1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
24 * Copyright 2016 Gary Mills
25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27 * Copyright 2019 Joyent, Inc.
28 */
29
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/arc_impl.h>
41 #include <sys/zap.h>
42 #include <sys/zio.h>
43 #include <sys/zfs_context.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/zfs_znode.h>
46 #include <sys/spa_impl.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/zil_impl.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/brt.h>
51 #include <sys/ddt.h>
52 #include <sys/sa.h>
53 #include <sys/sa_impl.h>
54 #include <sys/zfeature.h>
55 #include <sys/abd.h>
56 #include <sys/range_tree.h>
57 #include <sys/dbuf.h>
58 #ifdef _KERNEL
59 #include <sys/zfs_vfsops.h>
60 #endif
61
62 /*
63 * Grand theory statement on scan queue sorting
64 *
65 * Scanning is implemented by recursively traversing all indirection levels
66 * in an object and reading all blocks referenced from said objects. This
67 * results in us approximately traversing the object from lowest logical
68 * offset to the highest. For best performance, we would want the logical
69 * blocks to be physically contiguous. However, this is frequently not the
70 * case with pools given the allocation patterns of copy-on-write filesystems.
71 * So instead, we put the I/Os into a reordering queue and issue them in a
72 * way that will most benefit physical disks (LBA-order).
73 *
74 * Queue management:
75 *
76 * Ideally, we would want to scan all metadata and queue up all block I/O
77 * prior to starting to issue it, because that allows us to do an optimal
78 * sorting job. This can however consume large amounts of memory. Therefore
79 * we continuously monitor the size of the queues and constrain them to 5%
80 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
81 * limit, we clear out a few of the largest extents at the head of the queues
82 * to make room for more scanning. Hopefully, these extents will be fairly
83 * large and contiguous, allowing us to approach sequential I/O throughput
84 * even without a fully sorted tree.
85 *
86 * Metadata scanning takes place in dsl_scan_visit(), which is called from
87 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
88 * metadata on the pool, or we need to make room in memory because our
89 * queues are too large, dsl_scan_visit() is postponed and
90 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
91 * that metadata scanning and queued I/O issuing are mutually exclusive. This
92 * allows us to provide maximum sequential I/O throughput for the majority of
93 * I/O's issued since sequential I/O performance is significantly negatively
94 * impacted if it is interleaved with random I/O.
95 *
96 * Implementation Notes
97 *
98 * One side effect of the queued scanning algorithm is that the scanning code
99 * needs to be notified whenever a block is freed. This is needed to allow
100 * the scanning code to remove these I/Os from the issuing queue. Additionally,
101 * we do not attempt to queue gang blocks to be issued sequentially since this
102 * is very hard to do and would have an extremely limited performance benefit.
103 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
104 * algorithm.
105 *
106 * Backwards compatibility
107 *
108 * This new algorithm is backwards compatible with the legacy on-disk data
109 * structures (and therefore does not require a new feature flag).
110 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
111 * will stop scanning metadata (in logical order) and wait for all outstanding
112 * sorted I/O to complete. Once this is done, we write out a checkpoint
113 * bookmark, indicating that we have scanned everything logically before it.
114 * If the pool is imported on a machine without the new sorting algorithm,
115 * the scan simply resumes from the last checkpoint using the legacy algorithm.
116 */
117
118 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
119 const zbookmark_phys_t *);
120
121 static scan_cb_t dsl_scan_scrub_cb;
122
123 static int scan_ds_queue_compare(const void *a, const void *b);
124 static int scan_prefetch_queue_compare(const void *a, const void *b);
125 static void scan_ds_queue_clear(dsl_scan_t *scn);
126 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
127 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
128 uint64_t *txg);
129 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
130 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
131 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
132 static uint64_t dsl_scan_count_data_disks(spa_t *spa);
133 static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb);
134
135 extern uint_t zfs_vdev_async_write_active_min_dirty_percent;
136 static int zfs_scan_blkstats = 0;
137
138 /*
139 * 'zpool status' uses bytes processed per pass to report throughput and
140 * estimate time remaining. We define a pass to start when the scanning
141 * phase completes for a sequential resilver. Optionally, this value
142 * may be used to reset the pass statistics every N txgs to provide an
143 * estimated completion time based on currently observed performance.
144 */
145 static uint_t zfs_scan_report_txgs = 0;
146
147 /*
148 * By default zfs will check to ensure it is not over the hard memory
149 * limit before each txg. If finer-grained control of this is needed
150 * this value can be set to 1 to enable checking before scanning each
151 * block.
152 */
153 static int zfs_scan_strict_mem_lim = B_FALSE;
154
155 /*
156 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
157 * to strike a balance here between keeping the vdev queues full of I/Os
158 * at all times and not overflowing the queues to cause long latency,
159 * which would cause long txg sync times. No matter what, we will not
160 * overload the drives with I/O, since that is protected by
161 * zfs_vdev_scrub_max_active.
162 */
163 static uint64_t zfs_scan_vdev_limit = 16 << 20;
164
165 static uint_t zfs_scan_issue_strategy = 0;
166
167 /* don't queue & sort zios, go direct */
168 static int zfs_scan_legacy = B_FALSE;
169 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
170
171 /*
172 * fill_weight is non-tunable at runtime, so we copy it at module init from
173 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
174 * break queue sorting.
175 */
176 static uint_t zfs_scan_fill_weight = 3;
177 static uint64_t fill_weight;
178
179 /* See dsl_scan_should_clear() for details on the memory limit tunables */
180 static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */
181 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */
182
183
184 /* fraction of physmem */
185 static uint_t zfs_scan_mem_lim_fact = 20;
186
187 /* fraction of mem lim above */
188 static uint_t zfs_scan_mem_lim_soft_fact = 20;
189
190 /* minimum milliseconds to scrub per txg */
191 static uint_t zfs_scrub_min_time_ms = 1000;
192
193 /* minimum milliseconds to obsolete per txg */
194 static uint_t zfs_obsolete_min_time_ms = 500;
195
196 /* minimum milliseconds to free per txg */
197 static uint_t zfs_free_min_time_ms = 1000;
198
199 /* minimum milliseconds to resilver per txg */
200 static uint_t zfs_resilver_min_time_ms = 3000;
201
202 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */
203 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
204 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
205 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
206 static const ddt_class_t zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
207 /* max number of blocks to free in a single TXG */
208 static uint64_t zfs_async_block_max_blocks = UINT64_MAX;
209 /* max number of dedup blocks to free in a single TXG */
210 static uint64_t zfs_max_async_dedup_frees = 100000;
211
212 /* set to disable resilver deferring */
213 static int zfs_resilver_disable_defer = B_FALSE;
214
215 /* Don't defer a resilver if the one in progress only got this far: */
216 static uint_t zfs_resilver_defer_percent = 10;
217
218 /*
219 * We wait a few txgs after importing a pool to begin scanning so that
220 * the import / mounting code isn't held up by scrub / resilver IO.
221 * Unfortunately, it is a bit difficult to determine exactly how long
222 * this will take since userspace will trigger fs mounts asynchronously
223 * and the kernel will create zvol minors asynchronously. As a result,
224 * the value provided here is a bit arbitrary, but represents a
225 * reasonable estimate of how many txgs it will take to finish fully
226 * importing a pool
227 */
228 #define SCAN_IMPORT_WAIT_TXGS 5
229
230 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
231 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
232 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
233
234 #define DSL_SCAN_IS_SCRUB(scn) \
235 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB)
236
237 /*
238 * Enable/disable the processing of the free_bpobj object.
239 */
240 static int zfs_free_bpobj_enabled = 1;
241
242 /* Error blocks to be scrubbed in one txg. */
243 static uint_t zfs_scrub_error_blocks_per_txg = 1 << 12;
244
245 /* the order has to match pool_scan_type */
246 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
247 NULL,
248 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */
249 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */
250 };
251
252 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
253 typedef struct {
254 uint64_t sds_dsobj;
255 uint64_t sds_txg;
256 avl_node_t sds_node;
257 } scan_ds_t;
258
259 /*
260 * This controls what conditions are placed on dsl_scan_sync_state():
261 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
262 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
263 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
264 * write out the scn_phys_cached version.
265 * See dsl_scan_sync_state for details.
266 */
267 typedef enum {
268 SYNC_OPTIONAL,
269 SYNC_MANDATORY,
270 SYNC_CACHED
271 } state_sync_type_t;
272
273 /*
274 * This struct represents the minimum information needed to reconstruct a
275 * zio for sequential scanning. This is useful because many of these will
276 * accumulate in the sequential IO queues before being issued, so saving
277 * memory matters here.
278 */
279 typedef struct scan_io {
280 /* fields from blkptr_t */
281 uint64_t sio_blk_prop;
282 uint64_t sio_phys_birth;
283 uint64_t sio_birth;
284 zio_cksum_t sio_cksum;
285 uint32_t sio_nr_dvas;
286
287 /* fields from zio_t */
288 uint32_t sio_flags;
289 zbookmark_phys_t sio_zb;
290
291 /* members for queue sorting */
292 union {
293 avl_node_t sio_addr_node; /* link into issuing queue */
294 list_node_t sio_list_node; /* link for issuing to disk */
295 } sio_nodes;
296
297 /*
298 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
299 * depending on how many were in the original bp. Only the
300 * first DVA is really used for sorting and issuing purposes.
301 * The other DVAs (if provided) simply exist so that the zio
302 * layer can find additional copies to repair from in the
303 * event of an error. This array must go at the end of the
304 * struct to allow this for the variable number of elements.
305 */
306 dva_t sio_dva[];
307 } scan_io_t;
308
309 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
310 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
311 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
312 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
313 #define SIO_GET_END_OFFSET(sio) \
314 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
315 #define SIO_GET_MUSED(sio) \
316 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
317
318 struct dsl_scan_io_queue {
319 dsl_scan_t *q_scn; /* associated dsl_scan_t */
320 vdev_t *q_vd; /* top-level vdev that this queue represents */
321 zio_t *q_zio; /* scn_zio_root child for waiting on IO */
322
323 /* trees used for sorting I/Os and extents of I/Os */
324 zfs_range_tree_t *q_exts_by_addr;
325 zfs_btree_t q_exts_by_size;
326 avl_tree_t q_sios_by_addr;
327 uint64_t q_sio_memused;
328 uint64_t q_last_ext_addr;
329
330 /* members for zio rate limiting */
331 uint64_t q_maxinflight_bytes;
332 uint64_t q_inflight_bytes;
333 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
334
335 /* per txg statistics */
336 uint64_t q_total_seg_size_this_txg;
337 uint64_t q_segs_this_txg;
338 uint64_t q_total_zio_size_this_txg;
339 uint64_t q_zios_this_txg;
340 };
341
342 /* private data for dsl_scan_prefetch_cb() */
343 typedef struct scan_prefetch_ctx {
344 zfs_refcount_t spc_refcnt; /* refcount for memory management */
345 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */
346 boolean_t spc_root; /* is this prefetch for an objset? */
347 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */
348 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */
349 } scan_prefetch_ctx_t;
350
351 /* private data for dsl_scan_prefetch() */
352 typedef struct scan_prefetch_issue_ctx {
353 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */
354 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */
355 blkptr_t spic_bp; /* bp to prefetch */
356 zbookmark_phys_t spic_zb; /* bookmark to prefetch */
357 } scan_prefetch_issue_ctx_t;
358
359 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
360 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
361 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
362 scan_io_t *sio);
363
364 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
365 static void scan_io_queues_destroy(dsl_scan_t *scn);
366
367 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
368
369 /* sio->sio_nr_dvas must be set so we know which cache to free from */
370 static void
sio_free(scan_io_t * sio)371 sio_free(scan_io_t *sio)
372 {
373 ASSERT3U(sio->sio_nr_dvas, >, 0);
374 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
375
376 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
377 }
378
379 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
380 static scan_io_t *
sio_alloc(unsigned short nr_dvas)381 sio_alloc(unsigned short nr_dvas)
382 {
383 ASSERT3U(nr_dvas, >, 0);
384 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
385
386 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
387 }
388
389 void
scan_init(void)390 scan_init(void)
391 {
392 /*
393 * This is used in ext_size_compare() to weight segments
394 * based on how sparse they are. This cannot be changed
395 * mid-scan and the tree comparison functions don't currently
396 * have a mechanism for passing additional context to the
397 * compare functions. Thus we store this value globally and
398 * we only allow it to be set at module initialization time
399 */
400 fill_weight = zfs_scan_fill_weight;
401
402 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
403 char name[36];
404
405 (void) snprintf(name, sizeof (name), "sio_cache_%d", i);
406 sio_cache[i] = kmem_cache_create(name,
407 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
408 0, NULL, NULL, NULL, NULL, NULL, 0);
409 }
410 }
411
412 void
scan_fini(void)413 scan_fini(void)
414 {
415 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
416 kmem_cache_destroy(sio_cache[i]);
417 }
418 }
419
420 static inline boolean_t
dsl_scan_is_running(const dsl_scan_t * scn)421 dsl_scan_is_running(const dsl_scan_t *scn)
422 {
423 return (scn->scn_phys.scn_state == DSS_SCANNING);
424 }
425
426 boolean_t
dsl_scan_resilvering(dsl_pool_t * dp)427 dsl_scan_resilvering(dsl_pool_t *dp)
428 {
429 return (dsl_scan_is_running(dp->dp_scan) &&
430 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
431 }
432
433 static inline void
sio2bp(const scan_io_t * sio,blkptr_t * bp)434 sio2bp(const scan_io_t *sio, blkptr_t *bp)
435 {
436 memset(bp, 0, sizeof (*bp));
437 bp->blk_prop = sio->sio_blk_prop;
438 BP_SET_PHYSICAL_BIRTH(bp, sio->sio_phys_birth);
439 BP_SET_LOGICAL_BIRTH(bp, sio->sio_birth);
440 bp->blk_fill = 1; /* we always only work with data pointers */
441 bp->blk_cksum = sio->sio_cksum;
442
443 ASSERT3U(sio->sio_nr_dvas, >, 0);
444 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
445
446 memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t));
447 }
448
449 static inline void
bp2sio(const blkptr_t * bp,scan_io_t * sio,int dva_i)450 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
451 {
452 sio->sio_blk_prop = bp->blk_prop;
453 sio->sio_phys_birth = BP_GET_PHYSICAL_BIRTH(bp);
454 sio->sio_birth = BP_GET_LOGICAL_BIRTH(bp);
455 sio->sio_cksum = bp->blk_cksum;
456 sio->sio_nr_dvas = BP_GET_NDVAS(bp);
457
458 /*
459 * Copy the DVAs to the sio. We need all copies of the block so
460 * that the self healing code can use the alternate copies if the
461 * first is corrupted. We want the DVA at index dva_i to be first
462 * in the sio since this is the primary one that we want to issue.
463 */
464 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
465 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
466 }
467 }
468
469 int
dsl_scan_init(dsl_pool_t * dp,uint64_t txg)470 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
471 {
472 int err;
473 dsl_scan_t *scn;
474 spa_t *spa = dp->dp_spa;
475 uint64_t f;
476
477 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
478 scn->scn_dp = dp;
479
480 /*
481 * It's possible that we're resuming a scan after a reboot so
482 * make sure that the scan_async_destroying flag is initialized
483 * appropriately.
484 */
485 ASSERT(!scn->scn_async_destroying);
486 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
487 SPA_FEATURE_ASYNC_DESTROY);
488
489 /*
490 * Calculate the max number of in-flight bytes for pool-wide
491 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
492 * Limits for the issuing phase are done per top-level vdev and
493 * are handled separately.
494 */
495 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
496 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
497
498 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
499 offsetof(scan_ds_t, sds_node));
500 mutex_init(&scn->scn_queue_lock, NULL, MUTEX_DEFAULT, NULL);
501 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
502 sizeof (scan_prefetch_issue_ctx_t),
503 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
504
505 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
506 "scrub_func", sizeof (uint64_t), 1, &f);
507 if (err == 0) {
508 /*
509 * There was an old-style scrub in progress. Restart a
510 * new-style scrub from the beginning.
511 */
512 scn->scn_restart_txg = txg;
513 zfs_dbgmsg("old-style scrub was in progress for %s; "
514 "restarting new-style scrub in txg %llu",
515 spa->spa_name,
516 (longlong_t)scn->scn_restart_txg);
517
518 /*
519 * Load the queue obj from the old location so that it
520 * can be freed by dsl_scan_done().
521 */
522 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
523 "scrub_queue", sizeof (uint64_t), 1,
524 &scn->scn_phys.scn_queue_obj);
525 } else {
526 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
527 DMU_POOL_ERRORSCRUB, sizeof (uint64_t),
528 ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys);
529
530 if (err != 0 && err != ENOENT)
531 return (err);
532
533 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
534 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
535 &scn->scn_phys);
536
537 /*
538 * Detect if the pool contains the signature of #2094. If it
539 * does properly update the scn->scn_phys structure and notify
540 * the administrator by setting an errata for the pool.
541 */
542 if (err == EOVERFLOW) {
543 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
544 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
545 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
546 (23 * sizeof (uint64_t)));
547
548 err = zap_lookup(dp->dp_meta_objset,
549 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
550 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
551 if (err == 0) {
552 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
553
554 if (overflow & ~DSL_SCAN_FLAGS_MASK ||
555 scn->scn_async_destroying) {
556 spa->spa_errata =
557 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
558 return (EOVERFLOW);
559 }
560
561 memcpy(&scn->scn_phys, zaptmp,
562 SCAN_PHYS_NUMINTS * sizeof (uint64_t));
563 scn->scn_phys.scn_flags = overflow;
564
565 /* Required scrub already in progress. */
566 if (scn->scn_phys.scn_state == DSS_FINISHED ||
567 scn->scn_phys.scn_state == DSS_CANCELED)
568 spa->spa_errata =
569 ZPOOL_ERRATA_ZOL_2094_SCRUB;
570 }
571 }
572
573 if (err == ENOENT)
574 return (0);
575 else if (err)
576 return (err);
577
578 /*
579 * We might be restarting after a reboot, so jump the issued
580 * counter to how far we've scanned. We know we're consistent
581 * up to here.
582 */
583 scn->scn_issued_before_pass = scn->scn_phys.scn_examined -
584 scn->scn_phys.scn_skipped;
585
586 if (dsl_scan_is_running(scn) &&
587 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
588 /*
589 * A new-type scrub was in progress on an old
590 * pool, and the pool was accessed by old
591 * software. Restart from the beginning, since
592 * the old software may have changed the pool in
593 * the meantime.
594 */
595 scn->scn_restart_txg = txg;
596 zfs_dbgmsg("new-style scrub for %s was modified "
597 "by old software; restarting in txg %llu",
598 spa->spa_name,
599 (longlong_t)scn->scn_restart_txg);
600 } else if (dsl_scan_resilvering(dp)) {
601 /*
602 * If a resilver is in progress and there are already
603 * errors, restart it instead of finishing this scan and
604 * then restarting it. If there haven't been any errors
605 * then remember that the incore DTL is valid.
606 */
607 if (scn->scn_phys.scn_errors > 0) {
608 scn->scn_restart_txg = txg;
609 zfs_dbgmsg("resilver can't excise DTL_MISSING "
610 "when finished; restarting on %s in txg "
611 "%llu",
612 spa->spa_name,
613 (u_longlong_t)scn->scn_restart_txg);
614 } else {
615 /* it's safe to excise DTL when finished */
616 spa->spa_scrub_started = B_TRUE;
617 }
618 }
619 }
620
621 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
622
623 /* reload the queue into the in-core state */
624 if (scn->scn_phys.scn_queue_obj != 0) {
625 zap_cursor_t zc;
626 zap_attribute_t *za = zap_attribute_alloc();
627
628 for (zap_cursor_init(&zc, dp->dp_meta_objset,
629 scn->scn_phys.scn_queue_obj);
630 zap_cursor_retrieve(&zc, za) == 0;
631 (void) zap_cursor_advance(&zc)) {
632 scan_ds_queue_insert(scn,
633 zfs_strtonum(za->za_name, NULL),
634 za->za_first_integer);
635 }
636 zap_cursor_fini(&zc);
637 zap_attribute_free(za);
638 }
639
640 ddt_walk_init(spa, scn->scn_phys.scn_max_txg);
641
642 spa_scan_stat_init(spa);
643 vdev_scan_stat_init(spa->spa_root_vdev);
644
645 return (0);
646 }
647
648 void
dsl_scan_fini(dsl_pool_t * dp)649 dsl_scan_fini(dsl_pool_t *dp)
650 {
651 if (dp->dp_scan != NULL) {
652 dsl_scan_t *scn = dp->dp_scan;
653
654 if (scn->scn_taskq != NULL)
655 taskq_destroy(scn->scn_taskq);
656
657 scan_ds_queue_clear(scn);
658 avl_destroy(&scn->scn_queue);
659 mutex_destroy(&scn->scn_queue_lock);
660 scan_ds_prefetch_queue_clear(scn);
661 avl_destroy(&scn->scn_prefetch_queue);
662
663 kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
664 dp->dp_scan = NULL;
665 }
666 }
667
668 static boolean_t
dsl_scan_restarting(dsl_scan_t * scn,dmu_tx_t * tx)669 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
670 {
671 return (scn->scn_restart_txg != 0 &&
672 scn->scn_restart_txg <= tx->tx_txg);
673 }
674
675 boolean_t
dsl_scan_resilver_scheduled(dsl_pool_t * dp)676 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
677 {
678 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
679 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
680 }
681
682 boolean_t
dsl_scan_scrubbing(const dsl_pool_t * dp)683 dsl_scan_scrubbing(const dsl_pool_t *dp)
684 {
685 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
686
687 return (scn_phys->scn_state == DSS_SCANNING &&
688 scn_phys->scn_func == POOL_SCAN_SCRUB);
689 }
690
691 boolean_t
dsl_errorscrubbing(const dsl_pool_t * dp)692 dsl_errorscrubbing(const dsl_pool_t *dp)
693 {
694 dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys;
695
696 return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING &&
697 errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB);
698 }
699
700 boolean_t
dsl_errorscrub_is_paused(const dsl_scan_t * scn)701 dsl_errorscrub_is_paused(const dsl_scan_t *scn)
702 {
703 return (dsl_errorscrubbing(scn->scn_dp) &&
704 scn->errorscrub_phys.dep_paused_flags);
705 }
706
707 boolean_t
dsl_scan_is_paused_scrub(const dsl_scan_t * scn)708 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
709 {
710 return (dsl_scan_scrubbing(scn->scn_dp) &&
711 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
712 }
713
714 static void
dsl_errorscrub_sync_state(dsl_scan_t * scn,dmu_tx_t * tx)715 dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx)
716 {
717 scn->errorscrub_phys.dep_cursor =
718 zap_cursor_serialize(&scn->errorscrub_cursor);
719
720 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
721 DMU_POOL_DIRECTORY_OBJECT,
722 DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS,
723 &scn->errorscrub_phys, tx));
724 }
725
726 static void
dsl_errorscrub_setup_sync(void * arg,dmu_tx_t * tx)727 dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx)
728 {
729 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
730 pool_scan_func_t *funcp = arg;
731 dsl_pool_t *dp = scn->scn_dp;
732 spa_t *spa = dp->dp_spa;
733
734 ASSERT(!dsl_scan_is_running(scn));
735 ASSERT(!dsl_errorscrubbing(scn->scn_dp));
736 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
737
738 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
739 scn->errorscrub_phys.dep_func = *funcp;
740 scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING;
741 scn->errorscrub_phys.dep_start_time = gethrestime_sec();
742 scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa);
743 scn->errorscrub_phys.dep_examined = 0;
744 scn->errorscrub_phys.dep_errors = 0;
745 scn->errorscrub_phys.dep_cursor = 0;
746 zap_cursor_init_serialized(&scn->errorscrub_cursor,
747 spa->spa_meta_objset, spa->spa_errlog_last,
748 scn->errorscrub_phys.dep_cursor);
749
750 vdev_config_dirty(spa->spa_root_vdev);
751 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START);
752
753 dsl_errorscrub_sync_state(scn, tx);
754
755 spa_history_log_internal(spa, "error scrub setup", tx,
756 "func=%u mintxg=%u maxtxg=%llu",
757 *funcp, 0, (u_longlong_t)tx->tx_txg);
758 }
759
760 static int
dsl_errorscrub_setup_check(void * arg,dmu_tx_t * tx)761 dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx)
762 {
763 (void) arg;
764 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
765
766 if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) {
767 return (SET_ERROR(EBUSY));
768 }
769
770 if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) {
771 return (ECANCELED);
772 }
773 return (0);
774 }
775
776 /*
777 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
778 * Because we can be running in the block sorting algorithm, we do not always
779 * want to write out the record, only when it is "safe" to do so. This safety
780 * condition is achieved by making sure that the sorting queues are empty
781 * (scn_queues_pending == 0). When this condition is not true, the sync'd state
782 * is inconsistent with how much actual scanning progress has been made. The
783 * kind of sync to be performed is specified by the sync_type argument. If the
784 * sync is optional, we only sync if the queues are empty. If the sync is
785 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
786 * third possible state is a "cached" sync. This is done in response to:
787 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
788 * destroyed, so we wouldn't be able to restart scanning from it.
789 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
790 * superseded by a newer snapshot.
791 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
792 * swapped with its clone.
793 * In all cases, a cached sync simply rewrites the last record we've written,
794 * just slightly modified. For the modifications that are performed to the
795 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
796 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
797 */
798 static void
dsl_scan_sync_state(dsl_scan_t * scn,dmu_tx_t * tx,state_sync_type_t sync_type)799 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
800 {
801 int i;
802 spa_t *spa = scn->scn_dp->dp_spa;
803
804 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0);
805 if (scn->scn_queues_pending == 0) {
806 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
807 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
808 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
809
810 if (q == NULL)
811 continue;
812
813 mutex_enter(&vd->vdev_scan_io_queue_lock);
814 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
815 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
816 NULL);
817 ASSERT3P(zfs_range_tree_first(q->q_exts_by_addr), ==,
818 NULL);
819 mutex_exit(&vd->vdev_scan_io_queue_lock);
820 }
821
822 if (scn->scn_phys.scn_queue_obj != 0)
823 scan_ds_queue_sync(scn, tx);
824 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
825 DMU_POOL_DIRECTORY_OBJECT,
826 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
827 &scn->scn_phys, tx));
828 memcpy(&scn->scn_phys_cached, &scn->scn_phys,
829 sizeof (scn->scn_phys));
830
831 if (scn->scn_checkpointing)
832 zfs_dbgmsg("finish scan checkpoint for %s",
833 spa->spa_name);
834
835 scn->scn_checkpointing = B_FALSE;
836 scn->scn_last_checkpoint = ddi_get_lbolt();
837 } else if (sync_type == SYNC_CACHED) {
838 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
839 DMU_POOL_DIRECTORY_OBJECT,
840 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
841 &scn->scn_phys_cached, tx));
842 }
843 }
844
845 int
dsl_scan_setup_check(void * arg,dmu_tx_t * tx)846 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
847 {
848 (void) arg;
849 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
850 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
851
852 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) ||
853 dsl_errorscrubbing(scn->scn_dp))
854 return (SET_ERROR(EBUSY));
855
856 return (0);
857 }
858
859 void
dsl_scan_setup_sync(void * arg,dmu_tx_t * tx)860 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
861 {
862 setup_sync_arg_t *setup_sync_arg = (setup_sync_arg_t *)arg;
863 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
864 dmu_object_type_t ot = 0;
865 dsl_pool_t *dp = scn->scn_dp;
866 spa_t *spa = dp->dp_spa;
867
868 ASSERT(!dsl_scan_is_running(scn));
869 ASSERT3U(setup_sync_arg->func, >, POOL_SCAN_NONE);
870 ASSERT3U(setup_sync_arg->func, <, POOL_SCAN_FUNCS);
871 memset(&scn->scn_phys, 0, sizeof (scn->scn_phys));
872
873 /*
874 * If we are starting a fresh scrub, we erase the error scrub
875 * information from disk.
876 */
877 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
878 dsl_errorscrub_sync_state(scn, tx);
879
880 scn->scn_phys.scn_func = setup_sync_arg->func;
881 scn->scn_phys.scn_state = DSS_SCANNING;
882 scn->scn_phys.scn_min_txg = setup_sync_arg->txgstart;
883 if (setup_sync_arg->txgend == 0) {
884 scn->scn_phys.scn_max_txg = tx->tx_txg;
885 } else {
886 scn->scn_phys.scn_max_txg = setup_sync_arg->txgend;
887 }
888 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
889 scn->scn_phys.scn_start_time = gethrestime_sec();
890 scn->scn_phys.scn_errors = 0;
891 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
892 scn->scn_issued_before_pass = 0;
893 scn->scn_restart_txg = 0;
894 scn->scn_done_txg = 0;
895 scn->scn_last_checkpoint = 0;
896 scn->scn_checkpointing = B_FALSE;
897 spa_scan_stat_init(spa);
898 vdev_scan_stat_init(spa->spa_root_vdev);
899
900 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
901 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
902
903 /* rewrite all disk labels */
904 vdev_config_dirty(spa->spa_root_vdev);
905
906 if (vdev_resilver_needed(spa->spa_root_vdev,
907 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
908 nvlist_t *aux = fnvlist_alloc();
909 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
910 "healing");
911 spa_event_notify(spa, NULL, aux,
912 ESC_ZFS_RESILVER_START);
913 nvlist_free(aux);
914 } else {
915 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
916 }
917
918 spa->spa_scrub_started = B_TRUE;
919 /*
920 * If this is an incremental scrub, limit the DDT scrub phase
921 * to just the auto-ditto class (for correctness); the rest
922 * of the scrub should go faster using top-down pruning.
923 */
924 if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
925 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
926
927 /*
928 * When starting a resilver clear any existing rebuild state.
929 * This is required to prevent stale rebuild status from
930 * being reported when a rebuild is run, then a resilver and
931 * finally a scrub. In which case only the scrub status
932 * should be reported by 'zpool status'.
933 */
934 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
935 vdev_t *rvd = spa->spa_root_vdev;
936 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
937 vdev_t *vd = rvd->vdev_child[i];
938 vdev_rebuild_clear_sync(
939 (void *)(uintptr_t)vd->vdev_id, tx);
940 }
941 }
942 }
943
944 /* back to the generic stuff */
945
946 if (zfs_scan_blkstats) {
947 if (dp->dp_blkstats == NULL) {
948 dp->dp_blkstats =
949 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
950 }
951 memset(&dp->dp_blkstats->zab_type, 0,
952 sizeof (dp->dp_blkstats->zab_type));
953 } else {
954 if (dp->dp_blkstats) {
955 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
956 dp->dp_blkstats = NULL;
957 }
958 }
959
960 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
961 ot = DMU_OT_ZAP_OTHER;
962
963 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
964 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
965
966 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
967
968 ddt_walk_init(spa, scn->scn_phys.scn_max_txg);
969
970 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
971
972 spa_history_log_internal(spa, "scan setup", tx,
973 "func=%u mintxg=%llu maxtxg=%llu",
974 setup_sync_arg->func, (u_longlong_t)scn->scn_phys.scn_min_txg,
975 (u_longlong_t)scn->scn_phys.scn_max_txg);
976 }
977
978 /*
979 * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub,
980 * error scrub or resilver. Can also be called to resume a paused scrub or
981 * error scrub.
982 */
983 int
dsl_scan(dsl_pool_t * dp,pool_scan_func_t func,uint64_t txgstart,uint64_t txgend)984 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func, uint64_t txgstart,
985 uint64_t txgend)
986 {
987 spa_t *spa = dp->dp_spa;
988 dsl_scan_t *scn = dp->dp_scan;
989 setup_sync_arg_t setup_sync_arg;
990
991 if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0)) {
992 return (EINVAL);
993 }
994
995 /*
996 * Purge all vdev caches and probe all devices. We do this here
997 * rather than in sync context because this requires a writer lock
998 * on the spa_config lock, which we can't do from sync context. The
999 * spa_scrub_reopen flag indicates that vdev_open() should not
1000 * attempt to start another scrub.
1001 */
1002 spa_vdev_state_enter(spa, SCL_NONE);
1003 spa->spa_scrub_reopen = B_TRUE;
1004 vdev_reopen(spa->spa_root_vdev);
1005 spa->spa_scrub_reopen = B_FALSE;
1006 (void) spa_vdev_state_exit(spa, NULL, 0);
1007
1008 if (func == POOL_SCAN_RESILVER) {
1009 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
1010 return (0);
1011 }
1012
1013 if (func == POOL_SCAN_ERRORSCRUB) {
1014 if (dsl_errorscrub_is_paused(dp->dp_scan)) {
1015 /*
1016 * got error scrub start cmd, resume paused error scrub.
1017 */
1018 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1019 POOL_SCRUB_NORMAL);
1020 if (err == 0) {
1021 spa_event_notify(spa, NULL, NULL,
1022 ESC_ZFS_ERRORSCRUB_RESUME);
1023 return (ECANCELED);
1024 }
1025 return (SET_ERROR(err));
1026 }
1027
1028 return (dsl_sync_task(spa_name(dp->dp_spa),
1029 dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync,
1030 &func, 0, ZFS_SPACE_CHECK_RESERVED));
1031 }
1032
1033 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
1034 /* got scrub start cmd, resume paused scrub */
1035 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1036 POOL_SCRUB_NORMAL);
1037 if (err == 0) {
1038 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
1039 return (SET_ERROR(ECANCELED));
1040 }
1041 return (SET_ERROR(err));
1042 }
1043
1044 setup_sync_arg.func = func;
1045 setup_sync_arg.txgstart = txgstart;
1046 setup_sync_arg.txgend = txgend;
1047
1048 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
1049 dsl_scan_setup_sync, &setup_sync_arg, 0,
1050 ZFS_SPACE_CHECK_EXTRA_RESERVED));
1051 }
1052
1053 static void
dsl_errorscrub_done(dsl_scan_t * scn,boolean_t complete,dmu_tx_t * tx)1054 dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1055 {
1056 dsl_pool_t *dp = scn->scn_dp;
1057 spa_t *spa = dp->dp_spa;
1058
1059 if (complete) {
1060 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH);
1061 spa_history_log_internal(spa, "error scrub done", tx,
1062 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1063 } else {
1064 spa_history_log_internal(spa, "error scrub canceled", tx,
1065 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1066 }
1067
1068 scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED;
1069 spa->spa_scrub_active = B_FALSE;
1070 spa_errlog_rotate(spa);
1071 scn->errorscrub_phys.dep_end_time = gethrestime_sec();
1072 zap_cursor_fini(&scn->errorscrub_cursor);
1073
1074 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1075 spa->spa_errata = 0;
1076
1077 ASSERT(!dsl_errorscrubbing(scn->scn_dp));
1078 }
1079
1080 static void
dsl_scan_done(dsl_scan_t * scn,boolean_t complete,dmu_tx_t * tx)1081 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1082 {
1083 static const char *old_names[] = {
1084 "scrub_bookmark",
1085 "scrub_ddt_bookmark",
1086 "scrub_ddt_class_max",
1087 "scrub_queue",
1088 "scrub_min_txg",
1089 "scrub_max_txg",
1090 "scrub_func",
1091 "scrub_errors",
1092 NULL
1093 };
1094
1095 dsl_pool_t *dp = scn->scn_dp;
1096 spa_t *spa = dp->dp_spa;
1097 int i;
1098
1099 /* Remove any remnants of an old-style scrub. */
1100 for (i = 0; old_names[i]; i++) {
1101 (void) zap_remove(dp->dp_meta_objset,
1102 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
1103 }
1104
1105 if (scn->scn_phys.scn_queue_obj != 0) {
1106 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1107 scn->scn_phys.scn_queue_obj, tx));
1108 scn->scn_phys.scn_queue_obj = 0;
1109 }
1110 scan_ds_queue_clear(scn);
1111 scan_ds_prefetch_queue_clear(scn);
1112
1113 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1114
1115 /*
1116 * If we were "restarted" from a stopped state, don't bother
1117 * with anything else.
1118 */
1119 if (!dsl_scan_is_running(scn)) {
1120 ASSERT(!scn->scn_is_sorted);
1121 return;
1122 }
1123
1124 if (scn->scn_is_sorted) {
1125 scan_io_queues_destroy(scn);
1126 scn->scn_is_sorted = B_FALSE;
1127
1128 if (scn->scn_taskq != NULL) {
1129 taskq_destroy(scn->scn_taskq);
1130 scn->scn_taskq = NULL;
1131 }
1132 }
1133
1134 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
1135
1136 spa_notify_waiters(spa);
1137
1138 if (dsl_scan_restarting(scn, tx)) {
1139 spa_history_log_internal(spa, "scan aborted, restarting", tx,
1140 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1141 } else if (!complete) {
1142 spa_history_log_internal(spa, "scan cancelled", tx,
1143 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1144 } else {
1145 spa_history_log_internal(spa, "scan done", tx,
1146 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1147 if (DSL_SCAN_IS_SCRUB(scn)) {
1148 VERIFY0(zap_update(dp->dp_meta_objset,
1149 DMU_POOL_DIRECTORY_OBJECT,
1150 DMU_POOL_LAST_SCRUBBED_TXG,
1151 sizeof (uint64_t), 1,
1152 &scn->scn_phys.scn_max_txg, tx));
1153 spa->spa_scrubbed_last_txg = scn->scn_phys.scn_max_txg;
1154 }
1155 }
1156
1157 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
1158 spa->spa_scrub_active = B_FALSE;
1159
1160 /*
1161 * If the scrub/resilver completed, update all DTLs to
1162 * reflect this. Whether it succeeded or not, vacate
1163 * all temporary scrub DTLs.
1164 *
1165 * As the scrub does not currently support traversing
1166 * data that have been freed but are part of a checkpoint,
1167 * we don't mark the scrub as done in the DTLs as faults
1168 * may still exist in those vdevs.
1169 */
1170 if (complete &&
1171 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1172 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1173 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
1174
1175 if (scn->scn_phys.scn_min_txg) {
1176 nvlist_t *aux = fnvlist_alloc();
1177 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
1178 "healing");
1179 spa_event_notify(spa, NULL, aux,
1180 ESC_ZFS_RESILVER_FINISH);
1181 nvlist_free(aux);
1182 } else {
1183 spa_event_notify(spa, NULL, NULL,
1184 ESC_ZFS_SCRUB_FINISH);
1185 }
1186 } else {
1187 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1188 0, B_TRUE, B_FALSE);
1189 }
1190 spa_errlog_rotate(spa);
1191
1192 /*
1193 * Don't clear flag until after vdev_dtl_reassess to ensure that
1194 * DTL_MISSING will get updated when possible.
1195 */
1196 spa->spa_scrub_started = B_FALSE;
1197
1198 /*
1199 * We may have finished replacing a device.
1200 * Let the async thread assess this and handle the detach.
1201 */
1202 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
1203
1204 /*
1205 * Clear any resilver_deferred flags in the config.
1206 * If there are drives that need resilvering, kick
1207 * off an asynchronous request to start resilver.
1208 * vdev_clear_resilver_deferred() may update the config
1209 * before the resilver can restart. In the event of
1210 * a crash during this period, the spa loading code
1211 * will find the drives that need to be resilvered
1212 * and start the resilver then.
1213 */
1214 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
1215 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
1216 spa_history_log_internal(spa,
1217 "starting deferred resilver", tx, "errors=%llu",
1218 (u_longlong_t)spa_approx_errlog_size(spa));
1219 spa_async_request(spa, SPA_ASYNC_RESILVER);
1220 }
1221
1222 /* Clear recent error events (i.e. duplicate events tracking) */
1223 if (complete)
1224 zfs_ereport_clear(spa, NULL);
1225 }
1226
1227 scn->scn_phys.scn_end_time = gethrestime_sec();
1228
1229 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1230 spa->spa_errata = 0;
1231
1232 ASSERT(!dsl_scan_is_running(scn));
1233 }
1234
1235 static int
dsl_errorscrub_pause_resume_check(void * arg,dmu_tx_t * tx)1236 dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1237 {
1238 pool_scrub_cmd_t *cmd = arg;
1239 dsl_pool_t *dp = dmu_tx_pool(tx);
1240 dsl_scan_t *scn = dp->dp_scan;
1241
1242 if (*cmd == POOL_SCRUB_PAUSE) {
1243 /*
1244 * can't pause a error scrub when there is no in-progress
1245 * error scrub.
1246 */
1247 if (!dsl_errorscrubbing(dp))
1248 return (SET_ERROR(ENOENT));
1249
1250 /* can't pause a paused error scrub */
1251 if (dsl_errorscrub_is_paused(scn))
1252 return (SET_ERROR(EBUSY));
1253 } else if (*cmd != POOL_SCRUB_NORMAL) {
1254 return (SET_ERROR(ENOTSUP));
1255 }
1256
1257 return (0);
1258 }
1259
1260 static void
dsl_errorscrub_pause_resume_sync(void * arg,dmu_tx_t * tx)1261 dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1262 {
1263 pool_scrub_cmd_t *cmd = arg;
1264 dsl_pool_t *dp = dmu_tx_pool(tx);
1265 spa_t *spa = dp->dp_spa;
1266 dsl_scan_t *scn = dp->dp_scan;
1267
1268 if (*cmd == POOL_SCRUB_PAUSE) {
1269 spa->spa_scan_pass_errorscrub_pause = gethrestime_sec();
1270 scn->errorscrub_phys.dep_paused_flags = B_TRUE;
1271 dsl_errorscrub_sync_state(scn, tx);
1272 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED);
1273 } else {
1274 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1275 if (dsl_errorscrub_is_paused(scn)) {
1276 /*
1277 * We need to keep track of how much time we spend
1278 * paused per pass so that we can adjust the error scrub
1279 * rate shown in the output of 'zpool status'.
1280 */
1281 spa->spa_scan_pass_errorscrub_spent_paused +=
1282 gethrestime_sec() -
1283 spa->spa_scan_pass_errorscrub_pause;
1284
1285 spa->spa_scan_pass_errorscrub_pause = 0;
1286 scn->errorscrub_phys.dep_paused_flags = B_FALSE;
1287
1288 zap_cursor_init_serialized(
1289 &scn->errorscrub_cursor,
1290 spa->spa_meta_objset, spa->spa_errlog_last,
1291 scn->errorscrub_phys.dep_cursor);
1292
1293 dsl_errorscrub_sync_state(scn, tx);
1294 }
1295 }
1296 }
1297
1298 static int
dsl_errorscrub_cancel_check(void * arg,dmu_tx_t * tx)1299 dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx)
1300 {
1301 (void) arg;
1302 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1303 /* can't cancel a error scrub when there is no one in-progress */
1304 if (!dsl_errorscrubbing(scn->scn_dp))
1305 return (SET_ERROR(ENOENT));
1306 return (0);
1307 }
1308
1309 static void
dsl_errorscrub_cancel_sync(void * arg,dmu_tx_t * tx)1310 dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx)
1311 {
1312 (void) arg;
1313 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1314
1315 dsl_errorscrub_done(scn, B_FALSE, tx);
1316 dsl_errorscrub_sync_state(scn, tx);
1317 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL,
1318 ESC_ZFS_ERRORSCRUB_ABORT);
1319 }
1320
1321 static int
dsl_scan_cancel_check(void * arg,dmu_tx_t * tx)1322 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1323 {
1324 (void) arg;
1325 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1326
1327 if (!dsl_scan_is_running(scn))
1328 return (SET_ERROR(ENOENT));
1329 return (0);
1330 }
1331
1332 static void
dsl_scan_cancel_sync(void * arg,dmu_tx_t * tx)1333 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1334 {
1335 (void) arg;
1336 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1337
1338 dsl_scan_done(scn, B_FALSE, tx);
1339 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1340 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1341 }
1342
1343 int
dsl_scan_cancel(dsl_pool_t * dp)1344 dsl_scan_cancel(dsl_pool_t *dp)
1345 {
1346 if (dsl_errorscrubbing(dp)) {
1347 return (dsl_sync_task(spa_name(dp->dp_spa),
1348 dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync,
1349 NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1350 }
1351 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1352 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1353 }
1354
1355 static int
dsl_scrub_pause_resume_check(void * arg,dmu_tx_t * tx)1356 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1357 {
1358 pool_scrub_cmd_t *cmd = arg;
1359 dsl_pool_t *dp = dmu_tx_pool(tx);
1360 dsl_scan_t *scn = dp->dp_scan;
1361
1362 if (*cmd == POOL_SCRUB_PAUSE) {
1363 /* can't pause a scrub when there is no in-progress scrub */
1364 if (!dsl_scan_scrubbing(dp))
1365 return (SET_ERROR(ENOENT));
1366
1367 /* can't pause a paused scrub */
1368 if (dsl_scan_is_paused_scrub(scn))
1369 return (SET_ERROR(EBUSY));
1370 } else if (*cmd != POOL_SCRUB_NORMAL) {
1371 return (SET_ERROR(ENOTSUP));
1372 }
1373
1374 return (0);
1375 }
1376
1377 static void
dsl_scrub_pause_resume_sync(void * arg,dmu_tx_t * tx)1378 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1379 {
1380 pool_scrub_cmd_t *cmd = arg;
1381 dsl_pool_t *dp = dmu_tx_pool(tx);
1382 spa_t *spa = dp->dp_spa;
1383 dsl_scan_t *scn = dp->dp_scan;
1384
1385 if (*cmd == POOL_SCRUB_PAUSE) {
1386 /* can't pause a scrub when there is no in-progress scrub */
1387 spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1388 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1389 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1390 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1391 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1392 spa_notify_waiters(spa);
1393 } else {
1394 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1395 if (dsl_scan_is_paused_scrub(scn)) {
1396 /*
1397 * We need to keep track of how much time we spend
1398 * paused per pass so that we can adjust the scrub rate
1399 * shown in the output of 'zpool status'
1400 */
1401 spa->spa_scan_pass_scrub_spent_paused +=
1402 gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1403 spa->spa_scan_pass_scrub_pause = 0;
1404 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1405 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1406 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1407 }
1408 }
1409 }
1410
1411 /*
1412 * Set scrub pause/resume state if it makes sense to do so
1413 */
1414 int
dsl_scrub_set_pause_resume(const dsl_pool_t * dp,pool_scrub_cmd_t cmd)1415 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1416 {
1417 if (dsl_errorscrubbing(dp)) {
1418 return (dsl_sync_task(spa_name(dp->dp_spa),
1419 dsl_errorscrub_pause_resume_check,
1420 dsl_errorscrub_pause_resume_sync, &cmd, 3,
1421 ZFS_SPACE_CHECK_RESERVED));
1422 }
1423 return (dsl_sync_task(spa_name(dp->dp_spa),
1424 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1425 ZFS_SPACE_CHECK_RESERVED));
1426 }
1427
1428
1429 /* start a new scan, or restart an existing one. */
1430 void
dsl_scan_restart_resilver(dsl_pool_t * dp,uint64_t txg)1431 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1432 {
1433 if (txg == 0) {
1434 dmu_tx_t *tx;
1435 tx = dmu_tx_create_dd(dp->dp_mos_dir);
1436 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1437
1438 txg = dmu_tx_get_txg(tx);
1439 dp->dp_scan->scn_restart_txg = txg;
1440 dmu_tx_commit(tx);
1441 } else {
1442 dp->dp_scan->scn_restart_txg = txg;
1443 }
1444 zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1445 dp->dp_spa->spa_name, (longlong_t)txg);
1446 }
1447
1448 void
dsl_free(dsl_pool_t * dp,uint64_t txg,const blkptr_t * bp)1449 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1450 {
1451 zio_free(dp->dp_spa, txg, bp);
1452 }
1453
1454 void
dsl_free_sync(zio_t * pio,dsl_pool_t * dp,uint64_t txg,const blkptr_t * bpp)1455 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1456 {
1457 ASSERT(dsl_pool_sync_context(dp));
1458 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1459 }
1460
1461 static int
scan_ds_queue_compare(const void * a,const void * b)1462 scan_ds_queue_compare(const void *a, const void *b)
1463 {
1464 const scan_ds_t *sds_a = a, *sds_b = b;
1465
1466 if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1467 return (-1);
1468 if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1469 return (0);
1470 return (1);
1471 }
1472
1473 static void
scan_ds_queue_clear(dsl_scan_t * scn)1474 scan_ds_queue_clear(dsl_scan_t *scn)
1475 {
1476 void *cookie = NULL;
1477 scan_ds_t *sds;
1478 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1479 kmem_free(sds, sizeof (*sds));
1480 }
1481 }
1482
1483 static boolean_t
scan_ds_queue_contains(dsl_scan_t * scn,uint64_t dsobj,uint64_t * txg)1484 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1485 {
1486 scan_ds_t srch, *sds;
1487
1488 srch.sds_dsobj = dsobj;
1489 sds = avl_find(&scn->scn_queue, &srch, NULL);
1490 if (sds != NULL && txg != NULL)
1491 *txg = sds->sds_txg;
1492 return (sds != NULL);
1493 }
1494
1495 static void
scan_ds_queue_insert(dsl_scan_t * scn,uint64_t dsobj,uint64_t txg)1496 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1497 {
1498 scan_ds_t *sds;
1499 avl_index_t where;
1500
1501 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1502 sds->sds_dsobj = dsobj;
1503 sds->sds_txg = txg;
1504
1505 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1506 avl_insert(&scn->scn_queue, sds, where);
1507 }
1508
1509 static void
scan_ds_queue_remove(dsl_scan_t * scn,uint64_t dsobj)1510 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1511 {
1512 scan_ds_t srch, *sds;
1513
1514 srch.sds_dsobj = dsobj;
1515
1516 sds = avl_find(&scn->scn_queue, &srch, NULL);
1517 VERIFY(sds != NULL);
1518 avl_remove(&scn->scn_queue, sds);
1519 kmem_free(sds, sizeof (*sds));
1520 }
1521
1522 static void
scan_ds_queue_sync(dsl_scan_t * scn,dmu_tx_t * tx)1523 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1524 {
1525 dsl_pool_t *dp = scn->scn_dp;
1526 spa_t *spa = dp->dp_spa;
1527 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1528 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1529
1530 ASSERT0(scn->scn_queues_pending);
1531 ASSERT(scn->scn_phys.scn_queue_obj != 0);
1532
1533 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1534 scn->scn_phys.scn_queue_obj, tx));
1535 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1536 DMU_OT_NONE, 0, tx);
1537 for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1538 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1539 VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1540 scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1541 sds->sds_txg, tx));
1542 }
1543 }
1544
1545 /*
1546 * Computes the memory limit state that we're currently in. A sorted scan
1547 * needs quite a bit of memory to hold the sorting queue, so we need to
1548 * reasonably constrain the size so it doesn't impact overall system
1549 * performance. We compute two limits:
1550 * 1) Hard memory limit: if the amount of memory used by the sorting
1551 * queues on a pool gets above this value, we stop the metadata
1552 * scanning portion and start issuing the queued up and sorted
1553 * I/Os to reduce memory usage.
1554 * This limit is calculated as a fraction of physmem (by default 5%).
1555 * We constrain the lower bound of the hard limit to an absolute
1556 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1557 * the upper bound to 5% of the total pool size - no chance we'll
1558 * ever need that much memory, but just to keep the value in check.
1559 * 2) Soft memory limit: once we hit the hard memory limit, we start
1560 * issuing I/O to reduce queue memory usage, but we don't want to
1561 * completely empty out the queues, since we might be able to find I/Os
1562 * that will fill in the gaps of our non-sequential IOs at some point
1563 * in the future. So we stop the issuing of I/Os once the amount of
1564 * memory used drops below the soft limit (at which point we stop issuing
1565 * I/O and start scanning metadata again).
1566 *
1567 * This limit is calculated by subtracting a fraction of the hard
1568 * limit from the hard limit. By default this fraction is 5%, so
1569 * the soft limit is 95% of the hard limit. We cap the size of the
1570 * difference between the hard and soft limits at an absolute
1571 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1572 * sufficient to not cause too frequent switching between the
1573 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1574 * worth of queues is about 1.2 GiB of on-pool data, so scanning
1575 * that should take at least a decent fraction of a second).
1576 */
1577 static boolean_t
dsl_scan_should_clear(dsl_scan_t * scn)1578 dsl_scan_should_clear(dsl_scan_t *scn)
1579 {
1580 spa_t *spa = scn->scn_dp->dp_spa;
1581 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1582 uint64_t alloc, mlim_hard, mlim_soft, mused;
1583
1584 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1585 alloc += metaslab_class_get_alloc(spa_special_class(spa));
1586 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1587
1588 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1589 zfs_scan_mem_lim_min);
1590 mlim_hard = MIN(mlim_hard, alloc / 20);
1591 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1592 zfs_scan_mem_lim_soft_max);
1593 mused = 0;
1594 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1595 vdev_t *tvd = rvd->vdev_child[i];
1596 dsl_scan_io_queue_t *queue;
1597
1598 mutex_enter(&tvd->vdev_scan_io_queue_lock);
1599 queue = tvd->vdev_scan_io_queue;
1600 if (queue != NULL) {
1601 /*
1602 * # of extents in exts_by_addr = # in exts_by_size.
1603 * B-tree efficiency is ~75%, but can be as low as 50%.
1604 */
1605 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * ((
1606 sizeof (zfs_range_seg_gap_t) + sizeof (uint64_t)) *
1607 3 / 2) + queue->q_sio_memused;
1608 }
1609 mutex_exit(&tvd->vdev_scan_io_queue_lock);
1610 }
1611
1612 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1613
1614 if (mused == 0)
1615 ASSERT0(scn->scn_queues_pending);
1616
1617 /*
1618 * If we are above our hard limit, we need to clear out memory.
1619 * If we are below our soft limit, we need to accumulate sequential IOs.
1620 * Otherwise, we should keep doing whatever we are currently doing.
1621 */
1622 if (mused >= mlim_hard)
1623 return (B_TRUE);
1624 else if (mused < mlim_soft)
1625 return (B_FALSE);
1626 else
1627 return (scn->scn_clearing);
1628 }
1629
1630 static boolean_t
dsl_scan_check_suspend(dsl_scan_t * scn,const zbookmark_phys_t * zb)1631 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1632 {
1633 /* we never skip user/group accounting objects */
1634 if (zb && (int64_t)zb->zb_object < 0)
1635 return (B_FALSE);
1636
1637 if (scn->scn_suspending)
1638 return (B_TRUE); /* we're already suspending */
1639
1640 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1641 return (B_FALSE); /* we're resuming */
1642
1643 /* We only know how to resume from level-0 and objset blocks. */
1644 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1645 return (B_FALSE);
1646
1647 /*
1648 * We suspend if:
1649 * - we have scanned for at least the minimum time (default 1 sec
1650 * for scrub, 3 sec for resilver), and either we have sufficient
1651 * dirty data that we are starting to write more quickly
1652 * (default 30%), someone is explicitly waiting for this txg
1653 * to complete, or we have used up all of the time in the txg
1654 * timeout (default 5 sec).
1655 * or
1656 * - the spa is shutting down because this pool is being exported
1657 * or the machine is rebooting.
1658 * or
1659 * - the scan queue has reached its memory use limit
1660 */
1661 uint64_t curr_time_ns = gethrtime();
1662 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1663 uint64_t sync_time_ns = curr_time_ns -
1664 scn->scn_dp->dp_spa->spa_sync_starttime;
1665 uint64_t dirty_min_bytes = zfs_dirty_data_max *
1666 zfs_vdev_async_write_active_min_dirty_percent / 100;
1667 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1668 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1669
1670 if ((NSEC2MSEC(scan_time_ns) > mintime &&
1671 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
1672 txg_sync_waiting(scn->scn_dp) ||
1673 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1674 spa_shutting_down(scn->scn_dp->dp_spa) ||
1675 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn)) ||
1676 !ddt_walk_ready(scn->scn_dp->dp_spa)) {
1677 if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1678 dprintf("suspending at first available bookmark "
1679 "%llx/%llx/%llx/%llx\n",
1680 (longlong_t)zb->zb_objset,
1681 (longlong_t)zb->zb_object,
1682 (longlong_t)zb->zb_level,
1683 (longlong_t)zb->zb_blkid);
1684 SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1685 zb->zb_objset, 0, 0, 0);
1686 } else if (zb != NULL) {
1687 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1688 (longlong_t)zb->zb_objset,
1689 (longlong_t)zb->zb_object,
1690 (longlong_t)zb->zb_level,
1691 (longlong_t)zb->zb_blkid);
1692 scn->scn_phys.scn_bookmark = *zb;
1693 } else {
1694 #ifdef ZFS_DEBUG
1695 dsl_scan_phys_t *scnp = &scn->scn_phys;
1696 dprintf("suspending at at DDT bookmark "
1697 "%llx/%llx/%llx/%llx\n",
1698 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1699 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1700 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1701 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1702 #endif
1703 }
1704 scn->scn_suspending = B_TRUE;
1705 return (B_TRUE);
1706 }
1707 return (B_FALSE);
1708 }
1709
1710 static boolean_t
dsl_error_scrub_check_suspend(dsl_scan_t * scn,const zbookmark_phys_t * zb)1711 dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1712 {
1713 /*
1714 * We suspend if:
1715 * - we have scrubbed for at least the minimum time (default 1 sec
1716 * for error scrub), someone is explicitly waiting for this txg
1717 * to complete, or we have used up all of the time in the txg
1718 * timeout (default 5 sec).
1719 * or
1720 * - the spa is shutting down because this pool is being exported
1721 * or the machine is rebooting.
1722 */
1723 uint64_t curr_time_ns = gethrtime();
1724 uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time;
1725 uint64_t sync_time_ns = curr_time_ns -
1726 scn->scn_dp->dp_spa->spa_sync_starttime;
1727 int mintime = zfs_scrub_min_time_ms;
1728
1729 if ((NSEC2MSEC(error_scrub_time_ns) > mintime &&
1730 (txg_sync_waiting(scn->scn_dp) ||
1731 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1732 spa_shutting_down(scn->scn_dp->dp_spa)) {
1733 if (zb) {
1734 dprintf("error scrub suspending at bookmark "
1735 "%llx/%llx/%llx/%llx\n",
1736 (longlong_t)zb->zb_objset,
1737 (longlong_t)zb->zb_object,
1738 (longlong_t)zb->zb_level,
1739 (longlong_t)zb->zb_blkid);
1740 }
1741 return (B_TRUE);
1742 }
1743 return (B_FALSE);
1744 }
1745
1746 typedef struct zil_scan_arg {
1747 dsl_pool_t *zsa_dp;
1748 zil_header_t *zsa_zh;
1749 } zil_scan_arg_t;
1750
1751 static int
dsl_scan_zil_block(zilog_t * zilog,const blkptr_t * bp,void * arg,uint64_t claim_txg)1752 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
1753 uint64_t claim_txg)
1754 {
1755 (void) zilog;
1756 zil_scan_arg_t *zsa = arg;
1757 dsl_pool_t *dp = zsa->zsa_dp;
1758 dsl_scan_t *scn = dp->dp_scan;
1759 zil_header_t *zh = zsa->zsa_zh;
1760 zbookmark_phys_t zb;
1761
1762 ASSERT(!BP_IS_REDACTED(bp));
1763 if (BP_IS_HOLE(bp) ||
1764 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1765 return (0);
1766
1767 /*
1768 * One block ("stubby") can be allocated a long time ago; we
1769 * want to visit that one because it has been allocated
1770 * (on-disk) even if it hasn't been claimed (even though for
1771 * scrub there's nothing to do to it).
1772 */
1773 if (claim_txg == 0 &&
1774 BP_GET_LOGICAL_BIRTH(bp) >= spa_min_claim_txg(dp->dp_spa))
1775 return (0);
1776
1777 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1778 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1779
1780 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1781 return (0);
1782 }
1783
1784 static int
dsl_scan_zil_record(zilog_t * zilog,const lr_t * lrc,void * arg,uint64_t claim_txg)1785 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
1786 uint64_t claim_txg)
1787 {
1788 (void) zilog;
1789 if (lrc->lrc_txtype == TX_WRITE) {
1790 zil_scan_arg_t *zsa = arg;
1791 dsl_pool_t *dp = zsa->zsa_dp;
1792 dsl_scan_t *scn = dp->dp_scan;
1793 zil_header_t *zh = zsa->zsa_zh;
1794 const lr_write_t *lr = (const lr_write_t *)lrc;
1795 const blkptr_t *bp = &lr->lr_blkptr;
1796 zbookmark_phys_t zb;
1797
1798 ASSERT(!BP_IS_REDACTED(bp));
1799 if (BP_IS_HOLE(bp) ||
1800 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1801 return (0);
1802
1803 /*
1804 * birth can be < claim_txg if this record's txg is
1805 * already txg sync'ed (but this log block contains
1806 * other records that are not synced)
1807 */
1808 if (claim_txg == 0 || BP_GET_LOGICAL_BIRTH(bp) < claim_txg)
1809 return (0);
1810
1811 ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
1812 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1813 lr->lr_foid, ZB_ZIL_LEVEL,
1814 lr->lr_offset / BP_GET_LSIZE(bp));
1815
1816 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1817 }
1818 return (0);
1819 }
1820
1821 static void
dsl_scan_zil(dsl_pool_t * dp,zil_header_t * zh)1822 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1823 {
1824 uint64_t claim_txg = zh->zh_claim_txg;
1825 zil_scan_arg_t zsa = { dp, zh };
1826 zilog_t *zilog;
1827
1828 ASSERT(spa_writeable(dp->dp_spa));
1829
1830 /*
1831 * We only want to visit blocks that have been claimed but not yet
1832 * replayed (or, in read-only mode, blocks that *would* be claimed).
1833 */
1834 if (claim_txg == 0)
1835 return;
1836
1837 zilog = zil_alloc(dp->dp_meta_objset, zh);
1838
1839 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1840 claim_txg, B_FALSE);
1841
1842 zil_free(zilog);
1843 }
1844
1845 /*
1846 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1847 * here is to sort the AVL tree by the order each block will be needed.
1848 */
1849 static int
scan_prefetch_queue_compare(const void * a,const void * b)1850 scan_prefetch_queue_compare(const void *a, const void *b)
1851 {
1852 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1853 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1854 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1855
1856 return (zbookmark_compare(spc_a->spc_datablkszsec,
1857 spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1858 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1859 }
1860
1861 static void
scan_prefetch_ctx_rele(scan_prefetch_ctx_t * spc,const void * tag)1862 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag)
1863 {
1864 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1865 zfs_refcount_destroy(&spc->spc_refcnt);
1866 kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1867 }
1868 }
1869
1870 static scan_prefetch_ctx_t *
scan_prefetch_ctx_create(dsl_scan_t * scn,dnode_phys_t * dnp,const void * tag)1871 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag)
1872 {
1873 scan_prefetch_ctx_t *spc;
1874
1875 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1876 zfs_refcount_create(&spc->spc_refcnt);
1877 zfs_refcount_add(&spc->spc_refcnt, tag);
1878 spc->spc_scn = scn;
1879 if (dnp != NULL) {
1880 spc->spc_datablkszsec = dnp->dn_datablkszsec;
1881 spc->spc_indblkshift = dnp->dn_indblkshift;
1882 spc->spc_root = B_FALSE;
1883 } else {
1884 spc->spc_datablkszsec = 0;
1885 spc->spc_indblkshift = 0;
1886 spc->spc_root = B_TRUE;
1887 }
1888
1889 return (spc);
1890 }
1891
1892 static void
scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t * spc,const void * tag)1893 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag)
1894 {
1895 zfs_refcount_add(&spc->spc_refcnt, tag);
1896 }
1897
1898 static void
scan_ds_prefetch_queue_clear(dsl_scan_t * scn)1899 scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1900 {
1901 spa_t *spa = scn->scn_dp->dp_spa;
1902 void *cookie = NULL;
1903 scan_prefetch_issue_ctx_t *spic = NULL;
1904
1905 mutex_enter(&spa->spa_scrub_lock);
1906 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1907 &cookie)) != NULL) {
1908 scan_prefetch_ctx_rele(spic->spic_spc, scn);
1909 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1910 }
1911 mutex_exit(&spa->spa_scrub_lock);
1912 }
1913
1914 static boolean_t
dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t * spc,const zbookmark_phys_t * zb)1915 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1916 const zbookmark_phys_t *zb)
1917 {
1918 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1919 dnode_phys_t tmp_dnp;
1920 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1921
1922 if (zb->zb_objset != last_zb->zb_objset)
1923 return (B_TRUE);
1924 if ((int64_t)zb->zb_object < 0)
1925 return (B_FALSE);
1926
1927 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1928 tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1929
1930 if (zbookmark_subtree_completed(dnp, zb, last_zb))
1931 return (B_TRUE);
1932
1933 return (B_FALSE);
1934 }
1935
1936 static void
dsl_scan_prefetch(scan_prefetch_ctx_t * spc,blkptr_t * bp,zbookmark_phys_t * zb)1937 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1938 {
1939 avl_index_t idx;
1940 dsl_scan_t *scn = spc->spc_scn;
1941 spa_t *spa = scn->scn_dp->dp_spa;
1942 scan_prefetch_issue_ctx_t *spic;
1943
1944 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1945 return;
1946
1947 if (BP_IS_HOLE(bp) ||
1948 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg ||
1949 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1950 BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1951 return;
1952
1953 if (dsl_scan_check_prefetch_resume(spc, zb))
1954 return;
1955
1956 scan_prefetch_ctx_add_ref(spc, scn);
1957 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1958 spic->spic_spc = spc;
1959 spic->spic_bp = *bp;
1960 spic->spic_zb = *zb;
1961
1962 /*
1963 * Add the IO to the queue of blocks to prefetch. This allows us to
1964 * prioritize blocks that we will need first for the main traversal
1965 * thread.
1966 */
1967 mutex_enter(&spa->spa_scrub_lock);
1968 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1969 /* this block is already queued for prefetch */
1970 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1971 scan_prefetch_ctx_rele(spc, scn);
1972 mutex_exit(&spa->spa_scrub_lock);
1973 return;
1974 }
1975
1976 avl_insert(&scn->scn_prefetch_queue, spic, idx);
1977 cv_broadcast(&spa->spa_scrub_io_cv);
1978 mutex_exit(&spa->spa_scrub_lock);
1979 }
1980
1981 static void
dsl_scan_prefetch_dnode(dsl_scan_t * scn,dnode_phys_t * dnp,uint64_t objset,uint64_t object)1982 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1983 uint64_t objset, uint64_t object)
1984 {
1985 int i;
1986 zbookmark_phys_t zb;
1987 scan_prefetch_ctx_t *spc;
1988
1989 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1990 return;
1991
1992 SET_BOOKMARK(&zb, objset, object, 0, 0);
1993
1994 spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1995
1996 for (i = 0; i < dnp->dn_nblkptr; i++) {
1997 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1998 zb.zb_blkid = i;
1999 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
2000 }
2001
2002 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2003 zb.zb_level = 0;
2004 zb.zb_blkid = DMU_SPILL_BLKID;
2005 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
2006 }
2007
2008 scan_prefetch_ctx_rele(spc, FTAG);
2009 }
2010
2011 static void
dsl_scan_prefetch_cb(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * private)2012 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
2013 arc_buf_t *buf, void *private)
2014 {
2015 (void) zio;
2016 scan_prefetch_ctx_t *spc = private;
2017 dsl_scan_t *scn = spc->spc_scn;
2018 spa_t *spa = scn->scn_dp->dp_spa;
2019
2020 /* broadcast that the IO has completed for rate limiting purposes */
2021 mutex_enter(&spa->spa_scrub_lock);
2022 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
2023 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
2024 cv_broadcast(&spa->spa_scrub_io_cv);
2025 mutex_exit(&spa->spa_scrub_lock);
2026
2027 /* if there was an error or we are done prefetching, just cleanup */
2028 if (buf == NULL || scn->scn_prefetch_stop)
2029 goto out;
2030
2031 if (BP_GET_LEVEL(bp) > 0) {
2032 int i;
2033 blkptr_t *cbp;
2034 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2035 zbookmark_phys_t czb;
2036
2037 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2038 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2039 zb->zb_level - 1, zb->zb_blkid * epb + i);
2040 dsl_scan_prefetch(spc, cbp, &czb);
2041 }
2042 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2043 dnode_phys_t *cdnp;
2044 int i;
2045 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2046
2047 for (i = 0, cdnp = buf->b_data; i < epb;
2048 i += cdnp->dn_extra_slots + 1,
2049 cdnp += cdnp->dn_extra_slots + 1) {
2050 dsl_scan_prefetch_dnode(scn, cdnp,
2051 zb->zb_objset, zb->zb_blkid * epb + i);
2052 }
2053 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2054 objset_phys_t *osp = buf->b_data;
2055
2056 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
2057 zb->zb_objset, DMU_META_DNODE_OBJECT);
2058
2059 if (OBJSET_BUF_HAS_USERUSED(buf)) {
2060 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) {
2061 dsl_scan_prefetch_dnode(scn,
2062 &osp->os_projectused_dnode, zb->zb_objset,
2063 DMU_PROJECTUSED_OBJECT);
2064 }
2065 dsl_scan_prefetch_dnode(scn,
2066 &osp->os_groupused_dnode, zb->zb_objset,
2067 DMU_GROUPUSED_OBJECT);
2068 dsl_scan_prefetch_dnode(scn,
2069 &osp->os_userused_dnode, zb->zb_objset,
2070 DMU_USERUSED_OBJECT);
2071 }
2072 }
2073
2074 out:
2075 if (buf != NULL)
2076 arc_buf_destroy(buf, private);
2077 scan_prefetch_ctx_rele(spc, scn);
2078 }
2079
2080 static void
dsl_scan_prefetch_thread(void * arg)2081 dsl_scan_prefetch_thread(void *arg)
2082 {
2083 dsl_scan_t *scn = arg;
2084 spa_t *spa = scn->scn_dp->dp_spa;
2085 scan_prefetch_issue_ctx_t *spic;
2086
2087 /* loop until we are told to stop */
2088 while (!scn->scn_prefetch_stop) {
2089 arc_flags_t flags = ARC_FLAG_NOWAIT |
2090 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
2091 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2092
2093 mutex_enter(&spa->spa_scrub_lock);
2094
2095 /*
2096 * Wait until we have an IO to issue and are not above our
2097 * maximum in flight limit.
2098 */
2099 while (!scn->scn_prefetch_stop &&
2100 (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
2101 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
2102 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2103 }
2104
2105 /* recheck if we should stop since we waited for the cv */
2106 if (scn->scn_prefetch_stop) {
2107 mutex_exit(&spa->spa_scrub_lock);
2108 break;
2109 }
2110
2111 /* remove the prefetch IO from the tree */
2112 spic = avl_first(&scn->scn_prefetch_queue);
2113 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
2114 avl_remove(&scn->scn_prefetch_queue, spic);
2115
2116 mutex_exit(&spa->spa_scrub_lock);
2117
2118 if (BP_IS_PROTECTED(&spic->spic_bp)) {
2119 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
2120 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
2121 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
2122 zio_flags |= ZIO_FLAG_RAW;
2123 }
2124
2125 /* We don't need data L1 buffer since we do not prefetch L0. */
2126 blkptr_t *bp = &spic->spic_bp;
2127 if (BP_GET_LEVEL(bp) == 1 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
2128 BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2129 flags |= ARC_FLAG_NO_BUF;
2130
2131 /* issue the prefetch asynchronously */
2132 (void) arc_read(scn->scn_zio_root, spa, bp,
2133 dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB,
2134 zio_flags, &flags, &spic->spic_zb);
2135
2136 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2137 }
2138
2139 ASSERT(scn->scn_prefetch_stop);
2140
2141 /* free any prefetches we didn't get to complete */
2142 mutex_enter(&spa->spa_scrub_lock);
2143 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
2144 avl_remove(&scn->scn_prefetch_queue, spic);
2145 scan_prefetch_ctx_rele(spic->spic_spc, scn);
2146 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2147 }
2148 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
2149 mutex_exit(&spa->spa_scrub_lock);
2150 }
2151
2152 static boolean_t
dsl_scan_check_resume(dsl_scan_t * scn,const dnode_phys_t * dnp,const zbookmark_phys_t * zb)2153 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
2154 const zbookmark_phys_t *zb)
2155 {
2156 /*
2157 * We never skip over user/group accounting objects (obj<0)
2158 */
2159 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
2160 (int64_t)zb->zb_object >= 0) {
2161 /*
2162 * If we already visited this bp & everything below (in
2163 * a prior txg sync), don't bother doing it again.
2164 */
2165 if (zbookmark_subtree_completed(dnp, zb,
2166 &scn->scn_phys.scn_bookmark))
2167 return (B_TRUE);
2168
2169 /*
2170 * If we found the block we're trying to resume from, or
2171 * we went past it, zero it out to indicate that it's OK
2172 * to start checking for suspending again.
2173 */
2174 if (zbookmark_subtree_tbd(dnp, zb,
2175 &scn->scn_phys.scn_bookmark)) {
2176 dprintf("resuming at %llx/%llx/%llx/%llx\n",
2177 (longlong_t)zb->zb_objset,
2178 (longlong_t)zb->zb_object,
2179 (longlong_t)zb->zb_level,
2180 (longlong_t)zb->zb_blkid);
2181 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb));
2182 }
2183 }
2184 return (B_FALSE);
2185 }
2186
2187 static void dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2188 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2189 dmu_objset_type_t ostype, dmu_tx_t *tx);
2190 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
2191 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2192 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
2193
2194 /*
2195 * Return nonzero on i/o error.
2196 * Return new buf to write out in *bufp.
2197 */
2198 inline __attribute__((always_inline)) static int
dsl_scan_recurse(dsl_scan_t * scn,dsl_dataset_t * ds,dmu_objset_type_t ostype,dnode_phys_t * dnp,const blkptr_t * bp,const zbookmark_phys_t * zb,dmu_tx_t * tx)2199 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2200 dnode_phys_t *dnp, const blkptr_t *bp,
2201 const zbookmark_phys_t *zb, dmu_tx_t *tx)
2202 {
2203 dsl_pool_t *dp = scn->scn_dp;
2204 spa_t *spa = dp->dp_spa;
2205 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2206 int err;
2207
2208 ASSERT(!BP_IS_REDACTED(bp));
2209
2210 /*
2211 * There is an unlikely case of encountering dnodes with contradicting
2212 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
2213 * or modified before commit 4254acb was merged. As it is not possible
2214 * to know which of the two is correct, report an error.
2215 */
2216 if (dnp != NULL &&
2217 dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) {
2218 scn->scn_phys.scn_errors++;
2219 spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
2220 return (SET_ERROR(EINVAL));
2221 }
2222
2223 if (BP_GET_LEVEL(bp) > 0) {
2224 arc_flags_t flags = ARC_FLAG_WAIT;
2225 int i;
2226 blkptr_t *cbp;
2227 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2228 arc_buf_t *buf;
2229
2230 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2231 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2232 if (err) {
2233 scn->scn_phys.scn_errors++;
2234 return (err);
2235 }
2236 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2237 zbookmark_phys_t czb;
2238
2239 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2240 zb->zb_level - 1,
2241 zb->zb_blkid * epb + i);
2242 dsl_scan_visitbp(cbp, &czb, dnp,
2243 ds, scn, ostype, tx);
2244 }
2245 arc_buf_destroy(buf, &buf);
2246 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2247 arc_flags_t flags = ARC_FLAG_WAIT;
2248 dnode_phys_t *cdnp;
2249 int i;
2250 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2251 arc_buf_t *buf;
2252
2253 if (BP_IS_PROTECTED(bp)) {
2254 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
2255 zio_flags |= ZIO_FLAG_RAW;
2256 }
2257
2258 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2259 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2260 if (err) {
2261 scn->scn_phys.scn_errors++;
2262 return (err);
2263 }
2264 for (i = 0, cdnp = buf->b_data; i < epb;
2265 i += cdnp->dn_extra_slots + 1,
2266 cdnp += cdnp->dn_extra_slots + 1) {
2267 dsl_scan_visitdnode(scn, ds, ostype,
2268 cdnp, zb->zb_blkid * epb + i, tx);
2269 }
2270
2271 arc_buf_destroy(buf, &buf);
2272 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2273 arc_flags_t flags = ARC_FLAG_WAIT;
2274 objset_phys_t *osp;
2275 arc_buf_t *buf;
2276
2277 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2278 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2279 if (err) {
2280 scn->scn_phys.scn_errors++;
2281 return (err);
2282 }
2283
2284 osp = buf->b_data;
2285
2286 dsl_scan_visitdnode(scn, ds, osp->os_type,
2287 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
2288
2289 if (OBJSET_BUF_HAS_USERUSED(buf)) {
2290 /*
2291 * We also always visit user/group/project accounting
2292 * objects, and never skip them, even if we are
2293 * suspending. This is necessary so that the
2294 * space deltas from this txg get integrated.
2295 */
2296 if (OBJSET_BUF_HAS_PROJECTUSED(buf))
2297 dsl_scan_visitdnode(scn, ds, osp->os_type,
2298 &osp->os_projectused_dnode,
2299 DMU_PROJECTUSED_OBJECT, tx);
2300 dsl_scan_visitdnode(scn, ds, osp->os_type,
2301 &osp->os_groupused_dnode,
2302 DMU_GROUPUSED_OBJECT, tx);
2303 dsl_scan_visitdnode(scn, ds, osp->os_type,
2304 &osp->os_userused_dnode,
2305 DMU_USERUSED_OBJECT, tx);
2306 }
2307 arc_buf_destroy(buf, &buf);
2308 } else if (zfs_blkptr_verify(spa, bp,
2309 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2310 /*
2311 * Sanity check the block pointer contents, this is handled
2312 * by arc_read() for the cases above.
2313 */
2314 scn->scn_phys.scn_errors++;
2315 spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
2316 return (SET_ERROR(EINVAL));
2317 }
2318
2319 return (0);
2320 }
2321
2322 inline __attribute__((always_inline)) static void
dsl_scan_visitdnode(dsl_scan_t * scn,dsl_dataset_t * ds,dmu_objset_type_t ostype,dnode_phys_t * dnp,uint64_t object,dmu_tx_t * tx)2323 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
2324 dmu_objset_type_t ostype, dnode_phys_t *dnp,
2325 uint64_t object, dmu_tx_t *tx)
2326 {
2327 int j;
2328
2329 for (j = 0; j < dnp->dn_nblkptr; j++) {
2330 zbookmark_phys_t czb;
2331
2332 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2333 dnp->dn_nlevels - 1, j);
2334 dsl_scan_visitbp(&dnp->dn_blkptr[j],
2335 &czb, dnp, ds, scn, ostype, tx);
2336 }
2337
2338 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2339 zbookmark_phys_t czb;
2340 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2341 0, DMU_SPILL_BLKID);
2342 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
2343 &czb, dnp, ds, scn, ostype, tx);
2344 }
2345 }
2346
2347 /*
2348 * The arguments are in this order because mdb can only print the
2349 * first 5; we want them to be useful.
2350 */
2351 static void
dsl_scan_visitbp(const blkptr_t * bp,const zbookmark_phys_t * zb,dnode_phys_t * dnp,dsl_dataset_t * ds,dsl_scan_t * scn,dmu_objset_type_t ostype,dmu_tx_t * tx)2352 dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2353 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2354 dmu_objset_type_t ostype, dmu_tx_t *tx)
2355 {
2356 dsl_pool_t *dp = scn->scn_dp;
2357
2358 if (dsl_scan_check_suspend(scn, zb))
2359 return;
2360
2361 if (dsl_scan_check_resume(scn, dnp, zb))
2362 return;
2363
2364 scn->scn_visited_this_txg++;
2365
2366 if (BP_IS_HOLE(bp)) {
2367 scn->scn_holes_this_txg++;
2368 return;
2369 }
2370
2371 if (BP_IS_REDACTED(bp)) {
2372 ASSERT(dsl_dataset_feature_is_active(ds,
2373 SPA_FEATURE_REDACTED_DATASETS));
2374 return;
2375 }
2376
2377 /*
2378 * Check if this block contradicts any filesystem flags.
2379 */
2380 spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS;
2381 if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE)
2382 ASSERT(dsl_dataset_feature_is_active(ds, f));
2383
2384 f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp));
2385 if (f != SPA_FEATURE_NONE)
2386 ASSERT(dsl_dataset_feature_is_active(ds, f));
2387
2388 f = zio_compress_to_feature(BP_GET_COMPRESS(bp));
2389 if (f != SPA_FEATURE_NONE)
2390 ASSERT(dsl_dataset_feature_is_active(ds, f));
2391
2392 if (BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) {
2393 scn->scn_lt_min_this_txg++;
2394 return;
2395 }
2396
2397 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp, zb, tx) != 0)
2398 return;
2399
2400 /*
2401 * If dsl_scan_ddt() has already visited this block, it will have
2402 * already done any translations or scrubbing, so don't call the
2403 * callback again.
2404 */
2405 if (ddt_class_contains(dp->dp_spa,
2406 scn->scn_phys.scn_ddt_class_max, bp)) {
2407 scn->scn_ddt_contained_this_txg++;
2408 return;
2409 }
2410
2411 /*
2412 * If this block is from the future (after cur_max_txg), then we
2413 * are doing this on behalf of a deleted snapshot, and we will
2414 * revisit the future block on the next pass of this dataset.
2415 * Don't scan it now unless we need to because something
2416 * under it was modified.
2417 */
2418 if (BP_GET_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2419 scn->scn_gt_max_this_txg++;
2420 return;
2421 }
2422
2423 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2424 }
2425
2426 static void
dsl_scan_visit_rootbp(dsl_scan_t * scn,dsl_dataset_t * ds,blkptr_t * bp,dmu_tx_t * tx)2427 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2428 dmu_tx_t *tx)
2429 {
2430 zbookmark_phys_t zb;
2431 scan_prefetch_ctx_t *spc;
2432
2433 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2434 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2435
2436 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2437 SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2438 zb.zb_objset, 0, 0, 0);
2439 } else {
2440 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2441 }
2442
2443 scn->scn_objsets_visited_this_txg++;
2444
2445 spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2446 dsl_scan_prefetch(spc, bp, &zb);
2447 scan_prefetch_ctx_rele(spc, FTAG);
2448
2449 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2450
2451 dprintf_ds(ds, "finished scan%s", "");
2452 }
2453
2454 static void
ds_destroyed_scn_phys(dsl_dataset_t * ds,dsl_scan_phys_t * scn_phys)2455 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2456 {
2457 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2458 if (ds->ds_is_snapshot) {
2459 /*
2460 * Note:
2461 * - scn_cur_{min,max}_txg stays the same.
2462 * - Setting the flag is not really necessary if
2463 * scn_cur_max_txg == scn_max_txg, because there
2464 * is nothing after this snapshot that we care
2465 * about. However, we set it anyway and then
2466 * ignore it when we retraverse it in
2467 * dsl_scan_visitds().
2468 */
2469 scn_phys->scn_bookmark.zb_objset =
2470 dsl_dataset_phys(ds)->ds_next_snap_obj;
2471 zfs_dbgmsg("destroying ds %llu on %s; currently "
2472 "traversing; reset zb_objset to %llu",
2473 (u_longlong_t)ds->ds_object,
2474 ds->ds_dir->dd_pool->dp_spa->spa_name,
2475 (u_longlong_t)dsl_dataset_phys(ds)->
2476 ds_next_snap_obj);
2477 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2478 } else {
2479 SET_BOOKMARK(&scn_phys->scn_bookmark,
2480 ZB_DESTROYED_OBJSET, 0, 0, 0);
2481 zfs_dbgmsg("destroying ds %llu on %s; currently "
2482 "traversing; reset bookmark to -1,0,0,0",
2483 (u_longlong_t)ds->ds_object,
2484 ds->ds_dir->dd_pool->dp_spa->spa_name);
2485 }
2486 }
2487 }
2488
2489 /*
2490 * Invoked when a dataset is destroyed. We need to make sure that:
2491 *
2492 * 1) If it is the dataset that was currently being scanned, we write
2493 * a new dsl_scan_phys_t and marking the objset reference in it
2494 * as destroyed.
2495 * 2) Remove it from the work queue, if it was present.
2496 *
2497 * If the dataset was actually a snapshot, instead of marking the dataset
2498 * as destroyed, we instead substitute the next snapshot in line.
2499 */
2500 void
dsl_scan_ds_destroyed(dsl_dataset_t * ds,dmu_tx_t * tx)2501 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2502 {
2503 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2504 dsl_scan_t *scn = dp->dp_scan;
2505 uint64_t mintxg;
2506
2507 if (!dsl_scan_is_running(scn))
2508 return;
2509
2510 ds_destroyed_scn_phys(ds, &scn->scn_phys);
2511 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2512
2513 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2514 scan_ds_queue_remove(scn, ds->ds_object);
2515 if (ds->ds_is_snapshot)
2516 scan_ds_queue_insert(scn,
2517 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2518 }
2519
2520 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2521 ds->ds_object, &mintxg) == 0) {
2522 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2523 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2524 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2525 if (ds->ds_is_snapshot) {
2526 /*
2527 * We keep the same mintxg; it could be >
2528 * ds_creation_txg if the previous snapshot was
2529 * deleted too.
2530 */
2531 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2532 scn->scn_phys.scn_queue_obj,
2533 dsl_dataset_phys(ds)->ds_next_snap_obj,
2534 mintxg, tx) == 0);
2535 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2536 "replacing with %llu",
2537 (u_longlong_t)ds->ds_object,
2538 dp->dp_spa->spa_name,
2539 (u_longlong_t)dsl_dataset_phys(ds)->
2540 ds_next_snap_obj);
2541 } else {
2542 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2543 "removing",
2544 (u_longlong_t)ds->ds_object,
2545 dp->dp_spa->spa_name);
2546 }
2547 }
2548
2549 /*
2550 * dsl_scan_sync() should be called after this, and should sync
2551 * out our changed state, but just to be safe, do it here.
2552 */
2553 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2554 }
2555
2556 static void
ds_snapshotted_bookmark(dsl_dataset_t * ds,zbookmark_phys_t * scn_bookmark)2557 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2558 {
2559 if (scn_bookmark->zb_objset == ds->ds_object) {
2560 scn_bookmark->zb_objset =
2561 dsl_dataset_phys(ds)->ds_prev_snap_obj;
2562 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2563 "reset zb_objset to %llu",
2564 (u_longlong_t)ds->ds_object,
2565 ds->ds_dir->dd_pool->dp_spa->spa_name,
2566 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2567 }
2568 }
2569
2570 /*
2571 * Called when a dataset is snapshotted. If we were currently traversing
2572 * this snapshot, we reset our bookmark to point at the newly created
2573 * snapshot. We also modify our work queue to remove the old snapshot and
2574 * replace with the new one.
2575 */
2576 void
dsl_scan_ds_snapshotted(dsl_dataset_t * ds,dmu_tx_t * tx)2577 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2578 {
2579 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2580 dsl_scan_t *scn = dp->dp_scan;
2581 uint64_t mintxg;
2582
2583 if (!dsl_scan_is_running(scn))
2584 return;
2585
2586 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2587
2588 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2589 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2590
2591 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2592 scan_ds_queue_remove(scn, ds->ds_object);
2593 scan_ds_queue_insert(scn,
2594 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2595 }
2596
2597 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2598 ds->ds_object, &mintxg) == 0) {
2599 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2600 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2601 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2602 scn->scn_phys.scn_queue_obj,
2603 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2604 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2605 "replacing with %llu",
2606 (u_longlong_t)ds->ds_object,
2607 dp->dp_spa->spa_name,
2608 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2609 }
2610
2611 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2612 }
2613
2614 static void
ds_clone_swapped_bookmark(dsl_dataset_t * ds1,dsl_dataset_t * ds2,zbookmark_phys_t * scn_bookmark)2615 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2616 zbookmark_phys_t *scn_bookmark)
2617 {
2618 if (scn_bookmark->zb_objset == ds1->ds_object) {
2619 scn_bookmark->zb_objset = ds2->ds_object;
2620 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2621 "reset zb_objset to %llu",
2622 (u_longlong_t)ds1->ds_object,
2623 ds1->ds_dir->dd_pool->dp_spa->spa_name,
2624 (u_longlong_t)ds2->ds_object);
2625 } else if (scn_bookmark->zb_objset == ds2->ds_object) {
2626 scn_bookmark->zb_objset = ds1->ds_object;
2627 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2628 "reset zb_objset to %llu",
2629 (u_longlong_t)ds2->ds_object,
2630 ds2->ds_dir->dd_pool->dp_spa->spa_name,
2631 (u_longlong_t)ds1->ds_object);
2632 }
2633 }
2634
2635 /*
2636 * Called when an origin dataset and its clone are swapped. If we were
2637 * currently traversing the dataset, we need to switch to traversing the
2638 * newly promoted clone.
2639 */
2640 void
dsl_scan_ds_clone_swapped(dsl_dataset_t * ds1,dsl_dataset_t * ds2,dmu_tx_t * tx)2641 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2642 {
2643 dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2644 dsl_scan_t *scn = dp->dp_scan;
2645 uint64_t mintxg1, mintxg2;
2646 boolean_t ds1_queued, ds2_queued;
2647
2648 if (!dsl_scan_is_running(scn))
2649 return;
2650
2651 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2652 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2653
2654 /*
2655 * Handle the in-memory scan queue.
2656 */
2657 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2658 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2659
2660 /* Sanity checking. */
2661 if (ds1_queued) {
2662 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2663 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2664 }
2665 if (ds2_queued) {
2666 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2667 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2668 }
2669
2670 if (ds1_queued && ds2_queued) {
2671 /*
2672 * If both are queued, we don't need to do anything.
2673 * The swapping code below would not handle this case correctly,
2674 * since we can't insert ds2 if it is already there. That's
2675 * because scan_ds_queue_insert() prohibits a duplicate insert
2676 * and panics.
2677 */
2678 } else if (ds1_queued) {
2679 scan_ds_queue_remove(scn, ds1->ds_object);
2680 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2681 } else if (ds2_queued) {
2682 scan_ds_queue_remove(scn, ds2->ds_object);
2683 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2684 }
2685
2686 /*
2687 * Handle the on-disk scan queue.
2688 * The on-disk state is an out-of-date version of the in-memory state,
2689 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2690 * be different. Therefore we need to apply the swap logic to the
2691 * on-disk state independently of the in-memory state.
2692 */
2693 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2694 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2695 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2696 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2697
2698 /* Sanity checking. */
2699 if (ds1_queued) {
2700 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2701 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2702 }
2703 if (ds2_queued) {
2704 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2705 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2706 }
2707
2708 if (ds1_queued && ds2_queued) {
2709 /*
2710 * If both are queued, we don't need to do anything.
2711 * Alternatively, we could check for EEXIST from
2712 * zap_add_int_key() and back out to the original state, but
2713 * that would be more work than checking for this case upfront.
2714 */
2715 } else if (ds1_queued) {
2716 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2717 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2718 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2719 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2720 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2721 "replacing with %llu",
2722 (u_longlong_t)ds1->ds_object,
2723 dp->dp_spa->spa_name,
2724 (u_longlong_t)ds2->ds_object);
2725 } else if (ds2_queued) {
2726 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2727 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2728 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2729 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2730 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2731 "replacing with %llu",
2732 (u_longlong_t)ds2->ds_object,
2733 dp->dp_spa->spa_name,
2734 (u_longlong_t)ds1->ds_object);
2735 }
2736
2737 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2738 }
2739
2740 static int
enqueue_clones_cb(dsl_pool_t * dp,dsl_dataset_t * hds,void * arg)2741 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2742 {
2743 uint64_t originobj = *(uint64_t *)arg;
2744 dsl_dataset_t *ds;
2745 int err;
2746 dsl_scan_t *scn = dp->dp_scan;
2747
2748 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2749 return (0);
2750
2751 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2752 if (err)
2753 return (err);
2754
2755 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2756 dsl_dataset_t *prev;
2757 err = dsl_dataset_hold_obj(dp,
2758 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2759
2760 dsl_dataset_rele(ds, FTAG);
2761 if (err)
2762 return (err);
2763 ds = prev;
2764 }
2765 mutex_enter(&scn->scn_queue_lock);
2766 scan_ds_queue_insert(scn, ds->ds_object,
2767 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2768 mutex_exit(&scn->scn_queue_lock);
2769 dsl_dataset_rele(ds, FTAG);
2770 return (0);
2771 }
2772
2773 static void
dsl_scan_visitds(dsl_scan_t * scn,uint64_t dsobj,dmu_tx_t * tx)2774 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2775 {
2776 dsl_pool_t *dp = scn->scn_dp;
2777 dsl_dataset_t *ds;
2778
2779 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2780
2781 if (scn->scn_phys.scn_cur_min_txg >=
2782 scn->scn_phys.scn_max_txg) {
2783 /*
2784 * This can happen if this snapshot was created after the
2785 * scan started, and we already completed a previous snapshot
2786 * that was created after the scan started. This snapshot
2787 * only references blocks with:
2788 *
2789 * birth < our ds_creation_txg
2790 * cur_min_txg is no less than ds_creation_txg.
2791 * We have already visited these blocks.
2792 * or
2793 * birth > scn_max_txg
2794 * The scan requested not to visit these blocks.
2795 *
2796 * Subsequent snapshots (and clones) can reference our
2797 * blocks, or blocks with even higher birth times.
2798 * Therefore we do not need to visit them either,
2799 * so we do not add them to the work queue.
2800 *
2801 * Note that checking for cur_min_txg >= cur_max_txg
2802 * is not sufficient, because in that case we may need to
2803 * visit subsequent snapshots. This happens when min_txg > 0,
2804 * which raises cur_min_txg. In this case we will visit
2805 * this dataset but skip all of its blocks, because the
2806 * rootbp's birth time is < cur_min_txg. Then we will
2807 * add the next snapshots/clones to the work queue.
2808 */
2809 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2810 dsl_dataset_name(ds, dsname);
2811 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2812 "cur_min_txg (%llu) >= max_txg (%llu)",
2813 (longlong_t)dsobj, dsname,
2814 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2815 (longlong_t)scn->scn_phys.scn_max_txg);
2816 kmem_free(dsname, MAXNAMELEN);
2817
2818 goto out;
2819 }
2820
2821 /*
2822 * Only the ZIL in the head (non-snapshot) is valid. Even though
2823 * snapshots can have ZIL block pointers (which may be the same
2824 * BP as in the head), they must be ignored. In addition, $ORIGIN
2825 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2826 * need to look for a ZIL in it either. So we traverse the ZIL here,
2827 * rather than in scan_recurse(), because the regular snapshot
2828 * block-sharing rules don't apply to it.
2829 */
2830 if (!dsl_dataset_is_snapshot(ds) &&
2831 (dp->dp_origin_snap == NULL ||
2832 ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2833 objset_t *os;
2834 if (dmu_objset_from_ds(ds, &os) != 0) {
2835 goto out;
2836 }
2837 dsl_scan_zil(dp, &os->os_zil_header);
2838 }
2839
2840 /*
2841 * Iterate over the bps in this ds.
2842 */
2843 dmu_buf_will_dirty(ds->ds_dbuf, tx);
2844 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2845 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2846 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2847
2848 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2849 dsl_dataset_name(ds, dsname);
2850 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2851 "suspending=%u",
2852 (longlong_t)dsobj, dsname,
2853 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2854 (longlong_t)scn->scn_phys.scn_cur_max_txg,
2855 (int)scn->scn_suspending);
2856 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2857
2858 if (scn->scn_suspending)
2859 goto out;
2860
2861 /*
2862 * We've finished this pass over this dataset.
2863 */
2864
2865 /*
2866 * If we did not completely visit this dataset, do another pass.
2867 */
2868 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2869 zfs_dbgmsg("incomplete pass on %s; visiting again",
2870 dp->dp_spa->spa_name);
2871 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2872 scan_ds_queue_insert(scn, ds->ds_object,
2873 scn->scn_phys.scn_cur_max_txg);
2874 goto out;
2875 }
2876
2877 /*
2878 * Add descendant datasets to work queue.
2879 */
2880 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2881 scan_ds_queue_insert(scn,
2882 dsl_dataset_phys(ds)->ds_next_snap_obj,
2883 dsl_dataset_phys(ds)->ds_creation_txg);
2884 }
2885 if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2886 boolean_t usenext = B_FALSE;
2887 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2888 uint64_t count;
2889 /*
2890 * A bug in a previous version of the code could
2891 * cause upgrade_clones_cb() to not set
2892 * ds_next_snap_obj when it should, leading to a
2893 * missing entry. Therefore we can only use the
2894 * next_clones_obj when its count is correct.
2895 */
2896 int err = zap_count(dp->dp_meta_objset,
2897 dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2898 if (err == 0 &&
2899 count == dsl_dataset_phys(ds)->ds_num_children - 1)
2900 usenext = B_TRUE;
2901 }
2902
2903 if (usenext) {
2904 zap_cursor_t zc;
2905 zap_attribute_t *za = zap_attribute_alloc();
2906 for (zap_cursor_init(&zc, dp->dp_meta_objset,
2907 dsl_dataset_phys(ds)->ds_next_clones_obj);
2908 zap_cursor_retrieve(&zc, za) == 0;
2909 (void) zap_cursor_advance(&zc)) {
2910 scan_ds_queue_insert(scn,
2911 zfs_strtonum(za->za_name, NULL),
2912 dsl_dataset_phys(ds)->ds_creation_txg);
2913 }
2914 zap_cursor_fini(&zc);
2915 zap_attribute_free(za);
2916 } else {
2917 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2918 enqueue_clones_cb, &ds->ds_object,
2919 DS_FIND_CHILDREN));
2920 }
2921 }
2922
2923 out:
2924 dsl_dataset_rele(ds, FTAG);
2925 }
2926
2927 static int
enqueue_cb(dsl_pool_t * dp,dsl_dataset_t * hds,void * arg)2928 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2929 {
2930 (void) arg;
2931 dsl_dataset_t *ds;
2932 int err;
2933 dsl_scan_t *scn = dp->dp_scan;
2934
2935 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2936 if (err)
2937 return (err);
2938
2939 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2940 dsl_dataset_t *prev;
2941 err = dsl_dataset_hold_obj(dp,
2942 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2943 if (err) {
2944 dsl_dataset_rele(ds, FTAG);
2945 return (err);
2946 }
2947
2948 /*
2949 * If this is a clone, we don't need to worry about it for now.
2950 */
2951 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2952 dsl_dataset_rele(ds, FTAG);
2953 dsl_dataset_rele(prev, FTAG);
2954 return (0);
2955 }
2956 dsl_dataset_rele(ds, FTAG);
2957 ds = prev;
2958 }
2959
2960 mutex_enter(&scn->scn_queue_lock);
2961 scan_ds_queue_insert(scn, ds->ds_object,
2962 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2963 mutex_exit(&scn->scn_queue_lock);
2964 dsl_dataset_rele(ds, FTAG);
2965 return (0);
2966 }
2967
2968 void
dsl_scan_ddt_entry(dsl_scan_t * scn,enum zio_checksum checksum,ddt_t * ddt,ddt_lightweight_entry_t * ddlwe,dmu_tx_t * tx)2969 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2970 ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx)
2971 {
2972 (void) tx;
2973 const ddt_key_t *ddk = &ddlwe->ddlwe_key;
2974 blkptr_t bp;
2975 zbookmark_phys_t zb = { 0 };
2976
2977 if (!dsl_scan_is_running(scn))
2978 return;
2979
2980 /*
2981 * This function is special because it is the only thing
2982 * that can add scan_io_t's to the vdev scan queues from
2983 * outside dsl_scan_sync(). For the most part this is ok
2984 * as long as it is called from within syncing context.
2985 * However, dsl_scan_sync() expects that no new sio's will
2986 * be added between when all the work for a scan is done
2987 * and the next txg when the scan is actually marked as
2988 * completed. This check ensures we do not issue new sio's
2989 * during this period.
2990 */
2991 if (scn->scn_done_txg != 0)
2992 return;
2993
2994 for (int p = 0; p < DDT_NPHYS(ddt); p++) {
2995 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
2996 uint64_t phys_birth = ddt_phys_birth(&ddlwe->ddlwe_phys, v);
2997
2998 if (phys_birth == 0 || phys_birth > scn->scn_phys.scn_max_txg)
2999 continue;
3000 ddt_bp_create(checksum, ddk, &ddlwe->ddlwe_phys, v, &bp);
3001
3002 scn->scn_visited_this_txg++;
3003 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
3004 }
3005 }
3006
3007 /*
3008 * Scrub/dedup interaction.
3009 *
3010 * If there are N references to a deduped block, we don't want to scrub it
3011 * N times -- ideally, we should scrub it exactly once.
3012 *
3013 * We leverage the fact that the dde's replication class (ddt_class_t)
3014 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
3015 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
3016 *
3017 * To prevent excess scrubbing, the scrub begins by walking the DDT
3018 * to find all blocks with refcnt > 1, and scrubs each of these once.
3019 * Since there are two replication classes which contain blocks with
3020 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
3021 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
3022 *
3023 * There would be nothing more to say if a block's refcnt couldn't change
3024 * during a scrub, but of course it can so we must account for changes
3025 * in a block's replication class.
3026 *
3027 * Here's an example of what can occur:
3028 *
3029 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
3030 * when visited during the top-down scrub phase, it will be scrubbed twice.
3031 * This negates our scrub optimization, but is otherwise harmless.
3032 *
3033 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
3034 * on each visit during the top-down scrub phase, it will never be scrubbed.
3035 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
3036 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
3037 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
3038 * while a scrub is in progress, it scrubs the block right then.
3039 */
3040 static void
dsl_scan_ddt(dsl_scan_t * scn,dmu_tx_t * tx)3041 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
3042 {
3043 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
3044 ddt_lightweight_entry_t ddlwe = {0};
3045 int error;
3046 uint64_t n = 0;
3047
3048 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &ddlwe)) == 0) {
3049 ddt_t *ddt;
3050
3051 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
3052 break;
3053 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
3054 (longlong_t)ddb->ddb_class,
3055 (longlong_t)ddb->ddb_type,
3056 (longlong_t)ddb->ddb_checksum,
3057 (longlong_t)ddb->ddb_cursor);
3058
3059 /* There should be no pending changes to the dedup table */
3060 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
3061 ASSERT(avl_first(&ddt->ddt_tree) == NULL);
3062
3063 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, ddt, &ddlwe, tx);
3064 n++;
3065
3066 if (dsl_scan_check_suspend(scn, NULL))
3067 break;
3068 }
3069
3070 if (error == EAGAIN) {
3071 dsl_scan_check_suspend(scn, NULL);
3072 error = 0;
3073
3074 zfs_dbgmsg("waiting for ddt to become ready for scan "
3075 "on %s with class_max = %u; suspending=%u",
3076 scn->scn_dp->dp_spa->spa_name,
3077 (int)scn->scn_phys.scn_ddt_class_max,
3078 (int)scn->scn_suspending);
3079 } else
3080 zfs_dbgmsg("scanned %llu ddt entries on %s with "
3081 "class_max = %u; suspending=%u", (longlong_t)n,
3082 scn->scn_dp->dp_spa->spa_name,
3083 (int)scn->scn_phys.scn_ddt_class_max,
3084 (int)scn->scn_suspending);
3085
3086 ASSERT(error == 0 || error == ENOENT);
3087 ASSERT(error != ENOENT ||
3088 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
3089 }
3090
3091 static uint64_t
dsl_scan_ds_maxtxg(dsl_dataset_t * ds)3092 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
3093 {
3094 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
3095 if (ds->ds_is_snapshot)
3096 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
3097 return (smt);
3098 }
3099
3100 static void
dsl_scan_visit(dsl_scan_t * scn,dmu_tx_t * tx)3101 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
3102 {
3103 scan_ds_t *sds;
3104 dsl_pool_t *dp = scn->scn_dp;
3105
3106 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
3107 scn->scn_phys.scn_ddt_class_max) {
3108 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3109 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3110 dsl_scan_ddt(scn, tx);
3111 if (scn->scn_suspending)
3112 return;
3113 }
3114
3115 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
3116 /* First do the MOS & ORIGIN */
3117
3118 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3119 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3120 dsl_scan_visit_rootbp(scn, NULL,
3121 &dp->dp_meta_rootbp, tx);
3122 if (scn->scn_suspending)
3123 return;
3124
3125 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
3126 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3127 enqueue_cb, NULL, DS_FIND_CHILDREN));
3128 } else {
3129 dsl_scan_visitds(scn,
3130 dp->dp_origin_snap->ds_object, tx);
3131 }
3132 ASSERT(!scn->scn_suspending);
3133 } else if (scn->scn_phys.scn_bookmark.zb_objset !=
3134 ZB_DESTROYED_OBJSET) {
3135 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
3136 /*
3137 * If we were suspended, continue from here. Note if the
3138 * ds we were suspended on was deleted, the zb_objset may
3139 * be -1, so we will skip this and find a new objset
3140 * below.
3141 */
3142 dsl_scan_visitds(scn, dsobj, tx);
3143 if (scn->scn_suspending)
3144 return;
3145 }
3146
3147 /*
3148 * In case we suspended right at the end of the ds, zero the
3149 * bookmark so we don't think that we're still trying to resume.
3150 */
3151 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t));
3152
3153 /*
3154 * Keep pulling things out of the dataset avl queue. Updates to the
3155 * persistent zap-object-as-queue happen only at checkpoints.
3156 */
3157 while ((sds = avl_first(&scn->scn_queue)) != NULL) {
3158 dsl_dataset_t *ds;
3159 uint64_t dsobj = sds->sds_dsobj;
3160 uint64_t txg = sds->sds_txg;
3161
3162 /* dequeue and free the ds from the queue */
3163 scan_ds_queue_remove(scn, dsobj);
3164 sds = NULL;
3165
3166 /* set up min / max txg */
3167 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
3168 if (txg != 0) {
3169 scn->scn_phys.scn_cur_min_txg =
3170 MAX(scn->scn_phys.scn_min_txg, txg);
3171 } else {
3172 scn->scn_phys.scn_cur_min_txg =
3173 MAX(scn->scn_phys.scn_min_txg,
3174 dsl_dataset_phys(ds)->ds_prev_snap_txg);
3175 }
3176 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
3177 dsl_dataset_rele(ds, FTAG);
3178
3179 dsl_scan_visitds(scn, dsobj, tx);
3180 if (scn->scn_suspending)
3181 return;
3182 }
3183
3184 /* No more objsets to fetch, we're done */
3185 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
3186 ASSERT0(scn->scn_suspending);
3187 }
3188
3189 static uint64_t
dsl_scan_count_data_disks(spa_t * spa)3190 dsl_scan_count_data_disks(spa_t *spa)
3191 {
3192 vdev_t *rvd = spa->spa_root_vdev;
3193 uint64_t i, leaves = 0;
3194
3195 for (i = 0; i < rvd->vdev_children; i++) {
3196 vdev_t *vd = rvd->vdev_child[i];
3197 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache)
3198 continue;
3199 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd);
3200 }
3201 return (leaves);
3202 }
3203
3204 static void
scan_io_queues_update_zio_stats(dsl_scan_io_queue_t * q,const blkptr_t * bp)3205 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
3206 {
3207 int i;
3208 uint64_t cur_size = 0;
3209
3210 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3211 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
3212 }
3213
3214 q->q_total_zio_size_this_txg += cur_size;
3215 q->q_zios_this_txg++;
3216 }
3217
3218 static void
scan_io_queues_update_seg_stats(dsl_scan_io_queue_t * q,uint64_t start,uint64_t end)3219 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
3220 uint64_t end)
3221 {
3222 q->q_total_seg_size_this_txg += end - start;
3223 q->q_segs_this_txg++;
3224 }
3225
3226 static boolean_t
scan_io_queue_check_suspend(dsl_scan_t * scn)3227 scan_io_queue_check_suspend(dsl_scan_t *scn)
3228 {
3229 /* See comment in dsl_scan_check_suspend() */
3230 uint64_t curr_time_ns = gethrtime();
3231 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
3232 uint64_t sync_time_ns = curr_time_ns -
3233 scn->scn_dp->dp_spa->spa_sync_starttime;
3234 uint64_t dirty_min_bytes = zfs_dirty_data_max *
3235 zfs_vdev_async_write_active_min_dirty_percent / 100;
3236 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3237 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3238
3239 return ((NSEC2MSEC(scan_time_ns) > mintime &&
3240 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
3241 txg_sync_waiting(scn->scn_dp) ||
3242 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
3243 spa_shutting_down(scn->scn_dp->dp_spa));
3244 }
3245
3246 /*
3247 * Given a list of scan_io_t's in io_list, this issues the I/Os out to
3248 * disk. This consumes the io_list and frees the scan_io_t's. This is
3249 * called when emptying queues, either when we're up against the memory
3250 * limit or when we have finished scanning. Returns B_TRUE if we stopped
3251 * processing the list before we finished. Any sios that were not issued
3252 * will remain in the io_list.
3253 */
3254 static boolean_t
scan_io_queue_issue(dsl_scan_io_queue_t * queue,list_t * io_list)3255 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
3256 {
3257 dsl_scan_t *scn = queue->q_scn;
3258 scan_io_t *sio;
3259 boolean_t suspended = B_FALSE;
3260
3261 while ((sio = list_head(io_list)) != NULL) {
3262 blkptr_t bp;
3263
3264 if (scan_io_queue_check_suspend(scn)) {
3265 suspended = B_TRUE;
3266 break;
3267 }
3268
3269 sio2bp(sio, &bp);
3270 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
3271 &sio->sio_zb, queue);
3272 (void) list_remove_head(io_list);
3273 scan_io_queues_update_zio_stats(queue, &bp);
3274 sio_free(sio);
3275 }
3276 return (suspended);
3277 }
3278
3279 /*
3280 * This function removes sios from an IO queue which reside within a given
3281 * zfs_range_seg_t and inserts them (in offset order) into a list. Note that
3282 * we only ever return a maximum of 32 sios at once. If there are more sios
3283 * to process within this segment that did not make it onto the list we
3284 * return B_TRUE and otherwise B_FALSE.
3285 */
3286 static boolean_t
scan_io_queue_gather(dsl_scan_io_queue_t * queue,zfs_range_seg_t * rs,list_t * list)3287 scan_io_queue_gather(dsl_scan_io_queue_t *queue, zfs_range_seg_t *rs,
3288 list_t *list)
3289 {
3290 scan_io_t *srch_sio, *sio, *next_sio;
3291 avl_index_t idx;
3292 uint_t num_sios = 0;
3293 int64_t bytes_issued = 0;
3294
3295 ASSERT(rs != NULL);
3296 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3297
3298 srch_sio = sio_alloc(1);
3299 srch_sio->sio_nr_dvas = 1;
3300 SIO_SET_OFFSET(srch_sio, zfs_rs_get_start(rs, queue->q_exts_by_addr));
3301
3302 /*
3303 * The exact start of the extent might not contain any matching zios,
3304 * so if that's the case, examine the next one in the tree.
3305 */
3306 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
3307 sio_free(srch_sio);
3308
3309 if (sio == NULL)
3310 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
3311
3312 while (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs,
3313 queue->q_exts_by_addr) && num_sios <= 32) {
3314 ASSERT3U(SIO_GET_OFFSET(sio), >=, zfs_rs_get_start(rs,
3315 queue->q_exts_by_addr));
3316 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, zfs_rs_get_end(rs,
3317 queue->q_exts_by_addr));
3318
3319 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
3320 avl_remove(&queue->q_sios_by_addr, sio);
3321 if (avl_is_empty(&queue->q_sios_by_addr))
3322 atomic_add_64(&queue->q_scn->scn_queues_pending, -1);
3323 queue->q_sio_memused -= SIO_GET_MUSED(sio);
3324
3325 bytes_issued += SIO_GET_ASIZE(sio);
3326 num_sios++;
3327 list_insert_tail(list, sio);
3328 sio = next_sio;
3329 }
3330
3331 /*
3332 * We limit the number of sios we process at once to 32 to avoid
3333 * biting off more than we can chew. If we didn't take everything
3334 * in the segment we update it to reflect the work we were able to
3335 * complete. Otherwise, we remove it from the range tree entirely.
3336 */
3337 if (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs,
3338 queue->q_exts_by_addr)) {
3339 zfs_range_tree_adjust_fill(queue->q_exts_by_addr, rs,
3340 -bytes_issued);
3341 zfs_range_tree_resize_segment(queue->q_exts_by_addr, rs,
3342 SIO_GET_OFFSET(sio), zfs_rs_get_end(rs,
3343 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
3344 queue->q_last_ext_addr = SIO_GET_OFFSET(sio);
3345 return (B_TRUE);
3346 } else {
3347 uint64_t rstart = zfs_rs_get_start(rs, queue->q_exts_by_addr);
3348 uint64_t rend = zfs_rs_get_end(rs, queue->q_exts_by_addr);
3349 zfs_range_tree_remove(queue->q_exts_by_addr, rstart, rend -
3350 rstart);
3351 queue->q_last_ext_addr = -1;
3352 return (B_FALSE);
3353 }
3354 }
3355
3356 /*
3357 * This is called from the queue emptying thread and selects the next
3358 * extent from which we are to issue I/Os. The behavior of this function
3359 * depends on the state of the scan, the current memory consumption and
3360 * whether or not we are performing a scan shutdown.
3361 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
3362 * needs to perform a checkpoint
3363 * 2) We select the largest available extent if we are up against the
3364 * memory limit.
3365 * 3) Otherwise we don't select any extents.
3366 */
3367 static zfs_range_seg_t *
scan_io_queue_fetch_ext(dsl_scan_io_queue_t * queue)3368 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
3369 {
3370 dsl_scan_t *scn = queue->q_scn;
3371 zfs_range_tree_t *rt = queue->q_exts_by_addr;
3372
3373 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3374 ASSERT(scn->scn_is_sorted);
3375
3376 if (!scn->scn_checkpointing && !scn->scn_clearing)
3377 return (NULL);
3378
3379 /*
3380 * During normal clearing, we want to issue our largest segments
3381 * first, keeping IO as sequential as possible, and leaving the
3382 * smaller extents for later with the hope that they might eventually
3383 * grow to larger sequential segments. However, when the scan is
3384 * checkpointing, no new extents will be added to the sorting queue,
3385 * so the way we are sorted now is as good as it will ever get.
3386 * In this case, we instead switch to issuing extents in LBA order.
3387 */
3388 if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) ||
3389 zfs_scan_issue_strategy == 1)
3390 return (zfs_range_tree_first(rt));
3391
3392 /*
3393 * Try to continue previous extent if it is not completed yet. After
3394 * shrink in scan_io_queue_gather() it may no longer be the best, but
3395 * otherwise we leave shorter remnant every txg.
3396 */
3397 uint64_t start;
3398 uint64_t size = 1ULL << rt->rt_shift;
3399 zfs_range_seg_t *addr_rs;
3400 if (queue->q_last_ext_addr != -1) {
3401 start = queue->q_last_ext_addr;
3402 addr_rs = zfs_range_tree_find(rt, start, size);
3403 if (addr_rs != NULL)
3404 return (addr_rs);
3405 }
3406
3407 /*
3408 * Nothing to continue, so find new best extent.
3409 */
3410 uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL);
3411 if (v == NULL)
3412 return (NULL);
3413 queue->q_last_ext_addr = start = *v << rt->rt_shift;
3414
3415 /*
3416 * We need to get the original entry in the by_addr tree so we can
3417 * modify it.
3418 */
3419 addr_rs = zfs_range_tree_find(rt, start, size);
3420 ASSERT3P(addr_rs, !=, NULL);
3421 ASSERT3U(zfs_rs_get_start(addr_rs, rt), ==, start);
3422 ASSERT3U(zfs_rs_get_end(addr_rs, rt), >, start);
3423 return (addr_rs);
3424 }
3425
3426 static void
scan_io_queues_run_one(void * arg)3427 scan_io_queues_run_one(void *arg)
3428 {
3429 dsl_scan_io_queue_t *queue = arg;
3430 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3431 boolean_t suspended = B_FALSE;
3432 zfs_range_seg_t *rs;
3433 scan_io_t *sio;
3434 zio_t *zio;
3435 list_t sio_list;
3436
3437 ASSERT(queue->q_scn->scn_is_sorted);
3438
3439 list_create(&sio_list, sizeof (scan_io_t),
3440 offsetof(scan_io_t, sio_nodes.sio_list_node));
3441 zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa,
3442 NULL, NULL, NULL, ZIO_FLAG_CANFAIL);
3443 mutex_enter(q_lock);
3444 queue->q_zio = zio;
3445
3446 /* Calculate maximum in-flight bytes for this vdev. */
3447 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit *
3448 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd)));
3449
3450 /* reset per-queue scan statistics for this txg */
3451 queue->q_total_seg_size_this_txg = 0;
3452 queue->q_segs_this_txg = 0;
3453 queue->q_total_zio_size_this_txg = 0;
3454 queue->q_zios_this_txg = 0;
3455
3456 /* loop until we run out of time or sios */
3457 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3458 uint64_t seg_start = 0, seg_end = 0;
3459 boolean_t more_left;
3460
3461 ASSERT(list_is_empty(&sio_list));
3462
3463 /* loop while we still have sios left to process in this rs */
3464 do {
3465 scan_io_t *first_sio, *last_sio;
3466
3467 /*
3468 * We have selected which extent needs to be
3469 * processed next. Gather up the corresponding sios.
3470 */
3471 more_left = scan_io_queue_gather(queue, rs, &sio_list);
3472 ASSERT(!list_is_empty(&sio_list));
3473 first_sio = list_head(&sio_list);
3474 last_sio = list_tail(&sio_list);
3475
3476 seg_end = SIO_GET_END_OFFSET(last_sio);
3477 if (seg_start == 0)
3478 seg_start = SIO_GET_OFFSET(first_sio);
3479
3480 /*
3481 * Issuing sios can take a long time so drop the
3482 * queue lock. The sio queue won't be updated by
3483 * other threads since we're in syncing context so
3484 * we can be sure that our trees will remain exactly
3485 * as we left them.
3486 */
3487 mutex_exit(q_lock);
3488 suspended = scan_io_queue_issue(queue, &sio_list);
3489 mutex_enter(q_lock);
3490
3491 if (suspended)
3492 break;
3493 } while (more_left);
3494
3495 /* update statistics for debugging purposes */
3496 scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3497
3498 if (suspended)
3499 break;
3500 }
3501
3502 /*
3503 * If we were suspended in the middle of processing,
3504 * requeue any unfinished sios and exit.
3505 */
3506 while ((sio = list_remove_head(&sio_list)) != NULL)
3507 scan_io_queue_insert_impl(queue, sio);
3508
3509 queue->q_zio = NULL;
3510 mutex_exit(q_lock);
3511 zio_nowait(zio);
3512 list_destroy(&sio_list);
3513 }
3514
3515 /*
3516 * Performs an emptying run on all scan queues in the pool. This just
3517 * punches out one thread per top-level vdev, each of which processes
3518 * only that vdev's scan queue. We can parallelize the I/O here because
3519 * we know that each queue's I/Os only affect its own top-level vdev.
3520 *
3521 * This function waits for the queue runs to complete, and must be
3522 * called from dsl_scan_sync (or in general, syncing context).
3523 */
3524 static void
scan_io_queues_run(dsl_scan_t * scn)3525 scan_io_queues_run(dsl_scan_t *scn)
3526 {
3527 spa_t *spa = scn->scn_dp->dp_spa;
3528
3529 ASSERT(scn->scn_is_sorted);
3530 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3531
3532 if (scn->scn_queues_pending == 0)
3533 return;
3534
3535 if (scn->scn_taskq == NULL) {
3536 int nthreads = spa->spa_root_vdev->vdev_children;
3537
3538 /*
3539 * We need to make this taskq *always* execute as many
3540 * threads in parallel as we have top-level vdevs and no
3541 * less, otherwise strange serialization of the calls to
3542 * scan_io_queues_run_one can occur during spa_sync runs
3543 * and that significantly impacts performance.
3544 */
3545 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3546 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3547 }
3548
3549 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3550 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3551
3552 mutex_enter(&vd->vdev_scan_io_queue_lock);
3553 if (vd->vdev_scan_io_queue != NULL) {
3554 VERIFY(taskq_dispatch(scn->scn_taskq,
3555 scan_io_queues_run_one, vd->vdev_scan_io_queue,
3556 TQ_SLEEP) != TASKQID_INVALID);
3557 }
3558 mutex_exit(&vd->vdev_scan_io_queue_lock);
3559 }
3560
3561 /*
3562 * Wait for the queues to finish issuing their IOs for this run
3563 * before we return. There may still be IOs in flight at this
3564 * point.
3565 */
3566 taskq_wait(scn->scn_taskq);
3567 }
3568
3569 static boolean_t
dsl_scan_async_block_should_pause(dsl_scan_t * scn)3570 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3571 {
3572 uint64_t elapsed_nanosecs;
3573
3574 if (zfs_recover)
3575 return (B_FALSE);
3576
3577 if (zfs_async_block_max_blocks != 0 &&
3578 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3579 return (B_TRUE);
3580 }
3581
3582 if (zfs_max_async_dedup_frees != 0 &&
3583 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
3584 return (B_TRUE);
3585 }
3586
3587 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3588 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3589 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3590 txg_sync_waiting(scn->scn_dp)) ||
3591 spa_shutting_down(scn->scn_dp->dp_spa));
3592 }
3593
3594 static int
dsl_scan_free_block_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)3595 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3596 {
3597 dsl_scan_t *scn = arg;
3598
3599 if (!scn->scn_is_bptree ||
3600 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3601 if (dsl_scan_async_block_should_pause(scn))
3602 return (SET_ERROR(ERESTART));
3603 }
3604
3605 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3606 dmu_tx_get_txg(tx), bp, 0));
3607 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3608 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3609 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3610 scn->scn_visited_this_txg++;
3611 if (BP_GET_DEDUP(bp))
3612 scn->scn_dedup_frees_this_txg++;
3613 return (0);
3614 }
3615
3616 static void
dsl_scan_update_stats(dsl_scan_t * scn)3617 dsl_scan_update_stats(dsl_scan_t *scn)
3618 {
3619 spa_t *spa = scn->scn_dp->dp_spa;
3620 uint64_t i;
3621 uint64_t seg_size_total = 0, zio_size_total = 0;
3622 uint64_t seg_count_total = 0, zio_count_total = 0;
3623
3624 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3625 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3626 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3627
3628 if (queue == NULL)
3629 continue;
3630
3631 seg_size_total += queue->q_total_seg_size_this_txg;
3632 zio_size_total += queue->q_total_zio_size_this_txg;
3633 seg_count_total += queue->q_segs_this_txg;
3634 zio_count_total += queue->q_zios_this_txg;
3635 }
3636
3637 if (seg_count_total == 0 || zio_count_total == 0) {
3638 scn->scn_avg_seg_size_this_txg = 0;
3639 scn->scn_avg_zio_size_this_txg = 0;
3640 scn->scn_segs_this_txg = 0;
3641 scn->scn_zios_this_txg = 0;
3642 return;
3643 }
3644
3645 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3646 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3647 scn->scn_segs_this_txg = seg_count_total;
3648 scn->scn_zios_this_txg = zio_count_total;
3649 }
3650
3651 static int
bpobj_dsl_scan_free_block_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3652 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3653 dmu_tx_t *tx)
3654 {
3655 ASSERT(!bp_freed);
3656 return (dsl_scan_free_block_cb(arg, bp, tx));
3657 }
3658
3659 static int
dsl_scan_obsolete_block_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3660 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3661 dmu_tx_t *tx)
3662 {
3663 ASSERT(!bp_freed);
3664 dsl_scan_t *scn = arg;
3665 const dva_t *dva = &bp->blk_dva[0];
3666
3667 if (dsl_scan_async_block_should_pause(scn))
3668 return (SET_ERROR(ERESTART));
3669
3670 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3671 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3672 DVA_GET_ASIZE(dva), tx);
3673 scn->scn_visited_this_txg++;
3674 return (0);
3675 }
3676
3677 boolean_t
dsl_scan_active(dsl_scan_t * scn)3678 dsl_scan_active(dsl_scan_t *scn)
3679 {
3680 spa_t *spa = scn->scn_dp->dp_spa;
3681 uint64_t used = 0, comp, uncomp;
3682 boolean_t clones_left;
3683
3684 if (spa->spa_load_state != SPA_LOAD_NONE)
3685 return (B_FALSE);
3686 if (spa_shutting_down(spa))
3687 return (B_FALSE);
3688 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3689 (scn->scn_async_destroying && !scn->scn_async_stalled))
3690 return (B_TRUE);
3691
3692 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3693 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3694 &used, &comp, &uncomp);
3695 }
3696 clones_left = spa_livelist_delete_check(spa);
3697 return ((used != 0) || (clones_left));
3698 }
3699
3700 boolean_t
dsl_errorscrub_active(dsl_scan_t * scn)3701 dsl_errorscrub_active(dsl_scan_t *scn)
3702 {
3703 spa_t *spa = scn->scn_dp->dp_spa;
3704 if (spa->spa_load_state != SPA_LOAD_NONE)
3705 return (B_FALSE);
3706 if (spa_shutting_down(spa))
3707 return (B_FALSE);
3708 if (dsl_errorscrubbing(scn->scn_dp))
3709 return (B_TRUE);
3710 return (B_FALSE);
3711 }
3712
3713 static boolean_t
dsl_scan_check_deferred(vdev_t * vd)3714 dsl_scan_check_deferred(vdev_t *vd)
3715 {
3716 boolean_t need_resilver = B_FALSE;
3717
3718 for (int c = 0; c < vd->vdev_children; c++) {
3719 need_resilver |=
3720 dsl_scan_check_deferred(vd->vdev_child[c]);
3721 }
3722
3723 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3724 !vd->vdev_ops->vdev_op_leaf)
3725 return (need_resilver);
3726
3727 if (!vd->vdev_resilver_deferred)
3728 need_resilver = B_TRUE;
3729
3730 return (need_resilver);
3731 }
3732
3733 static boolean_t
dsl_scan_need_resilver(spa_t * spa,const dva_t * dva,size_t psize,uint64_t phys_birth)3734 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3735 uint64_t phys_birth)
3736 {
3737 vdev_t *vd;
3738
3739 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3740
3741 if (vd->vdev_ops == &vdev_indirect_ops) {
3742 /*
3743 * The indirect vdev can point to multiple
3744 * vdevs. For simplicity, always create
3745 * the resilver zio_t. zio_vdev_io_start()
3746 * will bypass the child resilver i/o's if
3747 * they are on vdevs that don't have DTL's.
3748 */
3749 return (B_TRUE);
3750 }
3751
3752 if (DVA_GET_GANG(dva)) {
3753 /*
3754 * Gang members may be spread across multiple
3755 * vdevs, so the best estimate we have is the
3756 * scrub range, which has already been checked.
3757 * XXX -- it would be better to change our
3758 * allocation policy to ensure that all
3759 * gang members reside on the same vdev.
3760 */
3761 return (B_TRUE);
3762 }
3763
3764 /*
3765 * Check if the top-level vdev must resilver this offset.
3766 * When the offset does not intersect with a dirty leaf DTL
3767 * then it may be possible to skip the resilver IO. The psize
3768 * is provided instead of asize to simplify the check for RAIDZ.
3769 */
3770 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
3771 return (B_FALSE);
3772
3773 /*
3774 * Check that this top-level vdev has a device under it which
3775 * is resilvering and is not deferred.
3776 */
3777 if (!dsl_scan_check_deferred(vd))
3778 return (B_FALSE);
3779
3780 return (B_TRUE);
3781 }
3782
3783 static int
dsl_process_async_destroys(dsl_pool_t * dp,dmu_tx_t * tx)3784 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3785 {
3786 dsl_scan_t *scn = dp->dp_scan;
3787 spa_t *spa = dp->dp_spa;
3788 int err = 0;
3789
3790 if (spa_suspend_async_destroy(spa))
3791 return (0);
3792
3793 if (zfs_free_bpobj_enabled &&
3794 spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3795 scn->scn_is_bptree = B_FALSE;
3796 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3797 scn->scn_zio_root = zio_root(spa, NULL,
3798 NULL, ZIO_FLAG_MUSTSUCCEED);
3799 err = bpobj_iterate(&dp->dp_free_bpobj,
3800 bpobj_dsl_scan_free_block_cb, scn, tx);
3801 VERIFY0(zio_wait(scn->scn_zio_root));
3802 scn->scn_zio_root = NULL;
3803
3804 if (err != 0 && err != ERESTART)
3805 zfs_panic_recover("error %u from bpobj_iterate()", err);
3806 }
3807
3808 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3809 ASSERT(scn->scn_async_destroying);
3810 scn->scn_is_bptree = B_TRUE;
3811 scn->scn_zio_root = zio_root(spa, NULL,
3812 NULL, ZIO_FLAG_MUSTSUCCEED);
3813 err = bptree_iterate(dp->dp_meta_objset,
3814 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3815 VERIFY0(zio_wait(scn->scn_zio_root));
3816 scn->scn_zio_root = NULL;
3817
3818 if (err == EIO || err == ECKSUM) {
3819 err = 0;
3820 } else if (err != 0 && err != ERESTART) {
3821 zfs_panic_recover("error %u from "
3822 "traverse_dataset_destroyed()", err);
3823 }
3824
3825 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3826 /* finished; deactivate async destroy feature */
3827 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3828 ASSERT(!spa_feature_is_active(spa,
3829 SPA_FEATURE_ASYNC_DESTROY));
3830 VERIFY0(zap_remove(dp->dp_meta_objset,
3831 DMU_POOL_DIRECTORY_OBJECT,
3832 DMU_POOL_BPTREE_OBJ, tx));
3833 VERIFY0(bptree_free(dp->dp_meta_objset,
3834 dp->dp_bptree_obj, tx));
3835 dp->dp_bptree_obj = 0;
3836 scn->scn_async_destroying = B_FALSE;
3837 scn->scn_async_stalled = B_FALSE;
3838 } else {
3839 /*
3840 * If we didn't make progress, mark the async
3841 * destroy as stalled, so that we will not initiate
3842 * a spa_sync() on its behalf. Note that we only
3843 * check this if we are not finished, because if the
3844 * bptree had no blocks for us to visit, we can
3845 * finish without "making progress".
3846 */
3847 scn->scn_async_stalled =
3848 (scn->scn_visited_this_txg == 0);
3849 }
3850 }
3851 if (scn->scn_visited_this_txg) {
3852 zfs_dbgmsg("freed %llu blocks in %llums from "
3853 "free_bpobj/bptree on %s in txg %llu; err=%u",
3854 (longlong_t)scn->scn_visited_this_txg,
3855 (longlong_t)
3856 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3857 spa->spa_name, (longlong_t)tx->tx_txg, err);
3858 scn->scn_visited_this_txg = 0;
3859 scn->scn_dedup_frees_this_txg = 0;
3860
3861 /*
3862 * Write out changes to the DDT and the BRT that may be required
3863 * as a result of the blocks freed. This ensures that the DDT
3864 * and the BRT are clean when a scrub/resilver runs.
3865 */
3866 ddt_sync(spa, tx->tx_txg);
3867 brt_sync(spa, tx->tx_txg);
3868 }
3869 if (err != 0)
3870 return (err);
3871 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3872 zfs_free_leak_on_eio &&
3873 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3874 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3875 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3876 /*
3877 * We have finished background destroying, but there is still
3878 * some space left in the dp_free_dir. Transfer this leaked
3879 * space to the dp_leak_dir.
3880 */
3881 if (dp->dp_leak_dir == NULL) {
3882 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3883 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3884 LEAK_DIR_NAME, tx);
3885 VERIFY0(dsl_pool_open_special_dir(dp,
3886 LEAK_DIR_NAME, &dp->dp_leak_dir));
3887 rrw_exit(&dp->dp_config_rwlock, FTAG);
3888 }
3889 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3890 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3891 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3892 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3893 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3894 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3895 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3896 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3897 }
3898
3899 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3900 !spa_livelist_delete_check(spa)) {
3901 /* finished; verify that space accounting went to zero */
3902 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3903 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3904 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3905 }
3906
3907 spa_notify_waiters(spa);
3908
3909 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3910 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3911 DMU_POOL_OBSOLETE_BPOBJ));
3912 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3913 ASSERT(spa_feature_is_active(dp->dp_spa,
3914 SPA_FEATURE_OBSOLETE_COUNTS));
3915
3916 scn->scn_is_bptree = B_FALSE;
3917 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3918 err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3919 dsl_scan_obsolete_block_cb, scn, tx);
3920 if (err != 0 && err != ERESTART)
3921 zfs_panic_recover("error %u from bpobj_iterate()", err);
3922
3923 if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3924 dsl_pool_destroy_obsolete_bpobj(dp, tx);
3925 }
3926 return (0);
3927 }
3928
3929 static void
name_to_bookmark(char * buf,zbookmark_phys_t * zb)3930 name_to_bookmark(char *buf, zbookmark_phys_t *zb)
3931 {
3932 zb->zb_objset = zfs_strtonum(buf, &buf);
3933 ASSERT(*buf == ':');
3934 zb->zb_object = zfs_strtonum(buf + 1, &buf);
3935 ASSERT(*buf == ':');
3936 zb->zb_level = (int)zfs_strtonum(buf + 1, &buf);
3937 ASSERT(*buf == ':');
3938 zb->zb_blkid = zfs_strtonum(buf + 1, &buf);
3939 ASSERT(*buf == '\0');
3940 }
3941
3942 static void
name_to_object(char * buf,uint64_t * obj)3943 name_to_object(char *buf, uint64_t *obj)
3944 {
3945 *obj = zfs_strtonum(buf, &buf);
3946 ASSERT(*buf == '\0');
3947 }
3948
3949 static void
read_by_block_level(dsl_scan_t * scn,zbookmark_phys_t zb)3950 read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb)
3951 {
3952 dsl_pool_t *dp = scn->scn_dp;
3953 dsl_dataset_t *ds;
3954 objset_t *os;
3955 if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0)
3956 return;
3957
3958 if (dmu_objset_from_ds(ds, &os) != 0) {
3959 dsl_dataset_rele(ds, FTAG);
3960 return;
3961 }
3962
3963 /*
3964 * If the key is not loaded dbuf_dnode_findbp() will error out with
3965 * EACCES. However in that case dnode_hold() will eventually call
3966 * dbuf_read()->zio_wait() which may call spa_log_error(). This will
3967 * lead to a deadlock due to us holding the mutex spa_errlist_lock.
3968 * Avoid this by checking here if the keys are loaded, if not return.
3969 * If the keys are not loaded the head_errlog feature is meaningless
3970 * as we cannot figure out the birth txg of the block pointer.
3971 */
3972 if (dsl_dataset_get_keystatus(ds->ds_dir) ==
3973 ZFS_KEYSTATUS_UNAVAILABLE) {
3974 dsl_dataset_rele(ds, FTAG);
3975 return;
3976 }
3977
3978 dnode_t *dn;
3979 blkptr_t bp;
3980
3981 if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) {
3982 dsl_dataset_rele(ds, FTAG);
3983 return;
3984 }
3985
3986 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3987 int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL,
3988 NULL);
3989
3990 if (error) {
3991 rw_exit(&dn->dn_struct_rwlock);
3992 dnode_rele(dn, FTAG);
3993 dsl_dataset_rele(ds, FTAG);
3994 return;
3995 }
3996
3997 if (!error && BP_IS_HOLE(&bp)) {
3998 rw_exit(&dn->dn_struct_rwlock);
3999 dnode_rele(dn, FTAG);
4000 dsl_dataset_rele(ds, FTAG);
4001 return;
4002 }
4003
4004 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW |
4005 ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB;
4006
4007 /* If it's an intent log block, failure is expected. */
4008 if (zb.zb_level == ZB_ZIL_LEVEL)
4009 zio_flags |= ZIO_FLAG_SPECULATIVE;
4010
4011 ASSERT(!BP_IS_EMBEDDED(&bp));
4012 scan_exec_io(dp, &bp, zio_flags, &zb, NULL);
4013 rw_exit(&dn->dn_struct_rwlock);
4014 dnode_rele(dn, FTAG);
4015 dsl_dataset_rele(ds, FTAG);
4016 }
4017
4018 /*
4019 * We keep track of the scrubbed error blocks in "count". This will be used
4020 * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This
4021 * function is modelled after check_filesystem().
4022 */
4023 static int
scrub_filesystem(spa_t * spa,uint64_t fs,zbookmark_err_phys_t * zep,int * count)4024 scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep,
4025 int *count)
4026 {
4027 dsl_dataset_t *ds;
4028 dsl_pool_t *dp = spa->spa_dsl_pool;
4029 dsl_scan_t *scn = dp->dp_scan;
4030
4031 int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds);
4032 if (error != 0)
4033 return (error);
4034
4035 uint64_t latest_txg;
4036 uint64_t txg_to_consider = spa->spa_syncing_txg;
4037 boolean_t check_snapshot = B_TRUE;
4038
4039 error = find_birth_txg(ds, zep, &latest_txg);
4040
4041 /*
4042 * If find_birth_txg() errors out, then err on the side of caution and
4043 * proceed. In worst case scenario scrub all objects. If zep->zb_birth
4044 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to
4045 * scrub all objects.
4046 */
4047 if (error == 0 && zep->zb_birth == latest_txg) {
4048 /* Block neither free nor re written. */
4049 zbookmark_phys_t zb;
4050 zep_to_zb(fs, zep, &zb);
4051 scn->scn_zio_root = zio_root(spa, NULL, NULL,
4052 ZIO_FLAG_CANFAIL);
4053 /* We have already acquired the config lock for spa */
4054 read_by_block_level(scn, zb);
4055
4056 (void) zio_wait(scn->scn_zio_root);
4057 scn->scn_zio_root = NULL;
4058
4059 scn->errorscrub_phys.dep_examined++;
4060 scn->errorscrub_phys.dep_to_examine--;
4061 (*count)++;
4062 if ((*count) == zfs_scrub_error_blocks_per_txg ||
4063 dsl_error_scrub_check_suspend(scn, &zb)) {
4064 dsl_dataset_rele(ds, FTAG);
4065 return (SET_ERROR(EFAULT));
4066 }
4067
4068 check_snapshot = B_FALSE;
4069 } else if (error == 0) {
4070 txg_to_consider = latest_txg;
4071 }
4072
4073 /*
4074 * Retrieve the number of snapshots if the dataset is not a snapshot.
4075 */
4076 uint64_t snap_count = 0;
4077 if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) {
4078
4079 error = zap_count(spa->spa_meta_objset,
4080 dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count);
4081
4082 if (error != 0) {
4083 dsl_dataset_rele(ds, FTAG);
4084 return (error);
4085 }
4086 }
4087
4088 if (snap_count == 0) {
4089 /* Filesystem without snapshots. */
4090 dsl_dataset_rele(ds, FTAG);
4091 return (0);
4092 }
4093
4094 uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4095 uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4096
4097 dsl_dataset_rele(ds, FTAG);
4098
4099 /* Check only snapshots created from this file system. */
4100 while (snap_obj != 0 && zep->zb_birth < snap_obj_txg &&
4101 snap_obj_txg <= txg_to_consider) {
4102
4103 error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds);
4104 if (error != 0)
4105 return (error);
4106
4107 if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) {
4108 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4109 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4110 dsl_dataset_rele(ds, FTAG);
4111 continue;
4112 }
4113
4114 boolean_t affected = B_TRUE;
4115 if (check_snapshot) {
4116 uint64_t blk_txg;
4117 error = find_birth_txg(ds, zep, &blk_txg);
4118
4119 /*
4120 * Scrub the snapshot also when zb_birth == 0 or when
4121 * find_birth_txg() returns an error.
4122 */
4123 affected = (error == 0 && zep->zb_birth == blk_txg) ||
4124 (error != 0) || (zep->zb_birth == 0);
4125 }
4126
4127 /* Scrub snapshots. */
4128 if (affected) {
4129 zbookmark_phys_t zb;
4130 zep_to_zb(snap_obj, zep, &zb);
4131 scn->scn_zio_root = zio_root(spa, NULL, NULL,
4132 ZIO_FLAG_CANFAIL);
4133 /* We have already acquired the config lock for spa */
4134 read_by_block_level(scn, zb);
4135
4136 (void) zio_wait(scn->scn_zio_root);
4137 scn->scn_zio_root = NULL;
4138
4139 scn->errorscrub_phys.dep_examined++;
4140 scn->errorscrub_phys.dep_to_examine--;
4141 (*count)++;
4142 if ((*count) == zfs_scrub_error_blocks_per_txg ||
4143 dsl_error_scrub_check_suspend(scn, &zb)) {
4144 dsl_dataset_rele(ds, FTAG);
4145 return (EFAULT);
4146 }
4147 }
4148 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4149 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4150 dsl_dataset_rele(ds, FTAG);
4151 }
4152 return (0);
4153 }
4154
4155 void
dsl_errorscrub_sync(dsl_pool_t * dp,dmu_tx_t * tx)4156 dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4157 {
4158 spa_t *spa = dp->dp_spa;
4159 dsl_scan_t *scn = dp->dp_scan;
4160
4161 /*
4162 * Only process scans in sync pass 1.
4163 */
4164
4165 if (spa_sync_pass(spa) > 1)
4166 return;
4167
4168 /*
4169 * If the spa is shutting down, then stop scanning. This will
4170 * ensure that the scan does not dirty any new data during the
4171 * shutdown phase.
4172 */
4173 if (spa_shutting_down(spa))
4174 return;
4175
4176 if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) {
4177 return;
4178 }
4179
4180 if (dsl_scan_resilvering(scn->scn_dp)) {
4181 /* cancel the error scrub if resilver started */
4182 dsl_scan_cancel(scn->scn_dp);
4183 return;
4184 }
4185
4186 spa->spa_scrub_active = B_TRUE;
4187 scn->scn_sync_start_time = gethrtime();
4188
4189 /*
4190 * zfs_scan_suspend_progress can be set to disable scrub progress.
4191 * See more detailed comment in dsl_scan_sync().
4192 */
4193 if (zfs_scan_suspend_progress) {
4194 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4195 int mintime = zfs_scrub_min_time_ms;
4196
4197 while (zfs_scan_suspend_progress &&
4198 !txg_sync_waiting(scn->scn_dp) &&
4199 !spa_shutting_down(scn->scn_dp->dp_spa) &&
4200 NSEC2MSEC(scan_time_ns) < mintime) {
4201 delay(hz);
4202 scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4203 }
4204 return;
4205 }
4206
4207 int i = 0;
4208 zap_attribute_t *za;
4209 zbookmark_phys_t *zb;
4210 boolean_t limit_exceeded = B_FALSE;
4211
4212 za = zap_attribute_alloc();
4213 zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP);
4214
4215 if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
4216 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4217 zap_cursor_advance(&scn->errorscrub_cursor)) {
4218 name_to_bookmark(za->za_name, zb);
4219
4220 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4221 NULL, ZIO_FLAG_CANFAIL);
4222 dsl_pool_config_enter(dp, FTAG);
4223 read_by_block_level(scn, *zb);
4224 dsl_pool_config_exit(dp, FTAG);
4225
4226 (void) zio_wait(scn->scn_zio_root);
4227 scn->scn_zio_root = NULL;
4228
4229 scn->errorscrub_phys.dep_examined += 1;
4230 scn->errorscrub_phys.dep_to_examine -= 1;
4231 i++;
4232 if (i == zfs_scrub_error_blocks_per_txg ||
4233 dsl_error_scrub_check_suspend(scn, zb)) {
4234 limit_exceeded = B_TRUE;
4235 break;
4236 }
4237 }
4238
4239 if (!limit_exceeded)
4240 dsl_errorscrub_done(scn, B_TRUE, tx);
4241
4242 dsl_errorscrub_sync_state(scn, tx);
4243 zap_attribute_free(za);
4244 kmem_free(zb, sizeof (*zb));
4245 return;
4246 }
4247
4248 int error = 0;
4249 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4250 zap_cursor_advance(&scn->errorscrub_cursor)) {
4251
4252 zap_cursor_t *head_ds_cursor;
4253 zap_attribute_t *head_ds_attr;
4254 zbookmark_err_phys_t head_ds_block;
4255
4256 head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP);
4257 head_ds_attr = zap_attribute_alloc();
4258
4259 uint64_t head_ds_err_obj = za->za_first_integer;
4260 uint64_t head_ds;
4261 name_to_object(za->za_name, &head_ds);
4262 boolean_t config_held = B_FALSE;
4263 uint64_t top_affected_fs;
4264
4265 for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset,
4266 head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor,
4267 head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) {
4268
4269 name_to_errphys(head_ds_attr->za_name, &head_ds_block);
4270
4271 /*
4272 * In case we are called from spa_sync the pool
4273 * config is already held.
4274 */
4275 if (!dsl_pool_config_held(dp)) {
4276 dsl_pool_config_enter(dp, FTAG);
4277 config_held = B_TRUE;
4278 }
4279
4280 error = find_top_affected_fs(spa,
4281 head_ds, &head_ds_block, &top_affected_fs);
4282 if (error)
4283 break;
4284
4285 error = scrub_filesystem(spa, top_affected_fs,
4286 &head_ds_block, &i);
4287
4288 if (error == SET_ERROR(EFAULT)) {
4289 limit_exceeded = B_TRUE;
4290 break;
4291 }
4292 }
4293
4294 zap_cursor_fini(head_ds_cursor);
4295 kmem_free(head_ds_cursor, sizeof (*head_ds_cursor));
4296 zap_attribute_free(head_ds_attr);
4297
4298 if (config_held)
4299 dsl_pool_config_exit(dp, FTAG);
4300 }
4301
4302 zap_attribute_free(za);
4303 kmem_free(zb, sizeof (*zb));
4304 if (!limit_exceeded)
4305 dsl_errorscrub_done(scn, B_TRUE, tx);
4306
4307 dsl_errorscrub_sync_state(scn, tx);
4308 }
4309
4310 /*
4311 * This is the primary entry point for scans that is called from syncing
4312 * context. Scans must happen entirely during syncing context so that we
4313 * can guarantee that blocks we are currently scanning will not change out
4314 * from under us. While a scan is active, this function controls how quickly
4315 * transaction groups proceed, instead of the normal handling provided by
4316 * txg_sync_thread().
4317 */
4318 void
dsl_scan_sync(dsl_pool_t * dp,dmu_tx_t * tx)4319 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4320 {
4321 int err = 0;
4322 dsl_scan_t *scn = dp->dp_scan;
4323 spa_t *spa = dp->dp_spa;
4324 state_sync_type_t sync_type = SYNC_OPTIONAL;
4325 int restart_early = 0;
4326
4327 if (spa->spa_resilver_deferred) {
4328 uint64_t to_issue, issued;
4329
4330 if (!spa_feature_is_active(dp->dp_spa,
4331 SPA_FEATURE_RESILVER_DEFER))
4332 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
4333
4334 /*
4335 * See print_scan_scrub_resilver_status() issued/total_i
4336 * @ cmd/zpool/zpool_main.c
4337 */
4338 to_issue =
4339 scn->scn_phys.scn_to_examine - scn->scn_phys.scn_skipped;
4340 issued =
4341 scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
4342 restart_early =
4343 zfs_resilver_disable_defer ||
4344 (issued < (to_issue * zfs_resilver_defer_percent / 100));
4345 }
4346
4347 /*
4348 * Only process scans in sync pass 1.
4349 */
4350 if (spa_sync_pass(spa) > 1)
4351 return;
4352
4353
4354 /*
4355 * Check for scn_restart_txg before checking spa_load_state, so
4356 * that we can restart an old-style scan while the pool is being
4357 * imported (see dsl_scan_init). We also restart scans if there
4358 * is a deferred resilver and the user has manually disabled
4359 * deferred resilvers via zfs_resilver_disable_defer, or if the
4360 * current scan progress is below zfs_resilver_defer_percent.
4361 */
4362 if (dsl_scan_restarting(scn, tx) || restart_early) {
4363 setup_sync_arg_t setup_sync_arg = {
4364 .func = POOL_SCAN_SCRUB,
4365 .txgstart = 0,
4366 .txgend = 0,
4367 };
4368 dsl_scan_done(scn, B_FALSE, tx);
4369 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4370 setup_sync_arg.func = POOL_SCAN_RESILVER;
4371 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu early=%d",
4372 setup_sync_arg.func, dp->dp_spa->spa_name,
4373 (longlong_t)tx->tx_txg, restart_early);
4374 dsl_scan_setup_sync(&setup_sync_arg, tx);
4375 }
4376
4377 /*
4378 * If the spa is shutting down, then stop scanning. This will
4379 * ensure that the scan does not dirty any new data during the
4380 * shutdown phase.
4381 */
4382 if (spa_shutting_down(spa))
4383 return;
4384
4385 /*
4386 * If the scan is inactive due to a stalled async destroy, try again.
4387 */
4388 if (!scn->scn_async_stalled && !dsl_scan_active(scn))
4389 return;
4390
4391 /* reset scan statistics */
4392 scn->scn_visited_this_txg = 0;
4393 scn->scn_dedup_frees_this_txg = 0;
4394 scn->scn_holes_this_txg = 0;
4395 scn->scn_lt_min_this_txg = 0;
4396 scn->scn_gt_max_this_txg = 0;
4397 scn->scn_ddt_contained_this_txg = 0;
4398 scn->scn_objsets_visited_this_txg = 0;
4399 scn->scn_avg_seg_size_this_txg = 0;
4400 scn->scn_segs_this_txg = 0;
4401 scn->scn_avg_zio_size_this_txg = 0;
4402 scn->scn_zios_this_txg = 0;
4403 scn->scn_suspending = B_FALSE;
4404 scn->scn_sync_start_time = gethrtime();
4405 spa->spa_scrub_active = B_TRUE;
4406
4407 /*
4408 * First process the async destroys. If we suspend, don't do
4409 * any scrubbing or resilvering. This ensures that there are no
4410 * async destroys while we are scanning, so the scan code doesn't
4411 * have to worry about traversing it. It is also faster to free the
4412 * blocks than to scrub them.
4413 */
4414 err = dsl_process_async_destroys(dp, tx);
4415 if (err != 0)
4416 return;
4417
4418 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
4419 return;
4420
4421 /*
4422 * Wait a few txgs after importing to begin scanning so that
4423 * we can get the pool imported quickly.
4424 */
4425 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
4426 return;
4427
4428 /*
4429 * zfs_scan_suspend_progress can be set to disable scan progress.
4430 * We don't want to spin the txg_sync thread, so we add a delay
4431 * here to simulate the time spent doing a scan. This is mostly
4432 * useful for testing and debugging.
4433 */
4434 if (zfs_scan_suspend_progress) {
4435 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4436 uint_t mintime = (scn->scn_phys.scn_func ==
4437 POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms :
4438 zfs_scrub_min_time_ms;
4439
4440 while (zfs_scan_suspend_progress &&
4441 !txg_sync_waiting(scn->scn_dp) &&
4442 !spa_shutting_down(scn->scn_dp->dp_spa) &&
4443 NSEC2MSEC(scan_time_ns) < mintime) {
4444 delay(hz);
4445 scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4446 }
4447 return;
4448 }
4449
4450 /*
4451 * Disabled by default, set zfs_scan_report_txgs to report
4452 * average performance over the last zfs_scan_report_txgs TXGs.
4453 */
4454 if (zfs_scan_report_txgs != 0 &&
4455 tx->tx_txg % zfs_scan_report_txgs == 0) {
4456 scn->scn_issued_before_pass += spa->spa_scan_pass_issued;
4457 spa_scan_stat_init(spa);
4458 }
4459
4460 /*
4461 * It is possible to switch from unsorted to sorted at any time,
4462 * but afterwards the scan will remain sorted unless reloaded from
4463 * a checkpoint after a reboot.
4464 */
4465 if (!zfs_scan_legacy) {
4466 scn->scn_is_sorted = B_TRUE;
4467 if (scn->scn_last_checkpoint == 0)
4468 scn->scn_last_checkpoint = ddi_get_lbolt();
4469 }
4470
4471 /*
4472 * For sorted scans, determine what kind of work we will be doing
4473 * this txg based on our memory limitations and whether or not we
4474 * need to perform a checkpoint.
4475 */
4476 if (scn->scn_is_sorted) {
4477 /*
4478 * If we are over our checkpoint interval, set scn_clearing
4479 * so that we can begin checkpointing immediately. The
4480 * checkpoint allows us to save a consistent bookmark
4481 * representing how much data we have scrubbed so far.
4482 * Otherwise, use the memory limit to determine if we should
4483 * scan for metadata or start issue scrub IOs. We accumulate
4484 * metadata until we hit our hard memory limit at which point
4485 * we issue scrub IOs until we are at our soft memory limit.
4486 */
4487 if (scn->scn_checkpointing ||
4488 ddi_get_lbolt() - scn->scn_last_checkpoint >
4489 SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
4490 if (!scn->scn_checkpointing)
4491 zfs_dbgmsg("begin scan checkpoint for %s",
4492 spa->spa_name);
4493
4494 scn->scn_checkpointing = B_TRUE;
4495 scn->scn_clearing = B_TRUE;
4496 } else {
4497 boolean_t should_clear = dsl_scan_should_clear(scn);
4498 if (should_clear && !scn->scn_clearing) {
4499 zfs_dbgmsg("begin scan clearing for %s",
4500 spa->spa_name);
4501 scn->scn_clearing = B_TRUE;
4502 } else if (!should_clear && scn->scn_clearing) {
4503 zfs_dbgmsg("finish scan clearing for %s",
4504 spa->spa_name);
4505 scn->scn_clearing = B_FALSE;
4506 }
4507 }
4508 } else {
4509 ASSERT0(scn->scn_checkpointing);
4510 ASSERT0(scn->scn_clearing);
4511 }
4512
4513 if (!scn->scn_clearing && scn->scn_done_txg == 0) {
4514 /* Need to scan metadata for more blocks to scrub */
4515 dsl_scan_phys_t *scnp = &scn->scn_phys;
4516 taskqid_t prefetch_tqid;
4517
4518 /*
4519 * Calculate the max number of in-flight bytes for pool-wide
4520 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
4521 * Limits for the issuing phase are done per top-level vdev and
4522 * are handled separately.
4523 */
4524 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
4525 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
4526
4527 if (scnp->scn_ddt_bookmark.ddb_class <=
4528 scnp->scn_ddt_class_max) {
4529 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
4530 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4531 "ddt bm=%llu/%llu/%llu/%llx",
4532 spa->spa_name,
4533 (longlong_t)tx->tx_txg,
4534 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
4535 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
4536 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
4537 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
4538 } else {
4539 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4540 "bm=%llu/%llu/%llu/%llu",
4541 spa->spa_name,
4542 (longlong_t)tx->tx_txg,
4543 (longlong_t)scnp->scn_bookmark.zb_objset,
4544 (longlong_t)scnp->scn_bookmark.zb_object,
4545 (longlong_t)scnp->scn_bookmark.zb_level,
4546 (longlong_t)scnp->scn_bookmark.zb_blkid);
4547 }
4548
4549 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4550 NULL, ZIO_FLAG_CANFAIL);
4551
4552 scn->scn_prefetch_stop = B_FALSE;
4553 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
4554 dsl_scan_prefetch_thread, scn, TQ_SLEEP);
4555 ASSERT(prefetch_tqid != TASKQID_INVALID);
4556
4557 dsl_pool_config_enter(dp, FTAG);
4558 dsl_scan_visit(scn, tx);
4559 dsl_pool_config_exit(dp, FTAG);
4560
4561 mutex_enter(&dp->dp_spa->spa_scrub_lock);
4562 scn->scn_prefetch_stop = B_TRUE;
4563 cv_broadcast(&spa->spa_scrub_io_cv);
4564 mutex_exit(&dp->dp_spa->spa_scrub_lock);
4565
4566 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
4567 (void) zio_wait(scn->scn_zio_root);
4568 scn->scn_zio_root = NULL;
4569
4570 zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
4571 "(%llu os's, %llu holes, %llu < mintxg, "
4572 "%llu in ddt, %llu > maxtxg)",
4573 (longlong_t)scn->scn_visited_this_txg,
4574 spa->spa_name,
4575 (longlong_t)NSEC2MSEC(gethrtime() -
4576 scn->scn_sync_start_time),
4577 (longlong_t)scn->scn_objsets_visited_this_txg,
4578 (longlong_t)scn->scn_holes_this_txg,
4579 (longlong_t)scn->scn_lt_min_this_txg,
4580 (longlong_t)scn->scn_ddt_contained_this_txg,
4581 (longlong_t)scn->scn_gt_max_this_txg);
4582
4583 if (!scn->scn_suspending) {
4584 ASSERT0(avl_numnodes(&scn->scn_queue));
4585 scn->scn_done_txg = tx->tx_txg + 1;
4586 if (scn->scn_is_sorted) {
4587 scn->scn_checkpointing = B_TRUE;
4588 scn->scn_clearing = B_TRUE;
4589 scn->scn_issued_before_pass +=
4590 spa->spa_scan_pass_issued;
4591 spa_scan_stat_init(spa);
4592 }
4593 zfs_dbgmsg("scan complete for %s txg %llu",
4594 spa->spa_name,
4595 (longlong_t)tx->tx_txg);
4596 }
4597 } else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) {
4598 ASSERT(scn->scn_clearing);
4599
4600 /* need to issue scrubbing IOs from per-vdev queues */
4601 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4602 NULL, ZIO_FLAG_CANFAIL);
4603 scan_io_queues_run(scn);
4604 (void) zio_wait(scn->scn_zio_root);
4605 scn->scn_zio_root = NULL;
4606
4607 /* calculate and dprintf the current memory usage */
4608 (void) dsl_scan_should_clear(scn);
4609 dsl_scan_update_stats(scn);
4610
4611 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
4612 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
4613 (longlong_t)scn->scn_zios_this_txg,
4614 spa->spa_name,
4615 (longlong_t)scn->scn_segs_this_txg,
4616 (longlong_t)NSEC2MSEC(gethrtime() -
4617 scn->scn_sync_start_time),
4618 (longlong_t)scn->scn_avg_zio_size_this_txg,
4619 (longlong_t)scn->scn_avg_seg_size_this_txg);
4620 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
4621 /* Finished with everything. Mark the scrub as complete */
4622 zfs_dbgmsg("scan issuing complete txg %llu for %s",
4623 (longlong_t)tx->tx_txg,
4624 spa->spa_name);
4625 ASSERT3U(scn->scn_done_txg, !=, 0);
4626 ASSERT0(spa->spa_scrub_inflight);
4627 ASSERT0(scn->scn_queues_pending);
4628 dsl_scan_done(scn, B_TRUE, tx);
4629 sync_type = SYNC_MANDATORY;
4630 }
4631
4632 dsl_scan_sync_state(scn, tx, sync_type);
4633 }
4634
4635 static void
count_block_issued(spa_t * spa,const blkptr_t * bp,boolean_t all)4636 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all)
4637 {
4638 /*
4639 * Don't count embedded bp's, since we already did the work of
4640 * scanning these when we scanned the containing block.
4641 */
4642 if (BP_IS_EMBEDDED(bp))
4643 return;
4644
4645 /*
4646 * Update the spa's stats on how many bytes we have issued.
4647 * Sequential scrubs create a zio for each DVA of the bp. Each
4648 * of these will include all DVAs for repair purposes, but the
4649 * zio code will only try the first one unless there is an issue.
4650 * Therefore, we should only count the first DVA for these IOs.
4651 */
4652 atomic_add_64(&spa->spa_scan_pass_issued,
4653 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4654 }
4655
4656 static void
count_block_skipped(dsl_scan_t * scn,const blkptr_t * bp,boolean_t all)4657 count_block_skipped(dsl_scan_t *scn, const blkptr_t *bp, boolean_t all)
4658 {
4659 if (BP_IS_EMBEDDED(bp))
4660 return;
4661 atomic_add_64(&scn->scn_phys.scn_skipped,
4662 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4663 }
4664
4665 static void
count_block(zfs_all_blkstats_t * zab,const blkptr_t * bp)4666 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp)
4667 {
4668 /*
4669 * If we resume after a reboot, zab will be NULL; don't record
4670 * incomplete stats in that case.
4671 */
4672 if (zab == NULL)
4673 return;
4674
4675 for (int i = 0; i < 4; i++) {
4676 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
4677 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
4678
4679 if (t & DMU_OT_NEWTYPE)
4680 t = DMU_OT_OTHER;
4681 zfs_blkstat_t *zb = &zab->zab_type[l][t];
4682 int equal;
4683
4684 zb->zb_count++;
4685 zb->zb_asize += BP_GET_ASIZE(bp);
4686 zb->zb_lsize += BP_GET_LSIZE(bp);
4687 zb->zb_psize += BP_GET_PSIZE(bp);
4688 zb->zb_gangs += BP_COUNT_GANG(bp);
4689
4690 switch (BP_GET_NDVAS(bp)) {
4691 case 2:
4692 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4693 DVA_GET_VDEV(&bp->blk_dva[1]))
4694 zb->zb_ditto_2_of_2_samevdev++;
4695 break;
4696 case 3:
4697 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4698 DVA_GET_VDEV(&bp->blk_dva[1])) +
4699 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4700 DVA_GET_VDEV(&bp->blk_dva[2])) +
4701 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
4702 DVA_GET_VDEV(&bp->blk_dva[2]));
4703 if (equal == 1)
4704 zb->zb_ditto_2_of_3_samevdev++;
4705 else if (equal == 3)
4706 zb->zb_ditto_3_of_3_samevdev++;
4707 break;
4708 }
4709 }
4710 }
4711
4712 static void
scan_io_queue_insert_impl(dsl_scan_io_queue_t * queue,scan_io_t * sio)4713 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
4714 {
4715 avl_index_t idx;
4716 dsl_scan_t *scn = queue->q_scn;
4717
4718 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4719
4720 if (unlikely(avl_is_empty(&queue->q_sios_by_addr)))
4721 atomic_add_64(&scn->scn_queues_pending, 1);
4722 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
4723 /* block is already scheduled for reading */
4724 sio_free(sio);
4725 return;
4726 }
4727 avl_insert(&queue->q_sios_by_addr, sio, idx);
4728 queue->q_sio_memused += SIO_GET_MUSED(sio);
4729 zfs_range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio),
4730 SIO_GET_ASIZE(sio));
4731 }
4732
4733 /*
4734 * Given all the info we got from our metadata scanning process, we
4735 * construct a scan_io_t and insert it into the scan sorting queue. The
4736 * I/O must already be suitable for us to process. This is controlled
4737 * by dsl_scan_enqueue().
4738 */
4739 static void
scan_io_queue_insert(dsl_scan_io_queue_t * queue,const blkptr_t * bp,int dva_i,int zio_flags,const zbookmark_phys_t * zb)4740 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
4741 int zio_flags, const zbookmark_phys_t *zb)
4742 {
4743 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
4744
4745 ASSERT0(BP_IS_GANG(bp));
4746 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4747
4748 bp2sio(bp, sio, dva_i);
4749 sio->sio_flags = zio_flags;
4750 sio->sio_zb = *zb;
4751
4752 queue->q_last_ext_addr = -1;
4753 scan_io_queue_insert_impl(queue, sio);
4754 }
4755
4756 /*
4757 * Given a set of I/O parameters as discovered by the metadata traversal
4758 * process, attempts to place the I/O into the sorted queues (if allowed),
4759 * or immediately executes the I/O.
4760 */
4761 static void
dsl_scan_enqueue(dsl_pool_t * dp,const blkptr_t * bp,int zio_flags,const zbookmark_phys_t * zb)4762 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4763 const zbookmark_phys_t *zb)
4764 {
4765 spa_t *spa = dp->dp_spa;
4766
4767 ASSERT(!BP_IS_EMBEDDED(bp));
4768
4769 /*
4770 * Gang blocks are hard to issue sequentially, so we just issue them
4771 * here immediately instead of queuing them.
4772 */
4773 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
4774 scan_exec_io(dp, bp, zio_flags, zb, NULL);
4775 return;
4776 }
4777
4778 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4779 dva_t dva;
4780 vdev_t *vdev;
4781
4782 dva = bp->blk_dva[i];
4783 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
4784 ASSERT(vdev != NULL);
4785
4786 mutex_enter(&vdev->vdev_scan_io_queue_lock);
4787 if (vdev->vdev_scan_io_queue == NULL)
4788 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
4789 ASSERT(dp->dp_scan != NULL);
4790 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
4791 i, zio_flags, zb);
4792 mutex_exit(&vdev->vdev_scan_io_queue_lock);
4793 }
4794 }
4795
4796 static int
dsl_scan_scrub_cb(dsl_pool_t * dp,const blkptr_t * bp,const zbookmark_phys_t * zb)4797 dsl_scan_scrub_cb(dsl_pool_t *dp,
4798 const blkptr_t *bp, const zbookmark_phys_t *zb)
4799 {
4800 dsl_scan_t *scn = dp->dp_scan;
4801 spa_t *spa = dp->dp_spa;
4802 uint64_t phys_birth = BP_GET_BIRTH(bp);
4803 size_t psize = BP_GET_PSIZE(bp);
4804 boolean_t needs_io = B_FALSE;
4805 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
4806
4807 count_block(dp->dp_blkstats, bp);
4808 if (phys_birth <= scn->scn_phys.scn_min_txg ||
4809 phys_birth >= scn->scn_phys.scn_max_txg) {
4810 count_block_skipped(scn, bp, B_TRUE);
4811 return (0);
4812 }
4813
4814 /* Embedded BP's have phys_birth==0, so we reject them above. */
4815 ASSERT(!BP_IS_EMBEDDED(bp));
4816
4817 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
4818 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
4819 zio_flags |= ZIO_FLAG_SCRUB;
4820 needs_io = B_TRUE;
4821 } else {
4822 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
4823 zio_flags |= ZIO_FLAG_RESILVER;
4824 needs_io = B_FALSE;
4825 }
4826
4827 /* If it's an intent log block, failure is expected. */
4828 if (zb->zb_level == ZB_ZIL_LEVEL)
4829 zio_flags |= ZIO_FLAG_SPECULATIVE;
4830
4831 for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4832 const dva_t *dva = &bp->blk_dva[d];
4833
4834 /*
4835 * Keep track of how much data we've examined so that
4836 * zpool(8) status can make useful progress reports.
4837 */
4838 uint64_t asize = DVA_GET_ASIZE(dva);
4839 scn->scn_phys.scn_examined += asize;
4840 spa->spa_scan_pass_exam += asize;
4841
4842 /* if it's a resilver, this may not be in the target range */
4843 if (!needs_io)
4844 needs_io = dsl_scan_need_resilver(spa, dva, psize,
4845 phys_birth);
4846 }
4847
4848 if (needs_io && !zfs_no_scrub_io) {
4849 dsl_scan_enqueue(dp, bp, zio_flags, zb);
4850 } else {
4851 count_block_skipped(scn, bp, B_TRUE);
4852 }
4853
4854 /* do not relocate this block */
4855 return (0);
4856 }
4857
4858 static void
dsl_scan_scrub_done(zio_t * zio)4859 dsl_scan_scrub_done(zio_t *zio)
4860 {
4861 spa_t *spa = zio->io_spa;
4862 blkptr_t *bp = zio->io_bp;
4863 dsl_scan_io_queue_t *queue = zio->io_private;
4864
4865 abd_free(zio->io_abd);
4866
4867 if (queue == NULL) {
4868 mutex_enter(&spa->spa_scrub_lock);
4869 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4870 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4871 cv_broadcast(&spa->spa_scrub_io_cv);
4872 mutex_exit(&spa->spa_scrub_lock);
4873 } else {
4874 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4875 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4876 queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4877 cv_broadcast(&queue->q_zio_cv);
4878 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4879 }
4880
4881 if (zio->io_error && (zio->io_error != ECKSUM ||
4882 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4883 if (dsl_errorscrubbing(spa->spa_dsl_pool) &&
4884 !dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) {
4885 atomic_inc_64(&spa->spa_dsl_pool->dp_scan
4886 ->errorscrub_phys.dep_errors);
4887 } else {
4888 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys
4889 .scn_errors);
4890 }
4891 }
4892 }
4893
4894 /*
4895 * Given a scanning zio's information, executes the zio. The zio need
4896 * not necessarily be only sortable, this function simply executes the
4897 * zio, no matter what it is. The optional queue argument allows the
4898 * caller to specify that they want per top level vdev IO rate limiting
4899 * instead of the legacy global limiting.
4900 */
4901 static void
scan_exec_io(dsl_pool_t * dp,const blkptr_t * bp,int zio_flags,const zbookmark_phys_t * zb,dsl_scan_io_queue_t * queue)4902 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4903 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4904 {
4905 spa_t *spa = dp->dp_spa;
4906 dsl_scan_t *scn = dp->dp_scan;
4907 size_t size = BP_GET_PSIZE(bp);
4908 abd_t *data = abd_alloc_for_io(size, B_FALSE);
4909 zio_t *pio;
4910
4911 if (queue == NULL) {
4912 ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4913 mutex_enter(&spa->spa_scrub_lock);
4914 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4915 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4916 spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4917 mutex_exit(&spa->spa_scrub_lock);
4918 pio = scn->scn_zio_root;
4919 } else {
4920 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4921
4922 ASSERT3U(queue->q_maxinflight_bytes, >, 0);
4923 mutex_enter(q_lock);
4924 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4925 cv_wait(&queue->q_zio_cv, q_lock);
4926 queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4927 pio = queue->q_zio;
4928 mutex_exit(q_lock);
4929 }
4930
4931 ASSERT(pio != NULL);
4932 count_block_issued(spa, bp, queue == NULL);
4933 zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done,
4934 queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4935 }
4936
4937 /*
4938 * This is the primary extent sorting algorithm. We balance two parameters:
4939 * 1) how many bytes of I/O are in an extent
4940 * 2) how well the extent is filled with I/O (as a fraction of its total size)
4941 * Since we allow extents to have gaps between their constituent I/Os, it's
4942 * possible to have a fairly large extent that contains the same amount of
4943 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4944 * The algorithm sorts based on a score calculated from the extent's size,
4945 * the relative fill volume (in %) and a "fill weight" parameter that controls
4946 * the split between whether we prefer larger extents or more well populated
4947 * extents:
4948 *
4949 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4950 *
4951 * Example:
4952 * 1) assume extsz = 64 MiB
4953 * 2) assume fill = 32 MiB (extent is half full)
4954 * 3) assume fill_weight = 3
4955 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4956 * SCORE = 32M + (50 * 3 * 32M) / 100
4957 * SCORE = 32M + (4800M / 100)
4958 * SCORE = 32M + 48M
4959 * ^ ^
4960 * | +--- final total relative fill-based score
4961 * +--------- final total fill-based score
4962 * SCORE = 80M
4963 *
4964 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4965 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4966 * Note that as an optimization, we replace multiplication and division by
4967 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4968 *
4969 * Since we do not care if one extent is only few percent better than another,
4970 * compress the score into 6 bits via binary logarithm AKA highbit64() and
4971 * put into otherwise unused due to ashift high bits of offset. This allows
4972 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
4973 * with single operation. Plus it makes scrubs more sequential and reduces
4974 * chances that minor extent change move it within the B-tree.
4975 */
4976 __attribute__((always_inline)) inline
4977 static int
ext_size_compare(const void * x,const void * y)4978 ext_size_compare(const void *x, const void *y)
4979 {
4980 const uint64_t *a = x, *b = y;
4981
4982 return (TREE_CMP(*a, *b));
4983 }
4984
ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf,uint64_t,ext_size_compare)4985 ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf, uint64_t,
4986 ext_size_compare)
4987
4988 static void
4989 ext_size_create(zfs_range_tree_t *rt, void *arg)
4990 {
4991 (void) rt;
4992 zfs_btree_t *size_tree = arg;
4993
4994 zfs_btree_create(size_tree, ext_size_compare, ext_size_find_in_buf,
4995 sizeof (uint64_t));
4996 }
4997
4998 static void
ext_size_destroy(zfs_range_tree_t * rt,void * arg)4999 ext_size_destroy(zfs_range_tree_t *rt, void *arg)
5000 {
5001 (void) rt;
5002 zfs_btree_t *size_tree = arg;
5003 ASSERT0(zfs_btree_numnodes(size_tree));
5004
5005 zfs_btree_destroy(size_tree);
5006 }
5007
5008 static uint64_t
ext_size_value(zfs_range_tree_t * rt,zfs_range_seg_gap_t * rsg)5009 ext_size_value(zfs_range_tree_t *rt, zfs_range_seg_gap_t *rsg)
5010 {
5011 (void) rt;
5012 uint64_t size = rsg->rs_end - rsg->rs_start;
5013 uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) *
5014 fill_weight * rsg->rs_fill) >> 7);
5015 ASSERT3U(rt->rt_shift, >=, 8);
5016 return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start);
5017 }
5018
5019 static void
ext_size_add(zfs_range_tree_t * rt,zfs_range_seg_t * rs,void * arg)5020 ext_size_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
5021 {
5022 zfs_btree_t *size_tree = arg;
5023 ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP);
5024 uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs);
5025 zfs_btree_add(size_tree, &v);
5026 }
5027
5028 static void
ext_size_remove(zfs_range_tree_t * rt,zfs_range_seg_t * rs,void * arg)5029 ext_size_remove(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
5030 {
5031 zfs_btree_t *size_tree = arg;
5032 ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP);
5033 uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs);
5034 zfs_btree_remove(size_tree, &v);
5035 }
5036
5037 static void
ext_size_vacate(zfs_range_tree_t * rt,void * arg)5038 ext_size_vacate(zfs_range_tree_t *rt, void *arg)
5039 {
5040 zfs_btree_t *size_tree = arg;
5041 zfs_btree_clear(size_tree);
5042 zfs_btree_destroy(size_tree);
5043
5044 ext_size_create(rt, arg);
5045 }
5046
5047 static const zfs_range_tree_ops_t ext_size_ops = {
5048 .rtop_create = ext_size_create,
5049 .rtop_destroy = ext_size_destroy,
5050 .rtop_add = ext_size_add,
5051 .rtop_remove = ext_size_remove,
5052 .rtop_vacate = ext_size_vacate
5053 };
5054
5055 /*
5056 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
5057 * based on LBA-order (from lowest to highest).
5058 */
5059 static int
sio_addr_compare(const void * x,const void * y)5060 sio_addr_compare(const void *x, const void *y)
5061 {
5062 const scan_io_t *a = x, *b = y;
5063
5064 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
5065 }
5066
5067 /* IO queues are created on demand when they are needed. */
5068 static dsl_scan_io_queue_t *
scan_io_queue_create(vdev_t * vd)5069 scan_io_queue_create(vdev_t *vd)
5070 {
5071 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
5072 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
5073
5074 q->q_scn = scn;
5075 q->q_vd = vd;
5076 q->q_sio_memused = 0;
5077 q->q_last_ext_addr = -1;
5078 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
5079 q->q_exts_by_addr = zfs_range_tree_create_gap(&ext_size_ops,
5080 ZFS_RANGE_SEG_GAP, &q->q_exts_by_size, 0, vd->vdev_ashift,
5081 zfs_scan_max_ext_gap);
5082 avl_create(&q->q_sios_by_addr, sio_addr_compare,
5083 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
5084
5085 return (q);
5086 }
5087
5088 /*
5089 * Destroys a scan queue and all segments and scan_io_t's contained in it.
5090 * No further execution of I/O occurs, anything pending in the queue is
5091 * simply freed without being executed.
5092 */
5093 void
dsl_scan_io_queue_destroy(dsl_scan_io_queue_t * queue)5094 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
5095 {
5096 dsl_scan_t *scn = queue->q_scn;
5097 scan_io_t *sio;
5098 void *cookie = NULL;
5099
5100 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
5101
5102 if (!avl_is_empty(&queue->q_sios_by_addr))
5103 atomic_add_64(&scn->scn_queues_pending, -1);
5104 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
5105 NULL) {
5106 ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr,
5107 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
5108 queue->q_sio_memused -= SIO_GET_MUSED(sio);
5109 sio_free(sio);
5110 }
5111
5112 ASSERT0(queue->q_sio_memused);
5113 zfs_range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
5114 zfs_range_tree_destroy(queue->q_exts_by_addr);
5115 avl_destroy(&queue->q_sios_by_addr);
5116 cv_destroy(&queue->q_zio_cv);
5117
5118 kmem_free(queue, sizeof (*queue));
5119 }
5120
5121 /*
5122 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
5123 * called on behalf of vdev_top_transfer when creating or destroying
5124 * a mirror vdev due to zpool attach/detach.
5125 */
5126 void
dsl_scan_io_queue_vdev_xfer(vdev_t * svd,vdev_t * tvd)5127 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
5128 {
5129 mutex_enter(&svd->vdev_scan_io_queue_lock);
5130 mutex_enter(&tvd->vdev_scan_io_queue_lock);
5131
5132 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
5133 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
5134 svd->vdev_scan_io_queue = NULL;
5135 if (tvd->vdev_scan_io_queue != NULL)
5136 tvd->vdev_scan_io_queue->q_vd = tvd;
5137
5138 mutex_exit(&tvd->vdev_scan_io_queue_lock);
5139 mutex_exit(&svd->vdev_scan_io_queue_lock);
5140 }
5141
5142 static void
scan_io_queues_destroy(dsl_scan_t * scn)5143 scan_io_queues_destroy(dsl_scan_t *scn)
5144 {
5145 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
5146
5147 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
5148 vdev_t *tvd = rvd->vdev_child[i];
5149
5150 mutex_enter(&tvd->vdev_scan_io_queue_lock);
5151 if (tvd->vdev_scan_io_queue != NULL)
5152 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
5153 tvd->vdev_scan_io_queue = NULL;
5154 mutex_exit(&tvd->vdev_scan_io_queue_lock);
5155 }
5156 }
5157
5158 static void
dsl_scan_freed_dva(spa_t * spa,const blkptr_t * bp,int dva_i)5159 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
5160 {
5161 dsl_pool_t *dp = spa->spa_dsl_pool;
5162 dsl_scan_t *scn = dp->dp_scan;
5163 vdev_t *vdev;
5164 kmutex_t *q_lock;
5165 dsl_scan_io_queue_t *queue;
5166 scan_io_t *srch_sio, *sio;
5167 avl_index_t idx;
5168 uint64_t start, size;
5169
5170 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
5171 ASSERT(vdev != NULL);
5172 q_lock = &vdev->vdev_scan_io_queue_lock;
5173 queue = vdev->vdev_scan_io_queue;
5174
5175 mutex_enter(q_lock);
5176 if (queue == NULL) {
5177 mutex_exit(q_lock);
5178 return;
5179 }
5180
5181 srch_sio = sio_alloc(BP_GET_NDVAS(bp));
5182 bp2sio(bp, srch_sio, dva_i);
5183 start = SIO_GET_OFFSET(srch_sio);
5184 size = SIO_GET_ASIZE(srch_sio);
5185
5186 /*
5187 * We can find the zio in two states:
5188 * 1) Cold, just sitting in the queue of zio's to be issued at
5189 * some point in the future. In this case, all we do is
5190 * remove the zio from the q_sios_by_addr tree, decrement
5191 * its data volume from the containing zfs_range_seg_t and
5192 * resort the q_exts_by_size tree to reflect that the
5193 * zfs_range_seg_t has lost some of its 'fill'. We don't shorten
5194 * the zfs_range_seg_t - this is usually rare enough not to be
5195 * worth the extra hassle of trying keep track of precise
5196 * extent boundaries.
5197 * 2) Hot, where the zio is currently in-flight in
5198 * dsl_scan_issue_ios. In this case, we can't simply
5199 * reach in and stop the in-flight zio's, so we instead
5200 * block the caller. Eventually, dsl_scan_issue_ios will
5201 * be done with issuing the zio's it gathered and will
5202 * signal us.
5203 */
5204 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
5205 sio_free(srch_sio);
5206
5207 if (sio != NULL) {
5208 blkptr_t tmpbp;
5209
5210 /* Got it while it was cold in the queue */
5211 ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
5212 ASSERT3U(size, ==, SIO_GET_ASIZE(sio));
5213 avl_remove(&queue->q_sios_by_addr, sio);
5214 if (avl_is_empty(&queue->q_sios_by_addr))
5215 atomic_add_64(&scn->scn_queues_pending, -1);
5216 queue->q_sio_memused -= SIO_GET_MUSED(sio);
5217
5218 ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr, start,
5219 size));
5220 zfs_range_tree_remove_fill(queue->q_exts_by_addr, start, size);
5221
5222 /* count the block as though we skipped it */
5223 sio2bp(sio, &tmpbp);
5224 count_block_skipped(scn, &tmpbp, B_FALSE);
5225
5226 sio_free(sio);
5227 }
5228 mutex_exit(q_lock);
5229 }
5230
5231 /*
5232 * Callback invoked when a zio_free() zio is executing. This needs to be
5233 * intercepted to prevent the zio from deallocating a particular portion
5234 * of disk space and it then getting reallocated and written to, while we
5235 * still have it queued up for processing.
5236 */
5237 void
dsl_scan_freed(spa_t * spa,const blkptr_t * bp)5238 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
5239 {
5240 dsl_pool_t *dp = spa->spa_dsl_pool;
5241 dsl_scan_t *scn = dp->dp_scan;
5242
5243 ASSERT(!BP_IS_EMBEDDED(bp));
5244 ASSERT(scn != NULL);
5245 if (!dsl_scan_is_running(scn))
5246 return;
5247
5248 for (int i = 0; i < BP_GET_NDVAS(bp); i++)
5249 dsl_scan_freed_dva(spa, bp, i);
5250 }
5251
5252 /*
5253 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
5254 * not started, start it. Otherwise, only restart if max txg in DTL range is
5255 * greater than the max txg in the current scan. If the DTL max is less than
5256 * the scan max, then the vdev has not missed any new data since the resilver
5257 * started, so a restart is not needed.
5258 */
5259 void
dsl_scan_assess_vdev(dsl_pool_t * dp,vdev_t * vd)5260 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
5261 {
5262 uint64_t min, max;
5263
5264 if (!vdev_resilver_needed(vd, &min, &max))
5265 return;
5266
5267 if (!dsl_scan_resilvering(dp)) {
5268 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5269 return;
5270 }
5271
5272 if (max <= dp->dp_scan->scn_phys.scn_max_txg)
5273 return;
5274
5275 /* restart is needed, check if it can be deferred */
5276 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
5277 vdev_defer_resilver(vd);
5278 else
5279 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5280 }
5281
5282 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW,
5283 "Max bytes in flight per leaf vdev for scrubs and resilvers");
5284
5285 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW,
5286 "Min millisecs to scrub per txg");
5287
5288 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW,
5289 "Min millisecs to obsolete per txg");
5290
5291 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW,
5292 "Min millisecs to free per txg");
5293
5294 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW,
5295 "Min millisecs to resilver per txg");
5296
5297 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
5298 "Set to prevent scans from progressing");
5299
5300 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
5301 "Set to disable scrub I/O");
5302
5303 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
5304 "Set to disable scrub prefetching");
5305
5306 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW,
5307 "Max number of blocks freed in one txg");
5308
5309 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW,
5310 "Max number of dedup blocks freed in one txg");
5311
5312 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
5313 "Enable processing of the free_bpobj");
5314
5315 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW,
5316 "Enable block statistics calculation during scrub");
5317
5318 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW,
5319 "Fraction of RAM for scan hard limit");
5320
5321 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW,
5322 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
5323
5324 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
5325 "Scrub using legacy non-sequential method");
5326
5327 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW,
5328 "Scan progress on-disk checkpointing interval");
5329
5330 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW,
5331 "Max gap in bytes between sequential scrub / resilver I/Os");
5332
5333 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW,
5334 "Fraction of hard limit used as soft limit");
5335
5336 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
5337 "Tunable to attempt to reduce lock contention");
5338
5339 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW,
5340 "Tunable to adjust bias towards more filled segments during scans");
5341
5342 ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW,
5343 "Tunable to report resilver performance over the last N txgs");
5344
5345 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
5346 "Process all resilvers immediately");
5347
5348 ZFS_MODULE_PARAM(zfs, zfs_, resilver_defer_percent, UINT, ZMOD_RW,
5349 "Issued IO percent complete after which resilvers are deferred");
5350
5351 ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, UINT, ZMOD_RW,
5352 "Error blocks to be scrubbed in one txg");
5353