1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011, 2025 Chelsio Communications.
5 * Written by: Navdeep Parhar <np@FreeBSD.org>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #include "opt_ddb.h"
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_kern_tls.h"
34 #include "opt_ratelimit.h"
35 #include "opt_rss.h"
36
37 #include <sys/param.h>
38 #include <sys/conf.h>
39 #include <sys/priv.h>
40 #include <sys/kernel.h>
41 #include <sys/bus.h>
42 #include <sys/eventhandler.h>
43 #include <sys/module.h>
44 #include <sys/malloc.h>
45 #include <sys/queue.h>
46 #include <sys/taskqueue.h>
47 #include <dev/pci/pcireg.h>
48 #include <dev/pci/pcivar.h>
49 #include <sys/firmware.h>
50 #include <sys/sbuf.h>
51 #include <sys/smp.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 #include <net/ethernet.h>
56 #include <net/if.h>
57 #include <net/if_types.h>
58 #include <net/if_dl.h>
59 #include <net/if_vlan_var.h>
60 #include <net/rss_config.h>
61 #include <netinet/in.h>
62 #include <netinet/ip.h>
63 #ifdef KERN_TLS
64 #include <netinet/tcp_seq.h>
65 #endif
66 #if defined(__i386__) || defined(__amd64__)
67 #include <machine/md_var.h>
68 #include <machine/cputypes.h>
69 #include <vm/vm.h>
70 #include <vm/pmap.h>
71 #endif
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #include <ddb/db_lex.h>
75 #endif
76
77 #include "common/common.h"
78 #include "common/t4_msg.h"
79 #include "common/t4_regs.h"
80 #include "common/t4_regs_values.h"
81 #include "cudbg/cudbg.h"
82 #include "t4_clip.h"
83 #include "t4_ioctl.h"
84 #include "t4_l2t.h"
85 #include "t4_mp_ring.h"
86 #include "t4_if.h"
87 #include "t4_smt.h"
88
89 /* T4 bus driver interface */
90 static int t4_probe(device_t);
91 static int t4_attach(device_t);
92 static int t4_detach(device_t);
93 static int t4_child_location(device_t, device_t, struct sbuf *);
94 static int t4_ready(device_t);
95 static int t4_read_port_device(device_t, int, device_t *);
96 static int t4_suspend(device_t);
97 static int t4_resume(device_t);
98 static int t4_reset_prepare(device_t, device_t);
99 static int t4_reset_post(device_t, device_t);
100 static device_method_t t4_methods[] = {
101 DEVMETHOD(device_probe, t4_probe),
102 DEVMETHOD(device_attach, t4_attach),
103 DEVMETHOD(device_detach, t4_detach),
104 DEVMETHOD(device_suspend, t4_suspend),
105 DEVMETHOD(device_resume, t4_resume),
106
107 DEVMETHOD(bus_child_location, t4_child_location),
108 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
109 DEVMETHOD(bus_reset_post, t4_reset_post),
110
111 DEVMETHOD(t4_is_main_ready, t4_ready),
112 DEVMETHOD(t4_read_port_device, t4_read_port_device),
113
114 DEVMETHOD_END
115 };
116 static driver_t t4_driver = {
117 "t4nex",
118 t4_methods,
119 sizeof(struct adapter)
120 };
121
122
123 /* T4 port (cxgbe) interface */
124 static int cxgbe_probe(device_t);
125 static int cxgbe_attach(device_t);
126 static int cxgbe_detach(device_t);
127 device_method_t cxgbe_methods[] = {
128 DEVMETHOD(device_probe, cxgbe_probe),
129 DEVMETHOD(device_attach, cxgbe_attach),
130 DEVMETHOD(device_detach, cxgbe_detach),
131 { 0, 0 }
132 };
133 static driver_t cxgbe_driver = {
134 "cxgbe",
135 cxgbe_methods,
136 sizeof(struct port_info)
137 };
138
139 /* T4 VI (vcxgbe) interface */
140 static int vcxgbe_probe(device_t);
141 static int vcxgbe_attach(device_t);
142 static int vcxgbe_detach(device_t);
143 static device_method_t vcxgbe_methods[] = {
144 DEVMETHOD(device_probe, vcxgbe_probe),
145 DEVMETHOD(device_attach, vcxgbe_attach),
146 DEVMETHOD(device_detach, vcxgbe_detach),
147 { 0, 0 }
148 };
149 static driver_t vcxgbe_driver = {
150 "vcxgbe",
151 vcxgbe_methods,
152 sizeof(struct vi_info)
153 };
154
155 static d_ioctl_t t4_ioctl;
156
157 static struct cdevsw t4_cdevsw = {
158 .d_version = D_VERSION,
159 .d_ioctl = t4_ioctl,
160 .d_name = "t4nex",
161 };
162
163 /* T5 bus driver interface */
164 static int t5_probe(device_t);
165 static device_method_t t5_methods[] = {
166 DEVMETHOD(device_probe, t5_probe),
167 DEVMETHOD(device_attach, t4_attach),
168 DEVMETHOD(device_detach, t4_detach),
169 DEVMETHOD(device_suspend, t4_suspend),
170 DEVMETHOD(device_resume, t4_resume),
171
172 DEVMETHOD(bus_child_location, t4_child_location),
173 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
174 DEVMETHOD(bus_reset_post, t4_reset_post),
175
176 DEVMETHOD(t4_is_main_ready, t4_ready),
177 DEVMETHOD(t4_read_port_device, t4_read_port_device),
178
179 DEVMETHOD_END
180 };
181 static driver_t t5_driver = {
182 "t5nex",
183 t5_methods,
184 sizeof(struct adapter)
185 };
186
187
188 /* T5 port (cxl) interface */
189 static driver_t cxl_driver = {
190 "cxl",
191 cxgbe_methods,
192 sizeof(struct port_info)
193 };
194
195 /* T5 VI (vcxl) interface */
196 static driver_t vcxl_driver = {
197 "vcxl",
198 vcxgbe_methods,
199 sizeof(struct vi_info)
200 };
201
202 /* T6 bus driver interface */
203 static int t6_probe(device_t);
204 static device_method_t t6_methods[] = {
205 DEVMETHOD(device_probe, t6_probe),
206 DEVMETHOD(device_attach, t4_attach),
207 DEVMETHOD(device_detach, t4_detach),
208 DEVMETHOD(device_suspend, t4_suspend),
209 DEVMETHOD(device_resume, t4_resume),
210
211 DEVMETHOD(bus_child_location, t4_child_location),
212 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
213 DEVMETHOD(bus_reset_post, t4_reset_post),
214
215 DEVMETHOD(t4_is_main_ready, t4_ready),
216 DEVMETHOD(t4_read_port_device, t4_read_port_device),
217
218 DEVMETHOD_END
219 };
220 static driver_t t6_driver = {
221 "t6nex",
222 t6_methods,
223 sizeof(struct adapter)
224 };
225
226
227 /* T6 port (cc) interface */
228 static driver_t cc_driver = {
229 "cc",
230 cxgbe_methods,
231 sizeof(struct port_info)
232 };
233
234 /* T6 VI (vcc) interface */
235 static driver_t vcc_driver = {
236 "vcc",
237 vcxgbe_methods,
238 sizeof(struct vi_info)
239 };
240
241 /* T7+ bus driver interface */
242 static int ch_probe(device_t);
243 static device_method_t ch_methods[] = {
244 DEVMETHOD(device_probe, ch_probe),
245 DEVMETHOD(device_attach, t4_attach),
246 DEVMETHOD(device_detach, t4_detach),
247 DEVMETHOD(device_suspend, t4_suspend),
248 DEVMETHOD(device_resume, t4_resume),
249
250 DEVMETHOD(bus_child_location, t4_child_location),
251 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
252 DEVMETHOD(bus_reset_post, t4_reset_post),
253
254 DEVMETHOD(t4_is_main_ready, t4_ready),
255 DEVMETHOD(t4_read_port_device, t4_read_port_device),
256
257 DEVMETHOD_END
258 };
259 static driver_t ch_driver = {
260 "chnex",
261 ch_methods,
262 sizeof(struct adapter)
263 };
264
265
266 /* T7+ port (che) interface */
267 static driver_t che_driver = {
268 "che",
269 cxgbe_methods,
270 sizeof(struct port_info)
271 };
272
273 /* T7+ VI (vche) interface */
274 static driver_t vche_driver = {
275 "vche",
276 vcxgbe_methods,
277 sizeof(struct vi_info)
278 };
279
280 /* ifnet interface */
281 static void cxgbe_init(void *);
282 static int cxgbe_ioctl(if_t, unsigned long, caddr_t);
283 static int cxgbe_transmit(if_t, struct mbuf *);
284 static void cxgbe_qflush(if_t);
285 #if defined(KERN_TLS) || defined(RATELIMIT)
286 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *,
287 struct m_snd_tag **);
288 #endif
289
290 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
291
292 /*
293 * Correct lock order when you need to acquire multiple locks is t4_list_lock,
294 * then ADAPTER_LOCK, then t4_uld_list_lock.
295 */
296 static struct sx t4_list_lock;
297 SLIST_HEAD(, adapter) t4_list;
298 #ifdef TCP_OFFLOAD
299 static struct sx t4_uld_list_lock;
300 struct uld_info *t4_uld_list[ULD_MAX + 1];
301 #endif
302
303 /*
304 * Tunables. See tweak_tunables() too.
305 *
306 * Each tunable is set to a default value here if it's known at compile-time.
307 * Otherwise it is set to -n as an indication to tweak_tunables() that it should
308 * provide a reasonable default (upto n) when the driver is loaded.
309 *
310 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to
311 * T5 are under hw.cxl.
312 */
313 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
314 "cxgbe(4) parameters");
315 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
316 "cxgbe(4) T5+ parameters");
317 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
318 "cxgbe(4) TOE parameters");
319
320 /*
321 * Number of queues for tx and rx, NIC and offload.
322 */
323 #define NTXQ 16
324 int t4_ntxq = -NTXQ;
325 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
326 "Number of TX queues per port");
327 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */
328
329 #define NRXQ 8
330 int t4_nrxq = -NRXQ;
331 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
332 "Number of RX queues per port");
333 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */
334
335 #define NTXQ_VI 1
336 static int t4_ntxq_vi = -NTXQ_VI;
337 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
338 "Number of TX queues per VI");
339
340 #define NRXQ_VI 1
341 static int t4_nrxq_vi = -NRXQ_VI;
342 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
343 "Number of RX queues per VI");
344
345 static int t4_rsrv_noflowq = 0;
346 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
347 0, "Reserve TX queue 0 of each VI for non-flowid packets");
348
349 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
350 #define NOFLDTXQ 8
351 static int t4_nofldtxq = -NOFLDTXQ;
352 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
353 "Number of offload TX queues per port");
354
355 #define NOFLDTXQ_VI 1
356 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
357 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
358 "Number of offload TX queues per VI");
359 #endif
360
361 #if defined(TCP_OFFLOAD)
362 #define NOFLDRXQ 2
363 static int t4_nofldrxq = -NOFLDRXQ;
364 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
365 "Number of offload RX queues per port");
366
367 #define NOFLDRXQ_VI 1
368 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
369 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
370 "Number of offload RX queues per VI");
371
372 #define TMR_IDX_OFLD 1
373 static int t4_tmr_idx_ofld = TMR_IDX_OFLD;
374 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
375 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
376
377 #define PKTC_IDX_OFLD (-1)
378 static int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
379 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
380 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
381
382 /* 0 means chip/fw default, non-zero number is value in microseconds */
383 static u_long t4_toe_keepalive_idle = 0;
384 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
385 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
386
387 /* 0 means chip/fw default, non-zero number is value in microseconds */
388 static u_long t4_toe_keepalive_interval = 0;
389 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
390 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
391
392 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
393 static int t4_toe_keepalive_count = 0;
394 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
395 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
396
397 /* 0 means chip/fw default, non-zero number is value in microseconds */
398 static u_long t4_toe_rexmt_min = 0;
399 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
400 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
401
402 /* 0 means chip/fw default, non-zero number is value in microseconds */
403 static u_long t4_toe_rexmt_max = 0;
404 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
405 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
406
407 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
408 static int t4_toe_rexmt_count = 0;
409 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
410 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
411
412 /* -1 means chip/fw default, other values are raw backoff values to use */
413 static int t4_toe_rexmt_backoff[16] = {
414 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
415 };
416 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff,
417 CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
418 "cxgbe(4) TOE retransmit backoff values");
419 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
420 &t4_toe_rexmt_backoff[0], 0, "");
421 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
422 &t4_toe_rexmt_backoff[1], 0, "");
423 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
424 &t4_toe_rexmt_backoff[2], 0, "");
425 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
426 &t4_toe_rexmt_backoff[3], 0, "");
427 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
428 &t4_toe_rexmt_backoff[4], 0, "");
429 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
430 &t4_toe_rexmt_backoff[5], 0, "");
431 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
432 &t4_toe_rexmt_backoff[6], 0, "");
433 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
434 &t4_toe_rexmt_backoff[7], 0, "");
435 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
436 &t4_toe_rexmt_backoff[8], 0, "");
437 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
438 &t4_toe_rexmt_backoff[9], 0, "");
439 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
440 &t4_toe_rexmt_backoff[10], 0, "");
441 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
442 &t4_toe_rexmt_backoff[11], 0, "");
443 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
444 &t4_toe_rexmt_backoff[12], 0, "");
445 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
446 &t4_toe_rexmt_backoff[13], 0, "");
447 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
448 &t4_toe_rexmt_backoff[14], 0, "");
449 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
450 &t4_toe_rexmt_backoff[15], 0, "");
451
452 int t4_ddp_rcvbuf_len = 256 * 1024;
453 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN,
454 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer");
455
456 unsigned int t4_ddp_rcvbuf_cache = 4;
457 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN,
458 &t4_ddp_rcvbuf_cache, 0,
459 "maximum number of free DDP RX buffers to cache per connection");
460 #endif
461
462 #ifdef DEV_NETMAP
463 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */
464 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */
465 static int t4_native_netmap = NN_EXTRA_VI;
466 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap,
467 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs");
468
469 #define NNMTXQ 8
470 static int t4_nnmtxq = -NNMTXQ;
471 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0,
472 "Number of netmap TX queues");
473
474 #define NNMRXQ 8
475 static int t4_nnmrxq = -NNMRXQ;
476 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0,
477 "Number of netmap RX queues");
478
479 #define NNMTXQ_VI 2
480 static int t4_nnmtxq_vi = -NNMTXQ_VI;
481 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
482 "Number of netmap TX queues per VI");
483
484 #define NNMRXQ_VI 2
485 static int t4_nnmrxq_vi = -NNMRXQ_VI;
486 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
487 "Number of netmap RX queues per VI");
488 #endif
489
490 /*
491 * Holdoff parameters for ports.
492 */
493 #define TMR_IDX 1
494 int t4_tmr_idx = TMR_IDX;
495 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
496 0, "Holdoff timer index");
497 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */
498
499 #define PKTC_IDX (-1)
500 int t4_pktc_idx = PKTC_IDX;
501 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
502 0, "Holdoff packet counter index");
503 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */
504
505 /*
506 * Size (# of entries) of each tx and rx queue.
507 */
508 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
509 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
510 "Number of descriptors in each TX queue");
511
512 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
513 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
514 "Number of descriptors in each RX queue");
515
516 /*
517 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
518 */
519 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
520 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
521 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
522
523 /*
524 * Configuration file. All the _CF names here are special.
525 */
526 #define DEFAULT_CF "default"
527 #define BUILTIN_CF "built-in"
528 #define FLASH_CF "flash"
529 #define UWIRE_CF "uwire"
530 #define FPGA_CF "fpga"
531 static char t4_cfg_file[32] = DEFAULT_CF;
532 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
533 sizeof(t4_cfg_file), "Firmware configuration file");
534
535 /*
536 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
537 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
538 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
539 * mark or when signalled to do so, 0 to never emit PAUSE.
540 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
541 * negotiated settings will override rx_pause/tx_pause.
542 * Otherwise rx_pause/tx_pause are applied forcibly.
543 */
544 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
545 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
546 &t4_pause_settings, 0,
547 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
548
549 /*
550 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
551 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5)
552 * 0 to disable FEC.
553 */
554 static int t4_fec = -1;
555 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
556 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
557
558 static const char *
559 t4_fec_bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2\6auto\7module";
560
561 /*
562 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it
563 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the
564 * driver runs as if this is set to 0.
565 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay.
566 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the
567 * transceiver. Multiple FEC bits may not be okay but will be passed on to
568 * the firmware anyway (may result in l1cfg errors with old firmwares).
569 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO
570 * means set all FEC bits that are valid for the speed.
571 */
572 static int t4_force_fec = -1;
573 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0,
574 "Controls the use of FORCE_FEC bit in L1 configuration.");
575
576 /*
577 * Link autonegotiation.
578 * -1 to run with the firmware default.
579 * 0 to disable.
580 * 1 to enable.
581 */
582 static int t4_autoneg = -1;
583 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
584 "Link autonegotiation");
585
586 /*
587 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
588 * encouraged respectively). '-n' is the same as 'n' except the firmware
589 * version used in the checks is read from the firmware bundled with the driver.
590 */
591 static int t4_fw_install = 1;
592 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
593 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
594
595 /*
596 * ASIC features that will be used. Disable the ones you don't want so that the
597 * chip resources aren't wasted on features that will not be used.
598 */
599 static int t4_nbmcaps_allowed = 0;
600 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
601 &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
602
603 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */
604 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
605 &t4_linkcaps_allowed, 0, "Default link capabilities");
606
607 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
608 FW_CAPS_CONFIG_SWITCH_EGRESS;
609 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
610 &t4_switchcaps_allowed, 0, "Default switch capabilities");
611
612 static int t4_nvmecaps_allowed = -1;
613 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nvmecaps_allowed, CTLFLAG_RDTUN,
614 &t4_nvmecaps_allowed, 0, "Default NVMe capabilities");
615
616 #ifdef RATELIMIT
617 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
618 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
619 #else
620 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
621 FW_CAPS_CONFIG_NIC_HASHFILTER;
622 #endif
623 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
624 &t4_niccaps_allowed, 0, "Default NIC capabilities");
625
626 static int t4_toecaps_allowed = -1;
627 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
628 &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
629
630 static int t4_rdmacaps_allowed = -1;
631 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
632 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
633
634 static int t4_cryptocaps_allowed = -1;
635 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
636 &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
637
638 static int t4_iscsicaps_allowed = -1;
639 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
640 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
641
642 static int t4_fcoecaps_allowed = 0;
643 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
644 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
645
646 static int t5_write_combine = 0;
647 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
648 0, "Use WC instead of UC for BAR2");
649
650 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */
651 static int t4_doorbells_allowed = 0xf;
652 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN,
653 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells");
654
655 static int t4_num_vis = 1;
656 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
657 "Number of VIs per port");
658
659 /*
660 * PCIe Relaxed Ordering.
661 * -1: driver should figure out a good value.
662 * 0: disable RO.
663 * 1: enable RO.
664 * 2: leave RO alone.
665 */
666 static int pcie_relaxed_ordering = -1;
667 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
668 &pcie_relaxed_ordering, 0,
669 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
670
671 static int t4_panic_on_fatal_err = 0;
672 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN,
673 &t4_panic_on_fatal_err, 0, "panic on fatal errors");
674
675 static int t4_reset_on_fatal_err = 0;
676 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN,
677 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors");
678
679 static int t4_reset_method = 1;
680 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_method, CTLFLAG_RWTUN, &t4_reset_method,
681 0, "reset method: 0 = PL_RST, 1 = PCIe secondary bus reset, 2 = PCIe link bounce");
682
683 static int t4_clock_gate_on_suspend = 0;
684 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN,
685 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend");
686
687 static int t4_tx_vm_wr = 0;
688 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0,
689 "Use VM work requests to transmit packets.");
690
691 /*
692 * Set to non-zero to enable the attack filter. A packet that matches any of
693 * these conditions will get dropped on ingress:
694 * 1) IP && source address == destination address.
695 * 2) TCP/IP && source address is not a unicast address.
696 * 3) TCP/IP && destination address is not a unicast address.
697 * 4) IP && source address is loopback (127.x.y.z).
698 * 5) IP && destination address is loopback (127.x.y.z).
699 * 6) IPv6 && source address == destination address.
700 * 7) IPv6 && source address is not a unicast address.
701 * 8) IPv6 && source address is loopback (::1/128).
702 * 9) IPv6 && destination address is loopback (::1/128).
703 * 10) IPv6 && source address is unspecified (::/128).
704 * 11) IPv6 && destination address is unspecified (::/128).
705 * 12) TCP/IPv6 && source address is multicast (ff00::/8).
706 * 13) TCP/IPv6 && destination address is multicast (ff00::/8).
707 */
708 static int t4_attack_filter = 0;
709 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN,
710 &t4_attack_filter, 0, "Drop suspicious traffic");
711
712 static int t4_drop_ip_fragments = 0;
713 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN,
714 &t4_drop_ip_fragments, 0, "Drop IP fragments");
715
716 static int t4_drop_pkts_with_l2_errors = 1;
717 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN,
718 &t4_drop_pkts_with_l2_errors, 0,
719 "Drop all frames with Layer 2 length or checksum errors");
720
721 static int t4_drop_pkts_with_l3_errors = 0;
722 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN,
723 &t4_drop_pkts_with_l3_errors, 0,
724 "Drop all frames with IP version, length, or checksum errors");
725
726 static int t4_drop_pkts_with_l4_errors = 0;
727 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN,
728 &t4_drop_pkts_with_l4_errors, 0,
729 "Drop all frames with Layer 4 length, checksum, or other errors");
730
731 #ifdef TCP_OFFLOAD
732 /*
733 * TOE tunables.
734 */
735 static int t4_cop_managed_offloading = 0;
736 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
737 &t4_cop_managed_offloading, 0,
738 "COP (Connection Offload Policy) controls all TOE offload");
739 TUNABLE_INT("hw.cxgbe.cop_managed_offloading", &t4_cop_managed_offloading);
740 #endif
741
742 #ifdef KERN_TLS
743 /*
744 * This enables KERN_TLS for all adapters if set.
745 */
746 static int t4_kern_tls = 0;
747 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0,
748 "Enable KERN_TLS mode for T6 adapters");
749
750 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
751 "cxgbe(4) KERN_TLS parameters");
752
753 static int t4_tls_inline_keys = 0;
754 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN,
755 &t4_tls_inline_keys, 0,
756 "Always pass TLS keys in work requests (1) or attempt to store TLS keys "
757 "in card memory.");
758
759 static int t4_tls_combo_wrs = 0;
760 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs,
761 0, "Attempt to combine TCB field updates with TLS record work requests.");
762
763 static int t4_tls_short_records = 1;
764 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, short_records, CTLFLAG_RDTUN,
765 &t4_tls_short_records, 0, "Use cipher-only mode for short records.");
766
767 static int t4_tls_partial_ghash = 1;
768 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, partial_ghash, CTLFLAG_RDTUN,
769 &t4_tls_partial_ghash, 0, "Use partial GHASH for AES-GCM records.");
770 #endif
771
772 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
773 static int vi_mac_funcs[] = {
774 FW_VI_FUNC_ETH,
775 FW_VI_FUNC_OFLD,
776 FW_VI_FUNC_IWARP,
777 FW_VI_FUNC_OPENISCSI,
778 FW_VI_FUNC_OPENFCOE,
779 FW_VI_FUNC_FOISCSI,
780 FW_VI_FUNC_FOFCOE,
781 };
782
783 struct intrs_and_queues {
784 uint16_t intr_type; /* INTx, MSI, or MSI-X */
785 uint16_t num_vis; /* number of VIs for each port */
786 uint16_t nirq; /* Total # of vectors */
787 uint16_t ntxq; /* # of NIC txq's for each port */
788 uint16_t nrxq; /* # of NIC rxq's for each port */
789 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */
790 uint16_t nofldrxq; /* # of TOE rxq's for each port */
791 uint16_t nnmtxq; /* # of netmap txq's */
792 uint16_t nnmrxq; /* # of netmap rxq's */
793
794 /* The vcxgbe/vcxl interfaces use these and not the ones above. */
795 uint16_t ntxq_vi; /* # of NIC txq's */
796 uint16_t nrxq_vi; /* # of NIC rxq's */
797 uint16_t nofldtxq_vi; /* # of TOE txq's */
798 uint16_t nofldrxq_vi; /* # of TOE rxq's */
799 uint16_t nnmtxq_vi; /* # of netmap txq's */
800 uint16_t nnmrxq_vi; /* # of netmap rxq's */
801 };
802
803 static void setup_memwin(struct adapter *);
804 static void position_memwin(struct adapter *, int, uint32_t);
805 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
806 static int fwmtype_to_hwmtype(int);
807 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
808 uint32_t *);
809 static int fixup_devlog_params(struct adapter *);
810 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
811 static int contact_firmware(struct adapter *);
812 static int partition_resources(struct adapter *);
813 static int get_params__pre_init(struct adapter *);
814 static int set_params__pre_init(struct adapter *);
815 static int get_params__post_init(struct adapter *);
816 static int set_params__post_init(struct adapter *);
817 static void t4_set_desc(struct adapter *);
818 static bool fixed_ifmedia(struct port_info *);
819 static void build_medialist(struct port_info *);
820 static void init_link_config(struct port_info *);
821 static int fixup_link_config(struct port_info *);
822 static int apply_link_config(struct port_info *);
823 static int cxgbe_init_synchronized(struct vi_info *);
824 static int cxgbe_uninit_synchronized(struct vi_info *);
825 static int adapter_full_init(struct adapter *);
826 static void adapter_full_uninit(struct adapter *);
827 static int vi_full_init(struct vi_info *);
828 static void vi_full_uninit(struct vi_info *);
829 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *);
830 static void quiesce_txq(struct sge_txq *);
831 static void quiesce_wrq(struct sge_wrq *);
832 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
833 static void quiesce_vi(struct vi_info *);
834 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
835 driver_intr_t *, void *, char *);
836 static int t4_free_irq(struct adapter *, struct irq *);
837 static void t4_init_atid_table(struct adapter *);
838 static void t4_free_atid_table(struct adapter *);
839 static void stop_atid_allocator(struct adapter *);
840 static void restart_atid_allocator(struct adapter *);
841 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
842 static void vi_refresh_stats(struct vi_info *);
843 static void cxgbe_refresh_stats(struct vi_info *);
844 static void cxgbe_tick(void *);
845 static void vi_tick(void *);
846 static void cxgbe_sysctls(struct port_info *);
847 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
848 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
849 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
850 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
851 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
852 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS);
853 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
854 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
855 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
856 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
857 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
858 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS);
859 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS);
860 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS);
861 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
862 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS);
863 static int sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS);
864 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
865 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
866 static int sysctl_vdd(SYSCTL_HANDLER_ARGS);
867 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS);
868 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
869 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
870 static int sysctl_cim_ibq(SYSCTL_HANDLER_ARGS);
871 static int sysctl_cim_obq(SYSCTL_HANDLER_ARGS);
872 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
873 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
874 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
875 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
876 static int sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS);
877 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
878 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
879 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS);
880 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
881 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
882 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
883 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
884 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
885 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
886 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
887 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
888 static int sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS);
889 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
890 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
891 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
892 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
893 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
894 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
895 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS);
896 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
897 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
898 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
899 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
900 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
901 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
902 static int sysctl_reset(SYSCTL_HANDLER_ARGS);
903 #ifdef TCP_OFFLOAD
904 static int sysctl_tls(SYSCTL_HANDLER_ARGS);
905 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
906 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
907 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
908 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
909 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
910 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
911 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
912 #endif
913 static int get_sge_context(struct adapter *, int, uint32_t, int, uint32_t *);
914 static int load_fw(struct adapter *, struct t4_data *);
915 static int load_cfg(struct adapter *, struct t4_data *);
916 static int load_boot(struct adapter *, struct t4_bootrom *);
917 static int load_bootcfg(struct adapter *, struct t4_data *);
918 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
919 static void free_offload_policy(struct t4_offload_policy *);
920 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
921 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
922 static int read_i2c(struct adapter *, struct t4_i2c_data *);
923 static int clear_stats(struct adapter *, u_int);
924 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *);
925 static int release_clip_addr(struct adapter *, struct t4_clip_addr *);
926 static inline int stop_adapter(struct adapter *);
927 static inline void set_adapter_hwstatus(struct adapter *, const bool);
928 static int stop_lld(struct adapter *);
929 static inline int restart_adapter(struct adapter *);
930 static int restart_lld(struct adapter *);
931 #ifdef TCP_OFFLOAD
932 static int deactivate_all_uld(struct adapter *);
933 static void stop_all_uld(struct adapter *);
934 static void restart_all_uld(struct adapter *);
935 #endif
936 #ifdef KERN_TLS
937 static int ktls_capability(struct adapter *, bool);
938 #endif
939 static int mod_event(module_t, int, void *);
940 static int notify_siblings(device_t, int);
941 static uint64_t vi_get_counter(if_t, ift_counter);
942 static uint64_t cxgbe_get_counter(if_t, ift_counter);
943 static void enable_vxlan_rx(struct adapter *);
944 static void reset_adapter_task(void *, int);
945 static void fatal_error_task(void *, int);
946 static void dump_devlog(struct adapter *);
947 static void dump_cim_regs(struct adapter *);
948 static void dump_cimla(struct adapter *);
949
950 struct {
951 uint16_t device;
952 char *desc;
953 } t4_pciids[] = {
954 {0xa000, "Chelsio Terminator 4 FPGA"},
955 {0x4400, "Chelsio T440-dbg"},
956 {0x4401, "Chelsio T420-CR"},
957 {0x4402, "Chelsio T422-CR"},
958 {0x4403, "Chelsio T440-CR"},
959 {0x4404, "Chelsio T420-BCH"},
960 {0x4405, "Chelsio T440-BCH"},
961 {0x4406, "Chelsio T440-CH"},
962 {0x4407, "Chelsio T420-SO"},
963 {0x4408, "Chelsio T420-CX"},
964 {0x4409, "Chelsio T420-BT"},
965 {0x440a, "Chelsio T404-BT"},
966 {0x440e, "Chelsio T440-LP-CR"},
967 }, t5_pciids[] = {
968 {0xb000, "Chelsio Terminator 5 FPGA"},
969 {0x5400, "Chelsio T580-dbg"},
970 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */
971 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */
972 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */
973 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */
974 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */
975 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */
976 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */
977 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */
978 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */
979 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */
980 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */
981 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */
982 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */
983 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */
984 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */
985 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */
986 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */
987
988 /* Custom */
989 {0x5483, "Custom T540-CR"},
990 {0x5484, "Custom T540-BT"},
991 }, t6_pciids[] = {
992 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */
993 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */
994 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */
995 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */
996 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */
997 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */
998 {0x6405, "Chelsio T6225-SO-OCP3"}, /* 2 x 10/25G, nomem */
999 {0x6406, "Chelsio T6225-OCP3"}, /* 2 x 10/25G */
1000 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */
1001 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */
1002 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */
1003 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */
1004 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */
1005 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */
1006 {0x6414, "Chelsio T62100-SO-OCP3"}, /* 2 x 40/50/100G, nomem */
1007 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */
1008
1009 /* Custom */
1010 {0x6480, "Custom T6225-CR"},
1011 {0x6481, "Custom T62100-CR"},
1012 {0x6482, "Custom T6225-CR"},
1013 {0x6483, "Custom T62100-CR"},
1014 {0x6484, "Custom T64100-CR"},
1015 {0x6485, "Custom T6240-SO"},
1016 {0x6486, "Custom T6225-SO-CR"},
1017 {0x6487, "Custom T6225-CR"},
1018 }, t7_pciids[] = {
1019 {0xd000, "Chelsio Terminator 7 FPGA"}, /* T7 PE12K FPGA */
1020 {0x7400, "Chelsio T72200-DBG"}, /* 2 x 200G, debug */
1021 {0x7401, "Chelsio T7250"}, /* 2 x 10/25/50G, 1 mem */
1022 {0x7402, "Chelsio S7250"}, /* 2 x 10/25/50G, nomem */
1023 {0x7403, "Chelsio T7450"}, /* 4 x 10/25/50G, 1 mem */
1024 {0x7404, "Chelsio S7450"}, /* 4 x 10/25/50G, nomem */
1025 {0x7405, "Chelsio T72200"}, /* 2 x 40/100/200G, 1 mem */
1026 {0x7406, "Chelsio S72200"}, /* 2 x 40/100/200G, nomem */
1027 {0x7407, "Chelsio T72200-FH"}, /* 2 x 40/100/200G, 2 mem */
1028 {0x7408, "Chelsio S71400"}, /* 1 x 400G, nomem */
1029 {0x7409, "Chelsio S7210-BT"}, /* 2 x 10GBASE-T, nomem */
1030 {0x740a, "Chelsio T7450-RC"}, /* 4 x 10/25/50G, 1 mem, RC */
1031 {0x740b, "Chelsio T72200-RC"}, /* 2 x 40/100/200G, 1 mem, RC */
1032 {0x740c, "Chelsio T72200-FH-RC"}, /* 2 x 40/100/200G, 2 mem, RC */
1033 {0x740d, "Chelsio S72200-OCP3"}, /* 2 x 40/100/200G OCP3 */
1034 {0x740e, "Chelsio S7450-OCP3"}, /* 4 x 1/20/25/50G OCP3 */
1035 {0x740f, "Chelsio S7410-BT-OCP3"}, /* 4 x 10GBASE-T OCP3 */
1036 {0x7410, "Chelsio S7210-BT-A"}, /* 2 x 10GBASE-T */
1037 {0x7411, "Chelsio T7_MAYRA_7"}, /* Motherboard */
1038
1039 /* Custom */
1040 {0x7480, "Custom T7"},
1041 };
1042
1043 #ifdef TCP_OFFLOAD
1044 /*
1045 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should
1046 * be exactly the same for both rxq and ofld_rxq.
1047 */
1048 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
1049 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
1050 #endif
1051 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
1052
1053 static int
t4_probe(device_t dev)1054 t4_probe(device_t dev)
1055 {
1056 int i;
1057 uint16_t v = pci_get_vendor(dev);
1058 uint16_t d = pci_get_device(dev);
1059 uint8_t f = pci_get_function(dev);
1060
1061 if (v != PCI_VENDOR_ID_CHELSIO)
1062 return (ENXIO);
1063
1064 /* Attach only to PF0 of the FPGA */
1065 if (d == 0xa000 && f != 0)
1066 return (ENXIO);
1067
1068 for (i = 0; i < nitems(t4_pciids); i++) {
1069 if (d == t4_pciids[i].device) {
1070 device_set_desc(dev, t4_pciids[i].desc);
1071 return (BUS_PROBE_DEFAULT);
1072 }
1073 }
1074
1075 return (ENXIO);
1076 }
1077
1078 static int
t5_probe(device_t dev)1079 t5_probe(device_t dev)
1080 {
1081 int i;
1082 uint16_t v = pci_get_vendor(dev);
1083 uint16_t d = pci_get_device(dev);
1084 uint8_t f = pci_get_function(dev);
1085
1086 if (v != PCI_VENDOR_ID_CHELSIO)
1087 return (ENXIO);
1088
1089 /* Attach only to PF0 of the FPGA */
1090 if (d == 0xb000 && f != 0)
1091 return (ENXIO);
1092
1093 for (i = 0; i < nitems(t5_pciids); i++) {
1094 if (d == t5_pciids[i].device) {
1095 device_set_desc(dev, t5_pciids[i].desc);
1096 return (BUS_PROBE_DEFAULT);
1097 }
1098 }
1099
1100 return (ENXIO);
1101 }
1102
1103 static int
t6_probe(device_t dev)1104 t6_probe(device_t dev)
1105 {
1106 int i;
1107 uint16_t v = pci_get_vendor(dev);
1108 uint16_t d = pci_get_device(dev);
1109
1110 if (v != PCI_VENDOR_ID_CHELSIO)
1111 return (ENXIO);
1112
1113 for (i = 0; i < nitems(t6_pciids); i++) {
1114 if (d == t6_pciids[i].device) {
1115 device_set_desc(dev, t6_pciids[i].desc);
1116 return (BUS_PROBE_DEFAULT);
1117 }
1118 }
1119
1120 return (ENXIO);
1121 }
1122
1123 static int
ch_probe(device_t dev)1124 ch_probe(device_t dev)
1125 {
1126 int i;
1127 uint16_t v = pci_get_vendor(dev);
1128 uint16_t d = pci_get_device(dev);
1129 uint8_t f = pci_get_function(dev);
1130
1131 if (v != PCI_VENDOR_ID_CHELSIO)
1132 return (ENXIO);
1133
1134 /* Attach only to PF0 of the FPGA */
1135 if (d == 0xd000 && f != 0)
1136 return (ENXIO);
1137
1138 for (i = 0; i < nitems(t7_pciids); i++) {
1139 if (d == t7_pciids[i].device) {
1140 device_set_desc(dev, t7_pciids[i].desc);
1141 return (BUS_PROBE_DEFAULT);
1142 }
1143 }
1144
1145 return (ENXIO);
1146 }
1147
1148 static void
t5_attribute_workaround(device_t dev)1149 t5_attribute_workaround(device_t dev)
1150 {
1151 device_t root_port;
1152 uint32_t v;
1153
1154 /*
1155 * The T5 chips do not properly echo the No Snoop and Relaxed
1156 * Ordering attributes when replying to a TLP from a Root
1157 * Port. As a workaround, find the parent Root Port and
1158 * disable No Snoop and Relaxed Ordering. Note that this
1159 * affects all devices under this root port.
1160 */
1161 root_port = pci_find_pcie_root_port(dev);
1162 if (root_port == NULL) {
1163 device_printf(dev, "Unable to find parent root port\n");
1164 return;
1165 }
1166
1167 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
1168 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
1169 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
1170 0)
1171 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
1172 device_get_nameunit(root_port));
1173 }
1174
1175 static const struct devnames devnames[] = {
1176 {
1177 .nexus_name = "t4nex",
1178 .ifnet_name = "cxgbe",
1179 .vi_ifnet_name = "vcxgbe",
1180 .pf03_drv_name = "t4iov",
1181 .vf_nexus_name = "t4vf",
1182 .vf_ifnet_name = "cxgbev"
1183 }, {
1184 .nexus_name = "t5nex",
1185 .ifnet_name = "cxl",
1186 .vi_ifnet_name = "vcxl",
1187 .pf03_drv_name = "t5iov",
1188 .vf_nexus_name = "t5vf",
1189 .vf_ifnet_name = "cxlv"
1190 }, {
1191 .nexus_name = "t6nex",
1192 .ifnet_name = "cc",
1193 .vi_ifnet_name = "vcc",
1194 .pf03_drv_name = "t6iov",
1195 .vf_nexus_name = "t6vf",
1196 .vf_ifnet_name = "ccv"
1197 }, {
1198 .nexus_name = "chnex",
1199 .ifnet_name = "che",
1200 .vi_ifnet_name = "vche",
1201 .pf03_drv_name = "chiov",
1202 .vf_nexus_name = "chvf",
1203 .vf_ifnet_name = "chev"
1204 }
1205 };
1206
1207 void
t4_init_devnames(struct adapter * sc)1208 t4_init_devnames(struct adapter *sc)
1209 {
1210 int id;
1211
1212 id = chip_id(sc);
1213 if (id < CHELSIO_T4) {
1214 device_printf(sc->dev, "chip id %d is not supported.\n", id);
1215 sc->names = NULL;
1216 } else if (id - CHELSIO_T4 < nitems(devnames))
1217 sc->names = &devnames[id - CHELSIO_T4];
1218 else
1219 sc->names = &devnames[nitems(devnames) - 1];
1220 }
1221
1222 static int
t4_ifnet_unit(struct adapter * sc,struct port_info * pi)1223 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
1224 {
1225 const char *parent, *name;
1226 long value;
1227 int line, unit;
1228
1229 line = 0;
1230 parent = device_get_nameunit(sc->dev);
1231 name = sc->names->ifnet_name;
1232 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
1233 if (resource_long_value(name, unit, "port", &value) == 0 &&
1234 value == pi->port_id)
1235 return (unit);
1236 }
1237 return (-1);
1238 }
1239
1240 static void
t4_calibration(void * arg)1241 t4_calibration(void *arg)
1242 {
1243 struct adapter *sc;
1244 struct clock_sync *cur, *nex;
1245 uint64_t hw;
1246 sbintime_t sbt;
1247 int next_up;
1248
1249 sc = (struct adapter *)arg;
1250
1251 KASSERT(hw_all_ok(sc), ("!hw_all_ok at t4_calibration"));
1252 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO);
1253 sbt = sbinuptime();
1254
1255 cur = &sc->cal_info[sc->cal_current];
1256 next_up = (sc->cal_current + 1) % CNT_CAL_INFO;
1257 nex = &sc->cal_info[next_up];
1258 if (__predict_false(sc->cal_count == 0)) {
1259 /* First time in, just get the values in */
1260 cur->hw_cur = hw;
1261 cur->sbt_cur = sbt;
1262 sc->cal_count++;
1263 goto done;
1264 }
1265
1266 if (cur->hw_cur == hw) {
1267 /* The clock is not advancing? */
1268 sc->cal_count = 0;
1269 atomic_store_rel_int(&cur->gen, 0);
1270 goto done;
1271 }
1272
1273 seqc_write_begin(&nex->gen);
1274 nex->hw_prev = cur->hw_cur;
1275 nex->sbt_prev = cur->sbt_cur;
1276 nex->hw_cur = hw;
1277 nex->sbt_cur = sbt;
1278 seqc_write_end(&nex->gen);
1279 sc->cal_current = next_up;
1280 done:
1281 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration,
1282 sc, C_DIRECT_EXEC);
1283 }
1284
1285 static void
t4_calibration_start(struct adapter * sc)1286 t4_calibration_start(struct adapter *sc)
1287 {
1288 /*
1289 * Here if we have not done a calibration
1290 * then do so otherwise start the appropriate
1291 * timer.
1292 */
1293 int i;
1294
1295 for (i = 0; i < CNT_CAL_INFO; i++) {
1296 sc->cal_info[i].gen = 0;
1297 }
1298 sc->cal_current = 0;
1299 sc->cal_count = 0;
1300 sc->cal_gen = 0;
1301 t4_calibration(sc);
1302 }
1303
1304 static int
t4_attach(device_t dev)1305 t4_attach(device_t dev)
1306 {
1307 struct adapter *sc;
1308 int rc = 0, i, j, rqidx, tqidx, nports;
1309 struct make_dev_args mda;
1310 struct intrs_and_queues iaq;
1311 struct sge *s;
1312 uint32_t *buf;
1313 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1314 int ofld_tqidx;
1315 #endif
1316 #ifdef TCP_OFFLOAD
1317 int ofld_rqidx;
1318 #endif
1319 #ifdef DEV_NETMAP
1320 int nm_rqidx, nm_tqidx;
1321 #endif
1322 int num_vis;
1323
1324 sc = device_get_softc(dev);
1325 sc->dev = dev;
1326 sysctl_ctx_init(&sc->ctx);
1327 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
1328 if (TUNABLE_INT_FETCH("hw.cxgbe.iflags", &sc->intr_flags) == 0)
1329 sc->intr_flags = IHF_INTR_CLEAR_ON_INIT | IHF_CLR_ALL_UNIGNORED;
1330
1331 if ((pci_get_device(dev) & 0xff00) == 0x5400)
1332 t5_attribute_workaround(dev);
1333 pci_enable_busmaster(dev);
1334 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
1335 uint32_t v;
1336
1337 pci_set_max_read_req(dev, 4096);
1338 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
1339 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
1340 if (pcie_relaxed_ordering == 0 &&
1341 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
1342 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
1343 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1344 } else if (pcie_relaxed_ordering == 1 &&
1345 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
1346 v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
1347 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1348 }
1349 }
1350
1351 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
1352 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
1353 sc->traceq = -1;
1354 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
1355 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
1356 device_get_nameunit(dev));
1357
1358 snprintf(sc->lockname, sizeof(sc->lockname), "%s",
1359 device_get_nameunit(dev));
1360 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
1361 t4_add_adapter(sc);
1362
1363 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
1364 TAILQ_INIT(&sc->sfl);
1365 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
1366
1367 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
1368
1369 sc->policy = NULL;
1370 rw_init(&sc->policy_lock, "connection offload policy");
1371
1372 callout_init(&sc->ktls_tick, 1);
1373
1374 callout_init(&sc->cal_callout, 1);
1375
1376 refcount_init(&sc->vxlan_refcount, 0);
1377
1378 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc);
1379 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc);
1380
1381 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1382 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq",
1383 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
1384 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1385 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq",
1386 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
1387
1388 rc = t4_map_bars_0_and_4(sc);
1389 if (rc != 0)
1390 goto done; /* error message displayed already */
1391
1392 memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1393 memset(sc->port_map, 0xff, sizeof(sc->port_map));
1394
1395 /* Prepare the adapter for operation. */
1396 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1397 rc = -t4_prep_adapter(sc, buf);
1398 free(buf, M_CXGBE);
1399 if (rc != 0) {
1400 device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1401 goto done;
1402 }
1403
1404 /*
1405 * This is the real PF# to which we're attaching. Works from within PCI
1406 * passthrough environments too, where pci_get_function() could return a
1407 * different PF# depending on the passthrough configuration. We need to
1408 * use the real PF# in all our communication with the firmware.
1409 */
1410 j = t4_read_reg(sc, A_PL_WHOAMI);
1411 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1412 sc->mbox = sc->pf;
1413
1414 t4_init_devnames(sc);
1415 if (sc->names == NULL) {
1416 rc = ENOTSUP;
1417 goto done; /* error message displayed already */
1418 }
1419
1420 /*
1421 * Do this really early, with the memory windows set up even before the
1422 * character device. The userland tool's register i/o and mem read
1423 * will work even in "recovery mode".
1424 */
1425 setup_memwin(sc);
1426 if (t4_init_devlog_ncores_params(sc, 0) == 0)
1427 fixup_devlog_params(sc);
1428 make_dev_args_init(&mda);
1429 mda.mda_devsw = &t4_cdevsw;
1430 mda.mda_uid = UID_ROOT;
1431 mda.mda_gid = GID_WHEEL;
1432 mda.mda_mode = 0600;
1433 mda.mda_si_drv1 = sc;
1434 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1435 if (rc != 0)
1436 device_printf(dev, "failed to create nexus char device: %d.\n",
1437 rc);
1438
1439 /* Go no further if recovery mode has been requested. */
1440 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1441 device_printf(dev, "recovery mode.\n");
1442 goto done;
1443 }
1444
1445 #if defined(__i386__)
1446 if ((cpu_feature & CPUID_CX8) == 0) {
1447 device_printf(dev, "64 bit atomics not available.\n");
1448 rc = ENOTSUP;
1449 goto done;
1450 }
1451 #endif
1452
1453 /* Contact the firmware and try to become the master driver. */
1454 rc = contact_firmware(sc);
1455 if (rc != 0)
1456 goto done; /* error message displayed already */
1457 MPASS(sc->flags & FW_OK);
1458
1459 rc = get_params__pre_init(sc);
1460 if (rc != 0)
1461 goto done; /* error message displayed already */
1462
1463 if (sc->flags & MASTER_PF) {
1464 rc = partition_resources(sc);
1465 if (rc != 0)
1466 goto done; /* error message displayed already */
1467 }
1468
1469 rc = get_params__post_init(sc);
1470 if (rc != 0)
1471 goto done; /* error message displayed already */
1472
1473 rc = set_params__post_init(sc);
1474 if (rc != 0)
1475 goto done; /* error message displayed already */
1476
1477 rc = t4_map_bar_2(sc);
1478 if (rc != 0)
1479 goto done; /* error message displayed already */
1480
1481 rc = t4_adj_doorbells(sc);
1482 if (rc != 0)
1483 goto done; /* error message displayed already */
1484
1485 rc = t4_create_dma_tag(sc);
1486 if (rc != 0)
1487 goto done; /* error message displayed already */
1488
1489 /*
1490 * First pass over all the ports - allocate VIs and initialize some
1491 * basic parameters like mac address, port type, etc.
1492 */
1493 for_each_port(sc, i) {
1494 struct port_info *pi;
1495
1496 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1497 sc->port[i] = pi;
1498
1499 /* These must be set before t4_port_init */
1500 pi->adapter = sc;
1501 pi->port_id = i;
1502 /*
1503 * XXX: vi[0] is special so we can't delay this allocation until
1504 * pi->nvi's final value is known.
1505 */
1506 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1507 M_ZERO | M_WAITOK);
1508
1509 /*
1510 * Allocate the "main" VI and initialize parameters
1511 * like mac addr.
1512 */
1513 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1514 if (rc != 0) {
1515 device_printf(dev, "unable to initialize port %d: %d\n",
1516 i, rc);
1517 free(pi->vi, M_CXGBE);
1518 free(pi, M_CXGBE);
1519 sc->port[i] = NULL;
1520 goto done;
1521 }
1522
1523 if (is_bt(pi->port_type))
1524 setbit(&sc->bt_map, pi->hw_port);
1525 else
1526 MPASS(!isset(&sc->bt_map, pi->hw_port));
1527
1528 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1529 device_get_nameunit(dev), i);
1530 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1531 for (j = 0; j < sc->params.tp.lb_nchan; j++)
1532 sc->chan_map[pi->tx_chan + j] = i;
1533 sc->port_map[pi->hw_port] = i;
1534
1535 /*
1536 * The MPS counter for FCS errors doesn't work correctly on the
1537 * T6 so we use the MAC counter here. Which MAC is in use
1538 * depends on the link settings which will be known when the
1539 * link comes up.
1540 */
1541 if (is_t6(sc))
1542 pi->fcs_reg = -1;
1543 else
1544 pi->fcs_reg = A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L;
1545 pi->fcs_base = 0;
1546
1547 /* All VIs on this port share this media. */
1548 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1549 cxgbe_media_status);
1550
1551 PORT_LOCK(pi);
1552 init_link_config(pi);
1553 fixup_link_config(pi);
1554 build_medialist(pi);
1555 if (fixed_ifmedia(pi))
1556 pi->flags |= FIXED_IFMEDIA;
1557 PORT_UNLOCK(pi);
1558
1559 pi->dev = device_add_child(dev, sc->names->ifnet_name,
1560 t4_ifnet_unit(sc, pi));
1561 if (pi->dev == NULL) {
1562 device_printf(dev,
1563 "failed to add device for port %d.\n", i);
1564 rc = ENXIO;
1565 goto done;
1566 }
1567 pi->vi[0].dev = pi->dev;
1568 device_set_softc(pi->dev, pi);
1569 }
1570
1571 /*
1572 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1573 */
1574 nports = sc->params.nports;
1575 rc = cfg_itype_and_nqueues(sc, &iaq);
1576 if (rc != 0)
1577 goto done; /* error message displayed already */
1578
1579 num_vis = iaq.num_vis;
1580 sc->intr_type = iaq.intr_type;
1581 sc->intr_count = iaq.nirq;
1582
1583 s = &sc->sge;
1584 s->nctrlq = max(sc->params.nports, sc->params.ncores);
1585 s->nrxq = nports * iaq.nrxq;
1586 s->ntxq = nports * iaq.ntxq;
1587 if (num_vis > 1) {
1588 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1589 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1590 }
1591 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */
1592 s->neq += nports; /* ctrl queues: 1 per port */
1593 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */
1594 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1595 if (is_offload(sc) || is_ethoffload(sc)) {
1596 s->nofldtxq = nports * iaq.nofldtxq;
1597 if (num_vis > 1)
1598 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1599 s->neq += s->nofldtxq;
1600
1601 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq),
1602 M_CXGBE, M_ZERO | M_WAITOK);
1603 }
1604 #endif
1605 #ifdef TCP_OFFLOAD
1606 if (is_offload(sc)) {
1607 s->nofldrxq = nports * iaq.nofldrxq;
1608 if (num_vis > 1)
1609 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1610 s->neq += s->nofldrxq; /* free list */
1611 s->niq += s->nofldrxq;
1612
1613 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1614 M_CXGBE, M_ZERO | M_WAITOK);
1615 }
1616 #endif
1617 #ifdef DEV_NETMAP
1618 s->nnmrxq = 0;
1619 s->nnmtxq = 0;
1620 if (t4_native_netmap & NN_MAIN_VI) {
1621 s->nnmrxq += nports * iaq.nnmrxq;
1622 s->nnmtxq += nports * iaq.nnmtxq;
1623 }
1624 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) {
1625 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi;
1626 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi;
1627 }
1628 s->neq += s->nnmtxq + s->nnmrxq;
1629 s->niq += s->nnmrxq;
1630
1631 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1632 M_CXGBE, M_ZERO | M_WAITOK);
1633 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1634 M_CXGBE, M_ZERO | M_WAITOK);
1635 #endif
1636 MPASS(s->niq <= s->iqmap_sz);
1637 MPASS(s->neq <= s->eqmap_sz);
1638
1639 s->ctrlq = malloc(s->nctrlq * sizeof(struct sge_wrq), M_CXGBE,
1640 M_ZERO | M_WAITOK);
1641 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1642 M_ZERO | M_WAITOK);
1643 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1644 M_ZERO | M_WAITOK);
1645 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE,
1646 M_ZERO | M_WAITOK);
1647 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE,
1648 M_ZERO | M_WAITOK);
1649
1650 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1651 M_ZERO | M_WAITOK);
1652
1653 t4_init_l2t(sc, M_WAITOK);
1654 t4_init_smt(sc, M_WAITOK);
1655 t4_init_tx_sched(sc);
1656 t4_init_atid_table(sc);
1657 #ifdef RATELIMIT
1658 t4_init_etid_table(sc);
1659 #endif
1660 #ifdef INET6
1661 t4_init_clip_table(sc);
1662 #endif
1663 if (sc->vres.key.size != 0)
1664 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1665 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1666 t4_init_tpt(sc);
1667
1668 /*
1669 * Second pass over the ports. This time we know the number of rx and
1670 * tx queues that each port should get.
1671 */
1672 rqidx = tqidx = 0;
1673 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1674 ofld_tqidx = 0;
1675 #endif
1676 #ifdef TCP_OFFLOAD
1677 ofld_rqidx = 0;
1678 #endif
1679 #ifdef DEV_NETMAP
1680 nm_rqidx = nm_tqidx = 0;
1681 #endif
1682 for_each_port(sc, i) {
1683 struct port_info *pi = sc->port[i];
1684 struct vi_info *vi;
1685
1686 if (pi == NULL)
1687 continue;
1688
1689 pi->nvi = num_vis;
1690 for_each_vi(pi, j, vi) {
1691 vi->pi = pi;
1692 vi->adapter = sc;
1693 vi->first_intr = -1;
1694 vi->qsize_rxq = t4_qsize_rxq;
1695 vi->qsize_txq = t4_qsize_txq;
1696
1697 vi->first_rxq = rqidx;
1698 vi->first_txq = tqidx;
1699 vi->tmr_idx = t4_tmr_idx;
1700 vi->pktc_idx = t4_pktc_idx;
1701 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1702 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1703
1704 rqidx += vi->nrxq;
1705 tqidx += vi->ntxq;
1706
1707 if (j == 0 && vi->ntxq > 1)
1708 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1709 else
1710 vi->rsrv_noflowq = 0;
1711
1712 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1713 vi->first_ofld_txq = ofld_tqidx;
1714 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1715 ofld_tqidx += vi->nofldtxq;
1716 #endif
1717 #ifdef TCP_OFFLOAD
1718 vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1719 vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1720 vi->first_ofld_rxq = ofld_rqidx;
1721 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1722
1723 ofld_rqidx += vi->nofldrxq;
1724 #endif
1725 #ifdef DEV_NETMAP
1726 vi->first_nm_rxq = nm_rqidx;
1727 vi->first_nm_txq = nm_tqidx;
1728 if (j == 0) {
1729 vi->nnmrxq = iaq.nnmrxq;
1730 vi->nnmtxq = iaq.nnmtxq;
1731 } else {
1732 vi->nnmrxq = iaq.nnmrxq_vi;
1733 vi->nnmtxq = iaq.nnmtxq_vi;
1734 }
1735 nm_rqidx += vi->nnmrxq;
1736 nm_tqidx += vi->nnmtxq;
1737 #endif
1738 }
1739 }
1740
1741 rc = t4_setup_intr_handlers(sc);
1742 if (rc != 0) {
1743 device_printf(dev,
1744 "failed to setup interrupt handlers: %d\n", rc);
1745 goto done;
1746 }
1747
1748 bus_identify_children(dev);
1749
1750 /*
1751 * Ensure thread-safe mailbox access (in debug builds).
1752 *
1753 * So far this was the only thread accessing the mailbox but various
1754 * ifnets and sysctls are about to be created and their handlers/ioctls
1755 * will access the mailbox from different threads.
1756 */
1757 sc->flags |= CHK_MBOX_ACCESS;
1758
1759 bus_attach_children(dev);
1760 t4_calibration_start(sc);
1761
1762 device_printf(dev,
1763 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1764 sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1765 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1766 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1767 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1768
1769 t4_set_desc(sc);
1770
1771 notify_siblings(dev, 0);
1772
1773 done:
1774 if (rc != 0 && sc->cdev) {
1775 /* cdev was created and so cxgbetool works; recover that way. */
1776 device_printf(dev,
1777 "error during attach, adapter is now in recovery mode.\n");
1778 rc = 0;
1779 }
1780
1781 if (rc != 0)
1782 t4_detach_common(dev);
1783 else
1784 t4_sysctls(sc);
1785
1786 return (rc);
1787 }
1788
1789 static int
t4_child_location(device_t bus,device_t dev,struct sbuf * sb)1790 t4_child_location(device_t bus, device_t dev, struct sbuf *sb)
1791 {
1792 struct adapter *sc;
1793 struct port_info *pi;
1794 int i;
1795
1796 sc = device_get_softc(bus);
1797 for_each_port(sc, i) {
1798 pi = sc->port[i];
1799 if (pi != NULL && pi->dev == dev) {
1800 sbuf_printf(sb, "port=%d", pi->port_id);
1801 break;
1802 }
1803 }
1804 return (0);
1805 }
1806
1807 static int
t4_ready(device_t dev)1808 t4_ready(device_t dev)
1809 {
1810 struct adapter *sc;
1811
1812 sc = device_get_softc(dev);
1813 if (sc->flags & FW_OK)
1814 return (0);
1815 return (ENXIO);
1816 }
1817
1818 static int
t4_read_port_device(device_t dev,int port,device_t * child)1819 t4_read_port_device(device_t dev, int port, device_t *child)
1820 {
1821 struct adapter *sc;
1822 struct port_info *pi;
1823
1824 sc = device_get_softc(dev);
1825 if (port < 0 || port >= MAX_NPORTS)
1826 return (EINVAL);
1827 pi = sc->port[port];
1828 if (pi == NULL || pi->dev == NULL)
1829 return (ENXIO);
1830 *child = pi->dev;
1831 return (0);
1832 }
1833
1834 static int
notify_siblings(device_t dev,int detaching)1835 notify_siblings(device_t dev, int detaching)
1836 {
1837 device_t sibling;
1838 int error, i;
1839
1840 error = 0;
1841 for (i = 0; i < PCI_FUNCMAX; i++) {
1842 if (i == pci_get_function(dev))
1843 continue;
1844 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1845 pci_get_slot(dev), i);
1846 if (sibling == NULL || !device_is_attached(sibling))
1847 continue;
1848 if (detaching)
1849 error = T4_DETACH_CHILD(sibling);
1850 else
1851 (void)T4_ATTACH_CHILD(sibling);
1852 if (error)
1853 break;
1854 }
1855 return (error);
1856 }
1857
1858 /*
1859 * Idempotent
1860 */
1861 static int
t4_detach(device_t dev)1862 t4_detach(device_t dev)
1863 {
1864 int rc;
1865
1866 rc = notify_siblings(dev, 1);
1867 if (rc) {
1868 device_printf(dev,
1869 "failed to detach sibling devices: %d\n", rc);
1870 return (rc);
1871 }
1872
1873 return (t4_detach_common(dev));
1874 }
1875
1876 int
t4_detach_common(device_t dev)1877 t4_detach_common(device_t dev)
1878 {
1879 struct adapter *sc;
1880 struct port_info *pi;
1881 int i, rc;
1882
1883 sc = device_get_softc(dev);
1884
1885 #ifdef TCP_OFFLOAD
1886 rc = deactivate_all_uld(sc);
1887 if (rc) {
1888 device_printf(dev,
1889 "failed to detach upper layer drivers: %d\n", rc);
1890 return (rc);
1891 }
1892 #endif
1893
1894 if (sc->cdev) {
1895 destroy_dev(sc->cdev);
1896 sc->cdev = NULL;
1897 }
1898
1899 sx_xlock(&t4_list_lock);
1900 SLIST_REMOVE(&t4_list, sc, adapter, link);
1901 sx_xunlock(&t4_list_lock);
1902
1903 sc->flags &= ~CHK_MBOX_ACCESS;
1904 if (sc->flags & FULL_INIT_DONE) {
1905 if (!(sc->flags & IS_VF))
1906 t4_intr_disable(sc);
1907 }
1908
1909 if (device_is_attached(dev)) {
1910 rc = bus_detach_children(dev);
1911 if (rc) {
1912 device_printf(dev,
1913 "failed to detach child devices: %d\n", rc);
1914 return (rc);
1915 }
1916 }
1917
1918 for (i = 0; i < sc->intr_count; i++)
1919 t4_free_irq(sc, &sc->irq[i]);
1920
1921 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1922 t4_free_tx_sched(sc);
1923
1924 for (i = 0; i < MAX_NPORTS; i++) {
1925 pi = sc->port[i];
1926 if (pi) {
1927 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1928
1929 mtx_destroy(&pi->pi_lock);
1930 free(pi->vi, M_CXGBE);
1931 free(pi, M_CXGBE);
1932 }
1933 }
1934 callout_stop(&sc->cal_callout);
1935 callout_drain(&sc->cal_callout);
1936 device_delete_children(dev);
1937 sysctl_ctx_free(&sc->ctx);
1938 adapter_full_uninit(sc);
1939
1940 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1941 t4_fw_bye(sc, sc->mbox);
1942
1943 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1944 pci_release_msi(dev);
1945
1946 if (sc->regs_res)
1947 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1948 sc->regs_res);
1949
1950 if (sc->udbs_res)
1951 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1952 sc->udbs_res);
1953
1954 if (sc->msix_res)
1955 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1956 sc->msix_res);
1957
1958 if (sc->l2t)
1959 t4_free_l2t(sc);
1960 if (sc->smt)
1961 t4_free_smt(sc->smt);
1962 t4_free_atid_table(sc);
1963 #ifdef RATELIMIT
1964 t4_free_etid_table(sc);
1965 #endif
1966 if (sc->key_map)
1967 vmem_destroy(sc->key_map);
1968 t4_free_tpt(sc);
1969 #ifdef INET6
1970 t4_destroy_clip_table(sc);
1971 #endif
1972
1973 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1974 free(sc->sge.ofld_txq, M_CXGBE);
1975 #endif
1976 #ifdef TCP_OFFLOAD
1977 free(sc->sge.ofld_rxq, M_CXGBE);
1978 #endif
1979 #ifdef DEV_NETMAP
1980 free(sc->sge.nm_rxq, M_CXGBE);
1981 free(sc->sge.nm_txq, M_CXGBE);
1982 #endif
1983 free(sc->irq, M_CXGBE);
1984 free(sc->sge.rxq, M_CXGBE);
1985 free(sc->sge.txq, M_CXGBE);
1986 free(sc->sge.ctrlq, M_CXGBE);
1987 free(sc->sge.iqmap, M_CXGBE);
1988 free(sc->sge.eqmap, M_CXGBE);
1989 free(sc->tids.ftid_tab, M_CXGBE);
1990 free(sc->tids.hpftid_tab, M_CXGBE);
1991 free_hftid_hash(&sc->tids);
1992 free(sc->tids.tid_tab, M_CXGBE);
1993 t4_destroy_dma_tag(sc);
1994
1995 callout_drain(&sc->ktls_tick);
1996 callout_drain(&sc->sfl_callout);
1997 if (mtx_initialized(&sc->tids.ftid_lock)) {
1998 mtx_destroy(&sc->tids.ftid_lock);
1999 cv_destroy(&sc->tids.ftid_cv);
2000 }
2001 if (mtx_initialized(&sc->tids.atid_lock))
2002 mtx_destroy(&sc->tids.atid_lock);
2003 if (mtx_initialized(&sc->ifp_lock))
2004 mtx_destroy(&sc->ifp_lock);
2005
2006 if (rw_initialized(&sc->policy_lock)) {
2007 rw_destroy(&sc->policy_lock);
2008 #ifdef TCP_OFFLOAD
2009 if (sc->policy != NULL)
2010 free_offload_policy(sc->policy);
2011 #endif
2012 }
2013
2014 for (i = 0; i < NUM_MEMWIN; i++) {
2015 struct memwin *mw = &sc->memwin[i];
2016
2017 if (rw_initialized(&mw->mw_lock))
2018 rw_destroy(&mw->mw_lock);
2019 }
2020
2021 mtx_destroy(&sc->sfl_lock);
2022 mtx_destroy(&sc->reg_lock);
2023 mtx_destroy(&sc->sc_lock);
2024
2025 bzero(sc, sizeof(*sc));
2026
2027 return (0);
2028 }
2029
2030 static inline int
stop_adapter(struct adapter * sc)2031 stop_adapter(struct adapter *sc)
2032 {
2033 struct port_info *pi;
2034 int i;
2035
2036 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
2037 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
2038 __func__, curthread, sc->flags, sc->error_flags);
2039 return (EALREADY);
2040 }
2041 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
2042 sc->flags, sc->error_flags);
2043 t4_shutdown_adapter(sc);
2044 for_each_port(sc, i) {
2045 pi = sc->port[i];
2046 if (pi == NULL)
2047 continue;
2048 PORT_LOCK(pi);
2049 if (pi->up_vis > 0 && pi->link_cfg.link_ok) {
2050 /*
2051 * t4_shutdown_adapter has already shut down all the
2052 * PHYs but it also disables interrupts and DMA so there
2053 * won't be a link interrupt. Update the state manually
2054 * if the link was up previously and inform the kernel.
2055 */
2056 pi->link_cfg.link_ok = false;
2057 t4_os_link_changed(pi);
2058 }
2059 PORT_UNLOCK(pi);
2060 }
2061
2062 return (0);
2063 }
2064
2065 static inline int
restart_adapter(struct adapter * sc)2066 restart_adapter(struct adapter *sc)
2067 {
2068 uint32_t val;
2069
2070 if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
2071 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
2072 __func__, curthread, sc->flags, sc->error_flags);
2073 return (EALREADY);
2074 }
2075 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
2076 sc->flags, sc->error_flags);
2077
2078 MPASS(hw_off_limits(sc));
2079 MPASS((sc->flags & FW_OK) == 0);
2080 MPASS((sc->flags & MASTER_PF) == 0);
2081 MPASS(sc->reset_thread == NULL);
2082
2083 /*
2084 * The adapter is supposed to be back on PCIE with its config space and
2085 * BARs restored to their state before reset. Register access via
2086 * t4_read_reg BAR0 should just work.
2087 */
2088 sc->reset_thread = curthread;
2089 val = t4_read_reg(sc, A_PL_WHOAMI);
2090 if (val == 0xffffffff || val == 0xeeeeeeee) {
2091 CH_ERR(sc, "%s: device registers not readable.\n", __func__);
2092 sc->reset_thread = NULL;
2093 atomic_set_int(&sc->error_flags, ADAP_STOPPED);
2094 return (ENXIO);
2095 }
2096 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR);
2097 atomic_add_int(&sc->incarnation, 1);
2098 atomic_add_int(&sc->num_resets, 1);
2099
2100 return (0);
2101 }
2102
2103 static inline void
set_adapter_hwstatus(struct adapter * sc,const bool usable)2104 set_adapter_hwstatus(struct adapter *sc, const bool usable)
2105 {
2106 if (usable) {
2107 /* Must be marked reusable by the designated thread. */
2108 ASSERT_SYNCHRONIZED_OP(sc);
2109 MPASS(sc->reset_thread == curthread);
2110 mtx_lock(&sc->reg_lock);
2111 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
2112 mtx_unlock(&sc->reg_lock);
2113 } else {
2114 /* Mark the adapter totally off limits. */
2115 begin_synchronized_op(sc, NULL, SLEEP_OK, "t4hwsts");
2116 mtx_lock(&sc->reg_lock);
2117 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS);
2118 mtx_unlock(&sc->reg_lock);
2119 sc->flags &= ~(FW_OK | MASTER_PF);
2120 sc->reset_thread = NULL;
2121 end_synchronized_op(sc, 0);
2122 }
2123 }
2124
2125 static int
stop_lld(struct adapter * sc)2126 stop_lld(struct adapter *sc)
2127 {
2128 struct port_info *pi;
2129 struct vi_info *vi;
2130 if_t ifp;
2131 struct sge_rxq *rxq;
2132 struct sge_txq *txq;
2133 struct sge_wrq *wrq;
2134 #ifdef TCP_OFFLOAD
2135 struct sge_ofld_rxq *ofld_rxq;
2136 #endif
2137 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2138 struct sge_ofld_txq *ofld_txq;
2139 #endif
2140 int rc, i, j, k;
2141
2142 /*
2143 * XXX: Can there be a synch_op in progress that will hang because
2144 * hardware has been stopped? We'll hang too and the solution will be
2145 * to use a version of begin_synch_op that wakes up existing synch_op
2146 * with errors. Maybe stop_adapter should do this wakeup?
2147 *
2148 * I don't think any synch_op could get stranded waiting for DMA or
2149 * interrupt so I think we're okay here. Remove this comment block
2150 * after testing.
2151 */
2152 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld");
2153 if (rc != 0)
2154 return (ENXIO);
2155
2156 /* Quiesce all activity. */
2157 for_each_port(sc, i) {
2158 pi = sc->port[i];
2159 if (pi == NULL)
2160 continue;
2161 pi->vxlan_tcam_entry = false;
2162 for_each_vi(pi, j, vi) {
2163 vi->xact_addr_filt = -1;
2164 mtx_lock(&vi->tick_mtx);
2165 vi->flags |= VI_SKIP_STATS;
2166 mtx_unlock(&vi->tick_mtx);
2167 if (!(vi->flags & VI_INIT_DONE))
2168 continue;
2169
2170 ifp = vi->ifp;
2171 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2172 mtx_lock(&vi->tick_mtx);
2173 callout_stop(&vi->tick);
2174 mtx_unlock(&vi->tick_mtx);
2175 callout_drain(&vi->tick);
2176 }
2177
2178 /*
2179 * Note that the HW is not available.
2180 */
2181 for_each_txq(vi, k, txq) {
2182 TXQ_LOCK(txq);
2183 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED);
2184 TXQ_UNLOCK(txq);
2185 }
2186 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2187 for_each_ofld_txq(vi, k, ofld_txq) {
2188 TXQ_LOCK(&ofld_txq->wrq);
2189 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED;
2190 TXQ_UNLOCK(&ofld_txq->wrq);
2191 }
2192 #endif
2193 for_each_rxq(vi, k, rxq) {
2194 rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2195 }
2196 #if defined(TCP_OFFLOAD)
2197 for_each_ofld_rxq(vi, k, ofld_rxq) {
2198 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2199 }
2200 #endif
2201
2202 quiesce_vi(vi);
2203 }
2204
2205 if (sc->flags & FULL_INIT_DONE) {
2206 /* Control queue */
2207 wrq = &sc->sge.ctrlq[i];
2208 TXQ_LOCK(wrq);
2209 wrq->eq.flags &= ~EQ_HW_ALLOCATED;
2210 TXQ_UNLOCK(wrq);
2211 quiesce_wrq(wrq);
2212 }
2213
2214 if (pi->flags & HAS_TRACEQ) {
2215 pi->flags &= ~HAS_TRACEQ;
2216 sc->traceq = -1;
2217 sc->tracer_valid = 0;
2218 sc->tracer_enabled = 0;
2219 }
2220 }
2221 if (sc->flags & FULL_INIT_DONE) {
2222 /* Firmware event queue */
2223 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED;
2224 quiesce_iq_fl(sc, &sc->sge.fwq, NULL);
2225 }
2226
2227 /* Stop calibration */
2228 callout_stop(&sc->cal_callout);
2229 callout_drain(&sc->cal_callout);
2230
2231 if (t4_clock_gate_on_suspend) {
2232 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN |
2233 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN |
2234 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0);
2235 }
2236
2237 end_synchronized_op(sc, 0);
2238
2239 stop_atid_allocator(sc);
2240 t4_stop_l2t(sc);
2241
2242 return (rc);
2243 }
2244
2245 int
suspend_adapter(struct adapter * sc)2246 suspend_adapter(struct adapter *sc)
2247 {
2248 stop_adapter(sc);
2249 stop_lld(sc);
2250 #ifdef TCP_OFFLOAD
2251 stop_all_uld(sc);
2252 #endif
2253 set_adapter_hwstatus(sc, false);
2254
2255 return (0);
2256 }
2257
2258 static int
t4_suspend(device_t dev)2259 t4_suspend(device_t dev)
2260 {
2261 struct adapter *sc = device_get_softc(dev);
2262 int rc;
2263
2264 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2265 rc = suspend_adapter(sc);
2266 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2267
2268 return (rc);
2269 }
2270
2271 struct adapter_pre_reset_state {
2272 u_int flags;
2273 uint16_t nbmcaps;
2274 uint16_t linkcaps;
2275 uint16_t switchcaps;
2276 uint16_t nvmecaps;
2277 uint16_t niccaps;
2278 uint16_t toecaps;
2279 uint16_t rdmacaps;
2280 uint16_t cryptocaps;
2281 uint16_t iscsicaps;
2282 uint16_t fcoecaps;
2283
2284 u_int cfcsum;
2285 char cfg_file[32];
2286
2287 struct adapter_params params;
2288 struct t4_virt_res vres;
2289 struct tid_info tids;
2290 struct sge sge;
2291
2292 int rawf_base;
2293 int nrawf;
2294
2295 };
2296
2297 static void
save_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2298 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2299 {
2300
2301 ASSERT_SYNCHRONIZED_OP(sc);
2302
2303 o->flags = sc->flags;
2304
2305 o->nbmcaps = sc->nbmcaps;
2306 o->linkcaps = sc->linkcaps;
2307 o->switchcaps = sc->switchcaps;
2308 o->nvmecaps = sc->nvmecaps;
2309 o->niccaps = sc->niccaps;
2310 o->toecaps = sc->toecaps;
2311 o->rdmacaps = sc->rdmacaps;
2312 o->cryptocaps = sc->cryptocaps;
2313 o->iscsicaps = sc->iscsicaps;
2314 o->fcoecaps = sc->fcoecaps;
2315
2316 o->cfcsum = sc->cfcsum;
2317 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file));
2318 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file));
2319
2320 o->params = sc->params;
2321 o->vres = sc->vres;
2322 o->tids = sc->tids;
2323 o->sge = sc->sge;
2324
2325 o->rawf_base = sc->rawf_base;
2326 o->nrawf = sc->nrawf;
2327 }
2328
2329 static int
compare_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2330 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2331 {
2332 int rc = 0;
2333
2334 ASSERT_SYNCHRONIZED_OP(sc);
2335
2336 /* Capabilities */
2337 #define COMPARE_CAPS(c) do { \
2338 if (o->c##caps != sc->c##caps) { \
2339 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \
2340 sc->c##caps); \
2341 rc = EINVAL; \
2342 } \
2343 } while (0)
2344 COMPARE_CAPS(nbm);
2345 COMPARE_CAPS(link);
2346 COMPARE_CAPS(switch);
2347 COMPARE_CAPS(nvme);
2348 COMPARE_CAPS(nic);
2349 COMPARE_CAPS(toe);
2350 COMPARE_CAPS(rdma);
2351 COMPARE_CAPS(crypto);
2352 COMPARE_CAPS(iscsi);
2353 COMPARE_CAPS(fcoe);
2354 #undef COMPARE_CAPS
2355
2356 /* Firmware config file */
2357 if (o->cfcsum != sc->cfcsum) {
2358 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file,
2359 o->cfcsum, sc->cfg_file, sc->cfcsum);
2360 rc = EINVAL;
2361 }
2362
2363 #define COMPARE_PARAM(p, name) do { \
2364 if (o->p != sc->p) { \
2365 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \
2366 rc = EINVAL; \
2367 } \
2368 } while (0)
2369 COMPARE_PARAM(sge.iq_start, iq_start);
2370 COMPARE_PARAM(sge.eq_start, eq_start);
2371 COMPARE_PARAM(tids.ftid_base, ftid_base);
2372 COMPARE_PARAM(tids.ftid_end, ftid_end);
2373 COMPARE_PARAM(tids.nftids, nftids);
2374 COMPARE_PARAM(vres.l2t.start, l2t_start);
2375 COMPARE_PARAM(vres.l2t.size, l2t_size);
2376 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz);
2377 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz);
2378 COMPARE_PARAM(tids.tid_base, tid_base);
2379 COMPARE_PARAM(tids.hpftid_base, hpftid_base);
2380 COMPARE_PARAM(tids.hpftid_end, hpftid_end);
2381 COMPARE_PARAM(tids.nhpftids, nhpftids);
2382 COMPARE_PARAM(rawf_base, rawf_base);
2383 COMPARE_PARAM(nrawf, nrawf);
2384 COMPARE_PARAM(params.mps_bg_map, mps_bg_map);
2385 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support);
2386 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl);
2387 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support);
2388 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr);
2389 COMPARE_PARAM(tids.ntids, ntids);
2390 COMPARE_PARAM(tids.etid_base, etid_base);
2391 COMPARE_PARAM(tids.etid_end, etid_end);
2392 COMPARE_PARAM(tids.netids, netids);
2393 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred);
2394 COMPARE_PARAM(params.ethoffload, ethoffload);
2395 COMPARE_PARAM(tids.natids, natids);
2396 COMPARE_PARAM(tids.stid_base, stid_base);
2397 COMPARE_PARAM(vres.ddp.start, ddp_start);
2398 COMPARE_PARAM(vres.ddp.size, ddp_size);
2399 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred);
2400 COMPARE_PARAM(vres.stag.start, stag_start);
2401 COMPARE_PARAM(vres.stag.size, stag_size);
2402 COMPARE_PARAM(vres.rq.start, rq_start);
2403 COMPARE_PARAM(vres.rq.size, rq_size);
2404 COMPARE_PARAM(vres.pbl.start, pbl_start);
2405 COMPARE_PARAM(vres.pbl.size, pbl_size);
2406 COMPARE_PARAM(vres.qp.start, qp_start);
2407 COMPARE_PARAM(vres.qp.size, qp_size);
2408 COMPARE_PARAM(vres.cq.start, cq_start);
2409 COMPARE_PARAM(vres.cq.size, cq_size);
2410 COMPARE_PARAM(vres.ocq.start, ocq_start);
2411 COMPARE_PARAM(vres.ocq.size, ocq_size);
2412 COMPARE_PARAM(vres.srq.start, srq_start);
2413 COMPARE_PARAM(vres.srq.size, srq_size);
2414 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp);
2415 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter);
2416 COMPARE_PARAM(vres.iscsi.start, iscsi_start);
2417 COMPARE_PARAM(vres.iscsi.size, iscsi_size);
2418 COMPARE_PARAM(vres.key.start, key_start);
2419 COMPARE_PARAM(vres.key.size, key_size);
2420 #undef COMPARE_PARAM
2421
2422 return (rc);
2423 }
2424
2425 static int
restart_lld(struct adapter * sc)2426 restart_lld(struct adapter *sc)
2427 {
2428 struct adapter_pre_reset_state *old_state = NULL;
2429 struct port_info *pi;
2430 struct vi_info *vi;
2431 if_t ifp;
2432 struct sge_txq *txq;
2433 int rc, i, j, k;
2434
2435 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld");
2436 if (rc != 0)
2437 return (ENXIO);
2438
2439 /* Restore memory window. */
2440 setup_memwin(sc);
2441
2442 /* Go no further if recovery mode has been requested. */
2443 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
2444 CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__);
2445 rc = 0;
2446 set_adapter_hwstatus(sc, true);
2447 goto done;
2448 }
2449
2450 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK);
2451 save_caps_and_params(sc, old_state);
2452
2453 /* Reestablish contact with firmware and become the primary PF. */
2454 rc = contact_firmware(sc);
2455 if (rc != 0)
2456 goto done; /* error message displayed already */
2457 MPASS(sc->flags & FW_OK);
2458
2459 if (sc->flags & MASTER_PF) {
2460 rc = partition_resources(sc);
2461 if (rc != 0)
2462 goto done; /* error message displayed already */
2463 }
2464
2465 rc = get_params__post_init(sc);
2466 if (rc != 0)
2467 goto done; /* error message displayed already */
2468
2469 rc = set_params__post_init(sc);
2470 if (rc != 0)
2471 goto done; /* error message displayed already */
2472
2473 rc = compare_caps_and_params(sc, old_state);
2474 if (rc != 0)
2475 goto done; /* error message displayed already */
2476
2477 for_each_port(sc, i) {
2478 pi = sc->port[i];
2479 MPASS(pi != NULL);
2480 MPASS(pi->vi != NULL);
2481 MPASS(pi->vi[0].dev == pi->dev);
2482
2483 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
2484 if (rc != 0) {
2485 CH_ERR(sc,
2486 "failed to re-initialize port %d: %d\n", i, rc);
2487 goto done;
2488 }
2489 MPASS(sc->chan_map[pi->tx_chan] == i);
2490
2491 PORT_LOCK(pi);
2492 fixup_link_config(pi);
2493 build_medialist(pi);
2494 PORT_UNLOCK(pi);
2495 for_each_vi(pi, j, vi) {
2496 if (IS_MAIN_VI(vi))
2497 continue;
2498 rc = alloc_extra_vi(sc, pi, vi);
2499 if (rc != 0) {
2500 CH_ERR(vi,
2501 "failed to re-allocate extra VI: %d\n", rc);
2502 goto done;
2503 }
2504 }
2505 }
2506
2507 /*
2508 * Interrupts and queues are about to be enabled and other threads will
2509 * want to access the hardware too. It is safe to do so. Note that
2510 * this thread is still in the middle of a synchronized_op.
2511 */
2512 set_adapter_hwstatus(sc, true);
2513
2514 if (sc->flags & FULL_INIT_DONE) {
2515 rc = adapter_full_init(sc);
2516 if (rc != 0) {
2517 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc);
2518 goto done;
2519 }
2520
2521 if (sc->vxlan_refcount > 0)
2522 enable_vxlan_rx(sc);
2523
2524 for_each_port(sc, i) {
2525 pi = sc->port[i];
2526 for_each_vi(pi, j, vi) {
2527 mtx_lock(&vi->tick_mtx);
2528 vi->flags &= ~VI_SKIP_STATS;
2529 mtx_unlock(&vi->tick_mtx);
2530 if (!(vi->flags & VI_INIT_DONE))
2531 continue;
2532 rc = vi_full_init(vi);
2533 if (rc != 0) {
2534 CH_ERR(vi, "failed to re-initialize "
2535 "interface: %d\n", rc);
2536 goto done;
2537 }
2538 if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
2539 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
2540 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq);
2541 pi->flags |= HAS_TRACEQ;
2542 }
2543
2544 ifp = vi->ifp;
2545 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2546 continue;
2547 /*
2548 * Note that we do not setup multicast addresses
2549 * in the first pass. This ensures that the
2550 * unicast DMACs for all VIs on all ports get an
2551 * MPS TCAM entry.
2552 */
2553 rc = update_mac_settings(ifp, XGMAC_ALL &
2554 ~XGMAC_MCADDRS);
2555 if (rc != 0) {
2556 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc);
2557 goto done;
2558 }
2559 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true,
2560 true);
2561 if (rc != 0) {
2562 CH_ERR(vi, "failed to re-enable VI: %d\n", rc);
2563 goto done;
2564 }
2565 for_each_txq(vi, k, txq) {
2566 TXQ_LOCK(txq);
2567 txq->eq.flags |= EQ_ENABLED;
2568 TXQ_UNLOCK(txq);
2569 }
2570 mtx_lock(&vi->tick_mtx);
2571 callout_schedule(&vi->tick, hz);
2572 mtx_unlock(&vi->tick_mtx);
2573 }
2574 PORT_LOCK(pi);
2575 if (pi->up_vis > 0) {
2576 t4_update_port_info(pi);
2577 fixup_link_config(pi);
2578 build_medialist(pi);
2579 apply_link_config(pi);
2580 if (pi->link_cfg.link_ok)
2581 t4_os_link_changed(pi);
2582 }
2583 PORT_UNLOCK(pi);
2584 }
2585
2586 /* Now reprogram the L2 multicast addresses. */
2587 for_each_port(sc, i) {
2588 pi = sc->port[i];
2589 for_each_vi(pi, j, vi) {
2590 if (!(vi->flags & VI_INIT_DONE))
2591 continue;
2592 ifp = vi->ifp;
2593 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2594 continue;
2595 rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2596 if (rc != 0) {
2597 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc);
2598 rc = 0; /* carry on */
2599 }
2600 }
2601 }
2602 }
2603
2604 /* Reset all calibration */
2605 t4_calibration_start(sc);
2606 done:
2607 end_synchronized_op(sc, 0);
2608 free(old_state, M_CXGBE);
2609
2610 restart_atid_allocator(sc);
2611 t4_restart_l2t(sc);
2612
2613 return (rc);
2614 }
2615
2616 int
resume_adapter(struct adapter * sc)2617 resume_adapter(struct adapter *sc)
2618 {
2619 restart_adapter(sc);
2620 restart_lld(sc);
2621 #ifdef TCP_OFFLOAD
2622 restart_all_uld(sc);
2623 #endif
2624 return (0);
2625 }
2626
2627 static int
t4_resume(device_t dev)2628 t4_resume(device_t dev)
2629 {
2630 struct adapter *sc = device_get_softc(dev);
2631 int rc;
2632
2633 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2634 rc = resume_adapter(sc);
2635 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2636
2637 return (rc);
2638 }
2639
2640 static int
t4_reset_prepare(device_t dev,device_t child)2641 t4_reset_prepare(device_t dev, device_t child)
2642 {
2643 struct adapter *sc = device_get_softc(dev);
2644
2645 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2646 return (0);
2647 }
2648
2649 static int
t4_reset_post(device_t dev,device_t child)2650 t4_reset_post(device_t dev, device_t child)
2651 {
2652 struct adapter *sc = device_get_softc(dev);
2653
2654 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2655 return (0);
2656 }
2657
2658 static int
reset_adapter_with_pl_rst(struct adapter * sc)2659 reset_adapter_with_pl_rst(struct adapter *sc)
2660 {
2661 /* This is a t4_write_reg without the hw_off_limits check. */
2662 MPASS(sc->error_flags & HW_OFF_LIMITS);
2663 bus_space_write_4(sc->bt, sc->bh, A_PL_RST,
2664 F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE);
2665 pause("pl_rst", 1 * hz); /* Wait 1s for reset */
2666 return (0);
2667 }
2668
2669 static int
reset_adapter_with_pcie_sbr(struct adapter * sc)2670 reset_adapter_with_pcie_sbr(struct adapter *sc)
2671 {
2672 device_t pdev = device_get_parent(sc->dev);
2673 device_t gpdev = device_get_parent(pdev);
2674 device_t *children;
2675 int rc, i, lcap, lsta, nchildren;
2676 uint32_t v;
2677
2678 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v);
2679 if (rc != 0) {
2680 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__,
2681 device_get_nameunit(gpdev), rc);
2682 return (ENOTSUP);
2683 }
2684 lcap = v + PCIER_LINK_CAP;
2685 lsta = v + PCIER_LINK_STA;
2686
2687 nchildren = 0;
2688 device_get_children(pdev, &children, &nchildren);
2689 for (i = 0; i < nchildren; i++)
2690 pci_save_state(children[i]);
2691 v = pci_read_config(gpdev, PCIR_BRIDGECTL_1, 2);
2692 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v | PCIB_BCR_SECBUS_RESET, 2);
2693 pause("pcie_sbr1", hz / 10); /* 100ms */
2694 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v, 2);
2695 pause("pcie_sbr2", hz); /* Wait 1s before restore_state. */
2696 v = pci_read_config(gpdev, lsta, 2);
2697 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE)
2698 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT;
2699 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING))
2700 rc = ETIMEDOUT;
2701 else
2702 rc = 0;
2703 if (rc != 0)
2704 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n",
2705 __func__, v);
2706 else {
2707 for (i = 0; i < nchildren; i++)
2708 pci_restore_state(children[i]);
2709 }
2710 free(children, M_TEMP);
2711
2712 return (rc);
2713 }
2714
2715 static int
reset_adapter_with_pcie_link_bounce(struct adapter * sc)2716 reset_adapter_with_pcie_link_bounce(struct adapter *sc)
2717 {
2718 device_t pdev = device_get_parent(sc->dev);
2719 device_t gpdev = device_get_parent(pdev);
2720 device_t *children;
2721 int rc, i, lcap, lctl, lsta, nchildren;
2722 uint32_t v;
2723
2724 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v);
2725 if (rc != 0) {
2726 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__,
2727 device_get_nameunit(gpdev), rc);
2728 return (ENOTSUP);
2729 }
2730 lcap = v + PCIER_LINK_CAP;
2731 lctl = v + PCIER_LINK_CTL;
2732 lsta = v + PCIER_LINK_STA;
2733
2734 nchildren = 0;
2735 device_get_children(pdev, &children, &nchildren);
2736 for (i = 0; i < nchildren; i++)
2737 pci_save_state(children[i]);
2738 v = pci_read_config(gpdev, lctl, 2);
2739 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_LINK_DIS, 2);
2740 pause("pcie_lnk1", 100 * hz / 1000); /* 100ms */
2741 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_RETRAIN_LINK, 2);
2742 pause("pcie_lnk2", hz); /* Wait 1s before restore_state. */
2743 v = pci_read_config(gpdev, lsta, 2);
2744 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE)
2745 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT;
2746 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING))
2747 rc = ETIMEDOUT;
2748 else
2749 rc = 0;
2750 if (rc != 0)
2751 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n",
2752 __func__, v);
2753 else {
2754 for (i = 0; i < nchildren; i++)
2755 pci_restore_state(children[i]);
2756 }
2757 free(children, M_TEMP);
2758
2759 return (rc);
2760 }
2761
2762 static inline int
reset_adapter(struct adapter * sc)2763 reset_adapter(struct adapter *sc)
2764 {
2765 int rc;
2766 const int reset_method = vm_guest == VM_GUEST_NO ? t4_reset_method : 0;
2767
2768 rc = suspend_adapter(sc);
2769 if (rc != 0)
2770 return (rc);
2771
2772 switch (reset_method) {
2773 case 1:
2774 rc = reset_adapter_with_pcie_sbr(sc);
2775 break;
2776 case 2:
2777 rc = reset_adapter_with_pcie_link_bounce(sc);
2778 break;
2779 case 0:
2780 default:
2781 rc = reset_adapter_with_pl_rst(sc);
2782 break;
2783 }
2784 if (rc == 0)
2785 rc = resume_adapter(sc);
2786 return (rc);
2787 }
2788
2789 static void
reset_adapter_task(void * arg,int pending)2790 reset_adapter_task(void *arg, int pending)
2791 {
2792 struct adapter *sc = arg;
2793 const int flags = sc->flags;
2794 const int eflags = sc->error_flags;
2795 int rc;
2796
2797 if (pending > 1)
2798 CH_ALERT(sc, "%s: pending %d\n", __func__, pending);
2799 rc = reset_adapter(sc);
2800 if (rc != 0) {
2801 CH_ERR(sc, "adapter did not reset properly, rc = %d, "
2802 "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n",
2803 rc, flags, sc->flags, eflags, sc->error_flags);
2804 }
2805 }
2806
2807 static int
cxgbe_probe(device_t dev)2808 cxgbe_probe(device_t dev)
2809 {
2810 struct port_info *pi = device_get_softc(dev);
2811
2812 device_set_descf(dev, "port %d", pi->port_id);
2813
2814 return (BUS_PROBE_DEFAULT);
2815 }
2816
2817 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
2818 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
2819 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
2820 IFCAP_HWRXTSTMP | IFCAP_MEXTPG)
2821 #define T4_CAP_ENABLE (T4_CAP)
2822
2823 static void
cxgbe_vi_attach(device_t dev,struct vi_info * vi)2824 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
2825 {
2826 if_t ifp;
2827 struct sbuf *sb;
2828 struct sysctl_ctx_list *ctx = &vi->ctx;
2829 struct sysctl_oid_list *children;
2830 struct pfil_head_args pa;
2831 struct adapter *sc = vi->adapter;
2832
2833 sysctl_ctx_init(ctx);
2834 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev));
2835 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq",
2836 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues");
2837 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq",
2838 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues");
2839 #ifdef DEV_NETMAP
2840 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq",
2841 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues");
2842 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq",
2843 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues");
2844 #endif
2845 #ifdef TCP_OFFLOAD
2846 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq",
2847 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues");
2848 #endif
2849 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2850 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq",
2851 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues");
2852 #endif
2853
2854 vi->xact_addr_filt = -1;
2855 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF);
2856 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0);
2857 if (sc->flags & IS_VF || t4_tx_vm_wr != 0)
2858 vi->flags |= TX_USES_VM_WR;
2859
2860 /* Allocate an ifnet and set it up */
2861 ifp = if_alloc_dev(IFT_ETHER, dev);
2862 vi->ifp = ifp;
2863 if_setsoftc(ifp, vi);
2864
2865 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2866 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2867
2868 if_setinitfn(ifp, cxgbe_init);
2869 if_setioctlfn(ifp, cxgbe_ioctl);
2870 if_settransmitfn(ifp, cxgbe_transmit);
2871 if_setqflushfn(ifp, cxgbe_qflush);
2872 if (vi->pi->nvi > 1 || sc->flags & IS_VF)
2873 if_setgetcounterfn(ifp, vi_get_counter);
2874 else
2875 if_setgetcounterfn(ifp, cxgbe_get_counter);
2876 #if defined(KERN_TLS) || defined(RATELIMIT)
2877 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc);
2878 #endif
2879 #ifdef RATELIMIT
2880 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query);
2881 #endif
2882
2883 if_setcapabilities(ifp, T4_CAP);
2884 if_setcapenable(ifp, T4_CAP_ENABLE);
2885 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
2886 CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2887 if (chip_id(sc) >= CHELSIO_T6) {
2888 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2889 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2890 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP |
2891 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2892 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0);
2893 }
2894
2895 #ifdef TCP_OFFLOAD
2896 if (vi->nofldrxq != 0)
2897 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0);
2898 #endif
2899 #ifdef RATELIMIT
2900 if (is_ethoffload(sc) && vi->nofldtxq != 0) {
2901 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0);
2902 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0);
2903 }
2904 #endif
2905
2906 if_sethwtsomax(ifp, IP_MAXPACKET);
2907 if (vi->flags & TX_USES_VM_WR)
2908 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO);
2909 else
2910 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO);
2911 #ifdef RATELIMIT
2912 if (is_ethoffload(sc) && vi->nofldtxq != 0)
2913 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO);
2914 #endif
2915 if_sethwtsomaxsegsize(ifp, 65536);
2916 #ifdef KERN_TLS
2917 if (is_ktls(sc)) {
2918 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0);
2919 if (sc->flags & KERN_TLS_ON || !is_t6(sc))
2920 if_setcapenablebit(ifp, IFCAP_TXTLS, 0);
2921 }
2922 #endif
2923
2924 ether_ifattach(ifp, vi->hw_addr);
2925 #ifdef DEV_NETMAP
2926 if (vi->nnmrxq != 0)
2927 cxgbe_nm_attach(vi);
2928 #endif
2929 sb = sbuf_new_auto();
2930 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
2931 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2932 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) {
2933 case IFCAP_TOE:
2934 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
2935 break;
2936 case IFCAP_TOE | IFCAP_TXRTLMT:
2937 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
2938 break;
2939 case IFCAP_TXRTLMT:
2940 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
2941 break;
2942 }
2943 #endif
2944 #ifdef TCP_OFFLOAD
2945 if (if_getcapabilities(ifp) & IFCAP_TOE)
2946 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
2947 #endif
2948 #ifdef DEV_NETMAP
2949 if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2950 sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
2951 vi->nnmtxq, vi->nnmrxq);
2952 #endif
2953 sbuf_finish(sb);
2954 device_printf(dev, "%s\n", sbuf_data(sb));
2955 sbuf_delete(sb);
2956
2957 vi_sysctls(vi);
2958
2959 pa.pa_version = PFIL_VERSION;
2960 pa.pa_flags = PFIL_IN;
2961 pa.pa_type = PFIL_TYPE_ETHERNET;
2962 pa.pa_headname = if_name(ifp);
2963 vi->pfil = pfil_head_register(&pa);
2964 }
2965
2966 static int
cxgbe_attach(device_t dev)2967 cxgbe_attach(device_t dev)
2968 {
2969 struct port_info *pi = device_get_softc(dev);
2970 struct adapter *sc = pi->adapter;
2971 struct vi_info *vi;
2972 int i;
2973
2974 sysctl_ctx_init(&pi->ctx);
2975
2976 cxgbe_vi_attach(dev, &pi->vi[0]);
2977
2978 for_each_vi(pi, i, vi) {
2979 if (i == 0)
2980 continue;
2981 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY);
2982 if (vi->dev == NULL) {
2983 device_printf(dev, "failed to add VI %d\n", i);
2984 continue;
2985 }
2986 device_set_softc(vi->dev, vi);
2987 }
2988
2989 cxgbe_sysctls(pi);
2990
2991 bus_attach_children(dev);
2992
2993 return (0);
2994 }
2995
2996 static void
cxgbe_vi_detach(struct vi_info * vi)2997 cxgbe_vi_detach(struct vi_info *vi)
2998 {
2999 if_t ifp = vi->ifp;
3000
3001 if (vi->pfil != NULL) {
3002 pfil_head_unregister(vi->pfil);
3003 vi->pfil = NULL;
3004 }
3005
3006 ether_ifdetach(ifp);
3007
3008 /* Let detach proceed even if these fail. */
3009 #ifdef DEV_NETMAP
3010 if (if_getcapabilities(ifp) & IFCAP_NETMAP)
3011 cxgbe_nm_detach(vi);
3012 #endif
3013 cxgbe_uninit_synchronized(vi);
3014 callout_drain(&vi->tick);
3015 mtx_destroy(&vi->tick_mtx);
3016 sysctl_ctx_free(&vi->ctx);
3017 vi_full_uninit(vi);
3018
3019 if_free(vi->ifp);
3020 vi->ifp = NULL;
3021 }
3022
3023 static int
cxgbe_detach(device_t dev)3024 cxgbe_detach(device_t dev)
3025 {
3026 struct port_info *pi = device_get_softc(dev);
3027 struct adapter *sc = pi->adapter;
3028 int rc;
3029
3030 /* Detach the extra VIs first. */
3031 rc = bus_generic_detach(dev);
3032 if (rc)
3033 return (rc);
3034
3035 sysctl_ctx_free(&pi->ctx);
3036 begin_vi_detach(sc, &pi->vi[0]);
3037 if (pi->flags & HAS_TRACEQ) {
3038 sc->traceq = -1; /* cloner should not create ifnet */
3039 t4_tracer_port_detach(sc);
3040 }
3041 cxgbe_vi_detach(&pi->vi[0]);
3042 ifmedia_removeall(&pi->media);
3043 end_vi_detach(sc, &pi->vi[0]);
3044
3045 return (0);
3046 }
3047
3048 static void
cxgbe_init(void * arg)3049 cxgbe_init(void *arg)
3050 {
3051 struct vi_info *vi = arg;
3052 struct adapter *sc = vi->adapter;
3053
3054 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
3055 return;
3056 cxgbe_init_synchronized(vi);
3057 end_synchronized_op(sc, 0);
3058 }
3059
3060 static int
cxgbe_ioctl(if_t ifp,unsigned long cmd,caddr_t data)3061 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data)
3062 {
3063 int rc = 0, mtu, flags;
3064 struct vi_info *vi = if_getsoftc(ifp);
3065 struct port_info *pi = vi->pi;
3066 struct adapter *sc = pi->adapter;
3067 struct ifreq *ifr = (struct ifreq *)data;
3068 uint32_t mask;
3069
3070 switch (cmd) {
3071 case SIOCSIFMTU:
3072 mtu = ifr->ifr_mtu;
3073 if (mtu < ETHERMIN || mtu > MAX_MTU)
3074 return (EINVAL);
3075
3076 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
3077 if (rc)
3078 return (rc);
3079 if_setmtu(ifp, mtu);
3080 if (vi->flags & VI_INIT_DONE) {
3081 t4_update_fl_bufsize(ifp);
3082 if (hw_all_ok(sc) &&
3083 if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3084 rc = update_mac_settings(ifp, XGMAC_MTU);
3085 }
3086 end_synchronized_op(sc, 0);
3087 break;
3088
3089 case SIOCSIFFLAGS:
3090 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
3091 if (rc)
3092 return (rc);
3093
3094 if (!hw_all_ok(sc)) {
3095 rc = ENXIO;
3096 goto fail;
3097 }
3098
3099 if (if_getflags(ifp) & IFF_UP) {
3100 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3101 flags = vi->if_flags;
3102 if ((if_getflags(ifp) ^ flags) &
3103 (IFF_PROMISC | IFF_ALLMULTI)) {
3104 rc = update_mac_settings(ifp,
3105 XGMAC_PROMISC | XGMAC_ALLMULTI);
3106 }
3107 } else {
3108 rc = cxgbe_init_synchronized(vi);
3109 }
3110 vi->if_flags = if_getflags(ifp);
3111 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3112 rc = cxgbe_uninit_synchronized(vi);
3113 }
3114 end_synchronized_op(sc, 0);
3115 break;
3116
3117 case SIOCADDMULTI:
3118 case SIOCDELMULTI:
3119 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
3120 if (rc)
3121 return (rc);
3122 if (hw_all_ok(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3123 rc = update_mac_settings(ifp, XGMAC_MCADDRS);
3124 end_synchronized_op(sc, 0);
3125 break;
3126
3127 case SIOCSIFCAP:
3128 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
3129 if (rc)
3130 return (rc);
3131
3132 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
3133 if (mask & IFCAP_TXCSUM) {
3134 if_togglecapenable(ifp, IFCAP_TXCSUM);
3135 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP);
3136
3137 if (IFCAP_TSO4 & if_getcapenable(ifp) &&
3138 !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
3139 mask &= ~IFCAP_TSO4;
3140 if_setcapenablebit(ifp, 0, IFCAP_TSO4);
3141 if_printf(ifp,
3142 "tso4 disabled due to -txcsum.\n");
3143 }
3144 }
3145 if (mask & IFCAP_TXCSUM_IPV6) {
3146 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6);
3147 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
3148
3149 if (IFCAP_TSO6 & if_getcapenable(ifp) &&
3150 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
3151 mask &= ~IFCAP_TSO6;
3152 if_setcapenablebit(ifp, 0, IFCAP_TSO6);
3153 if_printf(ifp,
3154 "tso6 disabled due to -txcsum6.\n");
3155 }
3156 }
3157 if (mask & IFCAP_RXCSUM)
3158 if_togglecapenable(ifp, IFCAP_RXCSUM);
3159 if (mask & IFCAP_RXCSUM_IPV6)
3160 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6);
3161
3162 /*
3163 * Note that we leave CSUM_TSO alone (it is always set). The
3164 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
3165 * sending a TSO request our way, so it's sufficient to toggle
3166 * IFCAP_TSOx only.
3167 */
3168 if (mask & IFCAP_TSO4) {
3169 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) &&
3170 !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
3171 if_printf(ifp, "enable txcsum first.\n");
3172 rc = EAGAIN;
3173 goto fail;
3174 }
3175 if_togglecapenable(ifp, IFCAP_TSO4);
3176 }
3177 if (mask & IFCAP_TSO6) {
3178 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) &&
3179 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
3180 if_printf(ifp, "enable txcsum6 first.\n");
3181 rc = EAGAIN;
3182 goto fail;
3183 }
3184 if_togglecapenable(ifp, IFCAP_TSO6);
3185 }
3186 if (mask & IFCAP_LRO) {
3187 #if defined(INET) || defined(INET6)
3188 int i;
3189 struct sge_rxq *rxq;
3190
3191 if_togglecapenable(ifp, IFCAP_LRO);
3192 for_each_rxq(vi, i, rxq) {
3193 if (if_getcapenable(ifp) & IFCAP_LRO)
3194 rxq->iq.flags |= IQ_LRO_ENABLED;
3195 else
3196 rxq->iq.flags &= ~IQ_LRO_ENABLED;
3197 }
3198 #endif
3199 }
3200 #ifdef TCP_OFFLOAD
3201 if (mask & IFCAP_TOE) {
3202 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE;
3203
3204 rc = toe_capability(vi, enable);
3205 if (rc != 0)
3206 goto fail;
3207
3208 if_togglecapenable(ifp, mask);
3209 }
3210 #endif
3211 if (mask & IFCAP_VLAN_HWTAGGING) {
3212 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
3213 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3214 rc = update_mac_settings(ifp, XGMAC_VLANEX);
3215 }
3216 if (mask & IFCAP_VLAN_MTU) {
3217 if_togglecapenable(ifp, IFCAP_VLAN_MTU);
3218
3219 /* Need to find out how to disable auto-mtu-inflation */
3220 }
3221 if (mask & IFCAP_VLAN_HWTSO)
3222 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
3223 if (mask & IFCAP_VLAN_HWCSUM)
3224 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
3225 #ifdef RATELIMIT
3226 if (mask & IFCAP_TXRTLMT)
3227 if_togglecapenable(ifp, IFCAP_TXRTLMT);
3228 #endif
3229 if (mask & IFCAP_HWRXTSTMP) {
3230 int i;
3231 struct sge_rxq *rxq;
3232
3233 if_togglecapenable(ifp, IFCAP_HWRXTSTMP);
3234 for_each_rxq(vi, i, rxq) {
3235 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP)
3236 rxq->iq.flags |= IQ_RX_TIMESTAMP;
3237 else
3238 rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
3239 }
3240 }
3241 if (mask & IFCAP_MEXTPG)
3242 if_togglecapenable(ifp, IFCAP_MEXTPG);
3243
3244 #ifdef KERN_TLS
3245 if (mask & IFCAP_TXTLS) {
3246 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS;
3247
3248 rc = ktls_capability(sc, enable);
3249 if (rc != 0)
3250 goto fail;
3251
3252 if_togglecapenable(ifp, mask & IFCAP_TXTLS);
3253 }
3254 #endif
3255 if (mask & IFCAP_VXLAN_HWCSUM) {
3256 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM);
3257 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP |
3258 CSUM_INNER_IP6_TCP | CSUM_INNER_IP |
3259 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP);
3260 }
3261 if (mask & IFCAP_VXLAN_HWTSO) {
3262 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO);
3263 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO |
3264 CSUM_INNER_IP_TSO);
3265 }
3266
3267 #ifdef VLAN_CAPABILITIES
3268 VLAN_CAPABILITIES(ifp);
3269 #endif
3270 fail:
3271 end_synchronized_op(sc, 0);
3272 break;
3273
3274 case SIOCSIFMEDIA:
3275 case SIOCGIFMEDIA:
3276 case SIOCGIFXMEDIA:
3277 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
3278 break;
3279
3280 case SIOCGI2C: {
3281 struct ifi2creq i2c;
3282
3283 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
3284 if (rc != 0)
3285 break;
3286 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
3287 rc = EPERM;
3288 break;
3289 }
3290 if (i2c.len > sizeof(i2c.data)) {
3291 rc = EINVAL;
3292 break;
3293 }
3294 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
3295 if (rc)
3296 return (rc);
3297 if (!hw_all_ok(sc))
3298 rc = ENXIO;
3299 else
3300 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
3301 i2c.offset, i2c.len, &i2c.data[0]);
3302 end_synchronized_op(sc, 0);
3303 if (rc == 0)
3304 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
3305 break;
3306 }
3307
3308 default:
3309 rc = ether_ioctl(ifp, cmd, data);
3310 }
3311
3312 return (rc);
3313 }
3314
3315 static int
cxgbe_transmit(if_t ifp,struct mbuf * m)3316 cxgbe_transmit(if_t ifp, struct mbuf *m)
3317 {
3318 struct vi_info *vi = if_getsoftc(ifp);
3319 struct port_info *pi = vi->pi;
3320 struct adapter *sc;
3321 struct sge_txq *txq;
3322 void *items[1];
3323 int rc;
3324
3325 M_ASSERTPKTHDR(m);
3326 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */
3327 #if defined(KERN_TLS) || defined(RATELIMIT)
3328 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
3329 MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
3330 #endif
3331
3332 if (__predict_false(pi->link_cfg.link_ok == false)) {
3333 m_freem(m);
3334 return (ENETDOWN);
3335 }
3336
3337 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR);
3338 if (__predict_false(rc != 0)) {
3339 if (__predict_true(rc == EINPROGRESS)) {
3340 /* queued by parse_pkt */
3341 MPASS(m != NULL);
3342 return (0);
3343 }
3344
3345 MPASS(m == NULL); /* was freed already */
3346 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */
3347 return (rc);
3348 }
3349
3350 /* Select a txq. */
3351 sc = vi->adapter;
3352 txq = &sc->sge.txq[vi->first_txq];
3353 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
3354 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
3355 vi->rsrv_noflowq);
3356
3357 items[0] = m;
3358 rc = mp_ring_enqueue(txq->r, items, 1, 256);
3359 if (__predict_false(rc != 0))
3360 m_freem(m);
3361
3362 return (rc);
3363 }
3364
3365 static void
cxgbe_qflush(if_t ifp)3366 cxgbe_qflush(if_t ifp)
3367 {
3368 struct vi_info *vi = if_getsoftc(ifp);
3369 struct sge_txq *txq;
3370 int i;
3371
3372 /* queues do not exist if !VI_INIT_DONE. */
3373 if (vi->flags & VI_INIT_DONE) {
3374 for_each_txq(vi, i, txq) {
3375 TXQ_LOCK(txq);
3376 txq->eq.flags |= EQ_QFLUSH;
3377 TXQ_UNLOCK(txq);
3378 while (!mp_ring_is_idle(txq->r)) {
3379 mp_ring_check_drainage(txq->r, 4096);
3380 pause("qflush", 1);
3381 }
3382 TXQ_LOCK(txq);
3383 txq->eq.flags &= ~EQ_QFLUSH;
3384 TXQ_UNLOCK(txq);
3385 }
3386 }
3387 if_qflush(ifp);
3388 }
3389
3390 static uint64_t
vi_get_counter(if_t ifp,ift_counter c)3391 vi_get_counter(if_t ifp, ift_counter c)
3392 {
3393 struct vi_info *vi = if_getsoftc(ifp);
3394 struct fw_vi_stats_vf *s = &vi->stats;
3395
3396 mtx_lock(&vi->tick_mtx);
3397 vi_refresh_stats(vi);
3398 mtx_unlock(&vi->tick_mtx);
3399
3400 switch (c) {
3401 case IFCOUNTER_IPACKETS:
3402 return (s->rx_bcast_frames + s->rx_mcast_frames +
3403 s->rx_ucast_frames);
3404 case IFCOUNTER_IERRORS:
3405 return (s->rx_err_frames);
3406 case IFCOUNTER_OPACKETS:
3407 return (s->tx_bcast_frames + s->tx_mcast_frames +
3408 s->tx_ucast_frames + s->tx_offload_frames);
3409 case IFCOUNTER_OERRORS:
3410 return (s->tx_drop_frames);
3411 case IFCOUNTER_IBYTES:
3412 return (s->rx_bcast_bytes + s->rx_mcast_bytes +
3413 s->rx_ucast_bytes);
3414 case IFCOUNTER_OBYTES:
3415 return (s->tx_bcast_bytes + s->tx_mcast_bytes +
3416 s->tx_ucast_bytes + s->tx_offload_bytes);
3417 case IFCOUNTER_IMCASTS:
3418 return (s->rx_mcast_frames);
3419 case IFCOUNTER_OMCASTS:
3420 return (s->tx_mcast_frames);
3421 case IFCOUNTER_OQDROPS: {
3422 uint64_t drops;
3423
3424 drops = 0;
3425 if (vi->flags & VI_INIT_DONE) {
3426 int i;
3427 struct sge_txq *txq;
3428
3429 for_each_txq(vi, i, txq)
3430 drops += counter_u64_fetch(txq->r->dropped);
3431 }
3432
3433 return (drops);
3434
3435 }
3436
3437 default:
3438 return (if_get_counter_default(ifp, c));
3439 }
3440 }
3441
3442 static uint64_t
cxgbe_get_counter(if_t ifp,ift_counter c)3443 cxgbe_get_counter(if_t ifp, ift_counter c)
3444 {
3445 struct vi_info *vi = if_getsoftc(ifp);
3446 struct port_info *pi = vi->pi;
3447 struct port_stats *s = &pi->stats;
3448
3449 mtx_lock(&vi->tick_mtx);
3450 cxgbe_refresh_stats(vi);
3451 mtx_unlock(&vi->tick_mtx);
3452
3453 switch (c) {
3454 case IFCOUNTER_IPACKETS:
3455 return (s->rx_frames);
3456
3457 case IFCOUNTER_IERRORS:
3458 return (s->rx_jabber + s->rx_runt + s->rx_too_long +
3459 s->rx_fcs_err + s->rx_len_err);
3460
3461 case IFCOUNTER_OPACKETS:
3462 return (s->tx_frames);
3463
3464 case IFCOUNTER_OERRORS:
3465 return (s->tx_error_frames);
3466
3467 case IFCOUNTER_IBYTES:
3468 return (s->rx_octets);
3469
3470 case IFCOUNTER_OBYTES:
3471 return (s->tx_octets);
3472
3473 case IFCOUNTER_IMCASTS:
3474 return (s->rx_mcast_frames);
3475
3476 case IFCOUNTER_OMCASTS:
3477 return (s->tx_mcast_frames);
3478
3479 case IFCOUNTER_IQDROPS:
3480 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
3481 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
3482 s->rx_trunc3 + pi->tnl_cong_drops);
3483
3484 case IFCOUNTER_OQDROPS: {
3485 uint64_t drops;
3486
3487 drops = s->tx_drop;
3488 if (vi->flags & VI_INIT_DONE) {
3489 int i;
3490 struct sge_txq *txq;
3491
3492 for_each_txq(vi, i, txq)
3493 drops += counter_u64_fetch(txq->r->dropped);
3494 }
3495
3496 return (drops);
3497
3498 }
3499
3500 default:
3501 return (if_get_counter_default(ifp, c));
3502 }
3503 }
3504
3505 #if defined(KERN_TLS) || defined(RATELIMIT)
3506 static int
cxgbe_snd_tag_alloc(if_t ifp,union if_snd_tag_alloc_params * params,struct m_snd_tag ** pt)3507 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
3508 struct m_snd_tag **pt)
3509 {
3510 int error;
3511
3512 switch (params->hdr.type) {
3513 #ifdef RATELIMIT
3514 case IF_SND_TAG_TYPE_RATE_LIMIT:
3515 error = cxgbe_rate_tag_alloc(ifp, params, pt);
3516 break;
3517 #endif
3518 #ifdef KERN_TLS
3519 case IF_SND_TAG_TYPE_TLS:
3520 {
3521 struct vi_info *vi = if_getsoftc(ifp);
3522
3523 if (is_t6(vi->pi->adapter))
3524 error = t6_tls_tag_alloc(ifp, params, pt);
3525 else
3526 error = t7_tls_tag_alloc(ifp, params, pt);
3527 break;
3528 }
3529 #endif
3530 default:
3531 error = EOPNOTSUPP;
3532 }
3533 return (error);
3534 }
3535 #endif
3536
3537 /*
3538 * The kernel picks a media from the list we had provided but we still validate
3539 * the requeste.
3540 */
3541 int
cxgbe_media_change(if_t ifp)3542 cxgbe_media_change(if_t ifp)
3543 {
3544 struct vi_info *vi = if_getsoftc(ifp);
3545 struct port_info *pi = vi->pi;
3546 struct ifmedia *ifm = &pi->media;
3547 struct link_config *lc = &pi->link_cfg;
3548 struct adapter *sc = pi->adapter;
3549 int rc;
3550
3551 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
3552 if (rc != 0)
3553 return (rc);
3554 PORT_LOCK(pi);
3555 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
3556 /* ifconfig .. media autoselect */
3557 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
3558 rc = ENOTSUP; /* AN not supported by transceiver */
3559 goto done;
3560 }
3561 lc->requested_aneg = AUTONEG_ENABLE;
3562 lc->requested_speed = 0;
3563 lc->requested_fc |= PAUSE_AUTONEG;
3564 } else {
3565 lc->requested_aneg = AUTONEG_DISABLE;
3566 lc->requested_speed =
3567 ifmedia_baudrate(ifm->ifm_media) / 1000000;
3568 lc->requested_fc = 0;
3569 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
3570 lc->requested_fc |= PAUSE_RX;
3571 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
3572 lc->requested_fc |= PAUSE_TX;
3573 }
3574 if (pi->up_vis > 0 && hw_all_ok(sc)) {
3575 fixup_link_config(pi);
3576 rc = apply_link_config(pi);
3577 }
3578 done:
3579 PORT_UNLOCK(pi);
3580 end_synchronized_op(sc, 0);
3581 return (rc);
3582 }
3583
3584 /*
3585 * Base media word (without ETHER, pause, link active, etc.) for the port at the
3586 * given speed.
3587 */
3588 static int
port_mword(struct port_info * pi,uint32_t speed)3589 port_mword(struct port_info *pi, uint32_t speed)
3590 {
3591
3592 MPASS(speed & M_FW_PORT_CAP32_SPEED);
3593 MPASS(powerof2(speed));
3594
3595 switch(pi->port_type) {
3596 case FW_PORT_TYPE_BT_SGMII:
3597 case FW_PORT_TYPE_BT_XFI:
3598 case FW_PORT_TYPE_BT_XAUI:
3599 /* BaseT */
3600 switch (speed) {
3601 case FW_PORT_CAP32_SPEED_100M:
3602 return (IFM_100_T);
3603 case FW_PORT_CAP32_SPEED_1G:
3604 return (IFM_1000_T);
3605 case FW_PORT_CAP32_SPEED_10G:
3606 return (IFM_10G_T);
3607 }
3608 break;
3609 case FW_PORT_TYPE_KX4:
3610 if (speed == FW_PORT_CAP32_SPEED_10G)
3611 return (IFM_10G_KX4);
3612 break;
3613 case FW_PORT_TYPE_CX4:
3614 if (speed == FW_PORT_CAP32_SPEED_10G)
3615 return (IFM_10G_CX4);
3616 break;
3617 case FW_PORT_TYPE_KX:
3618 if (speed == FW_PORT_CAP32_SPEED_1G)
3619 return (IFM_1000_KX);
3620 break;
3621 case FW_PORT_TYPE_KR:
3622 case FW_PORT_TYPE_BP_AP:
3623 case FW_PORT_TYPE_BP4_AP:
3624 case FW_PORT_TYPE_BP40_BA:
3625 case FW_PORT_TYPE_KR4_100G:
3626 case FW_PORT_TYPE_KR_SFP28:
3627 case FW_PORT_TYPE_KR_XLAUI:
3628 switch (speed) {
3629 case FW_PORT_CAP32_SPEED_1G:
3630 return (IFM_1000_KX);
3631 case FW_PORT_CAP32_SPEED_10G:
3632 return (IFM_10G_KR);
3633 case FW_PORT_CAP32_SPEED_25G:
3634 return (IFM_25G_KR);
3635 case FW_PORT_CAP32_SPEED_40G:
3636 return (IFM_40G_KR4);
3637 case FW_PORT_CAP32_SPEED_50G:
3638 return (IFM_50G_KR2);
3639 case FW_PORT_CAP32_SPEED_100G:
3640 return (IFM_100G_KR4);
3641 }
3642 break;
3643 case FW_PORT_TYPE_FIBER_XFI:
3644 case FW_PORT_TYPE_FIBER_XAUI:
3645 case FW_PORT_TYPE_SFP:
3646 case FW_PORT_TYPE_QSFP_10G:
3647 case FW_PORT_TYPE_QSA:
3648 case FW_PORT_TYPE_QSFP:
3649 case FW_PORT_TYPE_CR4_QSFP:
3650 case FW_PORT_TYPE_CR_QSFP:
3651 case FW_PORT_TYPE_CR2_QSFP:
3652 case FW_PORT_TYPE_SFP28:
3653 case FW_PORT_TYPE_SFP56:
3654 case FW_PORT_TYPE_QSFP56:
3655 case FW_PORT_TYPE_QSFPDD:
3656 /* Pluggable transceiver */
3657 switch (pi->mod_type) {
3658 case FW_PORT_MOD_TYPE_LR:
3659 case FW_PORT_MOD_TYPE_LR_SIMPLEX:
3660 switch (speed) {
3661 case FW_PORT_CAP32_SPEED_1G:
3662 return (IFM_1000_LX);
3663 case FW_PORT_CAP32_SPEED_10G:
3664 return (IFM_10G_LR);
3665 case FW_PORT_CAP32_SPEED_25G:
3666 return (IFM_25G_LR);
3667 case FW_PORT_CAP32_SPEED_40G:
3668 return (IFM_40G_LR4);
3669 case FW_PORT_CAP32_SPEED_50G:
3670 return (IFM_50G_LR2);
3671 case FW_PORT_CAP32_SPEED_100G:
3672 return (IFM_100G_LR4);
3673 case FW_PORT_CAP32_SPEED_200G:
3674 return (IFM_200G_LR4);
3675 case FW_PORT_CAP32_SPEED_400G:
3676 return (IFM_400G_LR8);
3677 }
3678 break;
3679 case FW_PORT_MOD_TYPE_SR:
3680 switch (speed) {
3681 case FW_PORT_CAP32_SPEED_1G:
3682 return (IFM_1000_SX);
3683 case FW_PORT_CAP32_SPEED_10G:
3684 return (IFM_10G_SR);
3685 case FW_PORT_CAP32_SPEED_25G:
3686 return (IFM_25G_SR);
3687 case FW_PORT_CAP32_SPEED_40G:
3688 return (IFM_40G_SR4);
3689 case FW_PORT_CAP32_SPEED_50G:
3690 return (IFM_50G_SR2);
3691 case FW_PORT_CAP32_SPEED_100G:
3692 return (IFM_100G_SR4);
3693 case FW_PORT_CAP32_SPEED_200G:
3694 return (IFM_200G_SR4);
3695 case FW_PORT_CAP32_SPEED_400G:
3696 return (IFM_400G_SR8);
3697 }
3698 break;
3699 case FW_PORT_MOD_TYPE_ER:
3700 if (speed == FW_PORT_CAP32_SPEED_10G)
3701 return (IFM_10G_ER);
3702 break;
3703 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3704 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3705 switch (speed) {
3706 case FW_PORT_CAP32_SPEED_1G:
3707 return (IFM_1000_CX);
3708 case FW_PORT_CAP32_SPEED_10G:
3709 return (IFM_10G_TWINAX);
3710 case FW_PORT_CAP32_SPEED_25G:
3711 return (IFM_25G_CR);
3712 case FW_PORT_CAP32_SPEED_40G:
3713 return (IFM_40G_CR4);
3714 case FW_PORT_CAP32_SPEED_50G:
3715 return (IFM_50G_CR2);
3716 case FW_PORT_CAP32_SPEED_100G:
3717 return (IFM_100G_CR4);
3718 case FW_PORT_CAP32_SPEED_200G:
3719 return (IFM_200G_CR4_PAM4);
3720 case FW_PORT_CAP32_SPEED_400G:
3721 return (IFM_400G_CR8);
3722 }
3723 break;
3724 case FW_PORT_MOD_TYPE_LRM:
3725 if (speed == FW_PORT_CAP32_SPEED_10G)
3726 return (IFM_10G_LRM);
3727 break;
3728 case FW_PORT_MOD_TYPE_DR:
3729 if (speed == FW_PORT_CAP32_SPEED_100G)
3730 return (IFM_100G_DR);
3731 if (speed == FW_PORT_CAP32_SPEED_200G)
3732 return (IFM_200G_DR4);
3733 if (speed == FW_PORT_CAP32_SPEED_400G)
3734 return (IFM_400G_DR4);
3735 break;
3736 case FW_PORT_MOD_TYPE_NA:
3737 MPASS(0); /* Not pluggable? */
3738 /* fall through */
3739 case FW_PORT_MOD_TYPE_ERROR:
3740 case FW_PORT_MOD_TYPE_UNKNOWN:
3741 case FW_PORT_MOD_TYPE_NOTSUPPORTED:
3742 break;
3743 case FW_PORT_MOD_TYPE_NONE:
3744 return (IFM_NONE);
3745 }
3746 break;
3747 case M_FW_PORT_CMD_PTYPE: /* FW_PORT_TYPE_NONE for old firmware */
3748 if (chip_id(pi->adapter) >= CHELSIO_T7)
3749 return (IFM_UNKNOWN);
3750 /* fall through */
3751 case FW_PORT_TYPE_NONE:
3752 return (IFM_NONE);
3753 }
3754
3755 return (IFM_UNKNOWN);
3756 }
3757
3758 void
cxgbe_media_status(if_t ifp,struct ifmediareq * ifmr)3759 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr)
3760 {
3761 struct vi_info *vi = if_getsoftc(ifp);
3762 struct port_info *pi = vi->pi;
3763 struct adapter *sc = pi->adapter;
3764 struct link_config *lc = &pi->link_cfg;
3765
3766 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0)
3767 return;
3768 PORT_LOCK(pi);
3769
3770 if (pi->up_vis == 0 && hw_all_ok(sc)) {
3771 /*
3772 * If all the interfaces are administratively down the firmware
3773 * does not report transceiver changes. Refresh port info here
3774 * so that ifconfig displays accurate ifmedia at all times.
3775 * This is the only reason we have a synchronized op in this
3776 * function. Just PORT_LOCK would have been enough otherwise.
3777 */
3778 t4_update_port_info(pi);
3779 build_medialist(pi);
3780 }
3781
3782 /* ifm_status */
3783 ifmr->ifm_status = IFM_AVALID;
3784 if (lc->link_ok == false)
3785 goto done;
3786 ifmr->ifm_status |= IFM_ACTIVE;
3787
3788 /* ifm_active */
3789 ifmr->ifm_active = IFM_ETHER | IFM_FDX;
3790 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
3791 if (lc->fc & PAUSE_RX)
3792 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
3793 if (lc->fc & PAUSE_TX)
3794 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
3795 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
3796 done:
3797 PORT_UNLOCK(pi);
3798 end_synchronized_op(sc, 0);
3799 }
3800
3801 static int
vcxgbe_probe(device_t dev)3802 vcxgbe_probe(device_t dev)
3803 {
3804 struct vi_info *vi = device_get_softc(dev);
3805
3806 device_set_descf(dev, "port %d vi %td", vi->pi->port_id,
3807 vi - vi->pi->vi);
3808
3809 return (BUS_PROBE_DEFAULT);
3810 }
3811
3812 static int
alloc_extra_vi(struct adapter * sc,struct port_info * pi,struct vi_info * vi)3813 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
3814 {
3815 int func, index, rc;
3816 uint32_t param, val;
3817
3818 ASSERT_SYNCHRONIZED_OP(sc);
3819
3820 index = vi - pi->vi;
3821 MPASS(index > 0); /* This function deals with _extra_ VIs only */
3822 KASSERT(index < nitems(vi_mac_funcs),
3823 ("%s: VI %s doesn't have a MAC func", __func__,
3824 device_get_nameunit(vi->dev)));
3825 func = vi_mac_funcs[index];
3826 rc = t4_alloc_vi_func(sc, sc->mbox, pi->hw_port, sc->pf, 0, 1,
3827 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
3828 if (rc < 0) {
3829 CH_ERR(vi, "failed to allocate virtual interface %d"
3830 "for port %d: %d\n", index, pi->port_id, -rc);
3831 return (-rc);
3832 }
3833 vi->viid = rc;
3834
3835 if (vi->rss_size == 1) {
3836 /*
3837 * This VI didn't get a slice of the RSS table. Reduce the
3838 * number of VIs being created (hw.cxgbe.num_vis) or modify the
3839 * configuration file (nvi, rssnvi for this PF) if this is a
3840 * problem.
3841 */
3842 device_printf(vi->dev, "RSS table not available.\n");
3843 vi->rss_base = 0xffff;
3844
3845 return (0);
3846 }
3847
3848 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3849 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
3850 V_FW_PARAMS_PARAM_YZ(vi->viid);
3851 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
3852 if (rc)
3853 vi->rss_base = 0xffff;
3854 else {
3855 MPASS((val >> 16) == vi->rss_size);
3856 vi->rss_base = val & 0xffff;
3857 }
3858
3859 return (0);
3860 }
3861
3862 static int
vcxgbe_attach(device_t dev)3863 vcxgbe_attach(device_t dev)
3864 {
3865 struct vi_info *vi;
3866 struct port_info *pi;
3867 struct adapter *sc;
3868 int rc;
3869
3870 vi = device_get_softc(dev);
3871 pi = vi->pi;
3872 sc = pi->adapter;
3873
3874 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
3875 if (rc)
3876 return (rc);
3877 rc = alloc_extra_vi(sc, pi, vi);
3878 end_synchronized_op(sc, 0);
3879 if (rc)
3880 return (rc);
3881
3882 cxgbe_vi_attach(dev, vi);
3883
3884 return (0);
3885 }
3886
3887 static int
vcxgbe_detach(device_t dev)3888 vcxgbe_detach(device_t dev)
3889 {
3890 struct vi_info *vi;
3891 struct adapter *sc;
3892
3893 vi = device_get_softc(dev);
3894 sc = vi->adapter;
3895
3896 begin_vi_detach(sc, vi);
3897 cxgbe_vi_detach(vi);
3898 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3899 end_vi_detach(sc, vi);
3900
3901 return (0);
3902 }
3903
3904 static struct callout fatal_callout;
3905 static struct taskqueue *reset_tq;
3906
3907 static void
delayed_panic(void * arg)3908 delayed_panic(void *arg)
3909 {
3910 struct adapter *sc = arg;
3911
3912 panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
3913 }
3914
3915 static void
fatal_error_task(void * arg,int pending)3916 fatal_error_task(void *arg, int pending)
3917 {
3918 struct adapter *sc = arg;
3919 int rc;
3920
3921 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) {
3922 dump_cim_regs(sc);
3923 dump_cimla(sc);
3924 dump_devlog(sc);
3925 }
3926
3927 if (t4_reset_on_fatal_err) {
3928 CH_ALERT(sc, "resetting adapter after fatal error.\n");
3929 rc = reset_adapter(sc);
3930 if (rc == 0 && t4_panic_on_fatal_err) {
3931 CH_ALERT(sc, "reset was successful, "
3932 "system will NOT panic.\n");
3933 return;
3934 }
3935 }
3936
3937 if (t4_panic_on_fatal_err) {
3938 CH_ALERT(sc, "panicking on fatal error (after 30s).\n");
3939 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
3940 }
3941 }
3942
3943 void
t4_fatal_err(struct adapter * sc,bool fw_error)3944 t4_fatal_err(struct adapter *sc, bool fw_error)
3945 {
3946 stop_adapter(sc);
3947 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR)))
3948 return;
3949 if (fw_error) {
3950 /*
3951 * We are here because of a firmware error/timeout and not
3952 * because of a hardware interrupt. It is possible (although
3953 * not very likely) that an error interrupt was also raised but
3954 * this thread ran first and inhibited t4_intr_err. We walk the
3955 * main INT_CAUSE registers here to make sure we haven't missed
3956 * anything interesting.
3957 */
3958 t4_slow_intr_handler(sc, sc->intr_flags);
3959 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
3960 }
3961 t4_report_fw_error(sc);
3962 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n",
3963 device_get_nameunit(sc->dev), fw_error);
3964 taskqueue_enqueue(reset_tq, &sc->fatal_error_task);
3965 }
3966
3967 void
t4_add_adapter(struct adapter * sc)3968 t4_add_adapter(struct adapter *sc)
3969 {
3970 sx_xlock(&t4_list_lock);
3971 SLIST_INSERT_HEAD(&t4_list, sc, link);
3972 sx_xunlock(&t4_list_lock);
3973 }
3974
3975 int
t4_map_bars_0_and_4(struct adapter * sc)3976 t4_map_bars_0_and_4(struct adapter *sc)
3977 {
3978 sc->regs_rid = PCIR_BAR(0);
3979 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3980 &sc->regs_rid, RF_ACTIVE);
3981 if (sc->regs_res == NULL) {
3982 device_printf(sc->dev, "cannot map registers.\n");
3983 return (ENXIO);
3984 }
3985 sc->bt = rman_get_bustag(sc->regs_res);
3986 sc->bh = rman_get_bushandle(sc->regs_res);
3987 sc->mmio_len = rman_get_size(sc->regs_res);
3988 setbit(&sc->doorbells, DOORBELL_KDB);
3989
3990 sc->msix_rid = PCIR_BAR(4);
3991 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3992 &sc->msix_rid, RF_ACTIVE);
3993 if (sc->msix_res == NULL) {
3994 device_printf(sc->dev, "cannot map MSI-X BAR.\n");
3995 return (ENXIO);
3996 }
3997
3998 return (0);
3999 }
4000
4001 int
t4_map_bar_2(struct adapter * sc)4002 t4_map_bar_2(struct adapter *sc)
4003 {
4004
4005 /*
4006 * T4: only iWARP driver uses the userspace doorbells. There is no need
4007 * to map it if RDMA is disabled.
4008 */
4009 if (is_t4(sc) && sc->rdmacaps == 0)
4010 return (0);
4011
4012 sc->udbs_rid = PCIR_BAR(2);
4013 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4014 &sc->udbs_rid, RF_ACTIVE);
4015 if (sc->udbs_res == NULL) {
4016 device_printf(sc->dev, "cannot map doorbell BAR.\n");
4017 return (ENXIO);
4018 }
4019 sc->udbs_base = rman_get_virtual(sc->udbs_res);
4020
4021 if (chip_id(sc) >= CHELSIO_T5) {
4022 setbit(&sc->doorbells, DOORBELL_UDB);
4023 #if defined(__i386__) || defined(__amd64__)
4024 if (t5_write_combine) {
4025 int rc, mode;
4026
4027 /*
4028 * Enable write combining on BAR2. This is the
4029 * userspace doorbell BAR and is split into 128B
4030 * (UDBS_SEG_SIZE) doorbell regions, each associated
4031 * with an egress queue. The first 64B has the doorbell
4032 * and the second 64B can be used to submit a tx work
4033 * request with an implicit doorbell.
4034 */
4035
4036 rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
4037 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
4038 if (rc == 0) {
4039 clrbit(&sc->doorbells, DOORBELL_UDB);
4040 setbit(&sc->doorbells, DOORBELL_WCWR);
4041 setbit(&sc->doorbells, DOORBELL_UDBWC);
4042 } else {
4043 device_printf(sc->dev,
4044 "couldn't enable write combining: %d\n",
4045 rc);
4046 }
4047
4048 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
4049 t4_write_reg(sc, A_SGE_STAT_CFG,
4050 V_STATSOURCE_T5(7) | mode);
4051 }
4052 #endif
4053 }
4054 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
4055
4056 return (0);
4057 }
4058
4059 int
t4_adj_doorbells(struct adapter * sc)4060 t4_adj_doorbells(struct adapter *sc)
4061 {
4062 if ((sc->doorbells & t4_doorbells_allowed) != 0) {
4063 sc->doorbells &= t4_doorbells_allowed;
4064 return (0);
4065 }
4066 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n",
4067 sc->doorbells, t4_doorbells_allowed);
4068 return (EINVAL);
4069 }
4070
4071 struct memwin_init {
4072 uint32_t base;
4073 uint32_t aperture;
4074 };
4075
4076 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
4077 { MEMWIN0_BASE, MEMWIN0_APERTURE },
4078 { MEMWIN1_BASE, MEMWIN1_APERTURE },
4079 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
4080 };
4081
4082 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
4083 { MEMWIN0_BASE, MEMWIN0_APERTURE },
4084 { MEMWIN1_BASE, MEMWIN1_APERTURE },
4085 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
4086 };
4087
4088 static void
setup_memwin(struct adapter * sc)4089 setup_memwin(struct adapter *sc)
4090 {
4091 const struct memwin_init *mw_init;
4092 struct memwin *mw;
4093 int i;
4094 uint32_t bar0, reg;
4095
4096 if (is_t4(sc)) {
4097 /*
4098 * Read low 32b of bar0 indirectly via the hardware backdoor
4099 * mechanism. Works from within PCI passthrough environments
4100 * too, where rman_get_start() can return a different value. We
4101 * need to program the T4 memory window decoders with the actual
4102 * addresses that will be coming across the PCIe link.
4103 */
4104 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
4105 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
4106
4107 mw_init = &t4_memwin[0];
4108 } else {
4109 /* T5+ use the relative offset inside the PCIe BAR */
4110 bar0 = 0;
4111
4112 mw_init = &t5_memwin[0];
4113 }
4114
4115 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
4116 if (!rw_initialized(&mw->mw_lock)) {
4117 rw_init(&mw->mw_lock, "memory window access");
4118 mw->mw_base = mw_init->base;
4119 mw->mw_aperture = mw_init->aperture;
4120 mw->mw_curpos = 0;
4121 }
4122 reg = chip_id(sc) > CHELSIO_T6 ?
4123 PCIE_MEM_ACCESS_T7_REG(A_T7_PCIE_MEM_ACCESS_BASE_WIN, i) :
4124 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i);
4125 t4_write_reg(sc, reg, (mw->mw_base + bar0) | V_BIR(0) |
4126 V_WINDOW(ilog2(mw->mw_aperture) - 10));
4127 rw_wlock(&mw->mw_lock);
4128 position_memwin(sc, i, mw->mw_curpos);
4129 rw_wunlock(&mw->mw_lock);
4130 }
4131
4132 /* flush */
4133 t4_read_reg(sc, reg);
4134 }
4135
4136 /*
4137 * Positions the memory window at the given address in the card's address space.
4138 * There are some alignment requirements and the actual position may be at an
4139 * address prior to the requested address. mw->mw_curpos always has the actual
4140 * position of the window.
4141 */
4142 static void
position_memwin(struct adapter * sc,int idx,uint32_t addr)4143 position_memwin(struct adapter *sc, int idx, uint32_t addr)
4144 {
4145 struct memwin *mw;
4146 uint32_t pf, reg, val;
4147
4148 MPASS(idx >= 0 && idx < NUM_MEMWIN);
4149 mw = &sc->memwin[idx];
4150 rw_assert(&mw->mw_lock, RA_WLOCKED);
4151
4152 if (is_t4(sc)) {
4153 pf = 0;
4154 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */
4155 } else {
4156 pf = V_PFNUM(sc->pf);
4157 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */
4158 }
4159 if (chip_id(sc) > CHELSIO_T6) {
4160 reg = PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, idx);
4161 val = (mw->mw_curpos >> X_T7_MEMOFST_SHIFT) | pf;
4162 } else {
4163 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
4164 val = mw->mw_curpos | pf;
4165 }
4166 t4_write_reg(sc, reg, val);
4167 t4_read_reg(sc, reg); /* flush */
4168 }
4169
4170 int
rw_via_memwin(struct adapter * sc,int idx,uint32_t addr,uint32_t * val,int len,int rw)4171 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
4172 int len, int rw)
4173 {
4174 struct memwin *mw;
4175 uint32_t mw_end, v;
4176
4177 MPASS(idx >= 0 && idx < NUM_MEMWIN);
4178
4179 /* Memory can only be accessed in naturally aligned 4 byte units */
4180 if (addr & 3 || len & 3 || len <= 0)
4181 return (EINVAL);
4182
4183 mw = &sc->memwin[idx];
4184 while (len > 0) {
4185 rw_rlock(&mw->mw_lock);
4186 mw_end = mw->mw_curpos + mw->mw_aperture;
4187 if (addr >= mw_end || addr < mw->mw_curpos) {
4188 /* Will need to reposition the window */
4189 if (!rw_try_upgrade(&mw->mw_lock)) {
4190 rw_runlock(&mw->mw_lock);
4191 rw_wlock(&mw->mw_lock);
4192 }
4193 rw_assert(&mw->mw_lock, RA_WLOCKED);
4194 position_memwin(sc, idx, addr);
4195 rw_downgrade(&mw->mw_lock);
4196 mw_end = mw->mw_curpos + mw->mw_aperture;
4197 }
4198 rw_assert(&mw->mw_lock, RA_RLOCKED);
4199 while (addr < mw_end && len > 0) {
4200 if (rw == 0) {
4201 v = t4_read_reg(sc, mw->mw_base + addr -
4202 mw->mw_curpos);
4203 *val++ = le32toh(v);
4204 } else {
4205 v = *val++;
4206 t4_write_reg(sc, mw->mw_base + addr -
4207 mw->mw_curpos, htole32(v));
4208 }
4209 addr += 4;
4210 len -= 4;
4211 }
4212 rw_runlock(&mw->mw_lock);
4213 }
4214
4215 return (0);
4216 }
4217
4218 CTASSERT(M_TID_COOKIE == M_COOKIE);
4219 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1));
4220
4221 static void
t4_init_atid_table(struct adapter * sc)4222 t4_init_atid_table(struct adapter *sc)
4223 {
4224 struct tid_info *t;
4225 int i;
4226
4227 t = &sc->tids;
4228 if (t->natids == 0)
4229 return;
4230
4231 MPASS(t->atid_tab == NULL);
4232
4233 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
4234 M_ZERO | M_WAITOK);
4235 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
4236 t->afree = t->atid_tab;
4237 t->atids_in_use = 0;
4238 t->atid_alloc_stopped = false;
4239 for (i = 1; i < t->natids; i++)
4240 t->atid_tab[i - 1].next = &t->atid_tab[i];
4241 t->atid_tab[t->natids - 1].next = NULL;
4242 }
4243
4244 static void
t4_free_atid_table(struct adapter * sc)4245 t4_free_atid_table(struct adapter *sc)
4246 {
4247 struct tid_info *t;
4248
4249 t = &sc->tids;
4250
4251 KASSERT(t->atids_in_use == 0,
4252 ("%s: %d atids still in use.", __func__, t->atids_in_use));
4253
4254 if (mtx_initialized(&t->atid_lock))
4255 mtx_destroy(&t->atid_lock);
4256 free(t->atid_tab, M_CXGBE);
4257 t->atid_tab = NULL;
4258 }
4259
4260 static void
stop_atid_allocator(struct adapter * sc)4261 stop_atid_allocator(struct adapter *sc)
4262 {
4263 struct tid_info *t = &sc->tids;
4264
4265 if (t->natids == 0)
4266 return;
4267 mtx_lock(&t->atid_lock);
4268 t->atid_alloc_stopped = true;
4269 mtx_unlock(&t->atid_lock);
4270 }
4271
4272 static void
restart_atid_allocator(struct adapter * sc)4273 restart_atid_allocator(struct adapter *sc)
4274 {
4275 struct tid_info *t = &sc->tids;
4276
4277 if (t->natids == 0)
4278 return;
4279 mtx_lock(&t->atid_lock);
4280 KASSERT(t->atids_in_use == 0,
4281 ("%s: %d atids still in use.", __func__, t->atids_in_use));
4282 t->atid_alloc_stopped = false;
4283 mtx_unlock(&t->atid_lock);
4284 }
4285
4286 int
alloc_atid(struct adapter * sc,void * ctx)4287 alloc_atid(struct adapter *sc, void *ctx)
4288 {
4289 struct tid_info *t = &sc->tids;
4290 int atid = -1;
4291
4292 mtx_lock(&t->atid_lock);
4293 if (t->afree && !t->atid_alloc_stopped) {
4294 union aopen_entry *p = t->afree;
4295
4296 atid = p - t->atid_tab;
4297 MPASS(atid <= M_TID_TID);
4298 t->afree = p->next;
4299 p->data = ctx;
4300 t->atids_in_use++;
4301 }
4302 mtx_unlock(&t->atid_lock);
4303 return (atid);
4304 }
4305
4306 void *
lookup_atid(struct adapter * sc,int atid)4307 lookup_atid(struct adapter *sc, int atid)
4308 {
4309 struct tid_info *t = &sc->tids;
4310
4311 return (t->atid_tab[atid].data);
4312 }
4313
4314 void
free_atid(struct adapter * sc,int atid)4315 free_atid(struct adapter *sc, int atid)
4316 {
4317 struct tid_info *t = &sc->tids;
4318 union aopen_entry *p = &t->atid_tab[atid];
4319
4320 mtx_lock(&t->atid_lock);
4321 p->next = t->afree;
4322 t->afree = p;
4323 t->atids_in_use--;
4324 mtx_unlock(&t->atid_lock);
4325 }
4326
4327 static void
queue_tid_release(struct adapter * sc,int tid)4328 queue_tid_release(struct adapter *sc, int tid)
4329 {
4330
4331 CXGBE_UNIMPLEMENTED("deferred tid release");
4332 }
4333
4334 void
release_tid(struct adapter * sc,int tid,struct sge_wrq * ctrlq)4335 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
4336 {
4337 struct wrqe *wr;
4338 struct cpl_tid_release *req;
4339
4340 wr = alloc_wrqe(sizeof(*req), ctrlq);
4341 if (wr == NULL) {
4342 queue_tid_release(sc, tid); /* defer */
4343 return;
4344 }
4345 req = wrtod(wr);
4346
4347 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
4348
4349 t4_wrq_tx(sc, wr);
4350 }
4351
4352 static int
t4_range_cmp(const void * a,const void * b)4353 t4_range_cmp(const void *a, const void *b)
4354 {
4355 return ((const struct t4_range *)a)->start -
4356 ((const struct t4_range *)b)->start;
4357 }
4358
4359 /*
4360 * Verify that the memory range specified by the addr/len pair is valid within
4361 * the card's address space.
4362 */
4363 static int
validate_mem_range(struct adapter * sc,uint32_t addr,uint32_t len)4364 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
4365 {
4366 struct t4_range mem_ranges[4], *r, *next;
4367 uint32_t em, addr_len;
4368 int i, n, remaining;
4369
4370 /* Memory can only be accessed in naturally aligned 4 byte units */
4371 if (addr & 3 || len & 3 || len == 0)
4372 return (EINVAL);
4373
4374 /* Enabled memories */
4375 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4376
4377 r = &mem_ranges[0];
4378 n = 0;
4379 bzero(r, sizeof(mem_ranges));
4380 if (em & F_EDRAM0_ENABLE) {
4381 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4382 r->size = G_EDRAM0_SIZE(addr_len) << 20;
4383 if (r->size > 0) {
4384 r->start = G_EDRAM0_BASE(addr_len) << 20;
4385 if (addr >= r->start &&
4386 addr + len <= r->start + r->size)
4387 return (0);
4388 r++;
4389 n++;
4390 }
4391 }
4392 if (em & F_EDRAM1_ENABLE) {
4393 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4394 r->size = G_EDRAM1_SIZE(addr_len) << 20;
4395 if (r->size > 0) {
4396 r->start = G_EDRAM1_BASE(addr_len) << 20;
4397 if (addr >= r->start &&
4398 addr + len <= r->start + r->size)
4399 return (0);
4400 r++;
4401 n++;
4402 }
4403 }
4404 if (em & F_EXT_MEM_ENABLE) {
4405 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4406 r->size = G_EXT_MEM_SIZE(addr_len) << 20;
4407 if (r->size > 0) {
4408 r->start = G_EXT_MEM_BASE(addr_len) << 20;
4409 if (addr >= r->start &&
4410 addr + len <= r->start + r->size)
4411 return (0);
4412 r++;
4413 n++;
4414 }
4415 }
4416 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
4417 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4418 r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
4419 if (r->size > 0) {
4420 r->start = G_EXT_MEM1_BASE(addr_len) << 20;
4421 if (addr >= r->start &&
4422 addr + len <= r->start + r->size)
4423 return (0);
4424 r++;
4425 n++;
4426 }
4427 }
4428 MPASS(n <= nitems(mem_ranges));
4429
4430 if (n > 1) {
4431 /* Sort and merge the ranges. */
4432 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
4433
4434 /* Start from index 0 and examine the next n - 1 entries. */
4435 r = &mem_ranges[0];
4436 for (remaining = n - 1; remaining > 0; remaining--, r++) {
4437
4438 MPASS(r->size > 0); /* r is a valid entry. */
4439 next = r + 1;
4440 MPASS(next->size > 0); /* and so is the next one. */
4441
4442 while (r->start + r->size >= next->start) {
4443 /* Merge the next one into the current entry. */
4444 r->size = max(r->start + r->size,
4445 next->start + next->size) - r->start;
4446 n--; /* One fewer entry in total. */
4447 if (--remaining == 0)
4448 goto done; /* short circuit */
4449 next++;
4450 }
4451 if (next != r + 1) {
4452 /*
4453 * Some entries were merged into r and next
4454 * points to the first valid entry that couldn't
4455 * be merged.
4456 */
4457 MPASS(next->size > 0); /* must be valid */
4458 memcpy(r + 1, next, remaining * sizeof(*r));
4459 #ifdef INVARIANTS
4460 /*
4461 * This so that the foo->size assertion in the
4462 * next iteration of the loop do the right
4463 * thing for entries that were pulled up and are
4464 * no longer valid.
4465 */
4466 MPASS(n < nitems(mem_ranges));
4467 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
4468 sizeof(struct t4_range));
4469 #endif
4470 }
4471 }
4472 done:
4473 /* Done merging the ranges. */
4474 MPASS(n > 0);
4475 r = &mem_ranges[0];
4476 for (i = 0; i < n; i++, r++) {
4477 if (addr >= r->start &&
4478 addr + len <= r->start + r->size)
4479 return (0);
4480 }
4481 }
4482
4483 return (EFAULT);
4484 }
4485
4486 static int
fwmtype_to_hwmtype(int mtype)4487 fwmtype_to_hwmtype(int mtype)
4488 {
4489
4490 switch (mtype) {
4491 case FW_MEMTYPE_EDC0:
4492 return (MEM_EDC0);
4493 case FW_MEMTYPE_EDC1:
4494 return (MEM_EDC1);
4495 case FW_MEMTYPE_EXTMEM:
4496 return (MEM_MC0);
4497 case FW_MEMTYPE_EXTMEM1:
4498 return (MEM_MC1);
4499 default:
4500 panic("%s: cannot translate fw mtype %d.", __func__, mtype);
4501 }
4502 }
4503
4504 /*
4505 * Verify that the memory range specified by the memtype/offset/len pair is
4506 * valid and lies entirely within the memtype specified. The global address of
4507 * the start of the range is returned in addr.
4508 */
4509 static int
validate_mt_off_len(struct adapter * sc,int mtype,uint32_t off,uint32_t len,uint32_t * addr)4510 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
4511 uint32_t *addr)
4512 {
4513 uint32_t em, addr_len, maddr;
4514
4515 /* Memory can only be accessed in naturally aligned 4 byte units */
4516 if (off & 3 || len & 3 || len == 0)
4517 return (EINVAL);
4518
4519 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4520 switch (fwmtype_to_hwmtype(mtype)) {
4521 case MEM_EDC0:
4522 if (!(em & F_EDRAM0_ENABLE))
4523 return (EINVAL);
4524 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4525 maddr = G_EDRAM0_BASE(addr_len) << 20;
4526 break;
4527 case MEM_EDC1:
4528 if (!(em & F_EDRAM1_ENABLE))
4529 return (EINVAL);
4530 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4531 maddr = G_EDRAM1_BASE(addr_len) << 20;
4532 break;
4533 case MEM_MC:
4534 if (!(em & F_EXT_MEM_ENABLE))
4535 return (EINVAL);
4536 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4537 maddr = G_EXT_MEM_BASE(addr_len) << 20;
4538 break;
4539 case MEM_MC1:
4540 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
4541 return (EINVAL);
4542 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4543 maddr = G_EXT_MEM1_BASE(addr_len) << 20;
4544 break;
4545 default:
4546 return (EINVAL);
4547 }
4548
4549 *addr = maddr + off; /* global address */
4550 return (validate_mem_range(sc, *addr, len));
4551 }
4552
4553 static int
fixup_devlog_params(struct adapter * sc)4554 fixup_devlog_params(struct adapter *sc)
4555 {
4556 struct devlog_params *dparams = &sc->params.devlog;
4557 int rc;
4558
4559 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
4560 dparams->size, &dparams->addr);
4561
4562 return (rc);
4563 }
4564
4565 static void
update_nirq(struct intrs_and_queues * iaq,int nports)4566 update_nirq(struct intrs_and_queues *iaq, int nports)
4567 {
4568
4569 iaq->nirq = T4_EXTRA_INTR;
4570 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq);
4571 iaq->nirq += nports * iaq->nofldrxq;
4572 iaq->nirq += nports * (iaq->num_vis - 1) *
4573 max(iaq->nrxq_vi, iaq->nnmrxq_vi);
4574 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
4575 }
4576
4577 /*
4578 * Adjust requirements to fit the number of interrupts available.
4579 */
4580 static void
calculate_iaq(struct adapter * sc,struct intrs_and_queues * iaq,int itype,int navail)4581 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
4582 int navail)
4583 {
4584 int old_nirq;
4585 const int nports = sc->params.nports;
4586
4587 MPASS(nports > 0);
4588 MPASS(navail > 0);
4589
4590 bzero(iaq, sizeof(*iaq));
4591 iaq->intr_type = itype;
4592 iaq->num_vis = t4_num_vis;
4593 iaq->ntxq = t4_ntxq;
4594 iaq->ntxq_vi = t4_ntxq_vi;
4595 iaq->nrxq = t4_nrxq;
4596 iaq->nrxq_vi = t4_nrxq_vi;
4597 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4598 if (is_offload(sc) || is_ethoffload(sc)) {
4599 if (sc->params.tid_qid_sel_mask == 0) {
4600 iaq->nofldtxq = t4_nofldtxq;
4601 iaq->nofldtxq_vi = t4_nofldtxq_vi;
4602 } else {
4603 iaq->nofldtxq = roundup(t4_nofldtxq, sc->params.ncores);
4604 iaq->nofldtxq_vi = roundup(t4_nofldtxq_vi,
4605 sc->params.ncores);
4606 if (iaq->nofldtxq != t4_nofldtxq)
4607 device_printf(sc->dev,
4608 "nofldtxq updated (%d -> %d) for correct"
4609 " operation with %d firmware cores.\n",
4610 t4_nofldtxq, iaq->nofldtxq,
4611 sc->params.ncores);
4612 if (iaq->num_vis > 1 &&
4613 iaq->nofldtxq_vi != t4_nofldtxq_vi)
4614 device_printf(sc->dev,
4615 "nofldtxq_vi updated (%d -> %d) for correct"
4616 " operation with %d firmware cores.\n",
4617 t4_nofldtxq_vi, iaq->nofldtxq_vi,
4618 sc->params.ncores);
4619 }
4620 }
4621 #endif
4622 #ifdef TCP_OFFLOAD
4623 if (is_offload(sc)) {
4624 iaq->nofldrxq = t4_nofldrxq;
4625 iaq->nofldrxq_vi = t4_nofldrxq_vi;
4626 }
4627 #endif
4628 #ifdef DEV_NETMAP
4629 if (t4_native_netmap & NN_MAIN_VI) {
4630 iaq->nnmtxq = t4_nnmtxq;
4631 iaq->nnmrxq = t4_nnmrxq;
4632 }
4633 if (t4_native_netmap & NN_EXTRA_VI) {
4634 iaq->nnmtxq_vi = t4_nnmtxq_vi;
4635 iaq->nnmrxq_vi = t4_nnmrxq_vi;
4636 }
4637 #endif
4638
4639 update_nirq(iaq, nports);
4640 if (iaq->nirq <= navail &&
4641 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4642 /*
4643 * This is the normal case -- there are enough interrupts for
4644 * everything.
4645 */
4646 goto done;
4647 }
4648
4649 /*
4650 * If extra VIs have been configured try reducing their count and see if
4651 * that works.
4652 */
4653 while (iaq->num_vis > 1) {
4654 iaq->num_vis--;
4655 update_nirq(iaq, nports);
4656 if (iaq->nirq <= navail &&
4657 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4658 device_printf(sc->dev, "virtual interfaces per port "
4659 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, "
4660 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. "
4661 "itype %d, navail %u, nirq %d.\n",
4662 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
4663 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
4664 itype, navail, iaq->nirq);
4665 goto done;
4666 }
4667 }
4668
4669 /*
4670 * Extra VIs will not be created. Log a message if they were requested.
4671 */
4672 MPASS(iaq->num_vis == 1);
4673 iaq->ntxq_vi = iaq->nrxq_vi = 0;
4674 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
4675 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
4676 if (iaq->num_vis != t4_num_vis) {
4677 device_printf(sc->dev, "extra virtual interfaces disabled. "
4678 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
4679 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n",
4680 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
4681 iaq->nnmrxq_vi, itype, navail, iaq->nirq);
4682 }
4683
4684 /*
4685 * Keep reducing the number of NIC rx queues to the next lower power of
4686 * 2 (for even RSS distribution) and halving the TOE rx queues and see
4687 * if that works.
4688 */
4689 do {
4690 if (iaq->nrxq > 1) {
4691 iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1);
4692 if (iaq->nnmrxq > iaq->nrxq)
4693 iaq->nnmrxq = iaq->nrxq;
4694 }
4695 if (iaq->nofldrxq > 1)
4696 iaq->nofldrxq >>= 1;
4697
4698 old_nirq = iaq->nirq;
4699 update_nirq(iaq, nports);
4700 if (iaq->nirq <= navail &&
4701 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4702 device_printf(sc->dev, "running with reduced number of "
4703 "rx queues because of shortage of interrupts. "
4704 "nrxq=%u, nofldrxq=%u. "
4705 "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
4706 iaq->nofldrxq, itype, navail, iaq->nirq);
4707 goto done;
4708 }
4709 } while (old_nirq != iaq->nirq);
4710
4711 /* One interrupt for everything. Ugh. */
4712 device_printf(sc->dev, "running with minimal number of queues. "
4713 "itype %d, navail %u.\n", itype, navail);
4714 iaq->nirq = 1;
4715 iaq->nrxq = 1;
4716 iaq->ntxq = 1;
4717 if (iaq->nofldrxq > 0) {
4718 iaq->nofldrxq = 1;
4719 iaq->nofldtxq = 1;
4720 if (sc->params.tid_qid_sel_mask == 0)
4721 iaq->nofldtxq = 1;
4722 else
4723 iaq->nofldtxq = sc->params.ncores;
4724 }
4725 iaq->nnmtxq = 0;
4726 iaq->nnmrxq = 0;
4727 done:
4728 MPASS(iaq->num_vis > 0);
4729 if (iaq->num_vis > 1) {
4730 MPASS(iaq->nrxq_vi > 0);
4731 MPASS(iaq->ntxq_vi > 0);
4732 }
4733 MPASS(iaq->nirq > 0);
4734 MPASS(iaq->nrxq > 0);
4735 MPASS(iaq->ntxq > 0);
4736 if (itype == INTR_MSI)
4737 MPASS(powerof2(iaq->nirq));
4738 if (sc->params.tid_qid_sel_mask != 0)
4739 MPASS(iaq->nofldtxq % sc->params.ncores == 0);
4740 }
4741
4742 static int
cfg_itype_and_nqueues(struct adapter * sc,struct intrs_and_queues * iaq)4743 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
4744 {
4745 int rc, itype, navail, nalloc;
4746
4747 for (itype = INTR_MSIX; itype; itype >>= 1) {
4748
4749 if ((itype & t4_intr_types) == 0)
4750 continue; /* not allowed */
4751
4752 if (itype == INTR_MSIX)
4753 navail = pci_msix_count(sc->dev);
4754 else if (itype == INTR_MSI)
4755 navail = pci_msi_count(sc->dev);
4756 else
4757 navail = 1;
4758 restart:
4759 if (navail == 0)
4760 continue;
4761
4762 calculate_iaq(sc, iaq, itype, navail);
4763 nalloc = iaq->nirq;
4764 rc = 0;
4765 if (itype == INTR_MSIX)
4766 rc = pci_alloc_msix(sc->dev, &nalloc);
4767 else if (itype == INTR_MSI)
4768 rc = pci_alloc_msi(sc->dev, &nalloc);
4769
4770 if (rc == 0 && nalloc > 0) {
4771 if (nalloc == iaq->nirq)
4772 return (0);
4773
4774 /*
4775 * Didn't get the number requested. Use whatever number
4776 * the kernel is willing to allocate.
4777 */
4778 device_printf(sc->dev, "fewer vectors than requested, "
4779 "type=%d, req=%d, rcvd=%d; will downshift req.\n",
4780 itype, iaq->nirq, nalloc);
4781 pci_release_msi(sc->dev);
4782 navail = nalloc;
4783 goto restart;
4784 }
4785
4786 device_printf(sc->dev,
4787 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
4788 itype, rc, iaq->nirq, nalloc);
4789 }
4790
4791 device_printf(sc->dev,
4792 "failed to find a usable interrupt type. "
4793 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
4794 pci_msix_count(sc->dev), pci_msi_count(sc->dev));
4795
4796 return (ENXIO);
4797 }
4798
4799 #define FW_VERSION(chip) ( \
4800 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
4801 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
4802 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
4803 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
4804 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
4805
4806 /* Just enough of fw_hdr to cover all version info. */
4807 struct fw_h {
4808 __u8 ver;
4809 __u8 chip;
4810 __be16 len512;
4811 __be32 fw_ver;
4812 __be32 tp_microcode_ver;
4813 __u8 intfver_nic;
4814 __u8 intfver_vnic;
4815 __u8 intfver_ofld;
4816 __u8 intfver_ri;
4817 __u8 intfver_iscsipdu;
4818 __u8 intfver_iscsi;
4819 __u8 intfver_fcoepdu;
4820 __u8 intfver_fcoe;
4821 };
4822 /* Spot check a couple of fields. */
4823 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
4824 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
4825 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
4826
4827 struct fw_info {
4828 uint8_t chip;
4829 char *kld_name;
4830 char *fw_mod_name;
4831 struct fw_h fw_h;
4832 } fw_info[] = {
4833 {
4834 .chip = CHELSIO_T4,
4835 .kld_name = "t4fw_cfg",
4836 .fw_mod_name = "t4fw",
4837 .fw_h = {
4838 .chip = FW_HDR_CHIP_T4,
4839 .fw_ver = htobe32(FW_VERSION(T4)),
4840 .intfver_nic = FW_INTFVER(T4, NIC),
4841 .intfver_vnic = FW_INTFVER(T4, VNIC),
4842 .intfver_ofld = FW_INTFVER(T4, OFLD),
4843 .intfver_ri = FW_INTFVER(T4, RI),
4844 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
4845 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4846 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
4847 .intfver_fcoe = FW_INTFVER(T4, FCOE),
4848 },
4849 }, {
4850 .chip = CHELSIO_T5,
4851 .kld_name = "t5fw_cfg",
4852 .fw_mod_name = "t5fw",
4853 .fw_h = {
4854 .chip = FW_HDR_CHIP_T5,
4855 .fw_ver = htobe32(FW_VERSION(T5)),
4856 .intfver_nic = FW_INTFVER(T5, NIC),
4857 .intfver_vnic = FW_INTFVER(T5, VNIC),
4858 .intfver_ofld = FW_INTFVER(T5, OFLD),
4859 .intfver_ri = FW_INTFVER(T5, RI),
4860 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
4861 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4862 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
4863 .intfver_fcoe = FW_INTFVER(T5, FCOE),
4864 },
4865 }, {
4866 .chip = CHELSIO_T6,
4867 .kld_name = "t6fw_cfg",
4868 .fw_mod_name = "t6fw",
4869 .fw_h = {
4870 .chip = FW_HDR_CHIP_T6,
4871 .fw_ver = htobe32(FW_VERSION(T6)),
4872 .intfver_nic = FW_INTFVER(T6, NIC),
4873 .intfver_vnic = FW_INTFVER(T6, VNIC),
4874 .intfver_ofld = FW_INTFVER(T6, OFLD),
4875 .intfver_ri = FW_INTFVER(T6, RI),
4876 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4877 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4878 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4879 .intfver_fcoe = FW_INTFVER(T6, FCOE),
4880 },
4881 }, {
4882 .chip = CHELSIO_T7,
4883 .kld_name = "t7fw_cfg",
4884 .fw_mod_name = "t7fw",
4885 .fw_h = {
4886 .chip = FW_HDR_CHIP_T7,
4887 .fw_ver = htobe32(FW_VERSION(T7)),
4888 .intfver_nic = FW_INTFVER(T7, NIC),
4889 .intfver_vnic = FW_INTFVER(T7, VNIC),
4890 .intfver_ofld = FW_INTFVER(T7, OFLD),
4891 .intfver_ri = FW_INTFVER(T7, RI),
4892 .intfver_iscsipdu = FW_INTFVER(T7, ISCSIPDU),
4893 .intfver_iscsi = FW_INTFVER(T7, ISCSI),
4894 .intfver_fcoepdu = FW_INTFVER(T7, FCOEPDU),
4895 .intfver_fcoe = FW_INTFVER(T7, FCOE),
4896 },
4897 }
4898 };
4899
4900 static struct fw_info *
find_fw_info(int chip)4901 find_fw_info(int chip)
4902 {
4903 int i;
4904
4905 for (i = 0; i < nitems(fw_info); i++) {
4906 if (fw_info[i].chip == chip)
4907 return (&fw_info[i]);
4908 }
4909 return (NULL);
4910 }
4911
4912 /*
4913 * Is the given firmware API compatible with the one the driver was compiled
4914 * with?
4915 */
4916 static int
fw_compatible(const struct fw_h * hdr1,const struct fw_h * hdr2)4917 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
4918 {
4919
4920 /* short circuit if it's the exact same firmware version */
4921 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
4922 return (1);
4923
4924 /*
4925 * XXX: Is this too conservative? Perhaps I should limit this to the
4926 * features that are supported in the driver.
4927 */
4928 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
4929 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
4930 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
4931 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
4932 return (1);
4933 #undef SAME_INTF
4934
4935 return (0);
4936 }
4937
4938 static int
load_fw_module(struct adapter * sc,const struct firmware ** dcfg,const struct firmware ** fw)4939 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
4940 const struct firmware **fw)
4941 {
4942 struct fw_info *fw_info;
4943
4944 *dcfg = NULL;
4945 if (fw != NULL)
4946 *fw = NULL;
4947
4948 fw_info = find_fw_info(chip_id(sc));
4949 if (fw_info == NULL) {
4950 device_printf(sc->dev,
4951 "unable to look up firmware information for chip %d.\n",
4952 chip_id(sc));
4953 return (EINVAL);
4954 }
4955
4956 *dcfg = firmware_get(fw_info->kld_name);
4957 if (*dcfg != NULL) {
4958 if (fw != NULL)
4959 *fw = firmware_get(fw_info->fw_mod_name);
4960 return (0);
4961 }
4962
4963 return (ENOENT);
4964 }
4965
4966 static void
unload_fw_module(struct adapter * sc,const struct firmware * dcfg,const struct firmware * fw)4967 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
4968 const struct firmware *fw)
4969 {
4970
4971 if (fw != NULL)
4972 firmware_put(fw, FIRMWARE_UNLOAD);
4973 if (dcfg != NULL)
4974 firmware_put(dcfg, FIRMWARE_UNLOAD);
4975 }
4976
4977 /*
4978 * Return values:
4979 * 0 means no firmware install attempted.
4980 * ERESTART means a firmware install was attempted and was successful.
4981 * +ve errno means a firmware install was attempted but failed.
4982 */
4983 static int
install_kld_firmware(struct adapter * sc,struct fw_h * card_fw,const struct fw_h * drv_fw,const char * reason,int * already)4984 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
4985 const struct fw_h *drv_fw, const char *reason, int *already)
4986 {
4987 const struct firmware *cfg, *fw;
4988 const uint32_t c = be32toh(card_fw->fw_ver);
4989 uint32_t d, k;
4990 int rc, fw_install;
4991 struct fw_h bundled_fw;
4992 bool load_attempted;
4993
4994 cfg = fw = NULL;
4995 load_attempted = false;
4996 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
4997
4998 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
4999 if (t4_fw_install < 0) {
5000 rc = load_fw_module(sc, &cfg, &fw);
5001 if (rc != 0 || fw == NULL) {
5002 device_printf(sc->dev,
5003 "failed to load firmware module: %d. cfg %p, fw %p;"
5004 " will use compiled-in firmware version for"
5005 "hw.cxgbe.fw_install checks.\n",
5006 rc, cfg, fw);
5007 } else {
5008 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
5009 }
5010 load_attempted = true;
5011 }
5012 d = be32toh(bundled_fw.fw_ver);
5013
5014 if (reason != NULL)
5015 goto install;
5016
5017 if ((sc->flags & FW_OK) == 0) {
5018
5019 if (c == 0xffffffff) {
5020 reason = "missing";
5021 goto install;
5022 }
5023
5024 rc = 0;
5025 goto done;
5026 }
5027
5028 if (!fw_compatible(card_fw, &bundled_fw)) {
5029 reason = "incompatible or unusable";
5030 goto install;
5031 }
5032
5033 if (d > c) {
5034 reason = "older than the version bundled with this driver";
5035 goto install;
5036 }
5037
5038 if (fw_install == 2 && d != c) {
5039 reason = "different than the version bundled with this driver";
5040 goto install;
5041 }
5042
5043 /* No reason to do anything to the firmware already on the card. */
5044 rc = 0;
5045 goto done;
5046
5047 install:
5048 rc = 0;
5049 if ((*already)++)
5050 goto done;
5051
5052 if (fw_install == 0) {
5053 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
5054 "but the driver is prohibited from installing a firmware "
5055 "on the card.\n",
5056 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
5057 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
5058
5059 goto done;
5060 }
5061
5062 /*
5063 * We'll attempt to install a firmware. Load the module first (if it
5064 * hasn't been loaded already).
5065 */
5066 if (!load_attempted) {
5067 rc = load_fw_module(sc, &cfg, &fw);
5068 if (rc != 0 || fw == NULL) {
5069 device_printf(sc->dev,
5070 "failed to load firmware module: %d. cfg %p, fw %p\n",
5071 rc, cfg, fw);
5072 /* carry on */
5073 }
5074 }
5075 if (fw == NULL) {
5076 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
5077 "but the driver cannot take corrective action because it "
5078 "is unable to load the firmware module.\n",
5079 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
5080 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
5081 rc = sc->flags & FW_OK ? 0 : ENOENT;
5082 goto done;
5083 }
5084 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
5085 if (k != d) {
5086 MPASS(t4_fw_install > 0);
5087 device_printf(sc->dev,
5088 "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
5089 "expecting (%u.%u.%u.%u) and will not be used.\n",
5090 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
5091 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
5092 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
5093 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
5094 rc = sc->flags & FW_OK ? 0 : EINVAL;
5095 goto done;
5096 }
5097
5098 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
5099 "installing firmware %u.%u.%u.%u on card.\n",
5100 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
5101 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
5102 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
5103 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
5104
5105 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
5106 if (rc != 0) {
5107 device_printf(sc->dev, "failed to install firmware: %d\n", rc);
5108 } else {
5109 /* Installed successfully, update the cached header too. */
5110 rc = ERESTART;
5111 memcpy(card_fw, fw->data, sizeof(*card_fw));
5112 }
5113 done:
5114 unload_fw_module(sc, cfg, fw);
5115
5116 return (rc);
5117 }
5118
5119 /*
5120 * Establish contact with the firmware and attempt to become the master driver.
5121 *
5122 * A firmware will be installed to the card if needed (if the driver is allowed
5123 * to do so).
5124 */
5125 static int
contact_firmware(struct adapter * sc)5126 contact_firmware(struct adapter *sc)
5127 {
5128 int rc, already = 0;
5129 enum dev_state state;
5130 struct fw_info *fw_info;
5131 struct fw_hdr *card_fw; /* fw on the card */
5132 const struct fw_h *drv_fw;
5133
5134 fw_info = find_fw_info(chip_id(sc));
5135 if (fw_info == NULL) {
5136 device_printf(sc->dev,
5137 "unable to look up firmware information for chip %d.\n",
5138 chip_id(sc));
5139 return (EINVAL);
5140 }
5141 drv_fw = &fw_info->fw_h;
5142
5143 /* Read the header of the firmware on the card */
5144 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
5145 restart:
5146 rc = -t4_get_fw_hdr(sc, card_fw);
5147 if (rc != 0) {
5148 device_printf(sc->dev,
5149 "unable to read firmware header from card's flash: %d\n",
5150 rc);
5151 goto done;
5152 }
5153
5154 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
5155 &already);
5156 if (rc == ERESTART)
5157 goto restart;
5158 if (rc != 0)
5159 goto done;
5160
5161 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
5162 if (rc < 0 || state == DEV_STATE_ERR) {
5163 rc = -rc;
5164 device_printf(sc->dev,
5165 "failed to connect to the firmware: %d, %d. "
5166 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
5167 #if 0
5168 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
5169 "not responding properly to HELLO", &already) == ERESTART)
5170 goto restart;
5171 #endif
5172 goto done;
5173 }
5174 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
5175 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */
5176
5177 if (rc == sc->pf) {
5178 sc->flags |= MASTER_PF;
5179 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
5180 NULL, &already);
5181 if (rc == ERESTART)
5182 rc = 0;
5183 else if (rc != 0)
5184 goto done;
5185 } else if (state == DEV_STATE_UNINIT) {
5186 /*
5187 * We didn't get to be the master so we definitely won't be
5188 * configuring the chip. It's a bug if someone else hasn't
5189 * configured it already.
5190 */
5191 device_printf(sc->dev, "couldn't be master(%d), "
5192 "device not already initialized either(%d). "
5193 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
5194 rc = EPROTO;
5195 goto done;
5196 } else {
5197 /*
5198 * Some other PF is the master and has configured the chip.
5199 * This is allowed but untested.
5200 */
5201 device_printf(sc->dev, "PF%d is master, device state %d. "
5202 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
5203 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
5204 sc->cfcsum = 0;
5205 rc = 0;
5206 }
5207 done:
5208 if (rc != 0 && sc->flags & FW_OK) {
5209 t4_fw_bye(sc, sc->mbox);
5210 sc->flags &= ~FW_OK;
5211 }
5212 free(card_fw, M_CXGBE);
5213 return (rc);
5214 }
5215
5216 static int
copy_cfg_file_to_card(struct adapter * sc,char * cfg_file,uint32_t mtype,uint32_t moff,u_int maxlen)5217 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
5218 uint32_t mtype, uint32_t moff, u_int maxlen)
5219 {
5220 struct fw_info *fw_info;
5221 const struct firmware *dcfg, *rcfg = NULL;
5222 const uint32_t *cfdata;
5223 uint32_t cflen, addr;
5224 int rc;
5225
5226 load_fw_module(sc, &dcfg, NULL);
5227
5228 /* Card specific interpretation of "default". */
5229 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
5230 if (pci_get_device(sc->dev) == 0x440a)
5231 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
5232 if (is_fpga(sc))
5233 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
5234 }
5235
5236 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
5237 if (dcfg == NULL) {
5238 device_printf(sc->dev,
5239 "KLD with default config is not available.\n");
5240 rc = ENOENT;
5241 goto done;
5242 }
5243 cfdata = dcfg->data;
5244 cflen = dcfg->datasize & ~3;
5245 } else {
5246 char s[32];
5247
5248 fw_info = find_fw_info(chip_id(sc));
5249 if (fw_info == NULL) {
5250 device_printf(sc->dev,
5251 "unable to look up firmware information for chip %d.\n",
5252 chip_id(sc));
5253 rc = EINVAL;
5254 goto done;
5255 }
5256 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
5257
5258 rcfg = firmware_get(s);
5259 if (rcfg == NULL) {
5260 device_printf(sc->dev,
5261 "unable to load module \"%s\" for configuration "
5262 "profile \"%s\".\n", s, cfg_file);
5263 rc = ENOENT;
5264 goto done;
5265 }
5266 cfdata = rcfg->data;
5267 cflen = rcfg->datasize & ~3;
5268 }
5269
5270 if (cflen > maxlen) {
5271 device_printf(sc->dev,
5272 "config file too long (%d, max allowed is %d).\n",
5273 cflen, maxlen);
5274 rc = EINVAL;
5275 goto done;
5276 }
5277
5278 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
5279 if (rc != 0) {
5280 device_printf(sc->dev,
5281 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
5282 __func__, mtype, moff, cflen, rc);
5283 rc = EINVAL;
5284 goto done;
5285 }
5286 write_via_memwin(sc, 2, addr, cfdata, cflen);
5287 done:
5288 if (rcfg != NULL)
5289 firmware_put(rcfg, FIRMWARE_UNLOAD);
5290 unload_fw_module(sc, dcfg, NULL);
5291 return (rc);
5292 }
5293
5294 struct caps_allowed {
5295 uint16_t nbmcaps;
5296 uint16_t linkcaps;
5297 uint16_t switchcaps;
5298 uint16_t nvmecaps;
5299 uint16_t niccaps;
5300 uint16_t toecaps;
5301 uint16_t rdmacaps;
5302 uint16_t cryptocaps;
5303 uint16_t iscsicaps;
5304 uint16_t fcoecaps;
5305 };
5306
5307 #define FW_PARAM_DEV(param) \
5308 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5309 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5310 #define FW_PARAM_PFVF(param) \
5311 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5312 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
5313
5314 /*
5315 * Provide a configuration profile to the firmware and have it initialize the
5316 * chip accordingly. This may involve uploading a configuration file to the
5317 * card.
5318 */
5319 static int
apply_cfg_and_initialize(struct adapter * sc,char * cfg_file,const struct caps_allowed * caps_allowed)5320 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
5321 const struct caps_allowed *caps_allowed)
5322 {
5323 int rc;
5324 struct fw_caps_config_cmd caps;
5325 uint32_t mtype, moff, finicsum, cfcsum, param, val;
5326 unsigned int maxlen = 0;
5327 const int cfg_addr = t4_flash_cfg_addr(sc, &maxlen);
5328
5329 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
5330 if (rc != 0) {
5331 device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
5332 return (rc);
5333 }
5334
5335 bzero(&caps, sizeof(caps));
5336 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5337 F_FW_CMD_REQUEST | F_FW_CMD_READ);
5338 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
5339 mtype = 0;
5340 moff = 0;
5341 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5342 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
5343 mtype = FW_MEMTYPE_FLASH;
5344 moff = cfg_addr;
5345 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5346 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5347 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5348 FW_LEN16(caps));
5349 } else {
5350 /*
5351 * Ask the firmware where it wants us to upload the config file.
5352 */
5353 param = FW_PARAM_DEV(CF);
5354 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5355 if (rc != 0) {
5356 /* No support for config file? Shouldn't happen. */
5357 device_printf(sc->dev,
5358 "failed to query config file location: %d.\n", rc);
5359 goto done;
5360 }
5361 mtype = G_FW_PARAMS_PARAM_Y(val);
5362 moff = G_FW_PARAMS_PARAM_Z(val) << 16;
5363 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5364 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5365 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5366 FW_LEN16(caps));
5367
5368 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff, maxlen);
5369 if (rc != 0) {
5370 device_printf(sc->dev,
5371 "failed to upload config file to card: %d.\n", rc);
5372 goto done;
5373 }
5374 }
5375 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5376 if (rc != 0) {
5377 device_printf(sc->dev, "failed to pre-process config file: %d "
5378 "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
5379 goto done;
5380 }
5381
5382 finicsum = be32toh(caps.finicsum);
5383 cfcsum = be32toh(caps.cfcsum); /* actual */
5384 if (finicsum != cfcsum) {
5385 device_printf(sc->dev,
5386 "WARNING: config file checksum mismatch: %08x %08x\n",
5387 finicsum, cfcsum);
5388 }
5389 sc->cfcsum = cfcsum;
5390 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
5391
5392 /*
5393 * Let the firmware know what features will (not) be used so it can tune
5394 * things accordingly.
5395 */
5396 #define LIMIT_CAPS(x) do { \
5397 caps.x##caps &= htobe16(caps_allowed->x##caps); \
5398 } while (0)
5399 LIMIT_CAPS(nbm);
5400 LIMIT_CAPS(link);
5401 LIMIT_CAPS(switch);
5402 LIMIT_CAPS(nvme);
5403 LIMIT_CAPS(nic);
5404 LIMIT_CAPS(toe);
5405 LIMIT_CAPS(rdma);
5406 LIMIT_CAPS(crypto);
5407 LIMIT_CAPS(iscsi);
5408 LIMIT_CAPS(fcoe);
5409 #undef LIMIT_CAPS
5410 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5411 /*
5412 * TOE and hashfilters are mutually exclusive. It is a config
5413 * file or firmware bug if both are reported as available. Try
5414 * to cope with the situation in non-debug builds by disabling
5415 * TOE.
5416 */
5417 MPASS(caps.toecaps == 0);
5418
5419 caps.toecaps = 0;
5420 caps.rdmacaps = 0;
5421 caps.iscsicaps = 0;
5422 caps.nvmecaps = 0;
5423 }
5424
5425 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5426 F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5427 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5428 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
5429 if (rc != 0) {
5430 device_printf(sc->dev,
5431 "failed to process config file: %d.\n", rc);
5432 goto done;
5433 }
5434
5435 t4_tweak_chip_settings(sc);
5436 set_params__pre_init(sc);
5437
5438 /* get basic stuff going */
5439 rc = -t4_fw_initialize(sc, sc->mbox);
5440 if (rc != 0) {
5441 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
5442 goto done;
5443 }
5444 done:
5445 return (rc);
5446 }
5447
5448 /*
5449 * Partition chip resources for use between various PFs, VFs, etc.
5450 */
5451 static int
partition_resources(struct adapter * sc)5452 partition_resources(struct adapter *sc)
5453 {
5454 char cfg_file[sizeof(t4_cfg_file)];
5455 struct caps_allowed caps_allowed;
5456 int rc;
5457 bool fallback;
5458
5459 /* Only the master driver gets to configure the chip resources. */
5460 MPASS(sc->flags & MASTER_PF);
5461
5462 #define COPY_CAPS(x) do { \
5463 caps_allowed.x##caps = t4_##x##caps_allowed; \
5464 } while (0)
5465 bzero(&caps_allowed, sizeof(caps_allowed));
5466 COPY_CAPS(nbm);
5467 COPY_CAPS(link);
5468 COPY_CAPS(switch);
5469 COPY_CAPS(nvme);
5470 COPY_CAPS(nic);
5471 COPY_CAPS(toe);
5472 COPY_CAPS(rdma);
5473 COPY_CAPS(crypto);
5474 COPY_CAPS(iscsi);
5475 COPY_CAPS(fcoe);
5476 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
5477 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
5478 retry:
5479 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
5480 if (rc != 0 && fallback) {
5481 dump_devlog(sc);
5482 device_printf(sc->dev,
5483 "failed (%d) to configure card with \"%s\" profile, "
5484 "will fall back to a basic configuration and retry.\n",
5485 rc, cfg_file);
5486 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
5487 bzero(&caps_allowed, sizeof(caps_allowed));
5488 COPY_CAPS(switch);
5489 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
5490 fallback = false;
5491 goto retry;
5492 }
5493 #undef COPY_CAPS
5494 return (rc);
5495 }
5496
5497 /*
5498 * Retrieve parameters that are needed (or nice to have) very early.
5499 */
5500 static int
get_params__pre_init(struct adapter * sc)5501 get_params__pre_init(struct adapter *sc)
5502 {
5503 int rc;
5504 uint32_t param[2], val[2];
5505
5506 t4_get_version_info(sc);
5507
5508 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
5509 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
5510 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
5511 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
5512 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
5513
5514 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
5515 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
5516 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
5517 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
5518 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
5519
5520 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
5521 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
5522 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
5523 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
5524 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
5525
5526 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
5527 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
5528 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
5529 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
5530 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
5531
5532 param[0] = FW_PARAM_DEV(PORTVEC);
5533 param[1] = FW_PARAM_DEV(CCLK);
5534 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5535 if (rc != 0) {
5536 device_printf(sc->dev,
5537 "failed to query parameters (pre_init): %d.\n", rc);
5538 return (rc);
5539 }
5540
5541 sc->params.portvec = val[0];
5542 sc->params.nports = bitcount32(val[0]);
5543 sc->params.vpd.cclk = val[1];
5544
5545 /* Read device log parameters. */
5546 rc = -t4_init_devlog_ncores_params(sc, 1);
5547 if (rc == 0)
5548 fixup_devlog_params(sc);
5549 else {
5550 device_printf(sc->dev,
5551 "failed to get devlog parameters: %d.\n", rc);
5552 rc = 0; /* devlog isn't critical for device operation */
5553 }
5554
5555 return (rc);
5556 }
5557
5558 /*
5559 * Any params that need to be set before FW_INITIALIZE.
5560 */
5561 static int
set_params__pre_init(struct adapter * sc)5562 set_params__pre_init(struct adapter *sc)
5563 {
5564 int rc = 0;
5565 uint32_t param, val;
5566
5567 if (chip_id(sc) >= CHELSIO_T6) {
5568 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
5569 val = 1;
5570 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5571 /* firmwares < 1.20.1.0 do not have this param. */
5572 if (rc == FW_EINVAL &&
5573 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) {
5574 rc = 0;
5575 }
5576 if (rc != 0) {
5577 device_printf(sc->dev,
5578 "failed to enable high priority filters :%d.\n",
5579 rc);
5580 }
5581
5582 param = FW_PARAM_DEV(PPOD_EDRAM);
5583 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5584 if (rc == 0 && val == 1) {
5585 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m,
5586 &val);
5587 if (rc != 0) {
5588 device_printf(sc->dev,
5589 "failed to set PPOD_EDRAM: %d.\n", rc);
5590 }
5591 }
5592 }
5593
5594 /* Enable opaque VIIDs with firmwares that support it. */
5595 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5596 val = 1;
5597 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5598 if (rc == 0 && val == 1)
5599 sc->params.viid_smt_extn_support = true;
5600 else
5601 sc->params.viid_smt_extn_support = false;
5602
5603 return (rc);
5604 }
5605
5606 /*
5607 * Retrieve various parameters that are of interest to the driver. The device
5608 * has been initialized by the firmware at this point.
5609 */
5610 static int
get_params__post_init(struct adapter * sc)5611 get_params__post_init(struct adapter *sc)
5612 {
5613 int rc;
5614 uint32_t param[7], val[7];
5615 struct fw_caps_config_cmd caps;
5616
5617 param[0] = FW_PARAM_PFVF(IQFLINT_START);
5618 param[1] = FW_PARAM_PFVF(EQ_START);
5619 param[2] = FW_PARAM_PFVF(FILTER_START);
5620 param[3] = FW_PARAM_PFVF(FILTER_END);
5621 param[4] = FW_PARAM_PFVF(L2T_START);
5622 param[5] = FW_PARAM_PFVF(L2T_END);
5623 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5624 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
5625 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
5626 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
5627 if (rc != 0) {
5628 device_printf(sc->dev,
5629 "failed to query parameters (post_init): %d.\n", rc);
5630 return (rc);
5631 }
5632
5633 sc->sge.iq_start = val[0];
5634 sc->sge.eq_start = val[1];
5635 if ((int)val[3] > (int)val[2]) {
5636 sc->tids.ftid_base = val[2];
5637 sc->tids.ftid_end = val[3];
5638 sc->tids.nftids = val[3] - val[2] + 1;
5639 }
5640 sc->vres.l2t.start = val[4];
5641 sc->vres.l2t.size = val[5] - val[4] + 1;
5642 /* val[5] is the last hwidx and it must not collide with F_SYNC_WR */
5643 if (sc->vres.l2t.size > 0)
5644 MPASS(fls(val[5]) <= S_SYNC_WR);
5645 sc->params.core_vdd = val[6];
5646
5647 param[0] = FW_PARAM_PFVF(IQFLINT_END);
5648 param[1] = FW_PARAM_PFVF(EQ_END);
5649 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5650 if (rc != 0) {
5651 device_printf(sc->dev,
5652 "failed to query parameters (post_init2): %d.\n", rc);
5653 return (rc);
5654 }
5655 MPASS((int)val[0] >= sc->sge.iq_start);
5656 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1;
5657 MPASS((int)val[1] >= sc->sge.eq_start);
5658 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1;
5659
5660 if (chip_id(sc) >= CHELSIO_T6) {
5661
5662 sc->tids.tid_base = t4_read_reg(sc,
5663 A_LE_DB_ACTIVE_TABLE_START_INDEX);
5664
5665 param[0] = FW_PARAM_PFVF(HPFILTER_START);
5666 param[1] = FW_PARAM_PFVF(HPFILTER_END);
5667 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5668 if (rc != 0) {
5669 device_printf(sc->dev,
5670 "failed to query hpfilter parameters: %d.\n", rc);
5671 return (rc);
5672 }
5673 if ((int)val[1] > (int)val[0]) {
5674 sc->tids.hpftid_base = val[0];
5675 sc->tids.hpftid_end = val[1];
5676 sc->tids.nhpftids = val[1] - val[0] + 1;
5677
5678 /*
5679 * These should go off if the layout changes and the
5680 * driver needs to catch up.
5681 */
5682 MPASS(sc->tids.hpftid_base == 0);
5683 MPASS(sc->tids.tid_base == sc->tids.nhpftids);
5684 }
5685
5686 param[0] = FW_PARAM_PFVF(RAWF_START);
5687 param[1] = FW_PARAM_PFVF(RAWF_END);
5688 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5689 if (rc != 0) {
5690 device_printf(sc->dev,
5691 "failed to query rawf parameters: %d.\n", rc);
5692 return (rc);
5693 }
5694 if ((int)val[1] > (int)val[0]) {
5695 sc->rawf_base = val[0];
5696 sc->nrawf = val[1] - val[0] + 1;
5697 }
5698 }
5699
5700 if (sc->params.ncores > 1) {
5701 MPASS(chip_id(sc) >= CHELSIO_T7);
5702
5703 param[0] = FW_PARAM_DEV(TID_QID_SEL_MASK);
5704 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5705 sc->params.tid_qid_sel_mask = rc == 0 ? val[0] : 0;
5706 }
5707
5708 /*
5709 * The parameters that follow may not be available on all firmwares. We
5710 * query them individually rather than in a compound query because old
5711 * firmwares fail the entire query if an unknown parameter is queried.
5712 */
5713
5714 /*
5715 * MPS buffer group configuration.
5716 */
5717 param[0] = FW_PARAM_DEV(MPSBGMAP);
5718 val[0] = 0;
5719 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5720 if (rc == 0)
5721 sc->params.mps_bg_map = val[0];
5722 else
5723 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */
5724
5725 param[0] = FW_PARAM_DEV(TPCHMAP);
5726 val[0] = 0;
5727 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5728 if (rc == 0)
5729 sc->params.tp_ch_map = val[0];
5730 else
5731 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */
5732
5733 param[0] = FW_PARAM_DEV(TX_TPCHMAP);
5734 val[0] = 0;
5735 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5736 if (rc == 0)
5737 sc->params.tx_tp_ch_map = val[0];
5738 else
5739 sc->params.tx_tp_ch_map = UINT32_MAX; /* Not a legal value. */
5740
5741 /*
5742 * Determine whether the firmware supports the filter2 work request.
5743 */
5744 param[0] = FW_PARAM_DEV(FILTER2_WR);
5745 val[0] = 0;
5746 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5747 if (rc == 0)
5748 sc->params.filter2_wr_support = val[0] != 0;
5749 else
5750 sc->params.filter2_wr_support = 0;
5751
5752 /*
5753 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
5754 */
5755 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5756 val[0] = 0;
5757 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5758 if (rc == 0)
5759 sc->params.ulptx_memwrite_dsgl = val[0] != 0;
5760 else
5761 sc->params.ulptx_memwrite_dsgl = false;
5762
5763 /* FW_RI_FR_NSMR_TPTE_WR support */
5764 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5765 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5766 if (rc == 0)
5767 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0;
5768 else
5769 sc->params.fr_nsmr_tpte_wr_support = false;
5770
5771 /* Support for 512 SGL entries per FR MR. */
5772 param[0] = FW_PARAM_DEV(DEV_512SGL_MR);
5773 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5774 if (rc == 0)
5775 sc->params.dev_512sgl_mr = val[0] != 0;
5776 else
5777 sc->params.dev_512sgl_mr = false;
5778
5779 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
5780 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5781 if (rc == 0)
5782 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0];
5783 else
5784 sc->params.max_pkts_per_eth_tx_pkts_wr = 15;
5785
5786 param[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5787 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5788 if (rc == 0) {
5789 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */
5790 sc->params.nsched_cls = val[0];
5791 } else
5792 sc->params.nsched_cls = sc->chip_params->nsched_cls;
5793
5794 /* get capabilites */
5795 bzero(&caps, sizeof(caps));
5796 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5797 F_FW_CMD_REQUEST | F_FW_CMD_READ);
5798 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5799 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5800 if (rc != 0) {
5801 device_printf(sc->dev,
5802 "failed to get card capabilities: %d.\n", rc);
5803 return (rc);
5804 }
5805
5806 #define READ_CAPS(x) do { \
5807 sc->x = htobe16(caps.x); \
5808 } while (0)
5809 READ_CAPS(nbmcaps);
5810 READ_CAPS(linkcaps);
5811 READ_CAPS(switchcaps);
5812 READ_CAPS(nvmecaps);
5813 READ_CAPS(niccaps);
5814 READ_CAPS(toecaps);
5815 READ_CAPS(rdmacaps);
5816 READ_CAPS(cryptocaps);
5817 READ_CAPS(iscsicaps);
5818 READ_CAPS(fcoecaps);
5819
5820 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
5821 MPASS(chip_id(sc) > CHELSIO_T4);
5822 MPASS(sc->toecaps == 0);
5823 sc->toecaps = 0;
5824
5825 param[0] = FW_PARAM_DEV(NTID);
5826 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5827 if (rc != 0) {
5828 device_printf(sc->dev,
5829 "failed to query HASHFILTER parameters: %d.\n", rc);
5830 return (rc);
5831 }
5832 sc->tids.ntids = val[0];
5833 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5834 MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5835 sc->tids.ntids -= sc->tids.nhpftids;
5836 }
5837 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5838 sc->params.hash_filter = 1;
5839 }
5840 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
5841 param[0] = FW_PARAM_PFVF(ETHOFLD_START);
5842 param[1] = FW_PARAM_PFVF(ETHOFLD_END);
5843 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5844 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
5845 if (rc != 0) {
5846 device_printf(sc->dev,
5847 "failed to query NIC parameters: %d.\n", rc);
5848 return (rc);
5849 }
5850 if ((int)val[1] > (int)val[0]) {
5851 sc->tids.etid_base = val[0];
5852 sc->tids.etid_end = val[1];
5853 sc->tids.netids = val[1] - val[0] + 1;
5854 sc->params.eo_wr_cred = val[2];
5855 sc->params.ethoffload = 1;
5856 }
5857 }
5858 if (sc->toecaps) {
5859 /* query offload-related parameters */
5860 param[0] = FW_PARAM_DEV(NTID);
5861 param[1] = FW_PARAM_PFVF(SERVER_START);
5862 param[2] = FW_PARAM_PFVF(SERVER_END);
5863 param[3] = FW_PARAM_PFVF(TDDP_START);
5864 param[4] = FW_PARAM_PFVF(TDDP_END);
5865 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5866 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5867 if (rc != 0) {
5868 device_printf(sc->dev,
5869 "failed to query TOE parameters: %d.\n", rc);
5870 return (rc);
5871 }
5872 sc->tids.ntids = val[0];
5873 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5874 MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5875 sc->tids.ntids -= sc->tids.nhpftids;
5876 }
5877 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5878 if ((int)val[2] > (int)val[1]) {
5879 sc->tids.stid_base = val[1];
5880 sc->tids.nstids = val[2] - val[1] + 1;
5881 }
5882 sc->vres.ddp.start = val[3];
5883 sc->vres.ddp.size = val[4] - val[3] + 1;
5884 sc->params.ofldq_wr_cred = val[5];
5885 sc->params.offload = 1;
5886 } else {
5887 /*
5888 * The firmware attempts memfree TOE configuration for -SO cards
5889 * and will report toecaps=0 if it runs out of resources (this
5890 * depends on the config file). It may not report 0 for other
5891 * capabilities dependent on the TOE in this case. Set them to
5892 * 0 here so that the driver doesn't bother tracking resources
5893 * that will never be used.
5894 */
5895 sc->iscsicaps = 0;
5896 sc->nvmecaps = 0;
5897 sc->rdmacaps = 0;
5898 }
5899 if (sc->nvmecaps || sc->rdmacaps) {
5900 param[0] = FW_PARAM_PFVF(STAG_START);
5901 param[1] = FW_PARAM_PFVF(STAG_END);
5902 param[2] = FW_PARAM_PFVF(PBL_START);
5903 param[3] = FW_PARAM_PFVF(PBL_END);
5904 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
5905 if (rc != 0) {
5906 device_printf(sc->dev,
5907 "failed to query NVMe/RDMA parameters: %d.\n", rc);
5908 return (rc);
5909 }
5910 sc->vres.stag.start = val[0];
5911 sc->vres.stag.size = val[1] - val[0] + 1;
5912 sc->vres.pbl.start = val[2];
5913 sc->vres.pbl.size = val[3] - val[2] + 1;
5914 }
5915 if (sc->rdmacaps) {
5916 param[0] = FW_PARAM_PFVF(RQ_START);
5917 param[1] = FW_PARAM_PFVF(RQ_END);
5918 param[2] = FW_PARAM_PFVF(SQRQ_START);
5919 param[3] = FW_PARAM_PFVF(SQRQ_END);
5920 param[4] = FW_PARAM_PFVF(CQ_START);
5921 param[5] = FW_PARAM_PFVF(CQ_END);
5922 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5923 if (rc != 0) {
5924 device_printf(sc->dev,
5925 "failed to query RDMA parameters(1): %d.\n", rc);
5926 return (rc);
5927 }
5928 sc->vres.rq.start = val[0];
5929 sc->vres.rq.size = val[1] - val[0] + 1;
5930 sc->vres.qp.start = val[2];
5931 sc->vres.qp.size = val[3] - val[2] + 1;
5932 sc->vres.cq.start = val[4];
5933 sc->vres.cq.size = val[5] - val[4] + 1;
5934
5935 param[0] = FW_PARAM_PFVF(OCQ_START);
5936 param[1] = FW_PARAM_PFVF(OCQ_END);
5937 param[2] = FW_PARAM_PFVF(SRQ_START);
5938 param[3] = FW_PARAM_PFVF(SRQ_END);
5939 param[4] = FW_PARAM_DEV(MAXORDIRD_QP);
5940 param[5] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5941 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5942 if (rc != 0) {
5943 device_printf(sc->dev,
5944 "failed to query RDMA parameters(2): %d.\n", rc);
5945 return (rc);
5946 }
5947 sc->vres.ocq.start = val[0];
5948 sc->vres.ocq.size = val[1] - val[0] + 1;
5949 sc->vres.srq.start = val[2];
5950 sc->vres.srq.size = val[3] - val[2] + 1;
5951 sc->params.max_ordird_qp = val[4];
5952 sc->params.max_ird_adapter = val[5];
5953 }
5954 if (sc->iscsicaps) {
5955 param[0] = FW_PARAM_PFVF(ISCSI_START);
5956 param[1] = FW_PARAM_PFVF(ISCSI_END);
5957 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5958 if (rc != 0) {
5959 device_printf(sc->dev,
5960 "failed to query iSCSI parameters: %d.\n", rc);
5961 return (rc);
5962 }
5963 sc->vres.iscsi.start = val[0];
5964 sc->vres.iscsi.size = val[1] - val[0] + 1;
5965 }
5966 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
5967 param[0] = FW_PARAM_PFVF(TLS_START);
5968 param[1] = FW_PARAM_PFVF(TLS_END);
5969 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5970 if (rc != 0) {
5971 device_printf(sc->dev,
5972 "failed to query TLS parameters: %d.\n", rc);
5973 return (rc);
5974 }
5975 sc->vres.key.start = val[0];
5976 sc->vres.key.size = val[1] - val[0] + 1;
5977 }
5978
5979 /*
5980 * We've got the params we wanted to query directly from the firmware.
5981 * Grab some others via other means.
5982 */
5983 t4_init_sge_params(sc);
5984 t4_init_tp_params(sc);
5985 t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
5986 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
5987
5988 rc = t4_verify_chip_settings(sc);
5989 if (rc != 0)
5990 return (rc);
5991 t4_init_rx_buf_info(sc);
5992
5993 return (rc);
5994 }
5995
5996 #ifdef KERN_TLS
5997 static void
ktls_tick(void * arg)5998 ktls_tick(void *arg)
5999 {
6000 struct adapter *sc;
6001 uint32_t tstamp;
6002
6003 sc = arg;
6004 tstamp = tcp_ts_getticks();
6005 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1);
6006 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31);
6007 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK);
6008 }
6009
6010 static int
t6_config_kern_tls(struct adapter * sc,bool enable)6011 t6_config_kern_tls(struct adapter *sc, bool enable)
6012 {
6013 int rc;
6014 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
6015 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) |
6016 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) |
6017 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE);
6018
6019 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m);
6020 if (rc != 0) {
6021 CH_ERR(sc, "failed to %s NIC TLS: %d\n",
6022 enable ? "enable" : "disable", rc);
6023 return (rc);
6024 }
6025
6026 if (enable) {
6027 sc->flags |= KERN_TLS_ON;
6028 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc,
6029 C_HARDCLOCK);
6030 } else {
6031 sc->flags &= ~KERN_TLS_ON;
6032 callout_stop(&sc->ktls_tick);
6033 }
6034
6035 return (rc);
6036 }
6037 #endif
6038
6039 static int
set_params__post_init(struct adapter * sc)6040 set_params__post_init(struct adapter *sc)
6041 {
6042 uint32_t mask, param, val;
6043 #ifdef TCP_OFFLOAD
6044 int i, v, shift;
6045 #endif
6046
6047 /* ask for encapsulated CPLs */
6048 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
6049 val = 1;
6050 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
6051
6052 /* Enable 32b port caps if the firmware supports it. */
6053 param = FW_PARAM_PFVF(PORT_CAPS32);
6054 val = 1;
6055 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0)
6056 sc->params.port_caps32 = 1;
6057
6058 /* Let filter + maskhash steer to a part of the VI's RSS region. */
6059 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
6060 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
6061 V_MASKFILTER(val - 1));
6062
6063 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER |
6064 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN |
6065 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
6066 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM;
6067 val = 0;
6068 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) {
6069 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE,
6070 F_ATTACKFILTERENABLE);
6071 val |= F_DROPERRORATTACK;
6072 }
6073 if (t4_drop_ip_fragments != 0) {
6074 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP,
6075 F_FRAGMENTDROP);
6076 val |= F_DROPERRORFRAG;
6077 }
6078 if (t4_drop_pkts_with_l2_errors != 0)
6079 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN;
6080 if (t4_drop_pkts_with_l3_errors != 0) {
6081 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN |
6082 F_DROPERRORCSUMIP;
6083 }
6084 if (t4_drop_pkts_with_l4_errors != 0) {
6085 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
6086 F_DROPERRORTCPOPT | F_DROPERRORCSUM;
6087 }
6088 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val);
6089
6090 #ifdef TCP_OFFLOAD
6091 /*
6092 * Override the TOE timers with user provided tunables. This is not the
6093 * recommended way to change the timers (the firmware config file is) so
6094 * these tunables are not documented.
6095 *
6096 * All the timer tunables are in microseconds.
6097 */
6098 if (t4_toe_keepalive_idle != 0) {
6099 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
6100 v &= M_KEEPALIVEIDLE;
6101 t4_set_reg_field(sc, A_TP_KEEP_IDLE,
6102 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
6103 }
6104 if (t4_toe_keepalive_interval != 0) {
6105 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
6106 v &= M_KEEPALIVEINTVL;
6107 t4_set_reg_field(sc, A_TP_KEEP_INTVL,
6108 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
6109 }
6110 if (t4_toe_keepalive_count != 0) {
6111 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
6112 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
6113 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
6114 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
6115 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
6116 }
6117 if (t4_toe_rexmt_min != 0) {
6118 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
6119 v &= M_RXTMIN;
6120 t4_set_reg_field(sc, A_TP_RXT_MIN,
6121 V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
6122 }
6123 if (t4_toe_rexmt_max != 0) {
6124 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
6125 v &= M_RXTMAX;
6126 t4_set_reg_field(sc, A_TP_RXT_MAX,
6127 V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
6128 }
6129 if (t4_toe_rexmt_count != 0) {
6130 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
6131 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
6132 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
6133 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
6134 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
6135 }
6136 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
6137 if (t4_toe_rexmt_backoff[i] != -1) {
6138 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
6139 shift = (i & 3) << 3;
6140 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
6141 M_TIMERBACKOFFINDEX0 << shift, v << shift);
6142 }
6143 }
6144 #endif
6145
6146 /*
6147 * Limit TOE connections to 2 reassembly "islands". This is
6148 * required to permit migrating TOE connections to either
6149 * ULP_MODE_TCPDDP or UPL_MODE_TLS.
6150 */
6151 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE),
6152 V_PASSMODE(2));
6153
6154 #ifdef KERN_TLS
6155 if (is_ktls(sc)) {
6156 sc->tlst.inline_keys = t4_tls_inline_keys;
6157 if (t4_kern_tls != 0 && is_t6(sc)) {
6158 sc->tlst.combo_wrs = t4_tls_combo_wrs;
6159 t6_config_kern_tls(sc, true);
6160 } else {
6161 sc->tlst.short_records = t4_tls_short_records;
6162 sc->tlst.partial_ghash = t4_tls_partial_ghash;
6163 }
6164 }
6165 #endif
6166 return (0);
6167 }
6168
6169 #undef FW_PARAM_PFVF
6170 #undef FW_PARAM_DEV
6171
6172 static void
t4_set_desc(struct adapter * sc)6173 t4_set_desc(struct adapter *sc)
6174 {
6175 struct adapter_params *p = &sc->params;
6176
6177 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id);
6178 }
6179
6180 static inline void
ifmedia_add4(struct ifmedia * ifm,int m)6181 ifmedia_add4(struct ifmedia *ifm, int m)
6182 {
6183
6184 ifmedia_add(ifm, m, 0, NULL);
6185 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
6186 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
6187 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
6188 }
6189
6190 /*
6191 * This is the selected media, which is not quite the same as the active media.
6192 * The media line in ifconfig is "media: Ethernet selected (active)" if selected
6193 * and active are not the same, and "media: Ethernet selected" otherwise.
6194 */
6195 static void
set_current_media(struct port_info * pi)6196 set_current_media(struct port_info *pi)
6197 {
6198 struct link_config *lc;
6199 struct ifmedia *ifm;
6200 int mword;
6201 u_int speed;
6202
6203 PORT_LOCK_ASSERT_OWNED(pi);
6204
6205 /* Leave current media alone if it's already set to IFM_NONE. */
6206 ifm = &pi->media;
6207 if (ifm->ifm_cur != NULL &&
6208 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
6209 return;
6210
6211 lc = &pi->link_cfg;
6212 if (lc->requested_aneg != AUTONEG_DISABLE &&
6213 lc->pcaps & FW_PORT_CAP32_ANEG) {
6214 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
6215 return;
6216 }
6217 mword = IFM_ETHER | IFM_FDX;
6218 if (lc->requested_fc & PAUSE_TX)
6219 mword |= IFM_ETH_TXPAUSE;
6220 if (lc->requested_fc & PAUSE_RX)
6221 mword |= IFM_ETH_RXPAUSE;
6222 if (lc->requested_speed == 0)
6223 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */
6224 else
6225 speed = lc->requested_speed;
6226 mword |= port_mword(pi, speed_to_fwcap(speed));
6227 ifmedia_set(ifm, mword);
6228 }
6229
6230 /*
6231 * Returns true if the ifmedia list for the port cannot change.
6232 */
6233 static bool
fixed_ifmedia(struct port_info * pi)6234 fixed_ifmedia(struct port_info *pi)
6235 {
6236
6237 return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
6238 pi->port_type == FW_PORT_TYPE_BT_XFI ||
6239 pi->port_type == FW_PORT_TYPE_BT_XAUI ||
6240 pi->port_type == FW_PORT_TYPE_KX4 ||
6241 pi->port_type == FW_PORT_TYPE_KX ||
6242 pi->port_type == FW_PORT_TYPE_KR ||
6243 pi->port_type == FW_PORT_TYPE_BP_AP ||
6244 pi->port_type == FW_PORT_TYPE_BP4_AP ||
6245 pi->port_type == FW_PORT_TYPE_BP40_BA ||
6246 pi->port_type == FW_PORT_TYPE_KR4_100G ||
6247 pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
6248 pi->port_type == FW_PORT_TYPE_KR_XLAUI);
6249 }
6250
6251 static void
build_medialist(struct port_info * pi)6252 build_medialist(struct port_info *pi)
6253 {
6254 uint32_t ss, speed;
6255 int unknown, mword, bit;
6256 struct link_config *lc;
6257 struct ifmedia *ifm;
6258
6259 PORT_LOCK_ASSERT_OWNED(pi);
6260
6261 if (pi->flags & FIXED_IFMEDIA)
6262 return;
6263
6264 /*
6265 * Rebuild the ifmedia list.
6266 */
6267 ifm = &pi->media;
6268 ifmedia_removeall(ifm);
6269 lc = &pi->link_cfg;
6270 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */
6271 if (__predict_false(ss == 0)) { /* not supposed to happen. */
6272 MPASS(ss != 0);
6273 no_media:
6274 MPASS(LIST_EMPTY(&ifm->ifm_list));
6275 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
6276 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
6277 return;
6278 }
6279
6280 unknown = 0;
6281 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
6282 speed = 1 << bit;
6283 MPASS(speed & M_FW_PORT_CAP32_SPEED);
6284 if (ss & speed) {
6285 mword = port_mword(pi, speed);
6286 if (mword == IFM_NONE) {
6287 goto no_media;
6288 } else if (mword == IFM_UNKNOWN)
6289 unknown++;
6290 else
6291 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
6292 }
6293 }
6294 if (unknown > 0) /* Add one unknown for all unknown media types. */
6295 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
6296 if (lc->pcaps & FW_PORT_CAP32_ANEG)
6297 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
6298
6299 set_current_media(pi);
6300 }
6301
6302 /*
6303 * Initialize the requested fields in the link config based on driver tunables.
6304 */
6305 static void
init_link_config(struct port_info * pi)6306 init_link_config(struct port_info *pi)
6307 {
6308 struct link_config *lc = &pi->link_cfg;
6309
6310 PORT_LOCK_ASSERT_OWNED(pi);
6311
6312 lc->requested_caps = 0;
6313 lc->requested_speed = 0;
6314
6315 if (t4_autoneg == 0)
6316 lc->requested_aneg = AUTONEG_DISABLE;
6317 else if (t4_autoneg == 1)
6318 lc->requested_aneg = AUTONEG_ENABLE;
6319 else
6320 lc->requested_aneg = AUTONEG_AUTO;
6321
6322 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
6323 PAUSE_AUTONEG);
6324
6325 if (t4_fec & FEC_AUTO)
6326 lc->requested_fec = FEC_AUTO;
6327 else if (t4_fec == 0)
6328 lc->requested_fec = FEC_NONE;
6329 else {
6330 /* -1 is handled by the FEC_AUTO block above and not here. */
6331 lc->requested_fec = t4_fec &
6332 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE);
6333 if (lc->requested_fec == 0)
6334 lc->requested_fec = FEC_AUTO;
6335 }
6336 if (t4_force_fec < 0)
6337 lc->force_fec = -1;
6338 else if (t4_force_fec > 0)
6339 lc->force_fec = 1;
6340 else
6341 lc->force_fec = 0;
6342 }
6343
6344 /*
6345 * Makes sure that all requested settings comply with what's supported by the
6346 * port. Returns the number of settings that were invalid and had to be fixed.
6347 */
6348 static int
fixup_link_config(struct port_info * pi)6349 fixup_link_config(struct port_info *pi)
6350 {
6351 int n = 0;
6352 struct link_config *lc = &pi->link_cfg;
6353 uint32_t fwspeed;
6354
6355 PORT_LOCK_ASSERT_OWNED(pi);
6356
6357 /* Speed (when not autonegotiating) */
6358 if (lc->requested_speed != 0) {
6359 fwspeed = speed_to_fwcap(lc->requested_speed);
6360 if ((fwspeed & lc->pcaps) == 0) {
6361 n++;
6362 lc->requested_speed = 0;
6363 }
6364 }
6365
6366 /* Link autonegotiation */
6367 MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
6368 lc->requested_aneg == AUTONEG_DISABLE ||
6369 lc->requested_aneg == AUTONEG_AUTO);
6370 if (lc->requested_aneg == AUTONEG_ENABLE &&
6371 !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
6372 n++;
6373 lc->requested_aneg = AUTONEG_AUTO;
6374 }
6375
6376 /* Flow control */
6377 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
6378 if (lc->requested_fc & PAUSE_TX &&
6379 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) {
6380 n++;
6381 lc->requested_fc &= ~PAUSE_TX;
6382 }
6383 if (lc->requested_fc & PAUSE_RX &&
6384 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) {
6385 n++;
6386 lc->requested_fc &= ~PAUSE_RX;
6387 }
6388 if (!(lc->requested_fc & PAUSE_AUTONEG) &&
6389 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) {
6390 n++;
6391 lc->requested_fc |= PAUSE_AUTONEG;
6392 }
6393
6394 /* FEC */
6395 if ((lc->requested_fec & FEC_RS &&
6396 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) ||
6397 (lc->requested_fec & FEC_BASER_RS &&
6398 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) {
6399 n++;
6400 lc->requested_fec = FEC_AUTO;
6401 }
6402
6403 return (n);
6404 }
6405
6406 /*
6407 * Apply the requested L1 settings, which are expected to be valid, to the
6408 * hardware.
6409 */
6410 static int
apply_link_config(struct port_info * pi)6411 apply_link_config(struct port_info *pi)
6412 {
6413 struct adapter *sc = pi->adapter;
6414 struct link_config *lc = &pi->link_cfg;
6415 int rc;
6416
6417 #ifdef INVARIANTS
6418 ASSERT_SYNCHRONIZED_OP(sc);
6419 PORT_LOCK_ASSERT_OWNED(pi);
6420
6421 if (lc->requested_aneg == AUTONEG_ENABLE)
6422 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG);
6423 if (!(lc->requested_fc & PAUSE_AUTONEG))
6424 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE);
6425 if (lc->requested_fc & PAUSE_TX)
6426 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX);
6427 if (lc->requested_fc & PAUSE_RX)
6428 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX);
6429 if (lc->requested_fec & FEC_RS)
6430 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS);
6431 if (lc->requested_fec & FEC_BASER_RS)
6432 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS);
6433 #endif
6434 if (!(sc->flags & IS_VF)) {
6435 rc = -t4_link_l1cfg(sc, sc->mbox, pi->hw_port, lc);
6436 if (rc != 0) {
6437 device_printf(pi->dev, "l1cfg failed: %d\n", rc);
6438 return (rc);
6439 }
6440 }
6441
6442 /*
6443 * An L1_CFG will almost always result in a link-change event if the
6444 * link is up, and the driver will refresh the actual fec/fc/etc. when
6445 * the notification is processed. If the link is down then the actual
6446 * settings are meaningless.
6447 *
6448 * This takes care of the case where a change in the L1 settings may not
6449 * result in a notification.
6450 */
6451 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
6452 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
6453
6454 return (0);
6455 }
6456
6457 #define FW_MAC_EXACT_CHUNK 7
6458 struct mcaddr_ctx {
6459 if_t ifp;
6460 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
6461 uint64_t hash;
6462 int i;
6463 int del;
6464 int rc;
6465 };
6466
6467 static u_int
add_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)6468 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
6469 {
6470 struct mcaddr_ctx *ctx = arg;
6471 struct vi_info *vi = if_getsoftc(ctx->ifp);
6472 struct port_info *pi = vi->pi;
6473 struct adapter *sc = pi->adapter;
6474
6475 if (ctx->rc < 0)
6476 return (0);
6477
6478 ctx->mcaddr[ctx->i] = LLADDR(sdl);
6479 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i]));
6480 ctx->i++;
6481
6482 if (ctx->i == FW_MAC_EXACT_CHUNK) {
6483 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del,
6484 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0);
6485 if (ctx->rc < 0) {
6486 int j;
6487
6488 for (j = 0; j < ctx->i; j++) {
6489 if_printf(ctx->ifp,
6490 "failed to add mc address"
6491 " %02x:%02x:%02x:"
6492 "%02x:%02x:%02x rc=%d\n",
6493 ctx->mcaddr[j][0], ctx->mcaddr[j][1],
6494 ctx->mcaddr[j][2], ctx->mcaddr[j][3],
6495 ctx->mcaddr[j][4], ctx->mcaddr[j][5],
6496 -ctx->rc);
6497 }
6498 return (0);
6499 }
6500 ctx->del = 0;
6501 ctx->i = 0;
6502 }
6503
6504 return (1);
6505 }
6506
6507 /*
6508 * Program the port's XGMAC based on parameters in ifnet. The caller also
6509 * indicates which parameters should be programmed (the rest are left alone).
6510 */
6511 int
update_mac_settings(if_t ifp,int flags)6512 update_mac_settings(if_t ifp, int flags)
6513 {
6514 int rc = 0;
6515 struct vi_info *vi = if_getsoftc(ifp);
6516 struct port_info *pi = vi->pi;
6517 struct adapter *sc = pi->adapter;
6518 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
6519 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
6520
6521 ASSERT_SYNCHRONIZED_OP(sc);
6522 KASSERT(flags, ("%s: not told what to update.", __func__));
6523
6524 if (flags & XGMAC_MTU)
6525 mtu = if_getmtu(ifp);
6526
6527 if (flags & XGMAC_PROMISC)
6528 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0;
6529
6530 if (flags & XGMAC_ALLMULTI)
6531 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0;
6532
6533 if (flags & XGMAC_VLANEX)
6534 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0;
6535
6536 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
6537 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
6538 allmulti, 1, vlanex, false);
6539 if (rc) {
6540 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
6541 rc);
6542 return (rc);
6543 }
6544 }
6545
6546 if (flags & XGMAC_UCADDR) {
6547 uint8_t ucaddr[ETHER_ADDR_LEN];
6548
6549 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr));
6550 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
6551 ucaddr, true, &vi->smt_idx);
6552 if (rc < 0) {
6553 rc = -rc;
6554 if_printf(ifp, "change_mac failed: %d\n", rc);
6555 return (rc);
6556 } else {
6557 vi->xact_addr_filt = rc;
6558 rc = 0;
6559 }
6560 }
6561
6562 if (flags & XGMAC_MCADDRS) {
6563 struct epoch_tracker et;
6564 struct mcaddr_ctx ctx;
6565 int j;
6566
6567 ctx.ifp = ifp;
6568 ctx.hash = 0;
6569 ctx.i = 0;
6570 ctx.del = 1;
6571 ctx.rc = 0;
6572 /*
6573 * Unlike other drivers, we accumulate list of pointers into
6574 * interface address lists and we need to keep it safe even
6575 * after if_foreach_llmaddr() returns, thus we must enter the
6576 * network epoch.
6577 */
6578 NET_EPOCH_ENTER(et);
6579 if_foreach_llmaddr(ifp, add_maddr, &ctx);
6580 if (ctx.rc < 0) {
6581 NET_EPOCH_EXIT(et);
6582 rc = -ctx.rc;
6583 return (rc);
6584 }
6585 if (ctx.i > 0) {
6586 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
6587 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0);
6588 NET_EPOCH_EXIT(et);
6589 if (rc < 0) {
6590 rc = -rc;
6591 for (j = 0; j < ctx.i; j++) {
6592 if_printf(ifp,
6593 "failed to add mcast address"
6594 " %02x:%02x:%02x:"
6595 "%02x:%02x:%02x rc=%d\n",
6596 ctx.mcaddr[j][0], ctx.mcaddr[j][1],
6597 ctx.mcaddr[j][2], ctx.mcaddr[j][3],
6598 ctx.mcaddr[j][4], ctx.mcaddr[j][5],
6599 rc);
6600 }
6601 return (rc);
6602 }
6603 ctx.del = 0;
6604 } else
6605 NET_EPOCH_EXIT(et);
6606
6607 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0);
6608 if (rc != 0)
6609 if_printf(ifp, "failed to set mcast address hash: %d\n",
6610 rc);
6611 if (ctx.del == 0) {
6612 /* We clobbered the VXLAN entry if there was one. */
6613 pi->vxlan_tcam_entry = false;
6614 }
6615 }
6616
6617 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 &&
6618 pi->vxlan_tcam_entry == false) {
6619 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac,
6620 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
6621 true);
6622 if (rc < 0) {
6623 rc = -rc;
6624 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n",
6625 rc);
6626 } else {
6627 MPASS(rc == sc->rawf_base + pi->port_id);
6628 rc = 0;
6629 pi->vxlan_tcam_entry = true;
6630 }
6631 }
6632
6633 return (rc);
6634 }
6635
6636 /*
6637 * {begin|end}_synchronized_op must be called from the same thread.
6638 */
6639 int
begin_synchronized_op(struct adapter * sc,struct vi_info * vi,int flags,char * wmesg)6640 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
6641 char *wmesg)
6642 {
6643 int rc;
6644
6645 #ifdef WITNESS
6646 /* the caller thinks it's ok to sleep, but is it really? */
6647 if (flags & SLEEP_OK)
6648 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
6649 #endif
6650 ADAPTER_LOCK(sc);
6651 for (;;) {
6652
6653 if (vi && IS_DETACHING(vi)) {
6654 rc = ENXIO;
6655 goto done;
6656 }
6657
6658 if (!IS_BUSY(sc)) {
6659 rc = 0;
6660 break;
6661 }
6662
6663 if (!(flags & SLEEP_OK)) {
6664 rc = EBUSY;
6665 goto done;
6666 }
6667
6668 if (mtx_sleep(&sc->flags, &sc->sc_lock,
6669 flags & INTR_OK ? PCATCH : 0, wmesg, 0)) {
6670 rc = EINTR;
6671 goto done;
6672 }
6673 }
6674
6675 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
6676 SET_BUSY(sc);
6677 #ifdef INVARIANTS
6678 sc->last_op = wmesg;
6679 sc->last_op_thr = curthread;
6680 sc->last_op_flags = flags;
6681 #endif
6682
6683 done:
6684 if (!(flags & HOLD_LOCK) || rc)
6685 ADAPTER_UNLOCK(sc);
6686
6687 return (rc);
6688 }
6689
6690 /*
6691 * Tell if_ioctl and if_init that the VI is going away. This is
6692 * special variant of begin_synchronized_op and must be paired with a
6693 * call to end_vi_detach.
6694 */
6695 void
begin_vi_detach(struct adapter * sc,struct vi_info * vi)6696 begin_vi_detach(struct adapter *sc, struct vi_info *vi)
6697 {
6698 ADAPTER_LOCK(sc);
6699 SET_DETACHING(vi);
6700 wakeup(&sc->flags);
6701 while (IS_BUSY(sc))
6702 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
6703 SET_BUSY(sc);
6704 #ifdef INVARIANTS
6705 sc->last_op = "t4detach";
6706 sc->last_op_thr = curthread;
6707 sc->last_op_flags = 0;
6708 #endif
6709 ADAPTER_UNLOCK(sc);
6710 }
6711
6712 void
end_vi_detach(struct adapter * sc,struct vi_info * vi)6713 end_vi_detach(struct adapter *sc, struct vi_info *vi)
6714 {
6715 ADAPTER_LOCK(sc);
6716 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6717 CLR_BUSY(sc);
6718 CLR_DETACHING(vi);
6719 wakeup(&sc->flags);
6720 ADAPTER_UNLOCK(sc);
6721 }
6722
6723 /*
6724 * {begin|end}_synchronized_op must be called from the same thread.
6725 */
6726 void
end_synchronized_op(struct adapter * sc,int flags)6727 end_synchronized_op(struct adapter *sc, int flags)
6728 {
6729
6730 if (flags & LOCK_HELD)
6731 ADAPTER_LOCK_ASSERT_OWNED(sc);
6732 else
6733 ADAPTER_LOCK(sc);
6734
6735 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6736 CLR_BUSY(sc);
6737 wakeup(&sc->flags);
6738 ADAPTER_UNLOCK(sc);
6739 }
6740
6741 static int
cxgbe_init_synchronized(struct vi_info * vi)6742 cxgbe_init_synchronized(struct vi_info *vi)
6743 {
6744 struct port_info *pi = vi->pi;
6745 struct adapter *sc = pi->adapter;
6746 if_t ifp = vi->ifp;
6747 int rc = 0, i;
6748 struct sge_txq *txq;
6749
6750 ASSERT_SYNCHRONIZED_OP(sc);
6751
6752 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6753 return (0); /* already running */
6754
6755 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0))
6756 return (rc); /* error message displayed already */
6757
6758 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
6759 return (rc); /* error message displayed already */
6760
6761 rc = update_mac_settings(ifp, XGMAC_ALL);
6762 if (rc)
6763 goto done; /* error message displayed already */
6764
6765 PORT_LOCK(pi);
6766 if (pi->up_vis == 0) {
6767 t4_update_port_info(pi);
6768 fixup_link_config(pi);
6769 build_medialist(pi);
6770 apply_link_config(pi);
6771 }
6772
6773 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
6774 if (rc != 0) {
6775 if_printf(ifp, "enable_vi failed: %d\n", rc);
6776 PORT_UNLOCK(pi);
6777 goto done;
6778 }
6779
6780 /*
6781 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized
6782 * if this changes.
6783 */
6784
6785 for_each_txq(vi, i, txq) {
6786 TXQ_LOCK(txq);
6787 txq->eq.flags |= EQ_ENABLED;
6788 TXQ_UNLOCK(txq);
6789 }
6790
6791 /*
6792 * The first iq of the first port to come up is used for tracing.
6793 */
6794 if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
6795 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
6796 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq);
6797 pi->flags |= HAS_TRACEQ;
6798 }
6799
6800 /* all ok */
6801 pi->up_vis++;
6802 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
6803 if (pi->link_cfg.link_ok)
6804 t4_os_link_changed(pi);
6805 PORT_UNLOCK(pi);
6806
6807 mtx_lock(&vi->tick_mtx);
6808 if (vi->pi->nvi > 1 || sc->flags & IS_VF)
6809 callout_reset(&vi->tick, hz, vi_tick, vi);
6810 else
6811 callout_reset(&vi->tick, hz, cxgbe_tick, vi);
6812 mtx_unlock(&vi->tick_mtx);
6813 done:
6814 if (rc != 0)
6815 cxgbe_uninit_synchronized(vi);
6816
6817 return (rc);
6818 }
6819
6820 /*
6821 * Idempotent.
6822 */
6823 static int
cxgbe_uninit_synchronized(struct vi_info * vi)6824 cxgbe_uninit_synchronized(struct vi_info *vi)
6825 {
6826 struct port_info *pi = vi->pi;
6827 struct adapter *sc = pi->adapter;
6828 if_t ifp = vi->ifp;
6829 int rc, i;
6830 struct sge_txq *txq;
6831
6832 ASSERT_SYNCHRONIZED_OP(sc);
6833
6834 if (!(vi->flags & VI_INIT_DONE)) {
6835 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6836 KASSERT(0, ("uninited VI is running"));
6837 if_printf(ifp, "uninited VI with running ifnet. "
6838 "vi->flags 0x%016lx, if_flags 0x%08x, "
6839 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp),
6840 if_getdrvflags(ifp));
6841 }
6842 return (0);
6843 }
6844
6845 /*
6846 * Disable the VI so that all its data in either direction is discarded
6847 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz
6848 * tick) intact as the TP can deliver negative advice or data that it's
6849 * holding in its RAM (for an offloaded connection) even after the VI is
6850 * disabled.
6851 */
6852 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
6853 if (rc) {
6854 if_printf(ifp, "disable_vi failed: %d\n", rc);
6855 return (rc);
6856 }
6857
6858 for_each_txq(vi, i, txq) {
6859 TXQ_LOCK(txq);
6860 txq->eq.flags &= ~EQ_ENABLED;
6861 TXQ_UNLOCK(txq);
6862 }
6863
6864 mtx_lock(&vi->tick_mtx);
6865 callout_stop(&vi->tick);
6866 mtx_unlock(&vi->tick_mtx);
6867
6868 PORT_LOCK(pi);
6869 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6870 PORT_UNLOCK(pi);
6871 return (0);
6872 }
6873 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
6874 pi->up_vis--;
6875 if (pi->up_vis > 0) {
6876 PORT_UNLOCK(pi);
6877 return (0);
6878 }
6879
6880 pi->link_cfg.link_ok = false;
6881 pi->link_cfg.speed = 0;
6882 pi->link_cfg.link_down_rc = 255;
6883 t4_os_link_changed(pi);
6884 PORT_UNLOCK(pi);
6885
6886 return (0);
6887 }
6888
6889 /*
6890 * It is ok for this function to fail midway and return right away. t4_detach
6891 * will walk the entire sc->irq list and clean up whatever is valid.
6892 */
6893 int
t4_setup_intr_handlers(struct adapter * sc)6894 t4_setup_intr_handlers(struct adapter *sc)
6895 {
6896 int rc, rid, p, q, v;
6897 char s[8];
6898 struct irq *irq;
6899 struct port_info *pi;
6900 struct vi_info *vi;
6901 struct sge *sge = &sc->sge;
6902 struct sge_rxq *rxq;
6903 #ifdef TCP_OFFLOAD
6904 struct sge_ofld_rxq *ofld_rxq;
6905 #endif
6906 #ifdef DEV_NETMAP
6907 struct sge_nm_rxq *nm_rxq;
6908 #endif
6909 #ifdef RSS
6910 int nbuckets = rss_getnumbuckets();
6911 #endif
6912
6913 /*
6914 * Setup interrupts.
6915 */
6916 irq = &sc->irq[0];
6917 rid = sc->intr_type == INTR_INTX ? 0 : 1;
6918 if (forwarding_intr_to_fwq(sc))
6919 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
6920
6921 /* Multiple interrupts. */
6922 if (sc->flags & IS_VF)
6923 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
6924 ("%s: too few intr.", __func__));
6925 else
6926 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
6927 ("%s: too few intr.", __func__));
6928
6929 /* The first one is always error intr on PFs */
6930 if (!(sc->flags & IS_VF)) {
6931 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
6932 if (rc != 0)
6933 return (rc);
6934 irq++;
6935 rid++;
6936 }
6937
6938 /* The second one is always the firmware event queue (first on VFs) */
6939 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
6940 if (rc != 0)
6941 return (rc);
6942 irq++;
6943 rid++;
6944
6945 for_each_port(sc, p) {
6946 pi = sc->port[p];
6947 for_each_vi(pi, v, vi) {
6948 vi->first_intr = rid - 1;
6949
6950 if (vi->nnmrxq > 0) {
6951 int n = max(vi->nrxq, vi->nnmrxq);
6952
6953 rxq = &sge->rxq[vi->first_rxq];
6954 #ifdef DEV_NETMAP
6955 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
6956 #endif
6957 for (q = 0; q < n; q++) {
6958 snprintf(s, sizeof(s), "%x%c%x", p,
6959 'a' + v, q);
6960 if (q < vi->nrxq)
6961 irq->rxq = rxq++;
6962 #ifdef DEV_NETMAP
6963 if (q < vi->nnmrxq)
6964 irq->nm_rxq = nm_rxq++;
6965
6966 if (irq->nm_rxq != NULL &&
6967 irq->rxq == NULL) {
6968 /* Netmap rx only */
6969 rc = t4_alloc_irq(sc, irq, rid,
6970 t4_nm_intr, irq->nm_rxq, s);
6971 }
6972 if (irq->nm_rxq != NULL &&
6973 irq->rxq != NULL) {
6974 /* NIC and Netmap rx */
6975 rc = t4_alloc_irq(sc, irq, rid,
6976 t4_vi_intr, irq, s);
6977 }
6978 #endif
6979 if (irq->rxq != NULL &&
6980 irq->nm_rxq == NULL) {
6981 /* NIC rx only */
6982 rc = t4_alloc_irq(sc, irq, rid,
6983 t4_intr, irq->rxq, s);
6984 }
6985 if (rc != 0)
6986 return (rc);
6987 #ifdef RSS
6988 if (q < vi->nrxq) {
6989 bus_bind_intr(sc->dev, irq->res,
6990 rss_getcpu(q % nbuckets));
6991 }
6992 #endif
6993 irq++;
6994 rid++;
6995 vi->nintr++;
6996 }
6997 } else {
6998 for_each_rxq(vi, q, rxq) {
6999 snprintf(s, sizeof(s), "%x%c%x", p,
7000 'a' + v, q);
7001 rc = t4_alloc_irq(sc, irq, rid,
7002 t4_intr, rxq, s);
7003 if (rc != 0)
7004 return (rc);
7005 #ifdef RSS
7006 bus_bind_intr(sc->dev, irq->res,
7007 rss_getcpu(q % nbuckets));
7008 #endif
7009 irq++;
7010 rid++;
7011 vi->nintr++;
7012 }
7013 }
7014 #ifdef TCP_OFFLOAD
7015 for_each_ofld_rxq(vi, q, ofld_rxq) {
7016 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
7017 rc = t4_alloc_irq(sc, irq, rid, t4_intr,
7018 ofld_rxq, s);
7019 if (rc != 0)
7020 return (rc);
7021 irq++;
7022 rid++;
7023 vi->nintr++;
7024 }
7025 #endif
7026 }
7027 }
7028 MPASS(irq == &sc->irq[sc->intr_count]);
7029
7030 return (0);
7031 }
7032
7033 static void
write_global_rss_key(struct adapter * sc)7034 write_global_rss_key(struct adapter *sc)
7035 {
7036 int i;
7037 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
7038 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
7039
7040 CTASSERT(RSS_KEYSIZE == 40);
7041
7042 rss_getkey((void *)&raw_rss_key[0]);
7043 for (i = 0; i < nitems(rss_key); i++) {
7044 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
7045 }
7046 t4_write_rss_key(sc, &rss_key[0], -1, 1);
7047 }
7048
7049 /*
7050 * Idempotent.
7051 */
7052 static int
adapter_full_init(struct adapter * sc)7053 adapter_full_init(struct adapter *sc)
7054 {
7055 int rc, i;
7056
7057 ASSERT_SYNCHRONIZED_OP(sc);
7058
7059 /*
7060 * queues that belong to the adapter (not any particular port).
7061 */
7062 rc = t4_setup_adapter_queues(sc);
7063 if (rc != 0)
7064 return (rc);
7065
7066 MPASS(sc->params.nports <= nitems(sc->tq));
7067 for (i = 0; i < sc->params.nports; i++) {
7068 if (sc->tq[i] != NULL)
7069 continue;
7070 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
7071 taskqueue_thread_enqueue, &sc->tq[i]);
7072 if (sc->tq[i] == NULL) {
7073 CH_ERR(sc, "failed to allocate task queue %d\n", i);
7074 return (ENOMEM);
7075 }
7076 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
7077 device_get_nameunit(sc->dev), i);
7078 }
7079
7080 if (!(sc->flags & IS_VF)) {
7081 write_global_rss_key(sc);
7082 t4_intr_enable(sc);
7083 }
7084 return (0);
7085 }
7086
7087 int
adapter_init(struct adapter * sc)7088 adapter_init(struct adapter *sc)
7089 {
7090 int rc;
7091
7092 ASSERT_SYNCHRONIZED_OP(sc);
7093 ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
7094 KASSERT((sc->flags & FULL_INIT_DONE) == 0,
7095 ("%s: FULL_INIT_DONE already", __func__));
7096
7097 rc = adapter_full_init(sc);
7098 if (rc != 0)
7099 adapter_full_uninit(sc);
7100 else
7101 sc->flags |= FULL_INIT_DONE;
7102
7103 return (rc);
7104 }
7105
7106 /*
7107 * Idempotent.
7108 */
7109 static void
adapter_full_uninit(struct adapter * sc)7110 adapter_full_uninit(struct adapter *sc)
7111 {
7112 int i;
7113
7114 t4_teardown_adapter_queues(sc);
7115
7116 for (i = 0; i < nitems(sc->tq); i++) {
7117 if (sc->tq[i] == NULL)
7118 continue;
7119 taskqueue_free(sc->tq[i]);
7120 sc->tq[i] = NULL;
7121 }
7122
7123 sc->flags &= ~FULL_INIT_DONE;
7124 }
7125
7126 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
7127 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
7128 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
7129 RSS_HASHTYPE_RSS_UDP_IPV6)
7130
7131 /* Translates kernel hash types to hardware. */
7132 static int
hashconfig_to_hashen(int hashconfig)7133 hashconfig_to_hashen(int hashconfig)
7134 {
7135 int hashen = 0;
7136
7137 if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
7138 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
7139 if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
7140 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
7141 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
7142 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
7143 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
7144 }
7145 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
7146 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
7147 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
7148 }
7149 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
7150 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
7151 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
7152 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
7153
7154 return (hashen);
7155 }
7156
7157 /* Translates hardware hash types to kernel. */
7158 static int
hashen_to_hashconfig(int hashen)7159 hashen_to_hashconfig(int hashen)
7160 {
7161 int hashconfig = 0;
7162
7163 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
7164 /*
7165 * If UDP hashing was enabled it must have been enabled for
7166 * either IPv4 or IPv6 (inclusive or). Enabling UDP without
7167 * enabling any 4-tuple hash is nonsense configuration.
7168 */
7169 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
7170 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
7171
7172 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
7173 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
7174 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
7175 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
7176 }
7177 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
7178 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
7179 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
7180 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
7181 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
7182 hashconfig |= RSS_HASHTYPE_RSS_IPV4;
7183 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
7184 hashconfig |= RSS_HASHTYPE_RSS_IPV6;
7185
7186 return (hashconfig);
7187 }
7188
7189 /*
7190 * Idempotent.
7191 */
7192 static int
vi_full_init(struct vi_info * vi)7193 vi_full_init(struct vi_info *vi)
7194 {
7195 struct adapter *sc = vi->adapter;
7196 struct sge_rxq *rxq;
7197 int rc, i, j, extra;
7198 int hashconfig = rss_gethashconfig();
7199 #ifdef RSS
7200 int nbuckets = rss_getnumbuckets();
7201 #endif
7202
7203 ASSERT_SYNCHRONIZED_OP(sc);
7204
7205 /*
7206 * Allocate tx/rx/fl queues for this VI.
7207 */
7208 rc = t4_setup_vi_queues(vi);
7209 if (rc != 0)
7210 return (rc);
7211
7212 /*
7213 * Setup RSS for this VI. Save a copy of the RSS table for later use.
7214 */
7215 if (vi->nrxq > vi->rss_size) {
7216 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); "
7217 "some queues will never receive traffic.\n", vi->nrxq,
7218 vi->rss_size);
7219 } else if (vi->rss_size % vi->nrxq) {
7220 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); "
7221 "expect uneven traffic distribution.\n", vi->nrxq,
7222 vi->rss_size);
7223 }
7224 #ifdef RSS
7225 if (vi->nrxq != nbuckets) {
7226 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);"
7227 "performance will be impacted.\n", vi->nrxq, nbuckets);
7228 }
7229 #endif
7230 if (vi->rss == NULL)
7231 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE,
7232 M_ZERO | M_WAITOK);
7233 for (i = 0; i < vi->rss_size;) {
7234 #ifdef RSS
7235 j = rss_get_indirection_to_bucket(i);
7236 j %= vi->nrxq;
7237 rxq = &sc->sge.rxq[vi->first_rxq + j];
7238 vi->rss[i++] = rxq->iq.abs_id;
7239 #else
7240 for_each_rxq(vi, j, rxq) {
7241 vi->rss[i++] = rxq->iq.abs_id;
7242 if (i == vi->rss_size)
7243 break;
7244 }
7245 #endif
7246 }
7247
7248 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size,
7249 vi->rss, vi->rss_size);
7250 if (rc != 0) {
7251 CH_ERR(vi, "rss_config failed: %d\n", rc);
7252 return (rc);
7253 }
7254
7255 vi->hashen = hashconfig_to_hashen(hashconfig);
7256
7257 /*
7258 * We may have had to enable some hashes even though the global config
7259 * wants them disabled. This is a potential problem that must be
7260 * reported to the user.
7261 */
7262 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
7263
7264 /*
7265 * If we consider only the supported hash types, then the enabled hashes
7266 * are a superset of the requested hashes. In other words, there cannot
7267 * be any supported hash that was requested but not enabled, but there
7268 * can be hashes that were not requested but had to be enabled.
7269 */
7270 extra &= SUPPORTED_RSS_HASHTYPES;
7271 MPASS((extra & hashconfig) == 0);
7272
7273 if (extra) {
7274 CH_ALERT(vi,
7275 "global RSS config (0x%x) cannot be accommodated.\n",
7276 hashconfig);
7277 }
7278 if (extra & RSS_HASHTYPE_RSS_IPV4)
7279 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n");
7280 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
7281 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n");
7282 if (extra & RSS_HASHTYPE_RSS_IPV6)
7283 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n");
7284 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
7285 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n");
7286 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
7287 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n");
7288 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
7289 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n");
7290
7291 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0],
7292 0, 0);
7293 if (rc != 0) {
7294 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc);
7295 return (rc);
7296 }
7297
7298 return (0);
7299 }
7300
7301 int
vi_init(struct vi_info * vi)7302 vi_init(struct vi_info *vi)
7303 {
7304 int rc;
7305
7306 ASSERT_SYNCHRONIZED_OP(vi->adapter);
7307 KASSERT((vi->flags & VI_INIT_DONE) == 0,
7308 ("%s: VI_INIT_DONE already", __func__));
7309
7310 rc = vi_full_init(vi);
7311 if (rc != 0)
7312 vi_full_uninit(vi);
7313 else
7314 vi->flags |= VI_INIT_DONE;
7315
7316 return (rc);
7317 }
7318
7319 /*
7320 * Idempotent.
7321 */
7322 static void
vi_full_uninit(struct vi_info * vi)7323 vi_full_uninit(struct vi_info *vi)
7324 {
7325
7326 if (vi->flags & VI_INIT_DONE) {
7327 quiesce_vi(vi);
7328 free(vi->rss, M_CXGBE);
7329 free(vi->nm_rss, M_CXGBE);
7330 }
7331
7332 t4_teardown_vi_queues(vi);
7333 vi->flags &= ~VI_INIT_DONE;
7334 }
7335
7336 static void
quiesce_txq(struct sge_txq * txq)7337 quiesce_txq(struct sge_txq *txq)
7338 {
7339 struct sge_eq *eq = &txq->eq;
7340 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
7341
7342 MPASS(eq->flags & EQ_SW_ALLOCATED);
7343 MPASS(!(eq->flags & EQ_ENABLED));
7344
7345 /* Wait for the mp_ring to empty. */
7346 while (!mp_ring_is_idle(txq->r)) {
7347 mp_ring_check_drainage(txq->r, 4096);
7348 pause("rquiesce", 1);
7349 }
7350 MPASS(txq->txp.npkt == 0);
7351
7352 if (eq->flags & EQ_HW_ALLOCATED) {
7353 /*
7354 * Hardware is alive and working normally. Wait for it to
7355 * finish and then wait for the driver to catch up and reclaim
7356 * all descriptors.
7357 */
7358 while (spg->cidx != htobe16(eq->pidx))
7359 pause("equiesce", 1);
7360 while (eq->cidx != eq->pidx)
7361 pause("dquiesce", 1);
7362 } else {
7363 /*
7364 * Hardware is unavailable. Discard all pending tx and reclaim
7365 * descriptors directly.
7366 */
7367 TXQ_LOCK(txq);
7368 while (eq->cidx != eq->pidx) {
7369 struct mbuf *m, *nextpkt;
7370 struct tx_sdesc *txsd;
7371
7372 txsd = &txq->sdesc[eq->cidx];
7373 for (m = txsd->m; m != NULL; m = nextpkt) {
7374 nextpkt = m->m_nextpkt;
7375 m->m_nextpkt = NULL;
7376 m_freem(m);
7377 }
7378 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx);
7379 }
7380 spg->pidx = spg->cidx = htobe16(eq->cidx);
7381 TXQ_UNLOCK(txq);
7382 }
7383 }
7384
7385 static void
quiesce_wrq(struct sge_wrq * wrq)7386 quiesce_wrq(struct sge_wrq *wrq)
7387 {
7388 struct wrqe *wr;
7389
7390 TXQ_LOCK(wrq);
7391 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
7392 STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
7393 #ifdef INVARIANTS
7394 wrq->nwr_pending--;
7395 wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE);
7396 #endif
7397 free(wr, M_CXGBE);
7398 }
7399 MPASS(wrq->nwr_pending == 0);
7400 MPASS(wrq->ndesc_needed == 0);
7401 wrq->nwr_pending = 0;
7402 wrq->ndesc_needed = 0;
7403 TXQ_UNLOCK(wrq);
7404 }
7405
7406 static void
quiesce_iq_fl(struct adapter * sc,struct sge_iq * iq,struct sge_fl * fl)7407 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
7408 {
7409 /* Synchronize with the interrupt handler */
7410 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
7411 pause("iqfree", 1);
7412
7413 if (fl != NULL) {
7414 MPASS(iq->flags & IQ_HAS_FL);
7415
7416 mtx_lock(&sc->sfl_lock);
7417 FL_LOCK(fl);
7418 fl->flags |= FL_DOOMED;
7419 FL_UNLOCK(fl);
7420 callout_stop(&sc->sfl_callout);
7421 mtx_unlock(&sc->sfl_lock);
7422
7423 KASSERT((fl->flags & FL_STARVING) == 0,
7424 ("%s: still starving", __func__));
7425
7426 /* Release all buffers if hardware is no longer available. */
7427 if (!(iq->flags & IQ_HW_ALLOCATED))
7428 free_fl_buffers(sc, fl);
7429 }
7430 }
7431
7432 /*
7433 * Wait for all activity on all the queues of the VI to complete. It is assumed
7434 * that no new work is being enqueued by the hardware or the driver. That part
7435 * should be arranged before calling this function.
7436 */
7437 static void
quiesce_vi(struct vi_info * vi)7438 quiesce_vi(struct vi_info *vi)
7439 {
7440 int i;
7441 struct adapter *sc = vi->adapter;
7442 struct sge_rxq *rxq;
7443 struct sge_txq *txq;
7444 #ifdef TCP_OFFLOAD
7445 struct sge_ofld_rxq *ofld_rxq;
7446 #endif
7447 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7448 struct sge_ofld_txq *ofld_txq;
7449 #endif
7450
7451 if (!(vi->flags & VI_INIT_DONE))
7452 return;
7453
7454 for_each_txq(vi, i, txq) {
7455 quiesce_txq(txq);
7456 }
7457
7458 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7459 for_each_ofld_txq(vi, i, ofld_txq) {
7460 quiesce_wrq(&ofld_txq->wrq);
7461 }
7462 #endif
7463
7464 for_each_rxq(vi, i, rxq) {
7465 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl);
7466 }
7467
7468 #ifdef TCP_OFFLOAD
7469 for_each_ofld_rxq(vi, i, ofld_rxq) {
7470 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl);
7471 }
7472 #endif
7473 }
7474
7475 static int
t4_alloc_irq(struct adapter * sc,struct irq * irq,int rid,driver_intr_t * handler,void * arg,char * name)7476 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
7477 driver_intr_t *handler, void *arg, char *name)
7478 {
7479 int rc;
7480
7481 irq->rid = rid;
7482 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
7483 RF_SHAREABLE | RF_ACTIVE);
7484 if (irq->res == NULL) {
7485 device_printf(sc->dev,
7486 "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
7487 return (ENOMEM);
7488 }
7489
7490 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
7491 NULL, handler, arg, &irq->tag);
7492 if (rc != 0) {
7493 device_printf(sc->dev,
7494 "failed to setup interrupt for rid %d, name %s: %d\n",
7495 rid, name, rc);
7496 } else if (name)
7497 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
7498
7499 return (rc);
7500 }
7501
7502 static int
t4_free_irq(struct adapter * sc,struct irq * irq)7503 t4_free_irq(struct adapter *sc, struct irq *irq)
7504 {
7505 if (irq->tag)
7506 bus_teardown_intr(sc->dev, irq->res, irq->tag);
7507 if (irq->res)
7508 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
7509
7510 bzero(irq, sizeof(*irq));
7511
7512 return (0);
7513 }
7514
7515 static void
get_regs(struct adapter * sc,struct t4_regdump * regs,uint8_t * buf)7516 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
7517 {
7518
7519 regs->version = chip_id(sc) | chip_rev(sc) << 10;
7520 t4_get_regs(sc, buf, regs->len);
7521 }
7522
7523 #define A_PL_INDIR_CMD 0x1f8
7524
7525 #define S_PL_AUTOINC 31
7526 #define M_PL_AUTOINC 0x1U
7527 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC)
7528 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
7529
7530 #define S_PL_VFID 20
7531 #define M_PL_VFID 0xffU
7532 #define V_PL_VFID(x) ((x) << S_PL_VFID)
7533 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID)
7534
7535 #define S_PL_ADDR 0
7536 #define M_PL_ADDR 0xfffffU
7537 #define V_PL_ADDR(x) ((x) << S_PL_ADDR)
7538 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR)
7539
7540 #define A_PL_INDIR_DATA 0x1fc
7541
7542 static uint64_t
read_vf_stat(struct adapter * sc,u_int vin,int reg)7543 read_vf_stat(struct adapter *sc, u_int vin, int reg)
7544 {
7545 u32 stats[2];
7546
7547 if (sc->flags & IS_VF) {
7548 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
7549 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
7550 } else {
7551 mtx_assert(&sc->reg_lock, MA_OWNED);
7552 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
7553 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
7554 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
7555 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
7556 }
7557 return (((uint64_t)stats[1]) << 32 | stats[0]);
7558 }
7559
7560 static void
t4_get_vi_stats(struct adapter * sc,u_int vin,struct fw_vi_stats_vf * stats)7561 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
7562 {
7563
7564 #define GET_STAT(name) \
7565 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
7566
7567 if (!(sc->flags & IS_VF))
7568 mtx_lock(&sc->reg_lock);
7569 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES);
7570 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES);
7571 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES);
7572 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES);
7573 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES);
7574 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES);
7575 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES);
7576 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES);
7577 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
7578 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES);
7579 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES);
7580 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES);
7581 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES);
7582 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES);
7583 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES);
7584 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES);
7585 if (!(sc->flags & IS_VF))
7586 mtx_unlock(&sc->reg_lock);
7587
7588 #undef GET_STAT
7589 }
7590
7591 static void
t4_clr_vi_stats(struct adapter * sc,u_int vin)7592 t4_clr_vi_stats(struct adapter *sc, u_int vin)
7593 {
7594 int reg;
7595
7596 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
7597 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
7598 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
7599 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
7600 t4_write_reg(sc, A_PL_INDIR_DATA, 0);
7601 }
7602
7603 static void
vi_refresh_stats(struct vi_info * vi)7604 vi_refresh_stats(struct vi_info *vi)
7605 {
7606 struct timeval tv;
7607 const struct timeval interval = {0, 250000}; /* 250ms */
7608
7609 mtx_assert(&vi->tick_mtx, MA_OWNED);
7610
7611 if (vi->flags & VI_SKIP_STATS)
7612 return;
7613
7614 getmicrotime(&tv);
7615 timevalsub(&tv, &interval);
7616 if (timevalcmp(&tv, &vi->last_refreshed, <))
7617 return;
7618
7619 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats);
7620 getmicrotime(&vi->last_refreshed);
7621 }
7622
7623 static void
cxgbe_refresh_stats(struct vi_info * vi)7624 cxgbe_refresh_stats(struct vi_info *vi)
7625 {
7626 u_int i, v, tnl_cong_drops, chan_map;
7627 struct timeval tv;
7628 const struct timeval interval = {0, 250000}; /* 250ms */
7629 struct port_info *pi;
7630 struct adapter *sc;
7631
7632 mtx_assert(&vi->tick_mtx, MA_OWNED);
7633
7634 if (vi->flags & VI_SKIP_STATS)
7635 return;
7636
7637 getmicrotime(&tv);
7638 timevalsub(&tv, &interval);
7639 if (timevalcmp(&tv, &vi->last_refreshed, <))
7640 return;
7641
7642 pi = vi->pi;
7643 sc = vi->adapter;
7644 tnl_cong_drops = 0;
7645 t4_get_port_stats(sc, pi->hw_port, &pi->stats);
7646 chan_map = pi->rx_e_chan_map;
7647 while (chan_map) {
7648 i = ffs(chan_map) - 1;
7649 mtx_lock(&sc->reg_lock);
7650 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
7651 A_TP_MIB_TNL_CNG_DROP_0 + i);
7652 mtx_unlock(&sc->reg_lock);
7653 tnl_cong_drops += v;
7654 chan_map &= ~(1 << i);
7655 }
7656 pi->tnl_cong_drops = tnl_cong_drops;
7657 getmicrotime(&vi->last_refreshed);
7658 }
7659
7660 static void
cxgbe_tick(void * arg)7661 cxgbe_tick(void *arg)
7662 {
7663 struct vi_info *vi = arg;
7664
7665 MPASS(IS_MAIN_VI(vi));
7666 mtx_assert(&vi->tick_mtx, MA_OWNED);
7667
7668 cxgbe_refresh_stats(vi);
7669 callout_schedule(&vi->tick, hz);
7670 }
7671
7672 static void
vi_tick(void * arg)7673 vi_tick(void *arg)
7674 {
7675 struct vi_info *vi = arg;
7676
7677 mtx_assert(&vi->tick_mtx, MA_OWNED);
7678
7679 vi_refresh_stats(vi);
7680 callout_schedule(&vi->tick, hz);
7681 }
7682
7683 /* CIM inbound queues */
7684 static const char *t4_ibq[CIM_NUM_IBQ] = {
7685 "ibq_tp0", "ibq_tp1", "ibq_ulp", "ibq_sge0", "ibq_sge1", "ibq_ncsi"
7686 };
7687 static const char *t7_ibq[CIM_NUM_IBQ_T7] = {
7688 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0",
7689 "ibq_sge1", "ibq_ncsi", NULL, "ibq_ipc1", "ibq_ipc2", "ibq_ipc3",
7690 "ibq_ipc4", "ibq_ipc5", "ibq_ipc6", "ibq_ipc7"
7691 };
7692 static const char *t7_ibq_sec[] = {
7693 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0",
7694 NULL, NULL, NULL, "ibq_ipc0"
7695 };
7696
7697 /* CIM outbound queues */
7698 static const char *t4_obq[CIM_NUM_OBQ_T5] = {
7699 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi",
7700 "obq_sge_rx_q0", "obq_sge_rx_q1" /* These two are T5/T6 only */
7701 };
7702 static const char *t7_obq[CIM_NUM_OBQ_T7] = {
7703 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi",
7704 "obq_sge_rx_q0", NULL, NULL, "obq_ipc1", "obq_ipc2", "obq_ipc3",
7705 "obq_ipc4", "obq_ipc5", "obq_ipc6", "obq_ipc7"
7706 };
7707 static const char *t7_obq_sec[] = {
7708 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", NULL,
7709 "obq_sge_rx_q0", NULL, NULL, "obq_ipc0"
7710 };
7711
7712 static void
cim_sysctls(struct adapter * sc,struct sysctl_ctx_list * ctx,struct sysctl_oid_list * c0)7713 cim_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
7714 struct sysctl_oid_list *c0)
7715 {
7716 struct sysctl_oid *oid;
7717 struct sysctl_oid_list *children1;
7718 int i, j, qcount;
7719 char s[16];
7720 const char **qname;
7721
7722 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "cim",
7723 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM block");
7724 c0 = SYSCTL_CHILDREN(oid);
7725
7726 SYSCTL_ADD_U8(ctx, c0, OID_AUTO, "ncores", CTLFLAG_RD, NULL,
7727 sc->params.ncores, "# of active CIM cores");
7728
7729 for (i = 0; i < sc->params.ncores; i++) {
7730 snprintf(s, sizeof(s), "%u", i);
7731 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, s,
7732 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM core");
7733 children1 = SYSCTL_CHILDREN(oid);
7734
7735 /*
7736 * CTLFLAG_SKIP because the misc.devlog sysctl already displays
7737 * the log for all cores. Use this sysctl to get the log for a
7738 * particular core only.
7739 */
7740 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "devlog",
7741 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
7742 sc, i, sysctl_devlog, "A", "firmware's device log");
7743
7744 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "loadavg",
7745 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7746 sysctl_loadavg, "A",
7747 "microprocessor load averages (select firmwares only)");
7748
7749 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "qcfg",
7750 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7751 chip_id(sc) > CHELSIO_T6 ? sysctl_cim_qcfg_t7 : sysctl_cim_qcfg,
7752 "A", "Queue configuration");
7753
7754 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "la",
7755 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7756 sysctl_cim_la, "A", "Logic analyzer");
7757
7758 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "ma_la",
7759 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7760 sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
7761
7762 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "pif_la",
7763 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7764 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
7765
7766 /* IBQs */
7767 switch (chip_id(sc)) {
7768 case CHELSIO_T4:
7769 case CHELSIO_T5:
7770 case CHELSIO_T6:
7771 qname = &t4_ibq[0];
7772 qcount = nitems(t4_ibq);
7773 break;
7774 case CHELSIO_T7:
7775 default:
7776 if (i == 0) {
7777 qname = &t7_ibq[0];
7778 qcount = nitems(t7_ibq);
7779 } else {
7780 qname = &t7_ibq_sec[0];
7781 qcount = nitems(t7_ibq_sec);
7782 }
7783 break;
7784 }
7785 MPASS(qcount <= sc->chip_params->cim_num_ibq);
7786 for (j = 0; j < qcount; j++) {
7787 if (qname[j] == NULL)
7788 continue;
7789 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j],
7790 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7791 (i << 16) | j, sysctl_cim_ibq, "A", NULL);
7792 }
7793
7794 /* OBQs */
7795 switch (chip_id(sc)) {
7796 case CHELSIO_T4:
7797 qname = t4_obq;
7798 qcount = CIM_NUM_OBQ;
7799 break;
7800 case CHELSIO_T5:
7801 case CHELSIO_T6:
7802 qname = t4_obq;
7803 qcount = nitems(t4_obq);
7804 break;
7805 case CHELSIO_T7:
7806 default:
7807 if (i == 0) {
7808 qname = t7_obq;
7809 qcount = nitems(t7_obq);
7810 } else {
7811 qname = t7_obq_sec;
7812 qcount = nitems(t7_obq_sec);
7813 }
7814 break;
7815 }
7816 MPASS(qcount <= sc->chip_params->cim_num_obq);
7817 for (j = 0; j < qcount; j++) {
7818 if (qname[j] == NULL)
7819 continue;
7820 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j],
7821 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7822 (i << 16) | j, sysctl_cim_obq, "A", NULL);
7823 }
7824 }
7825 }
7826
7827 /*
7828 * Should match fw_caps_config_<foo> enums in t4fw_interface.h
7829 */
7830 static char *caps_decoder[] = {
7831 "\20\001IPMI\002NCSI", /* 0: NBM */
7832 "\20\001PPP\002QFC\003DCBX", /* 1: link */
7833 "\20\001INGRESS\002EGRESS", /* 2: switch */
7834 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */
7835 "\006HASHFILTER\007ETHOFLD",
7836 "\20\001TOE\002SENDPATH", /* 4: TOE */
7837 "\20\001RDDP\002RDMAC\003ROCEv2", /* 5: RDMA */
7838 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */
7839 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
7840 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
7841 "\007T10DIF"
7842 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
7843 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */
7844 "\004TLS_HW,\005TOE_IPSEC",
7845 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */
7846 "\004PO_INITIATOR\005PO_TARGET",
7847 "\20\001NVMe_TCP", /* 9: NVMe */
7848 };
7849
7850 void
t4_sysctls(struct adapter * sc)7851 t4_sysctls(struct adapter *sc)
7852 {
7853 struct sysctl_ctx_list *ctx = &sc->ctx;
7854 struct sysctl_oid *oid;
7855 struct sysctl_oid_list *children, *c0;
7856 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
7857
7858 /*
7859 * dev.t4nex.X.
7860 */
7861 oid = device_get_sysctl_tree(sc->dev);
7862 c0 = children = SYSCTL_CHILDREN(oid);
7863
7864 sc->sc_do_rxcopy = 1;
7865 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
7866 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
7867
7868 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
7869 sc->params.nports, "# of ports");
7870
7871 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
7872 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells,
7873 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A",
7874 "available doorbells");
7875
7876 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
7877 sc->params.vpd.cclk, "core clock frequency (in KHz)");
7878
7879 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
7880 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7881 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val),
7882 sysctl_int_array, "A", "interrupt holdoff timer values (us)");
7883
7884 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
7885 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7886 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val),
7887 sysctl_int_array, "A", "interrupt holdoff packet counter values");
7888
7889 t4_sge_sysctls(sc, ctx, children);
7890
7891 sc->lro_timeout = 100;
7892 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
7893 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
7894
7895 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
7896 &sc->debug_flags, 0, "flags to enable runtime debugging");
7897
7898 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iflags", CTLFLAG_RW,
7899 &sc->intr_flags, 0, "flags for the slow interrupt handler");
7900
7901 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
7902 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
7903
7904 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
7905 CTLFLAG_RD, sc->fw_version, 0, "firmware version");
7906
7907 if (sc->flags & IS_VF)
7908 return;
7909
7910 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
7911 NULL, chip_rev(sc), "chip hardware revision");
7912
7913 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
7914 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
7915
7916 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
7917 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
7918
7919 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
7920 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
7921
7922 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
7923 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
7924
7925 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
7926 CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
7927
7928 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
7929 sc->er_version, 0, "expansion ROM version");
7930
7931 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
7932 sc->bs_version, 0, "bootstrap firmware version");
7933
7934 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
7935 NULL, sc->params.scfg_vers, "serial config version");
7936
7937 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
7938 NULL, sc->params.vpd_vers, "VPD version");
7939
7940 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
7941 CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
7942
7943 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
7944 sc->cfcsum, "config file checksum");
7945
7946 #define SYSCTL_CAP(name, n, text) \
7947 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
7948 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \
7949 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \
7950 "available " text " capabilities")
7951
7952 SYSCTL_CAP(nbmcaps, 0, "NBM");
7953 SYSCTL_CAP(linkcaps, 1, "link");
7954 SYSCTL_CAP(switchcaps, 2, "switch");
7955 SYSCTL_CAP(nvmecaps, 9, "NVMe");
7956 SYSCTL_CAP(niccaps, 3, "NIC");
7957 SYSCTL_CAP(toecaps, 4, "TCP offload");
7958 SYSCTL_CAP(rdmacaps, 5, "RDMA");
7959 SYSCTL_CAP(iscsicaps, 6, "iSCSI");
7960 SYSCTL_CAP(cryptocaps, 7, "crypto");
7961 SYSCTL_CAP(fcoecaps, 8, "FCoE");
7962 #undef SYSCTL_CAP
7963
7964 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
7965 NULL, sc->tids.nftids, "number of filters");
7966
7967 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7968 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7969 sysctl_temperature, "I", "chip temperature (in Celsius)");
7970 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor",
7971 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7972 sysctl_reset_sensor, "I", "reset the chip's temperature sensor.");
7973
7974 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd",
7975 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd,
7976 "I", "core Vdd (in mV)");
7977
7978 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
7979 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS,
7980 sysctl_cpus, "A", "local CPUs");
7981
7982 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
7983 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS,
7984 sysctl_cpus, "A", "preferred CPUs for interrupts");
7985
7986 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
7987 &sc->swintr, 0, "software triggered interrupts");
7988
7989 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset",
7990 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I",
7991 "1 = reset adapter, 0 = zero reset counter");
7992
7993 /*
7994 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload.
7995 */
7996 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
7997 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL,
7998 "logs and miscellaneous information");
7999 children = SYSCTL_CHILDREN(oid);
8000
8001 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
8002 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8003 sysctl_cctrl, "A", "congestion control");
8004
8005 cim_sysctls(sc, ctx, children);
8006
8007 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
8008 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8009 sysctl_cpl_stats, "A", "CPL statistics");
8010
8011 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
8012 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8013 sysctl_ddp_stats, "A", "non-TCP DDP statistics");
8014
8015 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats",
8016 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8017 sysctl_tid_stats, "A", "tid stats");
8018
8019 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
8020 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, -1,
8021 sysctl_devlog, "A", "firmware's device log (all cores)");
8022
8023 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
8024 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8025 sysctl_fcoe_stats, "A", "FCoE statistics");
8026
8027 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
8028 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8029 sysctl_hw_sched, "A", "hardware scheduler ");
8030
8031 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
8032 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8033 sysctl_l2t, "A", "hardware L2 table");
8034
8035 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
8036 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8037 sysctl_smt, "A", "hardware source MAC table");
8038
8039 #ifdef INET6
8040 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
8041 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8042 sysctl_clip, "A", "active CLIP table entries");
8043 #endif
8044
8045 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
8046 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8047 sysctl_lb_stats, "A", "loopback statistics");
8048
8049 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
8050 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8051 sysctl_meminfo, "A", "memory regions");
8052
8053 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
8054 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8055 chip_id(sc) >= CHELSIO_T7 ? sysctl_mps_tcam_t7 :
8056 (chip_id(sc) >= CHELSIO_T6 ? sysctl_mps_tcam_t6 : sysctl_mps_tcam),
8057 "A", "MPS TCAM entries");
8058
8059 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
8060 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8061 sysctl_path_mtus, "A", "path MTUs");
8062
8063 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
8064 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8065 sysctl_pm_stats, "A", "PM statistics");
8066
8067 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
8068 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8069 sysctl_rdma_stats, "A", "RDMA statistics");
8070
8071 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
8072 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8073 sysctl_tcp_stats, "A", "TCP statistics");
8074
8075 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
8076 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8077 sysctl_tids, "A", "TID information");
8078
8079 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
8080 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8081 sysctl_tp_err_stats, "A", "TP error statistics");
8082
8083 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats",
8084 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8085 sysctl_tnl_stats, "A", "TP tunnel statistics");
8086
8087 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
8088 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
8089 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask");
8090
8091 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
8092 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8093 sysctl_tp_la, "A", "TP logic analyzer");
8094
8095 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
8096 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8097 sysctl_tx_rate, "A", "Tx rate");
8098
8099 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
8100 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8101 sysctl_ulprx_la, "A", "ULPRX logic analyzer");
8102
8103 if (chip_id(sc) >= CHELSIO_T5) {
8104 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
8105 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8106 sysctl_wcwr_stats, "A", "write combined work requests");
8107 }
8108
8109 #ifdef KERN_TLS
8110 if (is_ktls(sc)) {
8111 /*
8112 * dev.t4nex.0.tls.
8113 */
8114 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls",
8115 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters");
8116 children = SYSCTL_CHILDREN(oid);
8117
8118 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys",
8119 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS "
8120 "keys in work requests (1) or attempt to store TLS keys "
8121 "in card memory.");
8122
8123 if (is_t6(sc))
8124 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs",
8125 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to "
8126 "combine TCB field updates with TLS record work "
8127 "requests.");
8128 else {
8129 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "short_records",
8130 CTLFLAG_RW, &sc->tlst.short_records, 0,
8131 "Use cipher-only mode for short records.");
8132 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "partial_ghash",
8133 CTLFLAG_RW, &sc->tlst.partial_ghash, 0,
8134 "Use partial GHASH for AES-GCM records.");
8135 }
8136 }
8137 #endif
8138
8139 #ifdef TCP_OFFLOAD
8140 if (is_offload(sc)) {
8141 int i;
8142 char s[4];
8143
8144 /*
8145 * dev.t4nex.X.toe.
8146 */
8147 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe",
8148 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters");
8149 children = SYSCTL_CHILDREN(oid);
8150
8151 sc->tt.cong_algorithm = -1;
8152 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
8153 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
8154 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
8155 "3 = highspeed)");
8156
8157 sc->tt.sndbuf = -1;
8158 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
8159 &sc->tt.sndbuf, 0, "hardware send buffer");
8160
8161 sc->tt.ddp = 0;
8162 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
8163 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
8164 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
8165 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
8166
8167 sc->tt.rx_coalesce = -1;
8168 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
8169 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
8170
8171 sc->tt.tls = 1;
8172 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT |
8173 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I",
8174 "Inline TLS allowed");
8175
8176 sc->tt.tx_align = -1;
8177 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
8178 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
8179
8180 sc->tt.tx_zcopy = 0;
8181 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
8182 CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
8183 "Enable zero-copy aio_write(2)");
8184
8185 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
8186 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8187 "cop_managed_offloading", CTLFLAG_RW,
8188 &sc->tt.cop_managed_offloading, 0,
8189 "COP (Connection Offload Policy) controls all TOE offload");
8190
8191 sc->tt.autorcvbuf_inc = 16 * 1024;
8192 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
8193 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
8194 "autorcvbuf increment");
8195
8196 sc->tt.update_hc_on_pmtu_change = 1;
8197 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8198 "update_hc_on_pmtu_change", CTLFLAG_RW,
8199 &sc->tt.update_hc_on_pmtu_change, 0,
8200 "Update hostcache entry if the PMTU changes");
8201
8202 sc->tt.iso = 1;
8203 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW,
8204 &sc->tt.iso, 0, "Enable iSCSI segmentation offload");
8205
8206 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
8207 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8208 sysctl_tp_tick, "A", "TP timer tick (us)");
8209
8210 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
8211 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
8212 sysctl_tp_tick, "A", "TCP timestamp tick (us)");
8213
8214 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
8215 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
8216 sysctl_tp_tick, "A", "DACK tick (us)");
8217
8218 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
8219 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8220 sysctl_tp_dack_timer, "IU", "DACK timer (us)");
8221
8222 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
8223 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8224 A_TP_RXT_MIN, sysctl_tp_timer, "LU",
8225 "Minimum retransmit interval (us)");
8226
8227 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
8228 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8229 A_TP_RXT_MAX, sysctl_tp_timer, "LU",
8230 "Maximum retransmit interval (us)");
8231
8232 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
8233 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8234 A_TP_PERS_MIN, sysctl_tp_timer, "LU",
8235 "Persist timer min (us)");
8236
8237 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
8238 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8239 A_TP_PERS_MAX, sysctl_tp_timer, "LU",
8240 "Persist timer max (us)");
8241
8242 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
8243 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8244 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU",
8245 "Keepalive idle timer (us)");
8246
8247 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
8248 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8249 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU",
8250 "Keepalive interval timer (us)");
8251
8252 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
8253 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8254 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)");
8255
8256 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
8257 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8258 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU",
8259 "FINWAIT2 timer (us)");
8260
8261 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
8262 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8263 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU",
8264 "Number of SYN retransmissions before abort");
8265
8266 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
8267 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8268 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU",
8269 "Number of retransmissions before abort");
8270
8271 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
8272 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8273 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU",
8274 "Number of keepalive probes before abort");
8275
8276 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
8277 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
8278 "TOE retransmit backoffs");
8279 children = SYSCTL_CHILDREN(oid);
8280 for (i = 0; i < 16; i++) {
8281 snprintf(s, sizeof(s), "%u", i);
8282 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
8283 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8284 i, sysctl_tp_backoff, "IU",
8285 "TOE retransmit backoff");
8286 }
8287 }
8288 #endif
8289 }
8290
8291 void
vi_sysctls(struct vi_info * vi)8292 vi_sysctls(struct vi_info *vi)
8293 {
8294 struct sysctl_ctx_list *ctx = &vi->ctx;
8295 struct sysctl_oid *oid;
8296 struct sysctl_oid_list *children;
8297
8298 /*
8299 * dev.v?(cxgbe|cxl).X.
8300 */
8301 oid = device_get_sysctl_tree(vi->dev);
8302 children = SYSCTL_CHILDREN(oid);
8303
8304 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
8305 vi->viid, "VI identifer");
8306 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
8307 &vi->nrxq, 0, "# of rx queues");
8308 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
8309 &vi->ntxq, 0, "# of tx queues");
8310 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
8311 &vi->first_rxq, 0, "index of first rx queue");
8312 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
8313 &vi->first_txq, 0, "index of first tx queue");
8314 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
8315 vi->rss_base, "start of RSS indirection table");
8316 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
8317 vi->rss_size, "size of RSS indirection table");
8318
8319 if (IS_MAIN_VI(vi)) {
8320 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
8321 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8322 sysctl_noflowq, "IU",
8323 "Reserve queue 0 for non-flowid packets");
8324 }
8325
8326 if (vi->adapter->flags & IS_VF) {
8327 MPASS(vi->flags & TX_USES_VM_WR);
8328 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD,
8329 NULL, 1, "use VM work requests for transmit");
8330 } else {
8331 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr",
8332 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8333 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit");
8334 }
8335
8336 #ifdef TCP_OFFLOAD
8337 if (vi->nofldrxq != 0) {
8338 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
8339 &vi->nofldrxq, 0,
8340 "# of rx queues for offloaded TCP connections");
8341 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
8342 CTLFLAG_RD, &vi->first_ofld_rxq, 0,
8343 "index of first TOE rx queue");
8344 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
8345 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8346 sysctl_holdoff_tmr_idx_ofld, "I",
8347 "holdoff timer index for TOE queues");
8348 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
8349 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8350 sysctl_holdoff_pktc_idx_ofld, "I",
8351 "holdoff packet counter index for TOE queues");
8352 }
8353 #endif
8354 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
8355 if (vi->nofldtxq != 0) {
8356 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
8357 &vi->nofldtxq, 0,
8358 "# of tx queues for TOE/ETHOFLD");
8359 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
8360 CTLFLAG_RD, &vi->first_ofld_txq, 0,
8361 "index of first TOE/ETHOFLD tx queue");
8362 }
8363 #endif
8364 #ifdef DEV_NETMAP
8365 if (vi->nnmrxq != 0) {
8366 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
8367 &vi->nnmrxq, 0, "# of netmap rx queues");
8368 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
8369 &vi->nnmtxq, 0, "# of netmap tx queues");
8370 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
8371 CTLFLAG_RD, &vi->first_nm_rxq, 0,
8372 "index of first netmap rx queue");
8373 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
8374 CTLFLAG_RD, &vi->first_nm_txq, 0,
8375 "index of first netmap tx queue");
8376 }
8377 #endif
8378
8379 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
8380 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8381 sysctl_holdoff_tmr_idx, "I", "holdoff timer index");
8382 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
8383 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8384 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index");
8385
8386 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
8387 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8388 sysctl_qsize_rxq, "I", "rx queue size");
8389 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
8390 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8391 sysctl_qsize_txq, "I", "tx queue size");
8392 }
8393
8394 static void
cxgbe_sysctls(struct port_info * pi)8395 cxgbe_sysctls(struct port_info *pi)
8396 {
8397 struct sysctl_ctx_list *ctx = &pi->ctx;
8398 struct sysctl_oid *oid;
8399 struct sysctl_oid_list *children, *children2;
8400 struct adapter *sc = pi->adapter;
8401 int i;
8402 char name[16];
8403 static char *tc_flags = {"\20\1USER"};
8404
8405 /*
8406 * dev.cxgbe.X.
8407 */
8408 oid = device_get_sysctl_tree(pi->dev);
8409 children = SYSCTL_CHILDREN(oid);
8410
8411 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc",
8412 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8413 sysctl_linkdnrc, "A", "reason why link is down");
8414 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
8415 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
8416 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8417 sysctl_btphy, "I", "PHY temperature (in Celsius)");
8418 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
8419 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1,
8420 sysctl_btphy, "I", "PHY firmware version");
8421 }
8422
8423 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
8424 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8425 sysctl_pause_settings, "A",
8426 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
8427 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec",
8428 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A",
8429 "FEC in use on the link");
8430 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec",
8431 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8432 sysctl_requested_fec, "A",
8433 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)");
8434 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec",
8435 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A",
8436 "FEC recommended by the cable/transceiver");
8437 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
8438 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8439 sysctl_autoneg, "I",
8440 "autonegotiation (-1 = not supported)");
8441 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec",
8442 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8443 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config");
8444
8445 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD,
8446 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver");
8447 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD,
8448 &pi->link_cfg.pcaps, 0, "port capabilities");
8449 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD,
8450 &pi->link_cfg.acaps, 0, "advertised capabilities");
8451 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD,
8452 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities");
8453
8454 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
8455 port_top_speed(pi), "max speed (in Gbps)");
8456 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
8457 pi->mps_bg_map, "MPS buffer group map");
8458 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
8459 NULL, pi->rx_e_chan_map, "TP rx e-channel map");
8460 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL,
8461 pi->tx_chan, "TP tx c-channel");
8462 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL,
8463 pi->rx_chan, "TP rx c-channel");
8464
8465 if (sc->flags & IS_VF)
8466 return;
8467
8468 /*
8469 * dev.(cxgbe|cxl).X.tc.
8470 */
8471 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc",
8472 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
8473 "Tx scheduler traffic classes (cl_rl)");
8474 children2 = SYSCTL_CHILDREN(oid);
8475 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
8476 CTLFLAG_RW, &pi->sched_params->pktsize, 0,
8477 "pktsize for per-flow cl-rl (0 means up to the driver )");
8478 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
8479 CTLFLAG_RW, &pi->sched_params->burstsize, 0,
8480 "burstsize for per-flow cl-rl (0 means up to the driver)");
8481 for (i = 0; i < sc->params.nsched_cls; i++) {
8482 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
8483
8484 snprintf(name, sizeof(name), "%d", i);
8485 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
8486 SYSCTL_CHILDREN(oid), OID_AUTO, name,
8487 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class"));
8488 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state",
8489 CTLFLAG_RD, &tc->state, 0, "current state");
8490 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
8491 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags,
8492 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags");
8493 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
8494 CTLFLAG_RD, &tc->refcount, 0, "references to this class");
8495 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
8496 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8497 (pi->port_id << 16) | i, sysctl_tc_params, "A",
8498 "traffic class parameters");
8499 }
8500
8501 /*
8502 * dev.cxgbe.X.stats.
8503 */
8504 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats",
8505 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics");
8506 children = SYSCTL_CHILDREN(oid);
8507 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
8508 &pi->tx_parse_error, 0,
8509 "# of tx packets with invalid length or # of segments");
8510
8511 #define T4_LBSTAT(name, stat, desc) do { \
8512 if (sc->params.tp.lb_mode) { \
8513 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8514 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, \
8515 A_MPS_PORT_STAT_##stat##_L, \
8516 sysctl_handle_t4_portstat64, "QU", desc); \
8517 } else { \
8518 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8519 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8520 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \
8521 sysctl_handle_t4_reg64, "QU", desc); \
8522 } \
8523 } while (0)
8524
8525 T4_LBSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames");
8526 T4_LBSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames");
8527 T4_LBSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames");
8528 T4_LBSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames");
8529 T4_LBSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames");
8530 T4_LBSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames");
8531 T4_LBSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range");
8532 T4_LBSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range");
8533 T4_LBSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range");
8534 T4_LBSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range");
8535 T4_LBSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range");
8536 T4_LBSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range");
8537 T4_LBSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range");
8538 T4_LBSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames");
8539 T4_LBSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted");
8540 T4_LBSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted");
8541 T4_LBSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted");
8542 T4_LBSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted");
8543 T4_LBSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted");
8544 T4_LBSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted");
8545 T4_LBSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted");
8546 T4_LBSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted");
8547 T4_LBSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted");
8548
8549 T4_LBSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames");
8550 T4_LBSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames");
8551 T4_LBSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames");
8552 T4_LBSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames");
8553 T4_LBSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames");
8554 T4_LBSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU");
8555 T4_LBSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames");
8556 if (is_t6(sc)) {
8557 /* Read from port_stats and may be stale by up to 1s */
8558 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rx_fcs_err",
8559 CTLFLAG_RD, &pi->stats.rx_fcs_err,
8560 "# of frames received with bad FCS since last link up");
8561 } else {
8562 T4_LBSTAT(rx_fcs_err, RX_PORT_CRC_ERROR,
8563 "# of frames received with bad FCS");
8564 }
8565 T4_LBSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error");
8566 T4_LBSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors");
8567 T4_LBSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received");
8568 T4_LBSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range");
8569 T4_LBSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range");
8570 T4_LBSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range");
8571 T4_LBSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range");
8572 T4_LBSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range");
8573 T4_LBSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range");
8574 T4_LBSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range");
8575 T4_LBSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received");
8576 T4_LBSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received");
8577 T4_LBSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received");
8578 T4_LBSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received");
8579 T4_LBSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received");
8580 T4_LBSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received");
8581 T4_LBSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received");
8582 T4_LBSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received");
8583 T4_LBSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received");
8584 #undef T4_LBSTAT
8585
8586 #define T4_REGSTAT(name, stat, desc) do { \
8587 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8588 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8589 A_MPS_STAT_##stat##_L, sysctl_handle_t4_reg64, "QU", desc); \
8590 } while (0)
8591
8592 if (pi->mps_bg_map & 1) {
8593 T4_REGSTAT(rx_ovflow0, RX_BG_0_MAC_DROP_FRAME,
8594 "# drops due to buffer-group 0 overflows");
8595 T4_REGSTAT(rx_trunc0, RX_BG_0_MAC_TRUNC_FRAME,
8596 "# of buffer-group 0 truncated packets");
8597 }
8598 if (pi->mps_bg_map & 2) {
8599 T4_REGSTAT(rx_ovflow1, RX_BG_1_MAC_DROP_FRAME,
8600 "# drops due to buffer-group 1 overflows");
8601 T4_REGSTAT(rx_trunc1, RX_BG_1_MAC_TRUNC_FRAME,
8602 "# of buffer-group 1 truncated packets");
8603 }
8604 if (pi->mps_bg_map & 4) {
8605 T4_REGSTAT(rx_ovflow2, RX_BG_2_MAC_DROP_FRAME,
8606 "# drops due to buffer-group 2 overflows");
8607 T4_REGSTAT(rx_trunc2, RX_BG_2_MAC_TRUNC_FRAME,
8608 "# of buffer-group 2 truncated packets");
8609 }
8610 if (pi->mps_bg_map & 8) {
8611 T4_REGSTAT(rx_ovflow3, RX_BG_3_MAC_DROP_FRAME,
8612 "# drops due to buffer-group 3 overflows");
8613 T4_REGSTAT(rx_trunc3, RX_BG_3_MAC_TRUNC_FRAME,
8614 "# of buffer-group 3 truncated packets");
8615 }
8616 #undef T4_REGSTAT
8617 }
8618
8619 static int
sysctl_int_array(SYSCTL_HANDLER_ARGS)8620 sysctl_int_array(SYSCTL_HANDLER_ARGS)
8621 {
8622 int rc, *i, space = 0;
8623 struct sbuf sb;
8624
8625 sbuf_new_for_sysctl(&sb, NULL, 64, req);
8626 for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
8627 if (space)
8628 sbuf_printf(&sb, " ");
8629 sbuf_printf(&sb, "%d", *i);
8630 space = 1;
8631 }
8632 rc = sbuf_finish(&sb);
8633 sbuf_delete(&sb);
8634 return (rc);
8635 }
8636
8637 static int
sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)8638 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
8639 {
8640 int rc;
8641 struct sbuf *sb;
8642
8643 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8644 if (sb == NULL)
8645 return (ENOMEM);
8646
8647 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
8648 rc = sbuf_finish(sb);
8649 sbuf_delete(sb);
8650
8651 return (rc);
8652 }
8653
8654 static int
sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)8655 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
8656 {
8657 int rc;
8658 struct sbuf *sb;
8659
8660 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8661 if (sb == NULL)
8662 return (ENOMEM);
8663
8664 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
8665 rc = sbuf_finish(sb);
8666 sbuf_delete(sb);
8667
8668 return (rc);
8669 }
8670
8671 static int
sysctl_btphy(SYSCTL_HANDLER_ARGS)8672 sysctl_btphy(SYSCTL_HANDLER_ARGS)
8673 {
8674 struct port_info *pi = arg1;
8675 int op = arg2;
8676 struct adapter *sc = pi->adapter;
8677 u_int v;
8678 int rc;
8679
8680 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
8681 if (rc)
8682 return (rc);
8683 if (!hw_all_ok(sc))
8684 rc = ENXIO;
8685 else {
8686 /* XXX: magic numbers */
8687 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e,
8688 op ? 0x20 : 0xc820, &v);
8689 }
8690 end_synchronized_op(sc, 0);
8691 if (rc)
8692 return (rc);
8693 if (op == 0)
8694 v /= 256;
8695
8696 rc = sysctl_handle_int(oidp, &v, 0, req);
8697 return (rc);
8698 }
8699
8700 static int
sysctl_noflowq(SYSCTL_HANDLER_ARGS)8701 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
8702 {
8703 struct vi_info *vi = arg1;
8704 int rc, val;
8705
8706 val = vi->rsrv_noflowq;
8707 rc = sysctl_handle_int(oidp, &val, 0, req);
8708 if (rc != 0 || req->newptr == NULL)
8709 return (rc);
8710
8711 if ((val >= 1) && (vi->ntxq > 1))
8712 vi->rsrv_noflowq = 1;
8713 else
8714 vi->rsrv_noflowq = 0;
8715
8716 return (rc);
8717 }
8718
8719 static int
sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)8720 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)
8721 {
8722 struct vi_info *vi = arg1;
8723 struct adapter *sc = vi->adapter;
8724 int rc, val, i;
8725
8726 MPASS(!(sc->flags & IS_VF));
8727
8728 val = vi->flags & TX_USES_VM_WR ? 1 : 0;
8729 rc = sysctl_handle_int(oidp, &val, 0, req);
8730 if (rc != 0 || req->newptr == NULL)
8731 return (rc);
8732
8733 if (val != 0 && val != 1)
8734 return (EINVAL);
8735
8736 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8737 "t4txvm");
8738 if (rc)
8739 return (rc);
8740 if (!hw_all_ok(sc))
8741 rc = ENXIO;
8742 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) {
8743 /*
8744 * We don't want parse_pkt to run with one setting (VF or PF)
8745 * and then eth_tx to see a different setting but still use
8746 * stale information calculated by parse_pkt.
8747 */
8748 rc = EBUSY;
8749 } else {
8750 struct port_info *pi = vi->pi;
8751 struct sge_txq *txq;
8752 uint32_t ctrl0;
8753 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr;
8754
8755 if (val) {
8756 vi->flags |= TX_USES_VM_WR;
8757 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO);
8758 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8759 V_TXPKT_INTF(pi->hw_port));
8760 if (!(sc->flags & IS_VF))
8761 npkt--;
8762 } else {
8763 vi->flags &= ~TX_USES_VM_WR;
8764 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO);
8765 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8766 V_TXPKT_INTF(pi->hw_port) | V_TXPKT_PF(sc->pf) |
8767 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
8768 }
8769 for_each_txq(vi, i, txq) {
8770 txq->cpl_ctrl0 = ctrl0;
8771 txq->txp.max_npkt = npkt;
8772 }
8773 }
8774 end_synchronized_op(sc, LOCK_HELD);
8775 return (rc);
8776 }
8777
8778 static int
sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)8779 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
8780 {
8781 struct vi_info *vi = arg1;
8782 struct adapter *sc = vi->adapter;
8783 int idx, rc, i;
8784 struct sge_rxq *rxq;
8785 uint8_t v;
8786
8787 idx = vi->tmr_idx;
8788
8789 rc = sysctl_handle_int(oidp, &idx, 0, req);
8790 if (rc != 0 || req->newptr == NULL)
8791 return (rc);
8792
8793 if (idx < 0 || idx >= SGE_NTIMERS)
8794 return (EINVAL);
8795
8796 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8797 "t4tmr");
8798 if (rc)
8799 return (rc);
8800
8801 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
8802 for_each_rxq(vi, i, rxq) {
8803 #ifdef atomic_store_rel_8
8804 atomic_store_rel_8(&rxq->iq.intr_params, v);
8805 #else
8806 rxq->iq.intr_params = v;
8807 #endif
8808 }
8809 vi->tmr_idx = idx;
8810
8811 end_synchronized_op(sc, LOCK_HELD);
8812 return (0);
8813 }
8814
8815 static int
sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)8816 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
8817 {
8818 struct vi_info *vi = arg1;
8819 struct adapter *sc = vi->adapter;
8820 int idx, rc;
8821
8822 idx = vi->pktc_idx;
8823
8824 rc = sysctl_handle_int(oidp, &idx, 0, req);
8825 if (rc != 0 || req->newptr == NULL)
8826 return (rc);
8827
8828 if (idx < -1 || idx >= SGE_NCOUNTERS)
8829 return (EINVAL);
8830
8831 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8832 "t4pktc");
8833 if (rc)
8834 return (rc);
8835
8836 if (vi->flags & VI_INIT_DONE)
8837 rc = EBUSY; /* cannot be changed once the queues are created */
8838 else
8839 vi->pktc_idx = idx;
8840
8841 end_synchronized_op(sc, LOCK_HELD);
8842 return (rc);
8843 }
8844
8845 static int
sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)8846 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
8847 {
8848 struct vi_info *vi = arg1;
8849 struct adapter *sc = vi->adapter;
8850 int qsize, rc;
8851
8852 qsize = vi->qsize_rxq;
8853
8854 rc = sysctl_handle_int(oidp, &qsize, 0, req);
8855 if (rc != 0 || req->newptr == NULL)
8856 return (rc);
8857
8858 if (qsize < 128 || (qsize & 7))
8859 return (EINVAL);
8860
8861 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8862 "t4rxqs");
8863 if (rc)
8864 return (rc);
8865
8866 if (vi->flags & VI_INIT_DONE)
8867 rc = EBUSY; /* cannot be changed once the queues are created */
8868 else
8869 vi->qsize_rxq = qsize;
8870
8871 end_synchronized_op(sc, LOCK_HELD);
8872 return (rc);
8873 }
8874
8875 static int
sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)8876 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
8877 {
8878 struct vi_info *vi = arg1;
8879 struct adapter *sc = vi->adapter;
8880 int qsize, rc;
8881
8882 qsize = vi->qsize_txq;
8883
8884 rc = sysctl_handle_int(oidp, &qsize, 0, req);
8885 if (rc != 0 || req->newptr == NULL)
8886 return (rc);
8887
8888 if (qsize < 128 || qsize > 65536)
8889 return (EINVAL);
8890
8891 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8892 "t4txqs");
8893 if (rc)
8894 return (rc);
8895
8896 if (vi->flags & VI_INIT_DONE)
8897 rc = EBUSY; /* cannot be changed once the queues are created */
8898 else
8899 vi->qsize_txq = qsize;
8900
8901 end_synchronized_op(sc, LOCK_HELD);
8902 return (rc);
8903 }
8904
8905 static int
sysctl_pause_settings(SYSCTL_HANDLER_ARGS)8906 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
8907 {
8908 struct port_info *pi = arg1;
8909 struct adapter *sc = pi->adapter;
8910 struct link_config *lc = &pi->link_cfg;
8911 int rc;
8912
8913 if (req->newptr == NULL) {
8914 struct sbuf *sb;
8915 static char *bits = "\20\1RX\2TX\3AUTO";
8916
8917 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8918 if (sb == NULL)
8919 return (ENOMEM);
8920
8921 if (lc->link_ok) {
8922 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
8923 (lc->requested_fc & PAUSE_AUTONEG), bits);
8924 } else {
8925 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
8926 PAUSE_RX | PAUSE_AUTONEG), bits);
8927 }
8928 rc = sbuf_finish(sb);
8929 sbuf_delete(sb);
8930 } else {
8931 char s[2];
8932 int n;
8933
8934 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
8935 PAUSE_AUTONEG));
8936 s[1] = 0;
8937
8938 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8939 if (rc != 0)
8940 return(rc);
8941
8942 if (s[1] != 0)
8943 return (EINVAL);
8944 if (s[0] < '0' || s[0] > '9')
8945 return (EINVAL); /* not a number */
8946 n = s[0] - '0';
8947 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
8948 return (EINVAL); /* some other bit is set too */
8949
8950 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8951 "t4PAUSE");
8952 if (rc)
8953 return (rc);
8954 if (hw_all_ok(sc)) {
8955 PORT_LOCK(pi);
8956 lc->requested_fc = n;
8957 fixup_link_config(pi);
8958 if (pi->up_vis > 0)
8959 rc = apply_link_config(pi);
8960 set_current_media(pi);
8961 PORT_UNLOCK(pi);
8962 }
8963 end_synchronized_op(sc, 0);
8964 }
8965
8966 return (rc);
8967 }
8968
8969 static int
sysctl_link_fec(SYSCTL_HANDLER_ARGS)8970 sysctl_link_fec(SYSCTL_HANDLER_ARGS)
8971 {
8972 struct port_info *pi = arg1;
8973 struct link_config *lc = &pi->link_cfg;
8974 int rc;
8975 struct sbuf *sb;
8976
8977 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8978 if (sb == NULL)
8979 return (ENOMEM);
8980 if (lc->link_ok)
8981 sbuf_printf(sb, "%b", lc->fec, t4_fec_bits);
8982 else
8983 sbuf_printf(sb, "no link");
8984 rc = sbuf_finish(sb);
8985 sbuf_delete(sb);
8986
8987 return (rc);
8988 }
8989
8990 static int
sysctl_requested_fec(SYSCTL_HANDLER_ARGS)8991 sysctl_requested_fec(SYSCTL_HANDLER_ARGS)
8992 {
8993 struct port_info *pi = arg1;
8994 struct adapter *sc = pi->adapter;
8995 struct link_config *lc = &pi->link_cfg;
8996 int rc;
8997 int8_t old = lc->requested_fec;
8998
8999 if (req->newptr == NULL) {
9000 struct sbuf *sb;
9001
9002 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
9003 if (sb == NULL)
9004 return (ENOMEM);
9005
9006 sbuf_printf(sb, "%b", old, t4_fec_bits);
9007 rc = sbuf_finish(sb);
9008 sbuf_delete(sb);
9009 } else {
9010 char s[8];
9011 int n;
9012
9013 snprintf(s, sizeof(s), "%d", old == FEC_AUTO ? -1 :
9014 old & (M_FW_PORT_CAP32_FEC | FEC_MODULE));
9015
9016 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
9017 if (rc != 0)
9018 return(rc);
9019
9020 n = strtol(&s[0], NULL, 0);
9021 if (n < 0 || n & FEC_AUTO)
9022 n = FEC_AUTO;
9023 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE))
9024 return (EINVAL);/* some other bit is set too */
9025
9026 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
9027 "t4reqf");
9028 if (rc)
9029 return (rc);
9030 PORT_LOCK(pi);
9031 if (lc->requested_fec != old) {
9032 rc = EBUSY;
9033 goto done;
9034 }
9035 if (n == FEC_AUTO)
9036 lc->requested_fec = FEC_AUTO;
9037 else if (n == 0 || n == FEC_NONE)
9038 lc->requested_fec = FEC_NONE;
9039 else {
9040 if ((lc->pcaps |
9041 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) !=
9042 lc->pcaps) {
9043 rc = ENOTSUP;
9044 goto done;
9045 }
9046 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC |
9047 FEC_MODULE);
9048 }
9049 if (hw_all_ok(sc)) {
9050 fixup_link_config(pi);
9051 if (pi->up_vis > 0) {
9052 rc = apply_link_config(pi);
9053 if (rc != 0) {
9054 lc->requested_fec = old;
9055 if (rc == FW_EPROTO)
9056 rc = ENOTSUP;
9057 }
9058 }
9059 }
9060 done:
9061 PORT_UNLOCK(pi);
9062 end_synchronized_op(sc, 0);
9063 }
9064
9065 return (rc);
9066 }
9067
9068 static int
sysctl_module_fec(SYSCTL_HANDLER_ARGS)9069 sysctl_module_fec(SYSCTL_HANDLER_ARGS)
9070 {
9071 struct port_info *pi = arg1;
9072 struct adapter *sc = pi->adapter;
9073 struct link_config *lc = &pi->link_cfg;
9074 int rc;
9075 int8_t fec;
9076 struct sbuf *sb;
9077
9078 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
9079 if (sb == NULL)
9080 return (ENOMEM);
9081
9082 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) {
9083 rc = EBUSY;
9084 goto done;
9085 }
9086 if (!hw_all_ok(sc)) {
9087 rc = ENXIO;
9088 goto done;
9089 }
9090 PORT_LOCK(pi);
9091 if (pi->up_vis == 0) {
9092 /*
9093 * If all the interfaces are administratively down the firmware
9094 * does not report transceiver changes. Refresh port info here.
9095 * This is the only reason we have a synchronized op in this
9096 * function. Just PORT_LOCK would have been enough otherwise.
9097 */
9098 t4_update_port_info(pi);
9099 }
9100
9101 fec = lc->fec_hint;
9102 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE ||
9103 !fec_supported(lc->pcaps)) {
9104 PORT_UNLOCK(pi);
9105 sbuf_printf(sb, "n/a");
9106 } else {
9107 if (fec == 0)
9108 fec = FEC_NONE;
9109 PORT_UNLOCK(pi);
9110 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, t4_fec_bits);
9111 }
9112 rc = sbuf_finish(sb);
9113 done:
9114 sbuf_delete(sb);
9115 end_synchronized_op(sc, 0);
9116
9117 return (rc);
9118 }
9119
9120 static int
sysctl_autoneg(SYSCTL_HANDLER_ARGS)9121 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
9122 {
9123 struct port_info *pi = arg1;
9124 struct adapter *sc = pi->adapter;
9125 struct link_config *lc = &pi->link_cfg;
9126 int rc, val;
9127
9128 if (lc->pcaps & FW_PORT_CAP32_ANEG)
9129 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
9130 else
9131 val = -1;
9132 rc = sysctl_handle_int(oidp, &val, 0, req);
9133 if (rc != 0 || req->newptr == NULL)
9134 return (rc);
9135 if (val == 0)
9136 val = AUTONEG_DISABLE;
9137 else if (val == 1)
9138 val = AUTONEG_ENABLE;
9139 else
9140 val = AUTONEG_AUTO;
9141
9142 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
9143 "t4aneg");
9144 if (rc)
9145 return (rc);
9146 PORT_LOCK(pi);
9147 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
9148 rc = ENOTSUP;
9149 goto done;
9150 }
9151 lc->requested_aneg = val;
9152 if (hw_all_ok(sc)) {
9153 fixup_link_config(pi);
9154 if (pi->up_vis > 0)
9155 rc = apply_link_config(pi);
9156 set_current_media(pi);
9157 }
9158 done:
9159 PORT_UNLOCK(pi);
9160 end_synchronized_op(sc, 0);
9161 return (rc);
9162 }
9163
9164 static int
sysctl_force_fec(SYSCTL_HANDLER_ARGS)9165 sysctl_force_fec(SYSCTL_HANDLER_ARGS)
9166 {
9167 struct port_info *pi = arg1;
9168 struct adapter *sc = pi->adapter;
9169 struct link_config *lc = &pi->link_cfg;
9170 int rc, val;
9171
9172 val = lc->force_fec;
9173 MPASS(val >= -1 && val <= 1);
9174 rc = sysctl_handle_int(oidp, &val, 0, req);
9175 if (rc != 0 || req->newptr == NULL)
9176 return (rc);
9177 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC))
9178 return (ENOTSUP);
9179 if (val < -1 || val > 1)
9180 return (EINVAL);
9181
9182 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff");
9183 if (rc)
9184 return (rc);
9185 PORT_LOCK(pi);
9186 lc->force_fec = val;
9187 if (hw_all_ok(sc)) {
9188 fixup_link_config(pi);
9189 if (pi->up_vis > 0)
9190 rc = apply_link_config(pi);
9191 }
9192 PORT_UNLOCK(pi);
9193 end_synchronized_op(sc, 0);
9194 return (rc);
9195 }
9196
9197 static int
sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)9198 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
9199 {
9200 struct adapter *sc = arg1;
9201 int rc, reg = arg2;
9202 uint64_t val;
9203
9204 mtx_lock(&sc->reg_lock);
9205 if (hw_off_limits(sc))
9206 rc = ENXIO;
9207 else {
9208 rc = 0;
9209 val = t4_read_reg64(sc, reg);
9210 }
9211 mtx_unlock(&sc->reg_lock);
9212 if (rc == 0)
9213 rc = sysctl_handle_64(oidp, &val, 0, req);
9214 return (rc);
9215 }
9216
9217 static int
sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS)9218 sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS)
9219 {
9220 struct port_info *pi = arg1;
9221 struct adapter *sc = pi->adapter;
9222 int rc, i, reg = arg2;
9223 uint64_t val;
9224
9225 mtx_lock(&sc->reg_lock);
9226 if (hw_off_limits(sc))
9227 rc = ENXIO;
9228 else {
9229 val = 0;
9230 for (i = 0; i < sc->params.tp.lb_nchan; i++) {
9231 val += t4_read_reg64(sc,
9232 t4_port_reg(sc, pi->tx_chan + i, reg));
9233 }
9234 rc = 0;
9235 }
9236 mtx_unlock(&sc->reg_lock);
9237 if (rc == 0)
9238 rc = sysctl_handle_64(oidp, &val, 0, req);
9239 return (rc);
9240 }
9241
9242 static int
sysctl_temperature(SYSCTL_HANDLER_ARGS)9243 sysctl_temperature(SYSCTL_HANDLER_ARGS)
9244 {
9245 struct adapter *sc = arg1;
9246 int rc, t;
9247 uint32_t param, val;
9248
9249 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
9250 if (rc)
9251 return (rc);
9252 if (!hw_all_ok(sc))
9253 rc = ENXIO;
9254 else {
9255 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9256 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
9257 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
9258 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
9259 }
9260 end_synchronized_op(sc, 0);
9261 if (rc)
9262 return (rc);
9263
9264 /* unknown is returned as 0 but we display -1 in that case */
9265 t = val == 0 ? -1 : val;
9266
9267 rc = sysctl_handle_int(oidp, &t, 0, req);
9268 return (rc);
9269 }
9270
9271 static int
sysctl_vdd(SYSCTL_HANDLER_ARGS)9272 sysctl_vdd(SYSCTL_HANDLER_ARGS)
9273 {
9274 struct adapter *sc = arg1;
9275 int rc;
9276 uint32_t param, val;
9277
9278 if (sc->params.core_vdd == 0) {
9279 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
9280 "t4vdd");
9281 if (rc)
9282 return (rc);
9283 if (!hw_all_ok(sc))
9284 rc = ENXIO;
9285 else {
9286 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9287 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
9288 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
9289 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1,
9290 ¶m, &val);
9291 }
9292 end_synchronized_op(sc, 0);
9293 if (rc)
9294 return (rc);
9295 sc->params.core_vdd = val;
9296 }
9297
9298 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req));
9299 }
9300
9301 static int
sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)9302 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)
9303 {
9304 struct adapter *sc = arg1;
9305 int rc, v;
9306 uint32_t param, val;
9307
9308 v = sc->sensor_resets;
9309 rc = sysctl_handle_int(oidp, &v, 0, req);
9310 if (rc != 0 || req->newptr == NULL || v <= 0)
9311 return (rc);
9312
9313 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) ||
9314 chip_id(sc) < CHELSIO_T5)
9315 return (ENOTSUP);
9316
9317 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst");
9318 if (rc)
9319 return (rc);
9320 if (!hw_all_ok(sc))
9321 rc = ENXIO;
9322 else {
9323 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9324 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
9325 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR));
9326 val = 1;
9327 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
9328 }
9329 end_synchronized_op(sc, 0);
9330 if (rc == 0)
9331 sc->sensor_resets++;
9332 return (rc);
9333 }
9334
9335 static int
sysctl_loadavg(SYSCTL_HANDLER_ARGS)9336 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
9337 {
9338 struct adapter *sc = arg1;
9339 struct sbuf *sb;
9340 int rc;
9341 uint32_t param, val;
9342 uint8_t coreid = (uint8_t)arg2;
9343
9344 KASSERT(coreid < sc->params.ncores,
9345 ("%s: bad coreid %u\n", __func__, coreid));
9346
9347 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
9348 if (rc)
9349 return (rc);
9350 if (!hw_all_ok(sc))
9351 rc = ENXIO;
9352 else {
9353 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9354 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD) |
9355 V_FW_PARAMS_PARAM_Y(coreid);
9356 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
9357 }
9358 end_synchronized_op(sc, 0);
9359 if (rc)
9360 return (rc);
9361
9362 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9363 if (sb == NULL)
9364 return (ENOMEM);
9365
9366 if (val == 0xffffffff) {
9367 /* Only debug and custom firmwares report load averages. */
9368 sbuf_printf(sb, "not available");
9369 } else {
9370 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
9371 (val >> 16) & 0xff);
9372 }
9373 rc = sbuf_finish(sb);
9374 sbuf_delete(sb);
9375
9376 return (rc);
9377 }
9378
9379 static int
sysctl_cctrl(SYSCTL_HANDLER_ARGS)9380 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
9381 {
9382 struct adapter *sc = arg1;
9383 struct sbuf *sb;
9384 int rc, i;
9385 uint16_t incr[NMTUS][NCCTRL_WIN];
9386 static const char *dec_fac[] = {
9387 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
9388 "0.9375"
9389 };
9390
9391 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9392 if (sb == NULL)
9393 return (ENOMEM);
9394
9395 rc = 0;
9396 mtx_lock(&sc->reg_lock);
9397 if (hw_off_limits(sc))
9398 rc = ENXIO;
9399 else
9400 t4_read_cong_tbl(sc, incr);
9401 mtx_unlock(&sc->reg_lock);
9402 if (rc)
9403 goto done;
9404
9405 for (i = 0; i < NCCTRL_WIN; ++i) {
9406 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
9407 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
9408 incr[5][i], incr[6][i], incr[7][i]);
9409 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
9410 incr[8][i], incr[9][i], incr[10][i], incr[11][i],
9411 incr[12][i], incr[13][i], incr[14][i], incr[15][i],
9412 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
9413 }
9414
9415 rc = sbuf_finish(sb);
9416 done:
9417 sbuf_delete(sb);
9418 return (rc);
9419 }
9420
9421 static int
sysctl_cim_ibq(SYSCTL_HANDLER_ARGS)9422 sysctl_cim_ibq(SYSCTL_HANDLER_ARGS)
9423 {
9424 struct adapter *sc = arg1;
9425 struct sbuf *sb;
9426 int rc, i, n, qid, coreid;
9427 uint32_t *buf, *p;
9428
9429 qid = arg2 & 0xffff;
9430 coreid = arg2 >> 16;
9431
9432 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_ibq,
9433 ("%s: bad ibq qid %d\n", __func__, qid));
9434 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
9435 ("%s: bad coreid %d\n", __func__, coreid));
9436
9437 n = 4 * CIM_IBQ_SIZE;
9438 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9439 mtx_lock(&sc->reg_lock);
9440 if (hw_off_limits(sc))
9441 rc = -ENXIO;
9442 else
9443 rc = t4_read_cim_ibq_core(sc, coreid, qid, buf, n);
9444 mtx_unlock(&sc->reg_lock);
9445 if (rc < 0) {
9446 rc = -rc;
9447 goto done;
9448 }
9449 n = rc * sizeof(uint32_t); /* rc has # of words actually read */
9450
9451 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9452 if (sb == NULL) {
9453 rc = ENOMEM;
9454 goto done;
9455 }
9456 for (i = 0, p = buf; i < n; i += 16, p += 4)
9457 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
9458 p[2], p[3]);
9459 rc = sbuf_finish(sb);
9460 sbuf_delete(sb);
9461 done:
9462 free(buf, M_CXGBE);
9463 return (rc);
9464 }
9465
9466 static int
sysctl_cim_obq(SYSCTL_HANDLER_ARGS)9467 sysctl_cim_obq(SYSCTL_HANDLER_ARGS)
9468 {
9469 struct adapter *sc = arg1;
9470 struct sbuf *sb;
9471 int rc, i, n, qid, coreid;
9472 uint32_t *buf, *p;
9473
9474 qid = arg2 & 0xffff;
9475 coreid = arg2 >> 16;
9476
9477 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_obq,
9478 ("%s: bad obq qid %d\n", __func__, qid));
9479 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
9480 ("%s: bad coreid %d\n", __func__, coreid));
9481
9482 n = 6 * CIM_OBQ_SIZE * 4;
9483 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9484 mtx_lock(&sc->reg_lock);
9485 if (hw_off_limits(sc))
9486 rc = -ENXIO;
9487 else
9488 rc = t4_read_cim_obq_core(sc, coreid, qid, buf, n);
9489 mtx_unlock(&sc->reg_lock);
9490 if (rc < 0) {
9491 rc = -rc;
9492 goto done;
9493 }
9494 n = rc * sizeof(uint32_t); /* rc has # of words actually read */
9495
9496 rc = sysctl_wire_old_buffer(req, 0);
9497 if (rc != 0)
9498 goto done;
9499
9500 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9501 if (sb == NULL) {
9502 rc = ENOMEM;
9503 goto done;
9504 }
9505 for (i = 0, p = buf; i < n; i += 16, p += 4)
9506 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
9507 p[2], p[3]);
9508 rc = sbuf_finish(sb);
9509 sbuf_delete(sb);
9510 done:
9511 free(buf, M_CXGBE);
9512 return (rc);
9513 }
9514
9515 static void
sbuf_cim_la4(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9516 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9517 {
9518 uint32_t *p;
9519
9520 sbuf_printf(sb, "Status Data PC%s",
9521 cfg & F_UPDBGLACAPTPCONLY ? "" :
9522 " LS0Stat LS0Addr LS0Data");
9523
9524 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
9525 if (cfg & F_UPDBGLACAPTPCONLY) {
9526 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff,
9527 p[6], p[7]);
9528 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x",
9529 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
9530 p[4] & 0xff, p[5] >> 8);
9531 sbuf_printf(sb, "\n %02x %x%07x %x%07x",
9532 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9533 p[1] & 0xf, p[2] >> 4);
9534 } else {
9535 sbuf_printf(sb,
9536 "\n %02x %x%07x %x%07x %08x %08x "
9537 "%08x%08x%08x%08x",
9538 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9539 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
9540 p[6], p[7]);
9541 }
9542 }
9543 }
9544
9545 static void
sbuf_cim_la6(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9546 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9547 {
9548 uint32_t *p;
9549
9550 sbuf_printf(sb, "Status Inst Data PC%s",
9551 cfg & F_UPDBGLACAPTPCONLY ? "" :
9552 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data");
9553
9554 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
9555 if (cfg & F_UPDBGLACAPTPCONLY) {
9556 sbuf_printf(sb, "\n %02x %08x %08x %08x",
9557 p[3] & 0xff, p[2], p[1], p[0]);
9558 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x",
9559 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
9560 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
9561 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x",
9562 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
9563 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
9564 p[6] >> 16);
9565 } else {
9566 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x "
9567 "%08x %08x %08x %08x %08x %08x",
9568 (p[9] >> 16) & 0xff,
9569 p[9] & 0xffff, p[8] >> 16,
9570 p[8] & 0xffff, p[7] >> 16,
9571 p[7] & 0xffff, p[6] >> 16,
9572 p[2], p[1], p[0], p[5], p[4], p[3]);
9573 }
9574 }
9575 }
9576
9577 static int
sbuf_cim_la(struct adapter * sc,int coreid,struct sbuf * sb,int flags)9578 sbuf_cim_la(struct adapter *sc, int coreid, struct sbuf *sb, int flags)
9579 {
9580 uint32_t cfg, *buf;
9581 int rc;
9582
9583 MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9584 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
9585 M_ZERO | flags);
9586 if (buf == NULL)
9587 return (ENOMEM);
9588
9589 mtx_lock(&sc->reg_lock);
9590 if (hw_off_limits(sc))
9591 rc = ENXIO;
9592 else {
9593 rc = -t4_cim_read_core(sc, 1, coreid, A_UP_UP_DBG_LA_CFG, 1,
9594 &cfg);
9595 if (rc == 0)
9596 rc = -t4_cim_read_la_core(sc, coreid, buf, NULL);
9597 }
9598 mtx_unlock(&sc->reg_lock);
9599 if (rc == 0) {
9600 if (chip_id(sc) < CHELSIO_T6)
9601 sbuf_cim_la4(sc, sb, buf, cfg);
9602 else
9603 sbuf_cim_la6(sc, sb, buf, cfg);
9604 }
9605 free(buf, M_CXGBE);
9606 return (rc);
9607 }
9608
9609 static int
sysctl_cim_la(SYSCTL_HANDLER_ARGS)9610 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
9611 {
9612 struct adapter *sc = arg1;
9613 int coreid = arg2;
9614 struct sbuf *sb;
9615 int rc;
9616
9617 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9618 if (sb == NULL)
9619 return (ENOMEM);
9620
9621 rc = sbuf_cim_la(sc, coreid, sb, M_WAITOK);
9622 if (rc == 0)
9623 rc = sbuf_finish(sb);
9624 sbuf_delete(sb);
9625 return (rc);
9626 }
9627
9628 static void
dump_cim_regs(struct adapter * sc)9629 dump_cim_regs(struct adapter *sc)
9630 {
9631 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n",
9632 device_get_nameunit(sc->dev),
9633 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9634 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9635 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2),
9636 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN),
9637 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA));
9638 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n",
9639 device_get_nameunit(sc->dev),
9640 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9641 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9642 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800),
9643 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800),
9644 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN));
9645 }
9646
9647 static void
dump_cimla(struct adapter * sc)9648 dump_cimla(struct adapter *sc)
9649 {
9650 struct sbuf sb;
9651 int rc;
9652
9653 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9654 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n",
9655 device_get_nameunit(sc->dev));
9656 return;
9657 }
9658 rc = sbuf_cim_la(sc, 0, &sb, M_WAITOK);
9659 if (rc == 0) {
9660 rc = sbuf_finish(&sb);
9661 if (rc == 0) {
9662 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n",
9663 device_get_nameunit(sc->dev), sbuf_data(&sb));
9664 }
9665 }
9666 sbuf_delete(&sb);
9667 }
9668
9669 void
t4_os_cim_err(struct adapter * sc)9670 t4_os_cim_err(struct adapter *sc)
9671 {
9672 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
9673 }
9674
9675 static int
sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)9676 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
9677 {
9678 struct adapter *sc = arg1;
9679 u_int i;
9680 struct sbuf *sb;
9681 uint32_t *buf, *p;
9682 int rc;
9683
9684 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9685 if (sb == NULL)
9686 return (ENOMEM);
9687
9688 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
9689 M_ZERO | M_WAITOK);
9690
9691 rc = 0;
9692 mtx_lock(&sc->reg_lock);
9693 if (hw_off_limits(sc))
9694 rc = ENXIO;
9695 else
9696 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
9697 mtx_unlock(&sc->reg_lock);
9698 if (rc)
9699 goto done;
9700
9701 p = buf;
9702 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9703 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
9704 p[1], p[0]);
9705 }
9706
9707 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD");
9708 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9709 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u",
9710 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
9711 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
9712 (p[1] >> 2) | ((p[2] & 3) << 30),
9713 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
9714 p[0] & 1);
9715 }
9716 rc = sbuf_finish(sb);
9717 done:
9718 sbuf_delete(sb);
9719 free(buf, M_CXGBE);
9720 return (rc);
9721 }
9722
9723 static int
sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)9724 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
9725 {
9726 struct adapter *sc = arg1;
9727 u_int i;
9728 struct sbuf *sb;
9729 uint32_t *buf, *p;
9730 int rc;
9731
9732 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9733 if (sb == NULL)
9734 return (ENOMEM);
9735
9736 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
9737 M_ZERO | M_WAITOK);
9738
9739 rc = 0;
9740 mtx_lock(&sc->reg_lock);
9741 if (hw_off_limits(sc))
9742 rc = ENXIO;
9743 else
9744 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
9745 mtx_unlock(&sc->reg_lock);
9746 if (rc)
9747 goto done;
9748
9749 p = buf;
9750 sbuf_printf(sb, "Cntl ID DataBE Addr Data");
9751 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9752 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x",
9753 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
9754 p[4], p[3], p[2], p[1], p[0]);
9755 }
9756
9757 sbuf_printf(sb, "\n\nCntl ID Data");
9758 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9759 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x",
9760 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
9761 }
9762
9763 rc = sbuf_finish(sb);
9764 done:
9765 sbuf_delete(sb);
9766 free(buf, M_CXGBE);
9767 return (rc);
9768 }
9769
9770 static int
sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)9771 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
9772 {
9773 struct adapter *sc = arg1;
9774 struct sbuf *sb;
9775 int rc, i;
9776 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9777 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9778 uint16_t thres[CIM_NUM_IBQ];
9779 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
9780 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
9781 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
9782 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
9783 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */
9784 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */
9785 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */
9786 };
9787
9788 MPASS(chip_id(sc) < CHELSIO_T7);
9789
9790 cim_num_obq = sc->chip_params->cim_num_obq;
9791 if (is_t4(sc)) {
9792 ibq_rdaddr = A_UP_IBQ_0_RDADDR;
9793 obq_rdaddr = A_UP_OBQ_0_REALADDR;
9794 } else {
9795 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
9796 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
9797 }
9798 nq = CIM_NUM_IBQ + cim_num_obq;
9799
9800 mtx_lock(&sc->reg_lock);
9801 if (hw_off_limits(sc))
9802 rc = ENXIO;
9803 else {
9804 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
9805 if (rc == 0) {
9806 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq,
9807 obq_wr);
9808 if (rc == 0)
9809 t4_read_cimq_cfg(sc, base, size, thres);
9810 }
9811 }
9812 mtx_unlock(&sc->reg_lock);
9813 if (rc)
9814 return (rc);
9815
9816 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9817 if (sb == NULL)
9818 return (ENOMEM);
9819
9820 sbuf_printf(sb,
9821 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail");
9822
9823 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
9824 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u",
9825 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
9826 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9827 G_QUEREMFLITS(p[2]) * 16);
9828 for ( ; i < nq; i++, p += 4, wr += 2)
9829 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i],
9830 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
9831 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9832 G_QUEREMFLITS(p[2]) * 16);
9833
9834 rc = sbuf_finish(sb);
9835 sbuf_delete(sb);
9836
9837 return (rc);
9838 }
9839
9840 static int
sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS)9841 sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS)
9842 {
9843 struct adapter *sc = arg1;
9844 u_int coreid = arg2;
9845 struct sbuf *sb;
9846 int rc, i;
9847 u_int addr;
9848 uint16_t base[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7];
9849 uint16_t size[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7];
9850 uint16_t thres[CIM_NUM_IBQ_T7];
9851 uint32_t obq_wr[2 * CIM_NUM_OBQ_T7], *wr = obq_wr;
9852 uint32_t stat[4 * (CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7)], *p = stat;
9853 static const char * const qname_ibq_t7[] = {
9854 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "SGE1", "NC-SI",
9855 "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5", "IPC6", "IPC7",
9856 };
9857 static const char * const qname_obq_t7[] = {
9858 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", "SGE0-RX",
9859 "RSVD", "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5",
9860 "IPC6", "IPC7"
9861 };
9862 static const char * const qname_ibq_sec_t7[] = {
9863 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "RSVD", "RSVD",
9864 "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD",
9865 };
9866 static const char * const qname_obq_sec_t7[] = {
9867 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "RSVD", "SGE0-RX",
9868 "RSVD", "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD",
9869 "RSVD", "RSVD",
9870 };
9871
9872 MPASS(chip_id(sc) >= CHELSIO_T7);
9873
9874 mtx_lock(&sc->reg_lock);
9875 if (hw_off_limits(sc))
9876 rc = ENXIO;
9877 else {
9878 rc = -t4_cim_read_core(sc, 1, coreid,
9879 A_T7_UP_IBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_IBQ_T7, stat);
9880 if (rc != 0)
9881 goto unlock;
9882
9883 rc = -t4_cim_read_core(sc, 1, coreid,
9884 A_T7_UP_OBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_OBQ_T7,
9885 &stat[4 * CIM_NUM_IBQ_T7]);
9886 if (rc != 0)
9887 goto unlock;
9888
9889 addr = A_T7_UP_OBQ_0_SHADOW_REALADDR;
9890 for (i = 0; i < CIM_NUM_OBQ_T7 * 2; i++, addr += 8) {
9891 rc = -t4_cim_read_core(sc, 1, coreid, addr, 1,
9892 &obq_wr[i]);
9893 if (rc != 0)
9894 goto unlock;
9895 }
9896 t4_read_cimq_cfg_core(sc, coreid, base, size, thres);
9897 }
9898 unlock:
9899 mtx_unlock(&sc->reg_lock);
9900 if (rc)
9901 return (rc);
9902
9903 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9904 if (sb == NULL)
9905 return (ENOMEM);
9906
9907 sbuf_printf(sb,
9908 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail");
9909
9910 for (i = 0; i < CIM_NUM_IBQ_T7; i++, p += 4) {
9911 if (!size[i])
9912 continue;
9913
9914 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u",
9915 coreid == 0 ? qname_ibq_t7[i] : qname_ibq_sec_t7[i],
9916 base[i], size[i], thres[i], G_IBQRDADDR(p[0]) & 0xfff,
9917 G_IBQWRADDR(p[1]) & 0xfff, G_QUESOPCNT(p[3]),
9918 G_QUEEOPCNT(p[3]), G_T7_QUEREMFLITS(p[2]) * 16);
9919 }
9920
9921 for ( ; i < CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7; i++, p += 4, wr += 2) {
9922 if (!size[i])
9923 continue;
9924
9925 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u",
9926 coreid == 0 ? qname_obq_t7[i - CIM_NUM_IBQ_T7] :
9927 qname_obq_sec_t7[i - CIM_NUM_IBQ_T7],
9928 base[i], size[i], G_QUERDADDR(p[0]) & 0xfff,
9929 wr[0] << 1, G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9930 G_T7_QUEREMFLITS(p[2]) * 16);
9931 }
9932
9933 rc = sbuf_finish(sb);
9934 sbuf_delete(sb);
9935 return (rc);
9936 }
9937
9938 static int
sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)9939 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
9940 {
9941 struct adapter *sc = arg1;
9942 struct sbuf *sb;
9943 int rc;
9944 struct tp_cpl_stats stats;
9945
9946 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9947 if (sb == NULL)
9948 return (ENOMEM);
9949
9950 rc = 0;
9951 mtx_lock(&sc->reg_lock);
9952 if (hw_off_limits(sc))
9953 rc = ENXIO;
9954 else
9955 t4_tp_get_cpl_stats(sc, &stats, 0);
9956 mtx_unlock(&sc->reg_lock);
9957 if (rc)
9958 goto done;
9959
9960 if (sc->chip_params->nchan > 2) {
9961 sbuf_printf(sb, " channel 0 channel 1"
9962 " channel 2 channel 3");
9963 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u",
9964 stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
9965 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u",
9966 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
9967 } else {
9968 sbuf_printf(sb, " channel 0 channel 1");
9969 sbuf_printf(sb, "\nCPL requests: %10u %10u",
9970 stats.req[0], stats.req[1]);
9971 sbuf_printf(sb, "\nCPL responses: %10u %10u",
9972 stats.rsp[0], stats.rsp[1]);
9973 }
9974
9975 rc = sbuf_finish(sb);
9976 done:
9977 sbuf_delete(sb);
9978 return (rc);
9979 }
9980
9981 static int
sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)9982 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
9983 {
9984 struct adapter *sc = arg1;
9985 struct sbuf *sb;
9986 int rc;
9987 struct tp_usm_stats stats;
9988
9989 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9990 if (sb == NULL)
9991 return (ENOMEM);
9992
9993 rc = 0;
9994 mtx_lock(&sc->reg_lock);
9995 if (hw_off_limits(sc))
9996 rc = ENXIO;
9997 else
9998 t4_get_usm_stats(sc, &stats, 1);
9999 mtx_unlock(&sc->reg_lock);
10000 if (rc == 0) {
10001 sbuf_printf(sb, "Frames: %u\n", stats.frames);
10002 sbuf_printf(sb, "Octets: %ju\n", stats.octets);
10003 sbuf_printf(sb, "Drops: %u", stats.drops);
10004 rc = sbuf_finish(sb);
10005 }
10006 sbuf_delete(sb);
10007
10008 return (rc);
10009 }
10010
10011 static int
sysctl_tid_stats(SYSCTL_HANDLER_ARGS)10012 sysctl_tid_stats(SYSCTL_HANDLER_ARGS)
10013 {
10014 struct adapter *sc = arg1;
10015 struct sbuf *sb;
10016 int rc;
10017 struct tp_tid_stats stats;
10018
10019 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10020 if (sb == NULL)
10021 return (ENOMEM);
10022
10023 rc = 0;
10024 mtx_lock(&sc->reg_lock);
10025 if (hw_off_limits(sc))
10026 rc = ENXIO;
10027 else
10028 t4_tp_get_tid_stats(sc, &stats, 1);
10029 mtx_unlock(&sc->reg_lock);
10030 if (rc == 0) {
10031 sbuf_printf(sb, "Delete: %u\n", stats.del);
10032 sbuf_printf(sb, "Invalidate: %u\n", stats.inv);
10033 sbuf_printf(sb, "Active: %u\n", stats.act);
10034 sbuf_printf(sb, "Passive: %u", stats.pas);
10035 rc = sbuf_finish(sb);
10036 }
10037 sbuf_delete(sb);
10038
10039 return (rc);
10040 }
10041
10042 static const char * const devlog_level_strings[] = {
10043 [FW_DEVLOG_LEVEL_EMERG] = "EMERG",
10044 [FW_DEVLOG_LEVEL_CRIT] = "CRIT",
10045 [FW_DEVLOG_LEVEL_ERR] = "ERR",
10046 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE",
10047 [FW_DEVLOG_LEVEL_INFO] = "INFO",
10048 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG"
10049 };
10050
10051 static const char * const devlog_facility_strings[] = {
10052 [FW_DEVLOG_FACILITY_CORE] = "CORE",
10053 [FW_DEVLOG_FACILITY_CF] = "CF",
10054 [FW_DEVLOG_FACILITY_SCHED] = "SCHED",
10055 [FW_DEVLOG_FACILITY_TIMER] = "TIMER",
10056 [FW_DEVLOG_FACILITY_RES] = "RES",
10057 [FW_DEVLOG_FACILITY_HW] = "HW",
10058 [FW_DEVLOG_FACILITY_FLR] = "FLR",
10059 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ",
10060 [FW_DEVLOG_FACILITY_PHY] = "PHY",
10061 [FW_DEVLOG_FACILITY_MAC] = "MAC",
10062 [FW_DEVLOG_FACILITY_PORT] = "PORT",
10063 [FW_DEVLOG_FACILITY_VI] = "VI",
10064 [FW_DEVLOG_FACILITY_FILTER] = "FILTER",
10065 [FW_DEVLOG_FACILITY_ACL] = "ACL",
10066 [FW_DEVLOG_FACILITY_TM] = "TM",
10067 [FW_DEVLOG_FACILITY_QFC] = "QFC",
10068 [FW_DEVLOG_FACILITY_DCB] = "DCB",
10069 [FW_DEVLOG_FACILITY_ETH] = "ETH",
10070 [FW_DEVLOG_FACILITY_OFLD] = "OFLD",
10071 [FW_DEVLOG_FACILITY_RI] = "RI",
10072 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI",
10073 [FW_DEVLOG_FACILITY_FCOE] = "FCOE",
10074 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI",
10075 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE",
10076 [FW_DEVLOG_FACILITY_CHNET] = "CHNET",
10077 };
10078
10079 static int
sbuf_devlog(struct adapter * sc,int coreid,struct sbuf * sb,int flags)10080 sbuf_devlog(struct adapter *sc, int coreid, struct sbuf *sb, int flags)
10081 {
10082 int i, j, rc, nentries, first = 0;
10083 struct devlog_params *dparams = &sc->params.devlog;
10084 struct fw_devlog_e *buf, *e;
10085 uint32_t addr, size;
10086 uint64_t ftstamp = UINT64_MAX;
10087
10088 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
10089 ("%s: bad coreid %d\n", __func__, coreid));
10090
10091 if (dparams->addr == 0)
10092 return (ENXIO);
10093
10094 size = dparams->size / sc->params.ncores;
10095 addr = dparams->addr + coreid * size;
10096
10097 MPASS(flags == M_WAITOK || flags == M_NOWAIT);
10098 buf = malloc(size, M_CXGBE, M_ZERO | flags);
10099 if (buf == NULL)
10100 return (ENOMEM);
10101
10102 mtx_lock(&sc->reg_lock);
10103 if (hw_off_limits(sc))
10104 rc = ENXIO;
10105 else
10106 rc = read_via_memwin(sc, 1, addr, (void *)buf, size);
10107 mtx_unlock(&sc->reg_lock);
10108 if (rc != 0)
10109 goto done;
10110
10111 nentries = size / sizeof(struct fw_devlog_e);
10112 for (i = 0; i < nentries; i++) {
10113 e = &buf[i];
10114
10115 if (e->timestamp == 0)
10116 break; /* end */
10117
10118 e->timestamp = be64toh(e->timestamp);
10119 e->seqno = be32toh(e->seqno);
10120 for (j = 0; j < 8; j++)
10121 e->params[j] = be32toh(e->params[j]);
10122
10123 if (e->timestamp < ftstamp) {
10124 ftstamp = e->timestamp;
10125 first = i;
10126 }
10127 }
10128
10129 if (buf[first].timestamp == 0)
10130 goto done; /* nothing in the log */
10131
10132 sbuf_printf(sb, "%10s %15s %8s %8s %s\n",
10133 "Seq#", "Tstamp", "Level", "Facility", "Message");
10134
10135 i = first;
10136 do {
10137 e = &buf[i];
10138 if (e->timestamp == 0)
10139 break; /* end */
10140
10141 sbuf_printf(sb, "%10d %15ju %8s %8s ",
10142 e->seqno, e->timestamp,
10143 (e->level < nitems(devlog_level_strings) ?
10144 devlog_level_strings[e->level] : "UNKNOWN"),
10145 (e->facility < nitems(devlog_facility_strings) ?
10146 devlog_facility_strings[e->facility] : "UNKNOWN"));
10147 sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
10148 e->params[2], e->params[3], e->params[4],
10149 e->params[5], e->params[6], e->params[7]);
10150
10151 if (++i == nentries)
10152 i = 0;
10153 } while (i != first);
10154 done:
10155 free(buf, M_CXGBE);
10156 return (rc);
10157 }
10158
10159 static int
sysctl_devlog(SYSCTL_HANDLER_ARGS)10160 sysctl_devlog(SYSCTL_HANDLER_ARGS)
10161 {
10162 struct adapter *sc = arg1;
10163 int rc, i, coreid = arg2;
10164 struct sbuf *sb;
10165
10166 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10167 if (sb == NULL)
10168 return (ENOMEM);
10169 if (coreid == -1) {
10170 /* -1 means all cores */
10171 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) {
10172 if (sc->params.ncores > 0)
10173 sbuf_printf(sb, "=== CIM core %u ===\n", i);
10174 rc = sbuf_devlog(sc, i, sb, M_WAITOK);
10175 }
10176 } else {
10177 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
10178 ("%s: bad coreid %d\n", __func__, coreid));
10179 rc = sbuf_devlog(sc, coreid, sb, M_WAITOK);
10180 }
10181 if (rc == 0)
10182 rc = sbuf_finish(sb);
10183 sbuf_delete(sb);
10184 return (rc);
10185 }
10186
10187 static void
dump_devlog(struct adapter * sc)10188 dump_devlog(struct adapter *sc)
10189 {
10190 int rc, i;
10191 struct sbuf sb;
10192
10193 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
10194 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n",
10195 device_get_nameunit(sc->dev));
10196 return;
10197 }
10198 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) {
10199 if (sc->params.ncores > 0)
10200 sbuf_printf(&sb, "=== CIM core %u ===\n", i);
10201 rc = sbuf_devlog(sc, i, &sb, M_WAITOK);
10202 }
10203 if (rc == 0) {
10204 sbuf_finish(&sb);
10205 log(LOG_DEBUG, "%s: device log follows.\n%s",
10206 device_get_nameunit(sc->dev), sbuf_data(&sb));
10207 }
10208 sbuf_delete(&sb);
10209 }
10210
10211 static int
sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)10212 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
10213 {
10214 struct adapter *sc = arg1;
10215 struct sbuf *sb;
10216 int rc;
10217 struct tp_fcoe_stats stats[MAX_NCHAN];
10218 int i, nchan = sc->chip_params->nchan;
10219
10220 rc = 0;
10221 mtx_lock(&sc->reg_lock);
10222 if (hw_off_limits(sc))
10223 rc = ENXIO;
10224 else {
10225 for (i = 0; i < nchan; i++)
10226 t4_get_fcoe_stats(sc, i, &stats[i], 1);
10227 }
10228 mtx_unlock(&sc->reg_lock);
10229 if (rc != 0)
10230 return (rc);
10231
10232 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10233 if (sb == NULL)
10234 return (ENOMEM);
10235
10236 if (nchan > 2) {
10237 sbuf_printf(sb, " channel 0 channel 1"
10238 " channel 2 channel 3");
10239 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju",
10240 stats[0].octets_ddp, stats[1].octets_ddp,
10241 stats[2].octets_ddp, stats[3].octets_ddp);
10242 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u",
10243 stats[0].frames_ddp, stats[1].frames_ddp,
10244 stats[2].frames_ddp, stats[3].frames_ddp);
10245 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
10246 stats[0].frames_drop, stats[1].frames_drop,
10247 stats[2].frames_drop, stats[3].frames_drop);
10248 } else {
10249 sbuf_printf(sb, " channel 0 channel 1");
10250 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju",
10251 stats[0].octets_ddp, stats[1].octets_ddp);
10252 sbuf_printf(sb, "\nframesDDP: %16u %16u",
10253 stats[0].frames_ddp, stats[1].frames_ddp);
10254 sbuf_printf(sb, "\nframesDrop: %16u %16u",
10255 stats[0].frames_drop, stats[1].frames_drop);
10256 }
10257
10258 rc = sbuf_finish(sb);
10259 sbuf_delete(sb);
10260
10261 return (rc);
10262 }
10263
10264 static int
sysctl_hw_sched(SYSCTL_HANDLER_ARGS)10265 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
10266 {
10267 struct adapter *sc = arg1;
10268 struct sbuf *sb;
10269 int rc, i;
10270 unsigned int map, kbps, ipg, mode;
10271 unsigned int pace_tab[NTX_SCHED];
10272
10273 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req);
10274 if (sb == NULL)
10275 return (ENOMEM);
10276
10277 mtx_lock(&sc->reg_lock);
10278 if (hw_off_limits(sc)) {
10279 mtx_unlock(&sc->reg_lock);
10280 rc = ENXIO;
10281 goto done;
10282 }
10283
10284 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
10285 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
10286 t4_read_pace_tbl(sc, pace_tab);
10287 mtx_unlock(&sc->reg_lock);
10288
10289 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) "
10290 "Class IPG (0.1 ns) Flow IPG (us)");
10291
10292 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
10293 t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
10294 sbuf_printf(sb, "\n %u %-5s %u ", i,
10295 (mode & (1 << i)) ? "flow" : "class", map & 3);
10296 if (kbps)
10297 sbuf_printf(sb, "%9u ", kbps);
10298 else
10299 sbuf_printf(sb, " disabled ");
10300
10301 if (ipg)
10302 sbuf_printf(sb, "%13u ", ipg);
10303 else
10304 sbuf_printf(sb, " disabled ");
10305
10306 if (pace_tab[i])
10307 sbuf_printf(sb, "%10u", pace_tab[i]);
10308 else
10309 sbuf_printf(sb, " disabled");
10310 }
10311 rc = sbuf_finish(sb);
10312 done:
10313 sbuf_delete(sb);
10314 return (rc);
10315 }
10316
10317 static int
sysctl_lb_stats(SYSCTL_HANDLER_ARGS)10318 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
10319 {
10320 struct adapter *sc = arg1;
10321 struct sbuf *sb;
10322 int rc, i, j;
10323 uint64_t *p0, *p1;
10324 struct lb_port_stats s[2];
10325 static const char *stat_name[] = {
10326 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
10327 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
10328 "Frames128To255:", "Frames256To511:", "Frames512To1023:",
10329 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
10330 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
10331 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
10332 "BG2FramesTrunc:", "BG3FramesTrunc:"
10333 };
10334
10335 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10336 if (sb == NULL)
10337 return (ENOMEM);
10338
10339 memset(s, 0, sizeof(s));
10340
10341 rc = 0;
10342 for (i = 0; i < sc->chip_params->nchan; i += 2) {
10343 mtx_lock(&sc->reg_lock);
10344 if (hw_off_limits(sc))
10345 rc = ENXIO;
10346 else {
10347 t4_get_lb_stats(sc, i, &s[0]);
10348 t4_get_lb_stats(sc, i + 1, &s[1]);
10349 }
10350 mtx_unlock(&sc->reg_lock);
10351 if (rc != 0)
10352 break;
10353
10354 p0 = &s[0].octets;
10355 p1 = &s[1].octets;
10356 sbuf_printf(sb, "%s Loopback %u"
10357 " Loopback %u", i == 0 ? "" : "\n", i, i + 1);
10358
10359 for (j = 0; j < nitems(stat_name); j++)
10360 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
10361 *p0++, *p1++);
10362 }
10363
10364 if (rc == 0)
10365 rc = sbuf_finish(sb);
10366 sbuf_delete(sb);
10367
10368 return (rc);
10369 }
10370
10371 static int
sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)10372 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
10373 {
10374 int rc = 0;
10375 struct port_info *pi = arg1;
10376 struct link_config *lc = &pi->link_cfg;
10377 struct sbuf *sb;
10378
10379 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
10380 if (sb == NULL)
10381 return (ENOMEM);
10382
10383 if (lc->link_ok || lc->link_down_rc == 255)
10384 sbuf_printf(sb, "n/a");
10385 else
10386 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
10387
10388 rc = sbuf_finish(sb);
10389 sbuf_delete(sb);
10390
10391 return (rc);
10392 }
10393
10394 struct mem_desc {
10395 uint64_t base;
10396 uint64_t limit;
10397 u_int idx;
10398 };
10399
10400 static int
mem_desc_cmp(const void * a,const void * b)10401 mem_desc_cmp(const void *a, const void *b)
10402 {
10403 const uint64_t v1 = ((const struct mem_desc *)a)->base;
10404 const uint64_t v2 = ((const struct mem_desc *)b)->base;
10405
10406 if (v1 < v2)
10407 return (-1);
10408 else if (v1 > v2)
10409 return (1);
10410
10411 return (0);
10412 }
10413
10414 static void
mem_region_show(struct sbuf * sb,const char * name,uint64_t from,uint64_t to)10415 mem_region_show(struct sbuf *sb, const char *name, uint64_t from, uint64_t to)
10416 {
10417 uintmax_t size;
10418
10419 if (from == to)
10420 return;
10421
10422 size = to - from + 1;
10423 if (size == 0)
10424 return;
10425
10426 if (from > UINT32_MAX || to > UINT32_MAX)
10427 sbuf_printf(sb, "%-18s 0x%012jx-0x%012jx [%ju]\n", name,
10428 (uintmax_t)from, (uintmax_t)to, size);
10429 else
10430 sbuf_printf(sb, "%-18s 0x%08jx-0x%08jx [%ju]\n", name,
10431 (uintmax_t)from, (uintmax_t)to, size);
10432 }
10433
10434 static int
sysctl_meminfo(SYSCTL_HANDLER_ARGS)10435 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
10436 {
10437 struct adapter *sc = arg1;
10438 struct sbuf *sb;
10439 int rc, i, n, nchan;
10440 uint32_t lo, hi, used, free, alloc;
10441 static const char *memory[] = {
10442 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:"
10443 };
10444 static const char *region[] = {
10445 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
10446 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
10447 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
10448 "TDDP region:", "TPT region:", "STAG region:", "RQ region:",
10449 "RQUDP region:", "PBL region:", "TXPBL region:",
10450 "TLSKey region:", "RRQ region:", "NVMe STAG region:",
10451 "NVMe RQ region:", "NVMe RXPBL region:", "NVMe TPT region:",
10452 "NVMe TXPBL region:", "DBVFIFO region:", "ULPRX state:",
10453 "ULPTX state:", "RoCE RRQ region:", "On-chip queues:",
10454 };
10455 struct mem_desc avail[4];
10456 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */
10457 struct mem_desc *md;
10458
10459 rc = sysctl_wire_old_buffer(req, 0);
10460 if (rc != 0)
10461 return (rc);
10462
10463 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10464 if (sb == NULL)
10465 return (ENOMEM);
10466
10467 for (i = 0; i < nitems(mem); i++) {
10468 mem[i].limit = 0;
10469 mem[i].idx = i;
10470 }
10471
10472 mtx_lock(&sc->reg_lock);
10473 if (hw_off_limits(sc)) {
10474 rc = ENXIO;
10475 goto done;
10476 }
10477
10478 /* Find and sort the populated memory ranges */
10479 i = 0;
10480 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
10481 if (lo & F_EDRAM0_ENABLE) {
10482 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
10483 if (chip_id(sc) >= CHELSIO_T7) {
10484 avail[i].base = (uint64_t)G_T7_EDRAM0_BASE(hi) << 20;
10485 avail[i].limit = avail[i].base +
10486 (G_T7_EDRAM0_SIZE(hi) << 20);
10487 } else {
10488 avail[i].base = (uint64_t)G_EDRAM0_BASE(hi) << 20;
10489 avail[i].limit = avail[i].base +
10490 (G_EDRAM0_SIZE(hi) << 20);
10491 }
10492 avail[i].idx = 0;
10493 i++;
10494 }
10495 if (lo & F_EDRAM1_ENABLE) {
10496 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
10497 if (chip_id(sc) >= CHELSIO_T7) {
10498 avail[i].base = (uint64_t)G_T7_EDRAM1_BASE(hi) << 20;
10499 avail[i].limit = avail[i].base +
10500 (G_T7_EDRAM1_SIZE(hi) << 20);
10501 } else {
10502 avail[i].base = (uint64_t)G_EDRAM1_BASE(hi) << 20;
10503 avail[i].limit = avail[i].base +
10504 (G_EDRAM1_SIZE(hi) << 20);
10505 }
10506 avail[i].idx = 1;
10507 i++;
10508 }
10509 if (lo & F_EXT_MEM_ENABLE) {
10510 switch (chip_id(sc)) {
10511 case CHELSIO_T4:
10512 case CHELSIO_T6:
10513 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
10514 avail[i].base = (uint64_t)G_EXT_MEM_BASE(hi) << 20;
10515 avail[i].limit = avail[i].base +
10516 (G_EXT_MEM_SIZE(hi) << 20);
10517 avail[i].idx = 2;
10518 break;
10519 case CHELSIO_T5:
10520 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR);
10521 avail[i].base = (uint64_t)G_EXT_MEM0_BASE(hi) << 20;
10522 avail[i].limit = avail[i].base +
10523 (G_EXT_MEM0_SIZE(hi) << 20);
10524 avail[i].idx = 3; /* Call it MC0 for T5 */
10525 break;
10526 default:
10527 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR);
10528 avail[i].base = (uint64_t)G_T7_EXT_MEM0_BASE(hi) << 20;
10529 avail[i].limit = avail[i].base +
10530 (G_T7_EXT_MEM0_SIZE(hi) << 20);
10531 avail[i].idx = 3; /* Call it MC0 for T7+ */
10532 break;
10533 }
10534 i++;
10535 }
10536 if (lo & F_EXT_MEM1_ENABLE && !(lo & F_MC_SPLIT)) {
10537 /* Only T5 and T7+ have 2 MCs. */
10538 MPASS(is_t5(sc) || chip_id(sc) >= CHELSIO_T7);
10539
10540 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
10541 if (chip_id(sc) >= CHELSIO_T7) {
10542 avail[i].base = (uint64_t)G_T7_EXT_MEM1_BASE(hi) << 20;
10543 avail[i].limit = avail[i].base +
10544 (G_T7_EXT_MEM1_SIZE(hi) << 20);
10545 } else {
10546 avail[i].base = (uint64_t)G_EXT_MEM1_BASE(hi) << 20;
10547 avail[i].limit = avail[i].base +
10548 (G_EXT_MEM1_SIZE(hi) << 20);
10549 }
10550 avail[i].idx = 4;
10551 i++;
10552 }
10553 if (lo & F_HMA_MUX) {
10554 /* Only T6+ have HMA. */
10555 MPASS(chip_id(sc) >= CHELSIO_T6);
10556
10557 if (chip_id(sc) >= CHELSIO_T7) {
10558 hi = t4_read_reg(sc, A_MA_HOST_MEMORY_BAR);
10559 avail[i].base = (uint64_t)G_HMATARGETBASE(hi) << 20;
10560 avail[i].limit = avail[i].base +
10561 (G_T7_HMA_SIZE(hi) << 20);
10562 } else {
10563 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
10564 avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
10565 avail[i].limit = avail[i].base +
10566 (G_EXT_MEM1_SIZE(hi) << 20);
10567 }
10568 avail[i].idx = 5;
10569 i++;
10570 }
10571 MPASS(i <= nitems(avail));
10572 if (!i) /* no memory available */
10573 goto done;
10574 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
10575
10576 md = &mem[0];
10577 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
10578 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
10579 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
10580 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
10581 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
10582 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
10583 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
10584 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
10585 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
10586
10587 /* the next few have explicit upper bounds */
10588 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
10589 md->limit = md->base - 1 +
10590 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
10591 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
10592 md++;
10593
10594 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
10595 md->limit = md->base - 1 +
10596 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
10597 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
10598 md++;
10599
10600 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
10601 if (chip_id(sc) <= CHELSIO_T5)
10602 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
10603 else
10604 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
10605 md->limit = 0;
10606 } else {
10607 md->base = 0;
10608 md->idx = nitems(region); /* hide it */
10609 }
10610 md++;
10611
10612 #define ulp_region(reg) do {\
10613 const u_int shift = chip_id(sc) >= CHELSIO_T7 ? 4 : 0; \
10614 md->base = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT) << shift; \
10615 md->limit = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) << shift; \
10616 md->limit += (1 << shift) - 1; \
10617 md++; \
10618 } while (0)
10619
10620 #define hide_ulp_region() do { \
10621 md->base = 0; \
10622 md->idx = nitems(region); \
10623 md++; \
10624 } while (0)
10625
10626 ulp_region(RX_ISCSI);
10627 ulp_region(RX_TDDP);
10628 ulp_region(TX_TPT);
10629 ulp_region(RX_STAG);
10630 ulp_region(RX_RQ);
10631 if (chip_id(sc) < CHELSIO_T7)
10632 ulp_region(RX_RQUDP);
10633 else
10634 hide_ulp_region();
10635 ulp_region(RX_PBL);
10636 ulp_region(TX_PBL);
10637 if (chip_id(sc) >= CHELSIO_T6)
10638 ulp_region(RX_TLS_KEY);
10639 else
10640 hide_ulp_region();
10641 if (chip_id(sc) >= CHELSIO_T7) {
10642 ulp_region(RX_RRQ);
10643 ulp_region(RX_NVME_TCP_STAG);
10644 ulp_region(RX_NVME_TCP_RQ);
10645 ulp_region(RX_NVME_TCP_PBL);
10646 ulp_region(TX_NVME_TCP_TPT);
10647 ulp_region(TX_NVME_TCP_PBL);
10648 } else {
10649 hide_ulp_region();
10650 hide_ulp_region();
10651 hide_ulp_region();
10652 hide_ulp_region();
10653 hide_ulp_region();
10654 hide_ulp_region();
10655 }
10656 #undef ulp_region
10657 #undef hide_ulp_region
10658
10659 md->base = 0;
10660 if (is_t4(sc))
10661 md->idx = nitems(region);
10662 else {
10663 uint32_t size = 0;
10664 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
10665 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
10666
10667 if (is_t5(sc)) {
10668 if (sge_ctrl & F_VFIFO_ENABLE)
10669 size = fifo_size << 2;
10670 } else
10671 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6;
10672
10673 if (size) {
10674 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR);
10675 md->limit = md->base + size - 1;
10676 } else
10677 md->idx = nitems(region);
10678 }
10679 md++;
10680
10681 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
10682 md->limit = 0;
10683 md++;
10684 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
10685 md->limit = 0;
10686 md++;
10687
10688 if (chip_id(sc) >= CHELSIO_T7) {
10689 t4_tp_pio_read(sc, &lo, 1, A_TP_ROCE_RRQ_BASE, false);
10690 md->base = lo;
10691 } else {
10692 md->base = 0;
10693 md->idx = nitems(region);
10694 }
10695 md++;
10696
10697 md->base = sc->vres.ocq.start;
10698 if (sc->vres.ocq.size)
10699 md->limit = md->base + sc->vres.ocq.size - 1;
10700 else
10701 md->idx = nitems(region); /* hide it */
10702 md++;
10703
10704 /* add any address-space holes, there can be up to 3 */
10705 for (n = 0; n < i - 1; n++)
10706 if (avail[n].limit < avail[n + 1].base)
10707 (md++)->base = avail[n].limit;
10708 if (avail[n].limit)
10709 (md++)->base = avail[n].limit;
10710
10711 n = md - mem;
10712 MPASS(n <= nitems(mem));
10713 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
10714
10715 for (lo = 0; lo < i; lo++)
10716 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
10717 avail[lo].limit - 1);
10718
10719 sbuf_printf(sb, "\n");
10720 for (i = 0; i < n; i++) {
10721 if (mem[i].idx >= nitems(region))
10722 continue; /* skip holes */
10723 if (!mem[i].limit)
10724 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
10725 mem_region_show(sb, region[mem[i].idx], mem[i].base,
10726 mem[i].limit);
10727 }
10728
10729 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
10730 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
10731 if (hi != lo - 1) {
10732 sbuf_printf(sb, "\n");
10733 mem_region_show(sb, "uP RAM:", lo, hi);
10734 }
10735
10736 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
10737 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
10738 if (hi != lo - 1)
10739 mem_region_show(sb, "uP Extmem2:", lo, hi);
10740
10741 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
10742 if (chip_id(sc) >= CHELSIO_T7)
10743 nchan = 1 << G_T7_PMRXNUMCHN(lo);
10744 else
10745 nchan = lo & F_PMRXNUMCHN ? 2 : 1;
10746 for (i = 0, free = 0; i < nchan; i++)
10747 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT));
10748 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n",
10749 G_PMRXMAXPAGE(lo), free,
10750 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, nchan);
10751
10752 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
10753 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
10754 if (chip_id(sc) >= CHELSIO_T7)
10755 nchan = 1 << G_T7_PMTXNUMCHN(lo);
10756 else
10757 nchan = 1 << G_PMTXNUMCHN(lo);
10758 for (i = 0, free = 0; i < nchan; i++)
10759 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT));
10760 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n",
10761 G_PMTXMAXPAGE(lo), free,
10762 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
10763 hi >= (1 << 20) ? 'M' : 'K', nchan);
10764 sbuf_printf(sb, "%u p-structs (%u free)\n",
10765 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT),
10766 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT)));
10767
10768 for (i = 0; i < 4; i++) {
10769 if (chip_id(sc) > CHELSIO_T5)
10770 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
10771 else
10772 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
10773 if (is_t5(sc)) {
10774 used = G_T5_USED(lo);
10775 alloc = G_T5_ALLOC(lo);
10776 } else {
10777 used = G_USED(lo);
10778 alloc = G_ALLOC(lo);
10779 }
10780 /* For T6+ these are MAC buffer groups */
10781 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
10782 i, used, alloc);
10783 }
10784 for (i = 0; i < sc->chip_params->nchan; i++) {
10785 if (chip_id(sc) > CHELSIO_T5)
10786 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
10787 else
10788 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
10789 if (is_t5(sc)) {
10790 used = G_T5_USED(lo);
10791 alloc = G_T5_ALLOC(lo);
10792 } else {
10793 used = G_USED(lo);
10794 alloc = G_ALLOC(lo);
10795 }
10796 /* For T6+ these are MAC buffer groups */
10797 sbuf_printf(sb,
10798 "\nLoopback %d using %u pages out of %u allocated",
10799 i, used, alloc);
10800 }
10801 done:
10802 mtx_unlock(&sc->reg_lock);
10803 if (rc == 0)
10804 rc = sbuf_finish(sb);
10805 sbuf_delete(sb);
10806 return (rc);
10807 }
10808
10809 static inline void
tcamxy2valmask(uint64_t x,uint64_t y,uint8_t * addr,uint64_t * mask)10810 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
10811 {
10812 *mask = x | y;
10813 y = htobe64(y);
10814 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
10815 }
10816
10817 static int
sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)10818 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
10819 {
10820 struct adapter *sc = arg1;
10821 struct sbuf *sb;
10822 int rc, i;
10823
10824 MPASS(chip_id(sc) <= CHELSIO_T5);
10825
10826 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10827 if (sb == NULL)
10828 return (ENOMEM);
10829
10830 sbuf_printf(sb,
10831 "Idx Ethernet address Mask Vld Ports PF"
10832 " VF Replication P0 P1 P2 P3 ML");
10833 rc = 0;
10834 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10835 uint64_t tcamx, tcamy, mask;
10836 uint32_t cls_lo, cls_hi;
10837 uint8_t addr[ETHER_ADDR_LEN];
10838
10839 mtx_lock(&sc->reg_lock);
10840 if (hw_off_limits(sc))
10841 rc = ENXIO;
10842 else {
10843 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
10844 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
10845 }
10846 mtx_unlock(&sc->reg_lock);
10847 if (rc != 0)
10848 break;
10849 if (tcamx & tcamy)
10850 continue;
10851 tcamxy2valmask(tcamx, tcamy, addr, &mask);
10852 mtx_lock(&sc->reg_lock);
10853 if (hw_off_limits(sc))
10854 rc = ENXIO;
10855 else {
10856 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10857 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10858 }
10859 mtx_unlock(&sc->reg_lock);
10860 if (rc != 0)
10861 break;
10862 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
10863 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2],
10864 addr[3], addr[4], addr[5], (uintmax_t)mask,
10865 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
10866 G_PORTMAP(cls_hi), G_PF(cls_lo),
10867 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
10868
10869 if (cls_lo & F_REPLICATE) {
10870 struct fw_ldst_cmd ldst_cmd;
10871
10872 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10873 ldst_cmd.op_to_addrspace =
10874 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10875 F_FW_CMD_REQUEST | F_FW_CMD_READ |
10876 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10877 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10878 ldst_cmd.u.mps.rplc.fid_idx =
10879 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10880 V_FW_LDST_CMD_IDX(i));
10881
10882 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10883 "t4mps");
10884 if (rc)
10885 break;
10886 if (hw_off_limits(sc))
10887 rc = ENXIO;
10888 else
10889 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10890 sizeof(ldst_cmd), &ldst_cmd);
10891 end_synchronized_op(sc, 0);
10892 if (rc != 0)
10893 break;
10894 else {
10895 sbuf_printf(sb, " %08x %08x %08x %08x",
10896 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10897 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10898 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10899 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10900 }
10901 } else
10902 sbuf_printf(sb, "%36s", "");
10903
10904 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
10905 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
10906 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
10907 }
10908
10909 if (rc)
10910 (void) sbuf_finish(sb);
10911 else
10912 rc = sbuf_finish(sb);
10913 sbuf_delete(sb);
10914
10915 return (rc);
10916 }
10917
10918 static int
sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)10919 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
10920 {
10921 struct adapter *sc = arg1;
10922 struct sbuf *sb;
10923 int rc, i;
10924
10925 MPASS(chip_id(sc) == CHELSIO_T6);
10926
10927 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10928 if (sb == NULL)
10929 return (ENOMEM);
10930
10931 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask"
10932 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF"
10933 " Replication"
10934 " P0 P1 P2 P3 ML");
10935
10936 rc = 0;
10937 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10938 uint8_t dip_hit, vlan_vld, lookup_type, port_num;
10939 uint16_t ivlan;
10940 uint64_t tcamx, tcamy, val, mask;
10941 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
10942 uint8_t addr[ETHER_ADDR_LEN];
10943
10944 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
10945 if (i < 256)
10946 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
10947 else
10948 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
10949 mtx_lock(&sc->reg_lock);
10950 if (hw_off_limits(sc))
10951 rc = ENXIO;
10952 else {
10953 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10954 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10955 tcamy = G_DMACH(val) << 32;
10956 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10957 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10958 }
10959 mtx_unlock(&sc->reg_lock);
10960 if (rc != 0)
10961 break;
10962
10963 lookup_type = G_DATALKPTYPE(data2);
10964 port_num = G_DATAPORTNUM(data2);
10965 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10966 /* Inner header VNI */
10967 vniy = ((data2 & F_DATAVIDH2) << 23) |
10968 (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10969 dip_hit = data2 & F_DATADIPHIT;
10970 vlan_vld = 0;
10971 } else {
10972 vniy = 0;
10973 dip_hit = 0;
10974 vlan_vld = data2 & F_DATAVIDH2;
10975 ivlan = G_VIDL(val);
10976 }
10977
10978 ctl |= V_CTLXYBITSEL(1);
10979 mtx_lock(&sc->reg_lock);
10980 if (hw_off_limits(sc))
10981 rc = ENXIO;
10982 else {
10983 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10984 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10985 tcamx = G_DMACH(val) << 32;
10986 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10987 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10988 }
10989 mtx_unlock(&sc->reg_lock);
10990 if (rc != 0)
10991 break;
10992
10993 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10994 /* Inner header VNI mask */
10995 vnix = ((data2 & F_DATAVIDH2) << 23) |
10996 (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10997 } else
10998 vnix = 0;
10999
11000 if (tcamx & tcamy)
11001 continue;
11002 tcamxy2valmask(tcamx, tcamy, addr, &mask);
11003
11004 mtx_lock(&sc->reg_lock);
11005 if (hw_off_limits(sc))
11006 rc = ENXIO;
11007 else {
11008 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
11009 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
11010 }
11011 mtx_unlock(&sc->reg_lock);
11012 if (rc != 0)
11013 break;
11014
11015 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11016 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11017 "%012jx %06x %06x - - %3c"
11018 " I %4x %3c %#x%4u%4d", i, addr[0],
11019 addr[1], addr[2], addr[3], addr[4], addr[5],
11020 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
11021 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11022 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11023 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11024 } else {
11025 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11026 "%012jx - - ", i, addr[0], addr[1],
11027 addr[2], addr[3], addr[4], addr[5],
11028 (uintmax_t)mask);
11029
11030 if (vlan_vld)
11031 sbuf_printf(sb, "%4u Y ", ivlan);
11032 else
11033 sbuf_printf(sb, " - N ");
11034
11035 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d",
11036 lookup_type ? 'I' : 'O', port_num,
11037 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11038 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11039 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11040 }
11041
11042
11043 if (cls_lo & F_T6_REPLICATE) {
11044 struct fw_ldst_cmd ldst_cmd;
11045
11046 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
11047 ldst_cmd.op_to_addrspace =
11048 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
11049 F_FW_CMD_REQUEST | F_FW_CMD_READ |
11050 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
11051 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
11052 ldst_cmd.u.mps.rplc.fid_idx =
11053 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
11054 V_FW_LDST_CMD_IDX(i));
11055
11056 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
11057 "t6mps");
11058 if (rc)
11059 break;
11060 if (hw_off_limits(sc))
11061 rc = ENXIO;
11062 else
11063 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
11064 sizeof(ldst_cmd), &ldst_cmd);
11065 end_synchronized_op(sc, 0);
11066 if (rc != 0)
11067 break;
11068 else {
11069 sbuf_printf(sb, " %08x %08x %08x %08x"
11070 " %08x %08x %08x %08x",
11071 be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
11072 be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
11073 be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
11074 be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
11075 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
11076 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
11077 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
11078 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
11079 }
11080 } else
11081 sbuf_printf(sb, "%72s", "");
11082
11083 sbuf_printf(sb, "%4u%3u%3u%3u %#x",
11084 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
11085 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
11086 (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
11087 }
11088
11089 if (rc)
11090 (void) sbuf_finish(sb);
11091 else
11092 rc = sbuf_finish(sb);
11093 sbuf_delete(sb);
11094
11095 return (rc);
11096 }
11097
11098 static int
sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS)11099 sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS)
11100 {
11101 struct adapter *sc = arg1;
11102 struct sbuf *sb;
11103 int rc, i;
11104
11105 MPASS(chip_id(sc) >= CHELSIO_T7);
11106
11107 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11108 if (sb == NULL)
11109 return (ENOMEM);
11110
11111 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask"
11112 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF"
11113 " Replication"
11114 " P0 P1 P2 P3 ML");
11115
11116 rc = 0;
11117 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
11118 uint8_t dip_hit, vlan_vld, lookup_type, port_num;
11119 uint16_t ivlan;
11120 uint64_t tcamx, tcamy, val, mask;
11121 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
11122 uint8_t addr[ETHER_ADDR_LEN];
11123
11124 /* Read tcamy */
11125 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0));
11126 if (chip_rev(sc) == 0) {
11127 if (i < 256)
11128 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0);
11129 else
11130 ctl |= V_CTLTCAMINDEX(i - 256) | V_T7_CTLTCAMSEL(1);
11131 } else {
11132 #if 0
11133 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0));
11134 #endif
11135 if (i < 512)
11136 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0);
11137 else if (i < 1024)
11138 ctl |= V_CTLTCAMINDEX(i - 512) | V_T7_CTLTCAMSEL(1);
11139 else
11140 ctl |= V_CTLTCAMINDEX(i - 1024) | V_T7_CTLTCAMSEL(2);
11141 }
11142
11143 mtx_lock(&sc->reg_lock);
11144 if (hw_off_limits(sc))
11145 rc = ENXIO;
11146 else {
11147 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
11148 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1);
11149 tcamy = G_DMACH(val) << 32;
11150 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1);
11151 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1);
11152 }
11153 mtx_unlock(&sc->reg_lock);
11154 if (rc != 0)
11155 break;
11156
11157 lookup_type = G_DATALKPTYPE(data2);
11158 port_num = G_DATAPORTNUM(data2);
11159 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11160 /* Inner header VNI */
11161 vniy = (((data2 & F_DATAVIDH2) |
11162 G_DATAVIDH1(data2)) << 16) | G_VIDL(val);
11163 dip_hit = data2 & F_DATADIPHIT;
11164 vlan_vld = 0;
11165 } else {
11166 vniy = 0;
11167 dip_hit = 0;
11168 vlan_vld = data2 & F_DATAVIDH2;
11169 ivlan = G_VIDL(val);
11170 }
11171
11172 ctl |= V_CTLXYBITSEL(1);
11173 mtx_lock(&sc->reg_lock);
11174 if (hw_off_limits(sc))
11175 rc = ENXIO;
11176 else {
11177 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
11178 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1);
11179 tcamx = G_DMACH(val) << 32;
11180 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1);
11181 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1);
11182 }
11183 mtx_unlock(&sc->reg_lock);
11184 if (rc != 0)
11185 break;
11186
11187 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11188 /* Inner header VNI mask */
11189 vnix = (((data2 & F_DATAVIDH2) |
11190 G_DATAVIDH1(data2)) << 16) | G_VIDL(val);
11191 } else
11192 vnix = 0;
11193
11194 if (tcamx & tcamy)
11195 continue;
11196 tcamxy2valmask(tcamx, tcamy, addr, &mask);
11197
11198 mtx_lock(&sc->reg_lock);
11199 if (hw_off_limits(sc))
11200 rc = ENXIO;
11201 else {
11202 if (chip_rev(sc) == 0) {
11203 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
11204 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
11205 } else {
11206 t4_write_reg(sc, A_MPS_CLS_SRAM_H,
11207 V_SRAMWRN(0) | V_SRAMINDEX(i));
11208 cls_lo = t4_read_reg(sc, A_MPS_CLS_SRAM_L);
11209 cls_hi = t4_read_reg(sc, A_MPS_CLS_SRAM_H);
11210 }
11211 }
11212 mtx_unlock(&sc->reg_lock);
11213 if (rc != 0)
11214 break;
11215
11216 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11217 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11218 "%012jx %06x %06x - - %3c"
11219 " I %4x %3c %#x%4u%4d", i, addr[0],
11220 addr[1], addr[2], addr[3], addr[4], addr[5],
11221 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
11222 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11223 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11224 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11225 } else {
11226 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11227 "%012jx - - ", i, addr[0], addr[1],
11228 addr[2], addr[3], addr[4], addr[5],
11229 (uintmax_t)mask);
11230
11231 if (vlan_vld)
11232 sbuf_printf(sb, "%4u Y ", ivlan);
11233 else
11234 sbuf_printf(sb, " - N ");
11235
11236 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d",
11237 lookup_type ? 'I' : 'O', port_num,
11238 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11239 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11240 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11241 }
11242
11243 if (cls_lo & F_T6_REPLICATE) {
11244 struct fw_ldst_cmd ldst_cmd;
11245
11246 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
11247 ldst_cmd.op_to_addrspace =
11248 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
11249 F_FW_CMD_REQUEST | F_FW_CMD_READ |
11250 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
11251 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
11252 ldst_cmd.u.mps.rplc.fid_idx =
11253 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
11254 V_FW_LDST_CMD_IDX(i));
11255
11256 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
11257 "t6mps");
11258 if (rc)
11259 break;
11260 if (hw_off_limits(sc))
11261 rc = ENXIO;
11262 else
11263 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
11264 sizeof(ldst_cmd), &ldst_cmd);
11265 end_synchronized_op(sc, 0);
11266 if (rc != 0)
11267 break;
11268 else {
11269 sbuf_printf(sb, " %08x %08x %08x %08x"
11270 " %08x %08x %08x %08x",
11271 be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
11272 be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
11273 be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
11274 be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
11275 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
11276 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
11277 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
11278 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
11279 }
11280 } else
11281 sbuf_printf(sb, "%72s", "");
11282
11283 sbuf_printf(sb, "%4u%3u%3u%3u %#x",
11284 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
11285 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
11286 (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
11287 }
11288
11289 if (rc)
11290 (void) sbuf_finish(sb);
11291 else
11292 rc = sbuf_finish(sb);
11293 sbuf_delete(sb);
11294
11295 return (rc);
11296 }
11297
11298 static int
sysctl_path_mtus(SYSCTL_HANDLER_ARGS)11299 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
11300 {
11301 struct adapter *sc = arg1;
11302 struct sbuf *sb;
11303 int rc;
11304 uint16_t mtus[NMTUS];
11305
11306 rc = 0;
11307 mtx_lock(&sc->reg_lock);
11308 if (hw_off_limits(sc))
11309 rc = ENXIO;
11310 else
11311 t4_read_mtu_tbl(sc, mtus, NULL);
11312 mtx_unlock(&sc->reg_lock);
11313 if (rc != 0)
11314 return (rc);
11315
11316 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11317 if (sb == NULL)
11318 return (ENOMEM);
11319
11320 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
11321 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
11322 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
11323 mtus[14], mtus[15]);
11324
11325 rc = sbuf_finish(sb);
11326 sbuf_delete(sb);
11327
11328 return (rc);
11329 }
11330
11331 static int
sysctl_pm_stats(SYSCTL_HANDLER_ARGS)11332 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
11333 {
11334 struct adapter *sc = arg1;
11335 struct sbuf *sb;
11336 int rc, i;
11337 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
11338 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
11339 uint32_t stats[T7_PM_RX_CACHE_NSTATS];
11340 static const char *tx_stats[MAX_PM_NSTATS] = {
11341 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
11342 "Tx FIFO wait", NULL, "Tx latency"
11343 };
11344 static const char *rx_stats[MAX_PM_NSTATS] = {
11345 "Read:", "Write bypass:", "Write mem:", "Flush:",
11346 "Rx FIFO wait", NULL, "Rx latency"
11347 };
11348
11349 rc = 0;
11350 mtx_lock(&sc->reg_lock);
11351 if (hw_off_limits(sc))
11352 rc = ENXIO;
11353 else {
11354 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
11355 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
11356 if (chip_id(sc) >= CHELSIO_T7)
11357 t4_pmrx_cache_get_stats(sc, stats);
11358 }
11359 mtx_unlock(&sc->reg_lock);
11360 if (rc != 0)
11361 return (rc);
11362
11363 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11364 if (sb == NULL)
11365 return (ENOMEM);
11366
11367 sbuf_printf(sb, " Tx pcmds Tx bytes");
11368 for (i = 0; i < 4; i++) {
11369 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
11370 tx_cyc[i]);
11371 }
11372
11373 sbuf_printf(sb, "\n Rx pcmds Rx bytes");
11374 for (i = 0; i < 4; i++) {
11375 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
11376 rx_cyc[i]);
11377 }
11378
11379 if (chip_id(sc) > CHELSIO_T5) {
11380 sbuf_printf(sb,
11381 "\n Total wait Total occupancy");
11382 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
11383 tx_cyc[i]);
11384 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
11385 rx_cyc[i]);
11386
11387 i += 2;
11388 MPASS(i < nitems(tx_stats));
11389
11390 sbuf_printf(sb,
11391 "\n Reads Total wait");
11392 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
11393 tx_cyc[i]);
11394 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
11395 rx_cyc[i]);
11396 }
11397
11398 if (chip_id(sc) >= CHELSIO_T7) {
11399 i = 0;
11400 sbuf_printf(sb, "\n\nPM RX Cache Stats\n");
11401 sbuf_printf(sb, "%-40s %u\n", "ReqWrite", stats[i++]);
11402 sbuf_printf(sb, "%-40s %u\n", "ReqReadInv", stats[i++]);
11403 sbuf_printf(sb, "%-40s %u\n", "ReqReadNoInv", stats[i++]);
11404 sbuf_printf(sb, "%-40s %u\n", "Write Split Request",
11405 stats[i++]);
11406 sbuf_printf(sb, "%-40s %u\n",
11407 "Normal Read Split (Read Invalidate)", stats[i++]);
11408 sbuf_printf(sb, "%-40s %u\n",
11409 "Feedback Read Split (Read NoInvalidate)",
11410 stats[i++]);
11411 sbuf_printf(sb, "%-40s %u\n", "Write Hit", stats[i++]);
11412 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit",
11413 stats[i++]);
11414 sbuf_printf(sb, "%-40s %u\n", "Feedback Read Hit",
11415 stats[i++]);
11416 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full Avail",
11417 stats[i++]);
11418 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full UnAvail",
11419 stats[i++]);
11420 sbuf_printf(sb, "%-40s %u\n",
11421 "Normal Read Hit Partial Avail",
11422 stats[i++]);
11423 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full Avail",
11424 stats[i++]);
11425 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full UnAvail",
11426 stats[i++]);
11427 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Partial Avail",
11428 stats[i++]);
11429 sbuf_printf(sb, "%-40s %u\n", "Normal Read Full Free",
11430 stats[i++]);
11431 sbuf_printf(sb, "%-40s %u\n",
11432 "Normal Read Part-avail Mul-Regions",
11433 stats[i++]);
11434 sbuf_printf(sb, "%-40s %u\n",
11435 "FB Read Part-avail Mul-Regions",
11436 stats[i++]);
11437 sbuf_printf(sb, "%-40s %u\n", "Write Miss FL Used",
11438 stats[i++]);
11439 sbuf_printf(sb, "%-40s %u\n", "Write Miss LRU Used",
11440 stats[i++]);
11441 sbuf_printf(sb, "%-40s %u\n",
11442 "Write Miss LRU-Multiple Evict", stats[i++]);
11443 sbuf_printf(sb, "%-40s %u\n",
11444 "Write Hit Increasing Islands", stats[i++]);
11445 sbuf_printf(sb, "%-40s %u\n",
11446 "Normal Read Island Read split", stats[i++]);
11447 sbuf_printf(sb, "%-40s %u\n", "Write Overflow Eviction",
11448 stats[i++]);
11449 sbuf_printf(sb, "%-40s %u", "Read Overflow Eviction",
11450 stats[i++]);
11451 }
11452
11453 rc = sbuf_finish(sb);
11454 sbuf_delete(sb);
11455
11456 return (rc);
11457 }
11458
11459 static int
sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)11460 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
11461 {
11462 struct adapter *sc = arg1;
11463 struct sbuf *sb;
11464 int rc;
11465 struct tp_rdma_stats stats;
11466
11467 rc = 0;
11468 mtx_lock(&sc->reg_lock);
11469 if (hw_off_limits(sc))
11470 rc = ENXIO;
11471 else
11472 t4_tp_get_rdma_stats(sc, &stats, 0);
11473 mtx_unlock(&sc->reg_lock);
11474 if (rc != 0)
11475 return (rc);
11476
11477 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11478 if (sb == NULL)
11479 return (ENOMEM);
11480
11481 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
11482 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
11483
11484 rc = sbuf_finish(sb);
11485 sbuf_delete(sb);
11486
11487 return (rc);
11488 }
11489
11490 static int
sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)11491 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
11492 {
11493 struct adapter *sc = arg1;
11494 struct sbuf *sb;
11495 int rc;
11496 struct tp_tcp_stats v4, v6;
11497
11498 rc = 0;
11499 mtx_lock(&sc->reg_lock);
11500 if (hw_off_limits(sc))
11501 rc = ENXIO;
11502 else
11503 t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
11504 mtx_unlock(&sc->reg_lock);
11505 if (rc != 0)
11506 return (rc);
11507
11508 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11509 if (sb == NULL)
11510 return (ENOMEM);
11511
11512 sbuf_printf(sb,
11513 " IP IPv6\n");
11514 sbuf_printf(sb, "OutRsts: %20u %20u\n",
11515 v4.tcp_out_rsts, v6.tcp_out_rsts);
11516 sbuf_printf(sb, "InSegs: %20ju %20ju\n",
11517 v4.tcp_in_segs, v6.tcp_in_segs);
11518 sbuf_printf(sb, "OutSegs: %20ju %20ju\n",
11519 v4.tcp_out_segs, v6.tcp_out_segs);
11520 sbuf_printf(sb, "RetransSegs: %20ju %20ju",
11521 v4.tcp_retrans_segs, v6.tcp_retrans_segs);
11522
11523 rc = sbuf_finish(sb);
11524 sbuf_delete(sb);
11525
11526 return (rc);
11527 }
11528
11529 static int
sysctl_tids(SYSCTL_HANDLER_ARGS)11530 sysctl_tids(SYSCTL_HANDLER_ARGS)
11531 {
11532 struct adapter *sc = arg1;
11533 struct sbuf *sb;
11534 int rc;
11535 uint32_t x, y;
11536 struct tid_info *t = &sc->tids;
11537
11538 rc = 0;
11539 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11540 if (sb == NULL)
11541 return (ENOMEM);
11542
11543 if (t->natids) {
11544 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
11545 t->atids_in_use);
11546 }
11547
11548 if (t->nhpftids) {
11549 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
11550 t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
11551 }
11552
11553 if (t->ntids) {
11554 bool hashen = false;
11555
11556 mtx_lock(&sc->reg_lock);
11557 if (hw_off_limits(sc))
11558 rc = ENXIO;
11559 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
11560 hashen = true;
11561 if (chip_id(sc) <= CHELSIO_T5) {
11562 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
11563 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
11564 } else {
11565 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
11566 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
11567 }
11568 }
11569 mtx_unlock(&sc->reg_lock);
11570 if (rc != 0)
11571 goto done;
11572
11573 sbuf_printf(sb, "TID range: ");
11574 if (hashen) {
11575 if (x)
11576 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1);
11577 sbuf_printf(sb, "%u-%u", y, t->ntids - 1);
11578 } else {
11579 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base +
11580 t->ntids - 1);
11581 }
11582 sbuf_printf(sb, ", in use: %u\n",
11583 atomic_load_acq_int(&t->tids_in_use));
11584 }
11585
11586 if (t->nstids) {
11587 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
11588 t->stid_base + t->nstids - 1, t->stids_in_use);
11589 }
11590
11591 if (t->nftids) {
11592 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
11593 t->ftid_end, t->ftids_in_use);
11594 }
11595
11596 if (t->netids) {
11597 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
11598 t->etid_base + t->netids - 1, t->etids_in_use);
11599 }
11600
11601 mtx_lock(&sc->reg_lock);
11602 if (hw_off_limits(sc))
11603 rc = ENXIO;
11604 else {
11605 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4);
11606 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6);
11607 }
11608 mtx_unlock(&sc->reg_lock);
11609 if (rc != 0)
11610 goto done;
11611 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y);
11612 done:
11613 if (rc == 0)
11614 rc = sbuf_finish(sb);
11615 else
11616 (void)sbuf_finish(sb);
11617 sbuf_delete(sb);
11618
11619 return (rc);
11620 }
11621
11622 static int
sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)11623 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
11624 {
11625 struct adapter *sc = arg1;
11626 struct sbuf *sb;
11627 int rc;
11628 struct tp_err_stats stats;
11629
11630 rc = 0;
11631 mtx_lock(&sc->reg_lock);
11632 if (hw_off_limits(sc))
11633 rc = ENXIO;
11634 else
11635 t4_tp_get_err_stats(sc, &stats, 0);
11636 mtx_unlock(&sc->reg_lock);
11637 if (rc != 0)
11638 return (rc);
11639
11640 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11641 if (sb == NULL)
11642 return (ENOMEM);
11643
11644 if (sc->chip_params->nchan > 2) {
11645 sbuf_printf(sb, " channel 0 channel 1"
11646 " channel 2 channel 3\n");
11647 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n",
11648 stats.mac_in_errs[0], stats.mac_in_errs[1],
11649 stats.mac_in_errs[2], stats.mac_in_errs[3]);
11650 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n",
11651 stats.hdr_in_errs[0], stats.hdr_in_errs[1],
11652 stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
11653 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n",
11654 stats.tcp_in_errs[0], stats.tcp_in_errs[1],
11655 stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
11656 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n",
11657 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
11658 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
11659 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n",
11660 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
11661 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
11662 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n",
11663 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
11664 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
11665 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n",
11666 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
11667 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
11668 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n",
11669 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
11670 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
11671 } else {
11672 sbuf_printf(sb, " channel 0 channel 1\n");
11673 sbuf_printf(sb, "macInErrs: %10u %10u\n",
11674 stats.mac_in_errs[0], stats.mac_in_errs[1]);
11675 sbuf_printf(sb, "hdrInErrs: %10u %10u\n",
11676 stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
11677 sbuf_printf(sb, "tcpInErrs: %10u %10u\n",
11678 stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
11679 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n",
11680 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
11681 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n",
11682 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
11683 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n",
11684 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
11685 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n",
11686 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
11687 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n",
11688 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
11689 }
11690
11691 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u",
11692 stats.ofld_no_neigh, stats.ofld_cong_defer);
11693
11694 rc = sbuf_finish(sb);
11695 sbuf_delete(sb);
11696
11697 return (rc);
11698 }
11699
11700 static int
sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)11701 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)
11702 {
11703 struct adapter *sc = arg1;
11704 struct sbuf *sb;
11705 int rc;
11706 struct tp_tnl_stats stats;
11707
11708 rc = 0;
11709 mtx_lock(&sc->reg_lock);
11710 if (hw_off_limits(sc))
11711 rc = ENXIO;
11712 else
11713 t4_tp_get_tnl_stats(sc, &stats, 1);
11714 mtx_unlock(&sc->reg_lock);
11715 if (rc != 0)
11716 return (rc);
11717
11718 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11719 if (sb == NULL)
11720 return (ENOMEM);
11721
11722 if (sc->chip_params->nchan > 2) {
11723 sbuf_printf(sb, " channel 0 channel 1"
11724 " channel 2 channel 3\n");
11725 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n",
11726 stats.out_pkt[0], stats.out_pkt[1],
11727 stats.out_pkt[2], stats.out_pkt[3]);
11728 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u",
11729 stats.in_pkt[0], stats.in_pkt[1],
11730 stats.in_pkt[2], stats.in_pkt[3]);
11731 } else {
11732 sbuf_printf(sb, " channel 0 channel 1\n");
11733 sbuf_printf(sb, "OutPkts: %10u %10u\n",
11734 stats.out_pkt[0], stats.out_pkt[1]);
11735 sbuf_printf(sb, "InPkts: %10u %10u",
11736 stats.in_pkt[0], stats.in_pkt[1]);
11737 }
11738
11739 rc = sbuf_finish(sb);
11740 sbuf_delete(sb);
11741
11742 return (rc);
11743 }
11744
11745 static int
sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)11746 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
11747 {
11748 struct adapter *sc = arg1;
11749 struct tp_params *tpp = &sc->params.tp;
11750 u_int mask;
11751 int rc;
11752
11753 mask = tpp->la_mask >> 16;
11754 rc = sysctl_handle_int(oidp, &mask, 0, req);
11755 if (rc != 0 || req->newptr == NULL)
11756 return (rc);
11757 if (mask > 0xffff)
11758 return (EINVAL);
11759 mtx_lock(&sc->reg_lock);
11760 if (hw_off_limits(sc))
11761 rc = ENXIO;
11762 else {
11763 tpp->la_mask = mask << 16;
11764 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U,
11765 tpp->la_mask);
11766 }
11767 mtx_unlock(&sc->reg_lock);
11768
11769 return (rc);
11770 }
11771
11772 struct field_desc {
11773 const char *name;
11774 u_int start;
11775 u_int width;
11776 };
11777
11778 static void
field_desc_show(struct sbuf * sb,uint64_t v,const struct field_desc * f)11779 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
11780 {
11781 char buf[32];
11782 int line_size = 0;
11783
11784 while (f->name) {
11785 uint64_t mask = (1ULL << f->width) - 1;
11786 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
11787 ((uintmax_t)v >> f->start) & mask);
11788
11789 if (line_size + len >= 79) {
11790 line_size = 8;
11791 sbuf_printf(sb, "\n ");
11792 }
11793 sbuf_printf(sb, "%s ", buf);
11794 line_size += len + 1;
11795 f++;
11796 }
11797 sbuf_printf(sb, "\n");
11798 }
11799
11800 static const struct field_desc tp_la0[] = {
11801 { "RcfOpCodeOut", 60, 4 },
11802 { "State", 56, 4 },
11803 { "WcfState", 52, 4 },
11804 { "RcfOpcSrcOut", 50, 2 },
11805 { "CRxError", 49, 1 },
11806 { "ERxError", 48, 1 },
11807 { "SanityFailed", 47, 1 },
11808 { "SpuriousMsg", 46, 1 },
11809 { "FlushInputMsg", 45, 1 },
11810 { "FlushInputCpl", 44, 1 },
11811 { "RssUpBit", 43, 1 },
11812 { "RssFilterHit", 42, 1 },
11813 { "Tid", 32, 10 },
11814 { "InitTcb", 31, 1 },
11815 { "LineNumber", 24, 7 },
11816 { "Emsg", 23, 1 },
11817 { "EdataOut", 22, 1 },
11818 { "Cmsg", 21, 1 },
11819 { "CdataOut", 20, 1 },
11820 { "EreadPdu", 19, 1 },
11821 { "CreadPdu", 18, 1 },
11822 { "TunnelPkt", 17, 1 },
11823 { "RcfPeerFin", 16, 1 },
11824 { "RcfReasonOut", 12, 4 },
11825 { "TxCchannel", 10, 2 },
11826 { "RcfTxChannel", 8, 2 },
11827 { "RxEchannel", 6, 2 },
11828 { "RcfRxChannel", 5, 1 },
11829 { "RcfDataOutSrdy", 4, 1 },
11830 { "RxDvld", 3, 1 },
11831 { "RxOoDvld", 2, 1 },
11832 { "RxCongestion", 1, 1 },
11833 { "TxCongestion", 0, 1 },
11834 { NULL }
11835 };
11836
11837 static const struct field_desc tp_la1[] = {
11838 { "CplCmdIn", 56, 8 },
11839 { "CplCmdOut", 48, 8 },
11840 { "ESynOut", 47, 1 },
11841 { "EAckOut", 46, 1 },
11842 { "EFinOut", 45, 1 },
11843 { "ERstOut", 44, 1 },
11844 { "SynIn", 43, 1 },
11845 { "AckIn", 42, 1 },
11846 { "FinIn", 41, 1 },
11847 { "RstIn", 40, 1 },
11848 { "DataIn", 39, 1 },
11849 { "DataInVld", 38, 1 },
11850 { "PadIn", 37, 1 },
11851 { "RxBufEmpty", 36, 1 },
11852 { "RxDdp", 35, 1 },
11853 { "RxFbCongestion", 34, 1 },
11854 { "TxFbCongestion", 33, 1 },
11855 { "TxPktSumSrdy", 32, 1 },
11856 { "RcfUlpType", 28, 4 },
11857 { "Eread", 27, 1 },
11858 { "Ebypass", 26, 1 },
11859 { "Esave", 25, 1 },
11860 { "Static0", 24, 1 },
11861 { "Cread", 23, 1 },
11862 { "Cbypass", 22, 1 },
11863 { "Csave", 21, 1 },
11864 { "CPktOut", 20, 1 },
11865 { "RxPagePoolFull", 18, 2 },
11866 { "RxLpbkPkt", 17, 1 },
11867 { "TxLpbkPkt", 16, 1 },
11868 { "RxVfValid", 15, 1 },
11869 { "SynLearned", 14, 1 },
11870 { "SetDelEntry", 13, 1 },
11871 { "SetInvEntry", 12, 1 },
11872 { "CpcmdDvld", 11, 1 },
11873 { "CpcmdSave", 10, 1 },
11874 { "RxPstructsFull", 8, 2 },
11875 { "EpcmdDvld", 7, 1 },
11876 { "EpcmdFlush", 6, 1 },
11877 { "EpcmdTrimPrefix", 5, 1 },
11878 { "EpcmdTrimPostfix", 4, 1 },
11879 { "ERssIp4Pkt", 3, 1 },
11880 { "ERssIp6Pkt", 2, 1 },
11881 { "ERssTcpUdpPkt", 1, 1 },
11882 { "ERssFceFipPkt", 0, 1 },
11883 { NULL }
11884 };
11885
11886 static const struct field_desc tp_la2[] = {
11887 { "CplCmdIn", 56, 8 },
11888 { "MpsVfVld", 55, 1 },
11889 { "MpsPf", 52, 3 },
11890 { "MpsVf", 44, 8 },
11891 { "SynIn", 43, 1 },
11892 { "AckIn", 42, 1 },
11893 { "FinIn", 41, 1 },
11894 { "RstIn", 40, 1 },
11895 { "DataIn", 39, 1 },
11896 { "DataInVld", 38, 1 },
11897 { "PadIn", 37, 1 },
11898 { "RxBufEmpty", 36, 1 },
11899 { "RxDdp", 35, 1 },
11900 { "RxFbCongestion", 34, 1 },
11901 { "TxFbCongestion", 33, 1 },
11902 { "TxPktSumSrdy", 32, 1 },
11903 { "RcfUlpType", 28, 4 },
11904 { "Eread", 27, 1 },
11905 { "Ebypass", 26, 1 },
11906 { "Esave", 25, 1 },
11907 { "Static0", 24, 1 },
11908 { "Cread", 23, 1 },
11909 { "Cbypass", 22, 1 },
11910 { "Csave", 21, 1 },
11911 { "CPktOut", 20, 1 },
11912 { "RxPagePoolFull", 18, 2 },
11913 { "RxLpbkPkt", 17, 1 },
11914 { "TxLpbkPkt", 16, 1 },
11915 { "RxVfValid", 15, 1 },
11916 { "SynLearned", 14, 1 },
11917 { "SetDelEntry", 13, 1 },
11918 { "SetInvEntry", 12, 1 },
11919 { "CpcmdDvld", 11, 1 },
11920 { "CpcmdSave", 10, 1 },
11921 { "RxPstructsFull", 8, 2 },
11922 { "EpcmdDvld", 7, 1 },
11923 { "EpcmdFlush", 6, 1 },
11924 { "EpcmdTrimPrefix", 5, 1 },
11925 { "EpcmdTrimPostfix", 4, 1 },
11926 { "ERssIp4Pkt", 3, 1 },
11927 { "ERssIp6Pkt", 2, 1 },
11928 { "ERssTcpUdpPkt", 1, 1 },
11929 { "ERssFceFipPkt", 0, 1 },
11930 { NULL }
11931 };
11932
11933 static void
tp_la_show(struct sbuf * sb,uint64_t * p,int idx)11934 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
11935 {
11936
11937 field_desc_show(sb, *p, tp_la0);
11938 }
11939
11940 static void
tp_la_show2(struct sbuf * sb,uint64_t * p,int idx)11941 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
11942 {
11943
11944 if (idx)
11945 sbuf_printf(sb, "\n");
11946 field_desc_show(sb, p[0], tp_la0);
11947 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11948 field_desc_show(sb, p[1], tp_la0);
11949 }
11950
11951 static void
tp_la_show3(struct sbuf * sb,uint64_t * p,int idx)11952 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
11953 {
11954
11955 if (idx)
11956 sbuf_printf(sb, "\n");
11957 field_desc_show(sb, p[0], tp_la0);
11958 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11959 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
11960 }
11961
11962 static int
sysctl_tp_la(SYSCTL_HANDLER_ARGS)11963 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
11964 {
11965 struct adapter *sc = arg1;
11966 struct sbuf *sb;
11967 uint64_t *buf, *p;
11968 int rc;
11969 u_int i, inc;
11970 void (*show_func)(struct sbuf *, uint64_t *, int);
11971
11972 rc = 0;
11973 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11974 if (sb == NULL)
11975 return (ENOMEM);
11976
11977 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
11978
11979 mtx_lock(&sc->reg_lock);
11980 if (hw_off_limits(sc))
11981 rc = ENXIO;
11982 else {
11983 t4_tp_read_la(sc, buf, NULL);
11984 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
11985 case 2:
11986 inc = 2;
11987 show_func = tp_la_show2;
11988 break;
11989 case 3:
11990 inc = 2;
11991 show_func = tp_la_show3;
11992 break;
11993 default:
11994 inc = 1;
11995 show_func = tp_la_show;
11996 }
11997 }
11998 mtx_unlock(&sc->reg_lock);
11999 if (rc != 0)
12000 goto done;
12001
12002 p = buf;
12003 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
12004 (*show_func)(sb, p, i);
12005 rc = sbuf_finish(sb);
12006 done:
12007 sbuf_delete(sb);
12008 free(buf, M_CXGBE);
12009 return (rc);
12010 }
12011
12012 static int
sysctl_tx_rate(SYSCTL_HANDLER_ARGS)12013 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
12014 {
12015 struct adapter *sc = arg1;
12016 struct sbuf *sb;
12017 int rc;
12018 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
12019
12020 rc = 0;
12021 mtx_lock(&sc->reg_lock);
12022 if (hw_off_limits(sc))
12023 rc = ENXIO;
12024 else
12025 t4_get_chan_txrate(sc, nrate, orate);
12026 mtx_unlock(&sc->reg_lock);
12027 if (rc != 0)
12028 return (rc);
12029
12030 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
12031 if (sb == NULL)
12032 return (ENOMEM);
12033
12034 if (sc->chip_params->nchan > 2) {
12035 sbuf_printf(sb, " channel 0 channel 1"
12036 " channel 2 channel 3\n");
12037 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n",
12038 nrate[0], nrate[1], nrate[2], nrate[3]);
12039 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju",
12040 orate[0], orate[1], orate[2], orate[3]);
12041 } else {
12042 sbuf_printf(sb, " channel 0 channel 1\n");
12043 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n",
12044 nrate[0], nrate[1]);
12045 sbuf_printf(sb, "Offload B/s: %10ju %10ju",
12046 orate[0], orate[1]);
12047 }
12048
12049 rc = sbuf_finish(sb);
12050 sbuf_delete(sb);
12051
12052 return (rc);
12053 }
12054
12055 static int
sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)12056 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
12057 {
12058 struct adapter *sc = arg1;
12059 struct sbuf *sb;
12060 uint32_t *buf, *p;
12061 int rc, i;
12062
12063 rc = 0;
12064 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
12065 if (sb == NULL)
12066 return (ENOMEM);
12067
12068 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
12069 M_ZERO | M_WAITOK);
12070
12071 mtx_lock(&sc->reg_lock);
12072 if (hw_off_limits(sc))
12073 rc = ENXIO;
12074 else
12075 t4_ulprx_read_la(sc, buf);
12076 mtx_unlock(&sc->reg_lock);
12077 if (rc != 0)
12078 goto done;
12079
12080 p = buf;
12081 sbuf_printf(sb, " Pcmd Type Message"
12082 " Data");
12083 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
12084 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x",
12085 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
12086 }
12087 rc = sbuf_finish(sb);
12088 done:
12089 sbuf_delete(sb);
12090 free(buf, M_CXGBE);
12091 return (rc);
12092 }
12093
12094 static int
sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)12095 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
12096 {
12097 struct adapter *sc = arg1;
12098 struct sbuf *sb;
12099 int rc;
12100 uint32_t cfg, s1, s2;
12101
12102 MPASS(chip_id(sc) >= CHELSIO_T5);
12103
12104 rc = 0;
12105 mtx_lock(&sc->reg_lock);
12106 if (hw_off_limits(sc))
12107 rc = ENXIO;
12108 else {
12109 cfg = t4_read_reg(sc, A_SGE_STAT_CFG);
12110 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL);
12111 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH);
12112 }
12113 mtx_unlock(&sc->reg_lock);
12114 if (rc != 0)
12115 return (rc);
12116
12117 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
12118 if (sb == NULL)
12119 return (ENOMEM);
12120
12121 if (G_STATSOURCE_T5(cfg) == 7) {
12122 int mode;
12123
12124 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg);
12125 if (mode == 0)
12126 sbuf_printf(sb, "total %d, incomplete %d", s1, s2);
12127 else if (mode == 1)
12128 sbuf_printf(sb, "total %d, data overflow %d", s1, s2);
12129 else
12130 sbuf_printf(sb, "unknown mode %d", mode);
12131 }
12132 rc = sbuf_finish(sb);
12133 sbuf_delete(sb);
12134
12135 return (rc);
12136 }
12137
12138 static int
sysctl_cpus(SYSCTL_HANDLER_ARGS)12139 sysctl_cpus(SYSCTL_HANDLER_ARGS)
12140 {
12141 struct adapter *sc = arg1;
12142 enum cpu_sets op = arg2;
12143 cpuset_t cpuset;
12144 struct sbuf *sb;
12145 int i, rc;
12146
12147 MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
12148
12149 CPU_ZERO(&cpuset);
12150 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
12151 if (rc != 0)
12152 return (rc);
12153
12154 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
12155 if (sb == NULL)
12156 return (ENOMEM);
12157
12158 CPU_FOREACH(i)
12159 sbuf_printf(sb, "%d ", i);
12160 rc = sbuf_finish(sb);
12161 sbuf_delete(sb);
12162
12163 return (rc);
12164 }
12165
12166 static int
sysctl_reset(SYSCTL_HANDLER_ARGS)12167 sysctl_reset(SYSCTL_HANDLER_ARGS)
12168 {
12169 struct adapter *sc = arg1;
12170 u_int val;
12171 int rc;
12172
12173 val = atomic_load_int(&sc->num_resets);
12174 rc = sysctl_handle_int(oidp, &val, 0, req);
12175 if (rc != 0 || req->newptr == NULL)
12176 return (rc);
12177
12178 if (val == 0) {
12179 /* Zero out the counter that tracks reset. */
12180 atomic_store_int(&sc->num_resets, 0);
12181 return (0);
12182 }
12183
12184 if (val != 1)
12185 return (EINVAL); /* 0 or 1 are the only legal values */
12186
12187 if (hw_off_limits(sc)) /* harmless race */
12188 return (EALREADY);
12189
12190 taskqueue_enqueue(reset_tq, &sc->reset_task);
12191 return (0);
12192 }
12193
12194 #ifdef TCP_OFFLOAD
12195 static int
sysctl_tls(SYSCTL_HANDLER_ARGS)12196 sysctl_tls(SYSCTL_HANDLER_ARGS)
12197 {
12198 struct adapter *sc = arg1;
12199 int i, j, v, rc;
12200 struct vi_info *vi;
12201
12202 v = sc->tt.tls;
12203 rc = sysctl_handle_int(oidp, &v, 0, req);
12204 if (rc != 0 || req->newptr == NULL)
12205 return (rc);
12206
12207 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
12208 return (ENOTSUP);
12209
12210 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls");
12211 if (rc)
12212 return (rc);
12213 if (hw_off_limits(sc))
12214 rc = ENXIO;
12215 else {
12216 sc->tt.tls = !!v;
12217 for_each_port(sc, i) {
12218 for_each_vi(sc->port[i], j, vi) {
12219 if (vi->flags & VI_INIT_DONE)
12220 t4_update_fl_bufsize(vi->ifp);
12221 }
12222 }
12223 }
12224 end_synchronized_op(sc, 0);
12225
12226 return (rc);
12227
12228 }
12229
12230 static void
unit_conv(char * buf,size_t len,u_int val,u_int factor)12231 unit_conv(char *buf, size_t len, u_int val, u_int factor)
12232 {
12233 u_int rem = val % factor;
12234
12235 if (rem == 0)
12236 snprintf(buf, len, "%u", val / factor);
12237 else {
12238 while (rem % 10 == 0)
12239 rem /= 10;
12240 snprintf(buf, len, "%u.%u", val / factor, rem);
12241 }
12242 }
12243
12244 static int
sysctl_tp_tick(SYSCTL_HANDLER_ARGS)12245 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
12246 {
12247 struct adapter *sc = arg1;
12248 char buf[16];
12249 u_int res, re;
12250 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
12251
12252 mtx_lock(&sc->reg_lock);
12253 if (hw_off_limits(sc))
12254 res = (u_int)-1;
12255 else
12256 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
12257 mtx_unlock(&sc->reg_lock);
12258 if (res == (u_int)-1)
12259 return (ENXIO);
12260
12261 switch (arg2) {
12262 case 0:
12263 /* timer_tick */
12264 re = G_TIMERRESOLUTION(res);
12265 break;
12266 case 1:
12267 /* TCP timestamp tick */
12268 re = G_TIMESTAMPRESOLUTION(res);
12269 break;
12270 case 2:
12271 /* DACK tick */
12272 re = G_DELAYEDACKRESOLUTION(res);
12273 break;
12274 default:
12275 return (EDOOFUS);
12276 }
12277
12278 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
12279
12280 return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
12281 }
12282
12283 static int
sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)12284 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
12285 {
12286 struct adapter *sc = arg1;
12287 int rc;
12288 u_int dack_tmr, dack_re, v;
12289 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
12290
12291 mtx_lock(&sc->reg_lock);
12292 if (hw_off_limits(sc))
12293 rc = ENXIO;
12294 else {
12295 rc = 0;
12296 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc,
12297 A_TP_TIMER_RESOLUTION));
12298 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER);
12299 }
12300 mtx_unlock(&sc->reg_lock);
12301 if (rc != 0)
12302 return (rc);
12303
12304 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr;
12305
12306 return (sysctl_handle_int(oidp, &v, 0, req));
12307 }
12308
12309 static int
sysctl_tp_timer(SYSCTL_HANDLER_ARGS)12310 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
12311 {
12312 struct adapter *sc = arg1;
12313 int rc, reg = arg2;
12314 u_int tre;
12315 u_long tp_tick_us, v;
12316 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
12317
12318 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
12319 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX ||
12320 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
12321 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
12322
12323 mtx_lock(&sc->reg_lock);
12324 if (hw_off_limits(sc))
12325 rc = ENXIO;
12326 else {
12327 rc = 0;
12328 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
12329 tp_tick_us = (cclk_ps << tre) / 1000000;
12330 if (reg == A_TP_INIT_SRTT)
12331 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
12332 else
12333 v = tp_tick_us * t4_read_reg(sc, reg);
12334 }
12335 mtx_unlock(&sc->reg_lock);
12336 if (rc != 0)
12337 return (rc);
12338 else
12339 return (sysctl_handle_long(oidp, &v, 0, req));
12340 }
12341
12342 /*
12343 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
12344 * passed to this function.
12345 */
12346 static int
sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)12347 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
12348 {
12349 struct adapter *sc = arg1;
12350 int rc, idx = arg2;
12351 u_int v;
12352
12353 MPASS(idx >= 0 && idx <= 24);
12354
12355 mtx_lock(&sc->reg_lock);
12356 if (hw_off_limits(sc))
12357 rc = ENXIO;
12358 else {
12359 rc = 0;
12360 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
12361 }
12362 mtx_unlock(&sc->reg_lock);
12363 if (rc != 0)
12364 return (rc);
12365 else
12366 return (sysctl_handle_int(oidp, &v, 0, req));
12367 }
12368
12369 static int
sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)12370 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
12371 {
12372 struct adapter *sc = arg1;
12373 int rc, idx = arg2;
12374 u_int shift, v, r;
12375
12376 MPASS(idx >= 0 && idx < 16);
12377
12378 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
12379 shift = (idx & 3) << 3;
12380 mtx_lock(&sc->reg_lock);
12381 if (hw_off_limits(sc))
12382 rc = ENXIO;
12383 else {
12384 rc = 0;
12385 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
12386 }
12387 mtx_unlock(&sc->reg_lock);
12388 if (rc != 0)
12389 return (rc);
12390 else
12391 return (sysctl_handle_int(oidp, &v, 0, req));
12392 }
12393
12394 static int
sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)12395 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
12396 {
12397 struct vi_info *vi = arg1;
12398 struct adapter *sc = vi->adapter;
12399 int idx, rc, i;
12400 struct sge_ofld_rxq *ofld_rxq;
12401 uint8_t v;
12402
12403 idx = vi->ofld_tmr_idx;
12404
12405 rc = sysctl_handle_int(oidp, &idx, 0, req);
12406 if (rc != 0 || req->newptr == NULL)
12407 return (rc);
12408
12409 if (idx < 0 || idx >= SGE_NTIMERS)
12410 return (EINVAL);
12411
12412 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
12413 "t4otmr");
12414 if (rc)
12415 return (rc);
12416
12417 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
12418 for_each_ofld_rxq(vi, i, ofld_rxq) {
12419 #ifdef atomic_store_rel_8
12420 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
12421 #else
12422 ofld_rxq->iq.intr_params = v;
12423 #endif
12424 }
12425 vi->ofld_tmr_idx = idx;
12426
12427 end_synchronized_op(sc, LOCK_HELD);
12428 return (0);
12429 }
12430
12431 static int
sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)12432 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
12433 {
12434 struct vi_info *vi = arg1;
12435 struct adapter *sc = vi->adapter;
12436 int idx, rc;
12437
12438 idx = vi->ofld_pktc_idx;
12439
12440 rc = sysctl_handle_int(oidp, &idx, 0, req);
12441 if (rc != 0 || req->newptr == NULL)
12442 return (rc);
12443
12444 if (idx < -1 || idx >= SGE_NCOUNTERS)
12445 return (EINVAL);
12446
12447 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
12448 "t4opktc");
12449 if (rc)
12450 return (rc);
12451
12452 if (vi->flags & VI_INIT_DONE)
12453 rc = EBUSY; /* cannot be changed once the queues are created */
12454 else
12455 vi->ofld_pktc_idx = idx;
12456
12457 end_synchronized_op(sc, LOCK_HELD);
12458 return (rc);
12459 }
12460 #endif
12461
12462 static int
get_sge_context(struct adapter * sc,int mem_id,uint32_t cid,int len,uint32_t * data)12463 get_sge_context(struct adapter *sc, int mem_id, uint32_t cid, int len,
12464 uint32_t *data)
12465 {
12466 int rc;
12467
12468 if (len < sc->chip_params->sge_ctxt_size)
12469 return (ENOBUFS);
12470 if (cid > M_CTXTQID)
12471 return (EINVAL);
12472 if (mem_id != CTXT_EGRESS && mem_id != CTXT_INGRESS &&
12473 mem_id != CTXT_FLM && mem_id != CTXT_CNM)
12474 return (EINVAL);
12475
12476 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
12477 if (rc)
12478 return (rc);
12479
12480 if (hw_off_limits(sc)) {
12481 rc = ENXIO;
12482 goto done;
12483 }
12484
12485 if (sc->flags & FW_OK) {
12486 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cid, mem_id, data);
12487 if (rc == 0)
12488 goto done;
12489 }
12490
12491 /*
12492 * Read via firmware failed or wasn't even attempted. Read directly via
12493 * the backdoor.
12494 */
12495 rc = -t4_sge_ctxt_rd_bd(sc, cid, mem_id, data);
12496 done:
12497 end_synchronized_op(sc, 0);
12498 return (rc);
12499 }
12500
12501 static int
load_fw(struct adapter * sc,struct t4_data * fw)12502 load_fw(struct adapter *sc, struct t4_data *fw)
12503 {
12504 int rc;
12505 uint8_t *fw_data;
12506
12507 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
12508 if (rc)
12509 return (rc);
12510
12511 if (hw_off_limits(sc)) {
12512 rc = ENXIO;
12513 goto done;
12514 }
12515
12516 /*
12517 * The firmware, with the sole exception of the memory parity error
12518 * handler, runs from memory and not flash. It is almost always safe to
12519 * install a new firmware on a running system. Just set bit 1 in
12520 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
12521 */
12522 if (sc->flags & FULL_INIT_DONE &&
12523 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
12524 rc = EBUSY;
12525 goto done;
12526 }
12527
12528 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
12529
12530 rc = copyin(fw->data, fw_data, fw->len);
12531 if (rc == 0)
12532 rc = -t4_load_fw(sc, fw_data, fw->len);
12533
12534 free(fw_data, M_CXGBE);
12535 done:
12536 end_synchronized_op(sc, 0);
12537 return (rc);
12538 }
12539
12540 static int
load_cfg(struct adapter * sc,struct t4_data * cfg)12541 load_cfg(struct adapter *sc, struct t4_data *cfg)
12542 {
12543 int rc;
12544 uint8_t *cfg_data = NULL;
12545
12546 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
12547 if (rc)
12548 return (rc);
12549
12550 if (hw_off_limits(sc)) {
12551 rc = ENXIO;
12552 goto done;
12553 }
12554
12555 if (cfg->len == 0) {
12556 /* clear */
12557 rc = -t4_load_cfg(sc, NULL, 0);
12558 goto done;
12559 }
12560
12561 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
12562
12563 rc = copyin(cfg->data, cfg_data, cfg->len);
12564 if (rc == 0)
12565 rc = -t4_load_cfg(sc, cfg_data, cfg->len);
12566
12567 free(cfg_data, M_CXGBE);
12568 done:
12569 end_synchronized_op(sc, 0);
12570 return (rc);
12571 }
12572
12573 static int
load_boot(struct adapter * sc,struct t4_bootrom * br)12574 load_boot(struct adapter *sc, struct t4_bootrom *br)
12575 {
12576 int rc;
12577 uint8_t *br_data = NULL;
12578 u_int offset;
12579
12580 if (br->len > 1024 * 1024)
12581 return (EFBIG);
12582
12583 if (br->pf_offset == 0) {
12584 /* pfidx */
12585 if (br->pfidx_addr > 7)
12586 return (EINVAL);
12587 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
12588 A_PCIE_PF_EXPROM_OFST)));
12589 } else if (br->pf_offset == 1) {
12590 /* offset */
12591 offset = G_OFFSET(br->pfidx_addr);
12592 } else {
12593 return (EINVAL);
12594 }
12595
12596 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
12597 if (rc)
12598 return (rc);
12599
12600 if (hw_off_limits(sc)) {
12601 rc = ENXIO;
12602 goto done;
12603 }
12604
12605 if (br->len == 0) {
12606 /* clear */
12607 rc = -t4_load_boot(sc, NULL, offset, 0);
12608 goto done;
12609 }
12610
12611 br_data = malloc(br->len, M_CXGBE, M_WAITOK);
12612
12613 rc = copyin(br->data, br_data, br->len);
12614 if (rc == 0)
12615 rc = -t4_load_boot(sc, br_data, offset, br->len);
12616
12617 free(br_data, M_CXGBE);
12618 done:
12619 end_synchronized_op(sc, 0);
12620 return (rc);
12621 }
12622
12623 static int
load_bootcfg(struct adapter * sc,struct t4_data * bc)12624 load_bootcfg(struct adapter *sc, struct t4_data *bc)
12625 {
12626 int rc;
12627 uint8_t *bc_data = NULL;
12628
12629 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
12630 if (rc)
12631 return (rc);
12632
12633 if (hw_off_limits(sc)) {
12634 rc = ENXIO;
12635 goto done;
12636 }
12637
12638 if (bc->len == 0) {
12639 /* clear */
12640 rc = -t4_load_bootcfg(sc, NULL, 0);
12641 goto done;
12642 }
12643
12644 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
12645
12646 rc = copyin(bc->data, bc_data, bc->len);
12647 if (rc == 0)
12648 rc = -t4_load_bootcfg(sc, bc_data, bc->len);
12649
12650 free(bc_data, M_CXGBE);
12651 done:
12652 end_synchronized_op(sc, 0);
12653 return (rc);
12654 }
12655
12656 static int
cudbg_dump(struct adapter * sc,struct t4_cudbg_dump * dump)12657 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
12658 {
12659 int rc;
12660 struct cudbg_init *cudbg;
12661 void *handle, *buf;
12662
12663 /* buf is large, don't block if no memory is available */
12664 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
12665 if (buf == NULL)
12666 return (ENOMEM);
12667
12668 handle = cudbg_alloc_handle();
12669 if (handle == NULL) {
12670 rc = ENOMEM;
12671 goto done;
12672 }
12673
12674 cudbg = cudbg_get_init(handle);
12675 cudbg->adap = sc;
12676 cudbg->print = (cudbg_print_cb)printf;
12677
12678 #ifndef notyet
12679 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
12680 __func__, dump->wr_flash, dump->len, dump->data);
12681 #endif
12682
12683 if (dump->wr_flash)
12684 cudbg->use_flash = 1;
12685 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
12686 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
12687
12688 rc = cudbg_collect(handle, buf, &dump->len);
12689 if (rc != 0)
12690 goto done;
12691
12692 rc = copyout(buf, dump->data, dump->len);
12693 done:
12694 cudbg_free_handle(handle);
12695 free(buf, M_CXGBE);
12696 return (rc);
12697 }
12698
12699 static void
free_offload_policy(struct t4_offload_policy * op)12700 free_offload_policy(struct t4_offload_policy *op)
12701 {
12702 struct offload_rule *r;
12703 int i;
12704
12705 if (op == NULL)
12706 return;
12707
12708 r = &op->rule[0];
12709 for (i = 0; i < op->nrules; i++, r++) {
12710 free(r->bpf_prog.bf_insns, M_CXGBE);
12711 }
12712 free(op->rule, M_CXGBE);
12713 free(op, M_CXGBE);
12714 }
12715
12716 static int
set_offload_policy(struct adapter * sc,struct t4_offload_policy * uop)12717 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
12718 {
12719 int i, rc, len;
12720 struct t4_offload_policy *op, *old;
12721 struct bpf_program *bf;
12722 const struct offload_settings *s;
12723 struct offload_rule *r;
12724 void *u;
12725
12726 if (!is_offload(sc))
12727 return (ENODEV);
12728
12729 if (uop->nrules == 0) {
12730 /* Delete installed policies. */
12731 op = NULL;
12732 goto set_policy;
12733 } else if (uop->nrules > 256) { /* arbitrary */
12734 return (E2BIG);
12735 }
12736
12737 /* Copy userspace offload policy to kernel */
12738 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
12739 op->nrules = uop->nrules;
12740 len = op->nrules * sizeof(struct offload_rule);
12741 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
12742 rc = copyin(uop->rule, op->rule, len);
12743 if (rc) {
12744 free(op->rule, M_CXGBE);
12745 free(op, M_CXGBE);
12746 return (rc);
12747 }
12748
12749 r = &op->rule[0];
12750 for (i = 0; i < op->nrules; i++, r++) {
12751
12752 /* Validate open_type */
12753 if (r->open_type != OPEN_TYPE_LISTEN &&
12754 r->open_type != OPEN_TYPE_ACTIVE &&
12755 r->open_type != OPEN_TYPE_PASSIVE &&
12756 r->open_type != OPEN_TYPE_DONTCARE) {
12757 error:
12758 /*
12759 * Rules 0 to i have malloc'd filters that need to be
12760 * freed. Rules i+1 to nrules have userspace pointers
12761 * and should be left alone.
12762 */
12763 op->nrules = i;
12764 free_offload_policy(op);
12765 return (rc);
12766 }
12767
12768 /* Validate settings */
12769 s = &r->settings;
12770 if ((s->offload != 0 && s->offload != 1) ||
12771 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
12772 s->sched_class < -1 ||
12773 s->sched_class >= sc->params.nsched_cls) {
12774 rc = EINVAL;
12775 goto error;
12776 }
12777
12778 bf = &r->bpf_prog;
12779 u = bf->bf_insns; /* userspace ptr */
12780 bf->bf_insns = NULL;
12781 if (bf->bf_len == 0) {
12782 /* legal, matches everything */
12783 continue;
12784 }
12785 len = bf->bf_len * sizeof(*bf->bf_insns);
12786 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
12787 rc = copyin(u, bf->bf_insns, len);
12788 if (rc != 0)
12789 goto error;
12790
12791 if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
12792 rc = EINVAL;
12793 goto error;
12794 }
12795 }
12796 set_policy:
12797 rw_wlock(&sc->policy_lock);
12798 old = sc->policy;
12799 sc->policy = op;
12800 rw_wunlock(&sc->policy_lock);
12801 free_offload_policy(old);
12802
12803 return (0);
12804 }
12805
12806 #define MAX_READ_BUF_SIZE (128 * 1024)
12807 static int
read_card_mem(struct adapter * sc,int win,struct t4_mem_range * mr)12808 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
12809 {
12810 uint32_t addr, remaining, n;
12811 uint32_t *buf;
12812 int rc;
12813 uint8_t *dst;
12814
12815 mtx_lock(&sc->reg_lock);
12816 if (hw_off_limits(sc))
12817 rc = ENXIO;
12818 else
12819 rc = validate_mem_range(sc, mr->addr, mr->len);
12820 mtx_unlock(&sc->reg_lock);
12821 if (rc != 0)
12822 return (rc);
12823
12824 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
12825 addr = mr->addr;
12826 remaining = mr->len;
12827 dst = (void *)mr->data;
12828
12829 while (remaining) {
12830 n = min(remaining, MAX_READ_BUF_SIZE);
12831 mtx_lock(&sc->reg_lock);
12832 if (hw_off_limits(sc))
12833 rc = ENXIO;
12834 else
12835 read_via_memwin(sc, 2, addr, buf, n);
12836 mtx_unlock(&sc->reg_lock);
12837 if (rc != 0)
12838 break;
12839
12840 rc = copyout(buf, dst, n);
12841 if (rc != 0)
12842 break;
12843
12844 dst += n;
12845 remaining -= n;
12846 addr += n;
12847 }
12848
12849 free(buf, M_CXGBE);
12850 return (rc);
12851 }
12852 #undef MAX_READ_BUF_SIZE
12853
12854 static int
read_i2c(struct adapter * sc,struct t4_i2c_data * i2cd)12855 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
12856 {
12857 int rc;
12858
12859 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
12860 return (EINVAL);
12861
12862 if (i2cd->len > sizeof(i2cd->data))
12863 return (EFBIG);
12864
12865 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
12866 if (rc)
12867 return (rc);
12868 if (hw_off_limits(sc))
12869 rc = ENXIO;
12870 else
12871 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
12872 i2cd->offset, i2cd->len, &i2cd->data[0]);
12873 end_synchronized_op(sc, 0);
12874
12875 return (rc);
12876 }
12877
12878 static int
clear_stats(struct adapter * sc,u_int port_id)12879 clear_stats(struct adapter *sc, u_int port_id)
12880 {
12881 int i, v, chan_map;
12882 struct port_info *pi;
12883 struct vi_info *vi;
12884 struct sge_rxq *rxq;
12885 struct sge_txq *txq;
12886 struct sge_wrq *wrq;
12887 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12888 struct sge_ofld_txq *ofld_txq;
12889 #endif
12890 #ifdef TCP_OFFLOAD
12891 struct sge_ofld_rxq *ofld_rxq;
12892 #endif
12893
12894 if (port_id >= sc->params.nports)
12895 return (EINVAL);
12896 pi = sc->port[port_id];
12897 if (pi == NULL)
12898 return (EIO);
12899
12900 mtx_lock(&sc->reg_lock);
12901 if (!hw_off_limits(sc)) {
12902 /* MAC stats */
12903 t4_clr_port_stats(sc, pi->hw_port);
12904 if (is_t6(sc)) {
12905 if (pi->fcs_reg != -1)
12906 pi->fcs_base = t4_read_reg64(sc,
12907 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg));
12908 else
12909 pi->stats.rx_fcs_err = 0;
12910 }
12911 for_each_vi(pi, v, vi) {
12912 if (vi->flags & VI_INIT_DONE)
12913 t4_clr_vi_stats(sc, vi->vin);
12914 }
12915 chan_map = pi->rx_e_chan_map;
12916 v = 0; /* reuse */
12917 while (chan_map) {
12918 i = ffs(chan_map) - 1;
12919 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
12920 1, A_TP_MIB_TNL_CNG_DROP_0 + i);
12921 chan_map &= ~(1 << i);
12922 }
12923 }
12924 mtx_unlock(&sc->reg_lock);
12925 pi->tx_parse_error = 0;
12926 pi->tnl_cong_drops = 0;
12927
12928 /*
12929 * Since this command accepts a port, clear stats for
12930 * all VIs on this port.
12931 */
12932 for_each_vi(pi, v, vi) {
12933 if (vi->flags & VI_INIT_DONE) {
12934
12935 for_each_rxq(vi, i, rxq) {
12936 #if defined(INET) || defined(INET6)
12937 rxq->lro.lro_queued = 0;
12938 rxq->lro.lro_flushed = 0;
12939 #endif
12940 rxq->rxcsum = 0;
12941 rxq->vlan_extraction = 0;
12942 rxq->vxlan_rxcsum = 0;
12943
12944 rxq->fl.cl_allocated = 0;
12945 rxq->fl.cl_recycled = 0;
12946 rxq->fl.cl_fast_recycled = 0;
12947 }
12948
12949 for_each_txq(vi, i, txq) {
12950 txq->txcsum = 0;
12951 txq->tso_wrs = 0;
12952 txq->vlan_insertion = 0;
12953 txq->imm_wrs = 0;
12954 txq->sgl_wrs = 0;
12955 txq->txpkt_wrs = 0;
12956 txq->txpkts0_wrs = 0;
12957 txq->txpkts1_wrs = 0;
12958 txq->txpkts0_pkts = 0;
12959 txq->txpkts1_pkts = 0;
12960 txq->txpkts_flush = 0;
12961 txq->raw_wrs = 0;
12962 txq->vxlan_tso_wrs = 0;
12963 txq->vxlan_txcsum = 0;
12964 txq->kern_tls_records = 0;
12965 txq->kern_tls_short = 0;
12966 txq->kern_tls_partial = 0;
12967 txq->kern_tls_full = 0;
12968 txq->kern_tls_octets = 0;
12969 txq->kern_tls_waste = 0;
12970 txq->kern_tls_header = 0;
12971 txq->kern_tls_fin_short = 0;
12972 txq->kern_tls_cbc = 0;
12973 txq->kern_tls_gcm = 0;
12974 if (is_t6(sc)) {
12975 txq->kern_tls_options = 0;
12976 txq->kern_tls_fin = 0;
12977 } else {
12978 txq->kern_tls_ghash_received = 0;
12979 txq->kern_tls_ghash_requested = 0;
12980 txq->kern_tls_lso = 0;
12981 txq->kern_tls_partial_ghash = 0;
12982 txq->kern_tls_splitmode = 0;
12983 txq->kern_tls_trailer = 0;
12984 }
12985 mp_ring_reset_stats(txq->r);
12986 }
12987
12988 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12989 for_each_ofld_txq(vi, i, ofld_txq) {
12990 ofld_txq->wrq.tx_wrs_direct = 0;
12991 ofld_txq->wrq.tx_wrs_copied = 0;
12992 counter_u64_zero(ofld_txq->tx_iscsi_pdus);
12993 counter_u64_zero(ofld_txq->tx_iscsi_octets);
12994 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs);
12995 counter_u64_zero(ofld_txq->tx_nvme_pdus);
12996 counter_u64_zero(ofld_txq->tx_nvme_octets);
12997 counter_u64_zero(ofld_txq->tx_nvme_iso_wrs);
12998 counter_u64_zero(ofld_txq->tx_aio_jobs);
12999 counter_u64_zero(ofld_txq->tx_aio_octets);
13000 counter_u64_zero(ofld_txq->tx_toe_tls_records);
13001 counter_u64_zero(ofld_txq->tx_toe_tls_octets);
13002 }
13003 #endif
13004 #ifdef TCP_OFFLOAD
13005 for_each_ofld_rxq(vi, i, ofld_rxq) {
13006 ofld_rxq->fl.cl_allocated = 0;
13007 ofld_rxq->fl.cl_recycled = 0;
13008 ofld_rxq->fl.cl_fast_recycled = 0;
13009 counter_u64_zero(
13010 ofld_rxq->rx_iscsi_ddp_setup_ok);
13011 counter_u64_zero(
13012 ofld_rxq->rx_iscsi_ddp_setup_error);
13013 ofld_rxq->rx_iscsi_ddp_pdus = 0;
13014 ofld_rxq->rx_iscsi_ddp_octets = 0;
13015 ofld_rxq->rx_iscsi_fl_pdus = 0;
13016 ofld_rxq->rx_iscsi_fl_octets = 0;
13017 counter_u64_zero(
13018 ofld_rxq->rx_nvme_ddp_setup_ok);
13019 counter_u64_zero(
13020 ofld_rxq->rx_nvme_ddp_setup_no_stag);
13021 counter_u64_zero(
13022 ofld_rxq->rx_nvme_ddp_setup_error);
13023 counter_u64_zero(ofld_rxq->rx_nvme_ddp_pdus);
13024 counter_u64_zero(ofld_rxq->rx_nvme_ddp_octets);
13025 counter_u64_zero(ofld_rxq->rx_nvme_fl_pdus);
13026 counter_u64_zero(ofld_rxq->rx_nvme_fl_octets);
13027 counter_u64_zero(
13028 ofld_rxq->rx_nvme_invalid_headers);
13029 counter_u64_zero(
13030 ofld_rxq->rx_nvme_header_digest_errors);
13031 counter_u64_zero(
13032 ofld_rxq->rx_nvme_data_digest_errors);
13033 ofld_rxq->rx_aio_ddp_jobs = 0;
13034 ofld_rxq->rx_aio_ddp_octets = 0;
13035 ofld_rxq->rx_toe_tls_records = 0;
13036 ofld_rxq->rx_toe_tls_octets = 0;
13037 ofld_rxq->rx_toe_ddp_octets = 0;
13038 counter_u64_zero(ofld_rxq->ddp_buffer_alloc);
13039 counter_u64_zero(ofld_rxq->ddp_buffer_reuse);
13040 counter_u64_zero(ofld_rxq->ddp_buffer_free);
13041 }
13042 #endif
13043
13044 if (IS_MAIN_VI(vi)) {
13045 wrq = &sc->sge.ctrlq[pi->port_id];
13046 wrq->tx_wrs_direct = 0;
13047 wrq->tx_wrs_copied = 0;
13048 }
13049 }
13050 }
13051
13052 return (0);
13053 }
13054
13055 static int
hold_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)13056 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
13057 {
13058 #ifdef INET6
13059 struct in6_addr in6;
13060
13061 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
13062 if (t4_get_clip_entry(sc, &in6, true) != NULL)
13063 return (0);
13064 else
13065 return (EIO);
13066 #else
13067 return (ENOTSUP);
13068 #endif
13069 }
13070
13071 static int
release_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)13072 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
13073 {
13074 #ifdef INET6
13075 struct in6_addr in6;
13076
13077 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
13078 return (t4_release_clip_addr(sc, &in6));
13079 #else
13080 return (ENOTSUP);
13081 #endif
13082 }
13083
13084 int
t4_os_find_pci_capability(struct adapter * sc,int cap)13085 t4_os_find_pci_capability(struct adapter *sc, int cap)
13086 {
13087 int i;
13088
13089 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
13090 }
13091
13092 void
t4_os_portmod_changed(struct port_info * pi)13093 t4_os_portmod_changed(struct port_info *pi)
13094 {
13095 struct adapter *sc = pi->adapter;
13096 struct vi_info *vi;
13097 if_t ifp;
13098 static const char *mod_str[] = {
13099 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM",
13100 "LR_SIMPLEX", "DR"
13101 };
13102
13103 KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
13104 ("%s: port_type %u", __func__, pi->port_type));
13105
13106 vi = &pi->vi[0];
13107 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
13108 PORT_LOCK(pi);
13109 build_medialist(pi);
13110 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
13111 fixup_link_config(pi);
13112 apply_link_config(pi);
13113 }
13114 PORT_UNLOCK(pi);
13115 end_synchronized_op(sc, LOCK_HELD);
13116 }
13117
13118 ifp = vi->ifp;
13119 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
13120 if_printf(ifp, "transceiver unplugged.\n");
13121 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
13122 if_printf(ifp, "unknown transceiver inserted.\n");
13123 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
13124 if_printf(ifp, "unsupported transceiver inserted.\n");
13125 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
13126 if_printf(ifp, "%dGbps %s transceiver inserted.\n",
13127 port_top_speed(pi), mod_str[pi->mod_type]);
13128 } else {
13129 if_printf(ifp, "transceiver (type %d) inserted.\n",
13130 pi->mod_type);
13131 }
13132 }
13133
13134 void
t4_os_link_changed(struct port_info * pi)13135 t4_os_link_changed(struct port_info *pi)
13136 {
13137 struct vi_info *vi;
13138 if_t ifp;
13139 struct link_config *lc = &pi->link_cfg;
13140 struct adapter *sc = pi->adapter;
13141 int v;
13142
13143 PORT_LOCK_ASSERT_OWNED(pi);
13144
13145 if (is_t6(sc)) {
13146 if (lc->link_ok) {
13147 if (lc->speed > 25000 ||
13148 (lc->speed == 25000 && lc->fec == FEC_RS))
13149 pi->fcs_reg = A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS;
13150 else
13151 pi->fcs_reg = A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS;
13152 pi->fcs_base = t4_read_reg64(sc,
13153 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg));
13154 pi->stats.rx_fcs_err = 0;
13155 } else {
13156 pi->fcs_reg = -1;
13157 }
13158 } else {
13159 MPASS(pi->fcs_reg != -1);
13160 MPASS(pi->fcs_base == 0);
13161 }
13162
13163 for_each_vi(pi, v, vi) {
13164 ifp = vi->ifp;
13165 if (ifp == NULL || IS_DETACHING(vi))
13166 continue;
13167
13168 if (lc->link_ok) {
13169 if_setbaudrate(ifp, IF_Mbps(lc->speed));
13170 if_link_state_change(ifp, LINK_STATE_UP);
13171 } else {
13172 if_link_state_change(ifp, LINK_STATE_DOWN);
13173 }
13174 }
13175 }
13176
13177 void
t4_iterate(void (* func)(struct adapter *,void *),void * arg)13178 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
13179 {
13180 struct adapter *sc;
13181
13182 sx_slock(&t4_list_lock);
13183 SLIST_FOREACH(sc, &t4_list, link) {
13184 /*
13185 * func should not make any assumptions about what state sc is
13186 * in - the only guarantee is that sc->sc_lock is a valid lock.
13187 */
13188 func(sc, arg);
13189 }
13190 sx_sunlock(&t4_list_lock);
13191 }
13192
13193 static int
t4_ioctl(struct cdev * dev,unsigned long cmd,caddr_t data,int fflag,struct thread * td)13194 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
13195 struct thread *td)
13196 {
13197 int rc;
13198 struct adapter *sc = dev->si_drv1;
13199
13200 rc = priv_check(td, PRIV_DRIVER);
13201 if (rc != 0)
13202 return (rc);
13203
13204 switch (cmd) {
13205 case CHELSIO_T4_GETREG: {
13206 struct t4_reg *edata = (struct t4_reg *)data;
13207
13208 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
13209 return (EFAULT);
13210
13211 mtx_lock(&sc->reg_lock);
13212 if (hw_off_limits(sc))
13213 rc = ENXIO;
13214 else if (edata->size == 4)
13215 edata->val = t4_read_reg(sc, edata->addr);
13216 else if (edata->size == 8)
13217 edata->val = t4_read_reg64(sc, edata->addr);
13218 else
13219 rc = EINVAL;
13220 mtx_unlock(&sc->reg_lock);
13221
13222 break;
13223 }
13224 case CHELSIO_T4_SETREG: {
13225 struct t4_reg *edata = (struct t4_reg *)data;
13226
13227 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
13228 return (EFAULT);
13229
13230 mtx_lock(&sc->reg_lock);
13231 if (hw_off_limits(sc))
13232 rc = ENXIO;
13233 else if (edata->size == 4) {
13234 if (edata->val & 0xffffffff00000000)
13235 rc = EINVAL;
13236 t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
13237 } else if (edata->size == 8)
13238 t4_write_reg64(sc, edata->addr, edata->val);
13239 else
13240 rc = EINVAL;
13241 mtx_unlock(&sc->reg_lock);
13242
13243 break;
13244 }
13245 case CHELSIO_T4_REGDUMP: {
13246 struct t4_regdump *regs = (struct t4_regdump *)data;
13247 int reglen = t4_get_regs_len(sc);
13248 uint8_t *buf;
13249
13250 if (regs->len < reglen) {
13251 regs->len = reglen; /* hint to the caller */
13252 return (ENOBUFS);
13253 }
13254
13255 regs->len = reglen;
13256 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
13257 mtx_lock(&sc->reg_lock);
13258 if (hw_off_limits(sc))
13259 rc = ENXIO;
13260 else
13261 get_regs(sc, regs, buf);
13262 mtx_unlock(&sc->reg_lock);
13263 if (rc == 0)
13264 rc = copyout(buf, regs->data, reglen);
13265 free(buf, M_CXGBE);
13266 break;
13267 }
13268 case CHELSIO_T4_GET_FILTER_MODE:
13269 rc = get_filter_mode(sc, (uint32_t *)data);
13270 break;
13271 case CHELSIO_T4_SET_FILTER_MODE:
13272 rc = set_filter_mode(sc, *(uint32_t *)data);
13273 break;
13274 case CHELSIO_T4_SET_FILTER_MASK:
13275 rc = set_filter_mask(sc, *(uint32_t *)data);
13276 break;
13277 case CHELSIO_T4_GET_FILTER:
13278 rc = get_filter(sc, (struct t4_filter *)data);
13279 break;
13280 case CHELSIO_T4_SET_FILTER:
13281 rc = set_filter(sc, (struct t4_filter *)data);
13282 break;
13283 case CHELSIO_T4_DEL_FILTER:
13284 rc = del_filter(sc, (struct t4_filter *)data);
13285 break;
13286 case CHELSIO_T4_GET_SGE_CONTEXT: {
13287 struct t4_sge_context *ctxt = (struct t4_sge_context *)data;
13288
13289 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid,
13290 sizeof(ctxt->data), &ctxt->data[0]);
13291 break;
13292 }
13293 case CHELSIO_T4_LOAD_FW:
13294 rc = load_fw(sc, (struct t4_data *)data);
13295 break;
13296 case CHELSIO_T4_GET_MEM:
13297 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
13298 break;
13299 case CHELSIO_T4_GET_I2C:
13300 rc = read_i2c(sc, (struct t4_i2c_data *)data);
13301 break;
13302 case CHELSIO_T4_CLEAR_STATS:
13303 rc = clear_stats(sc, *(uint32_t *)data);
13304 break;
13305 case CHELSIO_T4_SCHED_CLASS:
13306 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
13307 break;
13308 case CHELSIO_T4_SCHED_QUEUE:
13309 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
13310 break;
13311 case CHELSIO_T4_GET_TRACER:
13312 rc = t4_get_tracer(sc, (struct t4_tracer *)data);
13313 break;
13314 case CHELSIO_T4_SET_TRACER:
13315 rc = t4_set_tracer(sc, (struct t4_tracer *)data);
13316 break;
13317 case CHELSIO_T4_LOAD_CFG:
13318 rc = load_cfg(sc, (struct t4_data *)data);
13319 break;
13320 case CHELSIO_T4_LOAD_BOOT:
13321 rc = load_boot(sc, (struct t4_bootrom *)data);
13322 break;
13323 case CHELSIO_T4_LOAD_BOOTCFG:
13324 rc = load_bootcfg(sc, (struct t4_data *)data);
13325 break;
13326 case CHELSIO_T4_CUDBG_DUMP:
13327 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
13328 break;
13329 case CHELSIO_T4_SET_OFLD_POLICY:
13330 rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
13331 break;
13332 case CHELSIO_T4_HOLD_CLIP_ADDR:
13333 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data);
13334 break;
13335 case CHELSIO_T4_RELEASE_CLIP_ADDR:
13336 rc = release_clip_addr(sc, (struct t4_clip_addr *)data);
13337 break;
13338 case CHELSIO_T4_GET_SGE_CTXT: {
13339 struct t4_sge_ctxt *ctxt = (struct t4_sge_ctxt *)data;
13340
13341 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid,
13342 sizeof(ctxt->data), &ctxt->data[0]);
13343 break;
13344 }
13345 default:
13346 rc = ENOTTY;
13347 }
13348
13349 return (rc);
13350 }
13351
13352 #ifdef TCP_OFFLOAD
13353 int
toe_capability(struct vi_info * vi,bool enable)13354 toe_capability(struct vi_info *vi, bool enable)
13355 {
13356 int rc;
13357 struct port_info *pi = vi->pi;
13358 struct adapter *sc = pi->adapter;
13359
13360 ASSERT_SYNCHRONIZED_OP(sc);
13361
13362 if (!is_offload(sc))
13363 return (ENODEV);
13364 if (!hw_all_ok(sc))
13365 return (ENXIO);
13366
13367 if (enable) {
13368 #ifdef KERN_TLS
13369 if (sc->flags & KERN_TLS_ON && is_t6(sc)) {
13370 int i, j, n;
13371 struct port_info *p;
13372 struct vi_info *v;
13373
13374 /*
13375 * Reconfigure hardware for TOE if TXTLS is not enabled
13376 * on any ifnet.
13377 */
13378 n = 0;
13379 for_each_port(sc, i) {
13380 p = sc->port[i];
13381 for_each_vi(p, j, v) {
13382 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) {
13383 CH_WARN(sc,
13384 "%s has NIC TLS enabled.\n",
13385 device_get_nameunit(v->dev));
13386 n++;
13387 }
13388 }
13389 }
13390 if (n > 0) {
13391 CH_WARN(sc, "Disable NIC TLS on all interfaces "
13392 "associated with this adapter before "
13393 "trying to enable TOE.\n");
13394 return (EAGAIN);
13395 }
13396 rc = t6_config_kern_tls(sc, false);
13397 if (rc)
13398 return (rc);
13399 }
13400 #endif
13401 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) {
13402 /* TOE is already enabled. */
13403 return (0);
13404 }
13405
13406 /*
13407 * We need the port's queues around so that we're able to send
13408 * and receive CPLs to/from the TOE even if the ifnet for this
13409 * port has never been UP'd administratively.
13410 */
13411 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
13412 return (rc);
13413 if (!(pi->vi[0].flags & VI_INIT_DONE) &&
13414 ((rc = vi_init(&pi->vi[0])) != 0))
13415 return (rc);
13416
13417 if (isset(&sc->offload_map, pi->port_id)) {
13418 /* TOE is enabled on another VI of this port. */
13419 MPASS(pi->uld_vis > 0);
13420 pi->uld_vis++;
13421 return (0);
13422 }
13423
13424 if (!uld_active(sc, ULD_TOM)) {
13425 rc = t4_activate_uld(sc, ULD_TOM);
13426 if (rc == EAGAIN) {
13427 log(LOG_WARNING,
13428 "You must kldload t4_tom.ko before trying "
13429 "to enable TOE on a cxgbe interface.\n");
13430 }
13431 if (rc != 0)
13432 return (rc);
13433 KASSERT(sc->tom_softc != NULL,
13434 ("%s: TOM activated but softc NULL", __func__));
13435 KASSERT(uld_active(sc, ULD_TOM),
13436 ("%s: TOM activated but flag not set", __func__));
13437 }
13438
13439 /*
13440 * Activate iWARP, iSCSI, and NVMe too, if the modules
13441 * are loaded.
13442 */
13443 if (!uld_active(sc, ULD_IWARP))
13444 (void) t4_activate_uld(sc, ULD_IWARP);
13445 if (!uld_active(sc, ULD_ISCSI))
13446 (void) t4_activate_uld(sc, ULD_ISCSI);
13447 if (!uld_active(sc, ULD_NVME))
13448 (void) t4_activate_uld(sc, ULD_NVME);
13449
13450 if (pi->uld_vis++ == 0)
13451 setbit(&sc->offload_map, pi->port_id);
13452 } else {
13453 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) == 0) {
13454 /* TOE is already disabled. */
13455 return (0);
13456 }
13457 MPASS(isset(&sc->offload_map, pi->port_id));
13458 MPASS(pi->uld_vis > 0);
13459 if (--pi->uld_vis == 0)
13460 clrbit(&sc->offload_map, pi->port_id);
13461 }
13462
13463 return (0);
13464 }
13465
13466 /*
13467 * Add an upper layer driver to the global list.
13468 */
13469 int
t4_register_uld(struct uld_info * ui,int id)13470 t4_register_uld(struct uld_info *ui, int id)
13471 {
13472 int rc;
13473
13474 if (id < 0 || id > ULD_MAX)
13475 return (EINVAL);
13476 sx_xlock(&t4_uld_list_lock);
13477 if (t4_uld_list[id] != NULL)
13478 rc = EEXIST;
13479 else {
13480 t4_uld_list[id] = ui;
13481 rc = 0;
13482 }
13483 sx_xunlock(&t4_uld_list_lock);
13484 return (rc);
13485 }
13486
13487 int
t4_unregister_uld(struct uld_info * ui,int id)13488 t4_unregister_uld(struct uld_info *ui, int id)
13489 {
13490
13491 if (id < 0 || id > ULD_MAX)
13492 return (EINVAL);
13493 sx_xlock(&t4_uld_list_lock);
13494 MPASS(t4_uld_list[id] == ui);
13495 t4_uld_list[id] = NULL;
13496 sx_xunlock(&t4_uld_list_lock);
13497 return (0);
13498 }
13499
13500 int
t4_activate_uld(struct adapter * sc,int id)13501 t4_activate_uld(struct adapter *sc, int id)
13502 {
13503 int rc;
13504
13505 ASSERT_SYNCHRONIZED_OP(sc);
13506
13507 if (id < 0 || id > ULD_MAX)
13508 return (EINVAL);
13509
13510 /* Adapter needs to be initialized before any ULD can be activated. */
13511 if (!(sc->flags & FULL_INIT_DONE)) {
13512 rc = adapter_init(sc);
13513 if (rc != 0)
13514 return (rc);
13515 }
13516
13517 sx_slock(&t4_uld_list_lock);
13518 if (t4_uld_list[id] == NULL)
13519 rc = EAGAIN; /* load the KLD with this ULD and try again. */
13520 else {
13521 rc = t4_uld_list[id]->uld_activate(sc);
13522 if (rc == 0)
13523 setbit(&sc->active_ulds, id);
13524 }
13525 sx_sunlock(&t4_uld_list_lock);
13526
13527 return (rc);
13528 }
13529
13530 int
t4_deactivate_uld(struct adapter * sc,int id)13531 t4_deactivate_uld(struct adapter *sc, int id)
13532 {
13533 int rc;
13534
13535 ASSERT_SYNCHRONIZED_OP(sc);
13536
13537 if (id < 0 || id > ULD_MAX)
13538 return (EINVAL);
13539
13540 sx_slock(&t4_uld_list_lock);
13541 if (t4_uld_list[id] == NULL)
13542 rc = ENXIO;
13543 else {
13544 rc = t4_uld_list[id]->uld_deactivate(sc);
13545 if (rc == 0)
13546 clrbit(&sc->active_ulds, id);
13547 }
13548 sx_sunlock(&t4_uld_list_lock);
13549
13550 return (rc);
13551 }
13552
13553 static int
deactivate_all_uld(struct adapter * sc)13554 deactivate_all_uld(struct adapter *sc)
13555 {
13556 int i, rc;
13557
13558 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld");
13559 if (rc != 0)
13560 return (ENXIO);
13561 sx_slock(&t4_uld_list_lock);
13562 for (i = 0; i <= ULD_MAX; i++) {
13563 if (t4_uld_list[i] == NULL || !uld_active(sc, i))
13564 continue;
13565 rc = t4_uld_list[i]->uld_deactivate(sc);
13566 if (rc != 0)
13567 break;
13568 clrbit(&sc->active_ulds, i);
13569 }
13570 sx_sunlock(&t4_uld_list_lock);
13571 end_synchronized_op(sc, 0);
13572
13573 return (rc);
13574 }
13575
13576 static void
stop_all_uld(struct adapter * sc)13577 stop_all_uld(struct adapter *sc)
13578 {
13579 int i;
13580
13581 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0)
13582 return;
13583 sx_slock(&t4_uld_list_lock);
13584 for (i = 0; i <= ULD_MAX; i++) {
13585 if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
13586 t4_uld_list[i]->uld_stop == NULL)
13587 continue;
13588 (void) t4_uld_list[i]->uld_stop(sc);
13589 }
13590 sx_sunlock(&t4_uld_list_lock);
13591 end_synchronized_op(sc, 0);
13592 }
13593
13594 static void
restart_all_uld(struct adapter * sc)13595 restart_all_uld(struct adapter *sc)
13596 {
13597 int i;
13598
13599 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0)
13600 return;
13601 sx_slock(&t4_uld_list_lock);
13602 for (i = 0; i <= ULD_MAX; i++) {
13603 if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
13604 t4_uld_list[i]->uld_restart == NULL)
13605 continue;
13606 (void) t4_uld_list[i]->uld_restart(sc);
13607 }
13608 sx_sunlock(&t4_uld_list_lock);
13609 end_synchronized_op(sc, 0);
13610 }
13611
13612 int
uld_active(struct adapter * sc,int id)13613 uld_active(struct adapter *sc, int id)
13614 {
13615
13616 MPASS(id >= 0 && id <= ULD_MAX);
13617
13618 return (isset(&sc->active_ulds, id));
13619 }
13620 #endif
13621
13622 #ifdef KERN_TLS
13623 static int
ktls_capability(struct adapter * sc,bool enable)13624 ktls_capability(struct adapter *sc, bool enable)
13625 {
13626 ASSERT_SYNCHRONIZED_OP(sc);
13627
13628 if (!is_ktls(sc))
13629 return (ENODEV);
13630 if (!is_t6(sc))
13631 return (0);
13632 if (!hw_all_ok(sc))
13633 return (ENXIO);
13634
13635 if (enable) {
13636 if (sc->flags & KERN_TLS_ON)
13637 return (0); /* already on */
13638 if (sc->offload_map != 0) {
13639 CH_WARN(sc,
13640 "Disable TOE on all interfaces associated with "
13641 "this adapter before trying to enable NIC TLS.\n");
13642 return (EAGAIN);
13643 }
13644 return (t6_config_kern_tls(sc, true));
13645 } else {
13646 /*
13647 * Nothing to do for disable. If TOE is enabled sometime later
13648 * then toe_capability will reconfigure the hardware.
13649 */
13650 return (0);
13651 }
13652 }
13653 #endif
13654
13655 /*
13656 * t = ptr to tunable.
13657 * nc = number of CPUs.
13658 * c = compiled in default for that tunable.
13659 */
13660 static void
calculate_nqueues(int * t,int nc,const int c)13661 calculate_nqueues(int *t, int nc, const int c)
13662 {
13663 int nq;
13664
13665 if (*t > 0)
13666 return;
13667 nq = *t < 0 ? -*t : c;
13668 *t = min(nc, nq);
13669 }
13670
13671 /*
13672 * Come up with reasonable defaults for some of the tunables, provided they're
13673 * not set by the user (in which case we'll use the values as is).
13674 */
13675 static void
tweak_tunables(void)13676 tweak_tunables(void)
13677 {
13678 int nc = mp_ncpus; /* our snapshot of the number of CPUs */
13679
13680 if (t4_ntxq < 1) {
13681 #ifdef RSS
13682 t4_ntxq = rss_getnumbuckets();
13683 #else
13684 calculate_nqueues(&t4_ntxq, nc, NTXQ);
13685 #endif
13686 }
13687
13688 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
13689
13690 if (t4_nrxq < 1) {
13691 #ifdef RSS
13692 t4_nrxq = rss_getnumbuckets();
13693 #else
13694 calculate_nqueues(&t4_nrxq, nc, NRXQ);
13695 #endif
13696 }
13697
13698 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
13699
13700 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
13701 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
13702 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
13703 #endif
13704 #ifdef TCP_OFFLOAD
13705 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
13706 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
13707 #endif
13708
13709 #if defined(TCP_OFFLOAD) || defined(KERN_TLS)
13710 if (t4_toecaps_allowed == -1)
13711 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
13712 #else
13713 if (t4_toecaps_allowed == -1)
13714 t4_toecaps_allowed = 0;
13715 #endif
13716
13717 #ifdef TCP_OFFLOAD
13718 if (t4_rdmacaps_allowed == -1) {
13719 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
13720 FW_CAPS_CONFIG_RDMA_RDMAC;
13721 }
13722
13723 if (t4_iscsicaps_allowed == -1) {
13724 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
13725 FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
13726 FW_CAPS_CONFIG_ISCSI_T10DIF;
13727 }
13728
13729 if (t4_nvmecaps_allowed == -1)
13730 t4_nvmecaps_allowed = FW_CAPS_CONFIG_NVME_TCP;
13731
13732 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
13733 t4_tmr_idx_ofld = TMR_IDX_OFLD;
13734
13735 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
13736 t4_pktc_idx_ofld = PKTC_IDX_OFLD;
13737 #else
13738 if (t4_rdmacaps_allowed == -1)
13739 t4_rdmacaps_allowed = 0;
13740
13741 if (t4_iscsicaps_allowed == -1)
13742 t4_iscsicaps_allowed = 0;
13743
13744 if (t4_nvmecaps_allowed == -1)
13745 t4_nvmecaps_allowed = 0;
13746 #endif
13747
13748 #ifdef DEV_NETMAP
13749 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ);
13750 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ);
13751 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
13752 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
13753 #endif
13754
13755 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
13756 t4_tmr_idx = TMR_IDX;
13757
13758 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
13759 t4_pktc_idx = PKTC_IDX;
13760
13761 if (t4_qsize_txq < 128)
13762 t4_qsize_txq = 128;
13763
13764 if (t4_qsize_rxq < 128)
13765 t4_qsize_rxq = 128;
13766 while (t4_qsize_rxq & 7)
13767 t4_qsize_rxq++;
13768
13769 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
13770
13771 /*
13772 * Number of VIs to create per-port. The first VI is the "main" regular
13773 * VI for the port. The rest are additional virtual interfaces on the
13774 * same physical port. Note that the main VI does not have native
13775 * netmap support but the extra VIs do.
13776 *
13777 * Limit the number of VIs per port to the number of available
13778 * MAC addresses per port.
13779 */
13780 if (t4_num_vis < 1)
13781 t4_num_vis = 1;
13782 if (t4_num_vis > nitems(vi_mac_funcs)) {
13783 t4_num_vis = nitems(vi_mac_funcs);
13784 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
13785 }
13786
13787 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
13788 pcie_relaxed_ordering = 1;
13789 #if defined(__i386__) || defined(__amd64__)
13790 if (cpu_vendor_id == CPU_VENDOR_INTEL)
13791 pcie_relaxed_ordering = 0;
13792 #endif
13793 }
13794 }
13795
13796 #ifdef DDB
13797 static void
t4_dump_mem(struct adapter * sc,u_int addr,u_int len)13798 t4_dump_mem(struct adapter *sc, u_int addr, u_int len)
13799 {
13800 uint32_t base, j, off, pf, reg, save, win_pos;
13801
13802 reg = chip_id(sc) > CHELSIO_T6 ?
13803 PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, 2) :
13804 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
13805 save = t4_read_reg(sc, reg);
13806 base = sc->memwin[2].mw_base;
13807
13808 if (is_t4(sc)) {
13809 pf = 0;
13810 win_pos = addr & ~0xf; /* start must be 16B aligned */
13811 } else {
13812 pf = V_PFNUM(sc->pf);
13813 win_pos = addr & ~0x7f; /* start must be 128B aligned */
13814 }
13815 off = addr - win_pos;
13816 if (chip_id(sc) > CHELSIO_T6)
13817 win_pos >>= X_T7_MEMOFST_SHIFT;
13818 t4_write_reg(sc, reg, win_pos | pf);
13819 t4_read_reg(sc, reg);
13820
13821 while (len > 0 && !db_pager_quit) {
13822 uint32_t buf[8];
13823 for (j = 0; j < 8; j++, off += 4)
13824 buf[j] = htonl(t4_read_reg(sc, base + off));
13825
13826 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
13827 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
13828 buf[7]);
13829 if (len <= sizeof(buf))
13830 len = 0;
13831 else
13832 len -= sizeof(buf);
13833 }
13834
13835 t4_write_reg(sc, reg, save);
13836 t4_read_reg(sc, reg);
13837 }
13838
13839 static void
t4_dump_tcb(struct adapter * sc,int tid)13840 t4_dump_tcb(struct adapter *sc, int tid)
13841 {
13842 uint32_t tcb_addr;
13843
13844 /* Dump TCB for the tid */
13845 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
13846 tcb_addr += tid * TCB_SIZE;
13847 t4_dump_mem(sc, tcb_addr, TCB_SIZE);
13848 }
13849
13850 static void
t4_dump_devlog(struct adapter * sc)13851 t4_dump_devlog(struct adapter *sc)
13852 {
13853 struct devlog_params *dparams = &sc->params.devlog;
13854 struct fw_devlog_e e;
13855 int i, first, j, m, nentries, rc;
13856 uint64_t ftstamp = UINT64_MAX;
13857
13858 if (dparams->start == 0) {
13859 db_printf("devlog params not valid\n");
13860 return;
13861 }
13862
13863 nentries = dparams->size / sizeof(struct fw_devlog_e);
13864 m = fwmtype_to_hwmtype(dparams->memtype);
13865
13866 /* Find the first entry. */
13867 first = -1;
13868 for (i = 0; i < nentries && !db_pager_quit; i++) {
13869 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
13870 sizeof(e), (void *)&e);
13871 if (rc != 0)
13872 break;
13873
13874 if (e.timestamp == 0)
13875 break;
13876
13877 e.timestamp = be64toh(e.timestamp);
13878 if (e.timestamp < ftstamp) {
13879 ftstamp = e.timestamp;
13880 first = i;
13881 }
13882 }
13883
13884 if (first == -1)
13885 return;
13886
13887 i = first;
13888 do {
13889 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
13890 sizeof(e), (void *)&e);
13891 if (rc != 0)
13892 return;
13893
13894 if (e.timestamp == 0)
13895 return;
13896
13897 e.timestamp = be64toh(e.timestamp);
13898 e.seqno = be32toh(e.seqno);
13899 for (j = 0; j < 8; j++)
13900 e.params[j] = be32toh(e.params[j]);
13901
13902 db_printf("%10d %15ju %8s %8s ",
13903 e.seqno, e.timestamp,
13904 (e.level < nitems(devlog_level_strings) ?
13905 devlog_level_strings[e.level] : "UNKNOWN"),
13906 (e.facility < nitems(devlog_facility_strings) ?
13907 devlog_facility_strings[e.facility] : "UNKNOWN"));
13908 db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
13909 e.params[3], e.params[4], e.params[5], e.params[6],
13910 e.params[7]);
13911
13912 if (++i == nentries)
13913 i = 0;
13914 } while (i != first && !db_pager_quit);
13915 }
13916
13917 static DB_DEFINE_TABLE(show, t4, show_t4);
13918
DB_TABLE_COMMAND_FLAGS(show_t4,devlog,db_show_devlog,CS_OWN)13919 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN)
13920 {
13921 device_t dev;
13922 int t;
13923 bool valid;
13924
13925 valid = false;
13926 t = db_read_token();
13927 if (t == tIDENT) {
13928 dev = device_lookup_by_name(db_tok_string);
13929 valid = true;
13930 }
13931 db_skip_to_eol();
13932 if (!valid) {
13933 db_printf("usage: show t4 devlog <nexus>\n");
13934 return;
13935 }
13936
13937 if (dev == NULL) {
13938 db_printf("device not found\n");
13939 return;
13940 }
13941
13942 t4_dump_devlog(device_get_softc(dev));
13943 }
13944
DB_TABLE_COMMAND_FLAGS(show_t4,tcb,db_show_t4tcb,CS_OWN)13945 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN)
13946 {
13947 device_t dev;
13948 int radix, tid, t;
13949 bool valid;
13950
13951 valid = false;
13952 radix = db_radix;
13953 db_radix = 10;
13954 t = db_read_token();
13955 if (t == tIDENT) {
13956 dev = device_lookup_by_name(db_tok_string);
13957 t = db_read_token();
13958 if (t == tNUMBER) {
13959 tid = db_tok_number;
13960 valid = true;
13961 }
13962 }
13963 db_radix = radix;
13964 db_skip_to_eol();
13965 if (!valid) {
13966 db_printf("usage: show t4 tcb <nexus> <tid>\n");
13967 return;
13968 }
13969
13970 if (dev == NULL) {
13971 db_printf("device not found\n");
13972 return;
13973 }
13974 if (tid < 0) {
13975 db_printf("invalid tid\n");
13976 return;
13977 }
13978
13979 t4_dump_tcb(device_get_softc(dev), tid);
13980 }
13981
DB_TABLE_COMMAND_FLAGS(show_t4,memdump,db_show_memdump,CS_OWN)13982 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN)
13983 {
13984 device_t dev;
13985 int radix, t;
13986 bool valid;
13987
13988 valid = false;
13989 radix = db_radix;
13990 db_radix = 10;
13991 t = db_read_token();
13992 if (t == tIDENT) {
13993 dev = device_lookup_by_name(db_tok_string);
13994 t = db_read_token();
13995 if (t == tNUMBER) {
13996 addr = db_tok_number;
13997 t = db_read_token();
13998 if (t == tNUMBER) {
13999 count = db_tok_number;
14000 valid = true;
14001 }
14002 }
14003 }
14004 db_radix = radix;
14005 db_skip_to_eol();
14006 if (!valid) {
14007 db_printf("usage: show t4 memdump <nexus> <addr> <len>\n");
14008 return;
14009 }
14010
14011 if (dev == NULL) {
14012 db_printf("device not found\n");
14013 return;
14014 }
14015 if (addr < 0) {
14016 db_printf("invalid address\n");
14017 return;
14018 }
14019 if (count <= 0) {
14020 db_printf("invalid length\n");
14021 return;
14022 }
14023
14024 t4_dump_mem(device_get_softc(dev), addr, count);
14025 }
14026 #endif
14027
14028 static eventhandler_tag vxlan_start_evtag;
14029 static eventhandler_tag vxlan_stop_evtag;
14030
14031 struct vxlan_evargs {
14032 if_t ifp;
14033 uint16_t port;
14034 };
14035
14036 static void
enable_vxlan_rx(struct adapter * sc)14037 enable_vxlan_rx(struct adapter *sc)
14038 {
14039 int i, rc;
14040 struct port_info *pi;
14041 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
14042
14043 ASSERT_SYNCHRONIZED_OP(sc);
14044
14045 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) |
14046 F_VXLAN_EN);
14047 for_each_port(sc, i) {
14048 pi = sc->port[i];
14049 if (pi->vxlan_tcam_entry == true)
14050 continue;
14051 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac,
14052 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
14053 true);
14054 if (rc < 0) {
14055 rc = -rc;
14056 CH_ERR(&pi->vi[0],
14057 "failed to add VXLAN TCAM entry: %d.\n", rc);
14058 } else {
14059 MPASS(rc == sc->rawf_base + pi->port_id);
14060 pi->vxlan_tcam_entry = true;
14061 }
14062 }
14063 }
14064
14065 static void
t4_vxlan_start(struct adapter * sc,void * arg)14066 t4_vxlan_start(struct adapter *sc, void *arg)
14067 {
14068 struct vxlan_evargs *v = arg;
14069
14070 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
14071 return;
14072 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0)
14073 return;
14074
14075 if (sc->vxlan_refcount == 0) {
14076 sc->vxlan_port = v->port;
14077 sc->vxlan_refcount = 1;
14078 if (!hw_off_limits(sc))
14079 enable_vxlan_rx(sc);
14080 } else if (sc->vxlan_port == v->port) {
14081 sc->vxlan_refcount++;
14082 } else {
14083 CH_ERR(sc, "VXLAN already configured on port %d; "
14084 "ignoring attempt to configure it on port %d\n",
14085 sc->vxlan_port, v->port);
14086 }
14087 end_synchronized_op(sc, 0);
14088 }
14089
14090 static void
t4_vxlan_stop(struct adapter * sc,void * arg)14091 t4_vxlan_stop(struct adapter *sc, void *arg)
14092 {
14093 struct vxlan_evargs *v = arg;
14094
14095 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
14096 return;
14097 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0)
14098 return;
14099
14100 /*
14101 * VXLANs may have been configured before the driver was loaded so we
14102 * may see more stops than starts. This is not handled cleanly but at
14103 * least we keep the refcount sane.
14104 */
14105 if (sc->vxlan_port != v->port)
14106 goto done;
14107 if (sc->vxlan_refcount == 0) {
14108 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; "
14109 "ignoring attempt to stop it again.\n", sc->vxlan_port);
14110 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc))
14111 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0);
14112 done:
14113 end_synchronized_op(sc, 0);
14114 }
14115
14116 static void
t4_vxlan_start_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)14117 t4_vxlan_start_handler(void *arg __unused, if_t ifp,
14118 sa_family_t family, u_int port)
14119 {
14120 struct vxlan_evargs v;
14121
14122 MPASS(family == AF_INET || family == AF_INET6);
14123 v.ifp = ifp;
14124 v.port = port;
14125
14126 t4_iterate(t4_vxlan_start, &v);
14127 }
14128
14129 static void
t4_vxlan_stop_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)14130 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family,
14131 u_int port)
14132 {
14133 struct vxlan_evargs v;
14134
14135 MPASS(family == AF_INET || family == AF_INET6);
14136 v.ifp = ifp;
14137 v.port = port;
14138
14139 t4_iterate(t4_vxlan_stop, &v);
14140 }
14141
14142
14143 static struct sx mlu; /* mod load unload */
14144 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
14145
14146 static int
mod_event(module_t mod,int cmd,void * arg)14147 mod_event(module_t mod, int cmd, void *arg)
14148 {
14149 int rc = 0;
14150 static int loaded = 0;
14151
14152 switch (cmd) {
14153 case MOD_LOAD:
14154 sx_xlock(&mlu);
14155 if (loaded++ == 0) {
14156 t4_sge_modload();
14157 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
14158 t4_filter_rpl, CPL_COOKIE_FILTER);
14159 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
14160 do_l2t_write_rpl, CPL_COOKIE_FILTER);
14161 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
14162 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
14163 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
14164 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
14165 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
14166 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
14167 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
14168 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
14169 t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
14170 do_smt_write_rpl);
14171 sx_init(&t4_list_lock, "T4/T5 adapters");
14172 SLIST_INIT(&t4_list);
14173 callout_init(&fatal_callout, 1);
14174 #ifdef TCP_OFFLOAD
14175 sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
14176 #endif
14177 #ifdef INET6
14178 t4_clip_modload();
14179 #endif
14180 #ifdef KERN_TLS
14181 t6_ktls_modload();
14182 t7_ktls_modload();
14183 #endif
14184 t4_tracer_modload();
14185 tweak_tunables();
14186 vxlan_start_evtag =
14187 EVENTHANDLER_REGISTER(vxlan_start,
14188 t4_vxlan_start_handler, NULL,
14189 EVENTHANDLER_PRI_ANY);
14190 vxlan_stop_evtag =
14191 EVENTHANDLER_REGISTER(vxlan_stop,
14192 t4_vxlan_stop_handler, NULL,
14193 EVENTHANDLER_PRI_ANY);
14194 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK,
14195 taskqueue_thread_enqueue, &reset_tq);
14196 taskqueue_start_threads(&reset_tq, 1, PI_SOFT,
14197 "t4_rst_thr");
14198 }
14199 sx_xunlock(&mlu);
14200 break;
14201
14202 case MOD_UNLOAD:
14203 sx_xlock(&mlu);
14204 if (--loaded == 0) {
14205 #ifdef TCP_OFFLOAD
14206 int i;
14207 #endif
14208 int tries;
14209
14210 taskqueue_free(reset_tq);
14211
14212 tries = 0;
14213 while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
14214 uprintf("%ju clusters with custom free routine "
14215 "still is use.\n", t4_sge_extfree_refs());
14216 pause("t4unload", 2 * hz);
14217 }
14218
14219 sx_slock(&t4_list_lock);
14220 if (!SLIST_EMPTY(&t4_list)) {
14221 rc = EBUSY;
14222 sx_sunlock(&t4_list_lock);
14223 goto done_unload;
14224 }
14225 #ifdef TCP_OFFLOAD
14226 sx_slock(&t4_uld_list_lock);
14227 for (i = 0; i <= ULD_MAX; i++) {
14228 if (t4_uld_list[i] != NULL) {
14229 rc = EBUSY;
14230 sx_sunlock(&t4_uld_list_lock);
14231 sx_sunlock(&t4_list_lock);
14232 goto done_unload;
14233 }
14234 }
14235 sx_sunlock(&t4_uld_list_lock);
14236 #endif
14237 sx_sunlock(&t4_list_lock);
14238
14239 if (t4_sge_extfree_refs() == 0) {
14240 EVENTHANDLER_DEREGISTER(vxlan_start,
14241 vxlan_start_evtag);
14242 EVENTHANDLER_DEREGISTER(vxlan_stop,
14243 vxlan_stop_evtag);
14244 t4_tracer_modunload();
14245 #ifdef KERN_TLS
14246 t7_ktls_modunload();
14247 t6_ktls_modunload();
14248 #endif
14249 #ifdef INET6
14250 t4_clip_modunload();
14251 #endif
14252 #ifdef TCP_OFFLOAD
14253 sx_destroy(&t4_uld_list_lock);
14254 #endif
14255 sx_destroy(&t4_list_lock);
14256 t4_sge_modunload();
14257 loaded = 0;
14258 } else {
14259 rc = EBUSY;
14260 loaded++; /* undo earlier decrement */
14261 }
14262 }
14263 done_unload:
14264 sx_xunlock(&mlu);
14265 break;
14266 }
14267
14268 return (rc);
14269 }
14270
14271 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0);
14272 MODULE_VERSION(t4nex, 1);
14273 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
14274 #ifdef DEV_NETMAP
14275 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
14276 #endif /* DEV_NETMAP */
14277
14278 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0);
14279 MODULE_VERSION(t5nex, 1);
14280 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
14281 #ifdef DEV_NETMAP
14282 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
14283 #endif /* DEV_NETMAP */
14284
14285 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0);
14286 MODULE_VERSION(t6nex, 1);
14287 MODULE_DEPEND(t6nex, crypto, 1, 1, 1);
14288 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
14289 #ifdef DEV_NETMAP
14290 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
14291 #endif /* DEV_NETMAP */
14292
14293 DRIVER_MODULE(chnex, pci, ch_driver, mod_event, 0);
14294 MODULE_VERSION(chnex, 1);
14295 MODULE_DEPEND(chnex, crypto, 1, 1, 1);
14296 MODULE_DEPEND(chnex, firmware, 1, 1, 1);
14297 #ifdef DEV_NETMAP
14298 MODULE_DEPEND(chnex, netmap, 1, 1, 1);
14299 #endif /* DEV_NETMAP */
14300
14301 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0);
14302 MODULE_VERSION(cxgbe, 1);
14303
14304 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0);
14305 MODULE_VERSION(cxl, 1);
14306
14307 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0);
14308 MODULE_VERSION(cc, 1);
14309
14310 DRIVER_MODULE(che, chnex, che_driver, 0, 0);
14311 MODULE_VERSION(che, 1);
14312
14313 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0);
14314 MODULE_VERSION(vcxgbe, 1);
14315
14316 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0);
14317 MODULE_VERSION(vcxl, 1);
14318
14319 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0);
14320 MODULE_VERSION(vcc, 1);
14321
14322 DRIVER_MODULE(vche, che, vche_driver, 0, 0);
14323 MODULE_VERSION(vche, 1);
14324