r5conf *conf;
7434 int raid_disk, memory, max_disks;
7435 struct md_rdev *rdev;
7436 struct disk_info *disk;
7437 char pers_name[6];
7438 int i;
7439 int group_cnt;
7440 struct r5worker_group *new_group;
7441 int ret = -ENOMEM;
7442
7443 if (mddev->new_level != 5
7444 && mddev->new_level != 4
7445 && mddev->new_level != 6) {
7446 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7447 mdname(mddev), mddev->new_level);
7448 return ERR_PTR(-EIO);
7449 }
7450 if ((mddev->new_level == 5
7451 && !algorithm_valid_raid5(mddev->new_layout)) ||
7452 (mddev->new_level == 6
7453 && !algorithm_valid_raid6(mddev->new_layout))) {
7454 pr_warn("md/raid:%s: layout %d not supported\n",
7455 mdname(mddev), mddev->new_layout);
7456 return ERR_PTR(-EIO);
7457 }
7458 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7459 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7460 mdname(mddev), mddev->raid_disks);
7461 return ERR_PTR(-EINVAL);
7462 }
7463
7464 if (!mddev->new_chunk_sectors ||
7465 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7466 !is_power_of_2(mddev->new_chunk_sectors)) {
7467 pr_warn("md/raid:%s: invalid chunk size %d\n",
7468 mdname(mddev), mddev->new_chunk_sectors << 9);
7469 return ERR_PTR(-EINVAL);
7470 }
7471
7472 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7473 if (conf == NULL)
7474 goto abort;
7475
7476 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7477 conf->stripe_size = DEFAULT_STRIPE_SIZE;
7478 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7479 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7480 #endif
7481 INIT_LIST_HEAD(&conf->free_list);
7482 INIT_LIST_HEAD(&conf->pending_list);
7483 conf->pending_data = kcalloc(PENDING_IO_MAX,
7484 sizeof(struct r5pending_data),
7485 GFP_KERNEL);
7486 if (!conf->pending_data)
7487 goto abort;
7488 for (i = 0; i < PENDING_IO_MAX; i++)
7489 list_add(&conf->pending_data[i].sibling, &conf->free_list);
7490 /* Don't enable multi-threading by default*/
7491 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7492 conf->group_cnt = group_cnt;
7493 conf->worker_cnt_per_group = 0;
7494 conf->worker_groups = new_group;
7495 } else
7496 goto abort;
7497 spin_lock_init(&conf->device_lock);
7498 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7499 mutex_init(&conf->cache_size_mutex);
7500
7501 init_waitqueue_head(&conf->wait_for_quiescent);
7502 init_waitqueue_head(&conf->wait_for_stripe);
7503 init_waitqueue_head(&conf->wait_for_reshape);
7504 INIT_LIST_HEAD(&conf->handle_list);
7505 INIT_LIST_HEAD(&conf->loprio_list);
7506 INIT_LIST_HEAD(&conf->hold_list);
7507 INIT_LIST_HEAD(&conf->delayed_list);
7508 INIT_LIST_HEAD(&conf->bitmap_list);
7509 init_llist_head(&conf->released_stripes);
7510 atomic_set(&conf->active_stripes, 0);
7511 atomic_set(&conf->preread_active_stripes, 0);
7512 atomic_set(&conf->active_aligned_reads, 0);
7513 spin_lock_init(&conf->pending_bios_lock);
7514 conf->batch_bio_dispatch = true;
7515 rdev_for_each(rdev, mddev) {
7516 if (test_bit(Journal, &rdev->flags))
7517 continue;
7518 if (bdev_nonrot(rdev->bdev)) {
7519 conf->batch_bio_dispatch = false;
7520 break;
7521 }
7522 }
7523
7524 conf->bypass_threshold = BYPASS_THRESHOLD;
7525 conf->recovery_disabled = mddev->recovery_disabled - 1;
7526
7527 conf->raid_disks = mddev->raid_disks;
7528 if (mddev->reshape_position == MaxSector)
7529 conf->previous_raid_disks = mddev->raid_disks;
7530 else
7531 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7532 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7533
7534 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7535 GFP_KERNEL);
7536
7537 if (!conf->disks)
7538 goto abort;
7539
7540 for (i = 0; i < max_disks; i++) {
7541 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7542 if (!conf->disks[i].extra_page)
7543 goto abort;
7544 }
7545
7546 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7547 if (ret)
7548 goto abort;
7549 conf->mddev = mddev;
7550
7551 ret = -ENOMEM;
7552 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7553 if (!conf->stripe_hashtbl)
7554 goto abort;
7555
7556 /* We init hash_locks[0] separately to that it can be used
7557 * as the reference lock in the spin_lock_nest_lock() call
7558 * in lock_all_device_hash_locks_irq in order to convince
7559 * lockdep that we know what we are doing.
7560 */
7561 spin_lock_init(conf->hash_locks);
7562 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7563 spin_lock_init(conf->hash_locks + i);
7564
7565 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7566 INIT_LIST_HEAD(conf->inactive_list + i);
7567
7568 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7569 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7570
7571 atomic_set(&conf->r5c_cached_full_stripes, 0);
7572 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7573 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7574 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7575 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7576 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7577
7578 conf->level = mddev->new_level;
7579 conf->chunk_sectors = mddev->new_chunk_sectors;
7580 ret = raid5_alloc_percpu(conf);
7581 if (ret)
7582 goto abort;
7583
7584 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7585
7586 ret = -EIO;
7587 rdev_for_each(rdev, mddev) {
7588 raid_disk = rdev->raid_disk;
7589 if (raid_disk >= max_disks
7590 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7591 continue;
7592 disk = conf->disks + raid_disk;
7593
7594 if (test_bit(Replacement, &rdev->flags)) {
7595 if (disk->replacement)
7596 goto abort;
7597 disk->replacement = rdev;
7598 } else {
7599 if (disk->rdev)
7600 goto abort;
7601 disk->rdev = rdev;
7602 }
7603
7604 if (test_bit(In_sync, &rdev->flags)) {
7605 pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7606 mdname(mddev), rdev->bdev, raid_disk);
7607 } else if (rdev->saved_raid_disk != raid_disk)
7608 /* Cannot rely on bitmap to complete recovery */
7609 conf->fullsync = 1;
7610 }
7611
7612 conf->level = mddev->new_level;
7613 if (conf->level == 6) {
7614 conf->max_degraded = 2;
7615 if (raid6_call.xor_syndrome)
7616 conf->rmw_level = PARITY_ENABLE_RMW;
7617 else
7618 conf->rmw_level = PARITY_DISABLE_RMW;
7619 } else {
7620 conf->max_degraded = 1;
7621 conf->rmw_level = PARITY_ENABLE_RMW;
7622 }
7623 conf->algorithm = mddev->new_layout;
7624 conf->reshape_progress = mddev->reshape_position;
7625 if (conf->reshape_progress != MaxSector) {
7626 conf->prev_chunk_sectors = mddev->chunk_sectors;
7627 conf->prev_algo = mddev->layout;
7628 } else {
7629 conf->prev_chunk_sectors = conf->chunk_sectors;
7630 conf->prev_algo = conf->algorithm;
7631 }
7632
7633 conf->min_nr_stripes = NR_STRIPES;
7634 if (mddev->reshape_position != MaxSector) {
7635 int stripes = max_t(int,
7636 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7637 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7638 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7639 if (conf->min_nr_stripes != NR_STRIPES)
7640 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7641 mdname(mddev), conf->min_nr_stripes);
7642 }
7643 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7644 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7645 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7646 if (grow_stripes(conf, conf->min_nr_stripes)) {
7647 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7648 mdname(mddev), memory);
7649 ret = -ENOMEM;
7650 goto abort;
7651 } else
7652 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7653 /*
7654 * Losing a stripe head costs more than the time to refill it,
7655 * it reduces the queue depth and so can hurt throughput.
7656 * So set it rather large, scaled by number of devices.
7657 */
7658 conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev));
7659 if (!conf->shrinker) {
7660 ret = -ENOMEM;
7661 pr_warn("md/raid:%s: couldn't allocate shrinker.\n",
7662 mdname(mddev));
7663 goto abort;
7664 }
7665
7666 conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7667 conf->shrinker->scan_objects = raid5_cache_scan;
7668 conf->shrinker->count_objects = raid5_cache_count;
7669 conf->shrinker->batch = 128;
7670 conf->shrinker->private_data = conf;
7671
7672 shrinker_register(conf->shrinker);
7673
7674 sprintf(pers_name, "raid%d", mddev->new_level);
7675 rcu_assign_pointer(conf->thread,
7676 md_register_thread(raid5d, mddev, pers_name));
7677 if (!conf->thread) {
7678 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7679 mdname(mddev));
7680 ret = -ENOMEM;
7681 goto abort;
7682 }
7683
7684 return conf;
7685
7686 abort:
7687 if (conf)
7688 free_conf(conf);
7689 return ERR_PTR(ret);
7690 }
7691
only_parity(int raid_disk,int algo,int raid_disks,int max_degraded)7692 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7693 {
7694 switch (algo) {
7695 case ALGORITHM_PARITY_0:
7696 if (raid_disk < max_degraded)
7697 return 1;
7698 break;
7699 case ALGORITHM_PARITY_N:
7700 if (raid_disk >= raid_disks - max_degraded)
7701 return 1;
7702 break;
7703 case ALGORITHM_PARITY_0_6:
7704 if (raid_disk == 0 ||
7705 raid_disk == raid_disks - 1)
7706 return 1;
7707 break;
7708 case ALGORITHM_LEFT_ASYMMETRIC_6:
7709 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7710 case ALGORITHM_LEFT_SYMMETRIC_6:
7711 case ALGORITHM_RIGHT_SYMMETRIC_6:
7712 if (raid_disk == raid_disks - 1)
7713 return 1;
7714 }
7715 return 0;
7716 }
7717
raid5_set_limits(struct mddev * mddev)7718 static int raid5_set_limits(struct mddev *mddev)
7719 {
7720 struct r5conf *conf = mddev->private;
7721 struct queue_limits lim;
7722 int data_disks, stripe;
7723 struct md_rdev *rdev;
7724
7725 /*
7726 * The read-ahead size must cover two whole stripes, which is
7727 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices.
7728 */
7729 data_disks = conf->previous_raid_disks - conf->max_degraded;
7730
7731 /*
7732 * We can only discard a whole stripe. It doesn't make sense to
7733 * discard data disk but write parity disk
7734 */
7735 stripe = roundup_pow_of_two(data_disks * (mddev->chunk_sectors << 9));
7736
7737 md_init_stacking_limits(&lim);
7738 lim.io_min = mddev->chunk_sectors << 9;
7739 lim.io_opt = lim.io_min * (conf->raid_disks - conf->max_degraded);
7740 lim.features |= BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE;
7741 lim.discard_granularity = stripe;
7742 lim.max_write_zeroes_sectors = 0;
7743 mddev_stack_rdev_limits(mddev, &lim, 0);
7744 rdev_for_each(rdev, mddev)
7745 queue_limits_stack_bdev(&lim, rdev->bdev, rdev->new_data_offset,
7746 mddev->gendisk->disk_name);
7747
7748 /*
7749 * Zeroing is required for discard, otherwise data could be lost.
7750 *
7751 * Consider a scenario: discard a stripe (the stripe could be
7752 * inconsistent if discard_zeroes_data is 0); write one disk of the
7753 * stripe (the stripe could be inconsistent again depending on which
7754 * disks are used to calculate parity); the disk is broken; The stripe
7755 * data of this disk is lost.
7756 *
7757 * We only allow DISCARD if the sysadmin has confirmed that only safe
7758 * devices are in use by setting a module parameter. A better idea
7759 * might be to turn DISCARD into WRITE_ZEROES requests, as that is
7760 * required to be safe.
7761 */
7762 if (!devices_handle_discard_safely ||
7763 lim.max_discard_sectors < (stripe >> 9) ||
7764 lim.discard_granularity < stripe)
7765 lim.max_hw_discard_sectors = 0;
7766
7767 /*
7768 * Requests require having a bitmap for each stripe.
7769 * Limit the max sectors based on this.
7770 */
7771 lim.max_hw_sectors = RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf);
7772
7773 /* No restrictions on the number of segments in the request */
7774 lim.max_segments = USHRT_MAX;
7775
7776 return queue_limits_set(mddev->gendisk->queue, &lim);
7777 }
7778
raid5_run(struct mddev * mddev)7779 static int raid5_run(struct mddev *mddev)
7780 {
7781 struct r5conf *conf;
7782 int dirty_parity_disks = 0;
7783 struct md_rdev *rdev;
7784 struct md_rdev *journal_dev = NULL;
7785 sector_t reshape_offset = 0;
7786 int i;
7787 long long min_offset_diff = 0;
7788 int first = 1;
7789 int ret = -EIO;
7790
7791 if (mddev->recovery_cp != MaxSector)
7792 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7793 mdname(mddev));
7794
7795 rdev_for_each(rdev, mddev) {
7796 long long diff;
7797
7798 if (test_bit(Journal, &rdev->flags)) {
7799 journal_dev = rdev;
7800 continue;
7801 }
7802 if (rdev->raid_disk < 0)
7803 continue;
7804 diff = (rdev->new_data_offset - rdev->data_offset);
7805 if (first) {
7806 min_offset_diff = diff;
7807 first = 0;
7808 } else if (mddev->reshape_backwards &&
7809 diff < min_offset_diff)
7810 min_offset_diff = diff;
7811 else if (!mddev->reshape_backwards &&
7812 diff > min_offset_diff)
7813 min_offset_diff = diff;
7814 }
7815
7816 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7817 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7818 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7819 mdname(mddev));
7820 return -EINVAL;
7821 }
7822
7823 if (mddev->reshape_position != MaxSector) {
7824 /* Check that we can continue the reshape.
7825 * Difficulties arise if the stripe we would write to
7826 * next is at or after the stripe we would read from next.
7827 * For a reshape that changes the number of devices, this
7828 * is only possible for a very short time, and mdadm makes
7829 * sure that time appears to have past before assembling
7830 * the array. So we fail if that time hasn't passed.
7831 * For a reshape that keeps the number of devices the same
7832 * mdadm must be monitoring the reshape can keeping the
7833 * critical areas read-only and backed up. It will start
7834 * the array in read-only mode, so we check for that.
7835 */
7836 sector_t here_new, here_old;
7837 int old_disks;
7838 int max_degraded = (mddev->level == 6 ? 2 : 1);
7839 int chunk_sectors;
7840 int new_data_disks;
7841
7842 if (journal_dev) {
7843 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7844 mdname(mddev));
7845 return -EINVAL;
7846 }
7847
7848 if (mddev->new_level != mddev->level) {
7849 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7850 mdname(mddev));
7851 return -EINVAL;
7852 }
7853 old_disks = mddev->raid_disks - mddev->delta_disks;
7854 /* reshape_position must be on a new-stripe boundary, and one
7855 * further up in new geometry must map after here in old
7856 * geometry.
7857 * If the chunk sizes are different, then as we perform reshape
7858 * in units of the largest of the two, reshape_position needs
7859 * be a multiple of the largest chunk size times new data disks.
7860 */
7861 here_new = mddev->reshape_position;
7862 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7863 new_data_disks = mddev->raid_disks - max_degraded;
7864 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7865 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7866 mdname(mddev));
7867 return -EINVAL;
7868 }
7869 reshape_offset = here_new * chunk_sectors;
7870 /* here_new is the stripe we will write to */
7871 here_old = mddev->reshape_position;
7872 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7873 /* here_old is the first stripe that we might need to read
7874 * from */
7875 if (mddev->delta_disks == 0) {
7876 /* We cannot be sure it is safe to start an in-place
7877 * reshape. It is only safe if user-space is monitoring
7878 * and taking constant backups.
7879 * mdadm always starts a situation like this in
7880 * readonly mode so it can take control before
7881 * allowing any writes. So just check for that.
7882 */
7883 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7884 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7885 /* not really in-place - so OK */;
7886 else if (mddev->ro == 0) {
7887 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7888 mdname(mddev));
7889 return -EINVAL;
7890 }
7891 } else if (mddev->reshape_backwards
7892 ? (here_new * chunk_sectors + min_offset_diff <=
7893 here_old * chunk_sectors)
7894 : (here_new * chunk_sectors >=
7895 here_old * chunk_sectors + (-min_offset_diff))) {
7896 /* Reading from the same stripe as writing to - bad */
7897 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7898 mdname(mddev));
7899 return -EINVAL;
7900 }
7901 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7902 /* OK, we should be able to continue; */
7903 } else {
7904 BUG_ON(mddev->level != mddev->new_level);
7905 BUG_ON(mddev->layout != mddev->new_layout);
7906 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7907 BUG_ON(mddev->delta_disks != 0);
7908 }
7909
7910 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7911 test_bit(MD_HAS_PPL, &mddev->flags)) {
7912 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7913 mdname(mddev));
7914 clear_bit(MD_HAS_PPL, &mddev->flags);
7915 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7916 }
7917
7918 if (mddev->private == NULL)
7919 conf = setup_conf(mddev);
7920 else
7921 conf = mddev->private;
7922
7923 if (IS_ERR(conf))
7924 return PTR_ERR(conf);
7925
7926 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7927 if (!journal_dev) {
7928 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7929 mdname(mddev));
7930 mddev->ro = 1;
7931 set_disk_ro(mddev->gendisk, 1);
7932 } else if (mddev->recovery_cp == MaxSector)
7933 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7934 }
7935
7936 conf->min_offset_diff = min_offset_diff;
7937 rcu_assign_pointer(mddev->thread, conf->thread);
7938 rcu_assign_pointer(conf->thread, NULL);
7939 mddev->private = conf;
7940
7941 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7942 i++) {
7943 rdev = conf->disks[i].rdev;
7944 if (!rdev)
7945 continue;
7946 if (conf->disks[i].replacement &&
7947 conf->reshape_progress != MaxSector) {
7948 /* replacements and reshape simply do not mix. */
7949 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7950 goto abort;
7951 }
7952 if (test_bit(In_sync, &rdev->flags))
7953 continue;
7954 /* This disc is not fully in-sync. However if it
7955 * just stored parity (beyond the recovery_offset),
7956 * when we don't need to be concerned about the
7957 * array being dirty.
7958 * When reshape goes 'backwards', we never have
7959 * partially completed devices, so we only need
7960 * to worry about reshape going forwards.
7961 */
7962 /* Hack because v0.91 doesn't store recovery_offset properly. */
7963 if (mddev->major_version == 0 &&
7964 mddev->minor_version > 90)
7965 rdev->recovery_offset = reshape_offset;
7966
7967 if (rdev->recovery_offset < reshape_offset) {
7968 /* We need to check old and new layout */
7969 if (!only_parity(rdev->raid_disk,
7970 conf->algorithm,
7971 conf->raid_disks,
7972 conf->max_degraded))
7973 continue;
7974 }
7975 if (!only_parity(rdev->raid_disk,
7976 conf->prev_algo,
7977 conf->previous_raid_disks,
7978 conf->max_degraded))
7979 continue;
7980 dirty_parity_disks++;
7981 }
7982
7983 /*
7984 * 0 for a fully functional array, 1 or 2 for a degraded array.
7985 */
7986 mddev->degraded = raid5_calc_degraded(conf);
7987
7988 if (has_failed(conf)) {
7989 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7990 mdname(mddev), mddev->degraded, conf->raid_disks);
7991 goto abort;
7992 }
7993
7994 /* device size must be a multiple of chunk size */
7995 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7996 mddev->resync_max_sectors = mddev->dev_sectors;
7997
7998 if (mddev->degraded > dirty_parity_disks &&
7999 mddev->recovery_cp != MaxSector) {
8000 if (test_bit(MD_HAS_PPL, &mddev->flags))
8001 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
8002 mdname(mddev));
8003 else if (mddev->ok_start_degraded)
8004 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
8005 mdname(mddev));
8006 else {
8007 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
8008 mdname(mddev));
8009 goto abort;
8010 }
8011 }
8012
8013 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
8014 mdname(mddev), conf->level,
8015 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
8016 mddev->new_layout);
8017
8018 print_raid5_conf(conf);
8019
8020 if (conf->reshape_progress != MaxSector) {
8021 conf->reshape_safe = conf->reshape_progress;
8022 atomic_set(&conf->reshape_stripes, 0);
8023 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8024 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8025 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8026 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8027 }
8028
8029 /* Ok, everything is just fine now */
8030 if (mddev->to_remove == &raid5_attrs_group)
8031 mddev->to_remove = NULL;
8032 else if (mddev->kobj.sd &&
8033 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
8034 pr_warn("raid5: failed to create sysfs attributes for %s\n",
8035 mdname(mddev));
8036 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
8037
8038 if (!mddev_is_dm(mddev)) {
8039 ret = raid5_set_limits(mddev);
8040 if (ret)
8041 goto abort;
8042 }
8043
8044 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
8045 goto abort;
8046
8047 return 0;
8048 abort:
8049 md_unregister_thread(mddev, &mddev->thread);
8050 print_raid5_conf(conf);
8051 free_conf(conf);
8052 mddev->private = NULL;
8053 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
8054 return ret;
8055 }
8056
raid5_free(struct mddev * mddev,void * priv)8057 static void raid5_free(struct mddev *mddev, void *priv)
8058 {
8059 struct r5conf *conf = priv;
8060
8061 free_conf(conf);
8062 mddev->to_remove = &raid5_attrs_group;
8063 }
8064
raid5_status(struct seq_file * seq,struct mddev * mddev)8065 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
8066 {
8067 struct r5conf *conf = mddev->private;
8068 int i;
8069
8070 lockdep_assert_held(&mddev->lock);
8071
8072 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
8073 conf->chunk_sectors / 2, mddev->layout);
8074 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
8075 for (i = 0; i < conf->raid_disks; i++) {
8076 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
8077
8078 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8079 }
8080 seq_printf (seq, "]");
8081 }
8082
print_raid5_conf(struct r5conf * conf)8083 static void print_raid5_conf(struct r5conf *conf)
8084 {
8085 struct md_rdev *rdev;
8086 int i;
8087
8088 pr_debug("RAID conf printout:\n");
8089 if (!conf) {
8090 pr_debug("(conf==NULL)\n");
8091 return;
8092 }
8093 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
8094 conf->raid_disks,
8095 conf->raid_disks - conf->mddev->degraded);
8096
8097 for (i = 0; i < conf->raid_disks; i++) {
8098 rdev = conf->disks[i].rdev;
8099 if (rdev)
8100 pr_debug(" disk %d, o:%d, dev:%pg\n",
8101 i, !test_bit(Faulty, &rdev->flags),
8102 rdev->bdev);
8103 }
8104 }
8105
raid5_spare_active(struct mddev * mddev)8106 static int raid5_spare_active(struct mddev *mddev)
8107 {
8108 int i;
8109 struct r5conf *conf = mddev->private;
8110 struct md_rdev *rdev, *replacement;
8111 int count = 0;
8112 unsigned long flags;
8113
8114 for (i = 0; i < conf->raid_disks; i++) {
8115 rdev = conf->disks[i].rdev;
8116 replacement = conf->disks[i].replacement;
8117 if (replacement
8118 && replacement->recovery_offset == MaxSector
8119 && !test_bit(Faulty, &replacement->flags)
8120 && !test_and_set_bit(In_sync, &replacement->flags)) {
8121 /* Replacement has just become active. */
8122 if (!rdev
8123 || !test_and_clear_bit(In_sync, &rdev->flags))
8124 count++;
8125 if (rdev) {
8126 /* Replaced device not technically faulty,
8127 * but we need to be sure it gets removed
8128 * and never re-added.
8129 */
8130 set_bit(Faulty, &rdev->flags);
8131 sysfs_notify_dirent_safe(
8132 rdev->sysfs_state);
8133 }
8134 sysfs_notify_dirent_safe(replacement->sysfs_state);
8135 } else if (rdev
8136 && rdev->recovery_offset == MaxSector
8137 && !test_bit(Faulty, &rdev->flags)
8138 && !test_and_set_bit(In_sync, &rdev->flags)) {
8139 count++;
8140 sysfs_notify_dirent_safe(rdev->sysfs_state);
8141 }
8142 }
8143 spin_lock_irqsave(&conf->device_lock, flags);
8144 mddev->degraded = raid5_calc_degraded(conf);
8145 spin_unlock_irqrestore(&conf->device_lock, flags);
8146 print_raid5_conf(conf);
8147 return count;
8148 }
8149
raid5_remove_disk(struct mddev * mddev,struct md_rdev * rdev)8150 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
8151 {
8152 struct r5conf *conf = mddev->private;
8153 int err = 0;
8154 int number = rdev->raid_disk;
8155 struct md_rdev **rdevp;
8156 struct disk_info *p;
8157 struct md_rdev *tmp;
8158
8159 print_raid5_conf(conf);
8160 if (test_bit(Journal, &rdev->flags) && conf->log) {
8161 /*
8162 * we can't wait pending write here, as this is called in
8163 * raid5d, wait will deadlock.
8164 * neilb: there is no locking about new writes here,
8165 * so this cannot be safe.
8166 */
8167 if (atomic_read(&conf->active_stripes) ||
8168 atomic_read(&conf->r5c_cached_full_stripes) ||
8169 atomic_read(&conf->r5c_cached_partial_stripes)) {
8170 return -EBUSY;
8171 }
8172 log_exit(conf);
8173 return 0;
8174 }
8175 if (unlikely(number >= conf->pool_size))
8176 return 0;
8177 p = conf->disks + number;
8178 if (rdev == p->rdev)
8179 rdevp = &p->rdev;
8180 else if (rdev == p->replacement)
8181 rdevp = &p->replacement;
8182 else
8183 return 0;
8184
8185 if (number >= conf->raid_disks &&
8186 conf->reshape_progress == MaxSector)
8187 clear_bit(In_sync, &rdev->flags);
8188
8189 if (test_bit(In_sync, &rdev->flags) ||
8190 atomic_read(&rdev->nr_pending)) {
8191 err = -EBUSY;
8192 goto abort;
8193 }
8194 /* Only remove non-faulty devices if recovery
8195 * isn't possible.
8196 */
8197 if (!test_bit(Faulty, &rdev->flags) &&
8198 mddev->recovery_disabled != conf->recovery_disabled &&
8199 !has_failed(conf) &&
8200 (!p->replacement || p->replacement == rdev) &&
8201 number < conf->raid_disks) {
8202 err = -EBUSY;
8203 goto abort;
8204 }
8205 WRITE_ONCE(*rdevp, NULL);
8206 if (!err) {
8207 err = log_modify(conf, rdev, false);
8208 if (err)
8209 goto abort;
8210 }
8211
8212 tmp = p->replacement;
8213 if (tmp) {
8214 /* We must have just cleared 'rdev' */
8215 WRITE_ONCE(p->rdev, tmp);
8216 clear_bit(Replacement, &tmp->flags);
8217 WRITE_ONCE(p->replacement, NULL);
8218
8219 if (!err)
8220 err = log_modify(conf, tmp, true);
8221 }
8222
8223 clear_bit(WantReplacement, &rdev->flags);
8224 abort:
8225
8226 print_raid5_conf(conf);
8227 return err;
8228 }
8229
raid5_add_disk(struct mddev * mddev,struct md_rdev * rdev)8230 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8231 {
8232 struct r5conf *conf = mddev->private;
8233 int ret, err = -EEXIST;
8234 int disk;
8235 struct disk_info *p;
8236 struct md_rdev *tmp;
8237 int first = 0;
8238 int last = conf->raid_disks - 1;
8239
8240 if (test_bit(Journal, &rdev->flags)) {
8241 if (conf->log)
8242 return -EBUSY;
8243
8244 rdev->raid_disk = 0;
8245 /*
8246 * The array is in readonly mode if journal is missing, so no
8247 * write requests running. We should be safe
8248 */
8249 ret = log_init(conf, rdev, false);
8250 if (ret)
8251 return ret;
8252
8253 ret = r5l_start(conf->log);
8254 if (ret)
8255 return ret;
8256
8257 return 0;
8258 }
8259 if (mddev->recovery_disabled == conf->recovery_disabled)
8260 return -EBUSY;
8261
8262 if (rdev->saved_raid_disk < 0 && has_failed(conf))
8263 /* no point adding a device */
8264 return -EINVAL;
8265
8266 if (rdev->raid_disk >= 0)
8267 first = last = rdev->raid_disk;
8268
8269 /*
8270 * find the disk ... but prefer rdev->saved_raid_disk
8271 * if possible.
8272 */
8273 if (rdev->saved_raid_disk >= first &&
8274 rdev->saved_raid_disk <= last &&
8275 conf->disks[rdev->saved_raid_disk].rdev == NULL)
8276 first = rdev->saved_raid_disk;
8277
8278 for (disk = first; disk <= last; disk++) {
8279 p = conf->disks + disk;
8280 if (p->rdev == NULL) {
8281 clear_bit(In_sync, &rdev->flags);
8282 rdev->raid_disk = disk;
8283 if (rdev->saved_raid_disk != disk)
8284 conf->fullsync = 1;
8285 WRITE_ONCE(p->rdev, rdev);
8286
8287 err = log_modify(conf, rdev, true);
8288
8289 goto out;
8290 }
8291 }
8292 for (disk = first; disk <= last; disk++) {
8293 p = conf->disks + disk;
8294 tmp = p->rdev;
8295 if (test_bit(WantReplacement, &tmp->flags) &&
8296 mddev->reshape_position == MaxSector &&
8297 p->replacement == NULL) {
8298 clear_bit(In_sync, &rdev->flags);
8299 set_bit(Replacement, &rdev->flags);
8300 rdev->raid_disk = disk;
8301 err = 0;
8302 conf->fullsync = 1;
8303 WRITE_ONCE(p->replacement, rdev);
8304 break;
8305 }
8306 }
8307 out:
8308 print_raid5_conf(conf);
8309 return err;
8310 }
8311
raid5_resize(struct mddev * mddev,sector_t sectors)8312 static int raid5_resize(struct mddev *mddev, sector_t sectors)
8313 {
8314 /* no resync is happening, and there is enough space
8315 * on all devices, so we can resize.
8316 * We need to make sure resync covers any new space.
8317 * If the array is shrinking we should possibly wait until
8318 * any io in the removed space completes, but it hardly seems
8319 * worth it.
8320 */
8321 sector_t newsize;
8322 struct r5conf *conf = mddev->private;
8323 int ret;
8324
8325 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8326 return -EINVAL;
8327 sectors &= ~((sector_t)conf->chunk_sectors - 1);
8328 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8329 if (mddev->external_size &&
8330 mddev->array_sectors > newsize)
8331 return -EINVAL;
8332
8333 ret = mddev->bitmap_ops->resize(mddev, sectors, 0, false);
8334 if (ret)
8335 return ret;
8336
8337 md_set_array_sectors(mddev, newsize);
8338 if (sectors > mddev->dev_sectors &&
8339 mddev->recovery_cp > mddev->dev_sectors) {
8340 mddev->recovery_cp = mddev->dev_sectors;
8341 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8342 }
8343 mddev->dev_sectors = sectors;
8344 mddev->resync_max_sectors = sectors;
8345 return 0;
8346 }
8347
check_stripe_cache(struct mddev * mddev)8348 static int check_stripe_cache(struct mddev *mddev)
8349 {
8350 /* Can only proceed if there are plenty of stripe_heads.
8351 * We need a minimum of one full stripe,, and for sensible progress
8352 * it is best to have about 4 times that.
8353 * If we require 4 times, then the default 256 4K stripe_heads will
8354 * allow for chunk sizes up to 256K, which is probably OK.
8355 * If the chunk size is greater, user-space should request more
8356 * stripe_heads first.
8357 */
8358 struct r5conf *conf = mddev->private;
8359 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8360 > conf->min_nr_stripes ||
8361 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8362 > conf->min_nr_stripes) {
8363 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
8364 mdname(mddev),
8365 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8366 / RAID5_STRIPE_SIZE(conf))*4);
8367 return 0;
8368 }
8369 return 1;
8370 }
8371
check_reshape(struct mddev * mddev)8372 static int check_reshape(struct mddev *mddev)
8373 {
8374 struct r5conf *conf = mddev->private;
8375
8376 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8377 return -EINVAL;
8378 if (mddev->delta_disks == 0 &&
8379 mddev->new_layout == mddev->layout &&
8380 mddev->new_chunk_sectors == mddev->chunk_sectors)
8381 return 0; /* nothing to do */
8382 if (has_failed(conf))
8383 return -EINVAL;
8384 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8385 /* We might be able to shrink, but the devices must
8386 * be made bigger first.
8387 * For raid6, 4 is the minimum size.
8388 * Otherwise 2 is the minimum
8389 */
8390 int min = 2;
8391 if (mddev->level == 6)
8392 min = 4;
8393 if (mddev->raid_disks + mddev->delta_disks < min)
8394 return -EINVAL;
8395 }
8396
8397 if (!check_stripe_cache(mddev))
8398 return -ENOSPC;
8399
8400 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8401 mddev->delta_disks > 0)
8402 if (resize_chunks(conf,
8403 conf->previous_raid_disks
8404 + max(0, mddev->delta_disks),
8405 max(mddev->new_chunk_sectors,
8406 mddev->chunk_sectors)
8407 ) < 0)
8408 return -ENOMEM;
8409
8410 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8411 return 0; /* never bother to shrink */
8412 return resize_stripes(conf, (conf->previous_raid_disks
8413 + mddev->delta_disks));
8414 }
8415
raid5_start_reshape(struct mddev * mddev)8416 static int raid5_start_reshape(struct mddev *mddev)
8417 {
8418 struct r5conf *conf = mddev->private;
8419 struct md_rdev *rdev;
8420 int spares = 0;
8421 int i;
8422 unsigned long flags;
8423
8424 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8425 return -EBUSY;
8426
8427 if (!check_stripe_cache(mddev))
8428 return -ENOSPC;
8429
8430 if (has_failed(conf))
8431 return -EINVAL;
8432
8433 /* raid5 can't handle concurrent reshape and recovery */
8434 if (mddev->recovery_cp < MaxSector)
8435 return -EBUSY;
8436 for (i = 0; i < conf->raid_disks; i++)
8437 if (conf->disks[i].replacement)
8438 return -EBUSY;
8439
8440 rdev_for_each(rdev, mddev) {
8441 if (!test_bit(In_sync, &rdev->flags)
8442 && !test_bit(Faulty, &rdev->flags))
8443 spares++;
8444 }
8445
8446 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8447 /* Not enough devices even to make a degraded array
8448 * of that size
8449 */
8450 return -EINVAL;
8451
8452 /* Refuse to reduce size of the array. Any reductions in
8453 * array size must be through explicit setting of array_size
8454 * attribute.
8455 */
8456 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8457 < mddev->array_sectors) {
8458 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8459 mdname(mddev));
8460 return -EINVAL;
8461 }
8462
8463 atomic_set(&conf->reshape_stripes, 0);
8464 spin_lock_irq(&conf->device_lock);
8465 write_seqcount_begin(&conf->gen_lock);
8466 conf->previous_raid_disks = conf->raid_disks;
8467 conf->raid_disks += mddev->delta_disks;
8468 conf->prev_chunk_sectors = conf->chunk_sectors;
8469 conf->chunk_sectors = mddev->new_chunk_sectors;
8470 conf->prev_algo = conf->algorithm;
8471 conf->algorithm = mddev->new_layout;
8472 conf->generation++;
8473 /* Code that selects data_offset needs to see the generation update
8474 * if reshape_progress has been set - so a memory barrier needed.
8475 */
8476 smp_mb();
8477 if (mddev->reshape_backwards)
8478 conf->reshape_progress = raid5_size(mddev, 0, 0);
8479 else
8480 conf->reshape_progress = 0;
8481 conf->reshape_safe = conf->reshape_progress;
8482 write_seqcount_end(&conf->gen_lock);
8483 spin_unlock_irq(&conf->device_lock);
8484
8485 /* Now make sure any requests that proceeded on the assumption
8486 * the reshape wasn't running - like Discard or Read - have
8487 * completed.
8488 */
8489 raid5_quiesce(mddev, true);
8490 raid5_quiesce(mddev, false);
8491
8492 /* Add some new drives, as many as will fit.
8493 * We know there are enough to make the newly sized array work.
8494 * Don't add devices if we are reducing the number of
8495 * devices in the array. This is because it is not possible
8496 * to correctly record the "partially reconstructed" state of
8497 * such devices during the reshape and confusion could result.
8498 */
8499 if (mddev->delta_disks >= 0) {
8500 rdev_for_each(rdev, mddev)
8501 if (rdev->raid_disk < 0 &&
8502 !test_bit(Faulty, &rdev->flags)) {
8503 if (raid5_add_disk(mddev, rdev) == 0) {
8504 if (rdev->raid_disk
8505 >= conf->previous_raid_disks)
8506 set_bit(In_sync, &rdev->flags);
8507 else
8508 rdev->recovery_offset = 0;
8509
8510 /* Failure here is OK */
8511 sysfs_link_rdev(mddev, rdev);
8512 }
8513 } else if (rdev->raid_disk >= conf->previous_raid_disks
8514 && !test_bit(Faulty, &rdev->flags)) {
8515 /* This is a spare that was manually added */
8516 set_bit(In_sync, &rdev->flags);
8517 }
8518
8519 /* When a reshape changes the number of devices,
8520 * ->degraded is measured against the larger of the
8521 * pre and post number of devices.
8522 */
8523 spin_lock_irqsave(&conf->device_lock, flags);
8524 mddev->degraded = raid5_calc_degraded(conf);
8525 spin_unlock_irqrestore(&conf->device_lock, flags);
8526 }
8527 mddev->raid_disks = conf->raid_disks;
8528 mddev->reshape_position = conf->reshape_progress;
8529 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8530
8531 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8532 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8533 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8534 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8535 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8536 conf->reshape_checkpoint = jiffies;
8537 md_new_event();
8538 return 0;
8539 }
8540
8541 /* This is called from the reshape thread and should make any
8542 * changes needed in 'conf'
8543 */
end_reshape(struct r5conf * conf)8544 static void end_reshape(struct r5conf *conf)
8545 {
8546
8547 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8548 struct md_rdev *rdev;
8549
8550 spin_lock_irq(&conf->device_lock);
8551 conf->previous_raid_disks = conf->raid_disks;
8552 md_finish_reshape(conf->mddev);
8553 smp_wmb();
8554 conf->reshape_progress = MaxSector;
8555 conf->mddev->reshape_position = MaxSector;
8556 rdev_for_each(rdev, conf->mddev)
8557 if (rdev->raid_disk >= 0 &&
8558 !test_bit(Journal, &rdev->flags) &&
8559 !test_bit(In_sync, &rdev->flags))
8560 rdev->recovery_offset = MaxSector;
8561 spin_unlock_irq(&conf->device_lock);
8562 wake_up(&conf->wait_for_reshape);
8563
8564 mddev_update_io_opt(conf->mddev,
8565 conf->raid_disks - conf->max_degraded);
8566 }
8567 }
8568
8569 /* This is called from the raid5d thread with mddev_lock held.
8570 * It makes config changes to the device.
8571 */
raid5_finish_reshape(struct mddev * mddev)8572 static void raid5_finish_reshape(struct mddev *mddev)
8573 {
8574 struct r5conf *conf = mddev->private;
8575 struct md_rdev *rdev;
8576
8577 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8578
8579 if (mddev->delta_disks <= 0) {
8580 int d;
8581 spin_lock_irq(&conf->device_lock);
8582 mddev->degraded = raid5_calc_degraded(conf);
8583 spin_unlock_irq(&conf->device_lock);
8584 for (d = conf->raid_disks ;
8585 d < conf->raid_disks - mddev->delta_disks;
8586 d++) {
8587 rdev = conf->disks[d].rdev;
8588 if (rdev)
8589 clear_bit(In_sync, &rdev->flags);
8590 rdev = conf->disks[d].replacement;
8591 if (rdev)
8592 clear_bit(In_sync, &rdev->flags);
8593 }
8594 }
8595 mddev->layout = conf->algorithm;
8596 mddev->chunk_sectors = conf->chunk_sectors;
8597 mddev->reshape_position = MaxSector;
8598 mddev->delta_disks = 0;
8599 mddev->reshape_backwards = 0;
8600 }
8601 }
8602
raid5_quiesce(struct mddev * mddev,int quiesce)8603 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8604 {
8605 struct r5conf *conf = mddev->private;
8606
8607 if (quiesce) {
8608 /* stop all writes */
8609 lock_all_device_hash_locks_irq(conf);
8610 /* '2' tells resync/reshape to pause so that all
8611 * active stripes can drain
8612 */
8613 r5c_flush_cache(conf, INT_MAX);
8614 /* need a memory barrier to make sure read_one_chunk() sees
8615 * quiesce started and reverts to slow (locked) path.
8616 */
8617 smp_store_release(&conf->quiesce, 2);
8618 wait_event_cmd(conf->wait_for_quiescent,
8619 atomic_read(&conf->active_stripes) == 0 &&
8620 atomic_read(&conf->active_aligned_reads) == 0,
8621 unlock_all_device_hash_locks_irq(conf),
8622 lock_all_device_hash_locks_irq(conf));
8623 conf->quiesce = 1;
8624 unlock_all_device_hash_locks_irq(conf);
8625 /* allow reshape to continue */
8626 wake_up(&conf->wait_for_reshape);
8627 } else {
8628 /* re-enable writes */
8629 lock_all_device_hash_locks_irq(conf);
8630 conf->quiesce = 0;
8631 wake_up(&conf->wait_for_quiescent);
8632 wake_up(&conf->wait_for_reshape);
8633 unlock_all_device_hash_locks_irq(conf);
8634 }
8635 log_quiesce(conf, quiesce);
8636 }
8637
raid45_takeover_raid0(struct mddev * mddev,int level)8638 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8639 {
8640 struct r0conf *raid0_conf = mddev->private;
8641 sector_t sectors;
8642
8643 /* for raid0 takeover only one zone is supported */
8644 if (raid0_conf->nr_strip_zones > 1) {
8645 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8646 mdname(mddev));
8647 return ERR_PTR(-EINVAL);
8648 }
8649
8650 sectors = raid0_conf->strip_zone[0].zone_end;
8651 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8652 mddev->dev_sectors = sectors;
8653 mddev->new_level = level;
8654 mddev->new_layout = ALGORITHM_PARITY_N;
8655 mddev->new_chunk_sectors = mddev->chunk_sectors;
8656 mddev->raid_disks += 1;
8657 mddev->delta_disks = 1;
8658 /* make sure it will be not marked as dirty */
8659 mddev->recovery_cp = MaxSector;
8660
8661 return setup_conf(mddev);
8662 }
8663
raid5_takeover_raid1(struct mddev * mddev)8664 static void *raid5_takeover_raid1(struct mddev *mddev)
8665 {
8666 int chunksect;
8667 void *ret;
8668
8669 if (mddev->raid_disks != 2 ||
8670 mddev->degraded > 1)
8671 return ERR_PTR(-EINVAL);
8672
8673 /* Should check if there are write-behind devices? */
8674
8675 chunksect = 64*2; /* 64K by default */
8676
8677 /* The array must be an exact multiple of chunksize */
8678 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8679 chunksect >>= 1;
8680
8681 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8682 /* array size does not allow a suitable chunk size */
8683 return ERR_PTR(-EINVAL);
8684
8685 mddev->new_level = 5;
8686 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8687 mddev->new_chunk_sectors = chunksect;
8688
8689 ret = setup_conf(mddev);
8690 if (!IS_ERR(ret))
8691 mddev_clear_unsupported_flags(mddev,
8692 UNSUPPORTED_MDDEV_FLAGS);
8693 return ret;
8694 }
8695
raid5_takeover_raid6(struct mddev * mddev)8696 static void *raid5_takeover_raid6(struct mddev *mddev)
8697 {
8698 int new_layout;
8699
8700 switch (mddev->layout) {
8701 case ALGORITHM_LEFT_ASYMMETRIC_6:
8702 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8703 break;
8704 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8705 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8706 break;
8707 case ALGORITHM_LEFT_SYMMETRIC_6:
8708 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8709 break;
8710 case ALGORITHM_RIGHT_SYMMETRIC_6:
8711 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8712 break;
8713 case ALGORITHM_PARITY_0_6:
8714 new_layout = ALGORITHM_PARITY_0;
8715 break;
8716 case ALGORITHM_PARITY_N:
8717 new_layout = ALGORITHM_PARITY_N;
8718 break;
8719 default:
8720 return ERR_PTR(-EINVAL);
8721 }
8722 mddev->new_level = 5;
8723 mddev->new_layout = new_layout;
8724 mddev->delta_disks = -1;
8725 mddev->raid_disks -= 1;
8726 return setup_conf(mddev);
8727 }
8728
raid5_check_reshape(struct mddev * mddev)8729 static int raid5_check_reshape(struct mddev *mddev)
8730 {
8731 /* For a 2-drive array, the layout and chunk size can be changed
8732 * immediately as not restriping is needed.
8733 * For larger arrays we record the new value - after validation
8734 * to be used by a reshape pass.
8735 */
8736 struct r5conf *conf = mddev->private;
8737 int new_chunk = mddev->new_chunk_sectors;
8738
8739 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8740 return -EINVAL;
8741 if (new_chunk > 0) {
8742 if (!is_power_of_2(new_chunk))
8743 return -EINVAL;
8744 if (new_chunk < (PAGE_SIZE>>9))
8745 return -EINVAL;
8746 if (mddev->array_sectors & (new_chunk-1))
8747 /* not factor of array size */
8748 return -EINVAL;
8749 }
8750
8751 /* They look valid */
8752
8753 if (mddev->raid_disks == 2) {
8754 /* can make the change immediately */
8755 if (mddev->new_layout >= 0) {
8756 conf->algorithm = mddev->new_layout;
8757 mddev->layout = mddev->new_layout;
8758 }
8759 if (new_chunk > 0) {
8760 conf->chunk_sectors = new_chunk ;
8761 mddev->chunk_sectors = new_chunk;
8762 }
8763 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8764 md_wakeup_thread(mddev->thread);
8765 }
8766 return check_reshape(mddev);
8767 }
8768
raid6_check_reshape(struct mddev * mddev)8769 static int raid6_check_reshape(struct mddev *mddev)
8770 {
8771 int new_chunk = mddev->new_chunk_sectors;
8772
8773 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8774 return -EINVAL;
8775 if (new_chunk > 0) {
8776 if (!is_power_of_2(new_chunk))
8777 return -EINVAL;
8778 if (new_chunk < (PAGE_SIZE >> 9))
8779 return -EINVAL;
8780 if (mddev->array_sectors & (new_chunk-1))
8781 /* not factor of array size */
8782 return -EINVAL;
8783 }
8784
8785 /* They look valid */
8786 return check_reshape(mddev);
8787 }
8788
raid5_takeover(struct mddev * mddev)8789 static void *raid5_takeover(struct mddev *mddev)
8790 {
8791 /* raid5 can take over:
8792 * raid0 - if there is only one strip zone - make it a raid4 layout
8793 * raid1 - if there are two drives. We need to know the chunk size
8794 * raid4 - trivial - just use a raid4 layout.
8795 * raid6 - Providing it is a *_6 layout
8796 */
8797 if (mddev->level == 0)
8798 return raid45_takeover_raid0(mddev, 5);
8799 if (mddev->level == 1)
8800 return raid5_takeover_raid1(mddev);
8801 if (mddev->level == 4) {
8802 mddev->new_layout = ALGORITHM_PARITY_N;
8803 mddev->new_level = 5;
8804 return setup_conf(mddev);
8805 }
8806 if (mddev->level == 6)
8807 return raid5_takeover_raid6(mddev);
8808
8809 return ERR_PTR(-EINVAL);
8810 }
8811
raid4_takeover(struct mddev * mddev)8812 static void *raid4_takeover(struct mddev *mddev)
8813 {
8814 /* raid4 can take over:
8815 * raid0 - if there is only one strip zone
8816 * raid5 - if layout is right
8817 */
8818 if (mddev->level == 0)
8819 return raid45_takeover_raid0(mddev, 4);
8820 if (mddev->level == 5 &&
8821 mddev->layout == ALGORITHM_PARITY_N) {
8822 mddev->new_layout = 0;
8823 mddev->new_level = 4;
8824 return setup_conf(mddev);
8825 }
8826 return ERR_PTR(-EINVAL);
8827 }
8828
8829 static struct md_personality raid5_personality;
8830
raid6_takeover(struct mddev * mddev)8831 static void *raid6_takeover(struct mddev *mddev)
8832 {
8833 /* Currently can only take over a raid5. We map the
8834 * personality to an equivalent raid6 personality
8835 * with the Q block at the end.
8836 */
8837 int new_layout;
8838
8839 if (mddev->pers != &raid5_personality)
8840 return ERR_PTR(-EINVAL);
8841 if (mddev->degraded > 1)
8842 return ERR_PTR(-EINVAL);
8843 if (mddev->raid_disks > 253)
8844 return ERR_PTR(-EINVAL);
8845 if (mddev->raid_disks < 3)
8846 return ERR_PTR(-EINVAL);
8847
8848 switch (mddev->layout) {
8849 case ALGORITHM_LEFT_ASYMMETRIC:
8850 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8851 break;
8852 case ALGORITHM_RIGHT_ASYMMETRIC:
8853 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8854 break;
8855 case ALGORITHM_LEFT_SYMMETRIC:
8856 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8857 break;
8858 case ALGORITHM_RIGHT_SYMMETRIC:
8859 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8860 break;
8861 case ALGORITHM_PARITY_0:
8862 new_layout = ALGORITHM_PARITY_0_6;
8863 break;
8864 case ALGORITHM_PARITY_N:
8865 new_layout = ALGORITHM_PARITY_N;
8866 break;
8867 default:
8868 return ERR_PTR(-EINVAL);
8869 }
8870 mddev->new_level = 6;
8871 mddev->new_layout = new_layout;
8872 mddev->delta_disks = 1;
8873 mddev->raid_disks += 1;
8874 return setup_conf(mddev);
8875 }
8876
raid5_change_consistency_policy(struct mddev * mddev,const char * buf)8877 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8878 {
8879 struct r5conf *conf;
8880 int err;
8881
8882 err = mddev_suspend_and_lock(mddev);
8883 if (err)
8884 return err;
8885 conf = mddev->private;
8886 if (!conf) {
8887 mddev_unlock_and_resume(mddev);
8888 return -ENODEV;
8889 }
8890
8891 if (strncmp(buf, "ppl", 3) == 0) {
8892 /* ppl only works with RAID 5 */
8893 if (!raid5_has_ppl(conf) && conf->level == 5) {
8894 err = log_init(conf, NULL, true);
8895 if (!err) {
8896 err = resize_stripes(conf, conf->pool_size);
8897 if (err)
8898 log_exit(conf);
8899 }
8900 } else
8901 err = -EINVAL;
8902 } else if (strncmp(buf, "resync", 6) == 0) {
8903 if (raid5_has_ppl(conf)) {
8904 log_exit(conf);
8905 err = resize_stripes(conf, conf->pool_size);
8906 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8907 r5l_log_disk_error(conf)) {
8908 bool journal_dev_exists = false;
8909 struct md_rdev *rdev;
8910
8911 rdev_for_each(rdev, mddev)
8912 if (test_bit(Journal, &rdev->flags)) {
8913 journal_dev_exists = true;
8914 break;
8915 }
8916
8917 if (!journal_dev_exists)
8918 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8919 else /* need remove journal device first */
8920 err = -EBUSY;
8921 } else
8922 err = -EINVAL;
8923 } else {
8924 err = -EINVAL;
8925 }
8926
8927 if (!err)
8928 md_update_sb(mddev, 1);
8929
8930 mddev_unlock_and_resume(mddev);
8931
8932 return err;
8933 }
8934
raid5_start(struct mddev * mddev)8935 static int raid5_start(struct mddev *mddev)
8936 {
8937 struct r5conf *conf = mddev->private;
8938
8939 return r5l_start(conf->log);
8940 }
8941
8942 /*
8943 * This is only used for dm-raid456, caller already frozen sync_thread, hence
8944 * if rehsape is still in progress, io that is waiting for reshape can never be
8945 * done now, hence wake up and handle those IO.
8946 */
raid5_prepare_suspend(struct mddev * mddev)8947 static void raid5_prepare_suspend(struct mddev *mddev)
8948 {
8949 struct r5conf *conf = mddev->private;
8950
8951 wake_up(&conf->wait_for_reshape);
8952 }
8953
8954 static struct md_personality raid6_personality =
8955 {
8956 .head = {
8957 .type = MD_PERSONALITY,
8958 .id = ID_RAID6,
8959 .name = "raid6",
8960 .owner = THIS_MODULE,
8961 },
8962
8963 .make_request = raid5_make_request,
8964 .run = raid5_run,
8965 .start = raid5_start,
8966 .free = raid5_free,
8967 .status = raid5_status,
8968 .error_handler = raid5_error,
8969 .hot_add_disk = raid5_add_disk,
8970 .hot_remove_disk= raid5_remove_disk,
8971 .spare_active = raid5_spare_active,
8972 .sync_request = raid5_sync_request,
8973 .resize = raid5_resize,
8974 .size = raid5_size,
8975 .check_reshape = raid6_check_reshape,
8976 .start_reshape = raid5_start_reshape,
8977 .finish_reshape = raid5_finish_reshape,
8978 .quiesce = raid5_quiesce,
8979 .takeover = raid6_takeover,
8980 .change_consistency_policy = raid5_change_consistency_policy,
8981 .prepare_suspend = raid5_prepare_suspend,
8982 .bitmap_sector = raid5_bitmap_sector,
8983 };
8984 static struct md_personality raid5_personality =
8985 {
8986 .head = {
8987 .type = MD_PERSONALITY,
8988 .id = ID_RAID5,
8989 .name = "raid5",
8990 .owner = THIS_MODULE,
8991 },
8992
8993 .make_request = raid5_make_request,
8994 .run = raid5_run,
8995 .start = raid5_start,
8996 .free = raid5_free,
8997 .status = raid5_status,
8998 .error_handler = raid5_error,
8999 .hot_add_disk = raid5_add_disk,
9000 .hot_remove_disk= raid5_remove_disk,
9001 .spare_active = raid5_spare_active,
9002 .sync_request = raid5_sync_request,
9003 .resize = raid5_resize,
9004 .size = raid5_size,
9005 .check_reshape = raid5_check_reshape,
9006 .start_reshape = raid5_start_reshape,
9007 .finish_reshape = raid5_finish_reshape,
9008 .quiesce = raid5_quiesce,
9009 .takeover = raid5_takeover,
9010 .change_consistency_policy = raid5_change_consistency_policy,
9011 .prepare_suspend = raid5_prepare_suspend,
9012 .bitmap_sector = raid5_bitmap_sector,
9013 };
9014
9015 static struct md_personality raid4_personality =
9016 {
9017 .head = {
9018 .type = MD_PERSONALITY,
9019 .id = ID_RAID4,
9020 .name = "raid4",
9021 .owner = THIS_MODULE,
9022 },
9023
9024 .make_request = raid5_make_request,
9025 .run = raid5_run,
9026 .start = raid5_start,
9027 .free = raid5_free,
9028 .status = raid5_status,
9029 .error_handler = raid5_error,
9030 .hot_add_disk = raid5_add_disk,
9031 .hot_remove_disk= raid5_remove_disk,
9032 .spare_active = raid5_spare_active,
9033 .sync_request = raid5_sync_request,
9034 .resize = raid5_resize,
9035 .size = raid5_size,
9036 .check_reshape = raid5_check_reshape,
9037 .start_reshape = raid5_start_reshape,
9038 .finish_reshape = raid5_finish_reshape,
9039 .quiesce = raid5_quiesce,
9040 .takeover = raid4_takeover,
9041 .change_consistency_policy = raid5_change_consistency_policy,
9042 .prepare_suspend = raid5_prepare_suspend,
9043 .bitmap_sector = raid5_bitmap_sector,
9044 };
9045
raid5_init(void)9046 static int __init raid5_init(void)
9047 {
9048 int ret;
9049
9050 raid5_wq = alloc_workqueue("raid5wq",
9051 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
9052 if (!raid5_wq)
9053 return -ENOMEM;
9054
9055 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
9056 "md/raid5:prepare",
9057 raid456_cpu_up_prepare,
9058 raid456_cpu_dead);
9059 if (ret)
9060 goto err_destroy_wq;
9061
9062 ret = register_md_submodule(&raid6_personality.head);
9063 if (ret)
9064 goto err_cpuhp_remove;
9065
9066 ret = register_md_submodule(&raid5_personality.head);
9067 if (ret)
9068 goto err_unregister_raid6;
9069
9070 ret = register_md_submodule(&raid4_personality.head);
9071 if (ret)
9072 goto err_unregister_raid5;
9073
9074 return 0;
9075
9076 err_unregister_raid5:
9077 unregister_md_submodule(&raid5_personality.head);
9078 err_unregister_raid6:
9079 unregister_md_submodule(&raid6_personality.head);
9080 err_cpuhp_remove:
9081 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9082 err_destroy_wq:
9083 destroy_workqueue(raid5_wq);
9084 return ret;
9085 }
9086
raid5_exit(void)9087 static void __exit raid5_exit(void)
9088 {
9089 unregister_md_submodule(&raid6_personality.head);
9090 unregister_md_submodule(&raid5_personality.head);
9091 unregister_md_submodule(&raid4_personality.head);
9092 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9093 destroy_workqueue(raid5_wq);
9094 }
9095
9096 module_init(raid5_init);
9097 module_exit(raid5_exit);
9098 MODULE_LICENSE("GPL");
9099 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
9100 MODULE_ALIAS("md-personality-4"); /* RAID5 */
9101 MODULE_ALIAS("md-raid5");
9102 MODULE_ALIAS("md-raid4");
9103 MODULE_ALIAS("md-level-5");
9104 MODULE_ALIAS("md-level-4");
9105 MODULE_ALIAS("md-personality-8"); /* RAID6 */
9106 MODULE_ALIAS("md-raid6");
9107 MODULE_ALIAS("md-level-6");
9108
9109 /* This used to be two separate modules, they were: */
9110 MODULE_ALIAS("raid5");
9111 MODULE_ALIAS("raid6");
9112