xref: /freebsd/sys/kern/sched_ule.c (revision 013c58ced6aef26bad7ca5c6eb829b9d586f6edb)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * This file implements the ULE scheduler.  ULE supports independent CPU
31  * run queues and fine grain locking.  It has superior interactive
32  * performance under load even on uni-processor systems.
33  *
34  * etymology:
35  *   ULE is the last three letters in schedule.  It owes its name to a
36  * generic user created for a scheduling system by Paul Mikesell at
37  * Isilon Systems and a general lack of creativity on the part of the author.
38  */
39 
40 #include <sys/cdefs.h>
41 #include "opt_hwpmc_hooks.h"
42 #include "opt_sched.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kdb.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/limits.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/resource.h>
54 #include <sys/resourcevar.h>
55 #include <sys/runq.h>
56 #include <sys/sched.h>
57 #include <sys/sdt.h>
58 #include <sys/smp.h>
59 #include <sys/sx.h>
60 #include <sys/sysctl.h>
61 #include <sys/sysproto.h>
62 #include <sys/turnstile.h>
63 #include <sys/umtxvar.h>
64 #include <sys/vmmeter.h>
65 #include <sys/cpuset.h>
66 #include <sys/sbuf.h>
67 
68 #ifdef HWPMC_HOOKS
69 #include <sys/pmckern.h>
70 #endif
71 
72 #ifdef KDTRACE_HOOKS
73 #include <sys/dtrace_bsd.h>
74 int __read_mostly		dtrace_vtime_active;
75 dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
76 #endif
77 
78 #include <machine/cpu.h>
79 #include <machine/smp.h>
80 
81 #define	KTR_ULE	0
82 
83 #define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
84 #define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
85 #define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
86 
87 /*
88  * Thread scheduler specific section.  All fields are protected
89  * by the thread lock.
90  */
91 struct td_sched {
92 	short		ts_flags;	/* TSF_* flags. */
93 	int		ts_cpu;		/* CPU we are on, or were last on. */
94 	u_int		ts_rltick;	/* Real last tick, for affinity. */
95 	u_int		ts_slice;	/* Ticks of slice remaining. */
96 	u_int		ts_ftick;	/* %CPU window's first tick */
97 	u_int		ts_ltick;	/* %CPU window's last tick */
98 	/* All ticks count below are stored shifted by SCHED_TICK_SHIFT. */
99 	u_int		ts_slptime;	/* Number of ticks we vol. slept */
100 	u_int		ts_runtime;	/* Number of ticks we were running */
101 	u_int		ts_ticks;	/* pctcpu window's running tick count */
102 #ifdef KTR
103 	char		ts_name[TS_NAME_LEN];
104 #endif
105 };
106 /* flags kept in ts_flags */
107 #define	TSF_BOUND	0x0001		/* Thread can not migrate. */
108 #define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
109 
110 #define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
111 #define	THREAD_CAN_SCHED(td, cpu)	\
112     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
113 
114 _Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <=
115     sizeof(struct thread0_storage),
116     "increase struct thread0_storage.t0st_sched size");
117 
118 /*
119  * Priority ranges used for interactive and non-interactive timeshare
120  * threads.  The timeshare priorities are split up into four ranges.
121  * The first range handles interactive threads.  The last three ranges
122  * (NHALF, x, and NHALF) handle non-interactive threads with the outer
123  * ranges supporting nice values.
124  */
125 #define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
126 #define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
127 #define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
128 
129 #define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
130 #define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
131 #define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
132 #define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
133 
134 /*
135  * These macros determine priorities for non-interactive threads.  They are
136  * assigned a priority based on their recent cpu utilization as expressed
137  * by the ratio of ticks to the tick total.  NHALF priorities at the start
138  * and end of the MIN to MAX timeshare range are only reachable with negative
139  * or positive nice respectively.
140  *
141  * CPU_RANGE:	Length of range for priorities computed from CPU use.
142  * NICE:	Priority offset due to the nice value.
143  *              5/4 is to preserve historical nice effect on computation ratios.
144  * NRESV:	Number of priority levels reserved to account for nice values.
145  */
146 #define	SCHED_PRI_CPU_RANGE	(PRI_BATCH_RANGE - SCHED_PRI_NRESV)
147 #define	SCHED_PRI_NICE(nice)	(((nice) - PRIO_MIN) * 5 / 4)
148 #define	SCHED_PRI_NRESV		SCHED_PRI_NICE(PRIO_MAX)
149 
150 /*
151  * Runqueue indices for the implemented scheduling policies' priority bounds.
152  *
153  * In ULE's implementation, realtime policy covers the ITHD, REALTIME and
154  * INTERACT (see above) ranges, timesharing the BATCH range (see above), and
155  * idle policy the IDLE range.
156  *
157  * Priorities from these ranges must not be assigned to the same runqueue's
158  * queue.
159  */
160 #define	RQ_RT_POL_MIN		(RQ_PRI_TO_QUEUE_IDX(PRI_MIN_ITHD))
161 #define	RQ_RT_POL_MAX		(RQ_PRI_TO_QUEUE_IDX(PRI_MAX_INTERACT))
162 #define	RQ_TS_POL_MIN		(RQ_PRI_TO_QUEUE_IDX(PRI_MIN_BATCH))
163 #define	RQ_TS_POL_MAX		(RQ_PRI_TO_QUEUE_IDX(PRI_MAX_BATCH))
164 #define	RQ_ID_POL_MIN		(RQ_PRI_TO_QUEUE_IDX(PRI_MIN_IDLE))
165 #define	RQ_ID_POL_MAX		(RQ_PRI_TO_QUEUE_IDX(PRI_MAX_IDLE))
166 
167 _Static_assert(RQ_RT_POL_MAX != RQ_TS_POL_MIN,
168     "ULE's realtime and timeshare policies' runqueue ranges overlap");
169 _Static_assert(RQ_TS_POL_MAX != RQ_ID_POL_MIN,
170     "ULE's timeshare and idle policies' runqueue ranges overlap");
171 
172 /* Helper to treat the timeshare range as a circular group of queues. */
173 #define RQ_TS_POL_MODULO	(RQ_TS_POL_MAX - RQ_TS_POL_MIN + 1)
174 
175 /*
176  * Cpu percentage computation macros and defines.
177  *
178  * SCHED_TICK_SECS:	Max number of seconds to average the cpu usage across.
179  *   Must be at most 20 to avoid overflow in sched_pctcpu()'s current formula.
180  * SCHED_TICK_MAX:	Max number of hz ticks matching SCHED_TICK_SECS.
181  * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
182  * SCHED_TICK_RUN_SHIFTED: Number of shifted ticks running in last window.
183  * SCHED_TICK_LENGTH:	Length of last window in shifted ticks or 1 if empty.
184  * SCHED_CPU_DECAY_NUMER: Numerator of %CPU decay factor.
185  * SCHED_CPU_DECAY_DENOM: Denominator of %CPU decay factor.
186  */
187 #define	SCHED_TICK_SECS			11
188 #define	SCHED_TICK_MAX(hz)		((hz) * SCHED_TICK_SECS)
189 #define	SCHED_TICK_SHIFT		10
190 #define	SCHED_TICK_RUN_SHIFTED(ts)	((ts)->ts_ticks)
191 #define	SCHED_TICK_LENGTH(ts)		(max((ts)->ts_ltick - (ts)->ts_ftick, 1))
192 #define	SCHED_CPU_DECAY_NUMER		10
193 #define	SCHED_CPU_DECAY_DENOM		11
194 _Static_assert(SCHED_CPU_DECAY_NUMER >= 0 && SCHED_CPU_DECAY_DENOM > 0 &&
195     SCHED_CPU_DECAY_NUMER <= SCHED_CPU_DECAY_DENOM,
196     "Inconsistent values for SCHED_CPU_DECAY_NUMER and/or "
197     "SCHED_CPU_DECAY_DENOM");
198 
199 /*
200  * These determine the interactivity of a process.  Interactivity differs from
201  * cpu utilization in that it expresses the voluntary time slept vs time ran
202  * while cpu utilization includes all time not running.  This more accurately
203  * models the intent of the thread.
204  *
205  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
206  *		before throttling back.
207  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
208  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
209  * INTERACT_THRESH:	Threshold for placement on the current runq.
210  */
211 #define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
212 #define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
213 #define	SCHED_INTERACT_MAX	(100)
214 #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
215 #define	SCHED_INTERACT_THRESH	(30)
216 
217 /*
218  * These parameters determine the slice behavior for batch work.
219  */
220 #define	SCHED_SLICE_DEFAULT_DIVISOR	10	/* ~94 ms, 12 stathz ticks. */
221 #define	SCHED_SLICE_MIN_DIVISOR		6	/* DEFAULT/MIN = ~16 ms. */
222 
223 /* Flags kept in td_flags. */
224 #define	TDF_PICKCPU	TDF_SCHED0	/* Thread should pick new CPU. */
225 #define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
226 
227 /*
228  * tickincr:		Converts a stathz tick into a hz domain scaled by
229  *			the shift factor.  Without the shift the error rate
230  *			due to rounding would be unacceptably high.
231  * realstathz:		stathz is sometimes 0 and run off of hz.
232  * sched_slice:		Runtime of each thread before rescheduling.
233  * preempt_thresh:	Priority threshold for preemption and remote IPIs.
234  */
235 static u_int __read_mostly sched_interact = SCHED_INTERACT_THRESH;
236 static int __read_mostly tickincr = 8 << SCHED_TICK_SHIFT;
237 static int __read_mostly realstathz = 127;	/* reset during boot. */
238 static int __read_mostly sched_slice = 10;	/* reset during boot. */
239 static int __read_mostly sched_slice_min = 1;	/* reset during boot. */
240 #ifdef PREEMPTION
241 #ifdef FULL_PREEMPTION
242 static int __read_mostly preempt_thresh = PRI_MAX_IDLE;
243 #else
244 static int __read_mostly preempt_thresh = PRI_MIN_KERN;
245 #endif
246 #else
247 static int __read_mostly preempt_thresh = 0;
248 #endif
249 static int __read_mostly static_boost = PRI_MIN_BATCH;
250 static int __read_mostly sched_idlespins = 10000;
251 static int __read_mostly sched_idlespinthresh = -1;
252 
253 /*
254  * tdq - per processor runqs and statistics.  A mutex synchronizes access to
255  * most fields.  Some fields are loaded or modified without the mutex.
256  *
257  * Locking protocols:
258  * (c)  constant after initialization
259  * (f)  flag, set with the tdq lock held, cleared on local CPU
260  * (l)  all accesses are CPU-local
261  * (ls) stores are performed by the local CPU, loads may be lockless
262  * (t)  all accesses are protected by the tdq mutex
263  * (ts) stores are serialized by the tdq mutex, loads may be lockless
264  */
265 struct tdq {
266 	/*
267 	 * Ordered to improve efficiency of cpu_search() and switch().
268 	 * tdq_lock is padded to avoid false sharing with tdq_load and
269 	 * tdq_cpu_idle.
270 	 */
271 	struct mtx_padalign tdq_lock;	/* run queue lock. */
272 	struct cpu_group *tdq_cg;	/* (c) Pointer to cpu topology. */
273 	struct thread	*tdq_curthread;	/* (t) Current executing thread. */
274 	int		tdq_load;	/* (ts) Aggregate load. */
275 	int		tdq_sysload;	/* (ts) For loadavg, !ITHD load. */
276 	int		tdq_cpu_idle;	/* (ls) cpu_idle() is active. */
277 	int		tdq_transferable; /* (ts) Transferable thread count. */
278 	short		tdq_switchcnt;	/* (l) Switches this tick. */
279 	short		tdq_oldswitchcnt; /* (l) Switches last tick. */
280 	u_char		tdq_lowpri;	/* (ts) Lowest priority thread. */
281 	u_char		tdq_owepreempt;	/* (f) Remote preemption pending. */
282 	u_char		tdq_ts_off;	/* (t) TS insertion offset. */
283 	u_char		tdq_ts_deq_off;	/* (t) TS dequeue offset. */
284 	/*
285 	 * (t) Number of (stathz) ticks since last offset incrementation
286 	 * correction.
287 	 */
288 	u_char		tdq_ts_ticks;
289 	int		tdq_id;		/* (c) cpuid. */
290 	struct runq	tdq_runq;	/* (t) Run queue. */
291 	char		tdq_name[TDQ_NAME_LEN];
292 #ifdef KTR
293 	char		tdq_loadname[TDQ_LOADNAME_LEN];
294 #endif
295 };
296 
297 /* Idle thread states and config. */
298 #define	TDQ_RUNNING	1
299 #define	TDQ_IDLE	2
300 
301 /* Lockless accessors. */
302 #define	TDQ_LOAD(tdq)		atomic_load_int(&(tdq)->tdq_load)
303 #define	TDQ_TRANSFERABLE(tdq)	atomic_load_int(&(tdq)->tdq_transferable)
304 #define	TDQ_SWITCHCNT(tdq)	(atomic_load_short(&(tdq)->tdq_switchcnt) + \
305 				 atomic_load_short(&(tdq)->tdq_oldswitchcnt))
306 #define	TDQ_SWITCHCNT_INC(tdq)	(atomic_store_short(&(tdq)->tdq_switchcnt, \
307 				 atomic_load_short(&(tdq)->tdq_switchcnt) + 1))
308 
309 #ifdef SMP
310 struct cpu_group __read_mostly *cpu_top;		/* CPU topology */
311 
312 #define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
313 /*
314  * This inequality has to be written with a positive difference of ticks to
315  * correctly handle wraparound.
316  */
317 #define	SCHED_AFFINITY(ts, t)	((u_int)ticks - (ts)->ts_rltick < (t) * affinity)
318 
319 /*
320  * Run-time tunables.
321  */
322 static int rebalance = 1;
323 static int balance_interval = 128;	/* Default set in sched_initticks(). */
324 static int __read_mostly affinity;
325 static int __read_mostly steal_idle = 1;
326 static int __read_mostly steal_thresh = 2;
327 static int __read_mostly always_steal = 0;
328 static int __read_mostly trysteal_limit = 2;
329 
330 /*
331  * One thread queue per processor.
332  */
333 static struct tdq __read_mostly *balance_tdq;
334 static int balance_ticks;
335 DPCPU_DEFINE_STATIC(struct tdq, tdq);
336 DPCPU_DEFINE_STATIC(uint32_t, randomval);
337 
338 #define	TDQ_SELF()	((struct tdq *)PCPU_GET(sched))
339 #define	TDQ_CPU(x)	(DPCPU_ID_PTR((x), tdq))
340 #define	TDQ_ID(x)	((x)->tdq_id)
341 #else	/* !SMP */
342 static struct tdq	tdq_cpu;
343 
344 #define	TDQ_ID(x)	(0)
345 #define	TDQ_SELF()	(&tdq_cpu)
346 #define	TDQ_CPU(x)	(&tdq_cpu)
347 #endif
348 
349 #define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
350 #define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
351 #define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
352 #define	TDQ_TRYLOCK(t)		mtx_trylock_spin(TDQ_LOCKPTR((t)))
353 #define	TDQ_TRYLOCK_FLAGS(t, f)	mtx_trylock_spin_flags(TDQ_LOCKPTR((t)), (f))
354 #define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
355 #define	TDQ_LOCKPTR(t)		((struct mtx *)(&(t)->tdq_lock))
356 
357 static void sched_setpreempt(int);
358 static void sched_priority(struct thread *);
359 static void sched_thread_priority(struct thread *, u_char);
360 static int sched_interact_score(struct thread *);
361 static void sched_interact_update(struct thread *);
362 static void sched_interact_fork(struct thread *);
363 static void sched_pctcpu_update(struct td_sched *, int);
364 
365 /* Operations on per processor queues */
366 static inline struct thread *runq_choose_realtime(struct runq *const rq);
367 static inline struct thread *runq_choose_timeshare(struct runq *const rq,
368     int off);
369 static inline struct thread *runq_choose_idle(struct runq *const rq);
370 static struct thread *tdq_choose(struct tdq *);
371 
372 static void tdq_setup(struct tdq *, int i);
373 static void tdq_load_add(struct tdq *, struct thread *);
374 static void tdq_load_rem(struct tdq *, struct thread *);
375 static inline void tdq_runq_add(struct tdq *, struct thread *, int);
376 static inline void tdq_advance_ts_deq_off(struct tdq *, bool);
377 static inline void tdq_runq_rem(struct tdq *, struct thread *);
378 static inline int sched_shouldpreempt(int, int, int);
379 static void tdq_print(int cpu);
380 static void runq_print(struct runq *rq);
381 static int tdq_add(struct tdq *, struct thread *, int);
382 #ifdef SMP
383 static int tdq_move(struct tdq *, struct tdq *);
384 static int tdq_idled(struct tdq *);
385 static void tdq_notify(struct tdq *, int lowpri);
386 
387 static bool runq_steal_pred(const int idx, struct rq_queue *const q,
388     void *const data);
389 static inline struct thread *runq_steal_range(struct runq *const rq,
390     const int lvl_min, const int lvl_max, int cpu);
391 static inline struct thread *runq_steal_realtime(struct runq *const rq,
392     int cpu);
393 static inline struct thread *runq_steal_timeshare(struct runq *const rq,
394     int cpu, int off);
395 static inline struct thread *runq_steal_idle(struct runq *const rq,
396     int cpu);
397 static struct thread *tdq_steal(struct tdq *, int);
398 
399 static int sched_pickcpu(struct thread *, int);
400 static void sched_balance(void);
401 static bool sched_balance_pair(struct tdq *, struct tdq *);
402 static inline struct tdq *sched_setcpu(struct thread *, int, int);
403 static inline void thread_unblock_switch(struct thread *, struct mtx *);
404 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
405 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
406     struct cpu_group *cg, int indent);
407 #endif
408 
409 static void sched_setup(void *dummy);
410 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
411 
412 static void sched_initticks(void *dummy);
413 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
414     NULL);
415 
416 SDT_PROVIDER_DEFINE(sched);
417 
418 SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *",
419     "struct proc *", "uint8_t");
420 SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *",
421     "struct proc *", "void *");
422 SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *",
423     "struct proc *", "void *", "int");
424 SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *",
425     "struct proc *", "uint8_t", "struct thread *");
426 SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
427 SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *",
428     "struct proc *");
429 SDT_PROBE_DEFINE(sched, , , on__cpu);
430 SDT_PROBE_DEFINE(sched, , , remain__cpu);
431 SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *",
432     "struct proc *");
433 
434 /*
435  * Print the threads waiting on a run-queue.
436  */
437 static void
runq_print(struct runq * rq)438 runq_print(struct runq *rq)
439 {
440 	struct rq_queue *rqq;
441 	struct thread *td;
442 	int pri;
443 	int j;
444 	int i;
445 
446 	for (i = 0; i < RQSW_NB; i++) {
447 		printf("\t\trunq bits %d %#lx\n",
448 		    i, rq->rq_status.rq_sw[i]);
449 		for (j = 0; j < RQSW_BPW; j++)
450 			if (rq->rq_status.rq_sw[i] & (1ul << j)) {
451 				pri = RQSW_TO_QUEUE_IDX(i, j);
452 				rqq = &rq->rq_queues[pri];
453 				TAILQ_FOREACH(td, rqq, td_runq) {
454 					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
455 					    td, td->td_name, td->td_priority,
456 					    td->td_rqindex, pri);
457 				}
458 			}
459 	}
460 }
461 
462 /*
463  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
464  */
465 static void __unused
tdq_print(int cpu)466 tdq_print(int cpu)
467 {
468 	struct tdq *tdq;
469 
470 	tdq = TDQ_CPU(cpu);
471 
472 	printf("tdq %d:\n", TDQ_ID(tdq));
473 	printf("\tlock               %p\n", TDQ_LOCKPTR(tdq));
474 	printf("\tLock name:         %s\n", tdq->tdq_name);
475 	printf("\tload:              %d\n", tdq->tdq_load);
476 	printf("\tswitch cnt:        %d\n", tdq->tdq_switchcnt);
477 	printf("\told switch cnt:    %d\n", tdq->tdq_oldswitchcnt);
478 	printf("\tTS insert offset:  %d\n", tdq->tdq_ts_off);
479 	printf("\tTS dequeue offset: %d\n", tdq->tdq_ts_deq_off);
480 	printf("\tload transferable: %d\n", tdq->tdq_transferable);
481 	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
482 	printf("\trunq:\n");
483 	runq_print(&tdq->tdq_runq);
484 }
485 
486 static inline int
sched_shouldpreempt(int pri,int cpri,int remote)487 sched_shouldpreempt(int pri, int cpri, int remote)
488 {
489 	/*
490 	 * If the new priority is not better than the current priority there is
491 	 * nothing to do.
492 	 */
493 	if (pri >= cpri)
494 		return (0);
495 	/*
496 	 * Always preempt idle.
497 	 */
498 	if (cpri >= PRI_MIN_IDLE)
499 		return (1);
500 	/*
501 	 * If preemption is disabled don't preempt others.
502 	 */
503 	if (preempt_thresh == 0)
504 		return (0);
505 	/*
506 	 * Preempt if we exceed the threshold.
507 	 */
508 	if (pri <= preempt_thresh)
509 		return (1);
510 	/*
511 	 * If we're interactive or better and there is non-interactive
512 	 * or worse running preempt only remote processors.
513 	 */
514 	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
515 		return (1);
516 	return (0);
517 }
518 
519 /*
520  * Add a thread to the actual run-queue.  Keeps transferable counts up to
521  * date with what is actually on the run-queue.  Selects the correct
522  * queue position for timeshare threads.
523  */
524 static inline void
tdq_runq_add(struct tdq * tdq,struct thread * td,int flags)525 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
526 {
527 	struct td_sched *ts;
528 	u_char pri, idx;
529 
530 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
531 	THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
532 
533 	pri = td->td_priority;
534 	ts = td_get_sched(td);
535 	TD_SET_RUNQ(td);
536 	if (THREAD_CAN_MIGRATE(td)) {
537 		tdq->tdq_transferable++;
538 		ts->ts_flags |= TSF_XFERABLE;
539 	}
540 	if (PRI_MIN_BATCH <= pri && pri <= PRI_MAX_BATCH) {
541 		/*
542 		 * The queues allocated to the batch range are not used as
543 		 * a simple array but as a "circular" one where the insertion
544 		 * index (derived from 'pri') is offset by 'tdq_ts_off'. 'idx'
545 		 * is first set to the offset of the wanted queue in the TS'
546 		 * selection policy range.
547 		 */
548 		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) != 0)
549 			/* Current queue from which processes are being run. */
550 			idx = tdq->tdq_ts_deq_off;
551 		else {
552 			idx = (RQ_PRI_TO_QUEUE_IDX(pri) - RQ_TS_POL_MIN +
553 			    tdq->tdq_ts_off) % RQ_TS_POL_MODULO;
554 			/*
555 			 * We avoid enqueuing low priority threads in the queue
556 			 * that we are still draining, effectively shortening
557 			 * the runqueue by one queue.
558 			 */
559 			if (tdq->tdq_ts_deq_off != tdq->tdq_ts_off &&
560 			    idx == tdq->tdq_ts_deq_off)
561 				/* Ensure the dividend is positive. */
562 				idx = (idx - 1 + RQ_TS_POL_MODULO) %
563 				    RQ_TS_POL_MODULO;
564 		}
565 		/* Absolute queue index. */
566 		idx += RQ_TS_POL_MIN;
567 		runq_add_idx(&tdq->tdq_runq, td, idx, flags);
568 	} else
569 		runq_add(&tdq->tdq_runq, td, flags);
570 }
571 
572 /*
573  * Advance the timesharing dequeue offset to the next non-empty queue or the
574  * insertion offset, whichever is closer.
575  *
576  * If 'deq_queue_known_empty' is true, then the queue where timesharing threads
577  * are currently removed for execution (pointed to by 'tdq_ts_deq_off') is
578  * assumed empty.  Otherwise, this condition is checked for.
579  */
580 static inline void
tdq_advance_ts_deq_off(struct tdq * tdq,bool deq_queue_known_empty)581 tdq_advance_ts_deq_off(struct tdq *tdq, bool deq_queue_known_empty)
582 {
583 	/*
584 	 * We chose a simple iterative algorithm since the difference between
585 	 * offsets is small in practice (see sched_clock()).
586 	 */
587 	while (tdq->tdq_ts_deq_off != tdq->tdq_ts_off) {
588 		if (deq_queue_known_empty)
589 			deq_queue_known_empty = false;
590 		else if (!runq_is_queue_empty(&tdq->tdq_runq,
591 		    tdq->tdq_ts_deq_off + RQ_TS_POL_MIN))
592 			break;
593 
594 		tdq->tdq_ts_deq_off = (tdq->tdq_ts_deq_off + 1) %
595 		    RQ_TS_POL_MODULO;
596 	}
597 }
598 
599 /*
600  * Remove a thread from a run-queue.  This typically happens when a thread
601  * is selected to run.  Running threads are not on the queue and the
602  * transferable count does not reflect them.
603  */
604 static inline void
tdq_runq_rem(struct tdq * tdq,struct thread * td)605 tdq_runq_rem(struct tdq *tdq, struct thread *td)
606 {
607 	struct td_sched *ts;
608 	bool queue_empty;
609 
610 	ts = td_get_sched(td);
611 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
612 	THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
613 	if (ts->ts_flags & TSF_XFERABLE) {
614 		tdq->tdq_transferable--;
615 		ts->ts_flags &= ~TSF_XFERABLE;
616 	}
617 	queue_empty = runq_remove(&tdq->tdq_runq, td);
618 	/*
619 	 * If thread has a batch priority and the queue from which it was
620 	 * removed is now empty, advance the batch's queue removal index if it
621 	 * lags with respect to the batch's queue insertion index, so that we
622 	 * may eventually be able to advance the latter in sched_clock().
623 	 */
624 	if (PRI_MIN_BATCH <= td->td_priority &&
625 	    td->td_priority <= PRI_MAX_BATCH && queue_empty &&
626 	    tdq->tdq_ts_deq_off + RQ_TS_POL_MIN == td->td_rqindex)
627 		tdq_advance_ts_deq_off(tdq, true);
628 }
629 
630 /*
631  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
632  * for this thread to the referenced thread queue.
633  */
634 static void
tdq_load_add(struct tdq * tdq,struct thread * td)635 tdq_load_add(struct tdq *tdq, struct thread *td)
636 {
637 
638 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
639 	THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
640 
641 	tdq->tdq_load++;
642 	if ((td->td_flags & TDF_NOLOAD) == 0)
643 		tdq->tdq_sysload++;
644 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
645 	SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
646 }
647 
648 /*
649  * Remove the load from a thread that is transitioning to a sleep state or
650  * exiting.
651  */
652 static void
tdq_load_rem(struct tdq * tdq,struct thread * td)653 tdq_load_rem(struct tdq *tdq, struct thread *td)
654 {
655 
656 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
657 	THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
658 	KASSERT(tdq->tdq_load != 0,
659 	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
660 
661 	tdq->tdq_load--;
662 	if ((td->td_flags & TDF_NOLOAD) == 0)
663 		tdq->tdq_sysload--;
664 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
665 	SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
666 }
667 
668 /*
669  * Bound timeshare latency by decreasing slice size as load increases.  We
670  * consider the maximum latency as the sum of the threads waiting to run
671  * aside from curthread and target no more than sched_slice latency but
672  * no less than sched_slice_min runtime.
673  */
674 static inline u_int
tdq_slice(struct tdq * tdq)675 tdq_slice(struct tdq *tdq)
676 {
677 	int load;
678 
679 	/*
680 	 * It is safe to use sys_load here because this is called from
681 	 * contexts where timeshare threads are running and so there
682 	 * cannot be higher priority load in the system.
683 	 */
684 	load = tdq->tdq_sysload - 1;
685 	if (load >= SCHED_SLICE_MIN_DIVISOR)
686 		return (sched_slice_min);
687 	if (load <= 1)
688 		return (sched_slice);
689 	return (sched_slice / load);
690 }
691 
692 /*
693  * Set lowpri to its exact value by searching the run-queue and
694  * evaluating curthread.  curthread may be passed as an optimization.
695  */
696 static void
tdq_setlowpri(struct tdq * tdq,struct thread * ctd)697 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
698 {
699 	struct thread *td;
700 
701 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
702 	if (ctd == NULL)
703 		ctd = tdq->tdq_curthread;
704 	td = tdq_choose(tdq);
705 	if (td == NULL || td->td_priority > ctd->td_priority)
706 		tdq->tdq_lowpri = ctd->td_priority;
707 	else
708 		tdq->tdq_lowpri = td->td_priority;
709 }
710 
711 #ifdef SMP
712 /*
713  * We need some randomness. Implement a classic Linear Congruential
714  * Generator X_{n+1}=(aX_n+c) mod m. These values are optimized for
715  * m = 2^32, a = 69069 and c = 5. We only return the upper 16 bits
716  * of the random state (in the low bits of our answer) to keep
717  * the maximum randomness.
718  */
719 static uint32_t
sched_random(void)720 sched_random(void)
721 {
722 	uint32_t *rndptr;
723 
724 	rndptr = DPCPU_PTR(randomval);
725 	*rndptr = *rndptr * 69069 + 5;
726 
727 	return (*rndptr >> 16);
728 }
729 
730 struct cpu_search {
731 	cpuset_t *cs_mask;	/* The mask of allowed CPUs to choose from. */
732 	int	cs_prefer;	/* Prefer this CPU and groups including it. */
733 	int	cs_running;	/* The thread is now running at cs_prefer. */
734 	int	cs_pri;		/* Min priority for low. */
735 	int	cs_load;	/* Max load for low, min load for high. */
736 	int	cs_trans;	/* Min transferable load for high. */
737 };
738 
739 struct cpu_search_res {
740 	int	csr_cpu;	/* The best CPU found. */
741 	int	csr_load;	/* The load of cs_cpu. */
742 };
743 
744 /*
745  * Search the tree of cpu_groups for the lowest or highest loaded CPU.
746  * These routines actually compare the load on all paths through the tree
747  * and find the least loaded cpu on the least loaded path, which may differ
748  * from the least loaded cpu in the system.  This balances work among caches
749  * and buses.
750  */
751 static int
cpu_search_lowest(const struct cpu_group * cg,const struct cpu_search * s,struct cpu_search_res * r)752 cpu_search_lowest(const struct cpu_group *cg, const struct cpu_search *s,
753     struct cpu_search_res *r)
754 {
755 	struct cpu_search_res lr;
756 	struct tdq *tdq;
757 	int c, bload, l, load, p, total;
758 
759 	total = 0;
760 	bload = INT_MAX;
761 	r->csr_cpu = -1;
762 
763 	/* Loop through children CPU groups if there are any. */
764 	if (cg->cg_children > 0) {
765 		for (c = cg->cg_children - 1; c >= 0; c--) {
766 			load = cpu_search_lowest(&cg->cg_child[c], s, &lr);
767 			total += load;
768 
769 			/*
770 			 * When balancing do not prefer SMT groups with load >1.
771 			 * It allows round-robin between SMT groups with equal
772 			 * load within parent group for more fair scheduling.
773 			 */
774 			if (__predict_false(s->cs_running) &&
775 			    (cg->cg_child[c].cg_flags & CG_FLAG_THREAD) &&
776 			    load >= 128 && (load & 128) != 0)
777 				load += 128;
778 
779 			if (lr.csr_cpu >= 0 && (load < bload ||
780 			    (load == bload && lr.csr_load < r->csr_load))) {
781 				bload = load;
782 				r->csr_cpu = lr.csr_cpu;
783 				r->csr_load = lr.csr_load;
784 			}
785 		}
786 		return (total);
787 	}
788 
789 	/* Loop through children CPUs otherwise. */
790 	for (c = cg->cg_last; c >= cg->cg_first; c--) {
791 		if (!CPU_ISSET(c, &cg->cg_mask))
792 			continue;
793 		tdq = TDQ_CPU(c);
794 		l = TDQ_LOAD(tdq);
795 		if (c == s->cs_prefer) {
796 			if (__predict_false(s->cs_running))
797 				l--;
798 			p = 128;
799 		} else
800 			p = 0;
801 		load = l * 256;
802 		total += load - p;
803 
804 		/*
805 		 * Check this CPU is acceptable.
806 		 * If the threads is already on the CPU, don't look on the TDQ
807 		 * priority, since it can be the priority of the thread itself.
808 		 */
809 		if (l > s->cs_load ||
810 		    (atomic_load_char(&tdq->tdq_lowpri) <= s->cs_pri &&
811 		     (!s->cs_running || c != s->cs_prefer)) ||
812 		    !CPU_ISSET(c, s->cs_mask))
813 			continue;
814 
815 		/*
816 		 * When balancing do not prefer CPUs with load > 1.
817 		 * It allows round-robin between CPUs with equal load
818 		 * within the CPU group for more fair scheduling.
819 		 */
820 		if (__predict_false(s->cs_running) && l > 0)
821 			p = 0;
822 
823 		load -= sched_random() % 128;
824 		if (bload > load - p) {
825 			bload = load - p;
826 			r->csr_cpu = c;
827 			r->csr_load = load;
828 		}
829 	}
830 	return (total);
831 }
832 
833 static int
cpu_search_highest(const struct cpu_group * cg,const struct cpu_search * s,struct cpu_search_res * r)834 cpu_search_highest(const struct cpu_group *cg, const struct cpu_search *s,
835     struct cpu_search_res *r)
836 {
837 	struct cpu_search_res lr;
838 	struct tdq *tdq;
839 	int c, bload, l, load, total;
840 
841 	total = 0;
842 	bload = INT_MIN;
843 	r->csr_cpu = -1;
844 
845 	/* Loop through children CPU groups if there are any. */
846 	if (cg->cg_children > 0) {
847 		for (c = cg->cg_children - 1; c >= 0; c--) {
848 			load = cpu_search_highest(&cg->cg_child[c], s, &lr);
849 			total += load;
850 			if (lr.csr_cpu >= 0 && (load > bload ||
851 			    (load == bload && lr.csr_load > r->csr_load))) {
852 				bload = load;
853 				r->csr_cpu = lr.csr_cpu;
854 				r->csr_load = lr.csr_load;
855 			}
856 		}
857 		return (total);
858 	}
859 
860 	/* Loop through children CPUs otherwise. */
861 	for (c = cg->cg_last; c >= cg->cg_first; c--) {
862 		if (!CPU_ISSET(c, &cg->cg_mask))
863 			continue;
864 		tdq = TDQ_CPU(c);
865 		l = TDQ_LOAD(tdq);
866 		load = l * 256;
867 		total += load;
868 
869 		/*
870 		 * Check this CPU is acceptable.
871 		 */
872 		if (l < s->cs_load || TDQ_TRANSFERABLE(tdq) < s->cs_trans ||
873 		    !CPU_ISSET(c, s->cs_mask))
874 			continue;
875 
876 		load -= sched_random() % 256;
877 		if (load > bload) {
878 			bload = load;
879 			r->csr_cpu = c;
880 		}
881 	}
882 	r->csr_load = bload;
883 	return (total);
884 }
885 
886 /*
887  * Find the cpu with the least load via the least loaded path that has a
888  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
889  * acceptable.
890  */
891 static inline int
sched_lowest(const struct cpu_group * cg,cpuset_t * mask,int pri,int maxload,int prefer,int running)892 sched_lowest(const struct cpu_group *cg, cpuset_t *mask, int pri, int maxload,
893     int prefer, int running)
894 {
895 	struct cpu_search s;
896 	struct cpu_search_res r;
897 
898 	s.cs_prefer = prefer;
899 	s.cs_running = running;
900 	s.cs_mask = mask;
901 	s.cs_pri = pri;
902 	s.cs_load = maxload;
903 	cpu_search_lowest(cg, &s, &r);
904 	return (r.csr_cpu);
905 }
906 
907 /*
908  * Find the cpu with the highest load via the highest loaded path.
909  */
910 static inline int
sched_highest(const struct cpu_group * cg,cpuset_t * mask,int minload,int mintrans)911 sched_highest(const struct cpu_group *cg, cpuset_t *mask, int minload,
912     int mintrans)
913 {
914 	struct cpu_search s;
915 	struct cpu_search_res r;
916 
917 	s.cs_mask = mask;
918 	s.cs_load = minload;
919 	s.cs_trans = mintrans;
920 	cpu_search_highest(cg, &s, &r);
921 	return (r.csr_cpu);
922 }
923 
924 static void
sched_balance_group(struct cpu_group * cg)925 sched_balance_group(struct cpu_group *cg)
926 {
927 	struct tdq *tdq;
928 	struct thread *td;
929 	cpuset_t hmask, lmask;
930 	int high, low, anylow;
931 
932 	CPU_FILL(&hmask);
933 	for (;;) {
934 		high = sched_highest(cg, &hmask, 1, 0);
935 		/* Stop if there is no more CPU with transferrable threads. */
936 		if (high == -1)
937 			break;
938 		CPU_CLR(high, &hmask);
939 		CPU_COPY(&hmask, &lmask);
940 		/* Stop if there is no more CPU left for low. */
941 		if (CPU_EMPTY(&lmask))
942 			break;
943 		tdq = TDQ_CPU(high);
944 		if (TDQ_LOAD(tdq) == 1) {
945 			/*
946 			 * There is only one running thread.  We can't move
947 			 * it from here, so tell it to pick new CPU by itself.
948 			 */
949 			TDQ_LOCK(tdq);
950 			td = tdq->tdq_curthread;
951 			if (td->td_lock == TDQ_LOCKPTR(tdq) &&
952 			    (td->td_flags & TDF_IDLETD) == 0 &&
953 			    THREAD_CAN_MIGRATE(td)) {
954 				td->td_flags |= TDF_PICKCPU;
955 				ast_sched_locked(td, TDA_SCHED);
956 				if (high != curcpu)
957 					ipi_cpu(high, IPI_AST);
958 			}
959 			TDQ_UNLOCK(tdq);
960 			break;
961 		}
962 		anylow = 1;
963 nextlow:
964 		if (TDQ_TRANSFERABLE(tdq) == 0)
965 			continue;
966 		low = sched_lowest(cg, &lmask, -1, TDQ_LOAD(tdq) - 1, high, 1);
967 		/* Stop if we looked well and found no less loaded CPU. */
968 		if (anylow && low == -1)
969 			break;
970 		/* Go to next high if we found no less loaded CPU. */
971 		if (low == -1)
972 			continue;
973 		/* Transfer thread from high to low. */
974 		if (sched_balance_pair(tdq, TDQ_CPU(low))) {
975 			/* CPU that got thread can no longer be a donor. */
976 			CPU_CLR(low, &hmask);
977 		} else {
978 			/*
979 			 * If failed, then there is no threads on high
980 			 * that can run on this low. Drop low from low
981 			 * mask and look for different one.
982 			 */
983 			CPU_CLR(low, &lmask);
984 			anylow = 0;
985 			goto nextlow;
986 		}
987 	}
988 }
989 
990 static void
sched_balance(void)991 sched_balance(void)
992 {
993 	struct tdq *tdq;
994 
995 	balance_ticks = max(balance_interval / 2, 1) +
996 	    (sched_random() % balance_interval);
997 	tdq = TDQ_SELF();
998 	TDQ_UNLOCK(tdq);
999 	sched_balance_group(cpu_top);
1000 	TDQ_LOCK(tdq);
1001 }
1002 
1003 /*
1004  * Lock two thread queues using their address to maintain lock order.
1005  */
1006 static void
tdq_lock_pair(struct tdq * one,struct tdq * two)1007 tdq_lock_pair(struct tdq *one, struct tdq *two)
1008 {
1009 	if (one < two) {
1010 		TDQ_LOCK(one);
1011 		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
1012 	} else {
1013 		TDQ_LOCK(two);
1014 		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
1015 	}
1016 }
1017 
1018 /*
1019  * Unlock two thread queues.  Order is not important here.
1020  */
1021 static void
tdq_unlock_pair(struct tdq * one,struct tdq * two)1022 tdq_unlock_pair(struct tdq *one, struct tdq *two)
1023 {
1024 	TDQ_UNLOCK(one);
1025 	TDQ_UNLOCK(two);
1026 }
1027 
1028 /*
1029  * Transfer load between two imbalanced thread queues.  Returns true if a thread
1030  * was moved between the queues, and false otherwise.
1031  */
1032 static bool
sched_balance_pair(struct tdq * high,struct tdq * low)1033 sched_balance_pair(struct tdq *high, struct tdq *low)
1034 {
1035 	int cpu, lowpri;
1036 	bool ret;
1037 
1038 	ret = false;
1039 	tdq_lock_pair(high, low);
1040 
1041 	/*
1042 	 * Transfer a thread from high to low.
1043 	 */
1044 	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load) {
1045 		lowpri = tdq_move(high, low);
1046 		if (lowpri != -1) {
1047 			/*
1048 			 * In case the target isn't the current CPU notify it of
1049 			 * the new load, possibly sending an IPI to force it to
1050 			 * reschedule.  Otherwise maybe schedule a preemption.
1051 			 */
1052 			cpu = TDQ_ID(low);
1053 			if (cpu != PCPU_GET(cpuid))
1054 				tdq_notify(low, lowpri);
1055 			else
1056 				sched_setpreempt(low->tdq_lowpri);
1057 			ret = true;
1058 		}
1059 	}
1060 	tdq_unlock_pair(high, low);
1061 	return (ret);
1062 }
1063 
1064 /*
1065  * Move a thread from one thread queue to another.  Returns -1 if the source
1066  * queue was empty, else returns the maximum priority of all threads in
1067  * the destination queue prior to the addition of the new thread.  In the latter
1068  * case, this priority can be used to determine whether an IPI needs to be
1069  * delivered.
1070  */
1071 static int
tdq_move(struct tdq * from,struct tdq * to)1072 tdq_move(struct tdq *from, struct tdq *to)
1073 {
1074 	struct thread *td;
1075 	int cpu;
1076 
1077 	TDQ_LOCK_ASSERT(from, MA_OWNED);
1078 	TDQ_LOCK_ASSERT(to, MA_OWNED);
1079 
1080 	cpu = TDQ_ID(to);
1081 	td = tdq_steal(from, cpu);
1082 	if (td == NULL)
1083 		return (-1);
1084 
1085 	/*
1086 	 * Although the run queue is locked the thread may be
1087 	 * blocked.  We can not set the lock until it is unblocked.
1088 	 */
1089 	thread_lock_block_wait(td);
1090 	sched_rem(td);
1091 	THREAD_LOCKPTR_ASSERT(td, TDQ_LOCKPTR(from));
1092 	td->td_lock = TDQ_LOCKPTR(to);
1093 	td_get_sched(td)->ts_cpu = cpu;
1094 	return (tdq_add(to, td, SRQ_YIELDING));
1095 }
1096 
1097 /*
1098  * This tdq has idled.  Try to steal a thread from another cpu and switch
1099  * to it.
1100  */
1101 static int
tdq_idled(struct tdq * tdq)1102 tdq_idled(struct tdq *tdq)
1103 {
1104 	struct cpu_group *cg, *parent;
1105 	struct tdq *steal;
1106 	cpuset_t mask;
1107 	int cpu, switchcnt, goup;
1108 
1109 	if (smp_started == 0 || steal_idle == 0 || tdq->tdq_cg == NULL)
1110 		return (1);
1111 	CPU_FILL(&mask);
1112 	CPU_CLR(PCPU_GET(cpuid), &mask);
1113 restart:
1114 	switchcnt = TDQ_SWITCHCNT(tdq);
1115 	for (cg = tdq->tdq_cg, goup = 0; ; ) {
1116 		cpu = sched_highest(cg, &mask, steal_thresh, 1);
1117 		/*
1118 		 * We were assigned a thread but not preempted.  Returning
1119 		 * 0 here will cause our caller to switch to it.
1120 		 */
1121 		if (TDQ_LOAD(tdq))
1122 			return (0);
1123 
1124 		/*
1125 		 * We found no CPU to steal from in this group.  Escalate to
1126 		 * the parent and repeat.  But if parent has only two children
1127 		 * groups we can avoid searching this group again by searching
1128 		 * the other one specifically and then escalating two levels.
1129 		 */
1130 		if (cpu == -1) {
1131 			if (goup) {
1132 				cg = cg->cg_parent;
1133 				goup = 0;
1134 			}
1135 			parent = cg->cg_parent;
1136 			if (parent == NULL)
1137 				return (1);
1138 			if (parent->cg_children == 2) {
1139 				if (cg == &parent->cg_child[0])
1140 					cg = &parent->cg_child[1];
1141 				else
1142 					cg = &parent->cg_child[0];
1143 				goup = 1;
1144 			} else
1145 				cg = parent;
1146 			continue;
1147 		}
1148 		steal = TDQ_CPU(cpu);
1149 		/*
1150 		 * The data returned by sched_highest() is stale and
1151 		 * the chosen CPU no longer has an eligible thread.
1152 		 *
1153 		 * Testing this ahead of tdq_lock_pair() only catches
1154 		 * this situation about 20% of the time on an 8 core
1155 		 * 16 thread Ryzen 7, but it still helps performance.
1156 		 */
1157 		if (TDQ_LOAD(steal) < steal_thresh ||
1158 		    TDQ_TRANSFERABLE(steal) == 0)
1159 			goto restart;
1160 		/*
1161 		 * Try to lock both queues. If we are assigned a thread while
1162 		 * waited for the lock, switch to it now instead of stealing.
1163 		 * If we can't get the lock, then somebody likely got there
1164 		 * first so continue searching.
1165 		 */
1166 		TDQ_LOCK(tdq);
1167 		if (tdq->tdq_load > 0) {
1168 			mi_switch(SW_VOL | SWT_IDLE);
1169 			return (0);
1170 		}
1171 		if (TDQ_TRYLOCK_FLAGS(steal, MTX_DUPOK) == 0) {
1172 			TDQ_UNLOCK(tdq);
1173 			CPU_CLR(cpu, &mask);
1174 			continue;
1175 		}
1176 		/*
1177 		 * The data returned by sched_highest() is stale and
1178 		 * the chosen CPU no longer has an eligible thread, or
1179 		 * we were preempted and the CPU loading info may be out
1180 		 * of date.  The latter is rare.  In either case restart
1181 		 * the search.
1182 		 */
1183 		if (TDQ_LOAD(steal) < steal_thresh ||
1184 		    TDQ_TRANSFERABLE(steal) == 0 ||
1185 		    switchcnt != TDQ_SWITCHCNT(tdq)) {
1186 			tdq_unlock_pair(tdq, steal);
1187 			goto restart;
1188 		}
1189 		/*
1190 		 * Steal the thread and switch to it.
1191 		 */
1192 		if (tdq_move(steal, tdq) != -1)
1193 			break;
1194 		/*
1195 		 * We failed to acquire a thread even though it looked
1196 		 * like one was available.  This could be due to affinity
1197 		 * restrictions or for other reasons.  Loop again after
1198 		 * removing this CPU from the set.  The restart logic
1199 		 * above does not restore this CPU to the set due to the
1200 		 * likelyhood of failing here again.
1201 		 */
1202 		CPU_CLR(cpu, &mask);
1203 		tdq_unlock_pair(tdq, steal);
1204 	}
1205 	TDQ_UNLOCK(steal);
1206 	mi_switch(SW_VOL | SWT_IDLE);
1207 	return (0);
1208 }
1209 
1210 /*
1211  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
1212  *
1213  * "lowpri" is the minimum scheduling priority among all threads on
1214  * the queue prior to the addition of the new thread.
1215  */
1216 static void
tdq_notify(struct tdq * tdq,int lowpri)1217 tdq_notify(struct tdq *tdq, int lowpri)
1218 {
1219 	int cpu;
1220 
1221 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1222 	KASSERT(tdq->tdq_lowpri <= lowpri,
1223 	    ("tdq_notify: lowpri %d > tdq_lowpri %d", lowpri, tdq->tdq_lowpri));
1224 
1225 	if (tdq->tdq_owepreempt)
1226 		return;
1227 
1228 	/*
1229 	 * Check to see if the newly added thread should preempt the one
1230 	 * currently running.
1231 	 */
1232 	if (!sched_shouldpreempt(tdq->tdq_lowpri, lowpri, 1))
1233 		return;
1234 
1235 	/*
1236 	 * Make sure that our caller's earlier update to tdq_load is
1237 	 * globally visible before we read tdq_cpu_idle.  Idle thread
1238 	 * accesses both of them without locks, and the order is important.
1239 	 */
1240 	atomic_thread_fence_seq_cst();
1241 
1242 	/*
1243 	 * Try to figure out if we can signal the idle thread instead of sending
1244 	 * an IPI.  This check is racy; at worst, we will deliever an IPI
1245 	 * unnecessarily.
1246 	 */
1247 	cpu = TDQ_ID(tdq);
1248 	if (TD_IS_IDLETHREAD(tdq->tdq_curthread) &&
1249 	    (atomic_load_int(&tdq->tdq_cpu_idle) == 0 || cpu_idle_wakeup(cpu)))
1250 		return;
1251 
1252 	/*
1253 	 * The run queues have been updated, so any switch on the remote CPU
1254 	 * will satisfy the preemption request.
1255 	 */
1256 	tdq->tdq_owepreempt = 1;
1257 	ipi_cpu(cpu, IPI_PREEMPT);
1258 }
1259 
1260 struct runq_steal_pred_data {
1261 	struct thread	*td;
1262 	int		cpu;
1263 };
1264 
1265 static bool
runq_steal_pred(const int idx,struct rq_queue * const q,void * const data)1266 runq_steal_pred(const int idx, struct rq_queue *const q, void *const data)
1267 {
1268 	struct runq_steal_pred_data *const d = data;
1269 	struct thread *td;
1270 
1271 	TAILQ_FOREACH(td, q, td_runq) {
1272 		if (THREAD_CAN_MIGRATE(td) && THREAD_CAN_SCHED(td, d->cpu)) {
1273 			d->td = td;
1274 			return (true);
1275 		}
1276 	}
1277 
1278 	return (false);
1279 }
1280 
1281 /*
1282  * Steals load contained in queues with indices in the specified range.
1283  */
1284 static inline struct thread *
runq_steal_range(struct runq * const rq,const int lvl_min,const int lvl_max,int cpu)1285 runq_steal_range(struct runq *const rq, const int lvl_min, const int lvl_max,
1286     int cpu)
1287 {
1288 	struct runq_steal_pred_data data = {
1289 		.td = NULL,
1290 		.cpu = cpu,
1291 	};
1292 	int idx;
1293 
1294 	idx = runq_findq(rq, lvl_min, lvl_max, &runq_steal_pred, &data);
1295 	if (idx != -1) {
1296 		MPASS(data.td != NULL);
1297 		return (data.td);
1298 	}
1299 
1300 	MPASS(data.td == NULL);
1301 	return (NULL);
1302 }
1303 
1304 static inline struct thread *
runq_steal_realtime(struct runq * const rq,int cpu)1305 runq_steal_realtime(struct runq *const rq, int cpu)
1306 {
1307 
1308 	return (runq_steal_range(rq, RQ_RT_POL_MIN, RQ_RT_POL_MAX, cpu));
1309 }
1310 
1311 /*
1312  * Steals load from a timeshare queue.  Honors the rotating queue head
1313  * index.
1314  */
1315 static inline struct thread *
runq_steal_timeshare(struct runq * const rq,int cpu,int off)1316 runq_steal_timeshare(struct runq *const rq, int cpu, int off)
1317 {
1318 	struct thread *td;
1319 
1320 	MPASS(0 <= off && off < RQ_TS_POL_MODULO);
1321 
1322 	td = runq_steal_range(rq, RQ_TS_POL_MIN + off, RQ_TS_POL_MAX, cpu);
1323 	if (td != NULL || off == 0)
1324 		return (td);
1325 
1326 	td = runq_steal_range(rq, RQ_TS_POL_MIN, RQ_TS_POL_MIN + off - 1, cpu);
1327 	return (td);
1328 }
1329 
1330 static inline struct thread *
runq_steal_idle(struct runq * const rq,int cpu)1331 runq_steal_idle(struct runq *const rq, int cpu)
1332 {
1333 
1334 	return (runq_steal_range(rq, RQ_ID_POL_MIN, RQ_ID_POL_MAX, cpu));
1335 }
1336 
1337 
1338 /*
1339  * Attempt to steal a thread in priority order from a thread queue.
1340  */
1341 static struct thread *
tdq_steal(struct tdq * tdq,int cpu)1342 tdq_steal(struct tdq *tdq, int cpu)
1343 {
1344 	struct thread *td;
1345 
1346 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1347 	td = runq_steal_realtime(&tdq->tdq_runq, cpu);
1348 	if (td != NULL)
1349 		return (td);
1350 	td = runq_steal_timeshare(&tdq->tdq_runq, cpu, tdq->tdq_ts_deq_off);
1351 	if (td != NULL)
1352 		return (td);
1353 	return (runq_steal_idle(&tdq->tdq_runq, cpu));
1354 }
1355 
1356 /*
1357  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1358  * current lock and returns with the assigned queue locked.
1359  */
1360 static inline struct tdq *
sched_setcpu(struct thread * td,int cpu,int flags)1361 sched_setcpu(struct thread *td, int cpu, int flags)
1362 {
1363 
1364 	struct tdq *tdq;
1365 	struct mtx *mtx;
1366 
1367 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1368 	tdq = TDQ_CPU(cpu);
1369 	td_get_sched(td)->ts_cpu = cpu;
1370 	/*
1371 	 * If the lock matches just return the queue.
1372 	 */
1373 	if (td->td_lock == TDQ_LOCKPTR(tdq)) {
1374 		KASSERT((flags & SRQ_HOLD) == 0,
1375 		    ("sched_setcpu: Invalid lock for SRQ_HOLD"));
1376 		return (tdq);
1377 	}
1378 
1379 	/*
1380 	 * The hard case, migration, we need to block the thread first to
1381 	 * prevent order reversals with other cpus locks.
1382 	 */
1383 	spinlock_enter();
1384 	mtx = thread_lock_block(td);
1385 	if ((flags & SRQ_HOLD) == 0)
1386 		mtx_unlock_spin(mtx);
1387 	TDQ_LOCK(tdq);
1388 	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1389 	spinlock_exit();
1390 	return (tdq);
1391 }
1392 
1393 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1394 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1395 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1396 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1397 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1398 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1399 
1400 static int
sched_pickcpu(struct thread * td,int flags)1401 sched_pickcpu(struct thread *td, int flags)
1402 {
1403 	struct cpu_group *cg, *ccg;
1404 	struct td_sched *ts;
1405 	struct tdq *tdq;
1406 	cpuset_t *mask;
1407 	int cpu, pri, r, self, intr;
1408 
1409 	self = PCPU_GET(cpuid);
1410 	ts = td_get_sched(td);
1411 	KASSERT(!CPU_ABSENT(ts->ts_cpu), ("sched_pickcpu: Start scheduler on "
1412 	    "absent CPU %d for thread %s.", ts->ts_cpu, td->td_name));
1413 	if (smp_started == 0)
1414 		return (self);
1415 	/*
1416 	 * Don't migrate a running thread from sched_switch().
1417 	 */
1418 	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1419 		return (ts->ts_cpu);
1420 	/*
1421 	 * Prefer to run interrupt threads on the processors that generate
1422 	 * the interrupt.
1423 	 */
1424 	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1425 	    curthread->td_intr_nesting_level) {
1426 		tdq = TDQ_SELF();
1427 		if (tdq->tdq_lowpri >= PRI_MIN_IDLE) {
1428 			SCHED_STAT_INC(pickcpu_idle_affinity);
1429 			return (self);
1430 		}
1431 		ts->ts_cpu = self;
1432 		intr = 1;
1433 		cg = tdq->tdq_cg;
1434 		goto llc;
1435 	} else {
1436 		intr = 0;
1437 		tdq = TDQ_CPU(ts->ts_cpu);
1438 		cg = tdq->tdq_cg;
1439 	}
1440 	/*
1441 	 * If the thread can run on the last cpu and the affinity has not
1442 	 * expired and it is idle, run it there.
1443 	 */
1444 	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1445 	    atomic_load_char(&tdq->tdq_lowpri) >= PRI_MIN_IDLE &&
1446 	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1447 		if (cg->cg_flags & CG_FLAG_THREAD) {
1448 			/* Check all SMT threads for being idle. */
1449 			for (cpu = cg->cg_first; cpu <= cg->cg_last; cpu++) {
1450 				pri =
1451 				    atomic_load_char(&TDQ_CPU(cpu)->tdq_lowpri);
1452 				if (CPU_ISSET(cpu, &cg->cg_mask) &&
1453 				    pri < PRI_MIN_IDLE)
1454 					break;
1455 			}
1456 			if (cpu > cg->cg_last) {
1457 				SCHED_STAT_INC(pickcpu_idle_affinity);
1458 				return (ts->ts_cpu);
1459 			}
1460 		} else {
1461 			SCHED_STAT_INC(pickcpu_idle_affinity);
1462 			return (ts->ts_cpu);
1463 		}
1464 	}
1465 llc:
1466 	/*
1467 	 * Search for the last level cache CPU group in the tree.
1468 	 * Skip SMT, identical groups and caches with expired affinity.
1469 	 * Interrupt threads affinity is explicit and never expires.
1470 	 */
1471 	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1472 		if (cg->cg_flags & CG_FLAG_THREAD)
1473 			continue;
1474 		if (cg->cg_children == 1 || cg->cg_count == 1)
1475 			continue;
1476 		if (cg->cg_level == CG_SHARE_NONE ||
1477 		    (!intr && !SCHED_AFFINITY(ts, cg->cg_level)))
1478 			continue;
1479 		ccg = cg;
1480 	}
1481 	/* Found LLC shared by all CPUs, so do a global search. */
1482 	if (ccg == cpu_top)
1483 		ccg = NULL;
1484 	cpu = -1;
1485 	mask = &td->td_cpuset->cs_mask;
1486 	pri = td->td_priority;
1487 	r = TD_IS_RUNNING(td);
1488 	/*
1489 	 * Try hard to keep interrupts within found LLC.  Search the LLC for
1490 	 * the least loaded CPU we can run now.  For NUMA systems it should
1491 	 * be within target domain, and it also reduces scheduling overhead.
1492 	 */
1493 	if (ccg != NULL && intr) {
1494 		cpu = sched_lowest(ccg, mask, pri, INT_MAX, ts->ts_cpu, r);
1495 		if (cpu >= 0)
1496 			SCHED_STAT_INC(pickcpu_intrbind);
1497 	} else
1498 	/* Search the LLC for the least loaded idle CPU we can run now. */
1499 	if (ccg != NULL) {
1500 		cpu = sched_lowest(ccg, mask, max(pri, PRI_MAX_TIMESHARE),
1501 		    INT_MAX, ts->ts_cpu, r);
1502 		if (cpu >= 0)
1503 			SCHED_STAT_INC(pickcpu_affinity);
1504 	}
1505 	/* Search globally for the least loaded CPU we can run now. */
1506 	if (cpu < 0) {
1507 		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu, r);
1508 		if (cpu >= 0)
1509 			SCHED_STAT_INC(pickcpu_lowest);
1510 	}
1511 	/* Search globally for the least loaded CPU. */
1512 	if (cpu < 0) {
1513 		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu, r);
1514 		if (cpu >= 0)
1515 			SCHED_STAT_INC(pickcpu_lowest);
1516 	}
1517 	KASSERT(cpu >= 0, ("sched_pickcpu: Failed to find a cpu."));
1518 	KASSERT(!CPU_ABSENT(cpu), ("sched_pickcpu: Picked absent CPU %d.", cpu));
1519 	/*
1520 	 * Compare the lowest loaded cpu to current cpu.
1521 	 */
1522 	tdq = TDQ_CPU(cpu);
1523 	if (THREAD_CAN_SCHED(td, self) && TDQ_SELF()->tdq_lowpri > pri &&
1524 	    atomic_load_char(&tdq->tdq_lowpri) < PRI_MIN_IDLE &&
1525 	    TDQ_LOAD(TDQ_SELF()) <= TDQ_LOAD(tdq) + 1) {
1526 		SCHED_STAT_INC(pickcpu_local);
1527 		cpu = self;
1528 	}
1529 	if (cpu != ts->ts_cpu)
1530 		SCHED_STAT_INC(pickcpu_migration);
1531 	return (cpu);
1532 }
1533 #endif
1534 
1535 static inline struct thread *
runq_choose_realtime(struct runq * const rq)1536 runq_choose_realtime(struct runq *const rq)
1537 {
1538 
1539 	return (runq_first_thread_range(rq, RQ_RT_POL_MIN, RQ_RT_POL_MAX));
1540 }
1541 
1542 static struct thread *
runq_choose_timeshare(struct runq * const rq,int off)1543 runq_choose_timeshare(struct runq *const rq, int off)
1544 {
1545 	struct thread *td;
1546 
1547 	MPASS(0 <= off && off < RQ_TS_POL_MODULO);
1548 
1549 	td = runq_first_thread_range(rq, RQ_TS_POL_MIN + off, RQ_TS_POL_MAX);
1550 	if (td != NULL || off == 0)
1551 		return (td);
1552 
1553 	td = runq_first_thread_range(rq, RQ_TS_POL_MIN, RQ_TS_POL_MIN + off - 1);
1554 	return (td);
1555 }
1556 
1557 static inline struct thread *
runq_choose_idle(struct runq * const rq)1558 runq_choose_idle(struct runq *const rq)
1559 {
1560 
1561 	return (runq_first_thread_range(rq, RQ_ID_POL_MIN, RQ_ID_POL_MAX));
1562 }
1563 
1564 /*
1565  * Pick the highest priority task we have and return it.
1566  */
1567 static struct thread *
tdq_choose(struct tdq * tdq)1568 tdq_choose(struct tdq *tdq)
1569 {
1570 	struct thread *td;
1571 
1572 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1573 	td = runq_choose_realtime(&tdq->tdq_runq);
1574 	if (td != NULL)
1575 		return (td);
1576 	td = runq_choose_timeshare(&tdq->tdq_runq, tdq->tdq_ts_deq_off);
1577 	if (td != NULL) {
1578 		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1579 		    ("tdq_choose: Invalid priority on timeshare queue %d",
1580 		    td->td_priority));
1581 		return (td);
1582 	}
1583 	td = runq_choose_idle(&tdq->tdq_runq);
1584 	if (td != NULL) {
1585 		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1586 		    ("tdq_choose: Invalid priority on idle queue %d",
1587 		    td->td_priority));
1588 		return (td);
1589 	}
1590 
1591 	return (NULL);
1592 }
1593 
1594 /*
1595  * Initialize a thread queue.
1596  */
1597 static void
tdq_setup(struct tdq * tdq,int id)1598 tdq_setup(struct tdq *tdq, int id)
1599 {
1600 
1601 	if (bootverbose)
1602 		printf("ULE: setup cpu %d\n", id);
1603 	runq_init(&tdq->tdq_runq);
1604 	tdq->tdq_id = id;
1605 	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1606 	    "sched lock %d", (int)TDQ_ID(tdq));
1607 	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock", MTX_SPIN);
1608 #ifdef KTR
1609 	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1610 	    "CPU %d load", (int)TDQ_ID(tdq));
1611 #endif
1612 }
1613 
1614 #ifdef SMP
1615 static void
sched_setup_smp(void)1616 sched_setup_smp(void)
1617 {
1618 	struct tdq *tdq;
1619 	int i;
1620 
1621 	cpu_top = smp_topo();
1622 	CPU_FOREACH(i) {
1623 		tdq = DPCPU_ID_PTR(i, tdq);
1624 		tdq_setup(tdq, i);
1625 		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1626 		if (tdq->tdq_cg == NULL)
1627 			panic("Can't find cpu group for %d\n", i);
1628 		DPCPU_ID_SET(i, randomval, i * 69069 + 5);
1629 	}
1630 	PCPU_SET(sched, DPCPU_PTR(tdq));
1631 	balance_tdq = TDQ_SELF();
1632 }
1633 #endif
1634 
1635 /*
1636  * Setup the thread queues and initialize the topology based on MD
1637  * information.
1638  */
1639 static void
sched_setup(void * dummy)1640 sched_setup(void *dummy)
1641 {
1642 	struct tdq *tdq;
1643 
1644 #ifdef SMP
1645 	sched_setup_smp();
1646 #else
1647 	tdq_setup(TDQ_SELF(), 0);
1648 #endif
1649 	tdq = TDQ_SELF();
1650 
1651 	/* Add thread0's load since it's running. */
1652 	TDQ_LOCK(tdq);
1653 	thread0.td_lock = TDQ_LOCKPTR(tdq);
1654 	tdq_load_add(tdq, &thread0);
1655 	tdq->tdq_curthread = &thread0;
1656 	tdq->tdq_lowpri = thread0.td_priority;
1657 	TDQ_UNLOCK(tdq);
1658 }
1659 
1660 /*
1661  * This routine determines time constants after stathz and hz are setup.
1662  */
1663 /* ARGSUSED */
1664 static void
sched_initticks(void * dummy)1665 sched_initticks(void *dummy)
1666 {
1667 	int incr;
1668 
1669 	realstathz = stathz ? stathz : hz;
1670 	sched_slice = realstathz / SCHED_SLICE_DEFAULT_DIVISOR;
1671 	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
1672 	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
1673 	    realstathz);
1674 
1675 	/*
1676 	 * tickincr is shifted out by 10 to avoid rounding errors due to
1677 	 * hz not being evenly divisible by stathz on all platforms.
1678 	 */
1679 	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1680 	/*
1681 	 * This does not work for values of stathz that are more than
1682 	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1683 	 */
1684 	if (incr == 0)
1685 		incr = 1;
1686 	tickincr = incr;
1687 #ifdef SMP
1688 	/*
1689 	 * Set the default balance interval now that we know
1690 	 * what realstathz is.
1691 	 */
1692 	balance_interval = realstathz;
1693 	balance_ticks = balance_interval;
1694 	affinity = SCHED_AFFINITY_DEFAULT;
1695 #endif
1696 	if (sched_idlespinthresh < 0)
1697 		sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz;
1698 }
1699 
1700 /*
1701  * This is the core of the interactivity algorithm.  Determines a score based
1702  * on past behavior.  It is the ratio of sleep time to run time scaled to
1703  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1704  * differs from the cpu usage because it does not account for time spent
1705  * waiting on a run-queue.  Would be prettier if we had floating point.
1706  *
1707  * When a thread's sleep time is greater than its run time the
1708  * calculation is:
1709  *
1710  *                           scaling factor
1711  * interactivity score =  ---------------------
1712  *                        sleep time / run time
1713  *
1714  *
1715  * When a thread's run time is greater than its sleep time the
1716  * calculation is:
1717  *
1718  *                                                 scaling factor
1719  * interactivity score = 2 * scaling factor  -  ---------------------
1720  *                                              run time / sleep time
1721  */
1722 static int
sched_interact_score(struct thread * td)1723 sched_interact_score(struct thread *td)
1724 {
1725 	struct td_sched *ts;
1726 	int div;
1727 
1728 	ts = td_get_sched(td);
1729 	/*
1730 	 * The score is only needed if this is likely to be an interactive
1731 	 * task.  Don't go through the expense of computing it if there's
1732 	 * no chance.
1733 	 */
1734 	if (sched_interact <= SCHED_INTERACT_HALF &&
1735 		ts->ts_runtime >= ts->ts_slptime)
1736 			return (SCHED_INTERACT_HALF);
1737 
1738 	if (ts->ts_runtime > ts->ts_slptime) {
1739 		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1740 		return (SCHED_INTERACT_HALF +
1741 		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1742 	}
1743 	if (ts->ts_slptime > ts->ts_runtime) {
1744 		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1745 		return (ts->ts_runtime / div);
1746 	}
1747 	/* runtime == slptime */
1748 	if (ts->ts_runtime)
1749 		return (SCHED_INTERACT_HALF);
1750 
1751 	/*
1752 	 * This can happen if slptime and runtime are 0.
1753 	 */
1754 	return (0);
1755 
1756 }
1757 
1758 /*
1759  * Scale the scheduling priority according to the "interactivity" of this
1760  * process.
1761  */
1762 static void
sched_priority(struct thread * td)1763 sched_priority(struct thread *td)
1764 {
1765 	u_int pri, score;
1766 	int nice;
1767 
1768 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1769 		return;
1770 
1771 	nice = td->td_proc->p_nice;
1772 	/*
1773 	 * If the score is interactive we place the thread in the realtime
1774 	 * queue with a priority that is less than kernel and interrupt
1775 	 * priorities.  These threads are not subject to nice restrictions.
1776 	 *
1777 	 * Scores greater than this are placed on the normal timeshare queue
1778 	 * where the priority is partially decided by the most recent cpu
1779 	 * utilization and the rest is decided by nice value.
1780 	 *
1781 	 * The nice value of the process has a linear effect on the calculated
1782 	 * score.  Negative nice values make it easier for a thread to be
1783 	 * considered interactive.
1784 	 */
1785 	score = imax(0, sched_interact_score(td) + nice);
1786 	if (score < sched_interact) {
1787 		pri = PRI_MIN_INTERACT;
1788 		pri += (PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) * score /
1789 		    sched_interact;
1790 		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1791 		    ("sched_priority: invalid interactive priority %u score %u",
1792 		    pri, score));
1793 	} else {
1794 		const struct td_sched *const ts = td_get_sched(td);
1795 		const u_int run = SCHED_TICK_RUN_SHIFTED(ts);
1796 		const u_int run_unshifted __unused = (run +
1797 		    (1 << SCHED_TICK_SHIFT) / 2) >> SCHED_TICK_SHIFT;
1798 		const u_int len = SCHED_TICK_LENGTH(ts);
1799 		const u_int nice_pri_off = SCHED_PRI_NICE(nice);
1800 		const u_int cpu_pri_off = (((SCHED_PRI_CPU_RANGE - 1) *
1801 		    run + len / 2) / len + (1 << SCHED_TICK_SHIFT) / 2) >>
1802 		    SCHED_TICK_SHIFT;
1803 
1804 		MPASS(cpu_pri_off < SCHED_PRI_CPU_RANGE);
1805 		pri = PRI_MIN_BATCH + cpu_pri_off + nice_pri_off;
1806 		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1807 		    ("sched_priority: Invalid computed priority %u: "
1808 		    "Should be between %u and %u (PRI_MIN_BATCH: %u; "
1809 		    "Window size (ticks): %u, runtime (shifted ticks): %u,"
1810 		    "(unshifted ticks): %u => CPU pri off: %u; "
1811 		    "Nice: %d => nice pri off: %u)",
1812 		    pri, PRI_MIN_BATCH, PRI_MAX_BATCH, PRI_MIN_BATCH,
1813 		    len, run, run_unshifted, cpu_pri_off, nice, nice_pri_off));
1814 	}
1815 	sched_user_prio(td, pri);
1816 
1817 	return;
1818 }
1819 
1820 /*
1821  * This routine enforces a maximum limit on the amount of scheduling history
1822  * kept.  It is called after either the slptime or runtime is adjusted.  This
1823  * function is ugly due to integer math.
1824  */
1825 static void
sched_interact_update(struct thread * td)1826 sched_interact_update(struct thread *td)
1827 {
1828 	struct td_sched *ts;
1829 	u_int sum;
1830 
1831 	ts = td_get_sched(td);
1832 	sum = ts->ts_runtime + ts->ts_slptime;
1833 	if (sum < SCHED_SLP_RUN_MAX)
1834 		return;
1835 	/*
1836 	 * This only happens from two places:
1837 	 * 1) We have added an unusual amount of run time from fork_exit.
1838 	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1839 	 */
1840 	if (sum > SCHED_SLP_RUN_MAX * 2) {
1841 		if (ts->ts_runtime > ts->ts_slptime) {
1842 			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1843 			ts->ts_slptime = 1;
1844 		} else {
1845 			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1846 			ts->ts_runtime = 1;
1847 		}
1848 		return;
1849 	}
1850 	/*
1851 	 * If we have exceeded by more than 1/5th then the algorithm below
1852 	 * will not bring us back into range.  Dividing by two here forces
1853 	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1854 	 */
1855 	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1856 		ts->ts_runtime /= 2;
1857 		ts->ts_slptime /= 2;
1858 		return;
1859 	}
1860 	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1861 	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1862 }
1863 
1864 /*
1865  * Scale back the interactivity history when a child thread is created.  The
1866  * history is inherited from the parent but the thread may behave totally
1867  * differently.  For example, a shell spawning a compiler process.  We want
1868  * to learn that the compiler is behaving badly very quickly.
1869  */
1870 static void
sched_interact_fork(struct thread * td)1871 sched_interact_fork(struct thread *td)
1872 {
1873 	struct td_sched *ts;
1874 	int ratio;
1875 	int sum;
1876 
1877 	ts = td_get_sched(td);
1878 	sum = ts->ts_runtime + ts->ts_slptime;
1879 	if (sum > SCHED_SLP_RUN_FORK) {
1880 		ratio = sum / SCHED_SLP_RUN_FORK;
1881 		ts->ts_runtime /= ratio;
1882 		ts->ts_slptime /= ratio;
1883 	}
1884 }
1885 
1886 /*
1887  * Called from proc0_init() to setup the scheduler fields.
1888  */
1889 void
schedinit(void)1890 schedinit(void)
1891 {
1892 	struct td_sched *ts0;
1893 
1894 	/*
1895 	 * Set up the scheduler specific parts of thread0.
1896 	 */
1897 	ts0 = td_get_sched(&thread0);
1898 	ts0->ts_ftick = (u_int)ticks;
1899 	ts0->ts_ltick = ts0->ts_ftick;
1900 	ts0->ts_slice = 0;
1901 	ts0->ts_cpu = curcpu;	/* set valid CPU number */
1902 }
1903 
1904 /*
1905  * schedinit_ap() is needed prior to calling sched_throw(NULL) to ensure that
1906  * the pcpu requirements are met for any calls in the period between curthread
1907  * initialization and sched_throw().  One can safely add threads to the queue
1908  * before sched_throw(), for instance, as long as the thread lock is setup
1909  * correctly.
1910  *
1911  * TDQ_SELF() relies on the below sched pcpu setting; it may be used only
1912  * after schedinit_ap().
1913  */
1914 void
schedinit_ap(void)1915 schedinit_ap(void)
1916 {
1917 
1918 #ifdef SMP
1919 	PCPU_SET(sched, DPCPU_PTR(tdq));
1920 #endif
1921 	PCPU_GET(idlethread)->td_lock = TDQ_LOCKPTR(TDQ_SELF());
1922 }
1923 
1924 /*
1925  * This is only somewhat accurate since given many processes of the same
1926  * priority they will switch when their slices run out, which will be
1927  * at most sched_slice stathz ticks.
1928  */
1929 int
sched_rr_interval(void)1930 sched_rr_interval(void)
1931 {
1932 
1933 	/* Convert sched_slice from stathz to hz. */
1934 	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
1935 }
1936 
1937 /*
1938  * Update the percent cpu tracking information when it is requested or the total
1939  * history exceeds the maximum.  We keep a sliding history of tick counts that
1940  * slowly decays, for running threads (see comments below for more details).
1941  * This is less precise than the 4BSD mechanism since it happens with less
1942  * regular and frequent events.
1943  */
1944 static void
sched_pctcpu_update(struct td_sched * ts,int run)1945 sched_pctcpu_update(struct td_sched *ts, int run)
1946 {
1947 	const u_int t = (u_int)ticks;
1948 	u_int t_max = SCHED_TICK_MAX((u_int)hz);
1949 	u_int t_tgt = ((t_max << SCHED_TICK_SHIFT) * SCHED_CPU_DECAY_NUMER /
1950 	    SCHED_CPU_DECAY_DENOM) >> SCHED_TICK_SHIFT;
1951 	const u_int lu_span = t - ts->ts_ltick;
1952 
1953 	if (lu_span >= t_tgt) {
1954 		/*
1955 		 * Forget all previous ticks if we are more than t_tgt
1956 		 * (currently, 10s) apart from the last update.  Don't account
1957 		 * for more than 't_tgt' ticks when running.
1958 		 */
1959 		ts->ts_ticks = run ? (t_tgt << SCHED_TICK_SHIFT) : 0;
1960 		ts->ts_ftick = t - t_tgt;
1961 		ts->ts_ltick = t;
1962 		return;
1963 	}
1964 
1965 	if (t - ts->ts_ftick >= t_max) {
1966 		/*
1967 		 * First reduce the existing ticks to proportionally occupy only
1968 		 * what's left of the target window given 'lu_span' will occupy
1969 		 * the rest.  Since sched_clock() is called frequently on
1970 		 * running threads, these threads have a small 'lu_span', and
1971 		 * the next formula basically becomes an exponential decay with
1972 		 * ratio r = SCHED_CPU_DECAY_NUMER / SCHED_CPU_DECAY_DENOM
1973 		 * (currently, 10/11) and period 1s.  However, a sleeping thread
1974 		 * will see its accounted ticks drop linearly with a high slope
1975 		 * with respect to 'lu_span', approaching 0 as 'lu_span'
1976 		 * approaches 't_tgt' (so, continuously with respect to the
1977 		 * previous case).  This rescaling is completely dependent on
1978 		 * the frequency of calls and the span since last update passed
1979 		 * at each call.
1980 		 */
1981 		ts->ts_ticks = SCHED_TICK_RUN_SHIFTED(ts) /
1982 		    SCHED_TICK_LENGTH(ts) * (t_tgt - lu_span);
1983 		ts->ts_ftick = t - t_tgt;
1984 	}
1985 
1986 	if (run)
1987 		ts->ts_ticks += lu_span << SCHED_TICK_SHIFT;
1988 	ts->ts_ltick = t;
1989 }
1990 
1991 /*
1992  * Adjust the priority of a thread.  Move it to the appropriate run-queue
1993  * if necessary.  This is the back-end for several priority related
1994  * functions.
1995  */
1996 static void
sched_thread_priority(struct thread * td,u_char prio)1997 sched_thread_priority(struct thread *td, u_char prio)
1998 {
1999 	struct tdq *tdq;
2000 	int oldpri;
2001 
2002 	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
2003 	    "prio:%d", td->td_priority, "new prio:%d", prio,
2004 	    KTR_ATTR_LINKED, sched_tdname(curthread));
2005 	SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
2006 	if (td != curthread && prio < td->td_priority) {
2007 		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
2008 		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
2009 		    prio, KTR_ATTR_LINKED, sched_tdname(td));
2010 		SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio,
2011 		    curthread);
2012 	}
2013 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2014 	if (td->td_priority == prio)
2015 		return;
2016 	/*
2017 	 * If the priority has been elevated due to priority
2018 	 * propagation, we may have to move ourselves to a new
2019 	 * queue.  This could be optimized to not re-add in some
2020 	 * cases.
2021 	 */
2022 	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
2023 		sched_rem(td);
2024 		td->td_priority = prio;
2025 		sched_add(td, SRQ_BORROWING | SRQ_HOLDTD);
2026 		return;
2027 	}
2028 	/*
2029 	 * If the thread is currently running we may have to adjust the lowpri
2030 	 * information so other cpus are aware of our current priority.
2031 	 */
2032 	if (TD_IS_RUNNING(td)) {
2033 		tdq = TDQ_CPU(td_get_sched(td)->ts_cpu);
2034 		oldpri = td->td_priority;
2035 		td->td_priority = prio;
2036 		if (prio < tdq->tdq_lowpri)
2037 			tdq->tdq_lowpri = prio;
2038 		else if (tdq->tdq_lowpri == oldpri)
2039 			tdq_setlowpri(tdq, td);
2040 		return;
2041 	}
2042 	td->td_priority = prio;
2043 }
2044 
2045 /*
2046  * Update a thread's priority when it is lent another thread's
2047  * priority.
2048  */
2049 void
sched_lend_prio(struct thread * td,u_char prio)2050 sched_lend_prio(struct thread *td, u_char prio)
2051 {
2052 
2053 	td->td_flags |= TDF_BORROWING;
2054 	sched_thread_priority(td, prio);
2055 }
2056 
2057 /*
2058  * Restore a thread's priority when priority propagation is
2059  * over.  The prio argument is the minimum priority the thread
2060  * needs to have to satisfy other possible priority lending
2061  * requests.  If the thread's regular priority is less
2062  * important than prio, the thread will keep a priority boost
2063  * of prio.
2064  */
2065 void
sched_unlend_prio(struct thread * td,u_char prio)2066 sched_unlend_prio(struct thread *td, u_char prio)
2067 {
2068 	u_char base_pri;
2069 
2070 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
2071 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
2072 		base_pri = td->td_user_pri;
2073 	else
2074 		base_pri = td->td_base_pri;
2075 	if (prio >= base_pri) {
2076 		td->td_flags &= ~TDF_BORROWING;
2077 		sched_thread_priority(td, base_pri);
2078 	} else
2079 		sched_lend_prio(td, prio);
2080 }
2081 
2082 /*
2083  * Standard entry for setting the priority to an absolute value.
2084  */
2085 void
sched_prio(struct thread * td,u_char prio)2086 sched_prio(struct thread *td, u_char prio)
2087 {
2088 	u_char oldprio;
2089 
2090 	/* First, update the base priority. */
2091 	td->td_base_pri = prio;
2092 
2093 	/*
2094 	 * If the thread is borrowing another thread's priority, don't
2095 	 * ever lower the priority.
2096 	 */
2097 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
2098 		return;
2099 
2100 	/* Change the real priority. */
2101 	oldprio = td->td_priority;
2102 	sched_thread_priority(td, prio);
2103 
2104 	/*
2105 	 * If the thread is on a turnstile, then let the turnstile update
2106 	 * its state.
2107 	 */
2108 	if (TD_ON_LOCK(td) && oldprio != prio)
2109 		turnstile_adjust(td, oldprio);
2110 }
2111 
2112 /*
2113  * Set the base interrupt thread priority.
2114  */
2115 void
sched_ithread_prio(struct thread * td,u_char prio)2116 sched_ithread_prio(struct thread *td, u_char prio)
2117 {
2118 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2119 	MPASS(td->td_pri_class == PRI_ITHD);
2120 	td->td_base_ithread_pri = prio;
2121 	sched_prio(td, prio);
2122 }
2123 
2124 /*
2125  * Set the base user priority, does not effect current running priority.
2126  */
2127 void
sched_user_prio(struct thread * td,u_char prio)2128 sched_user_prio(struct thread *td, u_char prio)
2129 {
2130 
2131 	td->td_base_user_pri = prio;
2132 	if (td->td_lend_user_pri <= prio)
2133 		return;
2134 	td->td_user_pri = prio;
2135 }
2136 
2137 void
sched_lend_user_prio(struct thread * td,u_char prio)2138 sched_lend_user_prio(struct thread *td, u_char prio)
2139 {
2140 
2141 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2142 	td->td_lend_user_pri = prio;
2143 	td->td_user_pri = min(prio, td->td_base_user_pri);
2144 	if (td->td_priority > td->td_user_pri)
2145 		sched_prio(td, td->td_user_pri);
2146 	else if (td->td_priority != td->td_user_pri)
2147 		ast_sched_locked(td, TDA_SCHED);
2148 }
2149 
2150 /*
2151  * Like the above but first check if there is anything to do.
2152  */
2153 void
sched_lend_user_prio_cond(struct thread * td,u_char prio)2154 sched_lend_user_prio_cond(struct thread *td, u_char prio)
2155 {
2156 
2157 	if (td->td_lend_user_pri == prio)
2158 		return;
2159 
2160 	thread_lock(td);
2161 	sched_lend_user_prio(td, prio);
2162 	thread_unlock(td);
2163 }
2164 
2165 #ifdef SMP
2166 /*
2167  * This tdq is about to idle.  Try to steal a thread from another CPU before
2168  * choosing the idle thread.
2169  */
2170 static void
tdq_trysteal(struct tdq * tdq)2171 tdq_trysteal(struct tdq *tdq)
2172 {
2173 	struct cpu_group *cg, *parent;
2174 	struct tdq *steal;
2175 	cpuset_t mask;
2176 	int cpu, i, goup;
2177 
2178 	if (smp_started == 0 || steal_idle == 0 || trysteal_limit == 0 ||
2179 	    tdq->tdq_cg == NULL)
2180 		return;
2181 	CPU_FILL(&mask);
2182 	CPU_CLR(PCPU_GET(cpuid), &mask);
2183 	/* We don't want to be preempted while we're iterating. */
2184 	spinlock_enter();
2185 	TDQ_UNLOCK(tdq);
2186 	for (i = 1, cg = tdq->tdq_cg, goup = 0; ; ) {
2187 		cpu = sched_highest(cg, &mask, steal_thresh, 1);
2188 		/*
2189 		 * If a thread was added while interrupts were disabled don't
2190 		 * steal one here.
2191 		 */
2192 		if (TDQ_LOAD(tdq) > 0) {
2193 			TDQ_LOCK(tdq);
2194 			break;
2195 		}
2196 
2197 		/*
2198 		 * We found no CPU to steal from in this group.  Escalate to
2199 		 * the parent and repeat.  But if parent has only two children
2200 		 * groups we can avoid searching this group again by searching
2201 		 * the other one specifically and then escalating two levels.
2202 		 */
2203 		if (cpu == -1) {
2204 			if (goup) {
2205 				cg = cg->cg_parent;
2206 				goup = 0;
2207 			}
2208 			if (++i > trysteal_limit) {
2209 				TDQ_LOCK(tdq);
2210 				break;
2211 			}
2212 			parent = cg->cg_parent;
2213 			if (parent == NULL) {
2214 				TDQ_LOCK(tdq);
2215 				break;
2216 			}
2217 			if (parent->cg_children == 2) {
2218 				if (cg == &parent->cg_child[0])
2219 					cg = &parent->cg_child[1];
2220 				else
2221 					cg = &parent->cg_child[0];
2222 				goup = 1;
2223 			} else
2224 				cg = parent;
2225 			continue;
2226 		}
2227 		steal = TDQ_CPU(cpu);
2228 		/*
2229 		 * The data returned by sched_highest() is stale and
2230 		 * the chosen CPU no longer has an eligible thread.
2231 		 * At this point unconditionally exit the loop to bound
2232 		 * the time spent in the critcal section.
2233 		 */
2234 		if (TDQ_LOAD(steal) < steal_thresh ||
2235 		    TDQ_TRANSFERABLE(steal) == 0)
2236 			continue;
2237 		/*
2238 		 * Try to lock both queues. If we are assigned a thread while
2239 		 * waited for the lock, switch to it now instead of stealing.
2240 		 * If we can't get the lock, then somebody likely got there
2241 		 * first.
2242 		 */
2243 		TDQ_LOCK(tdq);
2244 		if (tdq->tdq_load > 0)
2245 			break;
2246 		if (TDQ_TRYLOCK_FLAGS(steal, MTX_DUPOK) == 0)
2247 			break;
2248 		/*
2249 		 * The data returned by sched_highest() is stale and
2250                  * the chosen CPU no longer has an eligible thread.
2251 		 */
2252 		if (TDQ_LOAD(steal) < steal_thresh ||
2253 		    TDQ_TRANSFERABLE(steal) == 0) {
2254 			TDQ_UNLOCK(steal);
2255 			break;
2256 		}
2257 		/*
2258 		 * If we fail to acquire one due to affinity restrictions,
2259 		 * bail out and let the idle thread to a more complete search
2260 		 * outside of a critical section.
2261 		 */
2262 		if (tdq_move(steal, tdq) == -1) {
2263 			TDQ_UNLOCK(steal);
2264 			break;
2265 		}
2266 		TDQ_UNLOCK(steal);
2267 		break;
2268 	}
2269 	spinlock_exit();
2270 }
2271 #endif
2272 
2273 /*
2274  * Handle migration from sched_switch().  This happens only for
2275  * cpu binding.
2276  */
2277 static struct mtx *
sched_switch_migrate(struct tdq * tdq,struct thread * td,int flags)2278 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
2279 {
2280 	struct tdq *tdn;
2281 #ifdef SMP
2282 	int lowpri;
2283 #endif
2284 
2285 	KASSERT(THREAD_CAN_MIGRATE(td) ||
2286 	    (td_get_sched(td)->ts_flags & TSF_BOUND) != 0,
2287 	    ("Thread %p shouldn't migrate", td));
2288 	KASSERT(!CPU_ABSENT(td_get_sched(td)->ts_cpu), ("sched_switch_migrate: "
2289 	    "thread %s queued on absent CPU %d.", td->td_name,
2290 	    td_get_sched(td)->ts_cpu));
2291 	tdn = TDQ_CPU(td_get_sched(td)->ts_cpu);
2292 #ifdef SMP
2293 	tdq_load_rem(tdq, td);
2294 	/*
2295 	 * Do the lock dance required to avoid LOR.  We have an
2296 	 * extra spinlock nesting from sched_switch() which will
2297 	 * prevent preemption while we're holding neither run-queue lock.
2298 	 */
2299 	TDQ_UNLOCK(tdq);
2300 	TDQ_LOCK(tdn);
2301 	lowpri = tdq_add(tdn, td, flags);
2302 	tdq_notify(tdn, lowpri);
2303 	TDQ_UNLOCK(tdn);
2304 	TDQ_LOCK(tdq);
2305 #endif
2306 	return (TDQ_LOCKPTR(tdn));
2307 }
2308 
2309 /*
2310  * thread_lock_unblock() that does not assume td_lock is blocked.
2311  */
2312 static inline void
thread_unblock_switch(struct thread * td,struct mtx * mtx)2313 thread_unblock_switch(struct thread *td, struct mtx *mtx)
2314 {
2315 	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
2316 	    (uintptr_t)mtx);
2317 }
2318 
2319 /*
2320  * Switch threads.  This function has to handle threads coming in while
2321  * blocked for some reason, running, or idle.  It also must deal with
2322  * migrating a thread from one queue to another as running threads may
2323  * be assigned elsewhere via binding.
2324  */
2325 void
sched_switch(struct thread * td,int flags)2326 sched_switch(struct thread *td, int flags)
2327 {
2328 	struct thread *newtd;
2329 	struct tdq *tdq;
2330 	struct td_sched *ts;
2331 	struct mtx *mtx;
2332 	int srqflag;
2333 	int cpuid, preempted;
2334 #ifdef SMP
2335 	int pickcpu;
2336 #endif
2337 
2338 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2339 
2340 	cpuid = PCPU_GET(cpuid);
2341 	tdq = TDQ_SELF();
2342 	ts = td_get_sched(td);
2343 	sched_pctcpu_update(ts, 1);
2344 #ifdef SMP
2345 	pickcpu = (td->td_flags & TDF_PICKCPU) != 0;
2346 	if (pickcpu)
2347 		ts->ts_rltick = (u_int)ticks - affinity * MAX_CACHE_LEVELS;
2348 	else
2349 		ts->ts_rltick = (u_int)ticks;
2350 #endif
2351 	td->td_lastcpu = td->td_oncpu;
2352 	preempted = (td->td_flags & TDF_SLICEEND) == 0 &&
2353 	    (flags & SW_PREEMPT) != 0;
2354 	td->td_flags &= ~(TDF_PICKCPU | TDF_SLICEEND);
2355 	ast_unsched_locked(td, TDA_SCHED);
2356 	td->td_owepreempt = 0;
2357 	atomic_store_char(&tdq->tdq_owepreempt, 0);
2358 	if (!TD_IS_IDLETHREAD(td))
2359 		TDQ_SWITCHCNT_INC(tdq);
2360 
2361 	/*
2362 	 * Always block the thread lock so we can drop the tdq lock early.
2363 	 */
2364 	mtx = thread_lock_block(td);
2365 	spinlock_enter();
2366 	if (TD_IS_IDLETHREAD(td)) {
2367 		MPASS(mtx == TDQ_LOCKPTR(tdq));
2368 		TD_SET_CAN_RUN(td);
2369 	} else if (TD_IS_RUNNING(td)) {
2370 		MPASS(mtx == TDQ_LOCKPTR(tdq));
2371 		srqflag = SRQ_OURSELF | SRQ_YIELDING |
2372 		    (preempted ? SRQ_PREEMPTED : 0);
2373 #ifdef SMP
2374 		if (THREAD_CAN_MIGRATE(td) && (!THREAD_CAN_SCHED(td, ts->ts_cpu)
2375 		    || pickcpu))
2376 			ts->ts_cpu = sched_pickcpu(td, 0);
2377 #endif
2378 		if (ts->ts_cpu == cpuid)
2379 			tdq_runq_add(tdq, td, srqflag);
2380 		else
2381 			mtx = sched_switch_migrate(tdq, td, srqflag);
2382 	} else {
2383 		/* This thread must be going to sleep. */
2384 		if (mtx != TDQ_LOCKPTR(tdq)) {
2385 			mtx_unlock_spin(mtx);
2386 			TDQ_LOCK(tdq);
2387 		}
2388 		tdq_load_rem(tdq, td);
2389 #ifdef SMP
2390 		if (tdq->tdq_load == 0)
2391 			tdq_trysteal(tdq);
2392 #endif
2393 	}
2394 
2395 #if (KTR_COMPILE & KTR_SCHED) != 0
2396 	if (TD_IS_IDLETHREAD(td))
2397 		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
2398 		    "prio:%d", td->td_priority);
2399 	else
2400 		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
2401 		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
2402 		    "lockname:\"%s\"", td->td_lockname);
2403 #endif
2404 
2405 	/*
2406 	 * We enter here with the thread blocked and assigned to the
2407 	 * appropriate cpu run-queue or sleep-queue and with the current
2408 	 * thread-queue locked.
2409 	 */
2410 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2411 	MPASS(td == tdq->tdq_curthread);
2412 	newtd = choosethread();
2413 	sched_pctcpu_update(td_get_sched(newtd), 0);
2414 	TDQ_UNLOCK(tdq);
2415 
2416 	/*
2417 	 * Call the MD code to switch contexts if necessary.
2418 	 */
2419 	if (td != newtd) {
2420 #ifdef	HWPMC_HOOKS
2421 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
2422 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
2423 #endif
2424 		SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
2425 
2426 #ifdef KDTRACE_HOOKS
2427 		/*
2428 		 * If DTrace has set the active vtime enum to anything
2429 		 * other than INACTIVE (0), then it should have set the
2430 		 * function to call.
2431 		 */
2432 		if (dtrace_vtime_active)
2433 			(*dtrace_vtime_switch_func)(newtd);
2434 #endif
2435 		td->td_oncpu = NOCPU;
2436 		cpu_switch(td, newtd, mtx);
2437 		cpuid = td->td_oncpu = PCPU_GET(cpuid);
2438 
2439 		SDT_PROBE0(sched, , , on__cpu);
2440 #ifdef	HWPMC_HOOKS
2441 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
2442 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
2443 #endif
2444 	} else {
2445 		thread_unblock_switch(td, mtx);
2446 		SDT_PROBE0(sched, , , remain__cpu);
2447 	}
2448 	KASSERT(curthread->td_md.md_spinlock_count == 1,
2449 	    ("invalid count %d", curthread->td_md.md_spinlock_count));
2450 
2451 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
2452 	    "prio:%d", td->td_priority);
2453 }
2454 
2455 /*
2456  * Adjust thread priorities as a result of a nice request.
2457  */
2458 void
sched_nice(struct proc * p,int nice)2459 sched_nice(struct proc *p, int nice)
2460 {
2461 	struct thread *td;
2462 
2463 	PROC_LOCK_ASSERT(p, MA_OWNED);
2464 
2465 	p->p_nice = nice;
2466 	FOREACH_THREAD_IN_PROC(p, td) {
2467 		thread_lock(td);
2468 		sched_priority(td);
2469 		sched_prio(td, td->td_base_user_pri);
2470 		thread_unlock(td);
2471 	}
2472 }
2473 
2474 /*
2475  * Record the sleep time for the interactivity scorer.
2476  */
2477 void
sched_sleep(struct thread * td,int prio)2478 sched_sleep(struct thread *td, int prio)
2479 {
2480 
2481 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2482 
2483 	td->td_slptick = ticks;
2484 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
2485 		return;
2486 	if (static_boost == 1 && prio)
2487 		sched_prio(td, prio);
2488 	else if (static_boost && td->td_priority > static_boost)
2489 		sched_prio(td, static_boost);
2490 }
2491 
2492 /*
2493  * Schedule a thread to resume execution and record how long it voluntarily
2494  * slept.  We also update the pctcpu, interactivity, and priority.
2495  *
2496  * Requires the thread lock on entry, drops on exit.
2497  */
2498 void
sched_wakeup(struct thread * td,int srqflags)2499 sched_wakeup(struct thread *td, int srqflags)
2500 {
2501 	struct td_sched *ts;
2502 	int slptick;
2503 
2504 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2505 	ts = td_get_sched(td);
2506 
2507 	/*
2508 	 * If we slept for more than a tick update our interactivity and
2509 	 * priority.
2510 	 */
2511 	slptick = td->td_slptick;
2512 	td->td_slptick = 0;
2513 	if (slptick && slptick != ticks) {
2514 		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
2515 		sched_interact_update(td);
2516 		sched_pctcpu_update(ts, 0);
2517 	}
2518 
2519 	/*
2520 	 * When resuming an idle ithread, restore its base ithread
2521 	 * priority.
2522 	 */
2523 	if (PRI_BASE(td->td_pri_class) == PRI_ITHD &&
2524 	    td->td_priority != td->td_base_ithread_pri)
2525 		sched_prio(td, td->td_base_ithread_pri);
2526 
2527 	/*
2528 	 * Reset the slice value since we slept and advanced the round-robin.
2529 	 */
2530 	ts->ts_slice = 0;
2531 	sched_add(td, SRQ_BORING | srqflags);
2532 }
2533 
2534 /*
2535  * Penalize the parent for creating a new child and initialize the child's
2536  * priority.
2537  */
2538 void
sched_fork(struct thread * td,struct thread * child)2539 sched_fork(struct thread *td, struct thread *child)
2540 {
2541 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2542 	sched_pctcpu_update(td_get_sched(td), 1);
2543 	sched_fork_thread(td, child);
2544 	/*
2545 	 * Penalize the parent and child for forking.
2546 	 */
2547 	sched_interact_fork(child);
2548 	sched_priority(child);
2549 	td_get_sched(td)->ts_runtime += tickincr;
2550 	sched_interact_update(td);
2551 	sched_priority(td);
2552 }
2553 
2554 /*
2555  * Fork a new thread, may be within the same process.
2556  */
2557 void
sched_fork_thread(struct thread * td,struct thread * child)2558 sched_fork_thread(struct thread *td, struct thread *child)
2559 {
2560 	struct td_sched *ts;
2561 	struct td_sched *ts2;
2562 	struct tdq *tdq;
2563 
2564 	tdq = TDQ_SELF();
2565 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2566 	/*
2567 	 * Initialize child.
2568 	 */
2569 	ts = td_get_sched(td);
2570 	ts2 = td_get_sched(child);
2571 	child->td_oncpu = NOCPU;
2572 	child->td_lastcpu = NOCPU;
2573 	child->td_lock = TDQ_LOCKPTR(tdq);
2574 	child->td_cpuset = cpuset_ref(td->td_cpuset);
2575 	child->td_domain.dr_policy = td->td_cpuset->cs_domain;
2576 	ts2->ts_cpu = ts->ts_cpu;
2577 	ts2->ts_flags = 0;
2578 	/*
2579 	 * Grab our parents cpu estimation information.
2580 	 */
2581 	ts2->ts_ticks = ts->ts_ticks;
2582 	ts2->ts_ltick = ts->ts_ltick;
2583 	ts2->ts_ftick = ts->ts_ftick;
2584 	/*
2585 	 * Do not inherit any borrowed priority from the parent.
2586 	 */
2587 	child->td_priority = child->td_base_pri;
2588 	/*
2589 	 * And update interactivity score.
2590 	 */
2591 	ts2->ts_slptime = ts->ts_slptime;
2592 	ts2->ts_runtime = ts->ts_runtime;
2593 	/* Attempt to quickly learn interactivity. */
2594 	ts2->ts_slice = tdq_slice(tdq) - sched_slice_min;
2595 #ifdef KTR
2596 	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2597 #endif
2598 }
2599 
2600 /*
2601  * Adjust the priority class of a thread.
2602  */
2603 void
sched_class(struct thread * td,int class)2604 sched_class(struct thread *td, int class)
2605 {
2606 
2607 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2608 	if (td->td_pri_class == class)
2609 		return;
2610 	td->td_pri_class = class;
2611 }
2612 
2613 /*
2614  * Return some of the child's priority and interactivity to the parent.
2615  */
2616 void
sched_exit(struct proc * p,struct thread * child)2617 sched_exit(struct proc *p, struct thread *child)
2618 {
2619 	struct thread *td;
2620 
2621 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2622 	    "prio:%d", child->td_priority);
2623 	PROC_LOCK_ASSERT(p, MA_OWNED);
2624 	td = FIRST_THREAD_IN_PROC(p);
2625 	sched_exit_thread(td, child);
2626 }
2627 
2628 /*
2629  * Penalize another thread for the time spent on this one.  This helps to
2630  * worsen the priority and interactivity of processes which schedule batch
2631  * jobs such as make.  This has little effect on the make process itself but
2632  * causes new processes spawned by it to receive worse scores immediately.
2633  */
2634 void
sched_exit_thread(struct thread * td,struct thread * child)2635 sched_exit_thread(struct thread *td, struct thread *child)
2636 {
2637 
2638 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2639 	    "prio:%d", child->td_priority);
2640 	/*
2641 	 * Give the child's runtime to the parent without returning the
2642 	 * sleep time as a penalty to the parent.  This causes shells that
2643 	 * launch expensive things to mark their children as expensive.
2644 	 */
2645 	thread_lock(td);
2646 	td_get_sched(td)->ts_runtime += td_get_sched(child)->ts_runtime;
2647 	sched_interact_update(td);
2648 	sched_priority(td);
2649 	thread_unlock(td);
2650 }
2651 
2652 void
sched_preempt(struct thread * td)2653 sched_preempt(struct thread *td)
2654 {
2655 	struct tdq *tdq;
2656 	int flags;
2657 
2658 	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2659 
2660 	thread_lock(td);
2661 	tdq = TDQ_SELF();
2662 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2663 	if (td->td_priority > tdq->tdq_lowpri) {
2664 		if (td->td_critnest == 1) {
2665 			flags = SW_INVOL | SW_PREEMPT;
2666 			flags |= TD_IS_IDLETHREAD(td) ? SWT_REMOTEWAKEIDLE :
2667 			    SWT_REMOTEPREEMPT;
2668 			mi_switch(flags);
2669 			/* Switch dropped thread lock. */
2670 			return;
2671 		}
2672 		td->td_owepreempt = 1;
2673 	} else {
2674 		tdq->tdq_owepreempt = 0;
2675 	}
2676 	thread_unlock(td);
2677 }
2678 
2679 /*
2680  * Fix priorities on return to user-space.  Priorities may be elevated due
2681  * to static priorities in msleep() or similar.
2682  */
2683 void
sched_userret_slowpath(struct thread * td)2684 sched_userret_slowpath(struct thread *td)
2685 {
2686 
2687 	thread_lock(td);
2688 	td->td_priority = td->td_user_pri;
2689 	td->td_base_pri = td->td_user_pri;
2690 	tdq_setlowpri(TDQ_SELF(), td);
2691 	thread_unlock(td);
2692 }
2693 
2694 SCHED_STAT_DEFINE(ithread_demotions, "Interrupt thread priority demotions");
2695 SCHED_STAT_DEFINE(ithread_preemptions,
2696     "Interrupt thread preemptions due to time-sharing");
2697 
2698 /*
2699  * Return time slice for a given thread.  For ithreads this is
2700  * sched_slice.  For other threads it is tdq_slice(tdq).
2701  */
2702 static inline u_int
td_slice(struct thread * td,struct tdq * tdq)2703 td_slice(struct thread *td, struct tdq *tdq)
2704 {
2705 	if (PRI_BASE(td->td_pri_class) == PRI_ITHD)
2706 		return (sched_slice);
2707 	return (tdq_slice(tdq));
2708 }
2709 
2710 /*
2711  * Handle a stathz tick.  This is really only relevant for timeshare
2712  * and interrupt threads.
2713  */
2714 void
sched_clock(struct thread * td,int cnt)2715 sched_clock(struct thread *td, int cnt)
2716 {
2717 	struct tdq *tdq;
2718 	struct td_sched *ts;
2719 
2720 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2721 	tdq = TDQ_SELF();
2722 #ifdef SMP
2723 	/*
2724 	 * We run the long term load balancer infrequently on the first cpu.
2725 	 */
2726 	if (balance_tdq == tdq && smp_started != 0 && rebalance != 0 &&
2727 	    balance_ticks != 0) {
2728 		balance_ticks -= cnt;
2729 		if (balance_ticks <= 0)
2730 			sched_balance();
2731 	}
2732 #endif
2733 	/*
2734 	 * Save the old switch count so we have a record of the last ticks
2735 	 * activity.   Initialize the new switch count based on our load.
2736 	 * If there is some activity seed it to reflect that.
2737 	 */
2738 	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2739 	tdq->tdq_switchcnt = tdq->tdq_load;
2740 
2741 	/*
2742 	 * Advance the insert offset once for each tick to ensure that all
2743 	 * threads get a chance to run.  In order not to change too much ULE's
2744 	 * anti-starvation and "nice" behaviors after the switch to a single
2745 	 * 256-queue runqueue, since the queue insert offset is incremented by
2746 	 * 1 at every tick (provided the system is not too loaded) and there are
2747 	 * now 109 distinct levels for the timesharing selection policy instead
2748 	 * of 64 before (separate runqueue), we apply a factor 7/4 when
2749 	 * increasing the insert offset, by incrementing it by 2 instead of
2750 	 * 1 except for one in four ticks.
2751 	 */
2752 	if (tdq->tdq_ts_off == tdq->tdq_ts_deq_off) {
2753 		tdq->tdq_ts_ticks += cnt;
2754 		tdq->tdq_ts_off = (tdq->tdq_ts_off + 2 * cnt -
2755 		    tdq-> tdq_ts_ticks / 4) % RQ_TS_POL_MODULO;
2756 		tdq->tdq_ts_ticks %= 4;
2757 		tdq_advance_ts_deq_off(tdq, false);
2758 	}
2759 	ts = td_get_sched(td);
2760 	sched_pctcpu_update(ts, 1);
2761 	if ((td->td_pri_class & PRI_FIFO_BIT) || TD_IS_IDLETHREAD(td))
2762 		return;
2763 
2764 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2765 		/*
2766 		 * We used a tick; charge it to the thread so
2767 		 * that we can compute our interactivity.
2768 		 */
2769 		td_get_sched(td)->ts_runtime += tickincr * cnt;
2770 		sched_interact_update(td);
2771 		sched_priority(td);
2772 	}
2773 
2774 	/*
2775 	 * Force a context switch if the current thread has used up a full
2776 	 * time slice (default is 100ms).
2777 	 */
2778 	ts->ts_slice += cnt;
2779 	if (ts->ts_slice >= td_slice(td, tdq)) {
2780 		ts->ts_slice = 0;
2781 
2782 		/*
2783 		 * If an ithread uses a full quantum, demote its
2784 		 * priority and preempt it.
2785 		 */
2786 		if (PRI_BASE(td->td_pri_class) == PRI_ITHD) {
2787 			SCHED_STAT_INC(ithread_preemptions);
2788 			td->td_owepreempt = 1;
2789 			if (td->td_base_pri + RQ_PPQ < PRI_MAX_ITHD) {
2790 				SCHED_STAT_INC(ithread_demotions);
2791 				sched_prio(td, td->td_base_pri + RQ_PPQ);
2792 			}
2793 		} else {
2794 			ast_sched_locked(td, TDA_SCHED);
2795 			td->td_flags |= TDF_SLICEEND;
2796 		}
2797 	}
2798 }
2799 
2800 u_int
sched_estcpu(struct thread * td __unused)2801 sched_estcpu(struct thread *td __unused)
2802 {
2803 
2804 	return (0);
2805 }
2806 
2807 /*
2808  * Return whether the current CPU has runnable tasks.  Used for in-kernel
2809  * cooperative idle threads.
2810  */
2811 bool
sched_runnable(void)2812 sched_runnable(void)
2813 {
2814 	struct tdq *tdq;
2815 
2816 	tdq = TDQ_SELF();
2817 	return (TDQ_LOAD(tdq) > (TD_IS_IDLETHREAD(curthread) ? 0 : 1));
2818 }
2819 
2820 /*
2821  * Choose the highest priority thread to run.  The thread is removed from
2822  * the run-queue while running however the load remains.
2823  */
2824 struct thread *
sched_choose(void)2825 sched_choose(void)
2826 {
2827 	struct thread *td;
2828 	struct tdq *tdq;
2829 
2830 	tdq = TDQ_SELF();
2831 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2832 	td = tdq_choose(tdq);
2833 	if (td != NULL) {
2834 		tdq_runq_rem(tdq, td);
2835 		tdq->tdq_lowpri = td->td_priority;
2836 	} else {
2837 		tdq->tdq_lowpri = PRI_MAX_IDLE;
2838 		td = PCPU_GET(idlethread);
2839 	}
2840 	tdq->tdq_curthread = td;
2841 	return (td);
2842 }
2843 
2844 /*
2845  * Set owepreempt if the currently running thread has lower priority than "pri".
2846  * Preemption never happens directly in ULE, we always request it once we exit a
2847  * critical section.
2848  */
2849 static void
sched_setpreempt(int pri)2850 sched_setpreempt(int pri)
2851 {
2852 	struct thread *ctd;
2853 	int cpri;
2854 
2855 	ctd = curthread;
2856 	THREAD_LOCK_ASSERT(ctd, MA_OWNED);
2857 
2858 	cpri = ctd->td_priority;
2859 	if (pri < cpri)
2860 		ast_sched_locked(ctd, TDA_SCHED);
2861 	if (KERNEL_PANICKED() || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2862 		return;
2863 	if (!sched_shouldpreempt(pri, cpri, 0))
2864 		return;
2865 	ctd->td_owepreempt = 1;
2866 }
2867 
2868 /*
2869  * Add a thread to a thread queue.  Select the appropriate runq and add the
2870  * thread to it.  This is the internal function called when the tdq is
2871  * predetermined.
2872  */
2873 static int
tdq_add(struct tdq * tdq,struct thread * td,int flags)2874 tdq_add(struct tdq *tdq, struct thread *td, int flags)
2875 {
2876 	int lowpri;
2877 
2878 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2879 	THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
2880 	KASSERT((td->td_inhibitors == 0),
2881 	    ("sched_add: trying to run inhibited thread"));
2882 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2883 	    ("sched_add: bad thread state"));
2884 	KASSERT(td->td_flags & TDF_INMEM,
2885 	    ("sched_add: thread swapped out"));
2886 
2887 	lowpri = tdq->tdq_lowpri;
2888 	if (td->td_priority < lowpri)
2889 		tdq->tdq_lowpri = td->td_priority;
2890 	tdq_runq_add(tdq, td, flags);
2891 	tdq_load_add(tdq, td);
2892 	return (lowpri);
2893 }
2894 
2895 /*
2896  * Select the target thread queue and add a thread to it.  Request
2897  * preemption or IPI a remote processor if required.
2898  *
2899  * Requires the thread lock on entry, drops on exit.
2900  */
2901 void
sched_add(struct thread * td,int flags)2902 sched_add(struct thread *td, int flags)
2903 {
2904 	struct tdq *tdq;
2905 #ifdef SMP
2906 	int cpu, lowpri;
2907 #endif
2908 
2909 	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2910 	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2911 	    sched_tdname(curthread));
2912 	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2913 	    KTR_ATTR_LINKED, sched_tdname(td));
2914 	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2915 	    flags & SRQ_PREEMPTED);
2916 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2917 	/*
2918 	 * Recalculate the priority before we select the target cpu or
2919 	 * run-queue.
2920 	 */
2921 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2922 		sched_priority(td);
2923 #ifdef SMP
2924 	/*
2925 	 * Pick the destination cpu and if it isn't ours transfer to the
2926 	 * target cpu.
2927 	 */
2928 	cpu = sched_pickcpu(td, flags);
2929 	tdq = sched_setcpu(td, cpu, flags);
2930 	lowpri = tdq_add(tdq, td, flags);
2931 	if (cpu != PCPU_GET(cpuid))
2932 		tdq_notify(tdq, lowpri);
2933 	else if (!(flags & SRQ_YIELDING))
2934 		sched_setpreempt(td->td_priority);
2935 #else
2936 	tdq = TDQ_SELF();
2937 	/*
2938 	 * Now that the thread is moving to the run-queue, set the lock
2939 	 * to the scheduler's lock.
2940 	 */
2941 	if (td->td_lock != TDQ_LOCKPTR(tdq)) {
2942 		TDQ_LOCK(tdq);
2943 		if ((flags & SRQ_HOLD) != 0)
2944 			td->td_lock = TDQ_LOCKPTR(tdq);
2945 		else
2946 			thread_lock_set(td, TDQ_LOCKPTR(tdq));
2947 	}
2948 	(void)tdq_add(tdq, td, flags);
2949 	if (!(flags & SRQ_YIELDING))
2950 		sched_setpreempt(td->td_priority);
2951 #endif
2952 	if (!(flags & SRQ_HOLDTD))
2953 		thread_unlock(td);
2954 }
2955 
2956 /*
2957  * Remove a thread from a run-queue without running it.  This is used
2958  * when we're stealing a thread from a remote queue.  Otherwise all threads
2959  * exit by calling sched_exit_thread() and sched_throw() themselves.
2960  */
2961 void
sched_rem(struct thread * td)2962 sched_rem(struct thread *td)
2963 {
2964 	struct tdq *tdq;
2965 
2966 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2967 	    "prio:%d", td->td_priority);
2968 	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2969 	tdq = TDQ_CPU(td_get_sched(td)->ts_cpu);
2970 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2971 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2972 	KASSERT(TD_ON_RUNQ(td),
2973 	    ("sched_rem: thread not on run queue"));
2974 	tdq_runq_rem(tdq, td);
2975 	tdq_load_rem(tdq, td);
2976 	TD_SET_CAN_RUN(td);
2977 	if (td->td_priority == tdq->tdq_lowpri)
2978 		tdq_setlowpri(tdq, NULL);
2979 }
2980 
2981 /*
2982  * Fetch cpu utilization information.  Updates on demand.
2983  */
2984 fixpt_t
sched_pctcpu(struct thread * td)2985 sched_pctcpu(struct thread *td)
2986 {
2987 	struct td_sched *ts;
2988 	u_int len;
2989 	fixpt_t pctcpu;
2990 
2991 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2992 	ts = td_get_sched(td);
2993 	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2994 	len = SCHED_TICK_LENGTH(ts);
2995 	pctcpu = ((FSHIFT >= SCHED_TICK_SHIFT ? /* Resolved at compile-time. */
2996 	    (SCHED_TICK_RUN_SHIFTED(ts) << (FSHIFT - SCHED_TICK_SHIFT)) :
2997 	    (SCHED_TICK_RUN_SHIFTED(ts) >> (SCHED_TICK_SHIFT - FSHIFT))) +
2998 	    len / 2) / len;
2999 	return (pctcpu);
3000 }
3001 
3002 /*
3003  * Enforce affinity settings for a thread.  Called after adjustments to
3004  * cpumask.
3005  */
3006 void
sched_affinity(struct thread * td)3007 sched_affinity(struct thread *td)
3008 {
3009 #ifdef SMP
3010 	struct td_sched *ts;
3011 
3012 	THREAD_LOCK_ASSERT(td, MA_OWNED);
3013 	ts = td_get_sched(td);
3014 	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
3015 		return;
3016 	if (TD_ON_RUNQ(td)) {
3017 		sched_rem(td);
3018 		sched_add(td, SRQ_BORING | SRQ_HOLDTD);
3019 		return;
3020 	}
3021 	if (!TD_IS_RUNNING(td))
3022 		return;
3023 	/*
3024 	 * Force a switch before returning to userspace.  If the
3025 	 * target thread is not running locally send an ipi to force
3026 	 * the issue.
3027 	 */
3028 	ast_sched_locked(td, TDA_SCHED);
3029 	if (td != curthread)
3030 		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
3031 #endif
3032 }
3033 
3034 /*
3035  * Bind a thread to a target cpu.
3036  */
3037 void
sched_bind(struct thread * td,int cpu)3038 sched_bind(struct thread *td, int cpu)
3039 {
3040 	struct td_sched *ts;
3041 
3042 	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
3043 	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
3044 	ts = td_get_sched(td);
3045 	if (ts->ts_flags & TSF_BOUND)
3046 		sched_unbind(td);
3047 	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
3048 	ts->ts_flags |= TSF_BOUND;
3049 	sched_pin();
3050 	if (PCPU_GET(cpuid) == cpu)
3051 		return;
3052 	ts->ts_cpu = cpu;
3053 	/* When we return from mi_switch we'll be on the correct cpu. */
3054 	mi_switch(SW_VOL | SWT_BIND);
3055 	thread_lock(td);
3056 }
3057 
3058 /*
3059  * Release a bound thread.
3060  */
3061 void
sched_unbind(struct thread * td)3062 sched_unbind(struct thread *td)
3063 {
3064 	struct td_sched *ts;
3065 
3066 	THREAD_LOCK_ASSERT(td, MA_OWNED);
3067 	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
3068 	ts = td_get_sched(td);
3069 	if ((ts->ts_flags & TSF_BOUND) == 0)
3070 		return;
3071 	ts->ts_flags &= ~TSF_BOUND;
3072 	sched_unpin();
3073 }
3074 
3075 int
sched_is_bound(struct thread * td)3076 sched_is_bound(struct thread *td)
3077 {
3078 	THREAD_LOCK_ASSERT(td, MA_OWNED);
3079 	return (td_get_sched(td)->ts_flags & TSF_BOUND);
3080 }
3081 
3082 /*
3083  * Basic yield call.
3084  */
3085 void
sched_relinquish(struct thread * td)3086 sched_relinquish(struct thread *td)
3087 {
3088 	thread_lock(td);
3089 	mi_switch(SW_VOL | SWT_RELINQUISH);
3090 }
3091 
3092 /*
3093  * Return the total system load.
3094  */
3095 int
sched_load(void)3096 sched_load(void)
3097 {
3098 #ifdef SMP
3099 	int total;
3100 	int i;
3101 
3102 	total = 0;
3103 	CPU_FOREACH(i)
3104 		total += atomic_load_int(&TDQ_CPU(i)->tdq_sysload);
3105 	return (total);
3106 #else
3107 	return (atomic_load_int(&TDQ_SELF()->tdq_sysload));
3108 #endif
3109 }
3110 
3111 int
sched_sizeof_proc(void)3112 sched_sizeof_proc(void)
3113 {
3114 	return (sizeof(struct proc));
3115 }
3116 
3117 int
sched_sizeof_thread(void)3118 sched_sizeof_thread(void)
3119 {
3120 	return (sizeof(struct thread) + sizeof(struct td_sched));
3121 }
3122 
3123 #ifdef SMP
3124 #define	TDQ_IDLESPIN(tdq)						\
3125     ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
3126 #else
3127 #define	TDQ_IDLESPIN(tdq)	1
3128 #endif
3129 
3130 /*
3131  * The actual idle process.
3132  */
3133 void
sched_idletd(void * dummy)3134 sched_idletd(void *dummy)
3135 {
3136 	struct thread *td;
3137 	struct tdq *tdq;
3138 	int oldswitchcnt, switchcnt;
3139 	int i;
3140 
3141 	mtx_assert(&Giant, MA_NOTOWNED);
3142 	td = curthread;
3143 	tdq = TDQ_SELF();
3144 	THREAD_NO_SLEEPING();
3145 	oldswitchcnt = -1;
3146 	for (;;) {
3147 		if (TDQ_LOAD(tdq)) {
3148 			thread_lock(td);
3149 			mi_switch(SW_VOL | SWT_IDLE);
3150 		}
3151 		switchcnt = TDQ_SWITCHCNT(tdq);
3152 #ifdef SMP
3153 		if (always_steal || switchcnt != oldswitchcnt) {
3154 			oldswitchcnt = switchcnt;
3155 			if (tdq_idled(tdq) == 0)
3156 				continue;
3157 		}
3158 		switchcnt = TDQ_SWITCHCNT(tdq);
3159 #else
3160 		oldswitchcnt = switchcnt;
3161 #endif
3162 		/*
3163 		 * If we're switching very frequently, spin while checking
3164 		 * for load rather than entering a low power state that
3165 		 * may require an IPI.  However, don't do any busy
3166 		 * loops while on SMT machines as this simply steals
3167 		 * cycles from cores doing useful work.
3168 		 */
3169 		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
3170 			for (i = 0; i < sched_idlespins; i++) {
3171 				if (TDQ_LOAD(tdq))
3172 					break;
3173 				cpu_spinwait();
3174 			}
3175 		}
3176 
3177 		/* If there was context switch during spin, restart it. */
3178 		switchcnt = TDQ_SWITCHCNT(tdq);
3179 		if (TDQ_LOAD(tdq) != 0 || switchcnt != oldswitchcnt)
3180 			continue;
3181 
3182 		/* Run main MD idle handler. */
3183 		atomic_store_int(&tdq->tdq_cpu_idle, 1);
3184 		/*
3185 		 * Make sure that the tdq_cpu_idle update is globally visible
3186 		 * before cpu_idle() reads tdq_load.  The order is important
3187 		 * to avoid races with tdq_notify().
3188 		 */
3189 		atomic_thread_fence_seq_cst();
3190 		/*
3191 		 * Checking for again after the fence picks up assigned
3192 		 * threads often enough to make it worthwhile to do so in
3193 		 * order to avoid calling cpu_idle().
3194 		 */
3195 		if (TDQ_LOAD(tdq) != 0) {
3196 			atomic_store_int(&tdq->tdq_cpu_idle, 0);
3197 			continue;
3198 		}
3199 		cpu_idle(switchcnt * 4 > sched_idlespinthresh);
3200 		atomic_store_int(&tdq->tdq_cpu_idle, 0);
3201 
3202 		/*
3203 		 * Account thread-less hardware interrupts and
3204 		 * other wakeup reasons equal to context switches.
3205 		 */
3206 		switchcnt = TDQ_SWITCHCNT(tdq);
3207 		if (switchcnt != oldswitchcnt)
3208 			continue;
3209 		TDQ_SWITCHCNT_INC(tdq);
3210 		oldswitchcnt++;
3211 	}
3212 }
3213 
3214 /*
3215  * sched_throw_grab() chooses a thread from the queue to switch to
3216  * next.  It returns with the tdq lock dropped in a spinlock section to
3217  * keep interrupts disabled until the CPU is running in a proper threaded
3218  * context.
3219  */
3220 static struct thread *
sched_throw_grab(struct tdq * tdq)3221 sched_throw_grab(struct tdq *tdq)
3222 {
3223 	struct thread *newtd;
3224 
3225 	newtd = choosethread();
3226 	spinlock_enter();
3227 	TDQ_UNLOCK(tdq);
3228 	KASSERT(curthread->td_md.md_spinlock_count == 1,
3229 	    ("invalid count %d", curthread->td_md.md_spinlock_count));
3230 	return (newtd);
3231 }
3232 
3233 /*
3234  * A CPU is entering for the first time.
3235  */
3236 void
sched_ap_entry(void)3237 sched_ap_entry(void)
3238 {
3239 	struct thread *newtd;
3240 	struct tdq *tdq;
3241 
3242 	tdq = TDQ_SELF();
3243 
3244 	/* This should have been setup in schedinit_ap(). */
3245 	THREAD_LOCKPTR_ASSERT(curthread, TDQ_LOCKPTR(tdq));
3246 
3247 	TDQ_LOCK(tdq);
3248 	/* Correct spinlock nesting. */
3249 	spinlock_exit();
3250 	PCPU_SET(switchtime, cpu_ticks());
3251 	PCPU_SET(switchticks, ticks);
3252 
3253 	newtd = sched_throw_grab(tdq);
3254 
3255 	/* doesn't return */
3256 	cpu_throw(NULL, newtd);
3257 }
3258 
3259 /*
3260  * A thread is exiting.
3261  */
3262 void
sched_throw(struct thread * td)3263 sched_throw(struct thread *td)
3264 {
3265 	struct thread *newtd;
3266 	struct tdq *tdq;
3267 
3268 	tdq = TDQ_SELF();
3269 
3270 	MPASS(td != NULL);
3271 	THREAD_LOCK_ASSERT(td, MA_OWNED);
3272 	THREAD_LOCKPTR_ASSERT(td, TDQ_LOCKPTR(tdq));
3273 
3274 	tdq_load_rem(tdq, td);
3275 	td->td_lastcpu = td->td_oncpu;
3276 	td->td_oncpu = NOCPU;
3277 	thread_lock_block(td);
3278 
3279 	newtd = sched_throw_grab(tdq);
3280 
3281 	/* doesn't return */
3282 	cpu_switch(td, newtd, TDQ_LOCKPTR(tdq));
3283 }
3284 
3285 /*
3286  * This is called from fork_exit().  Just acquire the correct locks and
3287  * let fork do the rest of the work.
3288  */
3289 void
sched_fork_exit(struct thread * td)3290 sched_fork_exit(struct thread *td)
3291 {
3292 	struct tdq *tdq;
3293 	int cpuid;
3294 
3295 	/*
3296 	 * Finish setting up thread glue so that it begins execution in a
3297 	 * non-nested critical section with the scheduler lock held.
3298 	 */
3299 	KASSERT(curthread->td_md.md_spinlock_count == 1,
3300 	    ("invalid count %d", curthread->td_md.md_spinlock_count));
3301 	cpuid = PCPU_GET(cpuid);
3302 	tdq = TDQ_SELF();
3303 	TDQ_LOCK(tdq);
3304 	spinlock_exit();
3305 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
3306 	td->td_oncpu = cpuid;
3307 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
3308 	    "prio:%d", td->td_priority);
3309 	SDT_PROBE0(sched, , , on__cpu);
3310 }
3311 
3312 /*
3313  * Create on first use to catch odd startup conditions.
3314  */
3315 char *
sched_tdname(struct thread * td)3316 sched_tdname(struct thread *td)
3317 {
3318 #ifdef KTR
3319 	struct td_sched *ts;
3320 
3321 	ts = td_get_sched(td);
3322 	if (ts->ts_name[0] == '\0')
3323 		snprintf(ts->ts_name, sizeof(ts->ts_name),
3324 		    "%s tid %d", td->td_name, td->td_tid);
3325 	return (ts->ts_name);
3326 #else
3327 	return (td->td_name);
3328 #endif
3329 }
3330 
3331 #ifdef KTR
3332 void
sched_clear_tdname(struct thread * td)3333 sched_clear_tdname(struct thread *td)
3334 {
3335 	struct td_sched *ts;
3336 
3337 	ts = td_get_sched(td);
3338 	ts->ts_name[0] = '\0';
3339 }
3340 #endif
3341 
3342 #ifdef SMP
3343 
3344 /*
3345  * Build the CPU topology dump string. Is recursively called to collect
3346  * the topology tree.
3347  */
3348 static int
sysctl_kern_sched_topology_spec_internal(struct sbuf * sb,struct cpu_group * cg,int indent)3349 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
3350     int indent)
3351 {
3352 	char cpusetbuf[CPUSETBUFSIZ];
3353 	int i, first;
3354 
3355 	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
3356 	    "", 1 + indent / 2, cg->cg_level);
3357 	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
3358 	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
3359 	first = TRUE;
3360 	for (i = cg->cg_first; i <= cg->cg_last; i++) {
3361 		if (CPU_ISSET(i, &cg->cg_mask)) {
3362 			if (!first)
3363 				sbuf_cat(sb, ", ");
3364 			else
3365 				first = FALSE;
3366 			sbuf_printf(sb, "%d", i);
3367 		}
3368 	}
3369 	sbuf_cat(sb, "</cpu>\n");
3370 
3371 	if (cg->cg_flags != 0) {
3372 		sbuf_printf(sb, "%*s <flags>", indent, "");
3373 		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
3374 			sbuf_cat(sb, "<flag name=\"HTT\">HTT group</flag>");
3375 		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
3376 			sbuf_cat(sb, "<flag name=\"THREAD\">THREAD group</flag>");
3377 		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
3378 			sbuf_cat(sb, "<flag name=\"SMT\">SMT group</flag>");
3379 		if ((cg->cg_flags & CG_FLAG_NODE) != 0)
3380 			sbuf_cat(sb, "<flag name=\"NODE\">NUMA node</flag>");
3381 		sbuf_cat(sb, "</flags>\n");
3382 	}
3383 
3384 	if (cg->cg_children > 0) {
3385 		sbuf_printf(sb, "%*s <children>\n", indent, "");
3386 		for (i = 0; i < cg->cg_children; i++)
3387 			sysctl_kern_sched_topology_spec_internal(sb,
3388 			    &cg->cg_child[i], indent+2);
3389 		sbuf_printf(sb, "%*s </children>\n", indent, "");
3390 	}
3391 	sbuf_printf(sb, "%*s</group>\n", indent, "");
3392 	return (0);
3393 }
3394 
3395 /*
3396  * Sysctl handler for retrieving topology dump. It's a wrapper for
3397  * the recursive sysctl_kern_smp_topology_spec_internal().
3398  */
3399 static int
sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)3400 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
3401 {
3402 	struct sbuf *topo;
3403 	int err;
3404 
3405 	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
3406 
3407 	topo = sbuf_new_for_sysctl(NULL, NULL, 512, req);
3408 	if (topo == NULL)
3409 		return (ENOMEM);
3410 
3411 	sbuf_cat(topo, "<groups>\n");
3412 	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
3413 	sbuf_cat(topo, "</groups>\n");
3414 
3415 	if (err == 0) {
3416 		err = sbuf_finish(topo);
3417 	}
3418 	sbuf_delete(topo);
3419 	return (err);
3420 }
3421 
3422 #endif
3423 
3424 static int
sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)3425 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
3426 {
3427 	int error, new_val, period;
3428 
3429 	period = 1000000 / realstathz;
3430 	new_val = period * sched_slice;
3431 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3432 	if (error != 0 || req->newptr == NULL)
3433 		return (error);
3434 	if (new_val <= 0)
3435 		return (EINVAL);
3436 	sched_slice = imax(1, (new_val + period / 2) / period);
3437 	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
3438 	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
3439 	    realstathz);
3440 	return (0);
3441 }
3442 
3443 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
3444     "Scheduler");
3445 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
3446     "Scheduler name");
3447 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum,
3448     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
3449     sysctl_kern_quantum, "I",
3450     "Quantum for timeshare threads in microseconds");
3451 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
3452     "Quantum for timeshare threads in stathz ticks");
3453 SYSCTL_UINT(_kern_sched, OID_AUTO, interact, CTLFLAG_RWTUN, &sched_interact, 0,
3454     "Interactivity score threshold");
3455 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RWTUN,
3456     &preempt_thresh, 0,
3457     "Maximal (lowest) priority for preemption");
3458 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RWTUN, &static_boost, 0,
3459     "Assign static kernel priorities to sleeping threads");
3460 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RWTUN, &sched_idlespins, 0,
3461     "Number of times idle thread will spin waiting for new work");
3462 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
3463     &sched_idlespinthresh, 0,
3464     "Threshold before we will permit idle thread spinning");
3465 #ifdef SMP
3466 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
3467     "Number of hz ticks to keep thread affinity for");
3468 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RWTUN, &rebalance, 0,
3469     "Enables the long-term load balancer");
3470 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
3471     &balance_interval, 0,
3472     "Average period in stathz ticks to run the long-term balancer");
3473 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RWTUN, &steal_idle, 0,
3474     "Attempts to steal work from other cores before idling");
3475 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RWTUN, &steal_thresh, 0,
3476     "Minimum load on remote CPU before we'll steal");
3477 SYSCTL_INT(_kern_sched, OID_AUTO, trysteal_limit, CTLFLAG_RWTUN,
3478     &trysteal_limit, 0,
3479     "Topological distance limit for stealing threads in sched_switch()");
3480 SYSCTL_INT(_kern_sched, OID_AUTO, always_steal, CTLFLAG_RWTUN, &always_steal, 0,
3481     "Always run the stealer from the idle thread");
3482 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
3483     CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
3484     "XML dump of detected CPU topology");
3485 #endif
3486 
3487 /* ps compat.  All cpu percentages from ULE are weighted. */
3488 static int ccpu = 0;
3489 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0,
3490     "Decay factor used for updating %CPU in 4BSD scheduler");
3491