xref: /illumos-gate/usr/src/uts/common/io/qede/qede_gld.c (revision ce5afa9169a34d373b34730ea50ee384e5b23558)
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, v.1,  (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 
22 /*
23  * Copyright 2014-2017 Cavium, Inc.
24  * Copyright 2018 Joyent, Inc.
25  * Copyright 2025 Oxide Computer Company
26  */
27 
28 #include "qede.h"
29 
30 #define	FP_LOCK(ptr)	\
31 mutex_enter(&ptr->fp_lock);
32 #define	FP_UNLOCK(ptr)	\
33 mutex_exit(&ptr->fp_lock);
34 
35 int
qede_ucst_find(qede_t * qede,const uint8_t * mac_addr)36 qede_ucst_find(qede_t *qede, const uint8_t *mac_addr)
37 {
38 	int slot;
39 
40 	for(slot = 0; slot < qede->ucst_total; slot++) {
41 		if (bcmp(qede->ucst_mac[slot].mac_addr.ether_addr_octet,
42 		    mac_addr, ETHERADDRL) == 0) {
43 			return (slot);
44 		}
45 	}
46 	return (-1);
47 
48 }
49 
50 static int
qede_set_mac_addr(qede_t * qede,uint8_t * mac_addr,uint8_t fl)51 qede_set_mac_addr(qede_t *qede, uint8_t *mac_addr, uint8_t fl)
52 {
53 	struct ecore_filter_ucast params;
54 
55 	memset(&params, 0, sizeof (params));
56 
57 	params.opcode = fl;
58 	params.type = ECORE_FILTER_MAC;
59 	params.is_rx_filter = true;
60 	params.is_tx_filter = true;
61 	COPY_ETH_ADDRESS(mac_addr, params.mac);
62 
63 	return (ecore_filter_ucast_cmd(&qede->edev,
64 	    &params, ECORE_SPQ_MODE_EBLOCK, NULL));
65 
66 
67 }
68 static int
qede_add_macaddr(qede_t * qede,uint8_t * mac_addr)69 qede_add_macaddr(qede_t *qede, uint8_t *mac_addr)
70 {
71 	int i, ret = 0;
72 
73 	i = qede_ucst_find(qede, mac_addr);
74 	if (i != -1) {
75 		/* LINTED E_ARGUMENT_MISMATCH */
76 		qede_info(qede, "mac addr already added %d\n",
77 		    qede->ucst_avail);
78 		return (0);
79 	}
80 	if (qede->ucst_avail == 0) {
81 		qede_info(qede, "add macaddr ignored \n");
82 		return (ENOSPC);
83 	}
84 	for (i = 0; i < qede->ucst_total; i++) {
85 		if (qede->ucst_mac[i].set == 0) {
86 			break;
87 		}
88 	}
89 	if (i >= qede->ucst_total) {
90 		qede_info(qede, "add macaddr ignored no space");
91 		return (ENOSPC);
92 	}
93 	ret = qede_set_mac_addr(qede, (uint8_t *)mac_addr, ECORE_FILTER_ADD);
94 	if (ret == 0) {
95 		bcopy(mac_addr,
96 		    qede->ucst_mac[i].mac_addr.ether_addr_octet,
97 		    ETHERADDRL);
98 		qede->ucst_mac[i].set = 1;
99 		qede->ucst_avail--;
100 		/* LINTED E_ARGUMENT_MISMATCH */
101 		qede_info(qede,  " add macaddr passed for addr "
102 		    "%02x:%02x:%02x:%02x:%02x:%02x",
103 		    mac_addr[0], mac_addr[1],
104 		    mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]);
105 	} else {
106 		/* LINTED E_ARGUMENT_MISMATCH */
107 		qede_info(qede,  "add macaddr failed for addr "
108 		    "%02x:%02x:%02x:%02x:%02x:%02x",
109 		    mac_addr[0], mac_addr[1],
110 		    mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]);
111 
112 	}
113 	if (qede->ucst_avail == (qede->ucst_total -1)) {
114 			u8 bcast_addr[] =
115 			{
116 				0xff, 0xff, 0xff, 0xff, 0xff,
117 				0xff
118 			};
119 			for (i = 0; i < qede->ucst_total; i++) {
120 				if (qede->ucst_mac[i].set == 0)
121 					break;
122 			}
123 			ret = qede_set_mac_addr(qede,
124 			    (uint8_t *)bcast_addr, ECORE_FILTER_ADD);
125 			if (ret == 0) {
126 				bcopy(bcast_addr,
127 				    qede->ucst_mac[i].mac_addr.ether_addr_octet,
128 				    ETHERADDRL);
129 				qede->ucst_mac[i].set = 1;
130 				qede->ucst_avail--;
131 			} else {
132 
133 			/* LINTED E_ARGUMENT_MISMATCH */
134 			qede_info(qede,  "add macaddr failed for addr "
135 			    "%02x:%02x:%02x:%02x:%02x:%02x",
136 		            mac_addr[0], mac_addr[1],
137 		            mac_addr[2], mac_addr[3], mac_addr[4],
138 			    mac_addr[5]);
139 		       }
140 
141 		}
142 
143 	return (ret);
144 
145 }
146 
147 #ifndef ILLUMOS
148 static int
qede_add_mac_addr(void * arg,const uint8_t * mac_addr,const uint64_t flags)149 qede_add_mac_addr(void *arg, const uint8_t *mac_addr, const uint64_t flags)
150 #else
151 static int
152 qede_add_mac_addr(void *arg, const uint8_t *mac_addr)
153 #endif
154 {
155 	qede_mac_group_t *rx_group = (qede_mac_group_t *)arg;
156 	qede_t *qede = rx_group->qede;
157 	int ret = DDI_SUCCESS;
158 
159 	/* LINTED E_ARGUMENT_MISMATCH */
160 	qede_info(qede, " mac addr :" MAC_STRING,  MACTOSTR(mac_addr));
161 
162 	mutex_enter(&qede->gld_lock);
163 	if (qede->qede_state == QEDE_STATE_SUSPENDED) {
164 		mutex_exit(&qede->gld_lock);
165 		return (ECANCELED);
166 	}
167 	ret = qede_add_macaddr(qede, (uint8_t *)mac_addr);
168 
169 	mutex_exit(&qede->gld_lock);
170 
171 
172 	return (ret);
173 }
174 
175 static int
qede_rem_macaddr(qede_t * qede,uint8_t * mac_addr)176 qede_rem_macaddr(qede_t *qede, uint8_t *mac_addr)
177 {
178 	int ret = 0;
179 	int i;
180 
181 	i = qede_ucst_find(qede, mac_addr);
182 	if (i == -1) {
183 		/* LINTED E_ARGUMENT_MISMATCH */
184 		qede_info(qede,
185 		    "mac addr not there to remove",
186 		    MAC_STRING, MACTOSTR(mac_addr));
187 		return (0);
188 	}
189 	if (qede->ucst_mac[i].set == 0) {
190 	       	return (EINVAL);
191 	}
192 	ret = qede_set_mac_addr(qede, (uint8_t *)mac_addr, ECORE_FILTER_REMOVE);
193 	if (ret == 0) {
194 		bzero(qede->ucst_mac[i].mac_addr.ether_addr_octet,ETHERADDRL);
195 		qede->ucst_mac[i].set = 0;
196 		qede->ucst_avail++;
197 	} else {
198 		/* LINTED E_ARGUMENT_MISMATCH */
199 		qede_info(qede, "mac addr remove failed",
200 		    MAC_STRING, MACTOSTR(mac_addr));
201 	}
202 	return (ret);
203 
204 }
205 
206 
207 static int
qede_rem_mac_addr(void * arg,const uint8_t * mac_addr)208 qede_rem_mac_addr(void *arg, const uint8_t *mac_addr)
209 {
210 	qede_mac_group_t *rx_group = (qede_mac_group_t *)arg;
211 	qede_t *qede = rx_group->qede;
212 	int ret = DDI_SUCCESS;
213 
214 	/* LINTED E_ARGUMENT_MISMATCH */
215 	qede_info(qede, "mac addr remove:" MAC_STRING, MACTOSTR(mac_addr));
216 	mutex_enter(&qede->gld_lock);
217 	if (qede->qede_state == QEDE_STATE_SUSPENDED) {
218 		mutex_exit(&qede->gld_lock);
219 		return (ECANCELED);
220 	}
221 	ret = qede_rem_macaddr(qede, (uint8_t *)mac_addr);
222 	mutex_exit(&qede->gld_lock);
223 	return (ret);
224 }
225 
226 
227 static int
qede_tx_ring_stat(mac_ring_driver_t rh,uint_t stat,uint64_t * val)228 qede_tx_ring_stat(mac_ring_driver_t rh, uint_t stat, uint64_t *val)
229 {
230 	int ret = 0;
231 
232 	qede_fastpath_t *fp = (qede_fastpath_t *)rh;
233 	qede_tx_ring_t *tx_ring = fp->tx_ring[0];
234 	qede_t *qede = fp->qede;
235 
236 
237 	if (qede->qede_state == QEDE_STATE_SUSPENDED)
238 		return (ECANCELED);
239 
240 	switch (stat) {
241 	case MAC_STAT_OBYTES:
242 		*val = tx_ring->tx_byte_count;
243 		break;
244 
245 	case MAC_STAT_OPACKETS:
246 		*val = tx_ring->tx_pkt_count;
247 		break;
248 
249 	default:
250 		*val = 0;
251 		ret = ENOTSUP;
252 	}
253 
254 	return (ret);
255 }
256 
257 #ifndef ILLUMOS
258 static mblk_t *
qede_rx_ring_poll(void * arg,int poll_bytes,int poll_pkts)259 qede_rx_ring_poll(void *arg, int poll_bytes, int poll_pkts)
260 {
261 #else
262 static mblk_t *
263 qede_rx_ring_poll(void *arg, int poll_bytes)
264 {
265 	/* XXX pick a value at the moment */
266 	int poll_pkts = 100;
267 #endif
268 	qede_fastpath_t *fp = (qede_fastpath_t *)arg;
269 	mblk_t *mp = NULL;
270 	int work_done = 0;
271 	qede_t *qede = fp->qede;
272 
273 	if (poll_bytes == 0) {
274 		return (NULL);
275 	}
276 
277 	mutex_enter(&fp->fp_lock);
278 	qede->intrSbPollCnt[fp->vect_info->vect_index]++;
279 
280 	mp = qede_process_fastpath(fp, poll_bytes, poll_pkts, &work_done);
281 	if (mp != NULL) {
282 		fp->rx_ring->rx_poll_cnt++;
283 	} else if ((mp == NULL) && (work_done == 0)) {
284 		qede->intrSbPollNoChangeCnt[fp->vect_info->vect_index]++;
285 	}
286 
287 	mutex_exit(&fp->fp_lock);
288 	return (mp);
289 }
290 
291 #ifndef ILLUMOS
292 static int
293 qede_rx_ring_intr_enable(mac_ring_driver_t rh)
294 #else
295 static int
296 qede_rx_ring_intr_enable(mac_intr_handle_t rh)
297 #endif
298 {
299 	qede_fastpath_t *fp = (qede_fastpath_t *)rh;
300 
301 	mutex_enter(&fp->qede->drv_lock);
302 	if (!fp->sb_phys && (fp->sb_dma_handle == NULL)) {
303 		mutex_exit(&fp->qede->drv_lock);
304 		return (DDI_FAILURE);
305 	}
306 
307 	fp->rx_ring->intrEnableCnt++;
308 	qede_enable_hw_intr(fp);
309 	fp->disabled_by_poll = 0;
310 	mutex_exit(&fp->qede->drv_lock);
311 
312 	return (DDI_SUCCESS);
313 }
314 
315 #ifndef	ILLUMOS
316 static int
317 qede_rx_ring_intr_disable(mac_ring_driver_t rh)
318 #else
319 static int
320 qede_rx_ring_intr_disable(mac_intr_handle_t rh)
321 #endif
322 {
323 	qede_fastpath_t *fp = (qede_fastpath_t *)rh;
324 
325 	mutex_enter(&fp->qede->drv_lock);
326 	if (!fp->sb_phys && (fp->sb_dma_handle == NULL)) {
327 		mutex_exit(&fp->qede->drv_lock);
328 		return (DDI_FAILURE);
329 	}
330 	fp->rx_ring->intrDisableCnt++;
331 	qede_disable_hw_intr(fp);
332 	fp->disabled_by_poll = 1;
333 	mutex_exit(&fp->qede->drv_lock);
334 	return (DDI_SUCCESS);
335 }
336 
337 static int
338 qede_rx_ring_stat(mac_ring_driver_t rh, uint_t stat, uint64_t *val)
339 {
340 
341 	int ret = 0;
342 
343 	qede_fastpath_t *fp = (qede_fastpath_t *)rh;
344 	qede_t *qede = fp->qede;
345 	qede_rx_ring_t *rx_ring = fp->rx_ring;
346 
347 	if (qede->qede_state == QEDE_STATE_SUSPENDED) {
348 		return (ECANCELED);
349 	}
350 
351 	switch (stat) {
352 	case MAC_STAT_RBYTES:
353 		*val = rx_ring->rx_byte_cnt;
354 		break;
355 	case MAC_STAT_IPACKETS:
356 		*val = rx_ring->rx_pkt_cnt;
357 		break;
358 	default:
359 		*val = 0;
360 		ret = ENOTSUP;
361 		break;
362 	}
363 
364 	return (ret);
365 }
366 
367 static int
368 qede_get_global_ring_index(qede_t *qede, int gindex, int rindex)
369 {
370 	qede_fastpath_t *fp;
371 	qede_rx_ring_t *rx_ring;
372 	int i = 0;
373 
374 	for (i = 0; i < qede->num_fp; i++) {
375 		fp = &qede->fp_array[i];
376 		rx_ring = fp->rx_ring;
377 
378 		if (rx_ring->group_index == gindex) {
379 			rindex--;
380 		}
381 		if (rindex < 0) {
382 			return (i);
383 		}
384 	}
385 
386 	return (-1);
387 }
388 
389 static void
390 qede_rx_ring_stop(mac_ring_driver_t rh)
391 {
392 	qede_fastpath_t *fp = (qede_fastpath_t *)rh;
393 	qede_rx_ring_t *rx_ring = fp->rx_ring;
394 
395 	qede_print("!%s(%d): called", __func__,fp->qede->instance);
396 	mutex_enter(&fp->fp_lock);
397 	rx_ring->mac_ring_started = B_FALSE;
398 	mutex_exit(&fp->fp_lock);
399 }
400 
401 static int
402 qede_rx_ring_start(mac_ring_driver_t rh, u64 mr_gen_num)
403 {
404 	qede_fastpath_t *fp = (qede_fastpath_t *)rh;
405 	qede_rx_ring_t *rx_ring = fp->rx_ring;
406 
407 	qede_print("!%s(%d): called", __func__,fp->qede->instance);
408 	mutex_enter(&fp->fp_lock);
409 	rx_ring->mr_gen_num = mr_gen_num;
410 	rx_ring->mac_ring_started = B_TRUE;
411         rx_ring->intrDisableCnt = 0;
412 	rx_ring->intrEnableCnt  = 0;
413 	fp->disabled_by_poll = 0;
414 
415 	mutex_exit(&fp->fp_lock);
416 
417 	return (DDI_SUCCESS);
418 }
419 
420 /* Callback function from mac layer to register rings */
421 void
422 qede_fill_ring(void *arg, mac_ring_type_t rtype, const int group_index,
423     const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
424 {
425 	qede_t *qede = (qede_t *)arg;
426 	mac_intr_t *mintr = &infop->mri_intr;
427 
428 	switch (rtype) {
429 	case MAC_RING_TYPE_RX: {
430 		/*
431 		 * Index passed as a param is the ring index within the
432 		 * given group index. If multiple groups are supported
433 		 * then need to search into all groups to find out the
434 		 * global ring index for the passed group relative
435 		 * ring index
436 		 */
437 		int global_ring_index = qede_get_global_ring_index(qede,
438 		    group_index, ring_index);
439 		qede_fastpath_t *fp;
440 		qede_rx_ring_t *rx_ring;
441 		int i;
442 
443 		/*
444 		 * global_ring_index < 0 means group index passed
445 		 * was registered by our driver
446 		 */
447 		ASSERT(global_ring_index >= 0);
448 
449 		if (rh == NULL) {
450 			cmn_err(CE_WARN, "!rx ring(%d) ring handle NULL",
451 			    global_ring_index);
452 		}
453 
454 		fp = &qede->fp_array[global_ring_index];
455 		rx_ring = fp->rx_ring;
456 		fp->qede = qede;
457 
458 		rx_ring->mac_ring_handle = rh;
459 
460 		qede_info(qede, "rx_ring %d mac_ring_handle %p",
461 		    rx_ring->rss_id, rh);
462 
463 		/* mri_driver passed as arg to mac_ring* callbacks */
464 		infop->mri_driver = (mac_ring_driver_t)fp;
465 		/*
466 		 * mri_start callback will supply a mac rings generation
467 		 * number which is needed while indicating packets
468 		 * upstream via mac_rx_ring() call
469 		 */
470 		infop->mri_start = qede_rx_ring_start;
471 		infop->mri_stop = qede_rx_ring_stop;
472 		infop->mri_poll = qede_rx_ring_poll;
473 		infop->mri_stat = qede_rx_ring_stat;
474 
475 		mintr->mi_handle = (mac_intr_handle_t)fp;
476 		mintr->mi_enable = qede_rx_ring_intr_enable;
477 		mintr->mi_disable = qede_rx_ring_intr_disable;
478 		if (qede->intr_ctx.intr_type_in_use &
479 		    (DDI_INTR_TYPE_MSIX | DDI_INTR_TYPE_MSI)) {
480 			mintr->mi_ddi_handle =
481 			    qede->intr_ctx.
482 			    intr_hdl_array[global_ring_index + qede->num_hwfns];
483 		}
484 		break;
485 	}
486 	case MAC_RING_TYPE_TX: {
487 		qede_fastpath_t *fp;
488 		qede_tx_ring_t *tx_ring;
489 		int i, tc;
490 
491 		ASSERT(ring_index < qede->num_fp);
492 
493 		fp = &qede->fp_array[ring_index];
494 		fp->qede = qede;
495 		tx_ring = fp->tx_ring[0];
496 		tx_ring->mac_ring_handle = rh;
497 		qede_info(qede, "tx_ring %d mac_ring_handle %p",
498 		    tx_ring->tx_queue_index, rh);
499 		infop->mri_driver = (mac_ring_driver_t)fp;
500 		infop->mri_start = NULL;
501 		infop->mri_stop = NULL;
502 		infop->mri_tx = qede_ring_tx;
503 		infop->mri_stat = qede_tx_ring_stat;
504 		if (qede->intr_ctx.intr_type_in_use &
505 		    (DDI_INTR_TYPE_MSIX | DDI_INTR_TYPE_MSI)) {
506 			mintr->mi_ddi_handle =
507 			    qede->intr_ctx.
508 			    intr_hdl_array[ring_index + qede->num_hwfns];
509 		}
510 		break;
511 	}
512 	default:
513 		break;
514 	}
515 }
516 
517 /*
518  * Callback function from mac layer to register group
519  */
520 void
521 qede_fill_group(void *arg, mac_ring_type_t rtype, const int index,
522     mac_group_info_t *infop, mac_group_handle_t gh)
523 {
524 	qede_t *qede = (qede_t *)arg;
525 
526 	switch (rtype) {
527 	case MAC_RING_TYPE_RX: {
528 		qede_mac_group_t *rx_group;
529 
530 		rx_group = &qede->rx_groups[index];
531 		rx_group->group_handle = gh;
532 		rx_group->group_index = index;
533 		rx_group->qede = qede;
534 		infop->mgi_driver = (mac_group_driver_t)rx_group;
535 		infop->mgi_start = NULL;
536 		infop->mgi_stop = NULL;
537 #ifndef ILLUMOS
538 		infop->mgi_addvlan = NULL;
539 		infop->mgi_remvlan = NULL;
540 		infop->mgi_getsriov_info = NULL;
541 		infop->mgi_setmtu = NULL;
542 #endif
543 		infop->mgi_addmac = qede_add_mac_addr;
544 		infop->mgi_remmac = qede_rem_mac_addr;
545 		infop->mgi_count =  qede->num_fp;
546 #ifndef ILLUMOS
547 		if (index == 0) {
548 			infop->mgi_flags = MAC_GROUP_DEFAULT;
549 		}
550 #endif
551 
552 		break;
553 	}
554 	case MAC_RING_TYPE_TX: {
555 		qede_mac_group_t *tx_group;
556 
557 		tx_group = &qede->tx_groups[index];
558 		tx_group->group_handle = gh;
559 		tx_group->group_index = index;
560 		tx_group->qede = qede;
561 
562 		infop->mgi_driver = (mac_group_driver_t)tx_group;
563 		infop->mgi_start = NULL;
564 		infop->mgi_stop = NULL;
565 		infop->mgi_addmac = NULL;
566 		infop->mgi_remmac = NULL;
567 #ifndef ILLUMOS
568 		infop->mgi_addvlan = NULL;
569 		infop->mgi_remvlan = NULL;
570 		infop->mgi_setmtu = NULL;
571 		infop->mgi_getsriov_info = NULL;
572 #endif
573 
574 		infop->mgi_count = qede->num_fp;
575 
576 #ifndef ILLUMOS
577 		if (index == 0) {
578 			infop->mgi_flags = MAC_GROUP_DEFAULT;
579 		}
580 #endif
581 		break;
582 	}
583 	default:
584 		break;
585 	}
586 }
587 
588 #ifdef ILLUMOS
589 static int
590 qede_transceiver_info(void *arg, uint_t id, mac_transceiver_info_t *infop)
591 {
592         qede_t *qede = arg;
593         struct ecore_dev *edev = &qede->edev;
594         struct ecore_hwfn *hwfn;
595         struct ecore_ptt *ptt;
596         uint32_t transceiver_state;
597 
598         if (id >= edev->num_hwfns || arg == NULL || infop == NULL)
599                 return (EINVAL);
600 
601         hwfn = &edev->hwfns[id];
602         ptt = ecore_ptt_acquire(hwfn);
603         if (ptt == NULL) {
604                 return (EIO);
605         }
606         /*
607          * Use the underlying raw API to get this information. While the
608          * ecore_phy routines have some ways of getting to this information, it
609          * ends up writing the raw data as ASCII characters which doesn't help
610          * us one bit.
611          */
612         transceiver_state = ecore_rd(hwfn, ptt, hwfn->mcp_info->port_addr +
613             offsetof(struct public_port, transceiver_data));
614         transceiver_state = GET_FIELD(transceiver_state, ETH_TRANSCEIVER_STATE);
615         ecore_ptt_release(hwfn, ptt);
616 
617         if ((transceiver_state & ETH_TRANSCEIVER_STATE_PRESENT) != 0) {
618                 mac_transceiver_info_set_present(infop, B_TRUE);
619                 /*
620                  * Based on our testing, the ETH_TRANSCEIVER_STATE_VALID flag is
621                  * not set, so we cannot rely on it. Instead, we have found that
622                  * the ETH_TRANSCEIVER_STATE_UPDATING will be set when we cannot
623                  * use the transceiver.
624                  */
625                 if ((transceiver_state & ETH_TRANSCEIVER_STATE_UPDATING) != 0) {
626                         mac_transceiver_info_set_usable(infop, B_FALSE);
627                 } else {
628                         mac_transceiver_info_set_usable(infop, B_TRUE);
629                 }
630         } else {
631                 mac_transceiver_info_set_present(infop, B_FALSE);
632                 mac_transceiver_info_set_usable(infop, B_FALSE);
633         }
634 
635         return (0);
636 }
637 
638 static int
639 qede_transceiver_read(void *arg, uint_t id, uint_t page, void *buf,
640     size_t nbytes, off_t offset, size_t *nread)
641 {
642         qede_t *qede = arg;
643         struct ecore_dev *edev = &qede->edev;
644         struct ecore_hwfn *hwfn;
645         uint32_t port, lane;
646         struct ecore_ptt *ptt;
647         enum _ecore_status_t ret;
648 
649         if (id >= edev->num_hwfns || buf == NULL || nbytes == 0 || nread == NULL ||
650             (page != 0xa0 && page != 0xa2) || offset < 0)
651                 return (EINVAL);
652 
653         /*
654          * Both supported pages have a length of 256 bytes, ensure nothing asks
655          * us to go beyond that.
656          */
657         if (nbytes > 256 || offset >= 256 || (offset + nbytes > 256)) {
658                return (EINVAL);
659         }
660 
661         hwfn = &edev->hwfns[id];
662         ptt = ecore_ptt_acquire(hwfn);
663         if (ptt == NULL) {
664                 return (EIO);
665         }
666 
667         ret = ecore_mcp_phy_sfp_read(hwfn, ptt, hwfn->port_id, page, offset,
668             nbytes, buf);
669         ecore_ptt_release(hwfn, ptt);
670         if (ret != ECORE_SUCCESS) {
671                 return (EIO);
672         }
673         *nread = nbytes;
674         return (0);
675 }
676 #endif /* ILLUMOS */
677 
678 
679 static int
680 qede_mac_stats(void *     arg,
681                         uint_t     stat,
682                         uint64_t * value)
683 {
684 	qede_t * qede = (qede_t *)arg;
685 	struct ecore_eth_stats vstats;
686 	struct ecore_dev *edev = &qede->edev;
687 	struct qede_link_cfg lnkcfg;
688 	int rc = 0;
689 	qede_fastpath_t *fp = &qede->fp_array[0];
690 	qede_rx_ring_t *rx_ring;
691 	qede_tx_ring_t *tx_ring;
692 
693 	if ((qede == NULL) || (value == NULL)) {
694 		return EINVAL;
695 	}
696 
697 
698 	mutex_enter(&qede->gld_lock);
699 
700 	if(qede->qede_state != QEDE_STATE_STARTED) {
701 		mutex_exit(&qede->gld_lock);
702 		return EAGAIN;
703 	}
704 
705 	*value = 0;
706 
707 	memset(&vstats, 0, sizeof(struct ecore_eth_stats));
708 	ecore_get_vport_stats(edev, &vstats);
709 
710 
711         memset(&qede->curcfg, 0, sizeof(struct qede_link_cfg));
712         qede_get_link_info(&edev->hwfns[0], &qede->curcfg);
713 
714 
715 
716 	switch (stat)
717 	{
718 	case MAC_STAT_IFSPEED:
719 		*value = (qede->props.link_speed * 1000000ULL);
720 		break;
721 	case MAC_STAT_MULTIRCV:
722 		*value = vstats.common.rx_mcast_pkts;
723 		break;
724 	case MAC_STAT_BRDCSTRCV:
725 		*value = vstats.common.rx_bcast_pkts;
726 		break;
727 	case MAC_STAT_MULTIXMT:
728 		*value = vstats.common.tx_mcast_pkts;
729 		break;
730 	case MAC_STAT_BRDCSTXMT:
731 		*value = vstats.common.tx_bcast_pkts;
732 		break;
733 	case MAC_STAT_NORCVBUF:
734 		*value = vstats.common.no_buff_discards;
735 		break;
736 	case MAC_STAT_NOXMTBUF:
737 		*value = 0;
738 		break;
739 	case MAC_STAT_IERRORS:
740 	case ETHER_STAT_MACRCV_ERRORS:
741 		*value = vstats.common.mac_filter_discards +
742 		    vstats.common.packet_too_big_discard +
743 		    vstats.common.rx_crc_errors;
744 		break;
745 
746 	case MAC_STAT_OERRORS:
747 		break;
748 
749 	case MAC_STAT_COLLISIONS:
750 		*value = vstats.bb.tx_total_collisions;
751 		break;
752 
753 	case MAC_STAT_RBYTES:
754 		*value = vstats.common.rx_ucast_bytes +
755 		    vstats.common.rx_mcast_bytes +
756 		    vstats.common.rx_bcast_bytes;
757 		break;
758 
759 	case MAC_STAT_IPACKETS:
760 		*value = vstats.common.rx_ucast_pkts +
761 		    vstats.common.rx_mcast_pkts +
762 		    vstats.common.rx_bcast_pkts;
763 		break;
764 
765 	case MAC_STAT_OBYTES:
766 		*value = vstats.common.tx_ucast_bytes +
767 		    vstats.common.tx_mcast_bytes +
768 		    vstats.common.tx_bcast_bytes;
769 		break;
770 
771 	case MAC_STAT_OPACKETS:
772 		*value = vstats.common.tx_ucast_pkts +
773 		    vstats.common.tx_mcast_pkts +
774 		    vstats.common.tx_bcast_pkts;
775 		break;
776 
777 	case ETHER_STAT_ALIGN_ERRORS:
778 		*value = vstats.common.rx_align_errors;
779 		break;
780 
781 	case ETHER_STAT_FCS_ERRORS:
782 		*value = vstats.common.rx_crc_errors;
783 		break;
784 
785 	case ETHER_STAT_FIRST_COLLISIONS:
786 		break;
787 
788 	case ETHER_STAT_MULTI_COLLISIONS:
789 		break;
790 
791 	case ETHER_STAT_DEFER_XMTS:
792 		break;
793 
794 	case ETHER_STAT_TX_LATE_COLLISIONS:
795 		break;
796 
797 	case ETHER_STAT_EX_COLLISIONS:
798 		break;
799 
800 	case ETHER_STAT_MACXMT_ERRORS:
801 		*value = 0;
802 		break;
803 
804 	case ETHER_STAT_CARRIER_ERRORS:
805 		break;
806 
807 	case ETHER_STAT_TOOLONG_ERRORS:
808 		*value = vstats.common.rx_oversize_packets;
809 		break;
810 
811 #if (MAC_VERSION > 1)
812 	case ETHER_STAT_TOOSHORT_ERRORS:
813 		*value = vstats.common.rx_undersize_packets;
814 		break;
815 #endif
816 
817 	case ETHER_STAT_XCVR_ADDR:
818         	*value = 0;
819         	break;
820 
821 	case ETHER_STAT_XCVR_ID:
822         	*value = 0;
823         	break;
824 
825 	case ETHER_STAT_XCVR_INUSE:
826 		*value = (uint64_t)qede_link_to_media(&qede->curcfg,
827 		    qede->props.link_speed);
828 		break;
829 
830 #if (MAC_VERSION > 1)
831 	case ETHER_STAT_CAP_10GFDX:
832 		*value = 0;
833 		break;
834 #endif
835 	case ETHER_STAT_CAP_100FDX:
836         	*value = 0;
837         	break;
838 	case ETHER_STAT_CAP_100HDX:
839         	*value = 0;
840         	break;
841 	case ETHER_STAT_CAP_ASMPAUSE:
842 		*value = 1;
843 		break;
844 	case ETHER_STAT_CAP_PAUSE:
845 		*value = 1;
846 		break;
847 	case ETHER_STAT_CAP_AUTONEG:
848 		*value = 1;
849 		break;
850 
851 #if (MAC_VERSION > 1)
852 	case ETHER_STAT_CAP_REMFAULT:
853 		*value = 0;
854 		break;
855 #endif
856 
857 #if (MAC_VERSION > 1)
858 	case ETHER_STAT_ADV_CAP_10GFDX:
859 		*value = 0;
860 		break;
861 #endif
862     case ETHER_STAT_ADV_CAP_ASMPAUSE:
863 		*value = 1;
864 		break;
865 
866 	case ETHER_STAT_ADV_CAP_PAUSE:
867 		*value = 1;
868 		break;
869 
870 	case ETHER_STAT_ADV_CAP_AUTONEG:
871 		*value = qede->curcfg.adv_capab.autoneg;
872 		break;
873 
874 #if (MAC_VERSION > 1)
875 	case ETHER_STAT_ADV_REMFAULT:
876 		*value = 0;
877 		break;
878 #endif
879 
880 	case ETHER_STAT_LINK_AUTONEG:
881 		*value	= qede->curcfg.autoneg;
882 		break;
883 
884 	case ETHER_STAT_LINK_DUPLEX:
885 		*value = (qede->props.link_duplex == DUPLEX_FULL) ?
886 				    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
887 		break;
888         /*
889          * Supported speeds. These indicate what hardware is capable of.
890          */
891         case ETHER_STAT_CAP_1000HDX:
892                 *value = qede->curcfg.supp_capab.param_1000hdx;
893                 break;
894 
895         case ETHER_STAT_CAP_1000FDX:
896                 *value = qede->curcfg.supp_capab.param_1000fdx;
897                 break;
898 
899         case ETHER_STAT_CAP_10GFDX:
900                 *value = qede->curcfg.supp_capab.param_10000fdx;
901                 break;
902 
903         case ETHER_STAT_CAP_25GFDX:
904                 *value = qede->curcfg.supp_capab.param_25000fdx;
905                 break;
906 
907         case ETHER_STAT_CAP_40GFDX:
908                 *value = qede->curcfg.supp_capab.param_40000fdx;
909                 break;
910 
911         case ETHER_STAT_CAP_50GFDX:
912                 *value = qede->curcfg.supp_capab.param_50000fdx;
913                 break;
914 
915         case ETHER_STAT_CAP_100GFDX:
916                 *value = qede->curcfg.supp_capab.param_100000fdx;
917                 break;
918 
919         /*
920          * Advertised speeds. These indicate what hardware is currently sending.
921          */
922         case ETHER_STAT_ADV_CAP_1000HDX:
923                 *value = qede->curcfg.adv_capab.param_1000hdx;
924                 break;
925 
926         case ETHER_STAT_ADV_CAP_1000FDX:
927                 *value = qede->curcfg.adv_capab.param_1000fdx;
928                 break;
929 
930         case ETHER_STAT_ADV_CAP_10GFDX:
931                 *value = qede->curcfg.adv_capab.param_10000fdx;
932                 break;
933 
934         case ETHER_STAT_ADV_CAP_25GFDX:
935                 *value = qede->curcfg.adv_capab.param_25000fdx;
936                 break;
937 
938         case ETHER_STAT_ADV_CAP_40GFDX:
939                 *value = qede->curcfg.adv_capab.param_40000fdx;
940                 break;
941 
942         case ETHER_STAT_ADV_CAP_50GFDX:
943                 *value = qede->curcfg.adv_capab.param_50000fdx;
944                 break;
945 
946         case ETHER_STAT_ADV_CAP_100GFDX:
947                 *value = qede->curcfg.adv_capab.param_100000fdx;
948                 break;
949 
950 	default:
951 		rc = ENOTSUP;
952 	}
953 
954 	mutex_exit(&qede->gld_lock);
955 	return (rc);
956 }
957 
958 /* (flag) TRUE = on, FALSE = off */
959 static int
960 qede_mac_promiscuous(void *arg,
961     boolean_t on)
962 {
963     	qede_t *qede = (qede_t *)arg;
964 	qede_print("!%s(%d): called", __func__,qede->instance);
965 	int ret = DDI_SUCCESS;
966 	enum qede_filter_rx_mode_type mode;
967 
968 	mutex_enter(&qede->drv_lock);
969 
970 	if (qede->qede_state == QEDE_STATE_SUSPENDED) {
971 		ret = ECANCELED;
972 		goto exit;
973 	}
974 
975 	if (on) {
976 		qede_info(qede, "Entering promiscuous mode");
977 		mode = QEDE_FILTER_RX_MODE_PROMISC;
978 		qede->params.promisc_fl = B_TRUE;
979 	} else {
980 		qede_info(qede, "Leaving promiscuous mode");
981 		if(qede->params.multi_promisc_fl == B_TRUE) {
982 			mode = QEDE_FILTER_RX_MODE_MULTI_PROMISC;
983 		} else {
984 			 mode = QEDE_FILTER_RX_MODE_REGULAR;
985 		}
986 		qede->params.promisc_fl = B_FALSE;
987 	}
988 
989 	ret = qede_set_filter_rx_mode(qede, mode);
990 
991 exit:
992 	mutex_exit(&qede->drv_lock);
993     	return (ret);
994 }
995 
996 int qede_set_rx_mac_mcast(qede_t *qede, enum ecore_filter_opcode opcode,
997 			  uint8_t *mac, int mc_cnt)
998 {
999 	struct ecore_filter_mcast cmd;
1000 	int i;
1001 	memset(&cmd, 0, sizeof(cmd));
1002 	cmd.opcode = opcode;
1003 	cmd.num_mc_addrs = mc_cnt;
1004 
1005         for (i = 0; i < mc_cnt; i++, mac += ETH_ALLEN) {
1006 		COPY_ETH_ADDRESS(mac, cmd.mac[i]);
1007         }
1008 
1009 
1010         return (ecore_filter_mcast_cmd(&qede->edev, &cmd,
1011 	    ECORE_SPQ_MODE_CB, NULL));
1012 
1013 }
1014 
1015 int
1016 qede_set_filter_rx_mode(qede_t * qede, enum qede_filter_rx_mode_type type)
1017 {
1018 	struct ecore_filter_accept_flags flg;
1019 
1020 	memset(&flg, 0, sizeof(flg));
1021 
1022 	flg.update_rx_mode_config      = 1;
1023 	flg.update_tx_mode_config      = 1;
1024 	flg.rx_accept_filter           = ECORE_ACCEPT_UCAST_MATCHED |
1025 	    ECORE_ACCEPT_MCAST_MATCHED | ECORE_ACCEPT_BCAST;
1026 	flg.tx_accept_filter = ECORE_ACCEPT_UCAST_MATCHED |
1027 	    ECORE_ACCEPT_MCAST_MATCHED | ECORE_ACCEPT_BCAST;
1028 
1029 	if (type == QEDE_FILTER_RX_MODE_PROMISC)
1030 		flg.rx_accept_filter |= ECORE_ACCEPT_UCAST_UNMATCHED |
1031 		    ECORE_ACCEPT_MCAST_UNMATCHED;
1032 	else if (type == QEDE_FILTER_RX_MODE_MULTI_PROMISC)
1033 		flg.rx_accept_filter |= ECORE_ACCEPT_MCAST_UNMATCHED;
1034 	qede_info(qede, "rx_mode rx_filter=0x%x tx_filter=0x%x type=0x%x\n",
1035 	    flg.rx_accept_filter, flg.tx_accept_filter, type);
1036 	return (ecore_filter_accept_cmd(&qede->edev, 0, flg,
1037 			0, /* update_accept_any_vlan */
1038 			0, /* accept_any_vlan */
1039 			ECORE_SPQ_MODE_CB, NULL));
1040 }
1041 
1042 int
1043 qede_multicast(qede_t *qede, boolean_t flag, const uint8_t *ptr_mcaddr)
1044 {
1045 	int i, ret = DDI_SUCCESS;
1046 	qede_mcast_list_entry_t *ptr_mlist;
1047 	qede_mcast_list_entry_t *ptr_entry;
1048 	int mc_cnt;
1049 	unsigned char *mc_macs, *tmpmc;
1050 	size_t size;
1051 	boolean_t mcmac_exists = B_FALSE;
1052 	enum qede_filter_rx_mode_type mode;
1053 
1054 	if (!ptr_mcaddr)  {
1055 		cmn_err(CE_NOTE, "Removing all multicast");
1056 	} else  {
1057 		cmn_err(CE_NOTE,
1058 		    "qede=%p %s multicast: %02x:%02x:%02x:%02x:%02x:%02x",
1059 		    qede, (flag) ? "Adding" : "Removing", ptr_mcaddr[0],
1060 		    ptr_mcaddr[1],ptr_mcaddr[2],ptr_mcaddr[3],ptr_mcaddr[4],
1061 		    ptr_mcaddr[5]);
1062 	}
1063 
1064 
1065 	if (flag && (ptr_mcaddr == NULL)) {
1066 		cmn_err(CE_WARN, "ERROR: Multicast address not specified");
1067 		return EINVAL;
1068 	}
1069 
1070 
1071 	/* exceeds addition of mcaddr above limit */
1072 	if (flag && (qede->mc_cnt >= MAX_MC_SOFT_LIMIT)) {
1073 		qede_info(qede, "Cannot add more than MAX_MC_SOFT_LIMIT");
1074 		return ENOENT;
1075 	}
1076 
1077 	size = MAX_MC_SOFT_LIMIT * ETH_ALLEN;
1078 
1079 	mc_macs = kmem_zalloc(size, KM_NOSLEEP);
1080 	if (!mc_macs) {
1081 		cmn_err(CE_WARN, "ERROR: Failed to allocate for mc_macs");
1082 		return EINVAL;
1083 	}
1084 
1085 	tmpmc = mc_macs;
1086 
1087         /* remove all multicast - as flag not set and mcaddr not specified*/
1088         if (!flag && (ptr_mcaddr == NULL)) {
1089 		while (!QEDE_LIST_IS_EMPTY(&qede->mclist.head)) {
1090 			ptr_entry = QEDE_LIST_FIRST_ENTRY(&qede->mclist.head,
1091 			    qede_mcast_list_entry_t, mclist_entry);
1092                         QEDE_LIST_REMOVE(&ptr_entry->mclist_entry,
1093 			    &qede->mclist.head);
1094                         kmem_free(ptr_entry,
1095 			    sizeof (qede_mcast_list_entry_t) + ETH_ALLEN);
1096 		}
1097 
1098                 ret = qede_set_rx_mac_mcast(qede,
1099 		    ECORE_FILTER_REMOVE, mc_macs, 1);
1100                 qede->mc_cnt = 0;
1101                 goto exit;
1102         }
1103 
1104         QEDE_LIST_FOR_EACH_ENTRY(ptr_entry,
1105 	    &qede->mclist.head, qede_mcast_list_entry_t, mclist_entry)
1106         {
1107                 if ((ptr_entry != NULL) &&
1108 		    IS_ETH_ADDRESS_EQUAL(ptr_mcaddr, ptr_entry->mac)) {
1109                         mcmac_exists = B_TRUE;
1110                         break;
1111                 }
1112         }
1113         if (flag && mcmac_exists) {
1114                 ret = DDI_SUCCESS;
1115                 goto exit;
1116         } else if (!flag && !mcmac_exists) {
1117                 ret = DDI_SUCCESS;
1118                 goto exit;
1119         }
1120 
1121        if (flag) {
1122                 ptr_entry = kmem_zalloc((sizeof (qede_mcast_list_entry_t) +
1123 		    ETH_ALLEN), KM_NOSLEEP);
1124                 ptr_entry->mac = (uint8_t *)ptr_entry +
1125 		    sizeof (qede_mcast_list_entry_t);
1126                 COPY_ETH_ADDRESS(ptr_mcaddr, ptr_entry->mac);
1127                 QEDE_LIST_ADD(&ptr_entry->mclist_entry, &qede->mclist.head);
1128         } else {
1129                 QEDE_LIST_REMOVE(&ptr_entry->mclist_entry, &qede->mclist.head);
1130                 kmem_free(ptr_entry, sizeof(qede_mcast_list_entry_t) +
1131 		    ETH_ALLEN);
1132         }
1133 
1134 	mc_cnt = 0;
1135         QEDE_LIST_FOR_EACH_ENTRY(ptr_entry, &qede->mclist.head,
1136 	    qede_mcast_list_entry_t, mclist_entry) {
1137                 COPY_ETH_ADDRESS(ptr_entry->mac, tmpmc);
1138                 tmpmc += ETH_ALLEN;
1139                 mc_cnt++;
1140         }
1141         qede->mc_cnt = mc_cnt;
1142         if (mc_cnt <=64) {
1143                 ret = qede_set_rx_mac_mcast(qede, ECORE_FILTER_ADD,
1144 		    (unsigned char *)mc_macs, mc_cnt);
1145                 if ((qede->params.multi_promisc_fl == B_TRUE) &&
1146 		    (qede->params.promisc_fl == B_FALSE)) {
1147                         mode = QEDE_FILTER_RX_MODE_REGULAR;
1148                         ret = qede_set_filter_rx_mode(qede, mode);
1149                 }
1150                 qede->params.multi_promisc_fl = B_FALSE;
1151         } else {
1152                 if ((qede->params.multi_promisc_fl == B_FALSE) &&
1153 		    (qede->params.promisc_fl == B_FALSE)) {
1154                         ret = qede_set_filter_rx_mode(qede,
1155 			    QEDE_FILTER_RX_MODE_MULTI_PROMISC);
1156                 }
1157                 qede->params.multi_promisc_fl = B_TRUE;
1158                 qede_info(qede, "mode is MULTI_PROMISC");
1159         }
1160 exit:
1161 kmem_free(mc_macs, size);
1162 qede_info(qede, "multicast ret %d mc_cnt %d\n", ret, qede->mc_cnt);
1163 return (ret);
1164 }
1165 
1166 /*
1167  * This function is used to enable or disable multicast packet reception for
1168  * particular multicast addresses.
1169  * (flag) TRUE = add, FALSE = remove
1170  */
1171 static int
1172 qede_mac_multicast(void *arg,
1173     boolean_t       flag,
1174     const uint8_t * mcast_addr)
1175 {
1176 	qede_t *qede = (qede_t *)arg;
1177 	int ret = DDI_SUCCESS;
1178 
1179 
1180 	mutex_enter(&qede->gld_lock);
1181 	if(qede->qede_state != QEDE_STATE_STARTED) {
1182 		mutex_exit(&qede->gld_lock);
1183 		return (EAGAIN);
1184 	}
1185 	ret = qede_multicast(qede, flag, mcast_addr);
1186 
1187 	mutex_exit(&qede->gld_lock);
1188 
1189     return (ret);
1190 }
1191 int
1192 qede_clear_filters(qede_t *qede)
1193 {
1194 	int ret = 0;
1195 	int i;
1196 	if ((qede->params.promisc_fl == B_TRUE) ||
1197 	    (qede->params.multi_promisc_fl == B_TRUE)) {
1198 		ret = qede_set_filter_rx_mode(qede,
1199 		    QEDE_FILTER_RX_MODE_REGULAR);
1200 		if (ret) {
1201 			qede_info(qede,
1202 			    "qede_clear_filters failed to set rx_mode");
1203 		}
1204 	}
1205 	for (i=0; i < qede->ucst_total; i++)
1206 	{
1207 		if (qede->ucst_mac[i].set) {
1208 			qede_rem_macaddr(qede,
1209 			    qede->ucst_mac[i].mac_addr.ether_addr_octet);
1210 		}
1211 	}
1212 	qede_multicast(qede, B_FALSE, NULL);
1213 	return (ret);
1214 }
1215 
1216 
1217 #ifdef  NO_CROSSBOW
1218 static int
1219 qede_mac_unicast(void *arg,
1220     const uint8_t * mac_addr)
1221 {
1222     qede_t *qede = (qede_t *)arg;
1223     return 0;
1224 }
1225 
1226 
1227 static mblk_t *
1228 qede_mac_tx(void *arg,
1229     mblk_t * mblk)
1230 {
1231     qede_t *qede = (qede_t *)arg;
1232     qede_fastpath_t *fp = &qede->fp_array[0];
1233 
1234     mblk = qede_ring_tx((void *)fp, mblk);
1235 
1236     return (mblk);
1237 }
1238 #endif  /* NO_CROSSBOW */
1239 
1240 
1241 static lb_property_t loopmodes[] = {
1242 	{ normal,       "normal",       QEDE_LOOP_NONE                },
1243 	{ internal,     "internal",     QEDE_LOOP_INTERNAL            },
1244 	{ external,     "external",     QEDE_LOOP_EXTERNAL            },
1245 };
1246 
1247 /*
1248  * Set Loopback mode
1249  */
1250 
1251 static enum ioc_reply
1252 qede_set_loopback_mode(qede_t *qede, uint32_t mode)
1253 {
1254 	int i = 0;
1255 	struct ecore_dev *edev = &qede->edev;
1256 	struct ecore_hwfn *hwfn;
1257 	struct ecore_ptt *ptt = NULL;
1258 	struct ecore_mcp_link_params *link_params;
1259 
1260 	hwfn = &edev->hwfns[0];
1261 	link_params = ecore_mcp_get_link_params(hwfn);
1262 	ptt = ecore_ptt_acquire(hwfn);
1263 
1264 	switch(mode) {
1265 	default:
1266 		qede_info(qede, "unknown loopback mode !!");
1267 		ecore_ptt_release(hwfn, ptt);
1268 		return IOC_INVAL;
1269 
1270 	case QEDE_LOOP_NONE:
1271 		ecore_mcp_set_link(hwfn, ptt, 0);
1272 
1273 		while (qede->params.link_state && i < 5000) {
1274 			OSAL_MSLEEP(1);
1275 			i++;
1276 		}
1277 		i = 0;
1278 
1279 		link_params->loopback_mode = ETH_LOOPBACK_NONE;
1280 		qede->loop_back_mode = QEDE_LOOP_NONE;
1281 		(void) ecore_mcp_set_link(hwfn, ptt, 1);
1282 		ecore_ptt_release(hwfn, ptt);
1283 
1284 		while (!qede->params.link_state && i < 5000) {
1285 			OSAL_MSLEEP(1);
1286 			i++;
1287 		}
1288 		return IOC_REPLY;
1289 
1290 	case QEDE_LOOP_INTERNAL:
1291 		qede_print("!%s(%d) : loopback mode (INTERNAL) is set!",
1292 		    __func__, qede->instance);
1293 		    ecore_mcp_set_link(hwfn, ptt, 0);
1294 
1295 		while(qede->params.link_state && i < 5000) {
1296 			OSAL_MSLEEP(1);
1297 			i++;
1298 		}
1299 		i = 0;
1300 		link_params->loopback_mode = ETH_LOOPBACK_INT_PHY;
1301 		qede->loop_back_mode = QEDE_LOOP_INTERNAL;
1302 		(void) ecore_mcp_set_link(hwfn, ptt, 1);
1303 		ecore_ptt_release(hwfn, ptt);
1304 
1305 		while(!qede->params.link_state && i < 5000) {
1306 			OSAL_MSLEEP(1);
1307 			i++;
1308 		}
1309 		return IOC_REPLY;
1310 
1311 	case QEDE_LOOP_EXTERNAL:
1312 		qede_print("!%s(%d) : External loopback mode is not supported",
1313 		    __func__, qede->instance);
1314 		ecore_ptt_release(hwfn, ptt);
1315 		return IOC_INVAL;
1316 	}
1317 }
1318 
1319 static int
1320 qede_ioctl_pcicfg_rd(qede_t *qede, u32 addr, void *data,
1321     int len)
1322 {
1323 	u32 crb, actual_crb;
1324 	uint32_t ret = 0;
1325 	int cap_offset = 0, cap_id = 0, next_cap = 0;
1326 	ddi_acc_handle_t pci_cfg_handle  = qede->pci_cfg_handle;
1327 	qede_ioctl_data_t * data1 = (qede_ioctl_data_t *) data;
1328 
1329 	cap_offset = pci_config_get8(pci_cfg_handle, PCI_CONF_CAP_PTR);
1330 	while (cap_offset != 0) {
1331                 /* Check for an invalid PCI read. */
1332                 if (cap_offset == PCI_EINVAL8) {
1333                         return DDI_FAILURE;
1334                 }
1335 		cap_id = pci_config_get8(pci_cfg_handle, cap_offset);
1336 		if (cap_id == PCI_CAP_ID_PCI_E) {
1337 			/* PCIe expr capab struct found */
1338 			break;
1339 		} else {
1340 			next_cap = pci_config_get8(pci_cfg_handle,
1341 			    cap_offset + 1);
1342 			cap_offset = next_cap;
1343 		}
1344 	}
1345 
1346 	switch (len) {
1347 	case 1:
1348 		ret = pci_config_get8(qede->pci_cfg_handle, addr);
1349 		(void) memcpy(data, &ret, sizeof(uint8_t));
1350 		break;
1351 	case 2:
1352 		ret = pci_config_get16(qede->pci_cfg_handle, addr);
1353 		(void) memcpy(data, &ret, sizeof(uint16_t));
1354 		break;
1355 	case 4:
1356 		ret = pci_config_get32(qede->pci_cfg_handle, addr);
1357 		(void) memcpy(data, &ret, sizeof(uint32_t));
1358 		break;
1359 	default:
1360 		cmn_err(CE_WARN, "bad length for pci config read\n");
1361 		return (1);
1362 	}
1363 	return (0);
1364 }
1365 
1366 static int
1367 qede_ioctl_pcicfg_wr(qede_t *qede, u32 addr, void *data,
1368     int len)
1369 {
1370 	uint16_t ret = 0;
1371 	int cap_offset = 0, cap_id = 0, next_cap = 0;
1372 	qede_ioctl_data_t * data1 = (qede_ioctl_data_t *) data;
1373 	ddi_acc_handle_t pci_cfg_handle  = qede->pci_cfg_handle;
1374 #if 1
1375 	cap_offset = pci_config_get8(pci_cfg_handle, PCI_CONF_CAP_PTR);
1376 	while (cap_offset != 0) {
1377 		cap_id = pci_config_get8(pci_cfg_handle, cap_offset);
1378 		if (cap_id == PCI_CAP_ID_PCI_E) {
1379 			/* PCIe expr capab struct found */
1380 			break;
1381 		} else {
1382 			next_cap = pci_config_get8(pci_cfg_handle,
1383 			    cap_offset + 1);
1384 			cap_offset = next_cap;
1385 		}
1386 	}
1387 #endif
1388 
1389 	switch(len) {
1390 	case 1:
1391 		pci_config_put8(qede->pci_cfg_handle, addr,
1392 		    *(char *)&(data));
1393 		break;
1394 	case 2:
1395 		ret = pci_config_get16(qede->pci_cfg_handle, addr);
1396 		ret = ret | *(uint16_t *)data1->uabc;
1397 
1398 		pci_config_put16(qede->pci_cfg_handle, addr,
1399 		    ret);
1400 		break;
1401 	case 4:
1402 		pci_config_put32(qede->pci_cfg_handle, addr, *(uint32_t *)data1->uabc);
1403 		break;
1404 
1405 	default:
1406 		return (1);
1407 	}
1408 	return (0);
1409 }
1410 
1411 static int
1412 qede_ioctl_rd_wr_reg(qede_t *qede, void *data)
1413 {
1414 	struct ecore_hwfn *p_hwfn;
1415 	struct ecore_dev *edev = &qede->edev;
1416 	struct ecore_ptt *ptt;
1417 	qede_ioctl_data_t *data1 = (qede_ioctl_data_t *)data;
1418 	uint32_t ret = 0;
1419 	uint8_t cmd = (uint8_t) data1->unused1;
1420 	uint32_t addr = data1->off;
1421 	uint32_t val = *(uint32_t *)&data1->uabc[1];
1422 	uint32_t hwfn_index = *(uint32_t *)&data1->uabc[5];
1423 	uint32_t *reg_addr;
1424 
1425 	if (hwfn_index > qede->num_hwfns) {
1426 		cmn_err(CE_WARN, "invalid hwfn index from application\n");
1427 		return (EINVAL);
1428 	}
1429 	p_hwfn = &edev->hwfns[hwfn_index];
1430 
1431 	switch(cmd) {
1432 	case QEDE_REG_READ:
1433 		ret = ecore_rd(p_hwfn, p_hwfn->p_main_ptt, addr);
1434 		(void) memcpy(data1->uabc, &ret, sizeof(uint32_t));
1435 		break;
1436 
1437 	case QEDE_REG_WRITE:
1438 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt, addr, val);
1439 		break;
1440 
1441 	default:
1442 		cmn_err(CE_WARN,
1443 		    "wrong command in register read/write from application\n");
1444 		break;
1445 	}
1446 	return (ret);
1447 }
1448 
1449 static int
1450 qede_ioctl_rd_wr_nvram(qede_t *qede, mblk_t *mp)
1451 {
1452 	qede_nvram_data_t *data1 = (qede_nvram_data_t *)(mp->b_cont->b_rptr);
1453 	qede_nvram_data_t *data2, *next_data;
1454 	struct ecore_dev *edev = &qede->edev;
1455 	uint32_t hdr_size = 24, bytes_to_copy, copy_len = 0;
1456 	uint32_t copy_len1 = 0;
1457 	uint32_t addr = data1->off;
1458 	uint32_t size = data1->size, i, buf_size;
1459 	uint8_t cmd, cmd2;
1460 	uint8_t *buf, *tmp_buf;
1461 	mblk_t *mp1;
1462 
1463 	cmd = (uint8_t)data1->unused1;
1464 
1465 	switch(cmd) {
1466 	case QEDE_NVRAM_CMD_READ:
1467 		buf = kmem_zalloc(size, GFP_KERNEL);
1468 		if(buf == NULL) {
1469 			cmn_err(CE_WARN, "memory allocation failed"
1470 			" in nvram read ioctl\n");
1471 			return (DDI_FAILURE);
1472 		}
1473 		(void) ecore_mcp_nvm_read(edev, addr, buf, data1->size);
1474 
1475 		copy_len = (MBLKL(mp->b_cont)) - hdr_size;
1476 		if(copy_len > size) {
1477 			(void) memcpy(data1->uabc, buf, size);
1478 			kmem_free(buf, size);
1479 			//OSAL_FREE(edev, buf);
1480 			break;
1481 		}
1482 		(void) memcpy(data1->uabc, buf, copy_len);
1483 		bytes_to_copy = size - copy_len;
1484 		tmp_buf = ((uint8_t *)buf) + copy_len;
1485 		copy_len1 = copy_len;
1486 		mp1 = mp->b_cont;
1487 		mp1 = mp1->b_cont;
1488 
1489 		while (mp1) {
1490 			copy_len = MBLKL(mp1);
1491 			if(mp1->b_cont == NULL) {
1492 				copy_len = MBLKL(mp1) - 4;
1493 			}
1494 			data2 = (qede_nvram_data_t *)mp1->b_rptr;
1495 			if (copy_len > bytes_to_copy) {
1496 				(void) memcpy(data2->uabc, tmp_buf,
1497 				    bytes_to_copy);
1498 				break;
1499 			}
1500 			(void) memcpy(data2->uabc, tmp_buf, copy_len);
1501 			tmp_buf = tmp_buf + copy_len;
1502 			copy_len += copy_len;
1503 			mp1 = mp1->b_cont;
1504 			bytes_to_copy = bytes_to_copy - copy_len;
1505 		}
1506 
1507 		kmem_free(buf, size);
1508 		//OSAL_FREE(edev, buf);
1509 		break;
1510 
1511 	case QEDE_NVRAM_CMD_WRITE:
1512 		cmd2 = (uint8_t )data1->cmd2;
1513 		size = data1->size;
1514 		addr = data1->off;
1515 		buf_size =  size; //data1->buf_size;
1516 		//buf_size =  data1->buf_size;
1517 
1518 		switch(cmd2){
1519 		case START_NVM_WRITE:
1520 			buf = kmem_zalloc(size, GFP_KERNEL);
1521 			//buf = qede->reserved_buf;
1522 			qede->nvm_buf_size = data1->size;
1523 			if(buf == NULL) {
1524 				cmn_err(CE_WARN,
1525 				"memory allocation failed in START_NVM_WRITE\n");
1526 				return DDI_FAILURE;
1527 			}
1528 			qede->nvm_buf_start = buf;
1529 			cmn_err(CE_NOTE,
1530 			    "buf = %p, size = %x\n", qede->nvm_buf_start, size);
1531 			qede->nvm_buf = buf;
1532 			qede->copy_len = 0;
1533 			//tmp_buf = buf + addr;
1534 			break;
1535 
1536 		case ACCUMULATE_NVM_BUF:
1537 			tmp_buf = qede->nvm_buf;
1538 			copy_len = MBLKL(mp->b_cont) - hdr_size;
1539 			if(copy_len > buf_size) {
1540 			 	if (buf_size < qede->nvm_buf_size) {
1541 				(void) memcpy(tmp_buf, data1->uabc, buf_size);
1542 					qede->copy_len = qede->copy_len +
1543 					    buf_size;
1544 				} else {
1545 					(void) memcpy(tmp_buf,
1546 					    data1->uabc, qede->nvm_buf_size);
1547 					qede->copy_len =
1548 					    qede->copy_len + qede->nvm_buf_size;
1549 				}
1550 				tmp_buf = tmp_buf + buf_size;
1551 				qede->nvm_buf = tmp_buf;
1552 				//qede->copy_len = qede->copy_len + buf_size;
1553 				cmn_err(CE_NOTE,
1554 				    "buf_size from app = %x\n", copy_len);
1555 				break;
1556 			}
1557 			(void) memcpy(tmp_buf, data1->uabc, copy_len);
1558 			tmp_buf = tmp_buf + copy_len;
1559 			bytes_to_copy = buf_size - copy_len;
1560 			mp1 = mp->b_cont;
1561 			mp1 = mp1->b_cont;
1562 			copy_len1 = copy_len;
1563 
1564 			while (mp1) {
1565 				copy_len = MBLKL(mp1);
1566 				if (mp1->b_cont == NULL) {
1567 					copy_len = MBLKL(mp1) - 4;
1568 				}
1569 				next_data = (qede_nvram_data_t *) mp1->b_rptr;
1570 				if (copy_len > bytes_to_copy){
1571 					(void) memcpy(tmp_buf, next_data->uabc,
1572 					    bytes_to_copy);
1573 					qede->copy_len = qede->copy_len +
1574 					    bytes_to_copy;
1575 					break;
1576 				}
1577 				(void) memcpy(tmp_buf, next_data->uabc,
1578 				    copy_len);
1579 				qede->copy_len = qede->copy_len + copy_len;
1580 				tmp_buf = tmp_buf + copy_len;
1581 				copy_len = copy_len1 + copy_len;
1582 				bytes_to_copy = bytes_to_copy - copy_len;
1583 				mp1 = mp1->b_cont;
1584 			}
1585 			qede->nvm_buf = tmp_buf;
1586 			break;
1587 
1588 		case STOP_NVM_WRITE:
1589 			//qede->nvm_buf = tmp_buf;
1590 			break;
1591 		case READ_BUF:
1592 			tmp_buf = (uint8_t *)qede->nvm_buf_start;
1593 			for(i = 0; i < size ; i++){
1594 				cmn_err(CE_NOTE,
1595 				    "buff (%d) : %d\n", i, *tmp_buf);
1596 				tmp_buf ++;
1597 			}
1598 			break;
1599 		}
1600 		break;
1601 	case QEDE_NVRAM_CMD_PUT_FILE_DATA:
1602 		tmp_buf = qede->nvm_buf_start;
1603 		(void) ecore_mcp_nvm_write(edev, ECORE_PUT_FILE_DATA,
1604 			  addr, tmp_buf, size);
1605 		kmem_free(qede->nvm_buf_start, size);
1606 		//OSAL_FREE(edev, tmp_buf);
1607 		cmn_err(CE_NOTE, "total size = %x, copied size = %x\n",
1608 		    qede->nvm_buf_size, qede->copy_len);
1609 		tmp_buf = NULL;
1610 		qede->nvm_buf = NULL;
1611 		qede->nvm_buf_start = NULL;
1612 		break;
1613 
1614 	case QEDE_NVRAM_CMD_SET_SECURE_MODE:
1615 		(void) ecore_mcp_nvm_set_secure_mode(edev, addr);
1616 		break;
1617 
1618 	case QEDE_NVRAM_CMD_DEL_FILE:
1619 		(void) ecore_mcp_nvm_del_file(edev, addr);
1620 		break;
1621 
1622 	case QEDE_NVRAM_CMD_PUT_FILE_BEGIN:
1623 		(void) ecore_mcp_nvm_put_file_begin(edev, addr);
1624 		break;
1625 
1626 	case QEDE_NVRAM_CMD_GET_NVRAM_RESP:
1627 		buf = kmem_zalloc(size, KM_SLEEP);
1628 		(void) ecore_mcp_nvm_resp(edev, buf);
1629 		(void)memcpy(data1->uabc, buf, size);
1630 		kmem_free(buf, size);
1631 		break;
1632 
1633 	default:
1634 		cmn_err(CE_WARN,
1635 		    "wrong command in NVRAM read/write from application\n");
1636 		break;
1637 	}
1638 	return (DDI_SUCCESS);
1639 }
1640 
1641 static int
1642 qede_get_func_info(qede_t *qede, void *data)
1643 {
1644 	qede_link_output_t link_op;
1645 	qede_func_info_t func_info;
1646 	qede_ioctl_data_t *data1 = (qede_ioctl_data_t *)data;
1647 	struct ecore_dev *edev = &qede->edev;
1648 	struct ecore_hwfn *hwfn;
1649 	struct ecore_mcp_link_params params;
1650 	struct ecore_mcp_link_state link;
1651 
1652 	hwfn = &edev->hwfns[0];
1653 
1654 	if(hwfn == NULL){
1655 		cmn_err(CE_WARN, "(%s) : cannot acquire hwfn\n",
1656 		    __func__);
1657 		return (DDI_FAILURE);
1658 	}
1659 	memcpy(&params, &hwfn->mcp_info->link_input, sizeof(params));
1660 	memcpy(&link, &hwfn->mcp_info->link_output, sizeof(link));
1661 
1662 	if(link.link_up) {
1663 		link_op.link_up = true;
1664 	}
1665 
1666 	link_op.supported_caps = SUPPORTED_FIBRE;
1667 	if(params.speed.autoneg) {
1668 		link_op.supported_caps |= SUPPORTED_Autoneg;
1669 	}
1670 
1671 	if(params.pause.autoneg ||
1672 	    (params.pause.forced_rx && params.pause.forced_tx)) {
1673 		link_op.supported_caps |= SUPPORTED_Asym_Pause;
1674 	}
1675 
1676 	if (params.pause.autoneg || params.pause.forced_rx ||
1677 	     params.pause.forced_tx) {
1678 		link_op.supported_caps |= SUPPORTED_Pause;
1679 	}
1680 
1681 	if (params.speed.advertised_speeds &
1682 	    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G) {
1683 		link_op.supported_caps |= SUPPORTED_1000baseT_Half |
1684 	    	    SUPPORTED_1000baseT_Full;
1685 	}
1686 
1687 	if (params.speed.advertised_speeds &
1688 	    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G) {
1689 		link_op.supported_caps |= SUPPORTED_10000baseKR_Full;
1690 	}
1691 
1692 	if (params.speed.advertised_speeds &
1693 	    NVM_CFG1_PORT_DRV_LINK_SPEED_40G) {
1694 		link_op.supported_caps |= SUPPORTED_40000baseLR4_Full;
1695 	}
1696 
1697 	link_op.advertised_caps = link_op.supported_caps;
1698 
1699 	if(link.link_up) {
1700 		link_op.speed = link.speed;
1701 	} else {
1702 		link_op.speed = 0;
1703 	}
1704 
1705 	link_op.duplex = DUPLEX_FULL;
1706 	link_op.port = PORT_FIBRE;
1707 
1708 	link_op.autoneg = params.speed.autoneg;
1709 
1710 	/* Link partner capabilities */
1711 	if (link.partner_adv_speed &
1712 	    ECORE_LINK_PARTNER_SPEED_1G_HD) {
1713 		link_op.lp_caps |= SUPPORTED_1000baseT_Half;
1714 	}
1715 
1716 	if (link.partner_adv_speed &
1717 	    ECORE_LINK_PARTNER_SPEED_1G_FD) {
1718 		link_op.lp_caps |= SUPPORTED_1000baseT_Full;
1719 	}
1720 
1721 	if (link.partner_adv_speed &
1722 	    ECORE_LINK_PARTNER_SPEED_10G) {
1723 		link_op.lp_caps |= SUPPORTED_10000baseKR_Full;
1724 	}
1725 
1726 	if (link.partner_adv_speed &
1727 	    ECORE_LINK_PARTNER_SPEED_20G) {
1728 		link_op.lp_caps |= SUPPORTED_20000baseKR2_Full;
1729 	}
1730 
1731 	if (link.partner_adv_speed &
1732 	    ECORE_LINK_PARTNER_SPEED_40G) {
1733 		link_op.lp_caps |= SUPPORTED_40000baseLR4_Full;
1734 	}
1735 
1736 	if (link.an_complete) {
1737 		link_op.lp_caps |= SUPPORTED_Autoneg;
1738 	}
1739 
1740 	if (link.partner_adv_pause) {
1741 		link_op.lp_caps |= SUPPORTED_Pause;
1742 	}
1743 
1744 	if (link.partner_adv_pause == ECORE_LINK_PARTNER_ASYMMETRIC_PAUSE ||
1745 	    link.partner_adv_pause == ECORE_LINK_PARTNER_BOTH_PAUSE) {
1746 		link_op.lp_caps |= SUPPORTED_Asym_Pause;
1747 	}
1748 
1749 	func_info.supported = link_op.supported_caps;
1750 	func_info.advertising = link_op.advertised_caps;
1751 	func_info.speed = link_op.speed;
1752 	func_info.duplex = link_op.duplex;
1753 	func_info.port = qede->pci_func & 0x1;
1754 	func_info.autoneg = link_op.autoneg;
1755 
1756 	(void) memcpy(data1->uabc, &func_info, sizeof(qede_func_info_t));
1757 
1758 	return (0);
1759 }
1760 
1761 static int
1762 qede_do_ioctl(qede_t *qede, queue_t *q, mblk_t *mp)
1763 {
1764 	qede_ioctl_data_t *up_data;
1765 	qede_driver_info_t driver_info;
1766 	struct ecore_dev *edev = &qede->edev;
1767 	struct ecore_hwfn *hwfn;
1768 	struct ecore_ptt *ptt = NULL;
1769 	struct mcp_file_att attrib;
1770 	uint32_t flash_size;
1771 	uint32_t mcp_resp, mcp_param, txn_size;
1772 	uint32_t cmd, size, ret = 0;
1773 	uint64_t off;
1774 	int * up_data1;
1775 	void * ptr;
1776 	mblk_t *mp1 = mp;
1777 	char mac_addr[32];
1778 
1779 	up_data = (qede_ioctl_data_t *)(mp->b_cont->b_rptr);
1780 
1781 	cmd = up_data->cmd;
1782 	off = up_data->off;
1783 	size = up_data->size;
1784 
1785 	switch (cmd) {
1786 	case QEDE_DRV_INFO:
1787 		hwfn = &edev->hwfns[0];
1788 		ptt = ecore_ptt_acquire(hwfn);
1789 
1790 		snprintf(driver_info.drv_name, MAX_QEDE_NAME_LEN, "%s", "qede");
1791 		snprintf(driver_info.drv_version, QEDE_STR_SIZE,
1792 		    "v:%s", qede->version);
1793 		snprintf(driver_info.mfw_version, QEDE_STR_SIZE,
1794 		    "%s", qede->versionMFW);
1795 		snprintf(driver_info.stormfw_version, QEDE_STR_SIZE,
1796 		    "%s", qede->versionFW);
1797 		snprintf(driver_info.bus_info, QEDE_STR_SIZE,
1798 		    "%s", qede->bus_dev_func);
1799 
1800 
1801 		/*
1802 		 * calling ecore_mcp_nvm_rd_cmd to find the flash length, i
1803 		 * 0x08 is equivalent of NVM_TYPE_MFW_TRACE1
1804 		 */
1805 		ecore_mcp_get_flash_size(hwfn, ptt, &flash_size);
1806 		driver_info.eeprom_dump_len = flash_size;
1807 		(void) memcpy(up_data->uabc, &driver_info,
1808 		    sizeof (qede_driver_info_t));
1809 		up_data->size = sizeof (qede_driver_info_t);
1810 
1811 		ecore_ptt_release(hwfn, ptt);
1812 		break;
1813 
1814 	case QEDE_RD_PCICFG:
1815 		ret = qede_ioctl_pcicfg_rd(qede, off, up_data->uabc, size);
1816 		break;
1817 
1818 	case QEDE_WR_PCICFG:
1819 		ret = qede_ioctl_pcicfg_wr(qede, off, up_data, size);
1820 		break;
1821 
1822 	case QEDE_RW_REG:
1823 		ret = qede_ioctl_rd_wr_reg(qede, (void *)up_data);
1824 	       	break;
1825 
1826 	case QEDE_RW_NVRAM:
1827 		ret = qede_ioctl_rd_wr_nvram(qede, mp1);
1828 		break;
1829 
1830 	case QEDE_FUNC_INFO:
1831 		ret = qede_get_func_info(qede, (void *)up_data);
1832 		break;
1833 
1834 	case QEDE_MAC_ADDR:
1835 		snprintf(mac_addr, sizeof(mac_addr),
1836 			"%02x:%02x:%02x:%02x:%02x:%02x",
1837 			qede->ether_addr[0], qede->ether_addr[1],
1838 			qede->ether_addr[2], qede->ether_addr[3],
1839 			qede->ether_addr[4], qede->ether_addr[5]);
1840 		(void) memcpy(up_data->uabc, &mac_addr, sizeof(mac_addr));
1841 		break;
1842 
1843 	}
1844 	//if (cmd == QEDE_RW_NVRAM) {
1845 	//	miocack (q, mp, (sizeof(qede_ioctl_data_t)), 0);
1846 	//	return IOC_REPLY;
1847 	//}
1848 	miocack (q, mp, (sizeof(qede_ioctl_data_t)), ret);
1849 	//miocack (q, mp, 0, ret);
1850 	return (IOC_REPLY);
1851 }
1852 
1853 static void
1854 qede_ioctl(qede_t *qede, int cmd, queue_t *q, mblk_t *mp)
1855 {
1856 	void *ptr;
1857 
1858 	switch(cmd) {
1859 	case QEDE_CMD:
1860 		(void) qede_do_ioctl(qede, q, mp);
1861 		break;
1862 	default :
1863 		cmn_err(CE_WARN, "qede ioctl command %x not supported\n", cmd);
1864 		break;
1865 	}
1866 	return;
1867 }
1868 enum ioc_reply
1869 qede_loopback_ioctl(qede_t *qede, queue_t *wq, mblk_t *mp,
1870     struct iocblk *iocp)
1871 {
1872 	lb_info_sz_t *lb_info_size;
1873 	lb_property_t *lb_prop;
1874 	uint32_t *lb_mode;
1875 	int cmd;
1876 
1877 	/*
1878 	 * Validate format of ioctl
1879 	 */
1880 	if(mp->b_cont == NULL) {
1881 		return IOC_INVAL;
1882 	}
1883 
1884 	cmd = iocp->ioc_cmd;
1885 
1886 	switch(cmd) {
1887 	default:
1888 		qede_print("!%s(%d): unknown ioctl command %x\n",
1889 		    __func__, qede->instance, cmd);
1890 		return IOC_INVAL;
1891 	case LB_GET_INFO_SIZE:
1892 		if (iocp->ioc_count != sizeof(lb_info_sz_t)) {
1893 			qede_info(qede, "error: ioc_count %d, sizeof %d",
1894 			    iocp->ioc_count,  sizeof(lb_info_sz_t));
1895 			return IOC_INVAL;
1896 		}
1897 		lb_info_size = (void *)mp->b_cont->b_rptr;
1898 		*lb_info_size = sizeof(loopmodes);
1899 		return IOC_REPLY;
1900 	case LB_GET_INFO:
1901 		if (iocp->ioc_count != sizeof (loopmodes)) {
1902 			qede_info(qede, "error: iocp->ioc_count %d, sizepof %d",
1903 			    iocp->ioc_count,  sizeof (loopmodes));
1904 			return (IOC_INVAL);
1905 		}
1906 		lb_prop = (void *)mp->b_cont->b_rptr;
1907 		bcopy(loopmodes, lb_prop, sizeof (loopmodes));
1908 		return IOC_REPLY;
1909 	case LB_GET_MODE:
1910 		if (iocp->ioc_count != sizeof (uint32_t)) {
1911 			qede_info(qede, "iocp->ioc_count %d, sizeof : %d\n",
1912 			    iocp->ioc_count, sizeof (uint32_t));
1913 			return (IOC_INVAL);
1914 		}
1915 		lb_mode = (void *)mp->b_cont->b_rptr;
1916 		*lb_mode = qede->loop_back_mode;
1917 		return IOC_REPLY;
1918 	case LB_SET_MODE:
1919 		if (iocp->ioc_count != sizeof (uint32_t)) {
1920 			qede_info(qede, "iocp->ioc_count %d, sizeof : %d\n",
1921 			    iocp->ioc_count, sizeof (uint32_t));
1922 			return (IOC_INVAL);
1923 		}
1924 		lb_mode = (void *)mp->b_cont->b_rptr;
1925 		return (qede_set_loopback_mode(qede,*lb_mode));
1926 	}
1927 }
1928 
1929 static void
1930 qede_mac_ioctl(void *    arg,
1931                queue_t * wq,
1932                mblk_t *  mp)
1933 {
1934 	int err, cmd;
1935     	qede_t * qede = (qede_t *)arg;
1936     	struct iocblk *iocp = (struct iocblk *) (uintptr_t)mp->b_rptr;
1937     	enum ioc_reply status = IOC_DONE;
1938     	boolean_t need_privilege = B_TRUE;
1939 
1940 	iocp->ioc_error = 0;
1941 	cmd = iocp->ioc_cmd;
1942 
1943 	mutex_enter(&qede->drv_lock);
1944 	if ((qede->qede_state == QEDE_STATE_SUSPENDING) ||
1945 	   (qede->qede_state == QEDE_STATE_SUSPENDED)) {
1946 		mutex_exit(&qede->drv_lock);
1947 		miocnak(wq, mp, 0, EINVAL);
1948 		return;
1949 	}
1950 
1951 	switch(cmd) {
1952 		case QEDE_CMD:
1953 			break;
1954 		case LB_GET_INFO_SIZE:
1955 		case LB_GET_INFO:
1956 		case LB_GET_MODE:
1957 			need_privilege = B_FALSE;
1958 		case LB_SET_MODE:
1959 			break;
1960 		default:
1961 			qede_print("!%s(%d) unknown ioctl command %x\n",
1962 			    __func__, qede->instance, cmd);
1963 			miocnak(wq, mp, 0, EINVAL);
1964 			mutex_exit(&qede->drv_lock);
1965 			return;
1966 	}
1967 
1968 	if(need_privilege) {
1969 		err = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
1970 		if(err){
1971 			qede_info(qede, "secpolicy() failed");
1972 			miocnak(wq, mp, 0, err);
1973 		       	mutex_exit(&qede->drv_lock);
1974 			return;
1975 		}
1976 	}
1977 
1978 	switch (cmd) {
1979 		default:
1980 			qede_print("!%s(%d) : unknown ioctl command %x\n",
1981 			    __func__, qede->instance, cmd);
1982 			status = IOC_INVAL;
1983 			mutex_exit(&qede->drv_lock);
1984 			return;
1985 		case LB_GET_INFO_SIZE:
1986 		case LB_GET_INFO:
1987 		case LB_GET_MODE:
1988 		case LB_SET_MODE:
1989 			status = qede_loopback_ioctl(qede, wq, mp, iocp);
1990 			break;
1991 		case QEDE_CMD:
1992 			qede_ioctl(qede, cmd, wq, mp);
1993 			status = IOC_DONE;
1994 			break;
1995 	}
1996 
1997 	switch(status){
1998 		default:
1999 			qede_print("!%s(%d) : invalid status from ioctl",
2000 			    __func__,qede->instance);
2001 			break;
2002 		case IOC_DONE:
2003 			/*
2004 			 * OK, Reply already sent
2005 			 */
2006 
2007 			break;
2008 		case IOC_REPLY:
2009 			mp->b_datap->db_type = iocp->ioc_error == 0 ?
2010 				M_IOCACK : M_IOCNAK;
2011 			qreply(wq, mp);
2012 			break;
2013 		case IOC_INVAL:
2014 			mutex_exit(&qede->drv_lock);
2015 			//miocack(wq, mp, 0, 0);
2016 			miocnak(wq, mp, 0, iocp->ioc_error == 0 ?
2017 			    EINVAL : iocp->ioc_error);
2018 			return;
2019 	}
2020 	mutex_exit(&qede->drv_lock);
2021 }
2022 
2023 extern ddi_dma_attr_t qede_buf2k_dma_attr_txbuf;
2024 extern ddi_dma_attr_t qede_dma_attr_rxbuf;
2025 extern ddi_dma_attr_t qede_dma_attr_desc;
2026 
2027 static boolean_t
2028 qede_mac_get_capability(void *arg,
2029 	mac_capab_t capability,
2030 	void *      cap_data)
2031 {
2032  	qede_t * qede = (qede_t *)arg;
2033 	uint32_t *txflags = cap_data;
2034 	boolean_t ret = B_FALSE;
2035 
2036 	switch (capability) {
2037 	case MAC_CAPAB_HCKSUM: {
2038 		u32 *tx_flags = cap_data;
2039 		/*
2040 		 * Check if checksum is enabled on
2041 		 * tx and advertise the cksum capab
2042 		 * to mac layer accordingly. On Rx
2043 		 * side checksummed packets are
2044 		 * reveiced anyway
2045 		 */
2046 		qede_info(qede, "%s tx checksum offload",
2047 		    (qede->checksum == DEFAULT_CKSUM_OFFLOAD) ?
2048 		    "Enabling":
2049 		    "Disabling");
2050 
2051 		if (qede->checksum != DEFAULT_CKSUM_OFFLOAD) {
2052 			ret = B_FALSE;
2053 			break;
2054 		}
2055                 /*
2056                  * Hardware does not support ICMPv6 checksumming. Right now the
2057                  * GLDv3 doesn't provide us a way to specify that we don't
2058                  * support that. As such, we cannot indicate
2059                  * HCKSUM_INET_FULL_V6.
2060                  */
2061 
2062 		*tx_flags = HCKSUM_INET_FULL_V4 |
2063 		    HCKSUM_IPHDRCKSUM;
2064 		ret = B_TRUE;
2065 		break;
2066 	}
2067 	case MAC_CAPAB_LSO: {
2068 		mac_capab_lso_t *cap_lso = (mac_capab_lso_t *)cap_data;
2069 
2070 		qede_info(qede, "%s large segmentation offload",
2071 		    qede->lso_enable ? "Enabling": "Disabling");
2072 		if (qede->lso_enable) {
2073 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
2074 			cap_lso->lso_basic_tcp_ipv4.lso_max = QEDE_LSO_MAXLEN;
2075 			ret = B_TRUE;
2076 		}
2077 		break;
2078 	}
2079 	case MAC_CAPAB_RINGS: {
2080 #ifndef NO_CROSSBOW
2081 		mac_capab_rings_t *cap_rings = cap_data;
2082 #ifndef ILLUMOS
2083 		cap_rings->mr_version = MAC_RINGS_VERSION_1;
2084 #endif
2085 
2086 		switch (cap_rings->mr_type) {
2087 		case MAC_RING_TYPE_RX:
2088 #ifndef ILLUMOS
2089 			cap_rings->mr_flags = MAC_RINGS_VLAN_TRANSPARENT;
2090 #endif
2091 			cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
2092 			//cap_rings->mr_rnum = 1; /* qede variable */
2093 			cap_rings->mr_rnum = qede->num_fp; /* qede variable */
2094 			cap_rings->mr_gnum = 1;
2095 			cap_rings->mr_rget = qede_fill_ring;
2096 			cap_rings->mr_gget = qede_fill_group;
2097 			cap_rings->mr_gaddring = NULL;
2098 			cap_rings->mr_gremring = NULL;
2099 #ifndef	ILLUMOS
2100 			cap_rings->mr_ggetringtc = NULL;
2101 #endif
2102 			ret = B_TRUE;
2103 			break;
2104 		case MAC_RING_TYPE_TX:
2105 #ifndef ILLUMOS
2106 			cap_rings->mr_flags = MAC_RINGS_VLAN_TRANSPARENT;
2107 #endif
2108 			cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
2109 			//cap_rings->mr_rnum = 1;
2110 			cap_rings->mr_rnum = qede->num_fp;
2111 			cap_rings->mr_gnum = 0;
2112 			cap_rings->mr_rget = qede_fill_ring;
2113 			cap_rings->mr_gget = qede_fill_group;
2114 			cap_rings->mr_gaddring = NULL;
2115 			cap_rings->mr_gremring = NULL;
2116 #ifndef	ILLUMOS
2117 			cap_rings->mr_ggetringtc = NULL;
2118 #endif
2119 			ret = B_TRUE;
2120 			break;
2121 		default:
2122 			ret = B_FALSE;
2123 			break;
2124 		}
2125 #endif
2126 		break; /* CASE MAC_CAPAB_RINGS */
2127 	}
2128 #ifdef ILLUMOS
2129         case MAC_CAPAB_TRANSCEIVER: {
2130                 mac_capab_transceiver_t *mct = cap_data;
2131 
2132                 mct->mct_flags = 0;
2133                 mct->mct_ntransceivers = qede->edev.num_hwfns;
2134                 mct->mct_info = qede_transceiver_info;
2135                 mct->mct_read = qede_transceiver_read;
2136 
2137                 ret = B_TRUE;
2138                 break;
2139         }
2140 #endif
2141 	default:
2142 		break;
2143 	}
2144 
2145     return (ret);
2146 }
2147 
2148 int
2149 qede_configure_link(qede_t *qede, bool op);
2150 
2151 static int
2152 qede_mac_set_property(void *        arg,
2153                               const char *  pr_name,
2154                               mac_prop_id_t pr_num,
2155                               uint_t        pr_valsize,
2156                               const void *  pr_val)
2157 {
2158 	qede_t * qede = (qede_t *)arg;
2159 	struct ecore_mcp_link_params *link_params;
2160 	struct ecore_dev *edev = &qede->edev;
2161 	struct ecore_hwfn *hwfn;
2162 	int ret_val = 0, i;
2163 	uint32_t option;
2164 
2165 	mutex_enter(&qede->gld_lock);
2166 	switch (pr_num)
2167 	{
2168         case MAC_PROP_MTU:
2169                 bcopy(pr_val, &option, sizeof (option));
2170 
2171                 if(option == qede->mtu) {
2172                         ret_val = 0;
2173                         break;
2174                 }
2175                 if ((option != DEFAULT_JUMBO_MTU) &&
2176                    (option != DEFAULT_MTU)) {
2177                         ret_val = EINVAL;
2178                         break;
2179                 }
2180                 if(qede->qede_state == QEDE_STATE_STARTED) {
2181                         ret_val = EBUSY;
2182                         break;
2183                 }
2184 
2185                 ret_val = mac_maxsdu_update(qede->mac_handle, qede->mtu);
2186                 if (ret_val == 0) {
2187 
2188                         qede->mtu = option;
2189                         if (option == DEFAULT_JUMBO_MTU) {
2190                                 qede->jumbo_enable = B_TRUE;
2191 			} else {
2192 				qede->jumbo_enable = B_FALSE;
2193 			}
2194 
2195                         hwfn = ECORE_LEADING_HWFN(edev);
2196                         hwfn->hw_info.mtu = qede->mtu;
2197                         ret_val = ecore_mcp_ov_update_mtu(hwfn,
2198 			    hwfn->p_main_ptt,
2199 			    hwfn->hw_info.mtu);
2200                         if (ret_val != ECORE_SUCCESS) {
2201                                 qede_print("!%s(%d): MTU change %d option %d"
2202 				    "FAILED",
2203 				    __func__,qede->instance, qede->mtu, option);
2204 				break;
2205 			}
2206                         qede_print("!%s(%d): MTU changed  %d MTU option"
2207 			    " %d hwfn %d",
2208 			    __func__,qede->instance, qede->mtu,
2209 			    option, hwfn->hw_info.mtu);
2210                 }
2211                 break;
2212 
2213 	case MAC_PROP_EN_10GFDX_CAP:
2214 		hwfn = &edev->hwfns[0];
2215 		link_params = ecore_mcp_get_link_params(hwfn);
2216 		if (*(uint8_t *) pr_val) {
2217 			link_params->speed.autoneg = 0;
2218 			link_params->speed.forced_speed = 10000;
2219 			link_params->speed.advertised_speeds =
2220 			    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G;
2221 			qede->forced_speed_10G = *(uint8_t *)pr_val;
2222 		}
2223 		else {
2224 			memcpy(link_params,
2225 			    &qede->link_input_params.default_link_params,
2226 			    sizeof (struct ecore_mcp_link_params));
2227 			qede->forced_speed_10G = *(uint8_t *)pr_val;
2228 		}
2229 		if (qede->qede_state == QEDE_STATE_STARTED) {
2230 			qede_configure_link(qede, true);
2231 		} else {
2232 			mutex_exit(&qede->gld_lock);
2233 			return (0);
2234 		}
2235 		break;
2236 	default:
2237 		ret_val = ENOTSUP;
2238 		break;
2239 	}
2240 	mutex_exit(&qede->gld_lock);
2241 	return (ret_val);
2242 }
2243 
2244 static void
2245 qede_mac_stop(void *arg)
2246 {
2247     qede_t *qede = (qede_t *)arg;
2248 	int status;
2249 
2250 	qede_print("!%s(%d): called",
2251 	    __func__,qede->instance);
2252 	mutex_enter(&qede->drv_lock);
2253 	status = qede_stop(qede);
2254 	if (status != DDI_SUCCESS) {
2255 		qede_print("!%s(%d): qede_stop "
2256 		    "FAILED",
2257 	        __func__,qede->instance);
2258 	}
2259 
2260 	mac_link_update(qede->mac_handle, LINK_STATE_UNKNOWN);
2261 	mutex_exit(&qede->drv_lock);
2262 }
2263 
2264 static int
2265 qede_mac_start(void *arg)
2266 {
2267     	qede_t *qede = (qede_t *)arg;
2268 	int status;
2269 
2270 	qede_print("!%s(%d): called", __func__,qede->instance);
2271 	if (!mutex_tryenter(&qede->drv_lock)) {
2272 		return (EAGAIN);
2273 	}
2274 
2275 	if (qede->qede_state == QEDE_STATE_SUSPENDED) {
2276 		mutex_exit(&qede->drv_lock);
2277 		return (ECANCELED);
2278 	}
2279 
2280 	status = qede_start(qede);
2281 	if (status != DDI_SUCCESS) {
2282 		mutex_exit(&qede->drv_lock);
2283 		return (EIO);
2284 	}
2285 
2286 	mutex_exit(&qede->drv_lock);
2287 
2288 #ifdef	DBLK_DMA_PREMAP
2289 	qede->pm_handle = mac_pmh_tx_get(qede->mac_handle);
2290 #endif
2291 	return (0);
2292 }
2293 
2294 static int
2295 qede_mac_get_property(void *arg,
2296     const char *pr_name,
2297     mac_prop_id_t pr_num,
2298     uint_t        pr_valsize,
2299     void *pr_val)
2300 {
2301 	qede_t *qede = (qede_t *)arg;
2302 	struct ecore_dev *edev = &qede->edev;
2303 	link_state_t    link_state;
2304 	link_duplex_t   link_duplex;
2305 	uint64_t        link_speed;
2306 	link_flowctrl_t link_flowctrl;
2307 	struct qede_link_cfg link_cfg;
2308 	mac_ether_media_t media;
2309 	qede_link_cfg_t  *hw_cfg  = &qede->hwinit;
2310 	int ret_val = 0;
2311 
2312 	memset(&link_cfg, 0, sizeof (struct qede_link_cfg));
2313 	qede_get_link_info(&edev->hwfns[0], &link_cfg);
2314 
2315 
2316 
2317 	switch (pr_num)
2318 	{
2319 	case MAC_PROP_MTU:
2320 
2321 		ASSERT(pr_valsize >= sizeof(uint32_t));
2322 		bcopy(&qede->mtu, pr_val, sizeof(uint32_t));
2323 		break;
2324 
2325 	case MAC_PROP_DUPLEX:
2326 
2327 		ASSERT(pr_valsize >= sizeof(link_duplex_t));
2328 		link_duplex = (qede->props.link_duplex) ?
2329 					  LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
2330 		bcopy(&link_duplex, pr_val, sizeof(link_duplex_t));
2331 		break;
2332 
2333 	case MAC_PROP_SPEED:
2334 
2335 		ASSERT(pr_valsize >= sizeof(link_speed));
2336 
2337 		link_speed = (qede->props.link_speed * 1000000ULL);
2338 		bcopy(&link_speed, pr_val, sizeof(link_speed));
2339 	    	break;
2340 
2341 	case MAC_PROP_STATUS:
2342 
2343 		ASSERT(pr_valsize >= sizeof(link_state_t));
2344 
2345 		link_state = (qede->params.link_state) ?
2346 		                        LINK_STATE_UP : LINK_STATE_DOWN;
2347 		bcopy(&link_state, pr_val, sizeof(link_state_t));
2348 		qede_info(qede, "mac_prop_status %d\n", link_state);
2349 		break;
2350 
2351 	case MAC_PROP_MEDIA:
2352 
2353 		ASSERT(pr_valsize >= sizeof(mac_ether_media_t));
2354 		media = qede_link_to_media(&link_cfg, qede->props.link_speed);
2355 		bcopy(&media, pr_val, sizeof(mac_ether_media_t));
2356 		break;
2357 
2358 	case MAC_PROP_AUTONEG:
2359 
2360 		*(uint8_t *)pr_val = link_cfg.autoneg;
2361 		break;
2362 
2363 	case MAC_PROP_FLOWCTRL:
2364 
2365 		ASSERT(pr_valsize >= sizeof(link_flowctrl_t));
2366 
2367 /*
2368  * illumos does not have the notion of LINK_FLOWCTRL_AUTO at this time.
2369  */
2370 #ifndef	ILLUMOS
2371 		if (link_cfg.pause_cfg & QEDE_LINK_PAUSE_AUTONEG_ENABLE)  {
2372 	            link_flowctrl = LINK_FLOWCTRL_AUTO;
2373 		}
2374 #endif
2375 
2376 		if (!(link_cfg.pause_cfg & QEDE_LINK_PAUSE_RX_ENABLE) &&
2377 		    !(link_cfg.pause_cfg & QEDE_LINK_PAUSE_TX_ENABLE)) {
2378 	            link_flowctrl = LINK_FLOWCTRL_NONE;
2379 		}
2380 		if ((link_cfg.pause_cfg & QEDE_LINK_PAUSE_RX_ENABLE) &&
2381 		    !(link_cfg.pause_cfg & QEDE_LINK_PAUSE_TX_ENABLE)) {
2382 	            link_flowctrl = LINK_FLOWCTRL_RX;
2383 	    	}
2384         	if (!(link_cfg.pause_cfg & QEDE_LINK_PAUSE_RX_ENABLE) &&
2385 		    (link_cfg.pause_cfg & QEDE_LINK_PAUSE_TX_ENABLE)) {
2386 	            link_flowctrl = LINK_FLOWCTRL_TX;
2387 		}
2388 		if ((link_cfg.pause_cfg & QEDE_LINK_PAUSE_RX_ENABLE) &&
2389 		    (link_cfg.pause_cfg & QEDE_LINK_PAUSE_TX_ENABLE)) {
2390 	            link_flowctrl = LINK_FLOWCTRL_BI;
2391 		}
2392 
2393         	bcopy(&link_flowctrl, pr_val, sizeof (link_flowctrl_t));
2394         	break;
2395 
2396 	case MAC_PROP_ADV_10GFDX_CAP:
2397 		*(uint8_t *)pr_val = link_cfg.adv_capab.param_10000fdx;
2398 		break;
2399 
2400 	case MAC_PROP_EN_10GFDX_CAP:
2401 		*(uint8_t *)pr_val = qede->forced_speed_10G;
2402 		break;
2403 
2404 	case MAC_PROP_PRIVATE:
2405 	default:
2406 		return (ENOTSUP);
2407 
2408 	}
2409 
2410 	return (0);
2411 }
2412 
2413 static void
2414 qede_mac_property_info(void *arg,
2415     const char *pr_name,
2416     mac_prop_id_t  pr_num,
2417     mac_prop_info_handle_t prh)
2418 {
2419 	qede_t *qede = (qede_t *)arg;
2420 	qede_link_props_t *def_cfg = &qede_def_link_props;
2421 	link_flowctrl_t link_flowctrl;
2422 
2423 
2424 	switch (pr_num)
2425 	{
2426 
2427 	case MAC_PROP_STATUS:
2428 	case MAC_PROP_SPEED:
2429 	case MAC_PROP_DUPLEX:
2430 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
2431 		break;
2432 
2433 	case MAC_PROP_MTU:
2434 
2435 		mac_prop_info_set_range_uint32(prh,
2436 		    MIN_MTU,
2437 		    MAX_MTU);
2438 		break;
2439 
2440 	case MAC_PROP_AUTONEG:
2441 
2442 		mac_prop_info_set_default_uint8(prh, def_cfg->autoneg);
2443 		break;
2444 
2445 	case MAC_PROP_FLOWCTRL:
2446 
2447 		if (!def_cfg->pause) {
2448 			link_flowctrl = LINK_FLOWCTRL_NONE;
2449 		} else {
2450 			link_flowctrl = LINK_FLOWCTRL_BI;
2451 		}
2452 
2453 		mac_prop_info_set_default_link_flowctrl(prh, link_flowctrl);
2454 		break;
2455 
2456 	case MAC_PROP_EN_10GFDX_CAP:
2457 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW);
2458 		break;
2459 
2460 	case MAC_PROP_ADV_10GFDX_CAP:
2461 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
2462 		break;
2463 
2464 	default:
2465 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
2466 		break;
2467 
2468     }
2469 }
2470 
2471 static mac_callbacks_t qede_callbacks =
2472 {
2473     (
2474       MC_IOCTL
2475 /*    | MC_RESOURCES */
2476     | MC_SETPROP
2477     | MC_GETPROP
2478     | MC_PROPINFO
2479     | MC_GETCAPAB
2480     ),
2481     qede_mac_stats,
2482     qede_mac_start,
2483     qede_mac_stop,
2484     qede_mac_promiscuous,
2485     qede_mac_multicast,
2486     NULL,
2487 #ifndef NO_CROSSBOW
2488     NULL,
2489 #else
2490     qede_mac_tx,
2491 #endif
2492     NULL,	/* qede_mac_resources, */
2493     qede_mac_ioctl,
2494     qede_mac_get_capability,
2495     NULL,
2496     NULL,
2497     qede_mac_set_property,
2498     qede_mac_get_property,
2499 #ifdef MC_PROPINFO
2500     qede_mac_property_info
2501 #endif
2502 };
2503 
2504 boolean_t
2505 qede_gld_init(qede_t *qede)
2506 {
2507 	int status, ret;
2508 	mac_register_t *macp;
2509 
2510 	macp = mac_alloc(MAC_VERSION);
2511 	if (macp == NULL) {
2512 		cmn_err(CE_NOTE, "%s: mac_alloc() failed\n", __func__);
2513 		return (B_FALSE);
2514 	}
2515 
2516  	macp->m_driver = qede;
2517 	macp->m_dip = qede->dip;
2518 	macp->m_instance = qede->instance;
2519 	macp->m_priv_props = NULL;
2520 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
2521  	macp->m_src_addr = qede->ether_addr;
2522 	macp->m_callbacks = &qede_callbacks;
2523 	macp->m_min_sdu = 0;
2524 	macp->m_max_sdu = qede->mtu;
2525 	macp->m_margin = VLAN_TAGSZ;
2526 #ifdef	ILLUMOS
2527 	macp->m_v12n = MAC_VIRT_LEVEL1;
2528 #endif
2529 
2530 	status = mac_register(macp, &qede->mac_handle);
2531 	if (status != 0) {
2532 		cmn_err(CE_NOTE, "%s: mac_register() failed\n", __func__);
2533 	}
2534 
2535 	mac_free(macp);
2536 	if (status == 0) {
2537 		return (B_TRUE);
2538 	}
2539 	return (B_FALSE);
2540 }
2541 
2542 boolean_t qede_gld_fini(qede_t * qede)
2543 {
2544     return (B_TRUE);
2545 }
2546 
2547 
2548 void qede_link_update(qede_t * qede,
2549                  link_state_t  state)
2550 {
2551     mac_link_update(qede->mac_handle, state);
2552 }
2553 
2554