1 /*
2 * FreeSec: libcrypt for NetBSD
3 *
4 * Copyright (c) 1994 David Burren
5 * All rights reserved.
6 *
7 * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
8 * this file should now *only* export crypt(), in order to make
9 * binaries of libcrypt exportable from the USA
10 *
11 * Adapted for FreeBSD-4.0 by Mark R V Murray
12 * this file should now *only* export crypt_des(), in order to make
13 * a module that can be optionally included in libcrypt.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. Neither the name of the author nor the names of other contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 * This is an original implementation of the DES and the crypt(3) interfaces
40 * by David Burren <davidb@werj.com.au>.
41 *
42 * An excellent reference on the underlying algorithm (and related
43 * algorithms) is:
44 *
45 * B. Schneier, Applied Cryptography: protocols, algorithms,
46 * and source code in C, John Wiley & Sons, 1994.
47 *
48 * Note that in that book's description of DES the lookups for the initial,
49 * pbox, and final permutations are inverted (this has been brought to the
50 * attention of the author). A list of errata for this book has been
51 * posted to the sci.crypt newsgroup by the author and is available for FTP.
52 *
53 * ARCHITECTURE ASSUMPTIONS:
54 * It is assumed that the 8-byte arrays passed by reference can be
55 * addressed as arrays of u_int32_t's (ie. the CPU is not picky about
56 * alignment).
57 */
58
59 #include <sys/types.h>
60 #include <sys/param.h>
61 #include <arpa/inet.h>
62 #include <pwd.h>
63 #include <string.h>
64 #include "crypt.h"
65
66 /* We can't always assume gcc */
67 #if defined(__GNUC__) && !defined(lint)
68 #define INLINE inline
69 #else
70 #define INLINE
71 #endif
72
73
74 static const u_char IP[64] = {
75 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
76 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
77 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
78 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
79 };
80
81 static __thread u_char inv_key_perm[64];
82 static const u_char key_perm[56] = {
83 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
84 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
85 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
86 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
87 };
88
89 static const u_char key_shifts[16] = {
90 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
91 };
92
93 static __thread u_char inv_comp_perm[56];
94 static const u_char comp_perm[48] = {
95 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
96 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
97 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
98 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
99 };
100
101 /*
102 * No E box is used, as it's replaced by some ANDs, shifts, and ORs.
103 */
104
105 static __thread u_char u_sbox[8][64];
106 static const u_char sbox[8][64] = {
107 {
108 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
109 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
110 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
111 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
112 },
113 {
114 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
115 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
116 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
117 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
118 },
119 {
120 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
121 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
122 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
123 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
124 },
125 {
126 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
127 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
128 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
129 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
130 },
131 {
132 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
133 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
134 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
135 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
136 },
137 {
138 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
139 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
140 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
141 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
142 },
143 {
144 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
145 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
146 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
147 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
148 },
149 {
150 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
151 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
152 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
153 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
154 }
155 };
156
157 static __thread u_char un_pbox[32];
158 static const u_char pbox[32] = {
159 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
160 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
161 };
162
163 static const u_int32_t bits32[32] =
164 {
165 0x80000000, 0x40000000, 0x20000000, 0x10000000,
166 0x08000000, 0x04000000, 0x02000000, 0x01000000,
167 0x00800000, 0x00400000, 0x00200000, 0x00100000,
168 0x00080000, 0x00040000, 0x00020000, 0x00010000,
169 0x00008000, 0x00004000, 0x00002000, 0x00001000,
170 0x00000800, 0x00000400, 0x00000200, 0x00000100,
171 0x00000080, 0x00000040, 0x00000020, 0x00000010,
172 0x00000008, 0x00000004, 0x00000002, 0x00000001
173 };
174
175 static const u_char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
176
177 static __thread u_int32_t saltbits;
178 static __thread u_int32_t old_salt;
179 static __thread const u_int32_t *bits28, *bits24;
180 static __thread u_char init_perm[64], final_perm[64];
181 static __thread u_int32_t en_keysl[16], en_keysr[16];
182 static __thread u_int32_t de_keysl[16], de_keysr[16];
183 static __thread int des_initialised = 0;
184 static __thread u_char m_sbox[4][4096];
185 static __thread u_int32_t psbox[4][256];
186 static __thread u_int32_t ip_maskl[8][256], ip_maskr[8][256];
187 static __thread u_int32_t fp_maskl[8][256], fp_maskr[8][256];
188 static __thread u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128];
189 static __thread u_int32_t comp_maskl[8][128], comp_maskr[8][128];
190 static __thread u_int32_t old_rawkey0, old_rawkey1;
191
192 static const u_char ascii64[] =
193 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
194 /* 0000000000111111111122222222223333333333444444444455555555556666 */
195 /* 0123456789012345678901234567890123456789012345678901234567890123 */
196
197 static INLINE int
ascii_to_bin(char ch)198 ascii_to_bin(char ch)
199 {
200 if (ch > 'z')
201 return(0);
202 if (ch >= 'a')
203 return(ch - 'a' + 38);
204 if (ch > 'Z')
205 return(0);
206 if (ch >= 'A')
207 return(ch - 'A' + 12);
208 if (ch > '9')
209 return(0);
210 if (ch >= '.')
211 return(ch - '.');
212 return(0);
213 }
214
215 static void
des_init(void)216 des_init(void)
217 {
218 int i, j, b, k, inbit, obit;
219 u_int32_t *p, *il, *ir, *fl, *fr;
220
221 old_rawkey0 = old_rawkey1 = 0L;
222 saltbits = 0L;
223 old_salt = 0L;
224 bits24 = (bits28 = bits32 + 4) + 4;
225
226 /*
227 * Invert the S-boxes, reordering the input bits.
228 */
229 for (i = 0; i < 8; i++)
230 for (j = 0; j < 64; j++) {
231 b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
232 u_sbox[i][j] = sbox[i][b];
233 }
234
235 /*
236 * Convert the inverted S-boxes into 4 arrays of 8 bits.
237 * Each will handle 12 bits of the S-box input.
238 */
239 for (b = 0; b < 4; b++)
240 for (i = 0; i < 64; i++)
241 for (j = 0; j < 64; j++)
242 m_sbox[b][(i << 6) | j] =
243 (u_char)((u_sbox[(b << 1)][i] << 4) |
244 u_sbox[(b << 1) + 1][j]);
245
246 /*
247 * Set up the initial & final permutations into a useful form, and
248 * initialise the inverted key permutation.
249 */
250 for (i = 0; i < 64; i++) {
251 init_perm[final_perm[i] = IP[i] - 1] = (u_char)i;
252 inv_key_perm[i] = 255;
253 }
254
255 /*
256 * Invert the key permutation and initialise the inverted key
257 * compression permutation.
258 */
259 for (i = 0; i < 56; i++) {
260 inv_key_perm[key_perm[i] - 1] = (u_char)i;
261 inv_comp_perm[i] = 255;
262 }
263
264 /*
265 * Invert the key compression permutation.
266 */
267 for (i = 0; i < 48; i++) {
268 inv_comp_perm[comp_perm[i] - 1] = (u_char)i;
269 }
270
271 /*
272 * Set up the OR-mask arrays for the initial and final permutations,
273 * and for the key initial and compression permutations.
274 */
275 for (k = 0; k < 8; k++) {
276 for (i = 0; i < 256; i++) {
277 *(il = &ip_maskl[k][i]) = 0L;
278 *(ir = &ip_maskr[k][i]) = 0L;
279 *(fl = &fp_maskl[k][i]) = 0L;
280 *(fr = &fp_maskr[k][i]) = 0L;
281 for (j = 0; j < 8; j++) {
282 inbit = 8 * k + j;
283 if (i & bits8[j]) {
284 if ((obit = init_perm[inbit]) < 32)
285 *il |= bits32[obit];
286 else
287 *ir |= bits32[obit-32];
288 if ((obit = final_perm[inbit]) < 32)
289 *fl |= bits32[obit];
290 else
291 *fr |= bits32[obit - 32];
292 }
293 }
294 }
295 for (i = 0; i < 128; i++) {
296 *(il = &key_perm_maskl[k][i]) = 0L;
297 *(ir = &key_perm_maskr[k][i]) = 0L;
298 for (j = 0; j < 7; j++) {
299 inbit = 8 * k + j;
300 if (i & bits8[j + 1]) {
301 if ((obit = inv_key_perm[inbit]) == 255)
302 continue;
303 if (obit < 28)
304 *il |= bits28[obit];
305 else
306 *ir |= bits28[obit - 28];
307 }
308 }
309 *(il = &comp_maskl[k][i]) = 0L;
310 *(ir = &comp_maskr[k][i]) = 0L;
311 for (j = 0; j < 7; j++) {
312 inbit = 7 * k + j;
313 if (i & bits8[j + 1]) {
314 if ((obit=inv_comp_perm[inbit]) == 255)
315 continue;
316 if (obit < 24)
317 *il |= bits24[obit];
318 else
319 *ir |= bits24[obit - 24];
320 }
321 }
322 }
323 }
324
325 /*
326 * Invert the P-box permutation, and convert into OR-masks for
327 * handling the output of the S-box arrays setup above.
328 */
329 for (i = 0; i < 32; i++)
330 un_pbox[pbox[i] - 1] = (u_char)i;
331
332 for (b = 0; b < 4; b++)
333 for (i = 0; i < 256; i++) {
334 *(p = &psbox[b][i]) = 0L;
335 for (j = 0; j < 8; j++) {
336 if (i & bits8[j])
337 *p |= bits32[un_pbox[8 * b + j]];
338 }
339 }
340
341 des_initialised = 1;
342 }
343
344 static void
setup_salt(u_int32_t salt)345 setup_salt(u_int32_t salt)
346 {
347 u_int32_t obit, saltbit;
348 int i;
349
350 if (salt == old_salt)
351 return;
352 old_salt = salt;
353
354 saltbits = 0L;
355 saltbit = 1;
356 obit = 0x800000;
357 for (i = 0; i < 24; i++) {
358 if (salt & saltbit)
359 saltbits |= obit;
360 saltbit <<= 1;
361 obit >>= 1;
362 }
363 }
364
365 static int
des_setkey(const char * key)366 des_setkey(const char *key)
367 {
368 u_int32_t k0, k1, rawkey0, rawkey1;
369 int shifts, round;
370
371 if (!des_initialised)
372 des_init();
373
374 rawkey0 = ntohl(*(const u_int32_t *) key);
375 rawkey1 = ntohl(*(const u_int32_t *) (key + 4));
376
377 if ((rawkey0 | rawkey1)
378 && rawkey0 == old_rawkey0
379 && rawkey1 == old_rawkey1) {
380 /*
381 * Already setup for this key.
382 * This optimisation fails on a zero key (which is weak and
383 * has bad parity anyway) in order to simplify the starting
384 * conditions.
385 */
386 return(0);
387 }
388 old_rawkey0 = rawkey0;
389 old_rawkey1 = rawkey1;
390
391 /*
392 * Do key permutation and split into two 28-bit subkeys.
393 */
394 k0 = key_perm_maskl[0][rawkey0 >> 25]
395 | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
396 | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
397 | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
398 | key_perm_maskl[4][rawkey1 >> 25]
399 | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
400 | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
401 | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
402 k1 = key_perm_maskr[0][rawkey0 >> 25]
403 | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
404 | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
405 | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
406 | key_perm_maskr[4][rawkey1 >> 25]
407 | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
408 | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
409 | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
410 /*
411 * Rotate subkeys and do compression permutation.
412 */
413 shifts = 0;
414 for (round = 0; round < 16; round++) {
415 u_int32_t t0, t1;
416
417 shifts += key_shifts[round];
418
419 t0 = (k0 << shifts) | (k0 >> (28 - shifts));
420 t1 = (k1 << shifts) | (k1 >> (28 - shifts));
421
422 de_keysl[15 - round] =
423 en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
424 | comp_maskl[1][(t0 >> 14) & 0x7f]
425 | comp_maskl[2][(t0 >> 7) & 0x7f]
426 | comp_maskl[3][t0 & 0x7f]
427 | comp_maskl[4][(t1 >> 21) & 0x7f]
428 | comp_maskl[5][(t1 >> 14) & 0x7f]
429 | comp_maskl[6][(t1 >> 7) & 0x7f]
430 | comp_maskl[7][t1 & 0x7f];
431
432 de_keysr[15 - round] =
433 en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
434 | comp_maskr[1][(t0 >> 14) & 0x7f]
435 | comp_maskr[2][(t0 >> 7) & 0x7f]
436 | comp_maskr[3][t0 & 0x7f]
437 | comp_maskr[4][(t1 >> 21) & 0x7f]
438 | comp_maskr[5][(t1 >> 14) & 0x7f]
439 | comp_maskr[6][(t1 >> 7) & 0x7f]
440 | comp_maskr[7][t1 & 0x7f];
441 }
442 return(0);
443 }
444
445 static int
do_des(u_int32_t l_in,u_int32_t r_in,u_int32_t * l_out,u_int32_t * r_out,int count)446 do_des( u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out, int count)
447 {
448 /*
449 * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
450 */
451 u_int32_t l, r, *kl, *kr, *kl1, *kr1;
452 u_int32_t f, r48l, r48r;
453 int round;
454
455 if (count == 0) {
456 return(1);
457 } else if (count > 0) {
458 /*
459 * Encrypting
460 */
461 kl1 = en_keysl;
462 kr1 = en_keysr;
463 } else {
464 /*
465 * Decrypting
466 */
467 count = -count;
468 kl1 = de_keysl;
469 kr1 = de_keysr;
470 }
471
472 /*
473 * Do initial permutation (IP).
474 */
475 l = ip_maskl[0][l_in >> 24]
476 | ip_maskl[1][(l_in >> 16) & 0xff]
477 | ip_maskl[2][(l_in >> 8) & 0xff]
478 | ip_maskl[3][l_in & 0xff]
479 | ip_maskl[4][r_in >> 24]
480 | ip_maskl[5][(r_in >> 16) & 0xff]
481 | ip_maskl[6][(r_in >> 8) & 0xff]
482 | ip_maskl[7][r_in & 0xff];
483 r = ip_maskr[0][l_in >> 24]
484 | ip_maskr[1][(l_in >> 16) & 0xff]
485 | ip_maskr[2][(l_in >> 8) & 0xff]
486 | ip_maskr[3][l_in & 0xff]
487 | ip_maskr[4][r_in >> 24]
488 | ip_maskr[5][(r_in >> 16) & 0xff]
489 | ip_maskr[6][(r_in >> 8) & 0xff]
490 | ip_maskr[7][r_in & 0xff];
491
492 while (count--) {
493 /*
494 * Do each round.
495 */
496 kl = kl1;
497 kr = kr1;
498 round = 16;
499 while (round--) {
500 /*
501 * Expand R to 48 bits (simulate the E-box).
502 */
503 r48l = ((r & 0x00000001) << 23)
504 | ((r & 0xf8000000) >> 9)
505 | ((r & 0x1f800000) >> 11)
506 | ((r & 0x01f80000) >> 13)
507 | ((r & 0x001f8000) >> 15);
508
509 r48r = ((r & 0x0001f800) << 7)
510 | ((r & 0x00001f80) << 5)
511 | ((r & 0x000001f8) << 3)
512 | ((r & 0x0000001f) << 1)
513 | ((r & 0x80000000) >> 31);
514 /*
515 * Do salting for crypt() and friends, and
516 * XOR with the permuted key.
517 */
518 f = (r48l ^ r48r) & saltbits;
519 r48l ^= f ^ *kl++;
520 r48r ^= f ^ *kr++;
521 /*
522 * Do sbox lookups (which shrink it back to 32 bits)
523 * and do the pbox permutation at the same time.
524 */
525 f = psbox[0][m_sbox[0][r48l >> 12]]
526 | psbox[1][m_sbox[1][r48l & 0xfff]]
527 | psbox[2][m_sbox[2][r48r >> 12]]
528 | psbox[3][m_sbox[3][r48r & 0xfff]];
529 /*
530 * Now that we've permuted things, complete f().
531 */
532 f ^= l;
533 l = r;
534 r = f;
535 }
536 r = l;
537 l = f;
538 }
539 /*
540 * Do final permutation (inverse of IP).
541 */
542 *l_out = fp_maskl[0][l >> 24]
543 | fp_maskl[1][(l >> 16) & 0xff]
544 | fp_maskl[2][(l >> 8) & 0xff]
545 | fp_maskl[3][l & 0xff]
546 | fp_maskl[4][r >> 24]
547 | fp_maskl[5][(r >> 16) & 0xff]
548 | fp_maskl[6][(r >> 8) & 0xff]
549 | fp_maskl[7][r & 0xff];
550 *r_out = fp_maskr[0][l >> 24]
551 | fp_maskr[1][(l >> 16) & 0xff]
552 | fp_maskr[2][(l >> 8) & 0xff]
553 | fp_maskr[3][l & 0xff]
554 | fp_maskr[4][r >> 24]
555 | fp_maskr[5][(r >> 16) & 0xff]
556 | fp_maskr[6][(r >> 8) & 0xff]
557 | fp_maskr[7][r & 0xff];
558 return(0);
559 }
560
561 static int
des_cipher(const char * in,char * out,u_long salt,int count)562 des_cipher(const char *in, char *out, u_long salt, int count)
563 {
564 u_int32_t l_out, r_out, rawl, rawr;
565 int retval;
566 union {
567 u_int32_t *ui32;
568 const char *c;
569 } trans;
570
571 if (!des_initialised)
572 des_init();
573
574 setup_salt(salt);
575
576 trans.c = in;
577 rawl = ntohl(*trans.ui32++);
578 rawr = ntohl(*trans.ui32);
579
580 retval = do_des(rawl, rawr, &l_out, &r_out, count);
581
582 trans.c = out;
583 *trans.ui32++ = htonl(l_out);
584 *trans.ui32 = htonl(r_out);
585 return(retval);
586 }
587
588 int
crypt_des(const char * key,const char * setting,char * buffer)589 crypt_des(const char *key, const char *setting, char *buffer)
590 {
591 int i;
592 u_int32_t count, salt, l, r0, r1, keybuf[2];
593 u_char *q;
594
595 if (!des_initialised)
596 des_init();
597
598 /*
599 * Copy the key, shifting each character up by one bit
600 * and padding with zeros.
601 */
602 q = (u_char *)keybuf;
603 while (q - (u_char *)keybuf - 8) {
604 *q++ = *key << 1;
605 if (*key != '\0')
606 key++;
607 }
608 if (des_setkey((char *)keybuf))
609 return (-1);
610
611 if (*setting == _PASSWORD_EFMT1) {
612 /*
613 * "new"-style:
614 * setting - underscore, 4 bytes of count, 4 bytes of salt
615 * key - unlimited characters
616 */
617 for (i = 1, count = 0L; i < 5; i++)
618 count |= ascii_to_bin(setting[i]) << ((i - 1) * 6);
619
620 for (i = 5, salt = 0L; i < 9; i++)
621 salt |= ascii_to_bin(setting[i]) << ((i - 5) * 6);
622
623 while (*key) {
624 /*
625 * Encrypt the key with itself.
626 */
627 if (des_cipher((char *)keybuf, (char *)keybuf, 0L, 1))
628 return (-1);
629 /*
630 * And XOR with the next 8 characters of the key.
631 */
632 q = (u_char *)keybuf;
633 while (q - (u_char *)keybuf - 8 && *key)
634 *q++ ^= *key++ << 1;
635
636 if (des_setkey((char *)keybuf))
637 return (-1);
638 }
639 buffer = stpncpy(buffer, setting, 9);
640 } else {
641 /*
642 * "old"-style:
643 * setting - 2 bytes of salt
644 * key - up to 8 characters
645 */
646 count = 25;
647
648 salt = (ascii_to_bin(setting[1]) << 6)
649 | ascii_to_bin(setting[0]);
650
651 *buffer++ = setting[0];
652 /*
653 * If the encrypted password that the salt was extracted from
654 * is only 1 character long, the salt will be corrupted. We
655 * need to ensure that the output string doesn't have an extra
656 * NUL in it!
657 */
658 *buffer++ = setting[1] ? setting[1] : setting[0];
659 }
660 setup_salt(salt);
661 /*
662 * Do it.
663 */
664 if (do_des(0L, 0L, &r0, &r1, (int)count))
665 return (-1);
666 /*
667 * Now encode the result...
668 */
669 l = (r0 >> 8);
670 *buffer++ = ascii64[(l >> 18) & 0x3f];
671 *buffer++ = ascii64[(l >> 12) & 0x3f];
672 *buffer++ = ascii64[(l >> 6) & 0x3f];
673 *buffer++ = ascii64[l & 0x3f];
674
675 l = (r0 << 16) | ((r1 >> 16) & 0xffff);
676 *buffer++ = ascii64[(l >> 18) & 0x3f];
677 *buffer++ = ascii64[(l >> 12) & 0x3f];
678 *buffer++ = ascii64[(l >> 6) & 0x3f];
679 *buffer++ = ascii64[l & 0x3f];
680
681 l = r1 << 2;
682 *buffer++ = ascii64[(l >> 12) & 0x3f];
683 *buffer++ = ascii64[(l >> 6) & 0x3f];
684 *buffer++ = ascii64[l & 0x3f];
685 *buffer = '\0';
686
687 return (0);
688 }
689