xref: /linux/fs/xfs/xfs_mount.c (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 #include "xfs_quota.h"
27 #include "xfs_fsops.h"
28 #include "xfs_icache.h"
29 #include "xfs_sysfs.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_refcount_btree.h"
32 #include "xfs_reflink.h"
33 #include "xfs_extent_busy.h"
34 #include "xfs_health.h"
35 #include "xfs_trace.h"
36 #include "xfs_ag.h"
37 #include "xfs_rtbitmap.h"
38 #include "xfs_metafile.h"
39 #include "xfs_rtgroup.h"
40 #include "scrub/stats.h"
41 
42 static DEFINE_MUTEX(xfs_uuid_table_mutex);
43 static int xfs_uuid_table_size;
44 static uuid_t *xfs_uuid_table;
45 
46 void
xfs_uuid_table_free(void)47 xfs_uuid_table_free(void)
48 {
49 	if (xfs_uuid_table_size == 0)
50 		return;
51 	kfree(xfs_uuid_table);
52 	xfs_uuid_table = NULL;
53 	xfs_uuid_table_size = 0;
54 }
55 
56 /*
57  * See if the UUID is unique among mounted XFS filesystems.
58  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
59  */
60 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)61 xfs_uuid_mount(
62 	struct xfs_mount	*mp)
63 {
64 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
65 	int			hole, i;
66 
67 	/* Publish UUID in struct super_block */
68 	super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid));
69 
70 	if (xfs_has_nouuid(mp))
71 		return 0;
72 
73 	if (uuid_is_null(uuid)) {
74 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
75 		return -EINVAL;
76 	}
77 
78 	mutex_lock(&xfs_uuid_table_mutex);
79 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
80 		if (uuid_is_null(&xfs_uuid_table[i])) {
81 			hole = i;
82 			continue;
83 		}
84 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
85 			goto out_duplicate;
86 	}
87 
88 	if (hole < 0) {
89 		xfs_uuid_table = krealloc(xfs_uuid_table,
90 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
91 			GFP_KERNEL | __GFP_NOFAIL);
92 		hole = xfs_uuid_table_size++;
93 	}
94 	xfs_uuid_table[hole] = *uuid;
95 	mutex_unlock(&xfs_uuid_table_mutex);
96 
97 	return 0;
98 
99  out_duplicate:
100 	mutex_unlock(&xfs_uuid_table_mutex);
101 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
102 	return -EINVAL;
103 }
104 
105 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)106 xfs_uuid_unmount(
107 	struct xfs_mount	*mp)
108 {
109 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
110 	int			i;
111 
112 	if (xfs_has_nouuid(mp))
113 		return;
114 
115 	mutex_lock(&xfs_uuid_table_mutex);
116 	for (i = 0; i < xfs_uuid_table_size; i++) {
117 		if (uuid_is_null(&xfs_uuid_table[i]))
118 			continue;
119 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
120 			continue;
121 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
122 		break;
123 	}
124 	ASSERT(i < xfs_uuid_table_size);
125 	mutex_unlock(&xfs_uuid_table_mutex);
126 }
127 
128 /*
129  * Check size of device based on the (data/realtime) block count.
130  * Note: this check is used by the growfs code as well as mount.
131  */
132 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,uint64_t nblocks)133 xfs_sb_validate_fsb_count(
134 	xfs_sb_t	*sbp,
135 	uint64_t	nblocks)
136 {
137 	uint64_t		max_bytes;
138 
139 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
140 
141 	if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes))
142 		return -EFBIG;
143 
144 	/* Limited by ULONG_MAX of page cache index */
145 	if (max_bytes >> PAGE_SHIFT > ULONG_MAX)
146 		return -EFBIG;
147 	return 0;
148 }
149 
150 /*
151  * xfs_readsb
152  *
153  * Does the initial read of the superblock.
154  */
155 int
xfs_readsb(struct xfs_mount * mp,int flags)156 xfs_readsb(
157 	struct xfs_mount *mp,
158 	int		flags)
159 {
160 	unsigned int	sector_size;
161 	struct xfs_buf	*bp;
162 	struct xfs_sb	*sbp = &mp->m_sb;
163 	int		error;
164 	int		loud = !(flags & XFS_MFSI_QUIET);
165 	const struct xfs_buf_ops *buf_ops;
166 
167 	ASSERT(mp->m_sb_bp == NULL);
168 	ASSERT(mp->m_ddev_targp != NULL);
169 
170 	/*
171 	 * For the initial read, we must guess at the sector
172 	 * size based on the block device.  It's enough to
173 	 * get the sb_sectsize out of the superblock and
174 	 * then reread with the proper length.
175 	 * We don't verify it yet, because it may not be complete.
176 	 */
177 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
178 	buf_ops = NULL;
179 
180 	/*
181 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
182 	 * around at all times to optimize access to the superblock. Therefore,
183 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
184 	 * elevated.
185 	 */
186 reread:
187 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
188 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
189 				      buf_ops);
190 	if (error) {
191 		if (loud)
192 			xfs_warn(mp, "SB validate failed with error %d.", error);
193 		/* bad CRC means corrupted metadata */
194 		if (error == -EFSBADCRC)
195 			error = -EFSCORRUPTED;
196 		return error;
197 	}
198 
199 	/*
200 	 * Initialize the mount structure from the superblock.
201 	 */
202 	xfs_sb_from_disk(sbp, bp->b_addr);
203 
204 	/*
205 	 * If we haven't validated the superblock, do so now before we try
206 	 * to check the sector size and reread the superblock appropriately.
207 	 */
208 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
209 		if (loud)
210 			xfs_warn(mp, "Invalid superblock magic number");
211 		error = -EINVAL;
212 		goto release_buf;
213 	}
214 
215 	/*
216 	 * We must be able to do sector-sized and sector-aligned IO.
217 	 */
218 	if (sector_size > sbp->sb_sectsize) {
219 		if (loud)
220 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
221 				sector_size, sbp->sb_sectsize);
222 		error = -ENOSYS;
223 		goto release_buf;
224 	}
225 
226 	if (buf_ops == NULL) {
227 		/*
228 		 * Re-read the superblock so the buffer is correctly sized,
229 		 * and properly verified.
230 		 */
231 		xfs_buf_relse(bp);
232 		sector_size = sbp->sb_sectsize;
233 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
234 		goto reread;
235 	}
236 
237 	mp->m_features |= xfs_sb_version_to_features(sbp);
238 	xfs_reinit_percpu_counters(mp);
239 
240 	/*
241 	 * If logged xattrs are enabled after log recovery finishes, then set
242 	 * the opstate so that log recovery will work properly.
243 	 */
244 	if (xfs_sb_version_haslogxattrs(&mp->m_sb))
245 		xfs_set_using_logged_xattrs(mp);
246 
247 	/* no need to be quiet anymore, so reset the buf ops */
248 	bp->b_ops = &xfs_sb_buf_ops;
249 
250 	mp->m_sb_bp = bp;
251 	xfs_buf_unlock(bp);
252 	return 0;
253 
254 release_buf:
255 	xfs_buf_relse(bp);
256 	return error;
257 }
258 
259 /*
260  * If the sunit/swidth change would move the precomputed root inode value, we
261  * must reject the ondisk change because repair will stumble over that.
262  * However, we allow the mount to proceed because we never rejected this
263  * combination before.  Returns true to update the sb, false otherwise.
264  */
265 static inline int
xfs_check_new_dalign(struct xfs_mount * mp,int new_dalign,bool * update_sb)266 xfs_check_new_dalign(
267 	struct xfs_mount	*mp,
268 	int			new_dalign,
269 	bool			*update_sb)
270 {
271 	struct xfs_sb		*sbp = &mp->m_sb;
272 	xfs_ino_t		calc_ino;
273 
274 	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
275 	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
276 
277 	if (sbp->sb_rootino == calc_ino) {
278 		*update_sb = true;
279 		return 0;
280 	}
281 
282 	xfs_warn(mp,
283 "Cannot change stripe alignment; would require moving root inode.");
284 
285 	/*
286 	 * XXX: Next time we add a new incompat feature, this should start
287 	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
288 	 * that we're ignoring the administrator's instructions.
289 	 */
290 	xfs_warn(mp, "Skipping superblock stripe alignment update.");
291 	*update_sb = false;
292 	return 0;
293 }
294 
295 /*
296  * If we were provided with new sunit/swidth values as mount options, make sure
297  * that they pass basic alignment and superblock feature checks, and convert
298  * them into the same units (FSB) that everything else expects.  This step
299  * /must/ be done before computing the inode geometry.
300  */
301 STATIC int
xfs_validate_new_dalign(struct xfs_mount * mp)302 xfs_validate_new_dalign(
303 	struct xfs_mount	*mp)
304 {
305 	if (mp->m_dalign == 0)
306 		return 0;
307 
308 	/*
309 	 * If stripe unit and stripe width are not multiples
310 	 * of the fs blocksize turn off alignment.
311 	 */
312 	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
313 	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
314 		xfs_warn(mp,
315 	"alignment check failed: sunit/swidth vs. blocksize(%d)",
316 			mp->m_sb.sb_blocksize);
317 		return -EINVAL;
318 	}
319 
320 	/*
321 	 * Convert the stripe unit and width to FSBs.
322 	 */
323 	mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
324 	if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
325 		xfs_warn(mp,
326 	"alignment check failed: sunit/swidth vs. agsize(%d)",
327 			mp->m_sb.sb_agblocks);
328 		return -EINVAL;
329 	}
330 
331 	if (!mp->m_dalign) {
332 		xfs_warn(mp,
333 	"alignment check failed: sunit(%d) less than bsize(%d)",
334 			mp->m_dalign, mp->m_sb.sb_blocksize);
335 		return -EINVAL;
336 	}
337 
338 	mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
339 
340 	if (!xfs_has_dalign(mp)) {
341 		xfs_warn(mp,
342 "cannot change alignment: superblock does not support data alignment");
343 		return -EINVAL;
344 	}
345 
346 	return 0;
347 }
348 
349 /* Update alignment values based on mount options and sb values. */
350 STATIC int
xfs_update_alignment(struct xfs_mount * mp)351 xfs_update_alignment(
352 	struct xfs_mount	*mp)
353 {
354 	struct xfs_sb		*sbp = &mp->m_sb;
355 
356 	if (mp->m_dalign) {
357 		bool		update_sb;
358 		int		error;
359 
360 		if (sbp->sb_unit == mp->m_dalign &&
361 		    sbp->sb_width == mp->m_swidth)
362 			return 0;
363 
364 		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
365 		if (error || !update_sb)
366 			return error;
367 
368 		sbp->sb_unit = mp->m_dalign;
369 		sbp->sb_width = mp->m_swidth;
370 		mp->m_update_sb = true;
371 	} else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
372 		mp->m_dalign = sbp->sb_unit;
373 		mp->m_swidth = sbp->sb_width;
374 	}
375 
376 	return 0;
377 }
378 
379 /*
380  * precalculate the low space thresholds for dynamic speculative preallocation.
381  */
382 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)383 xfs_set_low_space_thresholds(
384 	struct xfs_mount	*mp)
385 {
386 	uint64_t		dblocks = mp->m_sb.sb_dblocks;
387 	uint64_t		rtexts = mp->m_sb.sb_rextents;
388 	int			i;
389 
390 	do_div(dblocks, 100);
391 	do_div(rtexts, 100);
392 
393 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
394 		mp->m_low_space[i] = dblocks * (i + 1);
395 		mp->m_low_rtexts[i] = rtexts * (i + 1);
396 	}
397 }
398 
399 /*
400  * Check that the data (and log if separate) is an ok size.
401  */
402 STATIC int
xfs_check_sizes(struct xfs_mount * mp)403 xfs_check_sizes(
404 	struct xfs_mount *mp)
405 {
406 	struct xfs_buf	*bp;
407 	xfs_daddr_t	d;
408 	int		error;
409 
410 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
411 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
412 		xfs_warn(mp, "filesystem size mismatch detected");
413 		return -EFBIG;
414 	}
415 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
416 					d - XFS_FSS_TO_BB(mp, 1),
417 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
418 	if (error) {
419 		xfs_warn(mp, "last sector read failed");
420 		return error;
421 	}
422 	xfs_buf_relse(bp);
423 
424 	if (mp->m_logdev_targp == mp->m_ddev_targp)
425 		return 0;
426 
427 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
428 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
429 		xfs_warn(mp, "log size mismatch detected");
430 		return -EFBIG;
431 	}
432 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
433 					d - XFS_FSB_TO_BB(mp, 1),
434 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
435 	if (error) {
436 		xfs_warn(mp, "log device read failed");
437 		return error;
438 	}
439 	xfs_buf_relse(bp);
440 	return 0;
441 }
442 
443 /*
444  * Clear the quotaflags in memory and in the superblock.
445  */
446 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)447 xfs_mount_reset_sbqflags(
448 	struct xfs_mount	*mp)
449 {
450 	mp->m_qflags = 0;
451 
452 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
453 	if (mp->m_sb.sb_qflags == 0)
454 		return 0;
455 	spin_lock(&mp->m_sb_lock);
456 	mp->m_sb.sb_qflags = 0;
457 	spin_unlock(&mp->m_sb_lock);
458 
459 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
460 		return 0;
461 
462 	return xfs_sync_sb(mp, false);
463 }
464 
465 uint64_t
xfs_default_resblks(xfs_mount_t * mp)466 xfs_default_resblks(xfs_mount_t *mp)
467 {
468 	uint64_t resblks;
469 
470 	/*
471 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
472 	 * smaller.  This is intended to cover concurrent allocation
473 	 * transactions when we initially hit enospc. These each require a 4
474 	 * block reservation. Hence by default we cover roughly 2000 concurrent
475 	 * allocation reservations.
476 	 */
477 	resblks = mp->m_sb.sb_dblocks;
478 	do_div(resblks, 20);
479 	resblks = min_t(uint64_t, resblks, 8192);
480 	return resblks;
481 }
482 
483 /* Ensure the summary counts are correct. */
484 STATIC int
xfs_check_summary_counts(struct xfs_mount * mp)485 xfs_check_summary_counts(
486 	struct xfs_mount	*mp)
487 {
488 	int			error = 0;
489 
490 	/*
491 	 * The AG0 superblock verifier rejects in-progress filesystems,
492 	 * so we should never see the flag set this far into mounting.
493 	 */
494 	if (mp->m_sb.sb_inprogress) {
495 		xfs_err(mp, "sb_inprogress set after log recovery??");
496 		WARN_ON(1);
497 		return -EFSCORRUPTED;
498 	}
499 
500 	/*
501 	 * Now the log is mounted, we know if it was an unclean shutdown or
502 	 * not. If it was, with the first phase of recovery has completed, we
503 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
504 	 * but they are recovered transactionally in the second recovery phase
505 	 * later.
506 	 *
507 	 * If the log was clean when we mounted, we can check the summary
508 	 * counters.  If any of them are obviously incorrect, we can recompute
509 	 * them from the AGF headers in the next step.
510 	 */
511 	if (xfs_is_clean(mp) &&
512 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
513 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
514 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
515 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
516 
517 	/*
518 	 * We can safely re-initialise incore superblock counters from the
519 	 * per-ag data. These may not be correct if the filesystem was not
520 	 * cleanly unmounted, so we waited for recovery to finish before doing
521 	 * this.
522 	 *
523 	 * If the filesystem was cleanly unmounted or the previous check did
524 	 * not flag anything weird, then we can trust the values in the
525 	 * superblock to be correct and we don't need to do anything here.
526 	 * Otherwise, recalculate the summary counters.
527 	 */
528 	if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
529 	    xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
530 		error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
531 		if (error)
532 			return error;
533 	}
534 
535 	/*
536 	 * Older kernels misused sb_frextents to reflect both incore
537 	 * reservations made by running transactions and the actual count of
538 	 * free rt extents in the ondisk metadata.  Transactions committed
539 	 * during runtime can therefore contain a superblock update that
540 	 * undercounts the number of free rt extents tracked in the rt bitmap.
541 	 * A clean unmount record will have the correct frextents value since
542 	 * there can be no other transactions running at that point.
543 	 *
544 	 * If we're mounting the rt volume after recovering the log, recompute
545 	 * frextents from the rtbitmap file to fix the inconsistency.
546 	 */
547 	if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
548 		error = xfs_rtalloc_reinit_frextents(mp);
549 		if (error)
550 			return error;
551 	}
552 
553 	return 0;
554 }
555 
556 static void
xfs_unmount_check(struct xfs_mount * mp)557 xfs_unmount_check(
558 	struct xfs_mount	*mp)
559 {
560 	if (xfs_is_shutdown(mp))
561 		return;
562 
563 	if (percpu_counter_sum(&mp->m_ifree) >
564 			percpu_counter_sum(&mp->m_icount)) {
565 		xfs_alert(mp, "ifree/icount mismatch at unmount");
566 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
567 	}
568 }
569 
570 /*
571  * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
572  * internal inode structures can be sitting in the CIL and AIL at this point,
573  * so we need to unpin them, write them back and/or reclaim them before unmount
574  * can proceed.  In other words, callers are required to have inactivated all
575  * inodes.
576  *
577  * An inode cluster that has been freed can have its buffer still pinned in
578  * memory because the transaction is still sitting in a iclog. The stale inodes
579  * on that buffer will be pinned to the buffer until the transaction hits the
580  * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
581  * may never see the pinned buffer, so nothing will push out the iclog and
582  * unpin the buffer.
583  *
584  * Hence we need to force the log to unpin everything first. However, log
585  * forces don't wait for the discards they issue to complete, so we have to
586  * explicitly wait for them to complete here as well.
587  *
588  * Then we can tell the world we are unmounting so that error handling knows
589  * that the filesystem is going away and we should error out anything that we
590  * have been retrying in the background.  This will prevent never-ending
591  * retries in AIL pushing from hanging the unmount.
592  *
593  * Finally, we can push the AIL to clean all the remaining dirty objects, then
594  * reclaim the remaining inodes that are still in memory at this point in time.
595  */
596 static void
xfs_unmount_flush_inodes(struct xfs_mount * mp)597 xfs_unmount_flush_inodes(
598 	struct xfs_mount	*mp)
599 {
600 	xfs_log_force(mp, XFS_LOG_SYNC);
601 	xfs_extent_busy_wait_all(mp);
602 	flush_workqueue(xfs_discard_wq);
603 
604 	xfs_set_unmounting(mp);
605 
606 	xfs_ail_push_all_sync(mp->m_ail);
607 	xfs_inodegc_stop(mp);
608 	cancel_delayed_work_sync(&mp->m_reclaim_work);
609 	xfs_reclaim_inodes(mp);
610 	xfs_health_unmount(mp);
611 }
612 
613 static void
xfs_mount_setup_inode_geom(struct xfs_mount * mp)614 xfs_mount_setup_inode_geom(
615 	struct xfs_mount	*mp)
616 {
617 	struct xfs_ino_geometry *igeo = M_IGEO(mp);
618 
619 	igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
620 	ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
621 
622 	xfs_ialloc_setup_geometry(mp);
623 }
624 
625 /* Mount the metadata directory tree root. */
626 STATIC int
xfs_mount_setup_metadir(struct xfs_mount * mp)627 xfs_mount_setup_metadir(
628 	struct xfs_mount	*mp)
629 {
630 	int			error;
631 
632 	/* Load the metadata directory root inode into memory. */
633 	error = xfs_metafile_iget(mp, mp->m_sb.sb_metadirino, XFS_METAFILE_DIR,
634 			&mp->m_metadirip);
635 	if (error)
636 		xfs_warn(mp, "Failed to load metadir root directory, error %d",
637 				error);
638 	return error;
639 }
640 
641 /* Compute maximum possible height for per-AG btree types for this fs. */
642 static inline void
xfs_agbtree_compute_maxlevels(struct xfs_mount * mp)643 xfs_agbtree_compute_maxlevels(
644 	struct xfs_mount	*mp)
645 {
646 	unsigned int		levels;
647 
648 	levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
649 	levels = max(levels, mp->m_rmap_maxlevels);
650 	mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
651 }
652 
653 /*
654  * This function does the following on an initial mount of a file system:
655  *	- reads the superblock from disk and init the mount struct
656  *	- if we're a 32-bit kernel, do a size check on the superblock
657  *		so we don't mount terabyte filesystems
658  *	- init mount struct realtime fields
659  *	- allocate inode hash table for fs
660  *	- init directory manager
661  *	- perform recovery and init the log manager
662  */
663 int
xfs_mountfs(struct xfs_mount * mp)664 xfs_mountfs(
665 	struct xfs_mount	*mp)
666 {
667 	struct xfs_sb		*sbp = &(mp->m_sb);
668 	struct xfs_inode	*rip;
669 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
670 	uint			quotamount = 0;
671 	uint			quotaflags = 0;
672 	int			error = 0;
673 
674 	xfs_sb_mount_common(mp, sbp);
675 
676 	/*
677 	 * Check for a mismatched features2 values.  Older kernels read & wrote
678 	 * into the wrong sb offset for sb_features2 on some platforms due to
679 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
680 	 * which made older superblock reading/writing routines swap it as a
681 	 * 64-bit value.
682 	 *
683 	 * For backwards compatibility, we make both slots equal.
684 	 *
685 	 * If we detect a mismatched field, we OR the set bits into the existing
686 	 * features2 field in case it has already been modified; we don't want
687 	 * to lose any features.  We then update the bad location with the ORed
688 	 * value so that older kernels will see any features2 flags. The
689 	 * superblock writeback code ensures the new sb_features2 is copied to
690 	 * sb_bad_features2 before it is logged or written to disk.
691 	 */
692 	if (xfs_sb_has_mismatched_features2(sbp)) {
693 		xfs_warn(mp, "correcting sb_features alignment problem");
694 		sbp->sb_features2 |= sbp->sb_bad_features2;
695 		mp->m_update_sb = true;
696 	}
697 
698 
699 	/* always use v2 inodes by default now */
700 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
701 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
702 		mp->m_features |= XFS_FEAT_NLINK;
703 		mp->m_update_sb = true;
704 	}
705 
706 	/*
707 	 * If we were given new sunit/swidth options, do some basic validation
708 	 * checks and convert the incore dalign and swidth values to the
709 	 * same units (FSB) that everything else uses.  This /must/ happen
710 	 * before computing the inode geometry.
711 	 */
712 	error = xfs_validate_new_dalign(mp);
713 	if (error)
714 		goto out;
715 
716 	xfs_alloc_compute_maxlevels(mp);
717 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
718 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
719 	xfs_mount_setup_inode_geom(mp);
720 	xfs_rmapbt_compute_maxlevels(mp);
721 	xfs_refcountbt_compute_maxlevels(mp);
722 
723 	xfs_agbtree_compute_maxlevels(mp);
724 
725 	/*
726 	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
727 	 * is NOT aligned turn off m_dalign since allocator alignment is within
728 	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
729 	 * we must compute the free space and rmap btree geometry before doing
730 	 * this.
731 	 */
732 	error = xfs_update_alignment(mp);
733 	if (error)
734 		goto out;
735 
736 	/* enable fail_at_unmount as default */
737 	mp->m_fail_unmount = true;
738 
739 	super_set_sysfs_name_id(mp->m_super);
740 
741 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
742 			       NULL, mp->m_super->s_id);
743 	if (error)
744 		goto out;
745 
746 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
747 			       &mp->m_kobj, "stats");
748 	if (error)
749 		goto out_remove_sysfs;
750 
751 	xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
752 
753 	error = xfs_error_sysfs_init(mp);
754 	if (error)
755 		goto out_remove_scrub_stats;
756 
757 	error = xfs_errortag_init(mp);
758 	if (error)
759 		goto out_remove_error_sysfs;
760 
761 	error = xfs_uuid_mount(mp);
762 	if (error)
763 		goto out_remove_errortag;
764 
765 	/*
766 	 * Update the preferred write size based on the information from the
767 	 * on-disk superblock.
768 	 */
769 	mp->m_allocsize_log =
770 		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
771 	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
772 
773 	/* set the low space thresholds for dynamic preallocation */
774 	xfs_set_low_space_thresholds(mp);
775 
776 	/*
777 	 * If enabled, sparse inode chunk alignment is expected to match the
778 	 * cluster size. Full inode chunk alignment must match the chunk size,
779 	 * but that is checked on sb read verification...
780 	 */
781 	if (xfs_has_sparseinodes(mp) &&
782 	    mp->m_sb.sb_spino_align !=
783 			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
784 		xfs_warn(mp,
785 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
786 			 mp->m_sb.sb_spino_align,
787 			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
788 		error = -EINVAL;
789 		goto out_remove_uuid;
790 	}
791 
792 	/*
793 	 * Check that the data (and log if separate) is an ok size.
794 	 */
795 	error = xfs_check_sizes(mp);
796 	if (error)
797 		goto out_remove_uuid;
798 
799 	/*
800 	 * Initialize realtime fields in the mount structure
801 	 */
802 	error = xfs_rtmount_init(mp);
803 	if (error) {
804 		xfs_warn(mp, "RT mount failed");
805 		goto out_remove_uuid;
806 	}
807 
808 	/*
809 	 *  Copies the low order bits of the timestamp and the randomly
810 	 *  set "sequence" number out of a UUID.
811 	 */
812 	mp->m_fixedfsid[0] =
813 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
814 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
815 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
816 
817 	error = xfs_da_mount(mp);
818 	if (error) {
819 		xfs_warn(mp, "Failed dir/attr init: %d", error);
820 		goto out_remove_uuid;
821 	}
822 
823 	/*
824 	 * Initialize the precomputed transaction reservations values.
825 	 */
826 	xfs_trans_init(mp);
827 
828 	/*
829 	 * Allocate and initialize the per-ag data.
830 	 */
831 	error = xfs_initialize_perag(mp, 0, sbp->sb_agcount,
832 			mp->m_sb.sb_dblocks, &mp->m_maxagi);
833 	if (error) {
834 		xfs_warn(mp, "Failed per-ag init: %d", error);
835 		goto out_free_dir;
836 	}
837 
838 	error = xfs_initialize_rtgroups(mp, 0, sbp->sb_rgcount,
839 			mp->m_sb.sb_rextents);
840 	if (error) {
841 		xfs_warn(mp, "Failed rtgroup init: %d", error);
842 		goto out_free_perag;
843 	}
844 
845 	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
846 		xfs_warn(mp, "no log defined");
847 		error = -EFSCORRUPTED;
848 		goto out_free_rtgroup;
849 	}
850 
851 	error = xfs_inodegc_register_shrinker(mp);
852 	if (error)
853 		goto out_fail_wait;
854 
855 	/*
856 	 * If we're resuming quota status, pick up the preliminary qflags from
857 	 * the ondisk superblock so that we know if we should recover dquots.
858 	 */
859 	if (xfs_is_resuming_quotaon(mp))
860 		xfs_qm_resume_quotaon(mp);
861 
862 	/*
863 	 * Log's mount-time initialization. The first part of recovery can place
864 	 * some items on the AIL, to be handled when recovery is finished or
865 	 * cancelled.
866 	 */
867 	error = xfs_log_mount(mp, mp->m_logdev_targp,
868 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
869 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
870 	if (error) {
871 		xfs_warn(mp, "log mount failed");
872 		goto out_inodegc_shrinker;
873 	}
874 
875 	/*
876 	 * If we're resuming quota status and recovered the log, re-sample the
877 	 * qflags from the ondisk superblock now that we've recovered it, just
878 	 * in case someone shut down enforcement just before a crash.
879 	 */
880 	if (xfs_clear_resuming_quotaon(mp) && xlog_recovery_needed(mp->m_log))
881 		xfs_qm_resume_quotaon(mp);
882 
883 	/*
884 	 * If logged xattrs are still enabled after log recovery finishes, then
885 	 * they'll be available until unmount.  Otherwise, turn them off.
886 	 */
887 	if (xfs_sb_version_haslogxattrs(&mp->m_sb))
888 		xfs_set_using_logged_xattrs(mp);
889 	else
890 		xfs_clear_using_logged_xattrs(mp);
891 
892 	/* Enable background inode inactivation workers. */
893 	xfs_inodegc_start(mp);
894 	xfs_blockgc_start(mp);
895 
896 	/*
897 	 * Now that we've recovered any pending superblock feature bit
898 	 * additions, we can finish setting up the attr2 behaviour for the
899 	 * mount. The noattr2 option overrides the superblock flag, so only
900 	 * check the superblock feature flag if the mount option is not set.
901 	 */
902 	if (xfs_has_noattr2(mp)) {
903 		mp->m_features &= ~XFS_FEAT_ATTR2;
904 	} else if (!xfs_has_attr2(mp) &&
905 		   (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
906 		mp->m_features |= XFS_FEAT_ATTR2;
907 	}
908 
909 	if (xfs_has_metadir(mp)) {
910 		error = xfs_mount_setup_metadir(mp);
911 		if (error)
912 			goto out_free_metadir;
913 	}
914 
915 	/*
916 	 * Get and sanity-check the root inode.
917 	 * Save the pointer to it in the mount structure.
918 	 */
919 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
920 			 XFS_ILOCK_EXCL, &rip);
921 	if (error) {
922 		xfs_warn(mp,
923 			"Failed to read root inode 0x%llx, error %d",
924 			sbp->sb_rootino, -error);
925 		goto out_free_metadir;
926 	}
927 
928 	ASSERT(rip != NULL);
929 
930 	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
931 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
932 			(unsigned long long)rip->i_ino);
933 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
934 		error = -EFSCORRUPTED;
935 		goto out_rele_rip;
936 	}
937 	mp->m_rootip = rip;	/* save it */
938 
939 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
940 
941 	/*
942 	 * Initialize realtime inode pointers in the mount structure
943 	 */
944 	error = xfs_rtmount_inodes(mp);
945 	if (error) {
946 		/*
947 		 * Free up the root inode.
948 		 */
949 		xfs_warn(mp, "failed to read RT inodes");
950 		goto out_rele_rip;
951 	}
952 
953 	/* Make sure the summary counts are ok. */
954 	error = xfs_check_summary_counts(mp);
955 	if (error)
956 		goto out_rtunmount;
957 
958 	/*
959 	 * If this is a read-only mount defer the superblock updates until
960 	 * the next remount into writeable mode.  Otherwise we would never
961 	 * perform the update e.g. for the root filesystem.
962 	 */
963 	if (mp->m_update_sb && !xfs_is_readonly(mp)) {
964 		error = xfs_sync_sb(mp, false);
965 		if (error) {
966 			xfs_warn(mp, "failed to write sb changes");
967 			goto out_rtunmount;
968 		}
969 	}
970 
971 	/*
972 	 * Initialise the XFS quota management subsystem for this mount
973 	 */
974 	if (XFS_IS_QUOTA_ON(mp)) {
975 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
976 		if (error)
977 			goto out_rtunmount;
978 	} else {
979 		/*
980 		 * If a file system had quotas running earlier, but decided to
981 		 * mount without -o uquota/pquota/gquota options, revoke the
982 		 * quotachecked license.
983 		 */
984 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
985 			xfs_notice(mp, "resetting quota flags");
986 			error = xfs_mount_reset_sbqflags(mp);
987 			if (error)
988 				goto out_rtunmount;
989 		}
990 	}
991 
992 	/*
993 	 * Finish recovering the file system.  This part needed to be delayed
994 	 * until after the root and real-time bitmap inodes were consistently
995 	 * read in.  Temporarily create per-AG space reservations for metadata
996 	 * btree shape changes because space freeing transactions (for inode
997 	 * inactivation) require the per-AG reservation in lieu of reserving
998 	 * blocks.
999 	 */
1000 	error = xfs_fs_reserve_ag_blocks(mp);
1001 	if (error && error == -ENOSPC)
1002 		xfs_warn(mp,
1003 	"ENOSPC reserving per-AG metadata pool, log recovery may fail.");
1004 	error = xfs_log_mount_finish(mp);
1005 	xfs_fs_unreserve_ag_blocks(mp);
1006 	if (error) {
1007 		xfs_warn(mp, "log mount finish failed");
1008 		goto out_rtunmount;
1009 	}
1010 
1011 	/*
1012 	 * Now the log is fully replayed, we can transition to full read-only
1013 	 * mode for read-only mounts. This will sync all the metadata and clean
1014 	 * the log so that the recovery we just performed does not have to be
1015 	 * replayed again on the next mount.
1016 	 *
1017 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
1018 	 * semantically identical operations.
1019 	 */
1020 	if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
1021 		xfs_log_clean(mp);
1022 
1023 	/*
1024 	 * Complete the quota initialisation, post-log-replay component.
1025 	 */
1026 	if (quotamount) {
1027 		ASSERT(mp->m_qflags == 0);
1028 		mp->m_qflags = quotaflags;
1029 
1030 		xfs_qm_mount_quotas(mp);
1031 	}
1032 
1033 	/*
1034 	 * Now we are mounted, reserve a small amount of unused space for
1035 	 * privileged transactions. This is needed so that transaction
1036 	 * space required for critical operations can dip into this pool
1037 	 * when at ENOSPC. This is needed for operations like create with
1038 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1039 	 * are not allowed to use this reserved space.
1040 	 *
1041 	 * This may drive us straight to ENOSPC on mount, but that implies
1042 	 * we were already there on the last unmount. Warn if this occurs.
1043 	 */
1044 	if (!xfs_is_readonly(mp)) {
1045 		error = xfs_reserve_blocks(mp, xfs_default_resblks(mp));
1046 		if (error)
1047 			xfs_warn(mp,
1048 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
1049 
1050 		/* Reserve AG blocks for future btree expansion. */
1051 		error = xfs_fs_reserve_ag_blocks(mp);
1052 		if (error && error != -ENOSPC)
1053 			goto out_agresv;
1054 	}
1055 
1056 	return 0;
1057 
1058  out_agresv:
1059 	xfs_fs_unreserve_ag_blocks(mp);
1060 	xfs_qm_unmount_quotas(mp);
1061  out_rtunmount:
1062 	xfs_rtunmount_inodes(mp);
1063  out_rele_rip:
1064 	xfs_irele(rip);
1065 	/* Clean out dquots that might be in memory after quotacheck. */
1066 	xfs_qm_unmount(mp);
1067  out_free_metadir:
1068 	if (mp->m_metadirip)
1069 		xfs_irele(mp->m_metadirip);
1070 
1071 	/*
1072 	 * Inactivate all inodes that might still be in memory after a log
1073 	 * intent recovery failure so that reclaim can free them.  Metadata
1074 	 * inodes and the root directory shouldn't need inactivation, but the
1075 	 * mount failed for some reason, so pull down all the state and flee.
1076 	 */
1077 	xfs_inodegc_flush(mp);
1078 
1079 	/*
1080 	 * Flush all inode reclamation work and flush the log.
1081 	 * We have to do this /after/ rtunmount and qm_unmount because those
1082 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1083 	 *
1084 	 * This is slightly different from the unmountfs call sequence
1085 	 * because we could be tearing down a partially set up mount.  In
1086 	 * particular, if log_mount_finish fails we bail out without calling
1087 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1088 	 * quota inodes.
1089 	 */
1090 	xfs_unmount_flush_inodes(mp);
1091 	xfs_log_mount_cancel(mp);
1092  out_inodegc_shrinker:
1093 	shrinker_free(mp->m_inodegc_shrinker);
1094  out_fail_wait:
1095 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1096 		xfs_buftarg_drain(mp->m_logdev_targp);
1097 	xfs_buftarg_drain(mp->m_ddev_targp);
1098  out_free_rtgroup:
1099 	xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1100  out_free_perag:
1101 	xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1102  out_free_dir:
1103 	xfs_da_unmount(mp);
1104  out_remove_uuid:
1105 	xfs_uuid_unmount(mp);
1106  out_remove_errortag:
1107 	xfs_errortag_del(mp);
1108  out_remove_error_sysfs:
1109 	xfs_error_sysfs_del(mp);
1110  out_remove_scrub_stats:
1111 	xchk_stats_unregister(mp->m_scrub_stats);
1112 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1113  out_remove_sysfs:
1114 	xfs_sysfs_del(&mp->m_kobj);
1115  out:
1116 	return error;
1117 }
1118 
1119 /*
1120  * This flushes out the inodes,dquots and the superblock, unmounts the
1121  * log and makes sure that incore structures are freed.
1122  */
1123 void
xfs_unmountfs(struct xfs_mount * mp)1124 xfs_unmountfs(
1125 	struct xfs_mount	*mp)
1126 {
1127 	int			error;
1128 
1129 	/*
1130 	 * Perform all on-disk metadata updates required to inactivate inodes
1131 	 * that the VFS evicted earlier in the unmount process.  Freeing inodes
1132 	 * and discarding CoW fork preallocations can cause shape changes to
1133 	 * the free inode and refcount btrees, respectively, so we must finish
1134 	 * this before we discard the metadata space reservations.  Metadata
1135 	 * inodes and the root directory do not require inactivation.
1136 	 */
1137 	xfs_inodegc_flush(mp);
1138 
1139 	xfs_blockgc_stop(mp);
1140 	xfs_fs_unreserve_ag_blocks(mp);
1141 	xfs_qm_unmount_quotas(mp);
1142 	xfs_rtunmount_inodes(mp);
1143 	xfs_irele(mp->m_rootip);
1144 	if (mp->m_metadirip)
1145 		xfs_irele(mp->m_metadirip);
1146 
1147 	xfs_unmount_flush_inodes(mp);
1148 
1149 	xfs_qm_unmount(mp);
1150 
1151 	/*
1152 	 * Unreserve any blocks we have so that when we unmount we don't account
1153 	 * the reserved free space as used. This is really only necessary for
1154 	 * lazy superblock counting because it trusts the incore superblock
1155 	 * counters to be absolutely correct on clean unmount.
1156 	 *
1157 	 * We don't bother correcting this elsewhere for lazy superblock
1158 	 * counting because on mount of an unclean filesystem we reconstruct the
1159 	 * correct counter value and this is irrelevant.
1160 	 *
1161 	 * For non-lazy counter filesystems, this doesn't matter at all because
1162 	 * we only every apply deltas to the superblock and hence the incore
1163 	 * value does not matter....
1164 	 */
1165 	error = xfs_reserve_blocks(mp, 0);
1166 	if (error)
1167 		xfs_warn(mp, "Unable to free reserved block pool. "
1168 				"Freespace may not be correct on next mount.");
1169 	xfs_unmount_check(mp);
1170 
1171 	/*
1172 	 * Indicate that it's ok to clear log incompat bits before cleaning
1173 	 * the log and writing the unmount record.
1174 	 */
1175 	xfs_set_done_with_log_incompat(mp);
1176 	xfs_log_unmount(mp);
1177 	xfs_da_unmount(mp);
1178 	xfs_uuid_unmount(mp);
1179 
1180 #if defined(DEBUG)
1181 	xfs_errortag_clearall(mp);
1182 #endif
1183 	shrinker_free(mp->m_inodegc_shrinker);
1184 	xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1185 	xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1186 	xfs_errortag_del(mp);
1187 	xfs_error_sysfs_del(mp);
1188 	xchk_stats_unregister(mp->m_scrub_stats);
1189 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1190 	xfs_sysfs_del(&mp->m_kobj);
1191 }
1192 
1193 /*
1194  * Determine whether modifications can proceed. The caller specifies the minimum
1195  * freeze level for which modifications should not be allowed. This allows
1196  * certain operations to proceed while the freeze sequence is in progress, if
1197  * necessary.
1198  */
1199 bool
xfs_fs_writable(struct xfs_mount * mp,int level)1200 xfs_fs_writable(
1201 	struct xfs_mount	*mp,
1202 	int			level)
1203 {
1204 	ASSERT(level > SB_UNFROZEN);
1205 	if ((mp->m_super->s_writers.frozen >= level) ||
1206 	    xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1207 		return false;
1208 
1209 	return true;
1210 }
1211 
1212 void
xfs_add_freecounter(struct xfs_mount * mp,struct percpu_counter * counter,uint64_t delta)1213 xfs_add_freecounter(
1214 	struct xfs_mount	*mp,
1215 	struct percpu_counter	*counter,
1216 	uint64_t		delta)
1217 {
1218 	bool			has_resv_pool = (counter == &mp->m_fdblocks);
1219 	uint64_t		res_used;
1220 
1221 	/*
1222 	 * If the reserve pool is depleted, put blocks back into it first.
1223 	 * Most of the time the pool is full.
1224 	 */
1225 	if (!has_resv_pool || mp->m_resblks == mp->m_resblks_avail) {
1226 		percpu_counter_add(counter, delta);
1227 		return;
1228 	}
1229 
1230 	spin_lock(&mp->m_sb_lock);
1231 	res_used = mp->m_resblks - mp->m_resblks_avail;
1232 	if (res_used > delta) {
1233 		mp->m_resblks_avail += delta;
1234 	} else {
1235 		delta -= res_used;
1236 		mp->m_resblks_avail = mp->m_resblks;
1237 		percpu_counter_add(counter, delta);
1238 	}
1239 	spin_unlock(&mp->m_sb_lock);
1240 }
1241 
1242 int
xfs_dec_freecounter(struct xfs_mount * mp,struct percpu_counter * counter,uint64_t delta,bool rsvd)1243 xfs_dec_freecounter(
1244 	struct xfs_mount	*mp,
1245 	struct percpu_counter	*counter,
1246 	uint64_t		delta,
1247 	bool			rsvd)
1248 {
1249 	int64_t			lcounter;
1250 	uint64_t		set_aside = 0;
1251 	s32			batch;
1252 	bool			has_resv_pool;
1253 
1254 	ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1255 	has_resv_pool = (counter == &mp->m_fdblocks);
1256 	if (rsvd)
1257 		ASSERT(has_resv_pool);
1258 
1259 	/*
1260 	 * Taking blocks away, need to be more accurate the closer we
1261 	 * are to zero.
1262 	 *
1263 	 * If the counter has a value of less than 2 * max batch size,
1264 	 * then make everything serialise as we are real close to
1265 	 * ENOSPC.
1266 	 */
1267 	if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1268 				     XFS_FDBLOCKS_BATCH) < 0)
1269 		batch = 1;
1270 	else
1271 		batch = XFS_FDBLOCKS_BATCH;
1272 
1273 	/*
1274 	 * Set aside allocbt blocks because these blocks are tracked as free
1275 	 * space but not available for allocation. Technically this means that a
1276 	 * single reservation cannot consume all remaining free space, but the
1277 	 * ratio of allocbt blocks to usable free blocks should be rather small.
1278 	 * The tradeoff without this is that filesystems that maintain high
1279 	 * perag block reservations can over reserve physical block availability
1280 	 * and fail physical allocation, which leads to much more serious
1281 	 * problems (i.e. transaction abort, pagecache discards, etc.) than
1282 	 * slightly premature -ENOSPC.
1283 	 */
1284 	if (has_resv_pool)
1285 		set_aside = xfs_fdblocks_unavailable(mp);
1286 	percpu_counter_add_batch(counter, -((int64_t)delta), batch);
1287 	if (__percpu_counter_compare(counter, set_aside,
1288 				     XFS_FDBLOCKS_BATCH) >= 0) {
1289 		/* we had space! */
1290 		return 0;
1291 	}
1292 
1293 	/*
1294 	 * lock up the sb for dipping into reserves before releasing the space
1295 	 * that took us to ENOSPC.
1296 	 */
1297 	spin_lock(&mp->m_sb_lock);
1298 	percpu_counter_add(counter, delta);
1299 	if (!has_resv_pool || !rsvd)
1300 		goto fdblocks_enospc;
1301 
1302 	lcounter = (long long)mp->m_resblks_avail - delta;
1303 	if (lcounter >= 0) {
1304 		mp->m_resblks_avail = lcounter;
1305 		spin_unlock(&mp->m_sb_lock);
1306 		return 0;
1307 	}
1308 	xfs_warn_once(mp,
1309 "Reserve blocks depleted! Consider increasing reserve pool size.");
1310 
1311 fdblocks_enospc:
1312 	spin_unlock(&mp->m_sb_lock);
1313 	return -ENOSPC;
1314 }
1315 
1316 /*
1317  * Used to free the superblock along various error paths.
1318  */
1319 void
xfs_freesb(struct xfs_mount * mp)1320 xfs_freesb(
1321 	struct xfs_mount	*mp)
1322 {
1323 	struct xfs_buf		*bp = mp->m_sb_bp;
1324 
1325 	xfs_buf_lock(bp);
1326 	mp->m_sb_bp = NULL;
1327 	xfs_buf_relse(bp);
1328 }
1329 
1330 /*
1331  * If the underlying (data/log/rt) device is readonly, there are some
1332  * operations that cannot proceed.
1333  */
1334 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)1335 xfs_dev_is_read_only(
1336 	struct xfs_mount	*mp,
1337 	char			*message)
1338 {
1339 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1340 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1341 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1342 		xfs_notice(mp, "%s required on read-only device.", message);
1343 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1344 		return -EROFS;
1345 	}
1346 	return 0;
1347 }
1348 
1349 /* Force the summary counters to be recalculated at next mount. */
1350 void
xfs_force_summary_recalc(struct xfs_mount * mp)1351 xfs_force_summary_recalc(
1352 	struct xfs_mount	*mp)
1353 {
1354 	if (!xfs_has_lazysbcount(mp))
1355 		return;
1356 
1357 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1358 }
1359 
1360 /*
1361  * Enable a log incompat feature flag in the primary superblock.  The caller
1362  * cannot have any other transactions in progress.
1363  */
1364 int
xfs_add_incompat_log_feature(struct xfs_mount * mp,uint32_t feature)1365 xfs_add_incompat_log_feature(
1366 	struct xfs_mount	*mp,
1367 	uint32_t		feature)
1368 {
1369 	struct xfs_dsb		*dsb;
1370 	int			error;
1371 
1372 	ASSERT(hweight32(feature) == 1);
1373 	ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1374 
1375 	/*
1376 	 * Force the log to disk and kick the background AIL thread to reduce
1377 	 * the chances that the bwrite will stall waiting for the AIL to unpin
1378 	 * the primary superblock buffer.  This isn't a data integrity
1379 	 * operation, so we don't need a synchronous push.
1380 	 */
1381 	error = xfs_log_force(mp, XFS_LOG_SYNC);
1382 	if (error)
1383 		return error;
1384 	xfs_ail_push_all(mp->m_ail);
1385 
1386 	/*
1387 	 * Lock the primary superblock buffer to serialize all callers that
1388 	 * are trying to set feature bits.
1389 	 */
1390 	xfs_buf_lock(mp->m_sb_bp);
1391 	xfs_buf_hold(mp->m_sb_bp);
1392 
1393 	if (xfs_is_shutdown(mp)) {
1394 		error = -EIO;
1395 		goto rele;
1396 	}
1397 
1398 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1399 		goto rele;
1400 
1401 	/*
1402 	 * Write the primary superblock to disk immediately, because we need
1403 	 * the log_incompat bit to be set in the primary super now to protect
1404 	 * the log items that we're going to commit later.
1405 	 */
1406 	dsb = mp->m_sb_bp->b_addr;
1407 	xfs_sb_to_disk(dsb, &mp->m_sb);
1408 	dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1409 	error = xfs_bwrite(mp->m_sb_bp);
1410 	if (error)
1411 		goto shutdown;
1412 
1413 	/*
1414 	 * Add the feature bits to the incore superblock before we unlock the
1415 	 * buffer.
1416 	 */
1417 	xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1418 	xfs_buf_relse(mp->m_sb_bp);
1419 
1420 	/* Log the superblock to disk. */
1421 	return xfs_sync_sb(mp, false);
1422 shutdown:
1423 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1424 rele:
1425 	xfs_buf_relse(mp->m_sb_bp);
1426 	return error;
1427 }
1428 
1429 /*
1430  * Clear all the log incompat flags from the superblock.
1431  *
1432  * The caller cannot be in a transaction, must ensure that the log does not
1433  * contain any log items protected by any log incompat bit, and must ensure
1434  * that there are no other threads that depend on the state of the log incompat
1435  * feature flags in the primary super.
1436  *
1437  * Returns true if the superblock is dirty.
1438  */
1439 bool
xfs_clear_incompat_log_features(struct xfs_mount * mp)1440 xfs_clear_incompat_log_features(
1441 	struct xfs_mount	*mp)
1442 {
1443 	bool			ret = false;
1444 
1445 	if (!xfs_has_crc(mp) ||
1446 	    !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1447 				XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1448 	    xfs_is_shutdown(mp) ||
1449 	    !xfs_is_done_with_log_incompat(mp))
1450 		return false;
1451 
1452 	/*
1453 	 * Update the incore superblock.  We synchronize on the primary super
1454 	 * buffer lock to be consistent with the add function, though at least
1455 	 * in theory this shouldn't be necessary.
1456 	 */
1457 	xfs_buf_lock(mp->m_sb_bp);
1458 	xfs_buf_hold(mp->m_sb_bp);
1459 
1460 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1461 				XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1462 		xfs_sb_remove_incompat_log_features(&mp->m_sb);
1463 		ret = true;
1464 	}
1465 
1466 	xfs_buf_relse(mp->m_sb_bp);
1467 	return ret;
1468 }
1469 
1470 /*
1471  * Update the in-core delayed block counter.
1472  *
1473  * We prefer to update the counter without having to take a spinlock for every
1474  * counter update (i.e. batching).  Each change to delayed allocation
1475  * reservations can change can easily exceed the default percpu counter
1476  * batching, so we use a larger batch factor here.
1477  *
1478  * Note that we don't currently have any callers requiring fast summation
1479  * (e.g. percpu_counter_read) so we can use a big batch value here.
1480  */
1481 #define XFS_DELALLOC_BATCH	(4096)
1482 void
xfs_mod_delalloc(struct xfs_inode * ip,int64_t data_delta,int64_t ind_delta)1483 xfs_mod_delalloc(
1484 	struct xfs_inode	*ip,
1485 	int64_t			data_delta,
1486 	int64_t			ind_delta)
1487 {
1488 	struct xfs_mount	*mp = ip->i_mount;
1489 
1490 	if (XFS_IS_REALTIME_INODE(ip)) {
1491 		percpu_counter_add_batch(&mp->m_delalloc_rtextents,
1492 				xfs_blen_to_rtbxlen(mp, data_delta),
1493 				XFS_DELALLOC_BATCH);
1494 		if (!ind_delta)
1495 			return;
1496 		data_delta = 0;
1497 	}
1498 	percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta,
1499 			XFS_DELALLOC_BATCH);
1500 }
1501