xref: /linux/drivers/net/ethernet/intel/ice/ice_base.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <net/xdp_sock_drv.h>
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_dcb_lib.h"
8 #include "ice_sriov.h"
9 
10 /**
11  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
12  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
13  *
14  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
15  */
__ice_vsi_get_qs_contig(struct ice_qs_cfg * qs_cfg)16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
17 {
18 	unsigned int offset, i;
19 
20 	mutex_lock(qs_cfg->qs_mutex);
21 	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
22 					    0, qs_cfg->q_count, 0);
23 	if (offset >= qs_cfg->pf_map_size) {
24 		mutex_unlock(qs_cfg->qs_mutex);
25 		return -ENOMEM;
26 	}
27 
28 	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
29 	for (i = 0; i < qs_cfg->q_count; i++)
30 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
31 	mutex_unlock(qs_cfg->qs_mutex);
32 
33 	return 0;
34 }
35 
36 /**
37  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
38  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
39  *
40  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
41  */
__ice_vsi_get_qs_sc(struct ice_qs_cfg * qs_cfg)42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
43 {
44 	unsigned int i, index = 0;
45 
46 	mutex_lock(qs_cfg->qs_mutex);
47 	for (i = 0; i < qs_cfg->q_count; i++) {
48 		index = find_next_zero_bit(qs_cfg->pf_map,
49 					   qs_cfg->pf_map_size, index);
50 		if (index >= qs_cfg->pf_map_size)
51 			goto err_scatter;
52 		set_bit(index, qs_cfg->pf_map);
53 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
54 	}
55 	mutex_unlock(qs_cfg->qs_mutex);
56 
57 	return 0;
58 err_scatter:
59 	for (index = 0; index < i; index++) {
60 		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
61 		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
62 	}
63 	mutex_unlock(qs_cfg->qs_mutex);
64 
65 	return -ENOMEM;
66 }
67 
68 /**
69  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
70  * @pf: the PF being configured
71  * @pf_q: the PF queue
72  * @ena: enable or disable state of the queue
73  *
74  * This routine will wait for the given Rx queue of the PF to reach the
75  * enabled or disabled state.
76  * Returns -ETIMEDOUT in case of failing to reach the requested state after
77  * multiple retries; else will return 0 in case of success.
78  */
ice_pf_rxq_wait(struct ice_pf * pf,int pf_q,bool ena)79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
80 {
81 	int i;
82 
83 	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
84 		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
85 			      QRX_CTRL_QENA_STAT_M))
86 			return 0;
87 
88 		usleep_range(20, 40);
89 	}
90 
91 	return -ETIMEDOUT;
92 }
93 
94 /**
95  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
96  * @vsi: the VSI being configured
97  * @v_idx: index of the vector in the VSI struct
98  *
99  * We allocate one q_vector and set default value for ITR setting associated
100  * with this q_vector. If allocation fails we return -ENOMEM.
101  */
ice_vsi_alloc_q_vector(struct ice_vsi * vsi,u16 v_idx)102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
103 {
104 	struct ice_pf *pf = vsi->back;
105 	struct ice_q_vector *q_vector;
106 	int err;
107 
108 	/* allocate q_vector */
109 	q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL);
110 	if (!q_vector)
111 		return -ENOMEM;
112 
113 	q_vector->vsi = vsi;
114 	q_vector->v_idx = v_idx;
115 	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
116 	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
117 	q_vector->tx.itr_mode = ITR_DYNAMIC;
118 	q_vector->rx.itr_mode = ITR_DYNAMIC;
119 	q_vector->tx.type = ICE_TX_CONTAINER;
120 	q_vector->rx.type = ICE_RX_CONTAINER;
121 	q_vector->irq.index = -ENOENT;
122 
123 	if (vsi->type == ICE_VSI_VF) {
124 		ice_calc_vf_reg_idx(vsi->vf, q_vector);
125 		goto out;
126 	} else if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
127 		struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi);
128 
129 		if (ctrl_vsi) {
130 			if (unlikely(!ctrl_vsi->q_vectors)) {
131 				err = -ENOENT;
132 				goto err_free_q_vector;
133 			}
134 
135 			q_vector->irq = ctrl_vsi->q_vectors[0]->irq;
136 			goto skip_alloc;
137 		}
138 	}
139 
140 	q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc);
141 	if (q_vector->irq.index < 0) {
142 		err = -ENOMEM;
143 		goto err_free_q_vector;
144 	}
145 
146 skip_alloc:
147 	q_vector->reg_idx = q_vector->irq.index;
148 	q_vector->vf_reg_idx = q_vector->irq.index;
149 
150 	/* This will not be called in the driver load path because the netdev
151 	 * will not be created yet. All other cases with register the NAPI
152 	 * handler here (i.e. resume, reset/rebuild, etc.)
153 	 */
154 	if (vsi->netdev)
155 		netif_napi_add_config(vsi->netdev, &q_vector->napi,
156 				      ice_napi_poll, v_idx);
157 
158 out:
159 	/* tie q_vector and VSI together */
160 	vsi->q_vectors[v_idx] = q_vector;
161 
162 	return 0;
163 
164 err_free_q_vector:
165 	kfree(q_vector);
166 
167 	return err;
168 }
169 
170 /**
171  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
172  * @vsi: VSI having the memory freed
173  * @v_idx: index of the vector to be freed
174  */
ice_free_q_vector(struct ice_vsi * vsi,int v_idx)175 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
176 {
177 	struct ice_q_vector *q_vector;
178 	struct ice_pf *pf = vsi->back;
179 	struct ice_tx_ring *tx_ring;
180 	struct ice_rx_ring *rx_ring;
181 	struct device *dev;
182 
183 	dev = ice_pf_to_dev(pf);
184 	if (!vsi->q_vectors[v_idx]) {
185 		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
186 		return;
187 	}
188 	q_vector = vsi->q_vectors[v_idx];
189 
190 	ice_for_each_tx_ring(tx_ring, vsi->q_vectors[v_idx]->tx)
191 		tx_ring->q_vector = NULL;
192 
193 	ice_for_each_rx_ring(rx_ring, vsi->q_vectors[v_idx]->rx)
194 		rx_ring->q_vector = NULL;
195 
196 	/* only VSI with an associated netdev is set up with NAPI */
197 	if (vsi->netdev)
198 		netif_napi_del(&q_vector->napi);
199 
200 	/* release MSIX interrupt if q_vector had interrupt allocated */
201 	if (q_vector->irq.index < 0)
202 		goto free_q_vector;
203 
204 	/* only free last VF ctrl vsi interrupt */
205 	if (vsi->type == ICE_VSI_CTRL && vsi->vf &&
206 	    ice_get_vf_ctrl_vsi(pf, vsi))
207 		goto free_q_vector;
208 
209 	ice_free_irq(pf, q_vector->irq);
210 
211 free_q_vector:
212 	kfree(q_vector);
213 	vsi->q_vectors[v_idx] = NULL;
214 }
215 
216 /**
217  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
218  * @hw: board specific structure
219  */
ice_cfg_itr_gran(struct ice_hw * hw)220 static void ice_cfg_itr_gran(struct ice_hw *hw)
221 {
222 	u32 regval = rd32(hw, GLINT_CTL);
223 
224 	/* no need to update global register if ITR gran is already set */
225 	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
226 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) &&
227 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) &&
228 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) &&
229 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US))
230 		return;
231 
232 	regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) |
233 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) |
234 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) |
235 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US);
236 	wr32(hw, GLINT_CTL, regval);
237 }
238 
239 /**
240  * ice_calc_txq_handle - calculate the queue handle
241  * @vsi: VSI that ring belongs to
242  * @ring: ring to get the absolute queue index
243  * @tc: traffic class number
244  */
ice_calc_txq_handle(struct ice_vsi * vsi,struct ice_tx_ring * ring,u8 tc)245 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
246 {
247 	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
248 
249 	if (ring->ch)
250 		return ring->q_index - ring->ch->base_q;
251 
252 	/* Idea here for calculation is that we subtract the number of queue
253 	 * count from TC that ring belongs to from its absolute queue index
254 	 * and as a result we get the queue's index within TC.
255 	 */
256 	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
257 }
258 
259 /**
260  * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
261  * @ring: The Tx ring to configure
262  *
263  * This enables/disables XPS for a given Tx descriptor ring
264  * based on the TCs enabled for the VSI that ring belongs to.
265  */
ice_cfg_xps_tx_ring(struct ice_tx_ring * ring)266 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
267 {
268 	if (!ring->q_vector || !ring->netdev)
269 		return;
270 
271 	/* We only initialize XPS once, so as not to overwrite user settings */
272 	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
273 		return;
274 
275 	netif_set_xps_queue(ring->netdev,
276 			    &ring->q_vector->napi.config->affinity_mask,
277 			    ring->q_index);
278 }
279 
280 /**
281  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
282  * @ring: The Tx ring to configure
283  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
284  * @pf_q: queue index in the PF space
285  *
286  * Configure the Tx descriptor ring in TLAN context.
287  */
288 static void
ice_setup_tx_ctx(struct ice_tx_ring * ring,struct ice_tlan_ctx * tlan_ctx,u16 pf_q)289 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
290 {
291 	struct ice_vsi *vsi = ring->vsi;
292 	struct ice_hw *hw = &vsi->back->hw;
293 
294 	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
295 
296 	tlan_ctx->port_num = vsi->port_info->lport;
297 
298 	/* Transmit Queue Length */
299 	tlan_ctx->qlen = ring->count;
300 
301 	ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
302 
303 	/* PF number */
304 	tlan_ctx->pf_num = hw->pf_id;
305 
306 	/* queue belongs to a specific VSI type
307 	 * VF / VM index should be programmed per vmvf_type setting:
308 	 * for vmvf_type = VF, it is VF number between 0-256
309 	 * for vmvf_type = VM, it is VM number between 0-767
310 	 * for PF or EMP this field should be set to zero
311 	 */
312 	switch (vsi->type) {
313 	case ICE_VSI_LB:
314 	case ICE_VSI_CTRL:
315 	case ICE_VSI_PF:
316 		if (ring->ch)
317 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
318 		else
319 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
320 		break;
321 	case ICE_VSI_VF:
322 		/* Firmware expects vmvf_num to be absolute VF ID */
323 		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
324 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
325 		break;
326 	case ICE_VSI_SF:
327 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
328 		break;
329 	default:
330 		return;
331 	}
332 
333 	/* make sure the context is associated with the right VSI */
334 	if (ring->ch)
335 		tlan_ctx->src_vsi = ring->ch->vsi_num;
336 	else
337 		tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
338 
339 	/* Restrict Tx timestamps to the PF VSI */
340 	switch (vsi->type) {
341 	case ICE_VSI_PF:
342 		tlan_ctx->tsyn_ena = 1;
343 		break;
344 	default:
345 		break;
346 	}
347 
348 	tlan_ctx->quanta_prof_idx = ring->quanta_prof_id;
349 
350 	tlan_ctx->tso_ena = ICE_TX_LEGACY;
351 	tlan_ctx->tso_qnum = pf_q;
352 
353 	/* Legacy or Advanced Host Interface:
354 	 * 0: Advanced Host Interface
355 	 * 1: Legacy Host Interface
356 	 */
357 	tlan_ctx->legacy_int = ICE_TX_LEGACY;
358 }
359 
360 /**
361  * ice_rx_offset - Return expected offset into page to access data
362  * @rx_ring: Ring we are requesting offset of
363  *
364  * Returns the offset value for ring into the data buffer.
365  */
ice_rx_offset(struct ice_rx_ring * rx_ring)366 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
367 {
368 	if (ice_ring_uses_build_skb(rx_ring))
369 		return ICE_SKB_PAD;
370 	return 0;
371 }
372 
373 /**
374  * ice_setup_rx_ctx - Configure a receive ring context
375  * @ring: The Rx ring to configure
376  *
377  * Configure the Rx descriptor ring in RLAN context.
378  */
ice_setup_rx_ctx(struct ice_rx_ring * ring)379 static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
380 {
381 	struct ice_vsi *vsi = ring->vsi;
382 	u32 rxdid = ICE_RXDID_FLEX_NIC;
383 	struct ice_rlan_ctx rlan_ctx;
384 	struct ice_hw *hw;
385 	u16 pf_q;
386 	int err;
387 
388 	hw = &vsi->back->hw;
389 
390 	/* what is Rx queue number in global space of 2K Rx queues */
391 	pf_q = vsi->rxq_map[ring->q_index];
392 
393 	/* clear the context structure first */
394 	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
395 
396 	/* Receive Queue Base Address.
397 	 * Indicates the starting address of the descriptor queue defined in
398 	 * 128 Byte units.
399 	 */
400 	rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
401 
402 	rlan_ctx.qlen = ring->count;
403 
404 	/* Receive Packet Data Buffer Size.
405 	 * The Packet Data Buffer Size is defined in 128 byte units.
406 	 */
407 	rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len,
408 				     BIT_ULL(ICE_RLAN_CTX_DBUF_S));
409 
410 	/* use 32 byte descriptors */
411 	rlan_ctx.dsize = 1;
412 
413 	/* Strip the Ethernet CRC bytes before the packet is posted to host
414 	 * memory.
415 	 */
416 	rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
417 
418 	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor
419 	 * and it needs to remain 1 for non-DVM capable configurations to not
420 	 * break backward compatibility for VF drivers. Setting this field to 0
421 	 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
422 	 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
423 	 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
424 	 * check for the tag
425 	 */
426 	if (ice_is_dvm_ena(hw))
427 		if (vsi->type == ICE_VSI_VF &&
428 		    ice_vf_is_port_vlan_ena(vsi->vf))
429 			rlan_ctx.l2tsel = 1;
430 		else
431 			rlan_ctx.l2tsel = 0;
432 	else
433 		rlan_ctx.l2tsel = 1;
434 
435 	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
436 	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
437 	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
438 
439 	/* This controls whether VLAN is stripped from inner headers
440 	 * The VLAN in the inner L2 header is stripped to the receive
441 	 * descriptor if enabled by this flag.
442 	 */
443 	rlan_ctx.showiv = 0;
444 
445 	/* Max packet size for this queue - must not be set to a larger value
446 	 * than 5 x DBUF
447 	 */
448 	rlan_ctx.rxmax = min_t(u32, ring->max_frame,
449 			       ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len);
450 
451 	/* Rx queue threshold in units of 64 */
452 	rlan_ctx.lrxqthresh = 1;
453 
454 	/* Enable descriptor prefetch */
455 	rlan_ctx.prefena = 1;
456 
457 	/* PF acts as uplink for switchdev; set flex descriptor with src_vsi
458 	 * metadata and flags to allow redirecting to PR netdev
459 	 */
460 	if (ice_is_eswitch_mode_switchdev(vsi->back)) {
461 		ring->flags |= ICE_RX_FLAGS_MULTIDEV;
462 		rxdid = ICE_RXDID_FLEX_NIC_2;
463 	}
464 
465 	/* Enable Flexible Descriptors in the queue context which
466 	 * allows this driver to select a specific receive descriptor format
467 	 * increasing context priority to pick up profile ID; default is 0x01;
468 	 * setting to 0x03 to ensure profile is programming if prev context is
469 	 * of same priority
470 	 */
471 	if (vsi->type != ICE_VSI_VF)
472 		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
473 
474 	/* Absolute queue number out of 2K needs to be passed */
475 	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
476 	if (err) {
477 		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
478 			pf_q, err);
479 		return -EIO;
480 	}
481 
482 	if (vsi->type == ICE_VSI_VF)
483 		return 0;
484 
485 	/* configure Rx buffer alignment */
486 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
487 		ice_clear_ring_build_skb_ena(ring);
488 	else
489 		ice_set_ring_build_skb_ena(ring);
490 
491 	ring->rx_offset = ice_rx_offset(ring);
492 
493 	/* init queue specific tail register */
494 	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
495 	writel(0, ring->tail);
496 
497 	return 0;
498 }
499 
ice_xsk_pool_fill_cb(struct ice_rx_ring * ring)500 static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring)
501 {
502 	void *ctx_ptr = &ring->pkt_ctx;
503 	struct xsk_cb_desc desc = {};
504 
505 	XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff);
506 	desc.src = &ctx_ptr;
507 	desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) -
508 		   sizeof(struct xdp_buff);
509 	desc.bytes = sizeof(ctx_ptr);
510 	xsk_pool_fill_cb(ring->xsk_pool, &desc);
511 }
512 
513 /**
514  * ice_get_frame_sz - calculate xdp_buff::frame_sz
515  * @rx_ring: the ring being configured
516  *
517  * Return frame size based on underlying PAGE_SIZE
518  */
ice_get_frame_sz(struct ice_rx_ring * rx_ring)519 static unsigned int ice_get_frame_sz(struct ice_rx_ring *rx_ring)
520 {
521 	unsigned int frame_sz;
522 
523 #if (PAGE_SIZE >= 8192)
524 	frame_sz = rx_ring->rx_buf_len;
525 #else
526 	frame_sz = ice_rx_pg_size(rx_ring) / 2;
527 #endif
528 
529 	return frame_sz;
530 }
531 
532 /**
533  * ice_vsi_cfg_rxq - Configure an Rx queue
534  * @ring: the ring being configured
535  *
536  * Return 0 on success and a negative value on error.
537  */
ice_vsi_cfg_rxq(struct ice_rx_ring * ring)538 static int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
539 {
540 	struct device *dev = ice_pf_to_dev(ring->vsi->back);
541 	u32 num_bufs = ICE_RX_DESC_UNUSED(ring);
542 	int err;
543 
544 	if (ring->vsi->type == ICE_VSI_PF || ring->vsi->type == ICE_VSI_SF) {
545 		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
546 			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
547 						 ring->q_index,
548 						 ring->q_vector->napi.napi_id,
549 						 ring->rx_buf_len);
550 			if (err)
551 				return err;
552 		}
553 
554 		ice_rx_xsk_pool(ring);
555 		if (ring->xsk_pool) {
556 			xdp_rxq_info_unreg(&ring->xdp_rxq);
557 
558 			ring->rx_buf_len =
559 				xsk_pool_get_rx_frame_size(ring->xsk_pool);
560 			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
561 						 ring->q_index,
562 						 ring->q_vector->napi.napi_id,
563 						 ring->rx_buf_len);
564 			if (err)
565 				return err;
566 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
567 							 MEM_TYPE_XSK_BUFF_POOL,
568 							 NULL);
569 			if (err)
570 				return err;
571 			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
572 			ice_xsk_pool_fill_cb(ring);
573 
574 			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
575 				 ring->q_index);
576 		} else {
577 			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
578 				err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
579 							 ring->q_index,
580 							 ring->q_vector->napi.napi_id,
581 							 ring->rx_buf_len);
582 				if (err)
583 					return err;
584 			}
585 
586 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
587 							 MEM_TYPE_PAGE_SHARED,
588 							 NULL);
589 			if (err)
590 				return err;
591 		}
592 	}
593 
594 	xdp_init_buff(&ring->xdp, ice_get_frame_sz(ring), &ring->xdp_rxq);
595 	ring->xdp.data = NULL;
596 	ring->xdp_ext.pkt_ctx = &ring->pkt_ctx;
597 	err = ice_setup_rx_ctx(ring);
598 	if (err) {
599 		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
600 			ring->q_index, err);
601 		return err;
602 	}
603 
604 	if (ring->xsk_pool) {
605 		bool ok;
606 
607 		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
608 			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
609 				 num_bufs, ring->q_index);
610 			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
611 
612 			return 0;
613 		}
614 
615 		ok = ice_alloc_rx_bufs_zc(ring, ring->xsk_pool, num_bufs);
616 		if (!ok) {
617 			u16 pf_q = ring->vsi->rxq_map[ring->q_index];
618 
619 			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
620 				 ring->q_index, pf_q);
621 		}
622 
623 		return 0;
624 	}
625 
626 	if (ring->vsi->type == ICE_VSI_CTRL)
627 		ice_init_ctrl_rx_descs(ring, num_bufs);
628 	else
629 		ice_alloc_rx_bufs(ring, num_bufs);
630 
631 	return 0;
632 }
633 
ice_vsi_cfg_single_rxq(struct ice_vsi * vsi,u16 q_idx)634 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
635 {
636 	if (q_idx >= vsi->num_rxq)
637 		return -EINVAL;
638 
639 	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
640 }
641 
642 /**
643  * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
644  * @vsi: VSI
645  * @ring: Rx ring to configure
646  *
647  * Determine the maximum frame size and Rx buffer length to use for a PF VSI.
648  * Set these in the associated Rx ring structure.
649  */
ice_vsi_cfg_frame_size(struct ice_vsi * vsi,struct ice_rx_ring * ring)650 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi, struct ice_rx_ring *ring)
651 {
652 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
653 		ring->max_frame = ICE_MAX_FRAME_LEGACY_RX;
654 		ring->rx_buf_len = ICE_RXBUF_1664;
655 #if (PAGE_SIZE < 8192)
656 	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
657 		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
658 		ring->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
659 		ring->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
660 #endif
661 	} else {
662 		ring->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
663 		ring->rx_buf_len = ICE_RXBUF_3072;
664 	}
665 }
666 
667 /**
668  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
669  * @vsi: the VSI being configured
670  *
671  * Return 0 on success and a negative value on error
672  * Configure the Rx VSI for operation.
673  */
ice_vsi_cfg_rxqs(struct ice_vsi * vsi)674 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
675 {
676 	u16 i;
677 
678 	/* set up individual rings */
679 	ice_for_each_rxq(vsi, i) {
680 		struct ice_rx_ring *ring = vsi->rx_rings[i];
681 		int err;
682 
683 		if (vsi->type != ICE_VSI_VF)
684 			ice_vsi_cfg_frame_size(vsi, ring);
685 
686 		err = ice_vsi_cfg_rxq(ring);
687 		if (err)
688 			return err;
689 	}
690 
691 	return 0;
692 }
693 
694 /**
695  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
696  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
697  *
698  * This function first tries to find contiguous space. If it is not successful,
699  * it tries with the scatter approach.
700  *
701  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
702  */
__ice_vsi_get_qs(struct ice_qs_cfg * qs_cfg)703 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
704 {
705 	int ret = 0;
706 
707 	ret = __ice_vsi_get_qs_contig(qs_cfg);
708 	if (ret) {
709 		/* contig failed, so try with scatter approach */
710 		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
711 		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
712 					qs_cfg->scatter_count);
713 		ret = __ice_vsi_get_qs_sc(qs_cfg);
714 	}
715 	return ret;
716 }
717 
718 /**
719  * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
720  * @vsi: the VSI being configured
721  * @ena: start or stop the Rx ring
722  * @rxq_idx: 0-based Rx queue index for the VSI passed in
723  * @wait: wait or don't wait for configuration to finish in hardware
724  *
725  * Return 0 on success and negative on error.
726  */
727 int
ice_vsi_ctrl_one_rx_ring(struct ice_vsi * vsi,bool ena,u16 rxq_idx,bool wait)728 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
729 {
730 	int pf_q = vsi->rxq_map[rxq_idx];
731 	struct ice_pf *pf = vsi->back;
732 	struct ice_hw *hw = &pf->hw;
733 	u32 rx_reg;
734 
735 	rx_reg = rd32(hw, QRX_CTRL(pf_q));
736 
737 	/* Skip if the queue is already in the requested state */
738 	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
739 		return 0;
740 
741 	/* turn on/off the queue */
742 	if (ena)
743 		rx_reg |= QRX_CTRL_QENA_REQ_M;
744 	else
745 		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
746 	wr32(hw, QRX_CTRL(pf_q), rx_reg);
747 
748 	if (!wait)
749 		return 0;
750 
751 	ice_flush(hw);
752 	return ice_pf_rxq_wait(pf, pf_q, ena);
753 }
754 
755 /**
756  * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
757  * @vsi: the VSI being configured
758  * @ena: true/false to verify Rx ring has been enabled/disabled respectively
759  * @rxq_idx: 0-based Rx queue index for the VSI passed in
760  *
761  * This routine will wait for the given Rx queue of the VSI to reach the
762  * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
763  * the requested state after multiple retries; else will return 0 in case of
764  * success.
765  */
ice_vsi_wait_one_rx_ring(struct ice_vsi * vsi,bool ena,u16 rxq_idx)766 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
767 {
768 	int pf_q = vsi->rxq_map[rxq_idx];
769 	struct ice_pf *pf = vsi->back;
770 
771 	return ice_pf_rxq_wait(pf, pf_q, ena);
772 }
773 
774 /**
775  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
776  * @vsi: the VSI being configured
777  *
778  * We allocate one q_vector per queue interrupt. If allocation fails we
779  * return -ENOMEM.
780  */
ice_vsi_alloc_q_vectors(struct ice_vsi * vsi)781 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
782 {
783 	struct device *dev = ice_pf_to_dev(vsi->back);
784 	u16 v_idx;
785 	int err;
786 
787 	if (vsi->q_vectors[0]) {
788 		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
789 		return -EEXIST;
790 	}
791 
792 	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
793 		err = ice_vsi_alloc_q_vector(vsi, v_idx);
794 		if (err)
795 			goto err_out;
796 	}
797 
798 	return 0;
799 
800 err_out:
801 
802 	dev_info(dev, "Failed to allocate %d q_vectors for VSI %d, new value %d",
803 		 vsi->num_q_vectors, vsi->vsi_num, v_idx);
804 	vsi->num_q_vectors = v_idx;
805 	return v_idx ? 0 : err;
806 }
807 
808 /**
809  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
810  * @vsi: the VSI being configured
811  *
812  * This function maps descriptor rings to the queue-specific vectors allotted
813  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
814  * and Rx rings to the vector as "efficiently" as possible.
815  */
ice_vsi_map_rings_to_vectors(struct ice_vsi * vsi)816 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
817 {
818 	int q_vectors = vsi->num_q_vectors;
819 	u16 tx_rings_rem, rx_rings_rem;
820 	int v_id;
821 
822 	/* initially assigning remaining rings count to VSIs num queue value */
823 	tx_rings_rem = vsi->num_txq;
824 	rx_rings_rem = vsi->num_rxq;
825 
826 	for (v_id = 0; v_id < q_vectors; v_id++) {
827 		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
828 		u8 tx_rings_per_v, rx_rings_per_v;
829 		u16 q_id, q_base;
830 
831 		/* Tx rings mapping to vector */
832 		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
833 						  q_vectors - v_id);
834 		q_vector->num_ring_tx = tx_rings_per_v;
835 		q_vector->tx.tx_ring = NULL;
836 		q_vector->tx.itr_idx = ICE_TX_ITR;
837 		q_base = vsi->num_txq - tx_rings_rem;
838 
839 		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
840 			struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
841 
842 			tx_ring->q_vector = q_vector;
843 			tx_ring->next = q_vector->tx.tx_ring;
844 			q_vector->tx.tx_ring = tx_ring;
845 		}
846 		tx_rings_rem -= tx_rings_per_v;
847 
848 		/* Rx rings mapping to vector */
849 		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
850 						  q_vectors - v_id);
851 		q_vector->num_ring_rx = rx_rings_per_v;
852 		q_vector->rx.rx_ring = NULL;
853 		q_vector->rx.itr_idx = ICE_RX_ITR;
854 		q_base = vsi->num_rxq - rx_rings_rem;
855 
856 		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
857 			struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
858 
859 			rx_ring->q_vector = q_vector;
860 			rx_ring->next = q_vector->rx.rx_ring;
861 			q_vector->rx.rx_ring = rx_ring;
862 		}
863 		rx_rings_rem -= rx_rings_per_v;
864 	}
865 
866 	if (ice_is_xdp_ena_vsi(vsi))
867 		ice_map_xdp_rings(vsi);
868 }
869 
870 /**
871  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
872  * @vsi: the VSI having memory freed
873  */
ice_vsi_free_q_vectors(struct ice_vsi * vsi)874 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
875 {
876 	int v_idx;
877 
878 	ice_for_each_q_vector(vsi, v_idx)
879 		ice_free_q_vector(vsi, v_idx);
880 
881 	vsi->num_q_vectors = 0;
882 }
883 
884 /**
885  * ice_vsi_cfg_txq - Configure single Tx queue
886  * @vsi: the VSI that queue belongs to
887  * @ring: Tx ring to be configured
888  * @qg_buf: queue group buffer
889  */
890 static int
ice_vsi_cfg_txq(struct ice_vsi * vsi,struct ice_tx_ring * ring,struct ice_aqc_add_tx_qgrp * qg_buf)891 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
892 		struct ice_aqc_add_tx_qgrp *qg_buf)
893 {
894 	u8 buf_len = struct_size(qg_buf, txqs, 1);
895 	struct ice_tlan_ctx tlan_ctx = { 0 };
896 	struct ice_aqc_add_txqs_perq *txq;
897 	struct ice_channel *ch = ring->ch;
898 	struct ice_pf *pf = vsi->back;
899 	struct ice_hw *hw = &pf->hw;
900 	int status;
901 	u16 pf_q;
902 	u8 tc;
903 
904 	/* Configure XPS */
905 	ice_cfg_xps_tx_ring(ring);
906 
907 	pf_q = ring->reg_idx;
908 	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
909 	/* copy context contents into the qg_buf */
910 	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
911 	ice_pack_txq_ctx(&tlan_ctx, &qg_buf->txqs[0].txq_ctx);
912 
913 	/* init queue specific tail reg. It is referred as
914 	 * transmit comm scheduler queue doorbell.
915 	 */
916 	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
917 
918 	if (IS_ENABLED(CONFIG_DCB))
919 		tc = ring->dcb_tc;
920 	else
921 		tc = 0;
922 
923 	/* Add unique software queue handle of the Tx queue per
924 	 * TC into the VSI Tx ring
925 	 */
926 	ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
927 
928 	if (ch)
929 		status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
930 					 ring->q_handle, 1, qg_buf, buf_len,
931 					 NULL);
932 	else
933 		status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
934 					 ring->q_handle, 1, qg_buf, buf_len,
935 					 NULL);
936 	if (status) {
937 		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
938 			status);
939 		return status;
940 	}
941 
942 	/* Add Tx Queue TEID into the VSI Tx ring from the
943 	 * response. This will complete configuring and
944 	 * enabling the queue.
945 	 */
946 	txq = &qg_buf->txqs[0];
947 	if (pf_q == le16_to_cpu(txq->txq_id))
948 		ring->txq_teid = le32_to_cpu(txq->q_teid);
949 
950 	return 0;
951 }
952 
ice_vsi_cfg_single_txq(struct ice_vsi * vsi,struct ice_tx_ring ** tx_rings,u16 q_idx)953 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings,
954 			   u16 q_idx)
955 {
956 	DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
957 
958 	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
959 		return -EINVAL;
960 
961 	qg_buf->num_txqs = 1;
962 
963 	return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
964 }
965 
966 /**
967  * ice_vsi_cfg_txqs - Configure the VSI for Tx
968  * @vsi: the VSI being configured
969  * @rings: Tx ring array to be configured
970  * @count: number of Tx ring array elements
971  *
972  * Return 0 on success and a negative value on error
973  * Configure the Tx VSI for operation.
974  */
975 static int
ice_vsi_cfg_txqs(struct ice_vsi * vsi,struct ice_tx_ring ** rings,u16 count)976 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
977 {
978 	DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
979 	int err = 0;
980 	u16 q_idx;
981 
982 	qg_buf->num_txqs = 1;
983 
984 	for (q_idx = 0; q_idx < count; q_idx++) {
985 		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
986 		if (err)
987 			break;
988 	}
989 
990 	return err;
991 }
992 
993 /**
994  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
995  * @vsi: the VSI being configured
996  *
997  * Return 0 on success and a negative value on error
998  * Configure the Tx VSI for operation.
999  */
ice_vsi_cfg_lan_txqs(struct ice_vsi * vsi)1000 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1001 {
1002 	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1003 }
1004 
1005 /**
1006  * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1007  * @vsi: the VSI being configured
1008  *
1009  * Return 0 on success and a negative value on error
1010  * Configure the Tx queues dedicated for XDP in given VSI for operation.
1011  */
ice_vsi_cfg_xdp_txqs(struct ice_vsi * vsi)1012 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1013 {
1014 	int ret;
1015 	int i;
1016 
1017 	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1018 	if (ret)
1019 		return ret;
1020 
1021 	ice_for_each_rxq(vsi, i)
1022 		ice_tx_xsk_pool(vsi, i);
1023 
1024 	return 0;
1025 }
1026 
1027 /**
1028  * ice_cfg_itr - configure the initial interrupt throttle values
1029  * @hw: pointer to the HW structure
1030  * @q_vector: interrupt vector that's being configured
1031  *
1032  * Configure interrupt throttling values for the ring containers that are
1033  * associated with the interrupt vector passed in.
1034  */
ice_cfg_itr(struct ice_hw * hw,struct ice_q_vector * q_vector)1035 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1036 {
1037 	ice_cfg_itr_gran(hw);
1038 
1039 	if (q_vector->num_ring_rx)
1040 		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
1041 
1042 	if (q_vector->num_ring_tx)
1043 		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
1044 
1045 	ice_write_intrl(q_vector, q_vector->intrl);
1046 }
1047 
1048 /**
1049  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
1050  * @vsi: the VSI being configured
1051  * @txq: Tx queue being mapped to MSI-X vector
1052  * @msix_idx: MSI-X vector index within the function
1053  * @itr_idx: ITR index of the interrupt cause
1054  *
1055  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
1056  * within the function space.
1057  */
1058 void
ice_cfg_txq_interrupt(struct ice_vsi * vsi,u16 txq,u16 msix_idx,u16 itr_idx)1059 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1060 {
1061 	struct ice_pf *pf = vsi->back;
1062 	struct ice_hw *hw = &pf->hw;
1063 	u32 val;
1064 
1065 	itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx);
1066 
1067 	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1068 	      FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx);
1069 
1070 	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1071 	if (ice_is_xdp_ena_vsi(vsi)) {
1072 		u32 xdp_txq = txq + vsi->num_xdp_txq;
1073 
1074 		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
1075 		     val);
1076 	}
1077 	ice_flush(hw);
1078 }
1079 
1080 /**
1081  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
1082  * @vsi: the VSI being configured
1083  * @rxq: Rx queue being mapped to MSI-X vector
1084  * @msix_idx: MSI-X vector index within the function
1085  * @itr_idx: ITR index of the interrupt cause
1086  *
1087  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
1088  * within the function space.
1089  */
1090 void
ice_cfg_rxq_interrupt(struct ice_vsi * vsi,u16 rxq,u16 msix_idx,u16 itr_idx)1091 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1092 {
1093 	struct ice_pf *pf = vsi->back;
1094 	struct ice_hw *hw = &pf->hw;
1095 	u32 val;
1096 
1097 	itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx);
1098 
1099 	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1100 	      FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx);
1101 
1102 	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1103 
1104 	ice_flush(hw);
1105 }
1106 
1107 /**
1108  * ice_trigger_sw_intr - trigger a software interrupt
1109  * @hw: pointer to the HW structure
1110  * @q_vector: interrupt vector to trigger the software interrupt for
1111  */
ice_trigger_sw_intr(struct ice_hw * hw,const struct ice_q_vector * q_vector)1112 void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector)
1113 {
1114 	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
1115 	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
1116 	     GLINT_DYN_CTL_SWINT_TRIG_M |
1117 	     GLINT_DYN_CTL_INTENA_M);
1118 }
1119 
1120 /**
1121  * ice_vsi_stop_tx_ring - Disable single Tx ring
1122  * @vsi: the VSI being configured
1123  * @rst_src: reset source
1124  * @rel_vmvf_num: Relative ID of VF/VM
1125  * @ring: Tx ring to be stopped
1126  * @txq_meta: Meta data of Tx ring to be stopped
1127  */
1128 int
ice_vsi_stop_tx_ring(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num,struct ice_tx_ring * ring,struct ice_txq_meta * txq_meta)1129 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1130 		     u16 rel_vmvf_num, struct ice_tx_ring *ring,
1131 		     struct ice_txq_meta *txq_meta)
1132 {
1133 	struct ice_pf *pf = vsi->back;
1134 	struct ice_q_vector *q_vector;
1135 	struct ice_hw *hw = &pf->hw;
1136 	int status;
1137 	u32 val;
1138 
1139 	/* clear cause_ena bit for disabled queues */
1140 	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
1141 	val &= ~QINT_TQCTL_CAUSE_ENA_M;
1142 	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
1143 
1144 	/* software is expected to wait for 100 ns */
1145 	ndelay(100);
1146 
1147 	/* trigger a software interrupt for the vector
1148 	 * associated to the queue to schedule NAPI handler
1149 	 */
1150 	q_vector = ring->q_vector;
1151 	if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
1152 		ice_trigger_sw_intr(hw, q_vector);
1153 
1154 	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
1155 				 txq_meta->tc, 1, &txq_meta->q_handle,
1156 				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
1157 				 rel_vmvf_num, NULL);
1158 
1159 	/* if the disable queue command was exercised during an
1160 	 * active reset flow, -EBUSY is returned.
1161 	 * This is not an error as the reset operation disables
1162 	 * queues at the hardware level anyway.
1163 	 */
1164 	if (status == -EBUSY) {
1165 		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
1166 	} else if (status == -ENOENT) {
1167 		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
1168 	} else if (status) {
1169 		dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
1170 			status);
1171 		return status;
1172 	}
1173 
1174 	return 0;
1175 }
1176 
1177 /**
1178  * ice_fill_txq_meta - Prepare the Tx queue's meta data
1179  * @vsi: VSI that ring belongs to
1180  * @ring: ring that txq_meta will be based on
1181  * @txq_meta: a helper struct that wraps Tx queue's information
1182  *
1183  * Set up a helper struct that will contain all the necessary fields that
1184  * are needed for stopping Tx queue
1185  */
1186 void
ice_fill_txq_meta(const struct ice_vsi * vsi,struct ice_tx_ring * ring,struct ice_txq_meta * txq_meta)1187 ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring,
1188 		  struct ice_txq_meta *txq_meta)
1189 {
1190 	struct ice_channel *ch = ring->ch;
1191 	u8 tc;
1192 
1193 	if (IS_ENABLED(CONFIG_DCB))
1194 		tc = ring->dcb_tc;
1195 	else
1196 		tc = 0;
1197 
1198 	txq_meta->q_id = ring->reg_idx;
1199 	txq_meta->q_teid = ring->txq_teid;
1200 	txq_meta->q_handle = ring->q_handle;
1201 	if (ch) {
1202 		txq_meta->vsi_idx = ch->ch_vsi->idx;
1203 		txq_meta->tc = 0;
1204 	} else {
1205 		txq_meta->vsi_idx = vsi->idx;
1206 		txq_meta->tc = tc;
1207 	}
1208 }
1209