1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2010 Fabio Checconi, Luigi Rizzo, Paolo Valente
5 * All rights reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 */
31
32 #ifdef _KERNEL
33 #include <sys/malloc.h>
34 #include <sys/socket.h>
35 #include <sys/socketvar.h>
36 #include <sys/kernel.h>
37 #include <sys/lock.h>
38 #include <sys/mbuf.h>
39 #include <sys/module.h>
40 #include <sys/rwlock.h>
41 #include <net/if.h> /* IFNAMSIZ */
42 #include <netinet/in.h>
43 #include <netinet/ip_var.h> /* ipfw_rule_ref */
44 #include <netinet/ip_fw.h> /* flow_id */
45 #include <netinet/ip_dummynet.h>
46 #include <netpfil/ipfw/ip_fw_private.h>
47 #include <netpfil/ipfw/dn_heap.h>
48 #include <netpfil/ipfw/ip_dn_private.h>
49 #ifdef NEW_AQM
50 #include <netpfil/ipfw/dn_aqm.h>
51 #endif
52 #include <netpfil/ipfw/dn_sched.h>
53 #else
54 #include <dn_test.h>
55 #endif
56
57 #ifdef QFQ_DEBUG
58 #define _P64 unsigned long long /* cast for printing uint64_t */
59 struct qfq_sched;
60 static void dump_sched(struct qfq_sched *q, const char *msg);
61 #define NO(x) x
62 #else
63 #define NO(x)
64 #endif
65 #define DN_SCHED_QFQ 4 // XXX Where?
66 typedef unsigned long bitmap;
67
68 /*
69 * bitmaps ops are critical. Some linux versions have __fls
70 * and the bitmap ops. Some machines have ffs
71 * NOTE: fls() returns 1 for the least significant bit,
72 * __fls() returns 0 for the same case.
73 * We use the base-0 version __fls() to match the description in
74 * the ToN QFQ paper
75 */
76 #if defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
fls(unsigned int n)77 int fls(unsigned int n)
78 {
79 int i = 0;
80 for (i = 0; n > 0; n >>= 1, i++)
81 ;
82 return i;
83 }
84 #endif
85
86 #if !defined(_KERNEL) || defined( __FreeBSD__ ) || defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
__fls(unsigned long word)87 static inline unsigned long __fls(unsigned long word)
88 {
89 return fls(word) - 1;
90 }
91 #endif
92
93 #if !defined(_KERNEL) || !defined(__linux__)
94 #ifdef QFQ_DEBUG
test_bit(int ix,bitmap * p)95 static int test_bit(int ix, bitmap *p)
96 {
97 if (ix < 0 || ix > 31)
98 D("bad index %d", ix);
99 return *p & (1<<ix);
100 }
__set_bit(int ix,bitmap * p)101 static void __set_bit(int ix, bitmap *p)
102 {
103 if (ix < 0 || ix > 31)
104 D("bad index %d", ix);
105 *p |= (1<<ix);
106 }
__clear_bit(int ix,bitmap * p)107 static void __clear_bit(int ix, bitmap *p)
108 {
109 if (ix < 0 || ix > 31)
110 D("bad index %d", ix);
111 *p &= ~(1<<ix);
112 }
113 #else /* !QFQ_DEBUG */
114 /* XXX do we have fast version, or leave it to the compiler ? */
115 #define test_bit(ix, pData) ((*pData) & (1<<(ix)))
116 #define __set_bit(ix, pData) (*pData) |= (1<<(ix))
117 #define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix))
118 #endif /* !QFQ_DEBUG */
119 #endif /* !__linux__ */
120
121 #ifdef __MIPSEL__
122 #define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix))
123 #endif
124
125 /*-------------------------------------------*/
126 /*
127
128 Virtual time computations.
129
130 S, F and V are all computed in fixed point arithmetic with
131 FRAC_BITS decimal bits.
132
133 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
134 one bit per index.
135 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
136 The layout of the bits is as below:
137
138 [ MTU_SHIFT ][ FRAC_BITS ]
139 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
140 ^.__grp->index = 0
141 *.__grp->slot_shift
142
143 where MIN_SLOT_SHIFT is derived by difference from the others.
144
145 The max group index corresponds to Lmax/w_min, where
146 Lmax=1<<MTU_SHIFT, w_min = 1 .
147 From this, and knowing how many groups (MAX_INDEX) we want,
148 we can derive the shift corresponding to each group.
149
150 Because we often need to compute
151 F = S + len/w_i and V = V + len/wsum
152 instead of storing w_i store the value
153 inv_w = (1<<FRAC_BITS)/w_i
154 so we can do F = S + len * inv_w * wsum.
155 We use W_TOT in the formulas so we can easily move between
156 static and adaptive weight sum.
157
158 The per-scheduler-instance data contain all the data structures
159 for the scheduler: bitmaps and bucket lists.
160
161 */
162 /*
163 * Maximum number of consecutive slots occupied by backlogged classes
164 * inside a group. This is approx lmax/lmin + 5.
165 * XXX check because it poses constraints on MAX_INDEX
166 */
167 #define QFQ_MAX_SLOTS 32
168 /*
169 * Shifts used for class<->group mapping. Class weights are
170 * in the range [1, QFQ_MAX_WEIGHT], we to map each class i to the
171 * group with the smallest index that can support the L_i / r_i
172 * configured for the class.
173 *
174 * grp->index is the index of the group; and grp->slot_shift
175 * is the shift for the corresponding (scaled) sigma_i.
176 *
177 * When computing the group index, we do (len<<FP_SHIFT)/weight,
178 * then compute an FLS (which is like a log2()), and if the result
179 * is below the MAX_INDEX region we use 0 (which is the same as
180 * using a larger len).
181 */
182 #define QFQ_MAX_INDEX 19
183 #define QFQ_MAX_WSHIFT 16 /* log2(max_weight) */
184
185 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT)
186 #define QFQ_MAX_WSUM (2*QFQ_MAX_WEIGHT)
187
188 #define FRAC_BITS 30 /* fixed point arithmetic */
189 #define ONE_FP (1UL << FRAC_BITS)
190
191 #define QFQ_MTU_SHIFT 11 /* log2(max_len) */
192 #define QFQ_MIN_SLOT_SHIFT (FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX)
193
194 /*
195 * Possible group states, also indexes for the bitmaps array in
196 * struct qfq_queue. We rely on ER, IR, EB, IB being numbered 0..3
197 */
198 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
199
200 struct qfq_group;
201 /*
202 * additional queue info. Some of this info should come from
203 * the flowset, we copy them here for faster processing.
204 * This is an overlay of the struct dn_queue
205 */
206 struct qfq_class {
207 struct dn_queue _q;
208 uint64_t S, F; /* flow timestamps (exact) */
209 struct qfq_class *next; /* Link for the slot list. */
210
211 /* group we belong to. In principle we would need the index,
212 * which is log_2(lmax/weight), but we never reference it
213 * directly, only the group.
214 */
215 struct qfq_group *grp;
216
217 /* these are copied from the flowset. */
218 uint32_t inv_w; /* ONE_FP/weight */
219 uint32_t lmax; /* Max packet size for this flow. */
220 };
221
222 /* Group descriptor, see the paper for details.
223 * Basically this contains the bucket lists
224 */
225 struct qfq_group {
226 uint64_t S, F; /* group timestamps (approx). */
227 unsigned int slot_shift; /* Slot shift. */
228 unsigned int index; /* Group index. */
229 unsigned int front; /* Index of the front slot. */
230 bitmap full_slots; /* non-empty slots */
231
232 /* Array of lists of active classes. */
233 struct qfq_class *slots[QFQ_MAX_SLOTS];
234 };
235
236 /* scheduler instance descriptor. */
237 struct qfq_sched {
238 uint64_t V; /* Precise virtual time. */
239 uint32_t wsum; /* weight sum */
240 uint32_t iwsum; /* inverse weight sum */
241 NO(uint32_t i_wsum;) /* ONE_FP/w_sum */
242 NO(uint32_t queued;) /* debugging */
243 NO(uint32_t loops;) /* debugging */
244 bitmap bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
245 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
246 };
247
248 /*---- support functions ----------------------------*/
249
250 /* Generic comparison function, handling wraparound. */
qfq_gt(uint64_t a,uint64_t b)251 static inline int qfq_gt(uint64_t a, uint64_t b)
252 {
253 return (int64_t)(a - b) > 0;
254 }
255
256 /* Round a precise timestamp to its slotted value. */
qfq_round_down(uint64_t ts,unsigned int shift)257 static inline uint64_t qfq_round_down(uint64_t ts, unsigned int shift)
258 {
259 return ts & ~((1ULL << shift) - 1);
260 }
261
262 /* return the pointer to the group with lowest index in the bitmap */
qfq_ffs(struct qfq_sched * q,unsigned long bitmap)263 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
264 unsigned long bitmap)
265 {
266 int index = ffs(bitmap) - 1; // zero-based
267 return &q->groups[index];
268 }
269
270 /*
271 * Calculate a flow index, given its weight and maximum packet length.
272 * index = log_2(maxlen/weight) but we need to apply the scaling.
273 * This is used only once at flow creation.
274 */
qfq_calc_index(uint32_t inv_w,unsigned int maxlen)275 static int qfq_calc_index(uint32_t inv_w, unsigned int maxlen)
276 {
277 uint64_t slot_size = (uint64_t)maxlen *inv_w;
278 unsigned long size_map;
279 int index = 0;
280
281 size_map = (unsigned long)(slot_size >> QFQ_MIN_SLOT_SHIFT);
282 if (!size_map)
283 goto out;
284
285 index = __fls(size_map) + 1; // basically a log_2()
286 index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1)));
287
288 if (index < 0)
289 index = 0;
290
291 out:
292 ND("W = %d, L = %d, I = %d\n", ONE_FP/inv_w, maxlen, index);
293 return index;
294 }
295 /*---- end support functions ----*/
296
297 /*-------- API calls --------------------------------*/
298 /*
299 * Validate and copy parameters from flowset.
300 */
301 static int
qfq_new_queue(struct dn_queue * _q)302 qfq_new_queue(struct dn_queue *_q)
303 {
304 struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
305 struct qfq_class *cl = (struct qfq_class *)_q;
306 int i;
307 uint32_t w; /* approximated weight */
308
309 /* import parameters from the flowset. They should be correct
310 * already.
311 */
312 w = _q->fs->fs.par[0];
313 cl->lmax = _q->fs->fs.par[1];
314 if (!w || w > QFQ_MAX_WEIGHT) {
315 w = 1;
316 D("rounding weight to 1");
317 }
318 cl->inv_w = ONE_FP/w;
319 w = ONE_FP/cl->inv_w;
320 if (q->wsum + w > QFQ_MAX_WSUM)
321 return EINVAL;
322
323 i = qfq_calc_index(cl->inv_w, cl->lmax);
324 cl->grp = &q->groups[i];
325 q->wsum += w;
326 q->iwsum = ONE_FP / q->wsum; /* XXX note theory */
327 // XXX cl->S = q->V; ?
328 return 0;
329 }
330
331 /* remove an empty queue */
332 static int
qfq_free_queue(struct dn_queue * _q)333 qfq_free_queue(struct dn_queue *_q)
334 {
335 struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
336 struct qfq_class *cl = (struct qfq_class *)_q;
337 if (cl->inv_w) {
338 q->wsum -= ONE_FP/cl->inv_w;
339 if (q->wsum != 0)
340 q->iwsum = ONE_FP / q->wsum;
341 cl->inv_w = 0; /* reset weight to avoid run twice */
342 }
343 return 0;
344 }
345
346 /* Calculate a mask to mimic what would be ffs_from(). */
347 static inline unsigned long
mask_from(unsigned long bitmap,int from)348 mask_from(unsigned long bitmap, int from)
349 {
350 return bitmap & ~((1UL << from) - 1);
351 }
352
353 /*
354 * The state computation relies on ER=0, IR=1, EB=2, IB=3
355 * First compute eligibility comparing grp->S, q->V,
356 * then check if someone is blocking us and possibly add EB
357 */
358 static inline unsigned int
qfq_calc_state(struct qfq_sched * q,struct qfq_group * grp)359 qfq_calc_state(struct qfq_sched *q, struct qfq_group *grp)
360 {
361 /* if S > V we are not eligible */
362 unsigned int state = qfq_gt(grp->S, q->V);
363 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
364 struct qfq_group *next;
365
366 if (mask) {
367 next = qfq_ffs(q, mask);
368 if (qfq_gt(grp->F, next->F))
369 state |= EB;
370 }
371
372 return state;
373 }
374
375 /*
376 * In principle
377 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
378 * q->bitmaps[src] &= ~mask;
379 * but we should make sure that src != dst
380 */
381 static inline void
qfq_move_groups(struct qfq_sched * q,unsigned long mask,int src,int dst)382 qfq_move_groups(struct qfq_sched *q, unsigned long mask, int src, int dst)
383 {
384 q->bitmaps[dst] |= q->bitmaps[src] & mask;
385 q->bitmaps[src] &= ~mask;
386 }
387
388 static inline void
qfq_unblock_groups(struct qfq_sched * q,int index,uint64_t old_finish)389 qfq_unblock_groups(struct qfq_sched *q, int index, uint64_t old_finish)
390 {
391 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
392 struct qfq_group *next;
393
394 if (mask) {
395 next = qfq_ffs(q, mask);
396 if (!qfq_gt(next->F, old_finish))
397 return;
398 }
399
400 mask = (1UL << index) - 1;
401 qfq_move_groups(q, mask, EB, ER);
402 qfq_move_groups(q, mask, IB, IR);
403 }
404
405 /*
406 * perhaps
407 *
408 old_V ^= q->V;
409 old_V >>= QFQ_MIN_SLOT_SHIFT;
410 if (old_V) {
411 ...
412 }
413 *
414 */
415 static inline void
qfq_make_eligible(struct qfq_sched * q,uint64_t old_V)416 qfq_make_eligible(struct qfq_sched *q, uint64_t old_V)
417 {
418 unsigned long mask, vslot, old_vslot;
419
420 vslot = q->V >> QFQ_MIN_SLOT_SHIFT;
421 old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT;
422
423 if (vslot != old_vslot) {
424 /* must be 2ULL, see ToN QFQ article fig.5, we use base-0 fls */
425 mask = (2ULL << (__fls(vslot ^ old_vslot))) - 1;
426 qfq_move_groups(q, mask, IR, ER);
427 qfq_move_groups(q, mask, IB, EB);
428 }
429 }
430
431 /*
432 * XXX we should make sure that slot becomes less than 32.
433 * This is guaranteed by the input values.
434 * roundedS is always cl->S rounded on grp->slot_shift bits.
435 */
436 static inline void
qfq_slot_insert(struct qfq_group * grp,struct qfq_class * cl,uint64_t roundedS)437 qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, uint64_t roundedS)
438 {
439 uint64_t slot = (roundedS - grp->S) >> grp->slot_shift;
440 unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS;
441
442 cl->next = grp->slots[i];
443 grp->slots[i] = cl;
444 __set_bit(slot, &grp->full_slots);
445 }
446
447 /*
448 * remove the entry from the slot
449 */
450 static inline void
qfq_front_slot_remove(struct qfq_group * grp)451 qfq_front_slot_remove(struct qfq_group *grp)
452 {
453 struct qfq_class **h = &grp->slots[grp->front];
454
455 *h = (*h)->next;
456 if (!*h)
457 __clear_bit(0, &grp->full_slots);
458 }
459
460 /*
461 * Returns the first full queue in a group. As a side effect,
462 * adjust the bucket list so the first non-empty bucket is at
463 * position 0 in full_slots.
464 */
465 static inline struct qfq_class *
qfq_slot_scan(struct qfq_group * grp)466 qfq_slot_scan(struct qfq_group *grp)
467 {
468 int i;
469
470 ND("grp %d full %x", grp->index, grp->full_slots);
471 if (!grp->full_slots)
472 return NULL;
473
474 i = ffs(grp->full_slots) - 1; // zero-based
475 if (i > 0) {
476 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
477 grp->full_slots >>= i;
478 }
479
480 return grp->slots[grp->front];
481 }
482
483 /*
484 * adjust the bucket list. When the start time of a group decreases,
485 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
486 * move the objects. The mask of occupied slots must be shifted
487 * because we use ffs() to find the first non-empty slot.
488 * This covers decreases in the group's start time, but what about
489 * increases of the start time ?
490 * Here too we should make sure that i is less than 32
491 */
492 static inline void
qfq_slot_rotate(struct qfq_sched * q,struct qfq_group * grp,uint64_t roundedS)493 qfq_slot_rotate(struct qfq_sched *q, struct qfq_group *grp, uint64_t roundedS)
494 {
495 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
496
497 (void)q;
498 grp->full_slots <<= i;
499 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
500 }
501
502 static inline void
qfq_update_eligible(struct qfq_sched * q,uint64_t old_V)503 qfq_update_eligible(struct qfq_sched *q, uint64_t old_V)
504 {
505 bitmap ineligible;
506
507 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
508 if (ineligible) {
509 if (!q->bitmaps[ER]) {
510 struct qfq_group *grp;
511 grp = qfq_ffs(q, ineligible);
512 if (qfq_gt(grp->S, q->V))
513 q->V = grp->S;
514 }
515 qfq_make_eligible(q, old_V);
516 }
517 }
518
519 /*
520 * Updates the class, returns true if also the group needs to be updated.
521 */
522 static inline int
qfq_update_class(struct qfq_sched * q,struct qfq_group * grp,struct qfq_class * cl)523 qfq_update_class(struct qfq_sched *q, struct qfq_group *grp,
524 struct qfq_class *cl)
525 {
526
527 (void)q;
528 cl->S = cl->F;
529 if (cl->_q.mq.head == NULL) {
530 qfq_front_slot_remove(grp);
531 } else {
532 unsigned int len;
533 uint64_t roundedS;
534
535 len = cl->_q.mq.head->m_pkthdr.len;
536 cl->F = cl->S + (uint64_t)len * cl->inv_w;
537 roundedS = qfq_round_down(cl->S, grp->slot_shift);
538 if (roundedS == grp->S)
539 return 0;
540
541 qfq_front_slot_remove(grp);
542 qfq_slot_insert(grp, cl, roundedS);
543 }
544 return 1;
545 }
546
547 static struct mbuf *
qfq_dequeue(struct dn_sch_inst * si)548 qfq_dequeue(struct dn_sch_inst *si)
549 {
550 struct qfq_sched *q = (struct qfq_sched *)(si + 1);
551 struct qfq_group *grp;
552 struct qfq_class *cl;
553 struct mbuf *m;
554 uint64_t old_V;
555
556 NO(q->loops++;)
557 if (!q->bitmaps[ER]) {
558 NO(if (q->queued)
559 dump_sched(q, "start dequeue");)
560 return NULL;
561 }
562
563 grp = qfq_ffs(q, q->bitmaps[ER]);
564
565 cl = grp->slots[grp->front];
566 /* extract from the first bucket in the bucket list */
567 m = dn_dequeue(&cl->_q);
568
569 if (!m) {
570 D("BUG/* non-workconserving leaf */");
571 return NULL;
572 }
573 NO(q->queued--;)
574 old_V = q->V;
575 q->V += (uint64_t)m->m_pkthdr.len * q->iwsum;
576 ND("m is %p F 0x%llx V now 0x%llx", m, cl->F, q->V);
577
578 if (qfq_update_class(q, grp, cl)) {
579 uint64_t old_F = grp->F;
580 cl = qfq_slot_scan(grp);
581 if (!cl) { /* group gone, remove from ER */
582 __clear_bit(grp->index, &q->bitmaps[ER]);
583 // grp->S = grp->F + 1; // XXX debugging only
584 } else {
585 uint64_t roundedS = qfq_round_down(cl->S, grp->slot_shift);
586 unsigned int s;
587
588 if (grp->S == roundedS)
589 goto skip_unblock;
590 grp->S = roundedS;
591 grp->F = roundedS + (2ULL << grp->slot_shift);
592 /* remove from ER and put in the new set */
593 __clear_bit(grp->index, &q->bitmaps[ER]);
594 s = qfq_calc_state(q, grp);
595 __set_bit(grp->index, &q->bitmaps[s]);
596 }
597 /* we need to unblock even if the group has gone away */
598 qfq_unblock_groups(q, grp->index, old_F);
599 }
600
601 skip_unblock:
602 qfq_update_eligible(q, old_V);
603 NO(if (!q->bitmaps[ER] && q->queued)
604 dump_sched(q, "end dequeue");)
605
606 return m;
607 }
608
609 /*
610 * Assign a reasonable start time for a new flow k in group i.
611 * Admissible values for \hat(F) are multiples of \sigma_i
612 * no greater than V+\sigma_i . Larger values mean that
613 * we had a wraparound so we consider the timestamp to be stale.
614 *
615 * If F is not stale and F >= V then we set S = F.
616 * Otherwise we should assign S = V, but this may violate
617 * the ordering in ER. So, if we have groups in ER, set S to
618 * the F_j of the first group j which would be blocking us.
619 * We are guaranteed not to move S backward because
620 * otherwise our group i would still be blocked.
621 */
622 static inline void
qfq_update_start(struct qfq_sched * q,struct qfq_class * cl)623 qfq_update_start(struct qfq_sched *q, struct qfq_class *cl)
624 {
625 unsigned long mask;
626 uint64_t limit, roundedF;
627 int slot_shift = cl->grp->slot_shift;
628
629 roundedF = qfq_round_down(cl->F, slot_shift);
630 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
631
632 if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) {
633 /* timestamp was stale */
634 mask = mask_from(q->bitmaps[ER], cl->grp->index);
635 if (mask) {
636 struct qfq_group *next = qfq_ffs(q, mask);
637 if (qfq_gt(roundedF, next->F)) {
638 /* from pv 71261956973ba9e0637848a5adb4a5819b4bae83 */
639 if (qfq_gt(limit, next->F))
640 cl->S = next->F;
641 else /* preserve timestamp correctness */
642 cl->S = limit;
643 return;
644 }
645 }
646 cl->S = q->V;
647 } else { /* timestamp is not stale */
648 cl->S = cl->F;
649 }
650 }
651
652 static int
qfq_enqueue(struct dn_sch_inst * si,struct dn_queue * _q,struct mbuf * m)653 qfq_enqueue(struct dn_sch_inst *si, struct dn_queue *_q, struct mbuf *m)
654 {
655 struct qfq_sched *q = (struct qfq_sched *)(si + 1);
656 struct qfq_group *grp;
657 struct qfq_class *cl = (struct qfq_class *)_q;
658 uint64_t roundedS;
659 int s;
660
661 NO(q->loops++;)
662 DX(4, "len %d flow %p inv_w 0x%x grp %d", m->m_pkthdr.len,
663 _q, cl->inv_w, cl->grp->index);
664 /* XXX verify that the packet obeys the parameters */
665 if (m != _q->mq.head) {
666 if (dn_enqueue(_q, m, 0)) /* packet was dropped */
667 return 1;
668 NO(q->queued++;)
669 if (m != _q->mq.head)
670 return 0;
671 }
672 /* If reach this point, queue q was idle */
673 grp = cl->grp;
674 qfq_update_start(q, cl); /* adjust start time */
675 /* compute new finish time and rounded start. */
676 cl->F = cl->S + (uint64_t)(m->m_pkthdr.len) * cl->inv_w;
677 roundedS = qfq_round_down(cl->S, grp->slot_shift);
678
679 /*
680 * insert cl in the correct bucket.
681 * If cl->S >= grp->S we don't need to adjust the
682 * bucket list and simply go to the insertion phase.
683 * Otherwise grp->S is decreasing, we must make room
684 * in the bucket list, and also recompute the group state.
685 * Finally, if there were no flows in this group and nobody
686 * was in ER make sure to adjust V.
687 */
688 if (grp->full_slots) {
689 if (!qfq_gt(grp->S, cl->S))
690 goto skip_update;
691 /* create a slot for this cl->S */
692 qfq_slot_rotate(q, grp, roundedS);
693 /* group was surely ineligible, remove */
694 __clear_bit(grp->index, &q->bitmaps[IR]);
695 __clear_bit(grp->index, &q->bitmaps[IB]);
696 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V))
697 q->V = roundedS;
698
699 grp->S = roundedS;
700 grp->F = roundedS + (2ULL << grp->slot_shift); // i.e. 2\sigma_i
701 s = qfq_calc_state(q, grp);
702 __set_bit(grp->index, &q->bitmaps[s]);
703 ND("new state %d 0x%x", s, q->bitmaps[s]);
704 ND("S %llx F %llx V %llx", cl->S, cl->F, q->V);
705 skip_update:
706 qfq_slot_insert(grp, cl, roundedS);
707
708 return 0;
709 }
710
711 #if 0
712 static inline void
713 qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
714 struct qfq_class *cl, struct qfq_class **pprev)
715 {
716 unsigned int i, offset;
717 uint64_t roundedS;
718
719 roundedS = qfq_round_down(cl->S, grp->slot_shift);
720 offset = (roundedS - grp->S) >> grp->slot_shift;
721 i = (grp->front + offset) % QFQ_MAX_SLOTS;
722
723 #ifdef notyet
724 if (!pprev) {
725 pprev = &grp->slots[i];
726 while (*pprev && *pprev != cl)
727 pprev = &(*pprev)->next;
728 }
729 #endif
730
731 *pprev = cl->next;
732 if (!grp->slots[i])
733 __clear_bit(offset, &grp->full_slots);
734 }
735
736 /*
737 * called to forcibly destroy a queue.
738 * If the queue is not in the front bucket, or if it has
739 * other queues in the front bucket, we can simply remove
740 * the queue with no other side effects.
741 * Otherwise we must propagate the event up.
742 * XXX description to be completed.
743 */
744 static void
745 qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl,
746 struct qfq_class **pprev)
747 {
748 struct qfq_group *grp = &q->groups[cl->index];
749 unsigned long mask;
750 uint64_t roundedS;
751 int s;
752
753 cl->F = cl->S; // not needed if the class goes away.
754 qfq_slot_remove(q, grp, cl, pprev);
755
756 if (!grp->full_slots) {
757 /* nothing left in the group, remove from all sets.
758 * Do ER last because if we were blocking other groups
759 * we must unblock them.
760 */
761 __clear_bit(grp->index, &q->bitmaps[IR]);
762 __clear_bit(grp->index, &q->bitmaps[EB]);
763 __clear_bit(grp->index, &q->bitmaps[IB]);
764
765 if (test_bit(grp->index, &q->bitmaps[ER]) &&
766 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
767 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
768 if (mask)
769 mask = ~((1UL << __fls(mask)) - 1);
770 else
771 mask = ~0UL;
772 qfq_move_groups(q, mask, EB, ER);
773 qfq_move_groups(q, mask, IB, IR);
774 }
775 __clear_bit(grp->index, &q->bitmaps[ER]);
776 } else if (!grp->slots[grp->front]) {
777 cl = qfq_slot_scan(grp);
778 roundedS = qfq_round_down(cl->S, grp->slot_shift);
779 if (grp->S != roundedS) {
780 __clear_bit(grp->index, &q->bitmaps[ER]);
781 __clear_bit(grp->index, &q->bitmaps[IR]);
782 __clear_bit(grp->index, &q->bitmaps[EB]);
783 __clear_bit(grp->index, &q->bitmaps[IB]);
784 grp->S = roundedS;
785 grp->F = roundedS + (2ULL << grp->slot_shift);
786 s = qfq_calc_state(q, grp);
787 __set_bit(grp->index, &q->bitmaps[s]);
788 }
789 }
790 qfq_update_eligible(q, q->V);
791 }
792 #endif
793
794 static int
qfq_new_fsk(struct dn_fsk * f)795 qfq_new_fsk(struct dn_fsk *f)
796 {
797 ipdn_bound_var(&f->fs.par[0], 1, 1, QFQ_MAX_WEIGHT, "qfq weight");
798 ipdn_bound_var(&f->fs.par[1], 1500, 1, 2000, "qfq maxlen");
799 ND("weight %d len %d\n", f->fs.par[0], f->fs.par[1]);
800 return 0;
801 }
802
803 /*
804 * initialize a new scheduler instance
805 */
806 static int
qfq_new_sched(struct dn_sch_inst * si)807 qfq_new_sched(struct dn_sch_inst *si)
808 {
809 struct qfq_sched *q = (struct qfq_sched *)(si + 1);
810 struct qfq_group *grp;
811 int i;
812
813 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
814 grp = &q->groups[i];
815 grp->index = i;
816 grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS -
817 (QFQ_MAX_INDEX - i);
818 }
819 return 0;
820 }
821
822 /*
823 * QFQ scheduler descriptor
824 */
825 static struct dn_alg qfq_desc = {
826 _SI( .type = ) DN_SCHED_QFQ,
827 _SI( .name = ) "QFQ",
828 _SI( .flags = ) DN_MULTIQUEUE,
829
830 _SI( .schk_datalen = ) 0,
831 _SI( .si_datalen = ) sizeof(struct qfq_sched),
832 _SI( .q_datalen = ) sizeof(struct qfq_class) - sizeof(struct dn_queue),
833
834 _SI( .enqueue = ) qfq_enqueue,
835 _SI( .dequeue = ) qfq_dequeue,
836
837 _SI( .config = ) NULL,
838 _SI( .destroy = ) NULL,
839 _SI( .new_sched = ) qfq_new_sched,
840 _SI( .free_sched = ) NULL,
841 _SI( .new_fsk = ) qfq_new_fsk,
842 _SI( .free_fsk = ) NULL,
843 _SI( .new_queue = ) qfq_new_queue,
844 _SI( .free_queue = ) qfq_free_queue,
845 #ifdef NEW_AQM
846 _SI( .getconfig = ) NULL,
847 #endif
848 };
849
850 DECLARE_DNSCHED_MODULE(dn_qfq, &qfq_desc);
851
852 #ifdef QFQ_DEBUG
853 static void
dump_groups(struct qfq_sched * q,uint32_t mask)854 dump_groups(struct qfq_sched *q, uint32_t mask)
855 {
856 int i, j;
857
858 for (i = 0; i < QFQ_MAX_INDEX + 1; i++) {
859 struct qfq_group *g = &q->groups[i];
860
861 if (0 == (mask & (1<<i)))
862 continue;
863 for (j = 0; j < QFQ_MAX_SLOTS; j++) {
864 if (g->slots[j])
865 D(" bucket %d %p", j, g->slots[j]);
866 }
867 D("full_slots 0x%llx", (_P64)g->full_slots);
868 D(" %2d S 0x%20llx F 0x%llx %c", i,
869 (_P64)g->S, (_P64)g->F,
870 mask & (1<<i) ? '1' : '0');
871 }
872 }
873
874 static void
dump_sched(struct qfq_sched * q,const char * msg)875 dump_sched(struct qfq_sched *q, const char *msg)
876 {
877 D("--- in %s: ---", msg);
878 D("loops %d queued %d V 0x%llx", q->loops, q->queued, (_P64)q->V);
879 D(" ER 0x%08x", (unsigned)q->bitmaps[ER]);
880 D(" EB 0x%08x", (unsigned)q->bitmaps[EB]);
881 D(" IR 0x%08x", (unsigned)q->bitmaps[IR]);
882 D(" IB 0x%08x", (unsigned)q->bitmaps[IB]);
883 dump_groups(q, 0xffffffff);
884 };
885 #endif /* QFQ_DEBUG */
886