1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Portions Copyright (C) 1992 Drew Eckhardt
4 */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/uuid.h>
26 #include <linux/xarray.h>
27 #include <linux/file.h>
28 #include <linux/lockdep.h>
29
30 struct module;
31 struct request_queue;
32 struct elevator_queue;
33 struct blk_trace;
34 struct request;
35 struct sg_io_hdr;
36 struct blkcg_gq;
37 struct blk_flush_queue;
38 struct kiocb;
39 struct pr_ops;
40 struct rq_qos;
41 struct blk_queue_stats;
42 struct blk_stat_callback;
43 struct blk_crypto_profile;
44
45 extern const struct device_type disk_type;
46 extern const struct device_type part_type;
47 extern const struct class block_class;
48
49 /*
50 * Maximum number of blkcg policies allowed to be registered concurrently.
51 * Defined here to simplify include dependency.
52 */
53 #define BLKCG_MAX_POLS 6
54
55 #define DISK_MAX_PARTS 256
56 #define DISK_NAME_LEN 32
57
58 #define PARTITION_META_INFO_VOLNAMELTH 64
59 /*
60 * Enough for the string representation of any kind of UUID plus NULL.
61 * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
62 */
63 #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1)
64
65 struct partition_meta_info {
66 char uuid[PARTITION_META_INFO_UUIDLTH];
67 u8 volname[PARTITION_META_INFO_VOLNAMELTH];
68 };
69
70 /**
71 * DOC: genhd capability flags
72 *
73 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
74 * removable media. When set, the device remains present even when media is not
75 * inserted. Shall not be set for devices which are removed entirely when the
76 * media is removed.
77 *
78 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
79 * doesn't appear in sysfs, and can't be opened from userspace or using
80 * blkdev_get*. Used for the underlying components of multipath devices.
81 *
82 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not
83 * scan for partitions from add_disk, and users can't add partitions manually.
84 *
85 */
86 enum {
87 GENHD_FL_REMOVABLE = 1 << 0,
88 GENHD_FL_HIDDEN = 1 << 1,
89 GENHD_FL_NO_PART = 1 << 2,
90 };
91
92 enum {
93 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */
94 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */
95 };
96
97 enum {
98 /* Poll even if events_poll_msecs is unset */
99 DISK_EVENT_FLAG_POLL = 1 << 0,
100 /* Forward events to udev */
101 DISK_EVENT_FLAG_UEVENT = 1 << 1,
102 /* Block event polling when open for exclusive write */
103 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2,
104 };
105
106 struct disk_events;
107 struct badblocks;
108
109 enum blk_integrity_checksum {
110 BLK_INTEGRITY_CSUM_NONE = 0,
111 BLK_INTEGRITY_CSUM_IP = 1,
112 BLK_INTEGRITY_CSUM_CRC = 2,
113 BLK_INTEGRITY_CSUM_CRC64 = 3,
114 } __packed ;
115
116 struct blk_integrity {
117 unsigned char flags;
118 enum blk_integrity_checksum csum_type;
119 unsigned char tuple_size;
120 unsigned char pi_offset;
121 unsigned char interval_exp;
122 unsigned char tag_size;
123 };
124
125 typedef unsigned int __bitwise blk_mode_t;
126
127 /* open for reading */
128 #define BLK_OPEN_READ ((__force blk_mode_t)(1 << 0))
129 /* open for writing */
130 #define BLK_OPEN_WRITE ((__force blk_mode_t)(1 << 1))
131 /* open exclusively (vs other exclusive openers */
132 #define BLK_OPEN_EXCL ((__force blk_mode_t)(1 << 2))
133 /* opened with O_NDELAY */
134 #define BLK_OPEN_NDELAY ((__force blk_mode_t)(1 << 3))
135 /* open for "writes" only for ioctls (specialy hack for floppy.c) */
136 #define BLK_OPEN_WRITE_IOCTL ((__force blk_mode_t)(1 << 4))
137 /* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */
138 #define BLK_OPEN_RESTRICT_WRITES ((__force blk_mode_t)(1 << 5))
139 /* return partition scanning errors */
140 #define BLK_OPEN_STRICT_SCAN ((__force blk_mode_t)(1 << 6))
141
142 struct gendisk {
143 /*
144 * major/first_minor/minors should not be set by any new driver, the
145 * block core will take care of allocating them automatically.
146 */
147 int major;
148 int first_minor;
149 int minors;
150
151 char disk_name[DISK_NAME_LEN]; /* name of major driver */
152
153 unsigned short events; /* supported events */
154 unsigned short event_flags; /* flags related to event processing */
155
156 struct xarray part_tbl;
157 struct block_device *part0;
158
159 const struct block_device_operations *fops;
160 struct request_queue *queue;
161 void *private_data;
162
163 struct bio_set bio_split;
164
165 int flags;
166 unsigned long state;
167 #define GD_NEED_PART_SCAN 0
168 #define GD_READ_ONLY 1
169 #define GD_DEAD 2
170 #define GD_NATIVE_CAPACITY 3
171 #define GD_ADDED 4
172 #define GD_SUPPRESS_PART_SCAN 5
173 #define GD_OWNS_QUEUE 6
174
175 struct mutex open_mutex; /* open/close mutex */
176 unsigned open_partitions; /* number of open partitions */
177
178 struct backing_dev_info *bdi;
179 struct kobject queue_kobj; /* the queue/ directory */
180 struct kobject *slave_dir;
181 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
182 struct list_head slave_bdevs;
183 #endif
184 struct timer_rand_state *random;
185 struct disk_events *ev;
186
187 #ifdef CONFIG_BLK_DEV_ZONED
188 /*
189 * Zoned block device information. Reads of this information must be
190 * protected with blk_queue_enter() / blk_queue_exit(). Modifying this
191 * information is only allowed while no requests are being processed.
192 * See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue().
193 */
194 unsigned int nr_zones;
195 unsigned int zone_capacity;
196 unsigned int last_zone_capacity;
197 unsigned long __rcu *conv_zones_bitmap;
198 unsigned int zone_wplugs_hash_bits;
199 atomic_t nr_zone_wplugs;
200 spinlock_t zone_wplugs_lock;
201 struct mempool_s *zone_wplugs_pool;
202 struct hlist_head *zone_wplugs_hash;
203 struct workqueue_struct *zone_wplugs_wq;
204 #endif /* CONFIG_BLK_DEV_ZONED */
205
206 #if IS_ENABLED(CONFIG_CDROM)
207 struct cdrom_device_info *cdi;
208 #endif
209 int node_id;
210 struct badblocks *bb;
211 struct lockdep_map lockdep_map;
212 u64 diskseq;
213 blk_mode_t open_mode;
214
215 /*
216 * Independent sector access ranges. This is always NULL for
217 * devices that do not have multiple independent access ranges.
218 */
219 struct blk_independent_access_ranges *ia_ranges;
220
221 struct mutex rqos_state_mutex; /* rqos state change mutex */
222 };
223
224 /**
225 * disk_openers - returns how many openers are there for a disk
226 * @disk: disk to check
227 *
228 * This returns the number of openers for a disk. Note that this value is only
229 * stable if disk->open_mutex is held.
230 *
231 * Note: Due to a quirk in the block layer open code, each open partition is
232 * only counted once even if there are multiple openers.
233 */
disk_openers(struct gendisk * disk)234 static inline unsigned int disk_openers(struct gendisk *disk)
235 {
236 return atomic_read(&disk->part0->bd_openers);
237 }
238
239 /**
240 * disk_has_partscan - return %true if partition scanning is enabled on a disk
241 * @disk: disk to check
242 *
243 * Returns %true if partitions scanning is enabled for @disk, or %false if
244 * partition scanning is disabled either permanently or temporarily.
245 */
disk_has_partscan(struct gendisk * disk)246 static inline bool disk_has_partscan(struct gendisk *disk)
247 {
248 return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) &&
249 !test_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
250 }
251
252 /*
253 * The gendisk is refcounted by the part0 block_device, and the bd_device
254 * therein is also used for device model presentation in sysfs.
255 */
256 #define dev_to_disk(device) \
257 (dev_to_bdev(device)->bd_disk)
258 #define disk_to_dev(disk) \
259 (&((disk)->part0->bd_device))
260
261 #if IS_REACHABLE(CONFIG_CDROM)
262 #define disk_to_cdi(disk) ((disk)->cdi)
263 #else
264 #define disk_to_cdi(disk) NULL
265 #endif
266
disk_devt(struct gendisk * disk)267 static inline dev_t disk_devt(struct gendisk *disk)
268 {
269 return MKDEV(disk->major, disk->first_minor);
270 }
271
272 /*
273 * We should strive for 1 << (PAGE_SHIFT + MAX_PAGECACHE_ORDER)
274 * however we constrain this to what we can validate and test.
275 */
276 #define BLK_MAX_BLOCK_SIZE SZ_64K
277
278 /* blk_validate_limits() validates bsize, so drivers don't usually need to */
blk_validate_block_size(unsigned long bsize)279 static inline int blk_validate_block_size(unsigned long bsize)
280 {
281 if (bsize < 512 || bsize > BLK_MAX_BLOCK_SIZE || !is_power_of_2(bsize))
282 return -EINVAL;
283
284 return 0;
285 }
286
blk_op_is_passthrough(blk_opf_t op)287 static inline bool blk_op_is_passthrough(blk_opf_t op)
288 {
289 op &= REQ_OP_MASK;
290 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
291 }
292
293 /* flags set by the driver in queue_limits.features */
294 typedef unsigned int __bitwise blk_features_t;
295
296 /* supports a volatile write cache */
297 #define BLK_FEAT_WRITE_CACHE ((__force blk_features_t)(1u << 0))
298
299 /* supports passing on the FUA bit */
300 #define BLK_FEAT_FUA ((__force blk_features_t)(1u << 1))
301
302 /* rotational device (hard drive or floppy) */
303 #define BLK_FEAT_ROTATIONAL ((__force blk_features_t)(1u << 2))
304
305 /* contributes to the random number pool */
306 #define BLK_FEAT_ADD_RANDOM ((__force blk_features_t)(1u << 3))
307
308 /* do disk/partitions IO accounting */
309 #define BLK_FEAT_IO_STAT ((__force blk_features_t)(1u << 4))
310
311 /* don't modify data until writeback is done */
312 #define BLK_FEAT_STABLE_WRITES ((__force blk_features_t)(1u << 5))
313
314 /* always completes in submit context */
315 #define BLK_FEAT_SYNCHRONOUS ((__force blk_features_t)(1u << 6))
316
317 /* supports REQ_NOWAIT */
318 #define BLK_FEAT_NOWAIT ((__force blk_features_t)(1u << 7))
319
320 /* supports DAX */
321 #define BLK_FEAT_DAX ((__force blk_features_t)(1u << 8))
322
323 /* supports I/O polling */
324 #define BLK_FEAT_POLL ((__force blk_features_t)(1u << 9))
325
326 /* is a zoned device */
327 #define BLK_FEAT_ZONED ((__force blk_features_t)(1u << 10))
328
329 /* supports PCI(e) p2p requests */
330 #define BLK_FEAT_PCI_P2PDMA ((__force blk_features_t)(1u << 12))
331
332 /* skip this queue in blk_mq_(un)quiesce_tagset */
333 #define BLK_FEAT_SKIP_TAGSET_QUIESCE ((__force blk_features_t)(1u << 13))
334
335 /* undocumented magic for bcache */
336 #define BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE \
337 ((__force blk_features_t)(1u << 15))
338
339 /* atomic writes enabled */
340 #define BLK_FEAT_ATOMIC_WRITES \
341 ((__force blk_features_t)(1u << 16))
342
343 /*
344 * Flags automatically inherited when stacking limits.
345 */
346 #define BLK_FEAT_INHERIT_MASK \
347 (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_ROTATIONAL | \
348 BLK_FEAT_STABLE_WRITES | BLK_FEAT_ZONED | \
349 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE)
350
351 /* internal flags in queue_limits.flags */
352 typedef unsigned int __bitwise blk_flags_t;
353
354 /* do not send FLUSH/FUA commands despite advertising a write cache */
355 #define BLK_FLAG_WRITE_CACHE_DISABLED ((__force blk_flags_t)(1u << 0))
356
357 /* I/O topology is misaligned */
358 #define BLK_FLAG_MISALIGNED ((__force blk_flags_t)(1u << 1))
359
360 /* passthrough command IO accounting */
361 #define BLK_FLAG_IOSTATS_PASSTHROUGH ((__force blk_flags_t)(1u << 2))
362
363 struct queue_limits {
364 blk_features_t features;
365 blk_flags_t flags;
366 unsigned long seg_boundary_mask;
367 unsigned long virt_boundary_mask;
368
369 unsigned int max_hw_sectors;
370 unsigned int max_dev_sectors;
371 unsigned int chunk_sectors;
372 unsigned int max_sectors;
373 unsigned int max_user_sectors;
374 unsigned int max_segment_size;
375 unsigned int min_segment_size;
376 unsigned int physical_block_size;
377 unsigned int logical_block_size;
378 unsigned int alignment_offset;
379 unsigned int io_min;
380 unsigned int io_opt;
381 unsigned int max_discard_sectors;
382 unsigned int max_hw_discard_sectors;
383 unsigned int max_user_discard_sectors;
384 unsigned int max_secure_erase_sectors;
385 unsigned int max_write_zeroes_sectors;
386 unsigned int max_hw_zone_append_sectors;
387 unsigned int max_zone_append_sectors;
388 unsigned int discard_granularity;
389 unsigned int discard_alignment;
390 unsigned int zone_write_granularity;
391
392 /* atomic write limits */
393 unsigned int atomic_write_hw_max;
394 unsigned int atomic_write_max_sectors;
395 unsigned int atomic_write_hw_boundary;
396 unsigned int atomic_write_boundary_sectors;
397 unsigned int atomic_write_hw_unit_min;
398 unsigned int atomic_write_unit_min;
399 unsigned int atomic_write_hw_unit_max;
400 unsigned int atomic_write_unit_max;
401
402 unsigned short max_segments;
403 unsigned short max_integrity_segments;
404 unsigned short max_discard_segments;
405
406 unsigned short max_write_streams;
407 unsigned int write_stream_granularity;
408
409 unsigned int max_open_zones;
410 unsigned int max_active_zones;
411
412 /*
413 * Drivers that set dma_alignment to less than 511 must be prepared to
414 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
415 * due to possible offsets.
416 */
417 unsigned int dma_alignment;
418 unsigned int dma_pad_mask;
419
420 struct blk_integrity integrity;
421 };
422
423 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
424 void *data);
425
426 #define BLK_ALL_ZONES ((unsigned int)-1)
427 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
428 unsigned int nr_zones, report_zones_cb cb, void *data);
429 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
430 sector_t sectors, sector_t nr_sectors);
431 int blk_revalidate_disk_zones(struct gendisk *disk);
432
433 /*
434 * Independent access ranges: struct blk_independent_access_range describes
435 * a range of contiguous sectors that can be accessed using device command
436 * execution resources that are independent from the resources used for
437 * other access ranges. This is typically found with single-LUN multi-actuator
438 * HDDs where each access range is served by a different set of heads.
439 * The set of independent ranges supported by the device is defined using
440 * struct blk_independent_access_ranges. The independent ranges must not overlap
441 * and must include all sectors within the disk capacity (no sector holes
442 * allowed).
443 * For a device with multiple ranges, requests targeting sectors in different
444 * ranges can be executed in parallel. A request can straddle an access range
445 * boundary.
446 */
447 struct blk_independent_access_range {
448 struct kobject kobj;
449 sector_t sector;
450 sector_t nr_sectors;
451 };
452
453 struct blk_independent_access_ranges {
454 struct kobject kobj;
455 bool sysfs_registered;
456 unsigned int nr_ia_ranges;
457 struct blk_independent_access_range ia_range[];
458 };
459
460 struct request_queue {
461 /*
462 * The queue owner gets to use this for whatever they like.
463 * ll_rw_blk doesn't touch it.
464 */
465 void *queuedata;
466
467 struct elevator_queue *elevator;
468
469 const struct blk_mq_ops *mq_ops;
470
471 /* sw queues */
472 struct blk_mq_ctx __percpu *queue_ctx;
473
474 /*
475 * various queue flags, see QUEUE_* below
476 */
477 unsigned long queue_flags;
478
479 unsigned int rq_timeout;
480
481 unsigned int queue_depth;
482
483 refcount_t refs;
484
485 /* hw dispatch queues */
486 unsigned int nr_hw_queues;
487 struct xarray hctx_table;
488
489 struct percpu_ref q_usage_counter;
490 struct lock_class_key io_lock_cls_key;
491 struct lockdep_map io_lockdep_map;
492
493 struct lock_class_key q_lock_cls_key;
494 struct lockdep_map q_lockdep_map;
495
496 struct request *last_merge;
497
498 spinlock_t queue_lock;
499
500 int quiesce_depth;
501
502 struct gendisk *disk;
503
504 /*
505 * mq queue kobject
506 */
507 struct kobject *mq_kobj;
508
509 struct queue_limits limits;
510
511 #ifdef CONFIG_PM
512 struct device *dev;
513 enum rpm_status rpm_status;
514 #endif
515
516 /*
517 * Number of contexts that have called blk_set_pm_only(). If this
518 * counter is above zero then only RQF_PM requests are processed.
519 */
520 atomic_t pm_only;
521
522 struct blk_queue_stats *stats;
523 struct rq_qos *rq_qos;
524 struct mutex rq_qos_mutex;
525
526 /*
527 * ida allocated id for this queue. Used to index queues from
528 * ioctx.
529 */
530 int id;
531
532 /*
533 * queue settings
534 */
535 unsigned long nr_requests; /* Max # of requests */
536
537 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
538 struct blk_crypto_profile *crypto_profile;
539 struct kobject *crypto_kobject;
540 #endif
541
542 struct timer_list timeout;
543 struct work_struct timeout_work;
544
545 atomic_t nr_active_requests_shared_tags;
546
547 struct blk_mq_tags *sched_shared_tags;
548
549 struct list_head icq_list;
550 #ifdef CONFIG_BLK_CGROUP
551 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
552 struct blkcg_gq *root_blkg;
553 struct list_head blkg_list;
554 struct mutex blkcg_mutex;
555 #endif
556
557 int node;
558
559 spinlock_t requeue_lock;
560 struct list_head requeue_list;
561 struct delayed_work requeue_work;
562
563 #ifdef CONFIG_BLK_DEV_IO_TRACE
564 struct blk_trace __rcu *blk_trace;
565 #endif
566 /*
567 * for flush operations
568 */
569 struct blk_flush_queue *fq;
570 struct list_head flush_list;
571
572 /*
573 * Protects against I/O scheduler switching, particularly when updating
574 * q->elevator. Since the elevator update code path may also modify q->
575 * nr_requests and wbt latency, this lock also protects the sysfs attrs
576 * nr_requests and wbt_lat_usec. Additionally the nr_hw_queues update
577 * may modify hctx tags, reserved-tags and cpumask, so this lock also
578 * helps protect the hctx sysfs/debugfs attrs. To ensure proper locking
579 * order during an elevator or nr_hw_queue update, first freeze the
580 * queue, then acquire ->elevator_lock.
581 */
582 struct mutex elevator_lock;
583
584 struct mutex sysfs_lock;
585 /*
586 * Protects queue limits and also sysfs attribute read_ahead_kb.
587 */
588 struct mutex limits_lock;
589
590 /*
591 * for reusing dead hctx instance in case of updating
592 * nr_hw_queues
593 */
594 struct list_head unused_hctx_list;
595 spinlock_t unused_hctx_lock;
596
597 int mq_freeze_depth;
598
599 #ifdef CONFIG_BLK_DEV_THROTTLING
600 /* Throttle data */
601 struct throtl_data *td;
602 #endif
603 struct rcu_head rcu_head;
604 #ifdef CONFIG_LOCKDEP
605 struct task_struct *mq_freeze_owner;
606 int mq_freeze_owner_depth;
607 /*
608 * Records disk & queue state in current context, used in unfreeze
609 * queue
610 */
611 bool mq_freeze_disk_dead;
612 bool mq_freeze_queue_dying;
613 #endif
614 wait_queue_head_t mq_freeze_wq;
615 /*
616 * Protect concurrent access to q_usage_counter by
617 * percpu_ref_kill() and percpu_ref_reinit().
618 */
619 struct mutex mq_freeze_lock;
620
621 struct blk_mq_tag_set *tag_set;
622 struct list_head tag_set_list;
623
624 struct dentry *debugfs_dir;
625 struct dentry *sched_debugfs_dir;
626 struct dentry *rqos_debugfs_dir;
627 /*
628 * Serializes all debugfs metadata operations using the above dentries.
629 */
630 struct mutex debugfs_mutex;
631 };
632
633 /* Keep blk_queue_flag_name[] in sync with the definitions below */
634 enum {
635 QUEUE_FLAG_DYING, /* queue being torn down */
636 QUEUE_FLAG_NOMERGES, /* disable merge attempts */
637 QUEUE_FLAG_SAME_COMP, /* complete on same CPU-group */
638 QUEUE_FLAG_FAIL_IO, /* fake timeout */
639 QUEUE_FLAG_NOXMERGES, /* No extended merges */
640 QUEUE_FLAG_SAME_FORCE, /* force complete on same CPU */
641 QUEUE_FLAG_INIT_DONE, /* queue is initialized */
642 QUEUE_FLAG_STATS, /* track IO start and completion times */
643 QUEUE_FLAG_REGISTERED, /* queue has been registered to a disk */
644 QUEUE_FLAG_QUIESCED, /* queue has been quiesced */
645 QUEUE_FLAG_RQ_ALLOC_TIME, /* record rq->alloc_time_ns */
646 QUEUE_FLAG_HCTX_ACTIVE, /* at least one blk-mq hctx is active */
647 QUEUE_FLAG_SQ_SCHED, /* single queue style io dispatch */
648 QUEUE_FLAG_DISABLE_WBT_DEF, /* for sched to disable/enable wbt */
649 QUEUE_FLAG_NO_ELV_SWITCH, /* can't switch elevator any more */
650 QUEUE_FLAG_MAX
651 };
652
653 #define QUEUE_FLAG_MQ_DEFAULT (1UL << QUEUE_FLAG_SAME_COMP)
654
655 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
656 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
657
658 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
659 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
660 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
661 #define blk_queue_noxmerges(q) \
662 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
663 #define blk_queue_nonrot(q) (!((q)->limits.features & BLK_FEAT_ROTATIONAL))
664 #define blk_queue_io_stat(q) ((q)->limits.features & BLK_FEAT_IO_STAT)
665 #define blk_queue_passthrough_stat(q) \
666 ((q)->limits.flags & BLK_FLAG_IOSTATS_PASSTHROUGH)
667 #define blk_queue_dax(q) ((q)->limits.features & BLK_FEAT_DAX)
668 #define blk_queue_pci_p2pdma(q) ((q)->limits.features & BLK_FEAT_PCI_P2PDMA)
669 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
670 #define blk_queue_rq_alloc_time(q) \
671 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
672 #else
673 #define blk_queue_rq_alloc_time(q) false
674 #endif
675
676 #define blk_noretry_request(rq) \
677 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
678 REQ_FAILFAST_DRIVER))
679 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
680 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
681 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
682 #define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
683 #define blk_queue_skip_tagset_quiesce(q) \
684 ((q)->limits.features & BLK_FEAT_SKIP_TAGSET_QUIESCE)
685 #define blk_queue_disable_wbt(q) \
686 test_bit(QUEUE_FLAG_DISABLE_WBT_DEF, &(q)->queue_flags)
687 #define blk_queue_no_elv_switch(q) \
688 test_bit(QUEUE_FLAG_NO_ELV_SWITCH, &(q)->queue_flags)
689
690 extern void blk_set_pm_only(struct request_queue *q);
691 extern void blk_clear_pm_only(struct request_queue *q);
692
693 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
694
695 #define dma_map_bvec(dev, bv, dir, attrs) \
696 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
697 (dir), (attrs))
698
queue_is_mq(struct request_queue * q)699 static inline bool queue_is_mq(struct request_queue *q)
700 {
701 return q->mq_ops;
702 }
703
704 #ifdef CONFIG_PM
queue_rpm_status(struct request_queue * q)705 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
706 {
707 return q->rpm_status;
708 }
709 #else
queue_rpm_status(struct request_queue * q)710 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
711 {
712 return RPM_ACTIVE;
713 }
714 #endif
715
blk_queue_is_zoned(struct request_queue * q)716 static inline bool blk_queue_is_zoned(struct request_queue *q)
717 {
718 return IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
719 (q->limits.features & BLK_FEAT_ZONED);
720 }
721
disk_zone_no(struct gendisk * disk,sector_t sector)722 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
723 {
724 if (!blk_queue_is_zoned(disk->queue))
725 return 0;
726 return sector >> ilog2(disk->queue->limits.chunk_sectors);
727 }
728
bdev_max_open_zones(struct block_device * bdev)729 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
730 {
731 return bdev->bd_disk->queue->limits.max_open_zones;
732 }
733
bdev_max_active_zones(struct block_device * bdev)734 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
735 {
736 return bdev->bd_disk->queue->limits.max_active_zones;
737 }
738
blk_queue_depth(struct request_queue * q)739 static inline unsigned int blk_queue_depth(struct request_queue *q)
740 {
741 if (q->queue_depth)
742 return q->queue_depth;
743
744 return q->nr_requests;
745 }
746
747 /*
748 * default timeout for SG_IO if none specified
749 */
750 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
751 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
752
753 /* This should not be used directly - use rq_for_each_segment */
754 #define for_each_bio(_bio) \
755 for (; _bio; _bio = _bio->bi_next)
756
757 int __must_check add_disk_fwnode(struct device *parent, struct gendisk *disk,
758 const struct attribute_group **groups,
759 struct fwnode_handle *fwnode);
760 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
761 const struct attribute_group **groups);
add_disk(struct gendisk * disk)762 static inline int __must_check add_disk(struct gendisk *disk)
763 {
764 return device_add_disk(NULL, disk, NULL);
765 }
766 void del_gendisk(struct gendisk *gp);
767 void invalidate_disk(struct gendisk *disk);
768 void set_disk_ro(struct gendisk *disk, bool read_only);
769 void disk_uevent(struct gendisk *disk, enum kobject_action action);
770
bdev_partno(const struct block_device * bdev)771 static inline u8 bdev_partno(const struct block_device *bdev)
772 {
773 return atomic_read(&bdev->__bd_flags) & BD_PARTNO;
774 }
775
bdev_test_flag(const struct block_device * bdev,unsigned flag)776 static inline bool bdev_test_flag(const struct block_device *bdev, unsigned flag)
777 {
778 return atomic_read(&bdev->__bd_flags) & flag;
779 }
780
bdev_set_flag(struct block_device * bdev,unsigned flag)781 static inline void bdev_set_flag(struct block_device *bdev, unsigned flag)
782 {
783 atomic_or(flag, &bdev->__bd_flags);
784 }
785
bdev_clear_flag(struct block_device * bdev,unsigned flag)786 static inline void bdev_clear_flag(struct block_device *bdev, unsigned flag)
787 {
788 atomic_andnot(flag, &bdev->__bd_flags);
789 }
790
get_disk_ro(struct gendisk * disk)791 static inline bool get_disk_ro(struct gendisk *disk)
792 {
793 return bdev_test_flag(disk->part0, BD_READ_ONLY) ||
794 test_bit(GD_READ_ONLY, &disk->state);
795 }
796
bdev_read_only(struct block_device * bdev)797 static inline bool bdev_read_only(struct block_device *bdev)
798 {
799 return bdev_test_flag(bdev, BD_READ_ONLY) || get_disk_ro(bdev->bd_disk);
800 }
801
802 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
803 void disk_force_media_change(struct gendisk *disk);
804 void bdev_mark_dead(struct block_device *bdev, bool surprise);
805
806 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
807 void rand_initialize_disk(struct gendisk *disk);
808
get_start_sect(struct block_device * bdev)809 static inline sector_t get_start_sect(struct block_device *bdev)
810 {
811 return bdev->bd_start_sect;
812 }
813
bdev_nr_sectors(struct block_device * bdev)814 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
815 {
816 return bdev->bd_nr_sectors;
817 }
818
bdev_nr_bytes(struct block_device * bdev)819 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
820 {
821 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
822 }
823
get_capacity(struct gendisk * disk)824 static inline sector_t get_capacity(struct gendisk *disk)
825 {
826 return bdev_nr_sectors(disk->part0);
827 }
828
sb_bdev_nr_blocks(struct super_block * sb)829 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
830 {
831 return bdev_nr_sectors(sb->s_bdev) >>
832 (sb->s_blocksize_bits - SECTOR_SHIFT);
833 }
834
835 #ifdef CONFIG_BLK_DEV_ZONED
disk_nr_zones(struct gendisk * disk)836 static inline unsigned int disk_nr_zones(struct gendisk *disk)
837 {
838 return disk->nr_zones;
839 }
840 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs);
841
842 /**
843 * disk_zone_capacity - returns the zone capacity of zone containing @sector
844 * @disk: disk to work with
845 * @sector: sector number within the querying zone
846 *
847 * Returns the zone capacity of a zone containing @sector. @sector can be any
848 * sector in the zone.
849 */
disk_zone_capacity(struct gendisk * disk,sector_t sector)850 static inline unsigned int disk_zone_capacity(struct gendisk *disk,
851 sector_t sector)
852 {
853 sector_t zone_sectors = disk->queue->limits.chunk_sectors;
854
855 if (sector + zone_sectors >= get_capacity(disk))
856 return disk->last_zone_capacity;
857 return disk->zone_capacity;
858 }
bdev_zone_capacity(struct block_device * bdev,sector_t pos)859 static inline unsigned int bdev_zone_capacity(struct block_device *bdev,
860 sector_t pos)
861 {
862 return disk_zone_capacity(bdev->bd_disk, pos);
863 }
864 #else /* CONFIG_BLK_DEV_ZONED */
disk_nr_zones(struct gendisk * disk)865 static inline unsigned int disk_nr_zones(struct gendisk *disk)
866 {
867 return 0;
868 }
blk_zone_plug_bio(struct bio * bio,unsigned int nr_segs)869 static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs)
870 {
871 return false;
872 }
873 #endif /* CONFIG_BLK_DEV_ZONED */
874
bdev_nr_zones(struct block_device * bdev)875 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
876 {
877 return disk_nr_zones(bdev->bd_disk);
878 }
879
880 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
881
882 void put_disk(struct gendisk *disk);
883 struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node,
884 struct lock_class_key *lkclass);
885
886 /**
887 * blk_alloc_disk - allocate a gendisk structure
888 * @lim: queue limits to be used for this disk.
889 * @node_id: numa node to allocate on
890 *
891 * Allocate and pre-initialize a gendisk structure for use with BIO based
892 * drivers.
893 *
894 * Returns an ERR_PTR on error, else the allocated disk.
895 *
896 * Context: can sleep
897 */
898 #define blk_alloc_disk(lim, node_id) \
899 ({ \
900 static struct lock_class_key __key; \
901 \
902 __blk_alloc_disk(lim, node_id, &__key); \
903 })
904
905 int __register_blkdev(unsigned int major, const char *name,
906 void (*probe)(dev_t devt));
907 #define register_blkdev(major, name) \
908 __register_blkdev(major, name, NULL)
909 void unregister_blkdev(unsigned int major, const char *name);
910
911 bool disk_check_media_change(struct gendisk *disk);
912 void set_capacity(struct gendisk *disk, sector_t size);
913
914 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
915 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
916 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
917 #else
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)918 static inline int bd_link_disk_holder(struct block_device *bdev,
919 struct gendisk *disk)
920 {
921 return 0;
922 }
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)923 static inline void bd_unlink_disk_holder(struct block_device *bdev,
924 struct gendisk *disk)
925 {
926 }
927 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
928
929 dev_t part_devt(struct gendisk *disk, u8 partno);
930 void inc_diskseq(struct gendisk *disk);
931 void blk_request_module(dev_t devt);
932
933 extern int blk_register_queue(struct gendisk *disk);
934 extern void blk_unregister_queue(struct gendisk *disk);
935 void submit_bio_noacct(struct bio *bio);
936 struct bio *bio_split_to_limits(struct bio *bio);
937
938 extern int blk_lld_busy(struct request_queue *q);
939 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
940 extern void blk_queue_exit(struct request_queue *q);
941 extern void blk_sync_queue(struct request_queue *q);
942
943 /* Helper to convert REQ_OP_XXX to its string format XXX */
944 extern const char *blk_op_str(enum req_op op);
945
946 int blk_status_to_errno(blk_status_t status);
947 blk_status_t errno_to_blk_status(int errno);
948 const char *blk_status_to_str(blk_status_t status);
949
950 /* only poll the hardware once, don't continue until a completion was found */
951 #define BLK_POLL_ONESHOT (1 << 0)
952 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
953 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
954 unsigned int flags);
955
bdev_get_queue(struct block_device * bdev)956 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
957 {
958 return bdev->bd_queue; /* this is never NULL */
959 }
960
961 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
962 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
963
bio_zone_no(struct bio * bio)964 static inline unsigned int bio_zone_no(struct bio *bio)
965 {
966 return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
967 }
968
bio_straddles_zones(struct bio * bio)969 static inline bool bio_straddles_zones(struct bio *bio)
970 {
971 return bio_sectors(bio) &&
972 bio_zone_no(bio) !=
973 disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1);
974 }
975
976 /*
977 * Return how much within the boundary is left to be used for I/O at a given
978 * offset.
979 */
blk_boundary_sectors_left(sector_t offset,unsigned int boundary_sectors)980 static inline unsigned int blk_boundary_sectors_left(sector_t offset,
981 unsigned int boundary_sectors)
982 {
983 if (unlikely(!is_power_of_2(boundary_sectors)))
984 return boundary_sectors - sector_div(offset, boundary_sectors);
985 return boundary_sectors - (offset & (boundary_sectors - 1));
986 }
987
988 /**
989 * queue_limits_start_update - start an atomic update of queue limits
990 * @q: queue to update
991 *
992 * This functions starts an atomic update of the queue limits. It takes a lock
993 * to prevent other updates and returns a snapshot of the current limits that
994 * the caller can modify. The caller must call queue_limits_commit_update()
995 * to finish the update.
996 *
997 * Context: process context.
998 */
999 static inline struct queue_limits
queue_limits_start_update(struct request_queue * q)1000 queue_limits_start_update(struct request_queue *q)
1001 {
1002 mutex_lock(&q->limits_lock);
1003 return q->limits;
1004 }
1005 int queue_limits_commit_update_frozen(struct request_queue *q,
1006 struct queue_limits *lim);
1007 int queue_limits_commit_update(struct request_queue *q,
1008 struct queue_limits *lim);
1009 int queue_limits_set(struct request_queue *q, struct queue_limits *lim);
1010 int blk_validate_limits(struct queue_limits *lim);
1011
1012 /**
1013 * queue_limits_cancel_update - cancel an atomic update of queue limits
1014 * @q: queue to update
1015 *
1016 * This functions cancels an atomic update of the queue limits started by
1017 * queue_limits_start_update() and should be used when an error occurs after
1018 * starting update.
1019 */
queue_limits_cancel_update(struct request_queue * q)1020 static inline void queue_limits_cancel_update(struct request_queue *q)
1021 {
1022 mutex_unlock(&q->limits_lock);
1023 }
1024
1025 /*
1026 * These helpers are for drivers that have sloppy feature negotiation and might
1027 * have to disable DISCARD, WRITE_ZEROES or SECURE_DISCARD from the I/O
1028 * completion handler when the device returned an indicator that the respective
1029 * feature is not actually supported. They are racy and the driver needs to
1030 * cope with that. Try to avoid this scheme if you can.
1031 */
blk_queue_disable_discard(struct request_queue * q)1032 static inline void blk_queue_disable_discard(struct request_queue *q)
1033 {
1034 q->limits.max_discard_sectors = 0;
1035 }
1036
blk_queue_disable_secure_erase(struct request_queue * q)1037 static inline void blk_queue_disable_secure_erase(struct request_queue *q)
1038 {
1039 q->limits.max_secure_erase_sectors = 0;
1040 }
1041
blk_queue_disable_write_zeroes(struct request_queue * q)1042 static inline void blk_queue_disable_write_zeroes(struct request_queue *q)
1043 {
1044 q->limits.max_write_zeroes_sectors = 0;
1045 }
1046
1047 /*
1048 * Access functions for manipulating queue properties
1049 */
1050 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1051 extern void blk_set_stacking_limits(struct queue_limits *lim);
1052 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1053 sector_t offset);
1054 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
1055 sector_t offset, const char *pfx);
1056 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1057
1058 struct blk_independent_access_ranges *
1059 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
1060 void disk_set_independent_access_ranges(struct gendisk *disk,
1061 struct blk_independent_access_ranges *iars);
1062
1063 bool __must_check blk_get_queue(struct request_queue *);
1064 extern void blk_put_queue(struct request_queue *);
1065
1066 void blk_mark_disk_dead(struct gendisk *disk);
1067
1068 struct rq_list {
1069 struct request *head;
1070 struct request *tail;
1071 };
1072
1073 #ifdef CONFIG_BLOCK
1074 /*
1075 * blk_plug permits building a queue of related requests by holding the I/O
1076 * fragments for a short period. This allows merging of sequential requests
1077 * into single larger request. As the requests are moved from a per-task list to
1078 * the device's request_queue in a batch, this results in improved scalability
1079 * as the lock contention for request_queue lock is reduced.
1080 *
1081 * It is ok not to disable preemption when adding the request to the plug list
1082 * or when attempting a merge. For details, please see schedule() where
1083 * blk_flush_plug() is called.
1084 */
1085 struct blk_plug {
1086 struct rq_list mq_list; /* blk-mq requests */
1087
1088 /* if ios_left is > 1, we can batch tag/rq allocations */
1089 struct rq_list cached_rqs;
1090 u64 cur_ktime;
1091 unsigned short nr_ios;
1092
1093 unsigned short rq_count;
1094
1095 bool multiple_queues;
1096 bool has_elevator;
1097
1098 struct list_head cb_list; /* md requires an unplug callback */
1099 };
1100
1101 struct blk_plug_cb;
1102 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1103 struct blk_plug_cb {
1104 struct list_head list;
1105 blk_plug_cb_fn callback;
1106 void *data;
1107 };
1108 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1109 void *data, int size);
1110 extern void blk_start_plug(struct blk_plug *);
1111 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1112 extern void blk_finish_plug(struct blk_plug *);
1113
1114 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
blk_flush_plug(struct blk_plug * plug,bool async)1115 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1116 {
1117 if (plug)
1118 __blk_flush_plug(plug, async);
1119 }
1120
1121 /*
1122 * tsk == current here
1123 */
blk_plug_invalidate_ts(struct task_struct * tsk)1124 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1125 {
1126 struct blk_plug *plug = tsk->plug;
1127
1128 if (plug)
1129 plug->cur_ktime = 0;
1130 current->flags &= ~PF_BLOCK_TS;
1131 }
1132
1133 int blkdev_issue_flush(struct block_device *bdev);
1134 long nr_blockdev_pages(void);
1135 #else /* CONFIG_BLOCK */
1136 struct blk_plug {
1137 };
1138
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1139 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1140 unsigned short nr_ios)
1141 {
1142 }
1143
blk_start_plug(struct blk_plug * plug)1144 static inline void blk_start_plug(struct blk_plug *plug)
1145 {
1146 }
1147
blk_finish_plug(struct blk_plug * plug)1148 static inline void blk_finish_plug(struct blk_plug *plug)
1149 {
1150 }
1151
blk_flush_plug(struct blk_plug * plug,bool async)1152 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1153 {
1154 }
1155
blk_plug_invalidate_ts(struct task_struct * tsk)1156 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1157 {
1158 }
1159
blkdev_issue_flush(struct block_device * bdev)1160 static inline int blkdev_issue_flush(struct block_device *bdev)
1161 {
1162 return 0;
1163 }
1164
nr_blockdev_pages(void)1165 static inline long nr_blockdev_pages(void)
1166 {
1167 return 0;
1168 }
1169 #endif /* CONFIG_BLOCK */
1170
1171 extern void blk_io_schedule(void);
1172
1173 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1174 sector_t nr_sects, gfp_t gfp_mask);
1175 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1176 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1177 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1178 sector_t nr_sects, gfp_t gfp);
1179
1180 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1181 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1182 #define BLKDEV_ZERO_KILLABLE (1 << 2) /* interruptible by fatal signals */
1183
1184 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1185 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1186 unsigned flags);
1187 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1188 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1189
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1190 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1191 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1192 {
1193 return blkdev_issue_discard(sb->s_bdev,
1194 block << (sb->s_blocksize_bits -
1195 SECTOR_SHIFT),
1196 nr_blocks << (sb->s_blocksize_bits -
1197 SECTOR_SHIFT),
1198 gfp_mask);
1199 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1200 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1201 sector_t nr_blocks, gfp_t gfp_mask)
1202 {
1203 return blkdev_issue_zeroout(sb->s_bdev,
1204 block << (sb->s_blocksize_bits -
1205 SECTOR_SHIFT),
1206 nr_blocks << (sb->s_blocksize_bits -
1207 SECTOR_SHIFT),
1208 gfp_mask, 0);
1209 }
1210
bdev_is_partition(struct block_device * bdev)1211 static inline bool bdev_is_partition(struct block_device *bdev)
1212 {
1213 return bdev_partno(bdev) != 0;
1214 }
1215
1216 enum blk_default_limits {
1217 BLK_MAX_SEGMENTS = 128,
1218 BLK_SAFE_MAX_SECTORS = 255,
1219 BLK_MAX_SEGMENT_SIZE = 65536,
1220 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1221 };
1222
1223 /*
1224 * Default upper limit for the software max_sectors limit used for
1225 * regular file system I/O. This can be increased through sysfs.
1226 *
1227 * Not to be confused with the max_hw_sector limit that is entirely
1228 * controlled by the driver, usually based on hardware limits.
1229 */
1230 #define BLK_DEF_MAX_SECTORS_CAP 2560u
1231
bdev_limits(struct block_device * bdev)1232 static inline struct queue_limits *bdev_limits(struct block_device *bdev)
1233 {
1234 return &bdev_get_queue(bdev)->limits;
1235 }
1236
queue_segment_boundary(const struct request_queue * q)1237 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1238 {
1239 return q->limits.seg_boundary_mask;
1240 }
1241
queue_virt_boundary(const struct request_queue * q)1242 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1243 {
1244 return q->limits.virt_boundary_mask;
1245 }
1246
queue_max_sectors(const struct request_queue * q)1247 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1248 {
1249 return q->limits.max_sectors;
1250 }
1251
queue_max_bytes(struct request_queue * q)1252 static inline unsigned int queue_max_bytes(struct request_queue *q)
1253 {
1254 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1255 }
1256
queue_max_hw_sectors(const struct request_queue * q)1257 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1258 {
1259 return q->limits.max_hw_sectors;
1260 }
1261
queue_max_segments(const struct request_queue * q)1262 static inline unsigned short queue_max_segments(const struct request_queue *q)
1263 {
1264 return q->limits.max_segments;
1265 }
1266
queue_max_discard_segments(const struct request_queue * q)1267 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1268 {
1269 return q->limits.max_discard_segments;
1270 }
1271
queue_max_segment_size(const struct request_queue * q)1272 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1273 {
1274 return q->limits.max_segment_size;
1275 }
1276
queue_emulates_zone_append(struct request_queue * q)1277 static inline bool queue_emulates_zone_append(struct request_queue *q)
1278 {
1279 return blk_queue_is_zoned(q) && !q->limits.max_hw_zone_append_sectors;
1280 }
1281
bdev_emulates_zone_append(struct block_device * bdev)1282 static inline bool bdev_emulates_zone_append(struct block_device *bdev)
1283 {
1284 return queue_emulates_zone_append(bdev_get_queue(bdev));
1285 }
1286
1287 static inline unsigned int
bdev_max_zone_append_sectors(struct block_device * bdev)1288 bdev_max_zone_append_sectors(struct block_device *bdev)
1289 {
1290 return bdev_limits(bdev)->max_zone_append_sectors;
1291 }
1292
bdev_max_segments(struct block_device * bdev)1293 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1294 {
1295 return queue_max_segments(bdev_get_queue(bdev));
1296 }
1297
bdev_max_write_streams(struct block_device * bdev)1298 static inline unsigned short bdev_max_write_streams(struct block_device *bdev)
1299 {
1300 if (bdev_is_partition(bdev))
1301 return 0;
1302 return bdev_limits(bdev)->max_write_streams;
1303 }
1304
queue_logical_block_size(const struct request_queue * q)1305 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1306 {
1307 return q->limits.logical_block_size;
1308 }
1309
bdev_logical_block_size(struct block_device * bdev)1310 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1311 {
1312 return queue_logical_block_size(bdev_get_queue(bdev));
1313 }
1314
queue_physical_block_size(const struct request_queue * q)1315 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1316 {
1317 return q->limits.physical_block_size;
1318 }
1319
bdev_physical_block_size(struct block_device * bdev)1320 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1321 {
1322 return queue_physical_block_size(bdev_get_queue(bdev));
1323 }
1324
queue_io_min(const struct request_queue * q)1325 static inline unsigned int queue_io_min(const struct request_queue *q)
1326 {
1327 return q->limits.io_min;
1328 }
1329
bdev_io_min(struct block_device * bdev)1330 static inline unsigned int bdev_io_min(struct block_device *bdev)
1331 {
1332 return queue_io_min(bdev_get_queue(bdev));
1333 }
1334
queue_io_opt(const struct request_queue * q)1335 static inline unsigned int queue_io_opt(const struct request_queue *q)
1336 {
1337 return q->limits.io_opt;
1338 }
1339
bdev_io_opt(struct block_device * bdev)1340 static inline unsigned int bdev_io_opt(struct block_device *bdev)
1341 {
1342 return queue_io_opt(bdev_get_queue(bdev));
1343 }
1344
1345 static inline unsigned int
queue_zone_write_granularity(const struct request_queue * q)1346 queue_zone_write_granularity(const struct request_queue *q)
1347 {
1348 return q->limits.zone_write_granularity;
1349 }
1350
1351 static inline unsigned int
bdev_zone_write_granularity(struct block_device * bdev)1352 bdev_zone_write_granularity(struct block_device *bdev)
1353 {
1354 return queue_zone_write_granularity(bdev_get_queue(bdev));
1355 }
1356
1357 int bdev_alignment_offset(struct block_device *bdev);
1358 unsigned int bdev_discard_alignment(struct block_device *bdev);
1359
bdev_max_discard_sectors(struct block_device * bdev)1360 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1361 {
1362 return bdev_limits(bdev)->max_discard_sectors;
1363 }
1364
bdev_discard_granularity(struct block_device * bdev)1365 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1366 {
1367 return bdev_limits(bdev)->discard_granularity;
1368 }
1369
1370 static inline unsigned int
bdev_max_secure_erase_sectors(struct block_device * bdev)1371 bdev_max_secure_erase_sectors(struct block_device *bdev)
1372 {
1373 return bdev_limits(bdev)->max_secure_erase_sectors;
1374 }
1375
bdev_write_zeroes_sectors(struct block_device * bdev)1376 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1377 {
1378 return bdev_limits(bdev)->max_write_zeroes_sectors;
1379 }
1380
bdev_nonrot(struct block_device * bdev)1381 static inline bool bdev_nonrot(struct block_device *bdev)
1382 {
1383 return blk_queue_nonrot(bdev_get_queue(bdev));
1384 }
1385
bdev_synchronous(struct block_device * bdev)1386 static inline bool bdev_synchronous(struct block_device *bdev)
1387 {
1388 return bdev->bd_disk->queue->limits.features & BLK_FEAT_SYNCHRONOUS;
1389 }
1390
bdev_stable_writes(struct block_device * bdev)1391 static inline bool bdev_stable_writes(struct block_device *bdev)
1392 {
1393 struct request_queue *q = bdev_get_queue(bdev);
1394
1395 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1396 q->limits.integrity.csum_type != BLK_INTEGRITY_CSUM_NONE)
1397 return true;
1398 return q->limits.features & BLK_FEAT_STABLE_WRITES;
1399 }
1400
blk_queue_write_cache(struct request_queue * q)1401 static inline bool blk_queue_write_cache(struct request_queue *q)
1402 {
1403 return (q->limits.features & BLK_FEAT_WRITE_CACHE) &&
1404 !(q->limits.flags & BLK_FLAG_WRITE_CACHE_DISABLED);
1405 }
1406
bdev_write_cache(struct block_device * bdev)1407 static inline bool bdev_write_cache(struct block_device *bdev)
1408 {
1409 return blk_queue_write_cache(bdev_get_queue(bdev));
1410 }
1411
bdev_fua(struct block_device * bdev)1412 static inline bool bdev_fua(struct block_device *bdev)
1413 {
1414 return bdev_limits(bdev)->features & BLK_FEAT_FUA;
1415 }
1416
bdev_nowait(struct block_device * bdev)1417 static inline bool bdev_nowait(struct block_device *bdev)
1418 {
1419 return bdev->bd_disk->queue->limits.features & BLK_FEAT_NOWAIT;
1420 }
1421
bdev_is_zoned(struct block_device * bdev)1422 static inline bool bdev_is_zoned(struct block_device *bdev)
1423 {
1424 return blk_queue_is_zoned(bdev_get_queue(bdev));
1425 }
1426
bdev_zone_no(struct block_device * bdev,sector_t sec)1427 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
1428 {
1429 return disk_zone_no(bdev->bd_disk, sec);
1430 }
1431
bdev_zone_sectors(struct block_device * bdev)1432 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1433 {
1434 struct request_queue *q = bdev_get_queue(bdev);
1435
1436 if (!blk_queue_is_zoned(q))
1437 return 0;
1438 return q->limits.chunk_sectors;
1439 }
1440
bdev_offset_from_zone_start(struct block_device * bdev,sector_t sector)1441 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
1442 sector_t sector)
1443 {
1444 return sector & (bdev_zone_sectors(bdev) - 1);
1445 }
1446
bio_offset_from_zone_start(struct bio * bio)1447 static inline sector_t bio_offset_from_zone_start(struct bio *bio)
1448 {
1449 return bdev_offset_from_zone_start(bio->bi_bdev,
1450 bio->bi_iter.bi_sector);
1451 }
1452
bdev_is_zone_start(struct block_device * bdev,sector_t sector)1453 static inline bool bdev_is_zone_start(struct block_device *bdev,
1454 sector_t sector)
1455 {
1456 return bdev_offset_from_zone_start(bdev, sector) == 0;
1457 }
1458
1459 /* Check whether @sector is a multiple of the zone size. */
bdev_is_zone_aligned(struct block_device * bdev,sector_t sector)1460 static inline bool bdev_is_zone_aligned(struct block_device *bdev,
1461 sector_t sector)
1462 {
1463 return bdev_is_zone_start(bdev, sector);
1464 }
1465
1466 /**
1467 * bdev_zone_is_seq - check if a sector belongs to a sequential write zone
1468 * @bdev: block device to check
1469 * @sector: sector number
1470 *
1471 * Check if @sector on @bdev is contained in a sequential write required zone.
1472 */
bdev_zone_is_seq(struct block_device * bdev,sector_t sector)1473 static inline bool bdev_zone_is_seq(struct block_device *bdev, sector_t sector)
1474 {
1475 bool is_seq = false;
1476
1477 #if IS_ENABLED(CONFIG_BLK_DEV_ZONED)
1478 if (bdev_is_zoned(bdev)) {
1479 struct gendisk *disk = bdev->bd_disk;
1480 unsigned long *bitmap;
1481
1482 rcu_read_lock();
1483 bitmap = rcu_dereference(disk->conv_zones_bitmap);
1484 is_seq = !bitmap ||
1485 !test_bit(disk_zone_no(disk, sector), bitmap);
1486 rcu_read_unlock();
1487 }
1488 #endif
1489
1490 return is_seq;
1491 }
1492
1493 int blk_zone_issue_zeroout(struct block_device *bdev, sector_t sector,
1494 sector_t nr_sects, gfp_t gfp_mask);
1495
queue_dma_alignment(const struct request_queue * q)1496 static inline unsigned int queue_dma_alignment(const struct request_queue *q)
1497 {
1498 return q->limits.dma_alignment;
1499 }
1500
1501 static inline unsigned int
queue_atomic_write_unit_max_bytes(const struct request_queue * q)1502 queue_atomic_write_unit_max_bytes(const struct request_queue *q)
1503 {
1504 return q->limits.atomic_write_unit_max;
1505 }
1506
1507 static inline unsigned int
queue_atomic_write_unit_min_bytes(const struct request_queue * q)1508 queue_atomic_write_unit_min_bytes(const struct request_queue *q)
1509 {
1510 return q->limits.atomic_write_unit_min;
1511 }
1512
1513 static inline unsigned int
queue_atomic_write_boundary_bytes(const struct request_queue * q)1514 queue_atomic_write_boundary_bytes(const struct request_queue *q)
1515 {
1516 return q->limits.atomic_write_boundary_sectors << SECTOR_SHIFT;
1517 }
1518
1519 static inline unsigned int
queue_atomic_write_max_bytes(const struct request_queue * q)1520 queue_atomic_write_max_bytes(const struct request_queue *q)
1521 {
1522 return q->limits.atomic_write_max_sectors << SECTOR_SHIFT;
1523 }
1524
bdev_dma_alignment(struct block_device * bdev)1525 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1526 {
1527 return queue_dma_alignment(bdev_get_queue(bdev));
1528 }
1529
bdev_iter_is_aligned(struct block_device * bdev,struct iov_iter * iter)1530 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1531 struct iov_iter *iter)
1532 {
1533 return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1534 bdev_logical_block_size(bdev) - 1);
1535 }
1536
1537 static inline unsigned int
blk_lim_dma_alignment_and_pad(struct queue_limits * lim)1538 blk_lim_dma_alignment_and_pad(struct queue_limits *lim)
1539 {
1540 return lim->dma_alignment | lim->dma_pad_mask;
1541 }
1542
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1543 static inline bool blk_rq_aligned(struct request_queue *q, unsigned long addr,
1544 unsigned int len)
1545 {
1546 unsigned int alignment = blk_lim_dma_alignment_and_pad(&q->limits);
1547
1548 return !(addr & alignment) && !(len & alignment);
1549 }
1550
1551 /* assumes size > 256 */
blksize_bits(unsigned int size)1552 static inline unsigned int blksize_bits(unsigned int size)
1553 {
1554 return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
1555 }
1556
1557 int kblockd_schedule_work(struct work_struct *work);
1558 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1559
1560 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1561 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1562 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1563 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1564
1565 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1566
1567 bool blk_crypto_register(struct blk_crypto_profile *profile,
1568 struct request_queue *q);
1569
1570 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1571
blk_crypto_register(struct blk_crypto_profile * profile,struct request_queue * q)1572 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1573 struct request_queue *q)
1574 {
1575 return true;
1576 }
1577
1578 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1579
1580 enum blk_unique_id {
1581 /* these match the Designator Types specified in SPC */
1582 BLK_UID_T10 = 1,
1583 BLK_UID_EUI64 = 2,
1584 BLK_UID_NAA = 3,
1585 };
1586
1587 struct block_device_operations {
1588 void (*submit_bio)(struct bio *bio);
1589 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1590 unsigned int flags);
1591 int (*open)(struct gendisk *disk, blk_mode_t mode);
1592 void (*release)(struct gendisk *disk);
1593 int (*ioctl)(struct block_device *bdev, blk_mode_t mode,
1594 unsigned cmd, unsigned long arg);
1595 int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode,
1596 unsigned cmd, unsigned long arg);
1597 unsigned int (*check_events) (struct gendisk *disk,
1598 unsigned int clearing);
1599 void (*unlock_native_capacity) (struct gendisk *);
1600 int (*getgeo)(struct block_device *, struct hd_geometry *);
1601 int (*set_read_only)(struct block_device *bdev, bool ro);
1602 void (*free_disk)(struct gendisk *disk);
1603 /* this callback is with swap_lock and sometimes page table lock held */
1604 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1605 int (*report_zones)(struct gendisk *, sector_t sector,
1606 unsigned int nr_zones, report_zones_cb cb, void *data);
1607 char *(*devnode)(struct gendisk *disk, umode_t *mode);
1608 /* returns the length of the identifier or a negative errno: */
1609 int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1610 enum blk_unique_id id_type);
1611 struct module *owner;
1612 const struct pr_ops *pr_ops;
1613
1614 /*
1615 * Special callback for probing GPT entry at a given sector.
1616 * Needed by Android devices, used by GPT scanner and MMC blk
1617 * driver.
1618 */
1619 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1620 };
1621
1622 #ifdef CONFIG_COMPAT
1623 extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t,
1624 unsigned int, unsigned long);
1625 #else
1626 #define blkdev_compat_ptr_ioctl NULL
1627 #endif
1628
blk_wake_io_task(struct task_struct * waiter)1629 static inline void blk_wake_io_task(struct task_struct *waiter)
1630 {
1631 /*
1632 * If we're polling, the task itself is doing the completions. For
1633 * that case, we don't need to signal a wakeup, it's enough to just
1634 * mark us as RUNNING.
1635 */
1636 if (waiter == current)
1637 __set_current_state(TASK_RUNNING);
1638 else
1639 wake_up_process(waiter);
1640 }
1641
1642 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1643 unsigned long start_time);
1644 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1645 unsigned int sectors, unsigned long start_time);
1646
1647 unsigned long bio_start_io_acct(struct bio *bio);
1648 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1649 struct block_device *orig_bdev);
1650
1651 /**
1652 * bio_end_io_acct - end I/O accounting for bio based drivers
1653 * @bio: bio to end account for
1654 * @start_time: start time returned by bio_start_io_acct()
1655 */
bio_end_io_acct(struct bio * bio,unsigned long start_time)1656 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1657 {
1658 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1659 }
1660
1661 int bdev_validate_blocksize(struct block_device *bdev, int block_size);
1662 int set_blocksize(struct file *file, int size);
1663
1664 int lookup_bdev(const char *pathname, dev_t *dev);
1665
1666 void blkdev_show(struct seq_file *seqf, off_t offset);
1667
1668 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */
1669 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */
1670 #ifdef CONFIG_BLOCK
1671 #define BLKDEV_MAJOR_MAX 512
1672 #else
1673 #define BLKDEV_MAJOR_MAX 0
1674 #endif
1675
1676 struct blk_holder_ops {
1677 void (*mark_dead)(struct block_device *bdev, bool surprise);
1678
1679 /*
1680 * Sync the file system mounted on the block device.
1681 */
1682 void (*sync)(struct block_device *bdev);
1683
1684 /*
1685 * Freeze the file system mounted on the block device.
1686 */
1687 int (*freeze)(struct block_device *bdev);
1688
1689 /*
1690 * Thaw the file system mounted on the block device.
1691 */
1692 int (*thaw)(struct block_device *bdev);
1693 };
1694
1695 /*
1696 * For filesystems using @fs_holder_ops, the @holder argument passed to
1697 * helpers used to open and claim block devices via
1698 * bd_prepare_to_claim() must point to a superblock.
1699 */
1700 extern const struct blk_holder_ops fs_holder_ops;
1701
1702 /*
1703 * Return the correct open flags for blkdev_get_by_* for super block flags
1704 * as stored in sb->s_flags.
1705 */
1706 #define sb_open_mode(flags) \
1707 (BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \
1708 (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE))
1709
1710 struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder,
1711 const struct blk_holder_ops *hops);
1712 struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode,
1713 void *holder, const struct blk_holder_ops *hops);
1714 int bd_prepare_to_claim(struct block_device *bdev, void *holder,
1715 const struct blk_holder_ops *hops);
1716 void bd_abort_claiming(struct block_device *bdev, void *holder);
1717
1718 struct block_device *I_BDEV(struct inode *inode);
1719 struct block_device *file_bdev(struct file *bdev_file);
1720 bool disk_live(struct gendisk *disk);
1721 unsigned int block_size(struct block_device *bdev);
1722
1723 #ifdef CONFIG_BLOCK
1724 void invalidate_bdev(struct block_device *bdev);
1725 int sync_blockdev(struct block_device *bdev);
1726 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1727 int sync_blockdev_nowait(struct block_device *bdev);
1728 void sync_bdevs(bool wait);
1729 void bdev_statx(const struct path *path, struct kstat *stat, u32 request_mask);
1730 void printk_all_partitions(void);
1731 int __init early_lookup_bdev(const char *pathname, dev_t *dev);
1732 #else
invalidate_bdev(struct block_device * bdev)1733 static inline void invalidate_bdev(struct block_device *bdev)
1734 {
1735 }
sync_blockdev(struct block_device * bdev)1736 static inline int sync_blockdev(struct block_device *bdev)
1737 {
1738 return 0;
1739 }
sync_blockdev_nowait(struct block_device * bdev)1740 static inline int sync_blockdev_nowait(struct block_device *bdev)
1741 {
1742 return 0;
1743 }
sync_bdevs(bool wait)1744 static inline void sync_bdevs(bool wait)
1745 {
1746 }
bdev_statx(const struct path * path,struct kstat * stat,u32 request_mask)1747 static inline void bdev_statx(const struct path *path, struct kstat *stat,
1748 u32 request_mask)
1749 {
1750 }
printk_all_partitions(void)1751 static inline void printk_all_partitions(void)
1752 {
1753 }
early_lookup_bdev(const char * pathname,dev_t * dev)1754 static inline int early_lookup_bdev(const char *pathname, dev_t *dev)
1755 {
1756 return -EINVAL;
1757 }
1758 #endif /* CONFIG_BLOCK */
1759
1760 int bdev_freeze(struct block_device *bdev);
1761 int bdev_thaw(struct block_device *bdev);
1762 void bdev_fput(struct file *bdev_file);
1763
1764 struct io_comp_batch {
1765 struct rq_list req_list;
1766 bool need_ts;
1767 void (*complete)(struct io_comp_batch *);
1768 };
1769
blk_atomic_write_start_sect_aligned(sector_t sector,struct queue_limits * limits)1770 static inline bool blk_atomic_write_start_sect_aligned(sector_t sector,
1771 struct queue_limits *limits)
1772 {
1773 unsigned int alignment = max(limits->atomic_write_hw_unit_min,
1774 limits->atomic_write_hw_boundary);
1775
1776 return IS_ALIGNED(sector, alignment >> SECTOR_SHIFT);
1777 }
1778
bdev_can_atomic_write(struct block_device * bdev)1779 static inline bool bdev_can_atomic_write(struct block_device *bdev)
1780 {
1781 struct request_queue *bd_queue = bdev->bd_queue;
1782 struct queue_limits *limits = &bd_queue->limits;
1783
1784 if (!limits->atomic_write_unit_min)
1785 return false;
1786
1787 if (bdev_is_partition(bdev))
1788 return blk_atomic_write_start_sect_aligned(bdev->bd_start_sect,
1789 limits);
1790
1791 return true;
1792 }
1793
1794 static inline unsigned int
bdev_atomic_write_unit_min_bytes(struct block_device * bdev)1795 bdev_atomic_write_unit_min_bytes(struct block_device *bdev)
1796 {
1797 if (!bdev_can_atomic_write(bdev))
1798 return 0;
1799 return queue_atomic_write_unit_min_bytes(bdev_get_queue(bdev));
1800 }
1801
1802 static inline unsigned int
bdev_atomic_write_unit_max_bytes(struct block_device * bdev)1803 bdev_atomic_write_unit_max_bytes(struct block_device *bdev)
1804 {
1805 if (!bdev_can_atomic_write(bdev))
1806 return 0;
1807 return queue_atomic_write_unit_max_bytes(bdev_get_queue(bdev));
1808 }
1809
1810 #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { }
1811
1812 #endif /* _LINUX_BLKDEV_H */
1813