xref: /freebsd/sys/contrib/openzfs/module/zfs/dsl_scan.c (revision d2a8fad3579763bd288260c8c465ab9eb448d465)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
24  * Copyright 2016 Gary Mills
25  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
26  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27  * Copyright 2019 Joyent, Inc.
28  */
29 
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/arc_impl.h>
41 #include <sys/zap.h>
42 #include <sys/zio.h>
43 #include <sys/zfs_context.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/zfs_znode.h>
46 #include <sys/spa_impl.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/zil_impl.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/brt.h>
51 #include <sys/ddt.h>
52 #include <sys/sa.h>
53 #include <sys/sa_impl.h>
54 #include <sys/zfeature.h>
55 #include <sys/abd.h>
56 #include <sys/range_tree.h>
57 #include <sys/dbuf.h>
58 #ifdef _KERNEL
59 #include <sys/zfs_vfsops.h>
60 #endif
61 
62 /*
63  * Grand theory statement on scan queue sorting
64  *
65  * Scanning is implemented by recursively traversing all indirection levels
66  * in an object and reading all blocks referenced from said objects. This
67  * results in us approximately traversing the object from lowest logical
68  * offset to the highest. For best performance, we would want the logical
69  * blocks to be physically contiguous. However, this is frequently not the
70  * case with pools given the allocation patterns of copy-on-write filesystems.
71  * So instead, we put the I/Os into a reordering queue and issue them in a
72  * way that will most benefit physical disks (LBA-order).
73  *
74  * Queue management:
75  *
76  * Ideally, we would want to scan all metadata and queue up all block I/O
77  * prior to starting to issue it, because that allows us to do an optimal
78  * sorting job. This can however consume large amounts of memory. Therefore
79  * we continuously monitor the size of the queues and constrain them to 5%
80  * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
81  * limit, we clear out a few of the largest extents at the head of the queues
82  * to make room for more scanning. Hopefully, these extents will be fairly
83  * large and contiguous, allowing us to approach sequential I/O throughput
84  * even without a fully sorted tree.
85  *
86  * Metadata scanning takes place in dsl_scan_visit(), which is called from
87  * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
88  * metadata on the pool, or we need to make room in memory because our
89  * queues are too large, dsl_scan_visit() is postponed and
90  * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
91  * that metadata scanning and queued I/O issuing are mutually exclusive. This
92  * allows us to provide maximum sequential I/O throughput for the majority of
93  * I/O's issued since sequential I/O performance is significantly negatively
94  * impacted if it is interleaved with random I/O.
95  *
96  * Implementation Notes
97  *
98  * One side effect of the queued scanning algorithm is that the scanning code
99  * needs to be notified whenever a block is freed. This is needed to allow
100  * the scanning code to remove these I/Os from the issuing queue. Additionally,
101  * we do not attempt to queue gang blocks to be issued sequentially since this
102  * is very hard to do and would have an extremely limited performance benefit.
103  * Instead, we simply issue gang I/Os as soon as we find them using the legacy
104  * algorithm.
105  *
106  * Backwards compatibility
107  *
108  * This new algorithm is backwards compatible with the legacy on-disk data
109  * structures (and therefore does not require a new feature flag).
110  * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
111  * will stop scanning metadata (in logical order) and wait for all outstanding
112  * sorted I/O to complete. Once this is done, we write out a checkpoint
113  * bookmark, indicating that we have scanned everything logically before it.
114  * If the pool is imported on a machine without the new sorting algorithm,
115  * the scan simply resumes from the last checkpoint using the legacy algorithm.
116  */
117 
118 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
119     const zbookmark_phys_t *);
120 
121 static scan_cb_t dsl_scan_scrub_cb;
122 
123 static int scan_ds_queue_compare(const void *a, const void *b);
124 static int scan_prefetch_queue_compare(const void *a, const void *b);
125 static void scan_ds_queue_clear(dsl_scan_t *scn);
126 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
127 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
128     uint64_t *txg);
129 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
130 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
131 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
132 static uint64_t dsl_scan_count_data_disks(spa_t *spa);
133 static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb);
134 
135 extern uint_t zfs_vdev_async_write_active_min_dirty_percent;
136 static int zfs_scan_blkstats = 0;
137 
138 /*
139  * 'zpool status' uses bytes processed per pass to report throughput and
140  * estimate time remaining.  We define a pass to start when the scanning
141  * phase completes for a sequential resilver.  Optionally, this value
142  * may be used to reset the pass statistics every N txgs to provide an
143  * estimated completion time based on currently observed performance.
144  */
145 static uint_t zfs_scan_report_txgs = 0;
146 
147 /*
148  * By default zfs will check to ensure it is not over the hard memory
149  * limit before each txg. If finer-grained control of this is needed
150  * this value can be set to 1 to enable checking before scanning each
151  * block.
152  */
153 static int zfs_scan_strict_mem_lim = B_FALSE;
154 
155 /*
156  * Maximum number of parallelly executed bytes per leaf vdev. We attempt
157  * to strike a balance here between keeping the vdev queues full of I/Os
158  * at all times and not overflowing the queues to cause long latency,
159  * which would cause long txg sync times. No matter what, we will not
160  * overload the drives with I/O, since that is protected by
161  * zfs_vdev_scrub_max_active.
162  */
163 static uint64_t zfs_scan_vdev_limit = 16 << 20;
164 
165 static uint_t zfs_scan_issue_strategy = 0;
166 
167 /* don't queue & sort zios, go direct */
168 static int zfs_scan_legacy = B_FALSE;
169 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
170 
171 /*
172  * fill_weight is non-tunable at runtime, so we copy it at module init from
173  * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
174  * break queue sorting.
175  */
176 static uint_t zfs_scan_fill_weight = 3;
177 static uint64_t fill_weight;
178 
179 /* See dsl_scan_should_clear() for details on the memory limit tunables */
180 static const uint64_t zfs_scan_mem_lim_min = 16 << 20;	/* bytes */
181 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20;	/* bytes */
182 
183 
184 /* fraction of physmem */
185 static uint_t zfs_scan_mem_lim_fact = 20;
186 
187 /* fraction of mem lim above */
188 static uint_t zfs_scan_mem_lim_soft_fact = 20;
189 
190 /* minimum milliseconds to scrub per txg */
191 static uint_t zfs_scrub_min_time_ms = 1000;
192 
193 /* minimum milliseconds to obsolete per txg */
194 static uint_t zfs_obsolete_min_time_ms = 500;
195 
196 /* minimum milliseconds to free per txg */
197 static uint_t zfs_free_min_time_ms = 1000;
198 
199 /* minimum milliseconds to resilver per txg */
200 static uint_t zfs_resilver_min_time_ms = 3000;
201 
202 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */
203 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
204 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
205 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
206 static const ddt_class_t zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
207 /* max number of blocks to free in a single TXG */
208 static uint64_t zfs_async_block_max_blocks = UINT64_MAX;
209 /* max number of dedup blocks to free in a single TXG */
210 static uint64_t zfs_max_async_dedup_frees = 100000;
211 
212 /* set to disable resilver deferring */
213 static int zfs_resilver_disable_defer = B_FALSE;
214 
215 /* Don't defer a resilver if the one in progress only got this far: */
216 static uint_t zfs_resilver_defer_percent = 10;
217 
218 /*
219  * We wait a few txgs after importing a pool to begin scanning so that
220  * the import / mounting code isn't held up by scrub / resilver IO.
221  * Unfortunately, it is a bit difficult to determine exactly how long
222  * this will take since userspace will trigger fs mounts asynchronously
223  * and the kernel will create zvol minors asynchronously. As a result,
224  * the value provided here is a bit arbitrary, but represents a
225  * reasonable estimate of how many txgs it will take to finish fully
226  * importing a pool
227  */
228 #define	SCAN_IMPORT_WAIT_TXGS 		5
229 
230 #define	DSL_SCAN_IS_SCRUB_RESILVER(scn) \
231 	((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
232 	(scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
233 
234 #define	DSL_SCAN_IS_SCRUB(scn)		\
235 	((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB)
236 
237 /*
238  * Enable/disable the processing of the free_bpobj object.
239  */
240 static int zfs_free_bpobj_enabled = 1;
241 
242 /* Error blocks to be scrubbed in one txg. */
243 static uint_t zfs_scrub_error_blocks_per_txg = 1 << 12;
244 
245 /* the order has to match pool_scan_type */
246 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
247 	NULL,
248 	dsl_scan_scrub_cb,	/* POOL_SCAN_SCRUB */
249 	dsl_scan_scrub_cb,	/* POOL_SCAN_RESILVER */
250 };
251 
252 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
253 typedef struct {
254 	uint64_t	sds_dsobj;
255 	uint64_t	sds_txg;
256 	avl_node_t	sds_node;
257 } scan_ds_t;
258 
259 /*
260  * This controls what conditions are placed on dsl_scan_sync_state():
261  * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
262  * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
263  * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
264  *	write out the scn_phys_cached version.
265  * See dsl_scan_sync_state for details.
266  */
267 typedef enum {
268 	SYNC_OPTIONAL,
269 	SYNC_MANDATORY,
270 	SYNC_CACHED
271 } state_sync_type_t;
272 
273 /*
274  * This struct represents the minimum information needed to reconstruct a
275  * zio for sequential scanning. This is useful because many of these will
276  * accumulate in the sequential IO queues before being issued, so saving
277  * memory matters here.
278  */
279 typedef struct scan_io {
280 	/* fields from blkptr_t */
281 	uint64_t		sio_blk_prop;
282 	uint64_t		sio_phys_birth;
283 	uint64_t		sio_birth;
284 	zio_cksum_t		sio_cksum;
285 	uint32_t		sio_nr_dvas;
286 
287 	/* fields from zio_t */
288 	uint32_t		sio_flags;
289 	zbookmark_phys_t	sio_zb;
290 
291 	/* members for queue sorting */
292 	union {
293 		avl_node_t	sio_addr_node; /* link into issuing queue */
294 		list_node_t	sio_list_node; /* link for issuing to disk */
295 	} sio_nodes;
296 
297 	/*
298 	 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
299 	 * depending on how many were in the original bp. Only the
300 	 * first DVA is really used for sorting and issuing purposes.
301 	 * The other DVAs (if provided) simply exist so that the zio
302 	 * layer can find additional copies to repair from in the
303 	 * event of an error. This array must go at the end of the
304 	 * struct to allow this for the variable number of elements.
305 	 */
306 	dva_t			sio_dva[];
307 } scan_io_t;
308 
309 #define	SIO_SET_OFFSET(sio, x)		DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
310 #define	SIO_SET_ASIZE(sio, x)		DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
311 #define	SIO_GET_OFFSET(sio)		DVA_GET_OFFSET(&(sio)->sio_dva[0])
312 #define	SIO_GET_ASIZE(sio)		DVA_GET_ASIZE(&(sio)->sio_dva[0])
313 #define	SIO_GET_END_OFFSET(sio)		\
314 	(SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
315 #define	SIO_GET_MUSED(sio)		\
316 	(sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
317 
318 struct dsl_scan_io_queue {
319 	dsl_scan_t	*q_scn; /* associated dsl_scan_t */
320 	vdev_t		*q_vd; /* top-level vdev that this queue represents */
321 	zio_t		*q_zio; /* scn_zio_root child for waiting on IO */
322 
323 	/* trees used for sorting I/Os and extents of I/Os */
324 	zfs_range_tree_t	*q_exts_by_addr;
325 	zfs_btree_t	q_exts_by_size;
326 	avl_tree_t	q_sios_by_addr;
327 	uint64_t	q_sio_memused;
328 	uint64_t	q_last_ext_addr;
329 
330 	/* members for zio rate limiting */
331 	uint64_t	q_maxinflight_bytes;
332 	uint64_t	q_inflight_bytes;
333 	kcondvar_t	q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
334 
335 	/* per txg statistics */
336 	uint64_t	q_total_seg_size_this_txg;
337 	uint64_t	q_segs_this_txg;
338 	uint64_t	q_total_zio_size_this_txg;
339 	uint64_t	q_zios_this_txg;
340 };
341 
342 /* private data for dsl_scan_prefetch_cb() */
343 typedef struct scan_prefetch_ctx {
344 	zfs_refcount_t spc_refcnt;	/* refcount for memory management */
345 	dsl_scan_t *spc_scn;		/* dsl_scan_t for the pool */
346 	boolean_t spc_root;		/* is this prefetch for an objset? */
347 	uint8_t spc_indblkshift;	/* dn_indblkshift of current dnode */
348 	uint16_t spc_datablkszsec;	/* dn_idatablkszsec of current dnode */
349 } scan_prefetch_ctx_t;
350 
351 /* private data for dsl_scan_prefetch() */
352 typedef struct scan_prefetch_issue_ctx {
353 	avl_node_t spic_avl_node;	/* link into scn->scn_prefetch_queue */
354 	scan_prefetch_ctx_t *spic_spc;	/* spc for the callback */
355 	blkptr_t spic_bp;		/* bp to prefetch */
356 	zbookmark_phys_t spic_zb;	/* bookmark to prefetch */
357 } scan_prefetch_issue_ctx_t;
358 
359 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
360     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
361 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
362     scan_io_t *sio);
363 
364 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
365 static void scan_io_queues_destroy(dsl_scan_t *scn);
366 
367 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
368 
369 /* sio->sio_nr_dvas must be set so we know which cache to free from */
370 static void
sio_free(scan_io_t * sio)371 sio_free(scan_io_t *sio)
372 {
373 	ASSERT3U(sio->sio_nr_dvas, >, 0);
374 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
375 
376 	kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
377 }
378 
379 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
380 static scan_io_t *
sio_alloc(unsigned short nr_dvas)381 sio_alloc(unsigned short nr_dvas)
382 {
383 	ASSERT3U(nr_dvas, >, 0);
384 	ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
385 
386 	return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
387 }
388 
389 void
scan_init(void)390 scan_init(void)
391 {
392 	/*
393 	 * This is used in ext_size_compare() to weight segments
394 	 * based on how sparse they are. This cannot be changed
395 	 * mid-scan and the tree comparison functions don't currently
396 	 * have a mechanism for passing additional context to the
397 	 * compare functions. Thus we store this value globally and
398 	 * we only allow it to be set at module initialization time
399 	 */
400 	fill_weight = zfs_scan_fill_weight;
401 
402 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
403 		char name[36];
404 
405 		(void) snprintf(name, sizeof (name), "sio_cache_%d", i);
406 		sio_cache[i] = kmem_cache_create(name,
407 		    (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
408 		    0, NULL, NULL, NULL, NULL, NULL, 0);
409 	}
410 }
411 
412 void
scan_fini(void)413 scan_fini(void)
414 {
415 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
416 		kmem_cache_destroy(sio_cache[i]);
417 	}
418 }
419 
420 static inline boolean_t
dsl_scan_is_running(const dsl_scan_t * scn)421 dsl_scan_is_running(const dsl_scan_t *scn)
422 {
423 	return (scn->scn_phys.scn_state == DSS_SCANNING);
424 }
425 
426 boolean_t
dsl_scan_resilvering(dsl_pool_t * dp)427 dsl_scan_resilvering(dsl_pool_t *dp)
428 {
429 	return (dsl_scan_is_running(dp->dp_scan) &&
430 	    dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
431 }
432 
433 static inline void
sio2bp(const scan_io_t * sio,blkptr_t * bp)434 sio2bp(const scan_io_t *sio, blkptr_t *bp)
435 {
436 	memset(bp, 0, sizeof (*bp));
437 	bp->blk_prop = sio->sio_blk_prop;
438 	BP_SET_PHYSICAL_BIRTH(bp, sio->sio_phys_birth);
439 	BP_SET_LOGICAL_BIRTH(bp, sio->sio_birth);
440 	bp->blk_fill = 1;	/* we always only work with data pointers */
441 	bp->blk_cksum = sio->sio_cksum;
442 
443 	ASSERT3U(sio->sio_nr_dvas, >, 0);
444 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
445 
446 	memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t));
447 }
448 
449 static inline void
bp2sio(const blkptr_t * bp,scan_io_t * sio,int dva_i)450 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
451 {
452 	sio->sio_blk_prop = bp->blk_prop;
453 	sio->sio_phys_birth = BP_GET_PHYSICAL_BIRTH(bp);
454 	sio->sio_birth = BP_GET_LOGICAL_BIRTH(bp);
455 	sio->sio_cksum = bp->blk_cksum;
456 	sio->sio_nr_dvas = BP_GET_NDVAS(bp);
457 
458 	/*
459 	 * Copy the DVAs to the sio. We need all copies of the block so
460 	 * that the self healing code can use the alternate copies if the
461 	 * first is corrupted. We want the DVA at index dva_i to be first
462 	 * in the sio since this is the primary one that we want to issue.
463 	 */
464 	for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
465 		sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
466 	}
467 }
468 
469 int
dsl_scan_init(dsl_pool_t * dp,uint64_t txg)470 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
471 {
472 	int err;
473 	dsl_scan_t *scn;
474 	spa_t *spa = dp->dp_spa;
475 	uint64_t f;
476 
477 	scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
478 	scn->scn_dp = dp;
479 
480 	/*
481 	 * It's possible that we're resuming a scan after a reboot so
482 	 * make sure that the scan_async_destroying flag is initialized
483 	 * appropriately.
484 	 */
485 	ASSERT(!scn->scn_async_destroying);
486 	scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
487 	    SPA_FEATURE_ASYNC_DESTROY);
488 
489 	/*
490 	 * Calculate the max number of in-flight bytes for pool-wide
491 	 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
492 	 * Limits for the issuing phase are done per top-level vdev and
493 	 * are handled separately.
494 	 */
495 	scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
496 	    zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
497 
498 	avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
499 	    offsetof(scan_ds_t, sds_node));
500 	mutex_init(&scn->scn_queue_lock, NULL, MUTEX_DEFAULT, NULL);
501 	avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
502 	    sizeof (scan_prefetch_issue_ctx_t),
503 	    offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
504 
505 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
506 	    "scrub_func", sizeof (uint64_t), 1, &f);
507 	if (err == 0) {
508 		/*
509 		 * There was an old-style scrub in progress.  Restart a
510 		 * new-style scrub from the beginning.
511 		 */
512 		scn->scn_restart_txg = txg;
513 		zfs_dbgmsg("old-style scrub was in progress for %s; "
514 		    "restarting new-style scrub in txg %llu",
515 		    spa->spa_name,
516 		    (longlong_t)scn->scn_restart_txg);
517 
518 		/*
519 		 * Load the queue obj from the old location so that it
520 		 * can be freed by dsl_scan_done().
521 		 */
522 		(void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
523 		    "scrub_queue", sizeof (uint64_t), 1,
524 		    &scn->scn_phys.scn_queue_obj);
525 	} else {
526 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
527 		    DMU_POOL_ERRORSCRUB, sizeof (uint64_t),
528 		    ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys);
529 
530 		if (err != 0 && err != ENOENT)
531 			return (err);
532 
533 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
534 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
535 		    &scn->scn_phys);
536 
537 		/*
538 		 * Detect if the pool contains the signature of #2094.  If it
539 		 * does properly update the scn->scn_phys structure and notify
540 		 * the administrator by setting an errata for the pool.
541 		 */
542 		if (err == EOVERFLOW) {
543 			uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
544 			VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
545 			VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
546 			    (23 * sizeof (uint64_t)));
547 
548 			err = zap_lookup(dp->dp_meta_objset,
549 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
550 			    sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
551 			if (err == 0) {
552 				uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
553 
554 				if (overflow & ~DSL_SCAN_FLAGS_MASK ||
555 				    scn->scn_async_destroying) {
556 					spa->spa_errata =
557 					    ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
558 					return (EOVERFLOW);
559 				}
560 
561 				memcpy(&scn->scn_phys, zaptmp,
562 				    SCAN_PHYS_NUMINTS * sizeof (uint64_t));
563 				scn->scn_phys.scn_flags = overflow;
564 
565 				/* Required scrub already in progress. */
566 				if (scn->scn_phys.scn_state == DSS_FINISHED ||
567 				    scn->scn_phys.scn_state == DSS_CANCELED)
568 					spa->spa_errata =
569 					    ZPOOL_ERRATA_ZOL_2094_SCRUB;
570 			}
571 		}
572 
573 		if (err == ENOENT)
574 			return (0);
575 		else if (err)
576 			return (err);
577 
578 		/*
579 		 * We might be restarting after a reboot, so jump the issued
580 		 * counter to how far we've scanned. We know we're consistent
581 		 * up to here.
582 		 */
583 		scn->scn_issued_before_pass = scn->scn_phys.scn_examined -
584 		    scn->scn_phys.scn_skipped;
585 
586 		if (dsl_scan_is_running(scn) &&
587 		    spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
588 			/*
589 			 * A new-type scrub was in progress on an old
590 			 * pool, and the pool was accessed by old
591 			 * software.  Restart from the beginning, since
592 			 * the old software may have changed the pool in
593 			 * the meantime.
594 			 */
595 			scn->scn_restart_txg = txg;
596 			zfs_dbgmsg("new-style scrub for %s was modified "
597 			    "by old software; restarting in txg %llu",
598 			    spa->spa_name,
599 			    (longlong_t)scn->scn_restart_txg);
600 		} else if (dsl_scan_resilvering(dp)) {
601 			/*
602 			 * If a resilver is in progress and there are already
603 			 * errors, restart it instead of finishing this scan and
604 			 * then restarting it. If there haven't been any errors
605 			 * then remember that the incore DTL is valid.
606 			 */
607 			if (scn->scn_phys.scn_errors > 0) {
608 				scn->scn_restart_txg = txg;
609 				zfs_dbgmsg("resilver can't excise DTL_MISSING "
610 				    "when finished; restarting on %s in txg "
611 				    "%llu",
612 				    spa->spa_name,
613 				    (u_longlong_t)scn->scn_restart_txg);
614 			} else {
615 				/* it's safe to excise DTL when finished */
616 				spa->spa_scrub_started = B_TRUE;
617 			}
618 		}
619 	}
620 
621 	memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
622 
623 	/* reload the queue into the in-core state */
624 	if (scn->scn_phys.scn_queue_obj != 0) {
625 		zap_cursor_t zc;
626 		zap_attribute_t *za = zap_attribute_alloc();
627 
628 		for (zap_cursor_init(&zc, dp->dp_meta_objset,
629 		    scn->scn_phys.scn_queue_obj);
630 		    zap_cursor_retrieve(&zc, za) == 0;
631 		    (void) zap_cursor_advance(&zc)) {
632 			scan_ds_queue_insert(scn,
633 			    zfs_strtonum(za->za_name, NULL),
634 			    za->za_first_integer);
635 		}
636 		zap_cursor_fini(&zc);
637 		zap_attribute_free(za);
638 	}
639 
640 	ddt_walk_init(spa, scn->scn_phys.scn_max_txg);
641 
642 	spa_scan_stat_init(spa);
643 	vdev_scan_stat_init(spa->spa_root_vdev);
644 
645 	return (0);
646 }
647 
648 void
dsl_scan_fini(dsl_pool_t * dp)649 dsl_scan_fini(dsl_pool_t *dp)
650 {
651 	if (dp->dp_scan != NULL) {
652 		dsl_scan_t *scn = dp->dp_scan;
653 
654 		if (scn->scn_taskq != NULL)
655 			taskq_destroy(scn->scn_taskq);
656 
657 		scan_ds_queue_clear(scn);
658 		avl_destroy(&scn->scn_queue);
659 		mutex_destroy(&scn->scn_queue_lock);
660 		scan_ds_prefetch_queue_clear(scn);
661 		avl_destroy(&scn->scn_prefetch_queue);
662 
663 		kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
664 		dp->dp_scan = NULL;
665 	}
666 }
667 
668 static boolean_t
dsl_scan_restarting(dsl_scan_t * scn,dmu_tx_t * tx)669 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
670 {
671 	return (scn->scn_restart_txg != 0 &&
672 	    scn->scn_restart_txg <= tx->tx_txg);
673 }
674 
675 boolean_t
dsl_scan_resilver_scheduled(dsl_pool_t * dp)676 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
677 {
678 	return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
679 	    (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
680 }
681 
682 boolean_t
dsl_scan_scrubbing(const dsl_pool_t * dp)683 dsl_scan_scrubbing(const dsl_pool_t *dp)
684 {
685 	dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
686 
687 	return (scn_phys->scn_state == DSS_SCANNING &&
688 	    scn_phys->scn_func == POOL_SCAN_SCRUB);
689 }
690 
691 boolean_t
dsl_errorscrubbing(const dsl_pool_t * dp)692 dsl_errorscrubbing(const dsl_pool_t *dp)
693 {
694 	dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys;
695 
696 	return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING &&
697 	    errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB);
698 }
699 
700 boolean_t
dsl_errorscrub_is_paused(const dsl_scan_t * scn)701 dsl_errorscrub_is_paused(const dsl_scan_t *scn)
702 {
703 	return (dsl_errorscrubbing(scn->scn_dp) &&
704 	    scn->errorscrub_phys.dep_paused_flags);
705 }
706 
707 boolean_t
dsl_scan_is_paused_scrub(const dsl_scan_t * scn)708 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
709 {
710 	return (dsl_scan_scrubbing(scn->scn_dp) &&
711 	    scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
712 }
713 
714 static void
dsl_errorscrub_sync_state(dsl_scan_t * scn,dmu_tx_t * tx)715 dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx)
716 {
717 	scn->errorscrub_phys.dep_cursor =
718 	    zap_cursor_serialize(&scn->errorscrub_cursor);
719 
720 	VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
721 	    DMU_POOL_DIRECTORY_OBJECT,
722 	    DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS,
723 	    &scn->errorscrub_phys, tx));
724 }
725 
726 static void
dsl_errorscrub_setup_sync(void * arg,dmu_tx_t * tx)727 dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx)
728 {
729 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
730 	pool_scan_func_t *funcp = arg;
731 	dsl_pool_t *dp = scn->scn_dp;
732 	spa_t *spa = dp->dp_spa;
733 
734 	ASSERT(!dsl_scan_is_running(scn));
735 	ASSERT(!dsl_errorscrubbing(scn->scn_dp));
736 	ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
737 
738 	memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
739 	scn->errorscrub_phys.dep_func = *funcp;
740 	scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING;
741 	scn->errorscrub_phys.dep_start_time = gethrestime_sec();
742 	scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa);
743 	scn->errorscrub_phys.dep_examined = 0;
744 	scn->errorscrub_phys.dep_errors = 0;
745 	scn->errorscrub_phys.dep_cursor = 0;
746 	zap_cursor_init_serialized(&scn->errorscrub_cursor,
747 	    spa->spa_meta_objset, spa->spa_errlog_last,
748 	    scn->errorscrub_phys.dep_cursor);
749 
750 	vdev_config_dirty(spa->spa_root_vdev);
751 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START);
752 
753 	dsl_errorscrub_sync_state(scn, tx);
754 
755 	spa_history_log_internal(spa, "error scrub setup", tx,
756 	    "func=%u mintxg=%u maxtxg=%llu",
757 	    *funcp, 0, (u_longlong_t)tx->tx_txg);
758 }
759 
760 static int
dsl_errorscrub_setup_check(void * arg,dmu_tx_t * tx)761 dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx)
762 {
763 	(void) arg;
764 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
765 
766 	if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) {
767 		return (SET_ERROR(EBUSY));
768 	}
769 
770 	if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) {
771 		return (ECANCELED);
772 	}
773 	return (0);
774 }
775 
776 /*
777  * Writes out a persistent dsl_scan_phys_t record to the pool directory.
778  * Because we can be running in the block sorting algorithm, we do not always
779  * want to write out the record, only when it is "safe" to do so. This safety
780  * condition is achieved by making sure that the sorting queues are empty
781  * (scn_queues_pending == 0). When this condition is not true, the sync'd state
782  * is inconsistent with how much actual scanning progress has been made. The
783  * kind of sync to be performed is specified by the sync_type argument. If the
784  * sync is optional, we only sync if the queues are empty. If the sync is
785  * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
786  * third possible state is a "cached" sync. This is done in response to:
787  * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
788  *	destroyed, so we wouldn't be able to restart scanning from it.
789  * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
790  *	superseded by a newer snapshot.
791  * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
792  *	swapped with its clone.
793  * In all cases, a cached sync simply rewrites the last record we've written,
794  * just slightly modified. For the modifications that are performed to the
795  * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
796  * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
797  */
798 static void
dsl_scan_sync_state(dsl_scan_t * scn,dmu_tx_t * tx,state_sync_type_t sync_type)799 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
800 {
801 	int i;
802 	spa_t *spa = scn->scn_dp->dp_spa;
803 
804 	ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0);
805 	if (scn->scn_queues_pending == 0) {
806 		for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
807 			vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
808 			dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
809 
810 			if (q == NULL)
811 				continue;
812 
813 			mutex_enter(&vd->vdev_scan_io_queue_lock);
814 			ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
815 			ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
816 			    NULL);
817 			ASSERT3P(zfs_range_tree_first(q->q_exts_by_addr), ==,
818 			    NULL);
819 			mutex_exit(&vd->vdev_scan_io_queue_lock);
820 		}
821 
822 		if (scn->scn_phys.scn_queue_obj != 0)
823 			scan_ds_queue_sync(scn, tx);
824 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
825 		    DMU_POOL_DIRECTORY_OBJECT,
826 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
827 		    &scn->scn_phys, tx));
828 		memcpy(&scn->scn_phys_cached, &scn->scn_phys,
829 		    sizeof (scn->scn_phys));
830 
831 		if (scn->scn_checkpointing)
832 			zfs_dbgmsg("finish scan checkpoint for %s",
833 			    spa->spa_name);
834 
835 		scn->scn_checkpointing = B_FALSE;
836 		scn->scn_last_checkpoint = ddi_get_lbolt();
837 	} else if (sync_type == SYNC_CACHED) {
838 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
839 		    DMU_POOL_DIRECTORY_OBJECT,
840 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
841 		    &scn->scn_phys_cached, tx));
842 	}
843 }
844 
845 int
dsl_scan_setup_check(void * arg,dmu_tx_t * tx)846 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
847 {
848 	(void) arg;
849 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
850 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
851 
852 	if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) ||
853 	    dsl_errorscrubbing(scn->scn_dp))
854 		return (SET_ERROR(EBUSY));
855 
856 	return (0);
857 }
858 
859 void
dsl_scan_setup_sync(void * arg,dmu_tx_t * tx)860 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
861 {
862 	setup_sync_arg_t *setup_sync_arg = (setup_sync_arg_t *)arg;
863 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
864 	dmu_object_type_t ot = 0;
865 	dsl_pool_t *dp = scn->scn_dp;
866 	spa_t *spa = dp->dp_spa;
867 
868 	ASSERT(!dsl_scan_is_running(scn));
869 	ASSERT3U(setup_sync_arg->func, >, POOL_SCAN_NONE);
870 	ASSERT3U(setup_sync_arg->func, <, POOL_SCAN_FUNCS);
871 	memset(&scn->scn_phys, 0, sizeof (scn->scn_phys));
872 
873 	/*
874 	 * If we are starting a fresh scrub, we erase the error scrub
875 	 * information from disk.
876 	 */
877 	memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
878 	dsl_errorscrub_sync_state(scn, tx);
879 
880 	scn->scn_phys.scn_func = setup_sync_arg->func;
881 	scn->scn_phys.scn_state = DSS_SCANNING;
882 	scn->scn_phys.scn_min_txg = setup_sync_arg->txgstart;
883 	if (setup_sync_arg->txgend == 0) {
884 		scn->scn_phys.scn_max_txg = tx->tx_txg;
885 	} else {
886 		scn->scn_phys.scn_max_txg = setup_sync_arg->txgend;
887 	}
888 	scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
889 	scn->scn_phys.scn_start_time = gethrestime_sec();
890 	scn->scn_phys.scn_errors = 0;
891 	scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
892 	scn->scn_issued_before_pass = 0;
893 	scn->scn_restart_txg = 0;
894 	scn->scn_done_txg = 0;
895 	scn->scn_last_checkpoint = 0;
896 	scn->scn_checkpointing = B_FALSE;
897 	spa_scan_stat_init(spa);
898 	vdev_scan_stat_init(spa->spa_root_vdev);
899 
900 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
901 		scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
902 
903 		/* rewrite all disk labels */
904 		vdev_config_dirty(spa->spa_root_vdev);
905 
906 		if (vdev_resilver_needed(spa->spa_root_vdev,
907 		    &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
908 			nvlist_t *aux = fnvlist_alloc();
909 			fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
910 			    "healing");
911 			spa_event_notify(spa, NULL, aux,
912 			    ESC_ZFS_RESILVER_START);
913 			nvlist_free(aux);
914 		} else {
915 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
916 		}
917 
918 		spa->spa_scrub_started = B_TRUE;
919 		/*
920 		 * If this is an incremental scrub, limit the DDT scrub phase
921 		 * to just the auto-ditto class (for correctness); the rest
922 		 * of the scrub should go faster using top-down pruning.
923 		 */
924 		if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
925 			scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
926 
927 		/*
928 		 * When starting a resilver clear any existing rebuild state.
929 		 * This is required to prevent stale rebuild status from
930 		 * being reported when a rebuild is run, then a resilver and
931 		 * finally a scrub.  In which case only the scrub status
932 		 * should be reported by 'zpool status'.
933 		 */
934 		if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
935 			vdev_t *rvd = spa->spa_root_vdev;
936 			for (uint64_t i = 0; i < rvd->vdev_children; i++) {
937 				vdev_t *vd = rvd->vdev_child[i];
938 				vdev_rebuild_clear_sync(
939 				    (void *)(uintptr_t)vd->vdev_id, tx);
940 			}
941 		}
942 	}
943 
944 	/* back to the generic stuff */
945 
946 	if (zfs_scan_blkstats) {
947 		if (dp->dp_blkstats == NULL) {
948 			dp->dp_blkstats =
949 			    vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
950 		}
951 		memset(&dp->dp_blkstats->zab_type, 0,
952 		    sizeof (dp->dp_blkstats->zab_type));
953 	} else {
954 		if (dp->dp_blkstats) {
955 			vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
956 			dp->dp_blkstats = NULL;
957 		}
958 	}
959 
960 	if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
961 		ot = DMU_OT_ZAP_OTHER;
962 
963 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
964 	    ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
965 
966 	memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
967 
968 	ddt_walk_init(spa, scn->scn_phys.scn_max_txg);
969 
970 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
971 
972 	spa_history_log_internal(spa, "scan setup", tx,
973 	    "func=%u mintxg=%llu maxtxg=%llu",
974 	    setup_sync_arg->func, (u_longlong_t)scn->scn_phys.scn_min_txg,
975 	    (u_longlong_t)scn->scn_phys.scn_max_txg);
976 }
977 
978 /*
979  * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub,
980  * error scrub or resilver. Can also be called to resume a paused scrub or
981  * error scrub.
982  */
983 int
dsl_scan(dsl_pool_t * dp,pool_scan_func_t func,uint64_t txgstart,uint64_t txgend)984 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func, uint64_t txgstart,
985     uint64_t txgend)
986 {
987 	spa_t *spa = dp->dp_spa;
988 	dsl_scan_t *scn = dp->dp_scan;
989 	setup_sync_arg_t setup_sync_arg;
990 
991 	if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0)) {
992 		return (EINVAL);
993 	}
994 
995 	/*
996 	 * Purge all vdev caches and probe all devices.  We do this here
997 	 * rather than in sync context because this requires a writer lock
998 	 * on the spa_config lock, which we can't do from sync context.  The
999 	 * spa_scrub_reopen flag indicates that vdev_open() should not
1000 	 * attempt to start another scrub.
1001 	 */
1002 	spa_vdev_state_enter(spa, SCL_NONE);
1003 	spa->spa_scrub_reopen = B_TRUE;
1004 	vdev_reopen(spa->spa_root_vdev);
1005 	spa->spa_scrub_reopen = B_FALSE;
1006 	(void) spa_vdev_state_exit(spa, NULL, 0);
1007 
1008 	if (func == POOL_SCAN_RESILVER) {
1009 		dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
1010 		return (0);
1011 	}
1012 
1013 	if (func == POOL_SCAN_ERRORSCRUB) {
1014 		if (dsl_errorscrub_is_paused(dp->dp_scan)) {
1015 			/*
1016 			 * got error scrub start cmd, resume paused error scrub.
1017 			 */
1018 			int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1019 			    POOL_SCRUB_NORMAL);
1020 			if (err == 0) {
1021 				spa_event_notify(spa, NULL, NULL,
1022 				    ESC_ZFS_ERRORSCRUB_RESUME);
1023 				return (ECANCELED);
1024 			}
1025 			return (SET_ERROR(err));
1026 		}
1027 
1028 		return (dsl_sync_task(spa_name(dp->dp_spa),
1029 		    dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync,
1030 		    &func, 0, ZFS_SPACE_CHECK_RESERVED));
1031 	}
1032 
1033 	if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
1034 		/* got scrub start cmd, resume paused scrub */
1035 		int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1036 		    POOL_SCRUB_NORMAL);
1037 		if (err == 0) {
1038 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
1039 			return (SET_ERROR(ECANCELED));
1040 		}
1041 		return (SET_ERROR(err));
1042 	}
1043 
1044 	setup_sync_arg.func = func;
1045 	setup_sync_arg.txgstart = txgstart;
1046 	setup_sync_arg.txgend = txgend;
1047 
1048 	return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
1049 	    dsl_scan_setup_sync, &setup_sync_arg, 0,
1050 	    ZFS_SPACE_CHECK_EXTRA_RESERVED));
1051 }
1052 
1053 static void
dsl_errorscrub_done(dsl_scan_t * scn,boolean_t complete,dmu_tx_t * tx)1054 dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1055 {
1056 	dsl_pool_t *dp = scn->scn_dp;
1057 	spa_t *spa = dp->dp_spa;
1058 
1059 	if (complete) {
1060 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH);
1061 		spa_history_log_internal(spa, "error scrub done", tx,
1062 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1063 	} else {
1064 		spa_history_log_internal(spa, "error scrub canceled", tx,
1065 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1066 	}
1067 
1068 	scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED;
1069 	spa->spa_scrub_active = B_FALSE;
1070 	spa_errlog_rotate(spa);
1071 	scn->errorscrub_phys.dep_end_time = gethrestime_sec();
1072 	zap_cursor_fini(&scn->errorscrub_cursor);
1073 
1074 	if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1075 		spa->spa_errata = 0;
1076 
1077 	ASSERT(!dsl_errorscrubbing(scn->scn_dp));
1078 }
1079 
1080 static void
dsl_scan_done(dsl_scan_t * scn,boolean_t complete,dmu_tx_t * tx)1081 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1082 {
1083 	static const char *old_names[] = {
1084 		"scrub_bookmark",
1085 		"scrub_ddt_bookmark",
1086 		"scrub_ddt_class_max",
1087 		"scrub_queue",
1088 		"scrub_min_txg",
1089 		"scrub_max_txg",
1090 		"scrub_func",
1091 		"scrub_errors",
1092 		NULL
1093 	};
1094 
1095 	dsl_pool_t *dp = scn->scn_dp;
1096 	spa_t *spa = dp->dp_spa;
1097 	int i;
1098 
1099 	/* Remove any remnants of an old-style scrub. */
1100 	for (i = 0; old_names[i]; i++) {
1101 		(void) zap_remove(dp->dp_meta_objset,
1102 		    DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
1103 	}
1104 
1105 	if (scn->scn_phys.scn_queue_obj != 0) {
1106 		VERIFY0(dmu_object_free(dp->dp_meta_objset,
1107 		    scn->scn_phys.scn_queue_obj, tx));
1108 		scn->scn_phys.scn_queue_obj = 0;
1109 	}
1110 	scan_ds_queue_clear(scn);
1111 	scan_ds_prefetch_queue_clear(scn);
1112 
1113 	scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1114 
1115 	/*
1116 	 * If we were "restarted" from a stopped state, don't bother
1117 	 * with anything else.
1118 	 */
1119 	if (!dsl_scan_is_running(scn)) {
1120 		ASSERT(!scn->scn_is_sorted);
1121 		return;
1122 	}
1123 
1124 	if (scn->scn_is_sorted) {
1125 		scan_io_queues_destroy(scn);
1126 		scn->scn_is_sorted = B_FALSE;
1127 
1128 		if (scn->scn_taskq != NULL) {
1129 			taskq_destroy(scn->scn_taskq);
1130 			scn->scn_taskq = NULL;
1131 		}
1132 	}
1133 
1134 	scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
1135 
1136 	spa_notify_waiters(spa);
1137 
1138 	if (dsl_scan_restarting(scn, tx)) {
1139 		spa_history_log_internal(spa, "scan aborted, restarting", tx,
1140 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1141 	} else if (!complete) {
1142 		spa_history_log_internal(spa, "scan cancelled", tx,
1143 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1144 	} else {
1145 		spa_history_log_internal(spa, "scan done", tx,
1146 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1147 		if (DSL_SCAN_IS_SCRUB(scn)) {
1148 			VERIFY0(zap_update(dp->dp_meta_objset,
1149 			    DMU_POOL_DIRECTORY_OBJECT,
1150 			    DMU_POOL_LAST_SCRUBBED_TXG,
1151 			    sizeof (uint64_t), 1,
1152 			    &scn->scn_phys.scn_max_txg, tx));
1153 			spa->spa_scrubbed_last_txg = scn->scn_phys.scn_max_txg;
1154 		}
1155 	}
1156 
1157 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
1158 		spa->spa_scrub_active = B_FALSE;
1159 
1160 		/*
1161 		 * If the scrub/resilver completed, update all DTLs to
1162 		 * reflect this.  Whether it succeeded or not, vacate
1163 		 * all temporary scrub DTLs.
1164 		 *
1165 		 * As the scrub does not currently support traversing
1166 		 * data that have been freed but are part of a checkpoint,
1167 		 * we don't mark the scrub as done in the DTLs as faults
1168 		 * may still exist in those vdevs.
1169 		 */
1170 		if (complete &&
1171 		    !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1172 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1173 			    scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
1174 
1175 			if (scn->scn_phys.scn_min_txg) {
1176 				nvlist_t *aux = fnvlist_alloc();
1177 				fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
1178 				    "healing");
1179 				spa_event_notify(spa, NULL, aux,
1180 				    ESC_ZFS_RESILVER_FINISH);
1181 				nvlist_free(aux);
1182 			} else {
1183 				spa_event_notify(spa, NULL, NULL,
1184 				    ESC_ZFS_SCRUB_FINISH);
1185 			}
1186 		} else {
1187 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1188 			    0, B_TRUE, B_FALSE);
1189 		}
1190 		spa_errlog_rotate(spa);
1191 
1192 		/*
1193 		 * Don't clear flag until after vdev_dtl_reassess to ensure that
1194 		 * DTL_MISSING will get updated when possible.
1195 		 */
1196 		spa->spa_scrub_started = B_FALSE;
1197 
1198 		/*
1199 		 * We may have finished replacing a device.
1200 		 * Let the async thread assess this and handle the detach.
1201 		 */
1202 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
1203 
1204 		/*
1205 		 * Clear any resilver_deferred flags in the config.
1206 		 * If there are drives that need resilvering, kick
1207 		 * off an asynchronous request to start resilver.
1208 		 * vdev_clear_resilver_deferred() may update the config
1209 		 * before the resilver can restart. In the event of
1210 		 * a crash during this period, the spa loading code
1211 		 * will find the drives that need to be resilvered
1212 		 * and start the resilver then.
1213 		 */
1214 		if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
1215 		    vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
1216 			spa_history_log_internal(spa,
1217 			    "starting deferred resilver", tx, "errors=%llu",
1218 			    (u_longlong_t)spa_approx_errlog_size(spa));
1219 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1220 		}
1221 
1222 		/* Clear recent error events (i.e. duplicate events tracking) */
1223 		if (complete)
1224 			zfs_ereport_clear(spa, NULL);
1225 	}
1226 
1227 	scn->scn_phys.scn_end_time = gethrestime_sec();
1228 
1229 	if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1230 		spa->spa_errata = 0;
1231 
1232 	ASSERT(!dsl_scan_is_running(scn));
1233 }
1234 
1235 static int
dsl_errorscrub_pause_resume_check(void * arg,dmu_tx_t * tx)1236 dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1237 {
1238 	pool_scrub_cmd_t *cmd = arg;
1239 	dsl_pool_t *dp = dmu_tx_pool(tx);
1240 	dsl_scan_t *scn = dp->dp_scan;
1241 
1242 	if (*cmd == POOL_SCRUB_PAUSE) {
1243 		/*
1244 		 * can't pause a error scrub when there is no in-progress
1245 		 * error scrub.
1246 		 */
1247 		if (!dsl_errorscrubbing(dp))
1248 			return (SET_ERROR(ENOENT));
1249 
1250 		/* can't pause a paused error scrub */
1251 		if (dsl_errorscrub_is_paused(scn))
1252 			return (SET_ERROR(EBUSY));
1253 	} else if (*cmd != POOL_SCRUB_NORMAL) {
1254 		return (SET_ERROR(ENOTSUP));
1255 	}
1256 
1257 	return (0);
1258 }
1259 
1260 static void
dsl_errorscrub_pause_resume_sync(void * arg,dmu_tx_t * tx)1261 dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1262 {
1263 	pool_scrub_cmd_t *cmd = arg;
1264 	dsl_pool_t *dp = dmu_tx_pool(tx);
1265 	spa_t *spa = dp->dp_spa;
1266 	dsl_scan_t *scn = dp->dp_scan;
1267 
1268 	if (*cmd == POOL_SCRUB_PAUSE) {
1269 		spa->spa_scan_pass_errorscrub_pause = gethrestime_sec();
1270 		scn->errorscrub_phys.dep_paused_flags = B_TRUE;
1271 		dsl_errorscrub_sync_state(scn, tx);
1272 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED);
1273 	} else {
1274 		ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1275 		if (dsl_errorscrub_is_paused(scn)) {
1276 			/*
1277 			 * We need to keep track of how much time we spend
1278 			 * paused per pass so that we can adjust the error scrub
1279 			 * rate shown in the output of 'zpool status'.
1280 			 */
1281 			spa->spa_scan_pass_errorscrub_spent_paused +=
1282 			    gethrestime_sec() -
1283 			    spa->spa_scan_pass_errorscrub_pause;
1284 
1285 			spa->spa_scan_pass_errorscrub_pause = 0;
1286 			scn->errorscrub_phys.dep_paused_flags = B_FALSE;
1287 
1288 			zap_cursor_init_serialized(
1289 			    &scn->errorscrub_cursor,
1290 			    spa->spa_meta_objset, spa->spa_errlog_last,
1291 			    scn->errorscrub_phys.dep_cursor);
1292 
1293 			dsl_errorscrub_sync_state(scn, tx);
1294 		}
1295 	}
1296 }
1297 
1298 static int
dsl_errorscrub_cancel_check(void * arg,dmu_tx_t * tx)1299 dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx)
1300 {
1301 	(void) arg;
1302 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1303 	/* can't cancel a error scrub when there is no one in-progress */
1304 	if (!dsl_errorscrubbing(scn->scn_dp))
1305 		return (SET_ERROR(ENOENT));
1306 	return (0);
1307 }
1308 
1309 static void
dsl_errorscrub_cancel_sync(void * arg,dmu_tx_t * tx)1310 dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx)
1311 {
1312 	(void) arg;
1313 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1314 
1315 	dsl_errorscrub_done(scn, B_FALSE, tx);
1316 	dsl_errorscrub_sync_state(scn, tx);
1317 	spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL,
1318 	    ESC_ZFS_ERRORSCRUB_ABORT);
1319 }
1320 
1321 static int
dsl_scan_cancel_check(void * arg,dmu_tx_t * tx)1322 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1323 {
1324 	(void) arg;
1325 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1326 
1327 	if (!dsl_scan_is_running(scn))
1328 		return (SET_ERROR(ENOENT));
1329 	return (0);
1330 }
1331 
1332 static void
dsl_scan_cancel_sync(void * arg,dmu_tx_t * tx)1333 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1334 {
1335 	(void) arg;
1336 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1337 
1338 	dsl_scan_done(scn, B_FALSE, tx);
1339 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1340 	spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1341 }
1342 
1343 int
dsl_scan_cancel(dsl_pool_t * dp)1344 dsl_scan_cancel(dsl_pool_t *dp)
1345 {
1346 	if (dsl_errorscrubbing(dp)) {
1347 		return (dsl_sync_task(spa_name(dp->dp_spa),
1348 		    dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync,
1349 		    NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1350 	}
1351 	return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1352 	    dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1353 }
1354 
1355 static int
dsl_scrub_pause_resume_check(void * arg,dmu_tx_t * tx)1356 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1357 {
1358 	pool_scrub_cmd_t *cmd = arg;
1359 	dsl_pool_t *dp = dmu_tx_pool(tx);
1360 	dsl_scan_t *scn = dp->dp_scan;
1361 
1362 	if (*cmd == POOL_SCRUB_PAUSE) {
1363 		/* can't pause a scrub when there is no in-progress scrub */
1364 		if (!dsl_scan_scrubbing(dp))
1365 			return (SET_ERROR(ENOENT));
1366 
1367 		/* can't pause a paused scrub */
1368 		if (dsl_scan_is_paused_scrub(scn))
1369 			return (SET_ERROR(EBUSY));
1370 	} else if (*cmd != POOL_SCRUB_NORMAL) {
1371 		return (SET_ERROR(ENOTSUP));
1372 	}
1373 
1374 	return (0);
1375 }
1376 
1377 static void
dsl_scrub_pause_resume_sync(void * arg,dmu_tx_t * tx)1378 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1379 {
1380 	pool_scrub_cmd_t *cmd = arg;
1381 	dsl_pool_t *dp = dmu_tx_pool(tx);
1382 	spa_t *spa = dp->dp_spa;
1383 	dsl_scan_t *scn = dp->dp_scan;
1384 
1385 	if (*cmd == POOL_SCRUB_PAUSE) {
1386 		/* can't pause a scrub when there is no in-progress scrub */
1387 		spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1388 		scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1389 		scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1390 		dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1391 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1392 		spa_notify_waiters(spa);
1393 	} else {
1394 		ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1395 		if (dsl_scan_is_paused_scrub(scn)) {
1396 			/*
1397 			 * We need to keep track of how much time we spend
1398 			 * paused per pass so that we can adjust the scrub rate
1399 			 * shown in the output of 'zpool status'
1400 			 */
1401 			spa->spa_scan_pass_scrub_spent_paused +=
1402 			    gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1403 			spa->spa_scan_pass_scrub_pause = 0;
1404 			scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1405 			scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1406 			dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1407 		}
1408 	}
1409 }
1410 
1411 /*
1412  * Set scrub pause/resume state if it makes sense to do so
1413  */
1414 int
dsl_scrub_set_pause_resume(const dsl_pool_t * dp,pool_scrub_cmd_t cmd)1415 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1416 {
1417 	if (dsl_errorscrubbing(dp)) {
1418 		return (dsl_sync_task(spa_name(dp->dp_spa),
1419 		    dsl_errorscrub_pause_resume_check,
1420 		    dsl_errorscrub_pause_resume_sync, &cmd, 3,
1421 		    ZFS_SPACE_CHECK_RESERVED));
1422 	}
1423 	return (dsl_sync_task(spa_name(dp->dp_spa),
1424 	    dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1425 	    ZFS_SPACE_CHECK_RESERVED));
1426 }
1427 
1428 
1429 /* start a new scan, or restart an existing one. */
1430 void
dsl_scan_restart_resilver(dsl_pool_t * dp,uint64_t txg)1431 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1432 {
1433 	if (txg == 0) {
1434 		dmu_tx_t *tx;
1435 		tx = dmu_tx_create_dd(dp->dp_mos_dir);
1436 		VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1437 
1438 		txg = dmu_tx_get_txg(tx);
1439 		dp->dp_scan->scn_restart_txg = txg;
1440 		dmu_tx_commit(tx);
1441 	} else {
1442 		dp->dp_scan->scn_restart_txg = txg;
1443 	}
1444 	zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1445 	    dp->dp_spa->spa_name, (longlong_t)txg);
1446 }
1447 
1448 void
dsl_free(dsl_pool_t * dp,uint64_t txg,const blkptr_t * bp)1449 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1450 {
1451 	zio_free(dp->dp_spa, txg, bp);
1452 }
1453 
1454 void
dsl_free_sync(zio_t * pio,dsl_pool_t * dp,uint64_t txg,const blkptr_t * bpp)1455 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1456 {
1457 	ASSERT(dsl_pool_sync_context(dp));
1458 	zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1459 }
1460 
1461 static int
scan_ds_queue_compare(const void * a,const void * b)1462 scan_ds_queue_compare(const void *a, const void *b)
1463 {
1464 	const scan_ds_t *sds_a = a, *sds_b = b;
1465 
1466 	if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1467 		return (-1);
1468 	if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1469 		return (0);
1470 	return (1);
1471 }
1472 
1473 static void
scan_ds_queue_clear(dsl_scan_t * scn)1474 scan_ds_queue_clear(dsl_scan_t *scn)
1475 {
1476 	void *cookie = NULL;
1477 	scan_ds_t *sds;
1478 	while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1479 		kmem_free(sds, sizeof (*sds));
1480 	}
1481 }
1482 
1483 static boolean_t
scan_ds_queue_contains(dsl_scan_t * scn,uint64_t dsobj,uint64_t * txg)1484 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1485 {
1486 	scan_ds_t srch, *sds;
1487 
1488 	srch.sds_dsobj = dsobj;
1489 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1490 	if (sds != NULL && txg != NULL)
1491 		*txg = sds->sds_txg;
1492 	return (sds != NULL);
1493 }
1494 
1495 static void
scan_ds_queue_insert(dsl_scan_t * scn,uint64_t dsobj,uint64_t txg)1496 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1497 {
1498 	scan_ds_t *sds;
1499 	avl_index_t where;
1500 
1501 	sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1502 	sds->sds_dsobj = dsobj;
1503 	sds->sds_txg = txg;
1504 
1505 	VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1506 	avl_insert(&scn->scn_queue, sds, where);
1507 }
1508 
1509 static void
scan_ds_queue_remove(dsl_scan_t * scn,uint64_t dsobj)1510 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1511 {
1512 	scan_ds_t srch, *sds;
1513 
1514 	srch.sds_dsobj = dsobj;
1515 
1516 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1517 	VERIFY(sds != NULL);
1518 	avl_remove(&scn->scn_queue, sds);
1519 	kmem_free(sds, sizeof (*sds));
1520 }
1521 
1522 static void
scan_ds_queue_sync(dsl_scan_t * scn,dmu_tx_t * tx)1523 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1524 {
1525 	dsl_pool_t *dp = scn->scn_dp;
1526 	spa_t *spa = dp->dp_spa;
1527 	dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1528 	    DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1529 
1530 	ASSERT0(scn->scn_queues_pending);
1531 	ASSERT(scn->scn_phys.scn_queue_obj != 0);
1532 
1533 	VERIFY0(dmu_object_free(dp->dp_meta_objset,
1534 	    scn->scn_phys.scn_queue_obj, tx));
1535 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1536 	    DMU_OT_NONE, 0, tx);
1537 	for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1538 	    sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1539 		VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1540 		    scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1541 		    sds->sds_txg, tx));
1542 	}
1543 }
1544 
1545 /*
1546  * Computes the memory limit state that we're currently in. A sorted scan
1547  * needs quite a bit of memory to hold the sorting queue, so we need to
1548  * reasonably constrain the size so it doesn't impact overall system
1549  * performance. We compute two limits:
1550  * 1) Hard memory limit: if the amount of memory used by the sorting
1551  *	queues on a pool gets above this value, we stop the metadata
1552  *	scanning portion and start issuing the queued up and sorted
1553  *	I/Os to reduce memory usage.
1554  *	This limit is calculated as a fraction of physmem (by default 5%).
1555  *	We constrain the lower bound of the hard limit to an absolute
1556  *	minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1557  *	the upper bound to 5% of the total pool size - no chance we'll
1558  *	ever need that much memory, but just to keep the value in check.
1559  * 2) Soft memory limit: once we hit the hard memory limit, we start
1560  *	issuing I/O to reduce queue memory usage, but we don't want to
1561  *	completely empty out the queues, since we might be able to find I/Os
1562  *	that will fill in the gaps of our non-sequential IOs at some point
1563  *	in the future. So we stop the issuing of I/Os once the amount of
1564  *	memory used drops below the soft limit (at which point we stop issuing
1565  *	I/O and start scanning metadata again).
1566  *
1567  *	This limit is calculated by subtracting a fraction of the hard
1568  *	limit from the hard limit. By default this fraction is 5%, so
1569  *	the soft limit is 95% of the hard limit. We cap the size of the
1570  *	difference between the hard and soft limits at an absolute
1571  *	maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1572  *	sufficient to not cause too frequent switching between the
1573  *	metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1574  *	worth of queues is about 1.2 GiB of on-pool data, so scanning
1575  *	that should take at least a decent fraction of a second).
1576  */
1577 static boolean_t
dsl_scan_should_clear(dsl_scan_t * scn)1578 dsl_scan_should_clear(dsl_scan_t *scn)
1579 {
1580 	spa_t *spa = scn->scn_dp->dp_spa;
1581 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1582 	uint64_t alloc, mlim_hard, mlim_soft, mused;
1583 
1584 	alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1585 	alloc += metaslab_class_get_alloc(spa_special_class(spa));
1586 	alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1587 
1588 	mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1589 	    zfs_scan_mem_lim_min);
1590 	mlim_hard = MIN(mlim_hard, alloc / 20);
1591 	mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1592 	    zfs_scan_mem_lim_soft_max);
1593 	mused = 0;
1594 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1595 		vdev_t *tvd = rvd->vdev_child[i];
1596 		dsl_scan_io_queue_t *queue;
1597 
1598 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
1599 		queue = tvd->vdev_scan_io_queue;
1600 		if (queue != NULL) {
1601 			/*
1602 			 * # of extents in exts_by_addr = # in exts_by_size.
1603 			 * B-tree efficiency is ~75%, but can be as low as 50%.
1604 			 */
1605 			mused += zfs_btree_numnodes(&queue->q_exts_by_size) * ((
1606 			    sizeof (zfs_range_seg_gap_t) + sizeof (uint64_t)) *
1607 			    3 / 2) + queue->q_sio_memused;
1608 		}
1609 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
1610 	}
1611 
1612 	dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1613 
1614 	if (mused == 0)
1615 		ASSERT0(scn->scn_queues_pending);
1616 
1617 	/*
1618 	 * If we are above our hard limit, we need to clear out memory.
1619 	 * If we are below our soft limit, we need to accumulate sequential IOs.
1620 	 * Otherwise, we should keep doing whatever we are currently doing.
1621 	 */
1622 	if (mused >= mlim_hard)
1623 		return (B_TRUE);
1624 	else if (mused < mlim_soft)
1625 		return (B_FALSE);
1626 	else
1627 		return (scn->scn_clearing);
1628 }
1629 
1630 static boolean_t
dsl_scan_check_suspend(dsl_scan_t * scn,const zbookmark_phys_t * zb)1631 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1632 {
1633 	/* we never skip user/group accounting objects */
1634 	if (zb && (int64_t)zb->zb_object < 0)
1635 		return (B_FALSE);
1636 
1637 	if (scn->scn_suspending)
1638 		return (B_TRUE); /* we're already suspending */
1639 
1640 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1641 		return (B_FALSE); /* we're resuming */
1642 
1643 	/* We only know how to resume from level-0 and objset blocks. */
1644 	if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1645 		return (B_FALSE);
1646 
1647 	/*
1648 	 * We suspend if:
1649 	 *  - we have scanned for at least the minimum time (default 1 sec
1650 	 *    for scrub, 3 sec for resilver), and either we have sufficient
1651 	 *    dirty data that we are starting to write more quickly
1652 	 *    (default 30%), someone is explicitly waiting for this txg
1653 	 *    to complete, or we have used up all of the time in the txg
1654 	 *    timeout (default 5 sec).
1655 	 *  or
1656 	 *  - the spa is shutting down because this pool is being exported
1657 	 *    or the machine is rebooting.
1658 	 *  or
1659 	 *  - the scan queue has reached its memory use limit
1660 	 */
1661 	uint64_t curr_time_ns = gethrtime();
1662 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1663 	uint64_t sync_time_ns = curr_time_ns -
1664 	    scn->scn_dp->dp_spa->spa_sync_starttime;
1665 	uint64_t dirty_min_bytes = zfs_dirty_data_max *
1666 	    zfs_vdev_async_write_active_min_dirty_percent / 100;
1667 	uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1668 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1669 
1670 	if ((NSEC2MSEC(scan_time_ns) > mintime &&
1671 	    (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
1672 	    txg_sync_waiting(scn->scn_dp) ||
1673 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1674 	    spa_shutting_down(scn->scn_dp->dp_spa) ||
1675 	    (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn)) ||
1676 	    !ddt_walk_ready(scn->scn_dp->dp_spa)) {
1677 		if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1678 			dprintf("suspending at first available bookmark "
1679 			    "%llx/%llx/%llx/%llx\n",
1680 			    (longlong_t)zb->zb_objset,
1681 			    (longlong_t)zb->zb_object,
1682 			    (longlong_t)zb->zb_level,
1683 			    (longlong_t)zb->zb_blkid);
1684 			SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1685 			    zb->zb_objset, 0, 0, 0);
1686 		} else if (zb != NULL) {
1687 			dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1688 			    (longlong_t)zb->zb_objset,
1689 			    (longlong_t)zb->zb_object,
1690 			    (longlong_t)zb->zb_level,
1691 			    (longlong_t)zb->zb_blkid);
1692 			scn->scn_phys.scn_bookmark = *zb;
1693 		} else {
1694 #ifdef ZFS_DEBUG
1695 			dsl_scan_phys_t *scnp = &scn->scn_phys;
1696 			dprintf("suspending at at DDT bookmark "
1697 			    "%llx/%llx/%llx/%llx\n",
1698 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1699 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1700 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1701 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1702 #endif
1703 		}
1704 		scn->scn_suspending = B_TRUE;
1705 		return (B_TRUE);
1706 	}
1707 	return (B_FALSE);
1708 }
1709 
1710 static boolean_t
dsl_error_scrub_check_suspend(dsl_scan_t * scn,const zbookmark_phys_t * zb)1711 dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1712 {
1713 	/*
1714 	 * We suspend if:
1715 	 *  - we have scrubbed for at least the minimum time (default 1 sec
1716 	 *    for error scrub), someone is explicitly waiting for this txg
1717 	 *    to complete, or we have used up all of the time in the txg
1718 	 *    timeout (default 5 sec).
1719 	 *  or
1720 	 *  - the spa is shutting down because this pool is being exported
1721 	 *    or the machine is rebooting.
1722 	 */
1723 	uint64_t curr_time_ns = gethrtime();
1724 	uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time;
1725 	uint64_t sync_time_ns = curr_time_ns -
1726 	    scn->scn_dp->dp_spa->spa_sync_starttime;
1727 	int mintime = zfs_scrub_min_time_ms;
1728 
1729 	if ((NSEC2MSEC(error_scrub_time_ns) > mintime &&
1730 	    (txg_sync_waiting(scn->scn_dp) ||
1731 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1732 	    spa_shutting_down(scn->scn_dp->dp_spa)) {
1733 		if (zb) {
1734 			dprintf("error scrub suspending at bookmark "
1735 			    "%llx/%llx/%llx/%llx\n",
1736 			    (longlong_t)zb->zb_objset,
1737 			    (longlong_t)zb->zb_object,
1738 			    (longlong_t)zb->zb_level,
1739 			    (longlong_t)zb->zb_blkid);
1740 		}
1741 		return (B_TRUE);
1742 	}
1743 	return (B_FALSE);
1744 }
1745 
1746 typedef struct zil_scan_arg {
1747 	dsl_pool_t	*zsa_dp;
1748 	zil_header_t	*zsa_zh;
1749 } zil_scan_arg_t;
1750 
1751 static int
dsl_scan_zil_block(zilog_t * zilog,const blkptr_t * bp,void * arg,uint64_t claim_txg)1752 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
1753     uint64_t claim_txg)
1754 {
1755 	(void) zilog;
1756 	zil_scan_arg_t *zsa = arg;
1757 	dsl_pool_t *dp = zsa->zsa_dp;
1758 	dsl_scan_t *scn = dp->dp_scan;
1759 	zil_header_t *zh = zsa->zsa_zh;
1760 	zbookmark_phys_t zb;
1761 
1762 	ASSERT(!BP_IS_REDACTED(bp));
1763 	if (BP_IS_HOLE(bp) ||
1764 	    BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1765 		return (0);
1766 
1767 	/*
1768 	 * One block ("stubby") can be allocated a long time ago; we
1769 	 * want to visit that one because it has been allocated
1770 	 * (on-disk) even if it hasn't been claimed (even though for
1771 	 * scrub there's nothing to do to it).
1772 	 */
1773 	if (claim_txg == 0 &&
1774 	    BP_GET_LOGICAL_BIRTH(bp) >= spa_min_claim_txg(dp->dp_spa))
1775 		return (0);
1776 
1777 	SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1778 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1779 
1780 	VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1781 	return (0);
1782 }
1783 
1784 static int
dsl_scan_zil_record(zilog_t * zilog,const lr_t * lrc,void * arg,uint64_t claim_txg)1785 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
1786     uint64_t claim_txg)
1787 {
1788 	(void) zilog;
1789 	if (lrc->lrc_txtype == TX_WRITE) {
1790 		zil_scan_arg_t *zsa = arg;
1791 		dsl_pool_t *dp = zsa->zsa_dp;
1792 		dsl_scan_t *scn = dp->dp_scan;
1793 		zil_header_t *zh = zsa->zsa_zh;
1794 		const lr_write_t *lr = (const lr_write_t *)lrc;
1795 		const blkptr_t *bp = &lr->lr_blkptr;
1796 		zbookmark_phys_t zb;
1797 
1798 		ASSERT(!BP_IS_REDACTED(bp));
1799 		if (BP_IS_HOLE(bp) ||
1800 		    BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1801 			return (0);
1802 
1803 		/*
1804 		 * birth can be < claim_txg if this record's txg is
1805 		 * already txg sync'ed (but this log block contains
1806 		 * other records that are not synced)
1807 		 */
1808 		if (claim_txg == 0 || BP_GET_LOGICAL_BIRTH(bp) < claim_txg)
1809 			return (0);
1810 
1811 		ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
1812 		SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1813 		    lr->lr_foid, ZB_ZIL_LEVEL,
1814 		    lr->lr_offset / BP_GET_LSIZE(bp));
1815 
1816 		VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1817 	}
1818 	return (0);
1819 }
1820 
1821 static void
dsl_scan_zil(dsl_pool_t * dp,zil_header_t * zh)1822 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1823 {
1824 	uint64_t claim_txg = zh->zh_claim_txg;
1825 	zil_scan_arg_t zsa = { dp, zh };
1826 	zilog_t *zilog;
1827 
1828 	ASSERT(spa_writeable(dp->dp_spa));
1829 
1830 	/*
1831 	 * We only want to visit blocks that have been claimed but not yet
1832 	 * replayed (or, in read-only mode, blocks that *would* be claimed).
1833 	 */
1834 	if (claim_txg == 0)
1835 		return;
1836 
1837 	zilog = zil_alloc(dp->dp_meta_objset, zh);
1838 
1839 	(void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1840 	    claim_txg, B_FALSE);
1841 
1842 	zil_free(zilog);
1843 }
1844 
1845 /*
1846  * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1847  * here is to sort the AVL tree by the order each block will be needed.
1848  */
1849 static int
scan_prefetch_queue_compare(const void * a,const void * b)1850 scan_prefetch_queue_compare(const void *a, const void *b)
1851 {
1852 	const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1853 	const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1854 	const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1855 
1856 	return (zbookmark_compare(spc_a->spc_datablkszsec,
1857 	    spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1858 	    spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1859 }
1860 
1861 static void
scan_prefetch_ctx_rele(scan_prefetch_ctx_t * spc,const void * tag)1862 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag)
1863 {
1864 	if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1865 		zfs_refcount_destroy(&spc->spc_refcnt);
1866 		kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1867 	}
1868 }
1869 
1870 static scan_prefetch_ctx_t *
scan_prefetch_ctx_create(dsl_scan_t * scn,dnode_phys_t * dnp,const void * tag)1871 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag)
1872 {
1873 	scan_prefetch_ctx_t *spc;
1874 
1875 	spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1876 	zfs_refcount_create(&spc->spc_refcnt);
1877 	zfs_refcount_add(&spc->spc_refcnt, tag);
1878 	spc->spc_scn = scn;
1879 	if (dnp != NULL) {
1880 		spc->spc_datablkszsec = dnp->dn_datablkszsec;
1881 		spc->spc_indblkshift = dnp->dn_indblkshift;
1882 		spc->spc_root = B_FALSE;
1883 	} else {
1884 		spc->spc_datablkszsec = 0;
1885 		spc->spc_indblkshift = 0;
1886 		spc->spc_root = B_TRUE;
1887 	}
1888 
1889 	return (spc);
1890 }
1891 
1892 static void
scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t * spc,const void * tag)1893 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag)
1894 {
1895 	zfs_refcount_add(&spc->spc_refcnt, tag);
1896 }
1897 
1898 static void
scan_ds_prefetch_queue_clear(dsl_scan_t * scn)1899 scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1900 {
1901 	spa_t *spa = scn->scn_dp->dp_spa;
1902 	void *cookie = NULL;
1903 	scan_prefetch_issue_ctx_t *spic = NULL;
1904 
1905 	mutex_enter(&spa->spa_scrub_lock);
1906 	while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1907 	    &cookie)) != NULL) {
1908 		scan_prefetch_ctx_rele(spic->spic_spc, scn);
1909 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1910 	}
1911 	mutex_exit(&spa->spa_scrub_lock);
1912 }
1913 
1914 static boolean_t
dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t * spc,const zbookmark_phys_t * zb)1915 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1916     const zbookmark_phys_t *zb)
1917 {
1918 	zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1919 	dnode_phys_t tmp_dnp;
1920 	dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1921 
1922 	if (zb->zb_objset != last_zb->zb_objset)
1923 		return (B_TRUE);
1924 	if ((int64_t)zb->zb_object < 0)
1925 		return (B_FALSE);
1926 
1927 	tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1928 	tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1929 
1930 	if (zbookmark_subtree_completed(dnp, zb, last_zb))
1931 		return (B_TRUE);
1932 
1933 	return (B_FALSE);
1934 }
1935 
1936 static void
dsl_scan_prefetch(scan_prefetch_ctx_t * spc,blkptr_t * bp,zbookmark_phys_t * zb)1937 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1938 {
1939 	avl_index_t idx;
1940 	dsl_scan_t *scn = spc->spc_scn;
1941 	spa_t *spa = scn->scn_dp->dp_spa;
1942 	scan_prefetch_issue_ctx_t *spic;
1943 
1944 	if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1945 		return;
1946 
1947 	if (BP_IS_HOLE(bp) ||
1948 	    BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg ||
1949 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1950 	    BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1951 		return;
1952 
1953 	if (dsl_scan_check_prefetch_resume(spc, zb))
1954 		return;
1955 
1956 	scan_prefetch_ctx_add_ref(spc, scn);
1957 	spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1958 	spic->spic_spc = spc;
1959 	spic->spic_bp = *bp;
1960 	spic->spic_zb = *zb;
1961 
1962 	/*
1963 	 * Add the IO to the queue of blocks to prefetch. This allows us to
1964 	 * prioritize blocks that we will need first for the main traversal
1965 	 * thread.
1966 	 */
1967 	mutex_enter(&spa->spa_scrub_lock);
1968 	if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1969 		/* this block is already queued for prefetch */
1970 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1971 		scan_prefetch_ctx_rele(spc, scn);
1972 		mutex_exit(&spa->spa_scrub_lock);
1973 		return;
1974 	}
1975 
1976 	avl_insert(&scn->scn_prefetch_queue, spic, idx);
1977 	cv_broadcast(&spa->spa_scrub_io_cv);
1978 	mutex_exit(&spa->spa_scrub_lock);
1979 }
1980 
1981 static void
dsl_scan_prefetch_dnode(dsl_scan_t * scn,dnode_phys_t * dnp,uint64_t objset,uint64_t object)1982 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1983     uint64_t objset, uint64_t object)
1984 {
1985 	int i;
1986 	zbookmark_phys_t zb;
1987 	scan_prefetch_ctx_t *spc;
1988 
1989 	if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1990 		return;
1991 
1992 	SET_BOOKMARK(&zb, objset, object, 0, 0);
1993 
1994 	spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1995 
1996 	for (i = 0; i < dnp->dn_nblkptr; i++) {
1997 		zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1998 		zb.zb_blkid = i;
1999 		dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
2000 	}
2001 
2002 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2003 		zb.zb_level = 0;
2004 		zb.zb_blkid = DMU_SPILL_BLKID;
2005 		dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
2006 	}
2007 
2008 	scan_prefetch_ctx_rele(spc, FTAG);
2009 }
2010 
2011 static void
dsl_scan_prefetch_cb(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * private)2012 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
2013     arc_buf_t *buf, void *private)
2014 {
2015 	(void) zio;
2016 	scan_prefetch_ctx_t *spc = private;
2017 	dsl_scan_t *scn = spc->spc_scn;
2018 	spa_t *spa = scn->scn_dp->dp_spa;
2019 
2020 	/* broadcast that the IO has completed for rate limiting purposes */
2021 	mutex_enter(&spa->spa_scrub_lock);
2022 	ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
2023 	spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
2024 	cv_broadcast(&spa->spa_scrub_io_cv);
2025 	mutex_exit(&spa->spa_scrub_lock);
2026 
2027 	/* if there was an error or we are done prefetching, just cleanup */
2028 	if (buf == NULL || scn->scn_prefetch_stop)
2029 		goto out;
2030 
2031 	if (BP_GET_LEVEL(bp) > 0) {
2032 		int i;
2033 		blkptr_t *cbp;
2034 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2035 		zbookmark_phys_t czb;
2036 
2037 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2038 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2039 			    zb->zb_level - 1, zb->zb_blkid * epb + i);
2040 			dsl_scan_prefetch(spc, cbp, &czb);
2041 		}
2042 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2043 		dnode_phys_t *cdnp;
2044 		int i;
2045 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2046 
2047 		for (i = 0, cdnp = buf->b_data; i < epb;
2048 		    i += cdnp->dn_extra_slots + 1,
2049 		    cdnp += cdnp->dn_extra_slots + 1) {
2050 			dsl_scan_prefetch_dnode(scn, cdnp,
2051 			    zb->zb_objset, zb->zb_blkid * epb + i);
2052 		}
2053 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2054 		objset_phys_t *osp = buf->b_data;
2055 
2056 		dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
2057 		    zb->zb_objset, DMU_META_DNODE_OBJECT);
2058 
2059 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
2060 			if (OBJSET_BUF_HAS_PROJECTUSED(buf)) {
2061 				dsl_scan_prefetch_dnode(scn,
2062 				    &osp->os_projectused_dnode, zb->zb_objset,
2063 				    DMU_PROJECTUSED_OBJECT);
2064 			}
2065 			dsl_scan_prefetch_dnode(scn,
2066 			    &osp->os_groupused_dnode, zb->zb_objset,
2067 			    DMU_GROUPUSED_OBJECT);
2068 			dsl_scan_prefetch_dnode(scn,
2069 			    &osp->os_userused_dnode, zb->zb_objset,
2070 			    DMU_USERUSED_OBJECT);
2071 		}
2072 	}
2073 
2074 out:
2075 	if (buf != NULL)
2076 		arc_buf_destroy(buf, private);
2077 	scan_prefetch_ctx_rele(spc, scn);
2078 }
2079 
2080 static void
dsl_scan_prefetch_thread(void * arg)2081 dsl_scan_prefetch_thread(void *arg)
2082 {
2083 	dsl_scan_t *scn = arg;
2084 	spa_t *spa = scn->scn_dp->dp_spa;
2085 	scan_prefetch_issue_ctx_t *spic;
2086 
2087 	/* loop until we are told to stop */
2088 	while (!scn->scn_prefetch_stop) {
2089 		arc_flags_t flags = ARC_FLAG_NOWAIT |
2090 		    ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
2091 		int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2092 
2093 		mutex_enter(&spa->spa_scrub_lock);
2094 
2095 		/*
2096 		 * Wait until we have an IO to issue and are not above our
2097 		 * maximum in flight limit.
2098 		 */
2099 		while (!scn->scn_prefetch_stop &&
2100 		    (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
2101 		    spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
2102 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2103 		}
2104 
2105 		/* recheck if we should stop since we waited for the cv */
2106 		if (scn->scn_prefetch_stop) {
2107 			mutex_exit(&spa->spa_scrub_lock);
2108 			break;
2109 		}
2110 
2111 		/* remove the prefetch IO from the tree */
2112 		spic = avl_first(&scn->scn_prefetch_queue);
2113 		spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
2114 		avl_remove(&scn->scn_prefetch_queue, spic);
2115 
2116 		mutex_exit(&spa->spa_scrub_lock);
2117 
2118 		if (BP_IS_PROTECTED(&spic->spic_bp)) {
2119 			ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
2120 			    BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
2121 			ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
2122 			zio_flags |= ZIO_FLAG_RAW;
2123 		}
2124 
2125 		/* We don't need data L1 buffer since we do not prefetch L0. */
2126 		blkptr_t *bp = &spic->spic_bp;
2127 		if (BP_GET_LEVEL(bp) == 1 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
2128 		    BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2129 			flags |= ARC_FLAG_NO_BUF;
2130 
2131 		/* issue the prefetch asynchronously */
2132 		(void) arc_read(scn->scn_zio_root, spa, bp,
2133 		    dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB,
2134 		    zio_flags, &flags, &spic->spic_zb);
2135 
2136 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2137 	}
2138 
2139 	ASSERT(scn->scn_prefetch_stop);
2140 
2141 	/* free any prefetches we didn't get to complete */
2142 	mutex_enter(&spa->spa_scrub_lock);
2143 	while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
2144 		avl_remove(&scn->scn_prefetch_queue, spic);
2145 		scan_prefetch_ctx_rele(spic->spic_spc, scn);
2146 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2147 	}
2148 	ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
2149 	mutex_exit(&spa->spa_scrub_lock);
2150 }
2151 
2152 static boolean_t
dsl_scan_check_resume(dsl_scan_t * scn,const dnode_phys_t * dnp,const zbookmark_phys_t * zb)2153 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
2154     const zbookmark_phys_t *zb)
2155 {
2156 	/*
2157 	 * We never skip over user/group accounting objects (obj<0)
2158 	 */
2159 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
2160 	    (int64_t)zb->zb_object >= 0) {
2161 		/*
2162 		 * If we already visited this bp & everything below (in
2163 		 * a prior txg sync), don't bother doing it again.
2164 		 */
2165 		if (zbookmark_subtree_completed(dnp, zb,
2166 		    &scn->scn_phys.scn_bookmark))
2167 			return (B_TRUE);
2168 
2169 		/*
2170 		 * If we found the block we're trying to resume from, or
2171 		 * we went past it, zero it out to indicate that it's OK
2172 		 * to start checking for suspending again.
2173 		 */
2174 		if (zbookmark_subtree_tbd(dnp, zb,
2175 		    &scn->scn_phys.scn_bookmark)) {
2176 			dprintf("resuming at %llx/%llx/%llx/%llx\n",
2177 			    (longlong_t)zb->zb_objset,
2178 			    (longlong_t)zb->zb_object,
2179 			    (longlong_t)zb->zb_level,
2180 			    (longlong_t)zb->zb_blkid);
2181 			memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb));
2182 		}
2183 	}
2184 	return (B_FALSE);
2185 }
2186 
2187 static void dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2188     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2189     dmu_objset_type_t ostype, dmu_tx_t *tx);
2190 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
2191     dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2192     dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
2193 
2194 /*
2195  * Return nonzero on i/o error.
2196  * Return new buf to write out in *bufp.
2197  */
2198 inline __attribute__((always_inline)) static int
dsl_scan_recurse(dsl_scan_t * scn,dsl_dataset_t * ds,dmu_objset_type_t ostype,dnode_phys_t * dnp,const blkptr_t * bp,const zbookmark_phys_t * zb,dmu_tx_t * tx)2199 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2200     dnode_phys_t *dnp, const blkptr_t *bp,
2201     const zbookmark_phys_t *zb, dmu_tx_t *tx)
2202 {
2203 	dsl_pool_t *dp = scn->scn_dp;
2204 	spa_t *spa = dp->dp_spa;
2205 	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2206 	int err;
2207 
2208 	ASSERT(!BP_IS_REDACTED(bp));
2209 
2210 	/*
2211 	 * There is an unlikely case of encountering dnodes with contradicting
2212 	 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
2213 	 * or modified before commit 4254acb was merged. As it is not possible
2214 	 * to know which of the two is correct, report an error.
2215 	 */
2216 	if (dnp != NULL &&
2217 	    dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) {
2218 		scn->scn_phys.scn_errors++;
2219 		spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
2220 		return (SET_ERROR(EINVAL));
2221 	}
2222 
2223 	if (BP_GET_LEVEL(bp) > 0) {
2224 		arc_flags_t flags = ARC_FLAG_WAIT;
2225 		int i;
2226 		blkptr_t *cbp;
2227 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2228 		arc_buf_t *buf;
2229 
2230 		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2231 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2232 		if (err) {
2233 			scn->scn_phys.scn_errors++;
2234 			return (err);
2235 		}
2236 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2237 			zbookmark_phys_t czb;
2238 
2239 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2240 			    zb->zb_level - 1,
2241 			    zb->zb_blkid * epb + i);
2242 			dsl_scan_visitbp(cbp, &czb, dnp,
2243 			    ds, scn, ostype, tx);
2244 		}
2245 		arc_buf_destroy(buf, &buf);
2246 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2247 		arc_flags_t flags = ARC_FLAG_WAIT;
2248 		dnode_phys_t *cdnp;
2249 		int i;
2250 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2251 		arc_buf_t *buf;
2252 
2253 		if (BP_IS_PROTECTED(bp)) {
2254 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
2255 			zio_flags |= ZIO_FLAG_RAW;
2256 		}
2257 
2258 		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2259 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2260 		if (err) {
2261 			scn->scn_phys.scn_errors++;
2262 			return (err);
2263 		}
2264 		for (i = 0, cdnp = buf->b_data; i < epb;
2265 		    i += cdnp->dn_extra_slots + 1,
2266 		    cdnp += cdnp->dn_extra_slots + 1) {
2267 			dsl_scan_visitdnode(scn, ds, ostype,
2268 			    cdnp, zb->zb_blkid * epb + i, tx);
2269 		}
2270 
2271 		arc_buf_destroy(buf, &buf);
2272 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2273 		arc_flags_t flags = ARC_FLAG_WAIT;
2274 		objset_phys_t *osp;
2275 		arc_buf_t *buf;
2276 
2277 		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2278 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2279 		if (err) {
2280 			scn->scn_phys.scn_errors++;
2281 			return (err);
2282 		}
2283 
2284 		osp = buf->b_data;
2285 
2286 		dsl_scan_visitdnode(scn, ds, osp->os_type,
2287 		    &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
2288 
2289 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
2290 			/*
2291 			 * We also always visit user/group/project accounting
2292 			 * objects, and never skip them, even if we are
2293 			 * suspending. This is necessary so that the
2294 			 * space deltas from this txg get integrated.
2295 			 */
2296 			if (OBJSET_BUF_HAS_PROJECTUSED(buf))
2297 				dsl_scan_visitdnode(scn, ds, osp->os_type,
2298 				    &osp->os_projectused_dnode,
2299 				    DMU_PROJECTUSED_OBJECT, tx);
2300 			dsl_scan_visitdnode(scn, ds, osp->os_type,
2301 			    &osp->os_groupused_dnode,
2302 			    DMU_GROUPUSED_OBJECT, tx);
2303 			dsl_scan_visitdnode(scn, ds, osp->os_type,
2304 			    &osp->os_userused_dnode,
2305 			    DMU_USERUSED_OBJECT, tx);
2306 		}
2307 		arc_buf_destroy(buf, &buf);
2308 	} else if (zfs_blkptr_verify(spa, bp,
2309 	    BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2310 		/*
2311 		 * Sanity check the block pointer contents, this is handled
2312 		 * by arc_read() for the cases above.
2313 		 */
2314 		scn->scn_phys.scn_errors++;
2315 		spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
2316 		return (SET_ERROR(EINVAL));
2317 	}
2318 
2319 	return (0);
2320 }
2321 
2322 inline __attribute__((always_inline)) static void
dsl_scan_visitdnode(dsl_scan_t * scn,dsl_dataset_t * ds,dmu_objset_type_t ostype,dnode_phys_t * dnp,uint64_t object,dmu_tx_t * tx)2323 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
2324     dmu_objset_type_t ostype, dnode_phys_t *dnp,
2325     uint64_t object, dmu_tx_t *tx)
2326 {
2327 	int j;
2328 
2329 	for (j = 0; j < dnp->dn_nblkptr; j++) {
2330 		zbookmark_phys_t czb;
2331 
2332 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2333 		    dnp->dn_nlevels - 1, j);
2334 		dsl_scan_visitbp(&dnp->dn_blkptr[j],
2335 		    &czb, dnp, ds, scn, ostype, tx);
2336 	}
2337 
2338 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2339 		zbookmark_phys_t czb;
2340 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2341 		    0, DMU_SPILL_BLKID);
2342 		dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
2343 		    &czb, dnp, ds, scn, ostype, tx);
2344 	}
2345 }
2346 
2347 /*
2348  * The arguments are in this order because mdb can only print the
2349  * first 5; we want them to be useful.
2350  */
2351 static void
dsl_scan_visitbp(const blkptr_t * bp,const zbookmark_phys_t * zb,dnode_phys_t * dnp,dsl_dataset_t * ds,dsl_scan_t * scn,dmu_objset_type_t ostype,dmu_tx_t * tx)2352 dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2353     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2354     dmu_objset_type_t ostype, dmu_tx_t *tx)
2355 {
2356 	dsl_pool_t *dp = scn->scn_dp;
2357 
2358 	if (dsl_scan_check_suspend(scn, zb))
2359 		return;
2360 
2361 	if (dsl_scan_check_resume(scn, dnp, zb))
2362 		return;
2363 
2364 	scn->scn_visited_this_txg++;
2365 
2366 	if (BP_IS_HOLE(bp)) {
2367 		scn->scn_holes_this_txg++;
2368 		return;
2369 	}
2370 
2371 	if (BP_IS_REDACTED(bp)) {
2372 		ASSERT(dsl_dataset_feature_is_active(ds,
2373 		    SPA_FEATURE_REDACTED_DATASETS));
2374 		return;
2375 	}
2376 
2377 	/*
2378 	 * Check if this block contradicts any filesystem flags.
2379 	 */
2380 	spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS;
2381 	if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE)
2382 		ASSERT(dsl_dataset_feature_is_active(ds, f));
2383 
2384 	f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp));
2385 	if (f != SPA_FEATURE_NONE)
2386 		ASSERT(dsl_dataset_feature_is_active(ds, f));
2387 
2388 	f = zio_compress_to_feature(BP_GET_COMPRESS(bp));
2389 	if (f != SPA_FEATURE_NONE)
2390 		ASSERT(dsl_dataset_feature_is_active(ds, f));
2391 
2392 	if (BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) {
2393 		scn->scn_lt_min_this_txg++;
2394 		return;
2395 	}
2396 
2397 	if (dsl_scan_recurse(scn, ds, ostype, dnp, bp, zb, tx) != 0)
2398 		return;
2399 
2400 	/*
2401 	 * If dsl_scan_ddt() has already visited this block, it will have
2402 	 * already done any translations or scrubbing, so don't call the
2403 	 * callback again.
2404 	 */
2405 	if (ddt_class_contains(dp->dp_spa,
2406 	    scn->scn_phys.scn_ddt_class_max, bp)) {
2407 		scn->scn_ddt_contained_this_txg++;
2408 		return;
2409 	}
2410 
2411 	/*
2412 	 * If this block is from the future (after cur_max_txg), then we
2413 	 * are doing this on behalf of a deleted snapshot, and we will
2414 	 * revisit the future block on the next pass of this dataset.
2415 	 * Don't scan it now unless we need to because something
2416 	 * under it was modified.
2417 	 */
2418 	if (BP_GET_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2419 		scn->scn_gt_max_this_txg++;
2420 		return;
2421 	}
2422 
2423 	scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2424 }
2425 
2426 static void
dsl_scan_visit_rootbp(dsl_scan_t * scn,dsl_dataset_t * ds,blkptr_t * bp,dmu_tx_t * tx)2427 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2428     dmu_tx_t *tx)
2429 {
2430 	zbookmark_phys_t zb;
2431 	scan_prefetch_ctx_t *spc;
2432 
2433 	SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2434 	    ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2435 
2436 	if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2437 		SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2438 		    zb.zb_objset, 0, 0, 0);
2439 	} else {
2440 		scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2441 	}
2442 
2443 	scn->scn_objsets_visited_this_txg++;
2444 
2445 	spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2446 	dsl_scan_prefetch(spc, bp, &zb);
2447 	scan_prefetch_ctx_rele(spc, FTAG);
2448 
2449 	dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2450 
2451 	dprintf_ds(ds, "finished scan%s", "");
2452 }
2453 
2454 static void
ds_destroyed_scn_phys(dsl_dataset_t * ds,dsl_scan_phys_t * scn_phys)2455 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2456 {
2457 	if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2458 		if (ds->ds_is_snapshot) {
2459 			/*
2460 			 * Note:
2461 			 *  - scn_cur_{min,max}_txg stays the same.
2462 			 *  - Setting the flag is not really necessary if
2463 			 *    scn_cur_max_txg == scn_max_txg, because there
2464 			 *    is nothing after this snapshot that we care
2465 			 *    about.  However, we set it anyway and then
2466 			 *    ignore it when we retraverse it in
2467 			 *    dsl_scan_visitds().
2468 			 */
2469 			scn_phys->scn_bookmark.zb_objset =
2470 			    dsl_dataset_phys(ds)->ds_next_snap_obj;
2471 			zfs_dbgmsg("destroying ds %llu on %s; currently "
2472 			    "traversing; reset zb_objset to %llu",
2473 			    (u_longlong_t)ds->ds_object,
2474 			    ds->ds_dir->dd_pool->dp_spa->spa_name,
2475 			    (u_longlong_t)dsl_dataset_phys(ds)->
2476 			    ds_next_snap_obj);
2477 			scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2478 		} else {
2479 			SET_BOOKMARK(&scn_phys->scn_bookmark,
2480 			    ZB_DESTROYED_OBJSET, 0, 0, 0);
2481 			zfs_dbgmsg("destroying ds %llu on %s; currently "
2482 			    "traversing; reset bookmark to -1,0,0,0",
2483 			    (u_longlong_t)ds->ds_object,
2484 			    ds->ds_dir->dd_pool->dp_spa->spa_name);
2485 		}
2486 	}
2487 }
2488 
2489 /*
2490  * Invoked when a dataset is destroyed. We need to make sure that:
2491  *
2492  * 1) If it is the dataset that was currently being scanned, we write
2493  *	a new dsl_scan_phys_t and marking the objset reference in it
2494  *	as destroyed.
2495  * 2) Remove it from the work queue, if it was present.
2496  *
2497  * If the dataset was actually a snapshot, instead of marking the dataset
2498  * as destroyed, we instead substitute the next snapshot in line.
2499  */
2500 void
dsl_scan_ds_destroyed(dsl_dataset_t * ds,dmu_tx_t * tx)2501 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2502 {
2503 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2504 	dsl_scan_t *scn = dp->dp_scan;
2505 	uint64_t mintxg;
2506 
2507 	if (!dsl_scan_is_running(scn))
2508 		return;
2509 
2510 	ds_destroyed_scn_phys(ds, &scn->scn_phys);
2511 	ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2512 
2513 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2514 		scan_ds_queue_remove(scn, ds->ds_object);
2515 		if (ds->ds_is_snapshot)
2516 			scan_ds_queue_insert(scn,
2517 			    dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2518 	}
2519 
2520 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2521 	    ds->ds_object, &mintxg) == 0) {
2522 		ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2523 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2524 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2525 		if (ds->ds_is_snapshot) {
2526 			/*
2527 			 * We keep the same mintxg; it could be >
2528 			 * ds_creation_txg if the previous snapshot was
2529 			 * deleted too.
2530 			 */
2531 			VERIFY(zap_add_int_key(dp->dp_meta_objset,
2532 			    scn->scn_phys.scn_queue_obj,
2533 			    dsl_dataset_phys(ds)->ds_next_snap_obj,
2534 			    mintxg, tx) == 0);
2535 			zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2536 			    "replacing with %llu",
2537 			    (u_longlong_t)ds->ds_object,
2538 			    dp->dp_spa->spa_name,
2539 			    (u_longlong_t)dsl_dataset_phys(ds)->
2540 			    ds_next_snap_obj);
2541 		} else {
2542 			zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2543 			    "removing",
2544 			    (u_longlong_t)ds->ds_object,
2545 			    dp->dp_spa->spa_name);
2546 		}
2547 	}
2548 
2549 	/*
2550 	 * dsl_scan_sync() should be called after this, and should sync
2551 	 * out our changed state, but just to be safe, do it here.
2552 	 */
2553 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2554 }
2555 
2556 static void
ds_snapshotted_bookmark(dsl_dataset_t * ds,zbookmark_phys_t * scn_bookmark)2557 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2558 {
2559 	if (scn_bookmark->zb_objset == ds->ds_object) {
2560 		scn_bookmark->zb_objset =
2561 		    dsl_dataset_phys(ds)->ds_prev_snap_obj;
2562 		zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2563 		    "reset zb_objset to %llu",
2564 		    (u_longlong_t)ds->ds_object,
2565 		    ds->ds_dir->dd_pool->dp_spa->spa_name,
2566 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2567 	}
2568 }
2569 
2570 /*
2571  * Called when a dataset is snapshotted. If we were currently traversing
2572  * this snapshot, we reset our bookmark to point at the newly created
2573  * snapshot. We also modify our work queue to remove the old snapshot and
2574  * replace with the new one.
2575  */
2576 void
dsl_scan_ds_snapshotted(dsl_dataset_t * ds,dmu_tx_t * tx)2577 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2578 {
2579 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2580 	dsl_scan_t *scn = dp->dp_scan;
2581 	uint64_t mintxg;
2582 
2583 	if (!dsl_scan_is_running(scn))
2584 		return;
2585 
2586 	ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2587 
2588 	ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2589 	ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2590 
2591 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2592 		scan_ds_queue_remove(scn, ds->ds_object);
2593 		scan_ds_queue_insert(scn,
2594 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2595 	}
2596 
2597 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2598 	    ds->ds_object, &mintxg) == 0) {
2599 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2600 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2601 		VERIFY(zap_add_int_key(dp->dp_meta_objset,
2602 		    scn->scn_phys.scn_queue_obj,
2603 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2604 		zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2605 		    "replacing with %llu",
2606 		    (u_longlong_t)ds->ds_object,
2607 		    dp->dp_spa->spa_name,
2608 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2609 	}
2610 
2611 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2612 }
2613 
2614 static void
ds_clone_swapped_bookmark(dsl_dataset_t * ds1,dsl_dataset_t * ds2,zbookmark_phys_t * scn_bookmark)2615 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2616     zbookmark_phys_t *scn_bookmark)
2617 {
2618 	if (scn_bookmark->zb_objset == ds1->ds_object) {
2619 		scn_bookmark->zb_objset = ds2->ds_object;
2620 		zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2621 		    "reset zb_objset to %llu",
2622 		    (u_longlong_t)ds1->ds_object,
2623 		    ds1->ds_dir->dd_pool->dp_spa->spa_name,
2624 		    (u_longlong_t)ds2->ds_object);
2625 	} else if (scn_bookmark->zb_objset == ds2->ds_object) {
2626 		scn_bookmark->zb_objset = ds1->ds_object;
2627 		zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2628 		    "reset zb_objset to %llu",
2629 		    (u_longlong_t)ds2->ds_object,
2630 		    ds2->ds_dir->dd_pool->dp_spa->spa_name,
2631 		    (u_longlong_t)ds1->ds_object);
2632 	}
2633 }
2634 
2635 /*
2636  * Called when an origin dataset and its clone are swapped.  If we were
2637  * currently traversing the dataset, we need to switch to traversing the
2638  * newly promoted clone.
2639  */
2640 void
dsl_scan_ds_clone_swapped(dsl_dataset_t * ds1,dsl_dataset_t * ds2,dmu_tx_t * tx)2641 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2642 {
2643 	dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2644 	dsl_scan_t *scn = dp->dp_scan;
2645 	uint64_t mintxg1, mintxg2;
2646 	boolean_t ds1_queued, ds2_queued;
2647 
2648 	if (!dsl_scan_is_running(scn))
2649 		return;
2650 
2651 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2652 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2653 
2654 	/*
2655 	 * Handle the in-memory scan queue.
2656 	 */
2657 	ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2658 	ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2659 
2660 	/* Sanity checking. */
2661 	if (ds1_queued) {
2662 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2663 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2664 	}
2665 	if (ds2_queued) {
2666 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2667 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2668 	}
2669 
2670 	if (ds1_queued && ds2_queued) {
2671 		/*
2672 		 * If both are queued, we don't need to do anything.
2673 		 * The swapping code below would not handle this case correctly,
2674 		 * since we can't insert ds2 if it is already there. That's
2675 		 * because scan_ds_queue_insert() prohibits a duplicate insert
2676 		 * and panics.
2677 		 */
2678 	} else if (ds1_queued) {
2679 		scan_ds_queue_remove(scn, ds1->ds_object);
2680 		scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2681 	} else if (ds2_queued) {
2682 		scan_ds_queue_remove(scn, ds2->ds_object);
2683 		scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2684 	}
2685 
2686 	/*
2687 	 * Handle the on-disk scan queue.
2688 	 * The on-disk state is an out-of-date version of the in-memory state,
2689 	 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2690 	 * be different. Therefore we need to apply the swap logic to the
2691 	 * on-disk state independently of the in-memory state.
2692 	 */
2693 	ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2694 	    scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2695 	ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2696 	    scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2697 
2698 	/* Sanity checking. */
2699 	if (ds1_queued) {
2700 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2701 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2702 	}
2703 	if (ds2_queued) {
2704 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2705 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2706 	}
2707 
2708 	if (ds1_queued && ds2_queued) {
2709 		/*
2710 		 * If both are queued, we don't need to do anything.
2711 		 * Alternatively, we could check for EEXIST from
2712 		 * zap_add_int_key() and back out to the original state, but
2713 		 * that would be more work than checking for this case upfront.
2714 		 */
2715 	} else if (ds1_queued) {
2716 		VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2717 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2718 		VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2719 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2720 		zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2721 		    "replacing with %llu",
2722 		    (u_longlong_t)ds1->ds_object,
2723 		    dp->dp_spa->spa_name,
2724 		    (u_longlong_t)ds2->ds_object);
2725 	} else if (ds2_queued) {
2726 		VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2727 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2728 		VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2729 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2730 		zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2731 		    "replacing with %llu",
2732 		    (u_longlong_t)ds2->ds_object,
2733 		    dp->dp_spa->spa_name,
2734 		    (u_longlong_t)ds1->ds_object);
2735 	}
2736 
2737 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2738 }
2739 
2740 static int
enqueue_clones_cb(dsl_pool_t * dp,dsl_dataset_t * hds,void * arg)2741 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2742 {
2743 	uint64_t originobj = *(uint64_t *)arg;
2744 	dsl_dataset_t *ds;
2745 	int err;
2746 	dsl_scan_t *scn = dp->dp_scan;
2747 
2748 	if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2749 		return (0);
2750 
2751 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2752 	if (err)
2753 		return (err);
2754 
2755 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2756 		dsl_dataset_t *prev;
2757 		err = dsl_dataset_hold_obj(dp,
2758 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2759 
2760 		dsl_dataset_rele(ds, FTAG);
2761 		if (err)
2762 			return (err);
2763 		ds = prev;
2764 	}
2765 	mutex_enter(&scn->scn_queue_lock);
2766 	scan_ds_queue_insert(scn, ds->ds_object,
2767 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2768 	mutex_exit(&scn->scn_queue_lock);
2769 	dsl_dataset_rele(ds, FTAG);
2770 	return (0);
2771 }
2772 
2773 static void
dsl_scan_visitds(dsl_scan_t * scn,uint64_t dsobj,dmu_tx_t * tx)2774 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2775 {
2776 	dsl_pool_t *dp = scn->scn_dp;
2777 	dsl_dataset_t *ds;
2778 
2779 	VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2780 
2781 	if (scn->scn_phys.scn_cur_min_txg >=
2782 	    scn->scn_phys.scn_max_txg) {
2783 		/*
2784 		 * This can happen if this snapshot was created after the
2785 		 * scan started, and we already completed a previous snapshot
2786 		 * that was created after the scan started.  This snapshot
2787 		 * only references blocks with:
2788 		 *
2789 		 *	birth < our ds_creation_txg
2790 		 *	cur_min_txg is no less than ds_creation_txg.
2791 		 *	We have already visited these blocks.
2792 		 * or
2793 		 *	birth > scn_max_txg
2794 		 *	The scan requested not to visit these blocks.
2795 		 *
2796 		 * Subsequent snapshots (and clones) can reference our
2797 		 * blocks, or blocks with even higher birth times.
2798 		 * Therefore we do not need to visit them either,
2799 		 * so we do not add them to the work queue.
2800 		 *
2801 		 * Note that checking for cur_min_txg >= cur_max_txg
2802 		 * is not sufficient, because in that case we may need to
2803 		 * visit subsequent snapshots.  This happens when min_txg > 0,
2804 		 * which raises cur_min_txg.  In this case we will visit
2805 		 * this dataset but skip all of its blocks, because the
2806 		 * rootbp's birth time is < cur_min_txg.  Then we will
2807 		 * add the next snapshots/clones to the work queue.
2808 		 */
2809 		char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2810 		dsl_dataset_name(ds, dsname);
2811 		zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2812 		    "cur_min_txg (%llu) >= max_txg (%llu)",
2813 		    (longlong_t)dsobj, dsname,
2814 		    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2815 		    (longlong_t)scn->scn_phys.scn_max_txg);
2816 		kmem_free(dsname, MAXNAMELEN);
2817 
2818 		goto out;
2819 	}
2820 
2821 	/*
2822 	 * Only the ZIL in the head (non-snapshot) is valid. Even though
2823 	 * snapshots can have ZIL block pointers (which may be the same
2824 	 * BP as in the head), they must be ignored. In addition, $ORIGIN
2825 	 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2826 	 * need to look for a ZIL in it either. So we traverse the ZIL here,
2827 	 * rather than in scan_recurse(), because the regular snapshot
2828 	 * block-sharing rules don't apply to it.
2829 	 */
2830 	if (!dsl_dataset_is_snapshot(ds) &&
2831 	    (dp->dp_origin_snap == NULL ||
2832 	    ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2833 		objset_t *os;
2834 		if (dmu_objset_from_ds(ds, &os) != 0) {
2835 			goto out;
2836 		}
2837 		dsl_scan_zil(dp, &os->os_zil_header);
2838 	}
2839 
2840 	/*
2841 	 * Iterate over the bps in this ds.
2842 	 */
2843 	dmu_buf_will_dirty(ds->ds_dbuf, tx);
2844 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2845 	dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2846 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
2847 
2848 	char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2849 	dsl_dataset_name(ds, dsname);
2850 	zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2851 	    "suspending=%u",
2852 	    (longlong_t)dsobj, dsname,
2853 	    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2854 	    (longlong_t)scn->scn_phys.scn_cur_max_txg,
2855 	    (int)scn->scn_suspending);
2856 	kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2857 
2858 	if (scn->scn_suspending)
2859 		goto out;
2860 
2861 	/*
2862 	 * We've finished this pass over this dataset.
2863 	 */
2864 
2865 	/*
2866 	 * If we did not completely visit this dataset, do another pass.
2867 	 */
2868 	if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2869 		zfs_dbgmsg("incomplete pass on %s; visiting again",
2870 		    dp->dp_spa->spa_name);
2871 		scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2872 		scan_ds_queue_insert(scn, ds->ds_object,
2873 		    scn->scn_phys.scn_cur_max_txg);
2874 		goto out;
2875 	}
2876 
2877 	/*
2878 	 * Add descendant datasets to work queue.
2879 	 */
2880 	if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2881 		scan_ds_queue_insert(scn,
2882 		    dsl_dataset_phys(ds)->ds_next_snap_obj,
2883 		    dsl_dataset_phys(ds)->ds_creation_txg);
2884 	}
2885 	if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2886 		boolean_t usenext = B_FALSE;
2887 		if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2888 			uint64_t count;
2889 			/*
2890 			 * A bug in a previous version of the code could
2891 			 * cause upgrade_clones_cb() to not set
2892 			 * ds_next_snap_obj when it should, leading to a
2893 			 * missing entry.  Therefore we can only use the
2894 			 * next_clones_obj when its count is correct.
2895 			 */
2896 			int err = zap_count(dp->dp_meta_objset,
2897 			    dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2898 			if (err == 0 &&
2899 			    count == dsl_dataset_phys(ds)->ds_num_children - 1)
2900 				usenext = B_TRUE;
2901 		}
2902 
2903 		if (usenext) {
2904 			zap_cursor_t zc;
2905 			zap_attribute_t *za = zap_attribute_alloc();
2906 			for (zap_cursor_init(&zc, dp->dp_meta_objset,
2907 			    dsl_dataset_phys(ds)->ds_next_clones_obj);
2908 			    zap_cursor_retrieve(&zc, za) == 0;
2909 			    (void) zap_cursor_advance(&zc)) {
2910 				scan_ds_queue_insert(scn,
2911 				    zfs_strtonum(za->za_name, NULL),
2912 				    dsl_dataset_phys(ds)->ds_creation_txg);
2913 			}
2914 			zap_cursor_fini(&zc);
2915 			zap_attribute_free(za);
2916 		} else {
2917 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2918 			    enqueue_clones_cb, &ds->ds_object,
2919 			    DS_FIND_CHILDREN));
2920 		}
2921 	}
2922 
2923 out:
2924 	dsl_dataset_rele(ds, FTAG);
2925 }
2926 
2927 static int
enqueue_cb(dsl_pool_t * dp,dsl_dataset_t * hds,void * arg)2928 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2929 {
2930 	(void) arg;
2931 	dsl_dataset_t *ds;
2932 	int err;
2933 	dsl_scan_t *scn = dp->dp_scan;
2934 
2935 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2936 	if (err)
2937 		return (err);
2938 
2939 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2940 		dsl_dataset_t *prev;
2941 		err = dsl_dataset_hold_obj(dp,
2942 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2943 		if (err) {
2944 			dsl_dataset_rele(ds, FTAG);
2945 			return (err);
2946 		}
2947 
2948 		/*
2949 		 * If this is a clone, we don't need to worry about it for now.
2950 		 */
2951 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2952 			dsl_dataset_rele(ds, FTAG);
2953 			dsl_dataset_rele(prev, FTAG);
2954 			return (0);
2955 		}
2956 		dsl_dataset_rele(ds, FTAG);
2957 		ds = prev;
2958 	}
2959 
2960 	mutex_enter(&scn->scn_queue_lock);
2961 	scan_ds_queue_insert(scn, ds->ds_object,
2962 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2963 	mutex_exit(&scn->scn_queue_lock);
2964 	dsl_dataset_rele(ds, FTAG);
2965 	return (0);
2966 }
2967 
2968 void
dsl_scan_ddt_entry(dsl_scan_t * scn,enum zio_checksum checksum,ddt_t * ddt,ddt_lightweight_entry_t * ddlwe,dmu_tx_t * tx)2969 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2970     ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx)
2971 {
2972 	(void) tx;
2973 	const ddt_key_t *ddk = &ddlwe->ddlwe_key;
2974 	blkptr_t bp;
2975 	zbookmark_phys_t zb = { 0 };
2976 
2977 	if (!dsl_scan_is_running(scn))
2978 		return;
2979 
2980 	/*
2981 	 * This function is special because it is the only thing
2982 	 * that can add scan_io_t's to the vdev scan queues from
2983 	 * outside dsl_scan_sync(). For the most part this is ok
2984 	 * as long as it is called from within syncing context.
2985 	 * However, dsl_scan_sync() expects that no new sio's will
2986 	 * be added between when all the work for a scan is done
2987 	 * and the next txg when the scan is actually marked as
2988 	 * completed. This check ensures we do not issue new sio's
2989 	 * during this period.
2990 	 */
2991 	if (scn->scn_done_txg != 0)
2992 		return;
2993 
2994 	for (int p = 0; p < DDT_NPHYS(ddt); p++) {
2995 		ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
2996 		uint64_t phys_birth = ddt_phys_birth(&ddlwe->ddlwe_phys, v);
2997 
2998 		if (phys_birth == 0 || phys_birth > scn->scn_phys.scn_max_txg)
2999 			continue;
3000 		ddt_bp_create(checksum, ddk, &ddlwe->ddlwe_phys, v, &bp);
3001 
3002 		scn->scn_visited_this_txg++;
3003 		scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
3004 	}
3005 }
3006 
3007 /*
3008  * Scrub/dedup interaction.
3009  *
3010  * If there are N references to a deduped block, we don't want to scrub it
3011  * N times -- ideally, we should scrub it exactly once.
3012  *
3013  * We leverage the fact that the dde's replication class (ddt_class_t)
3014  * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
3015  * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
3016  *
3017  * To prevent excess scrubbing, the scrub begins by walking the DDT
3018  * to find all blocks with refcnt > 1, and scrubs each of these once.
3019  * Since there are two replication classes which contain blocks with
3020  * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
3021  * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
3022  *
3023  * There would be nothing more to say if a block's refcnt couldn't change
3024  * during a scrub, but of course it can so we must account for changes
3025  * in a block's replication class.
3026  *
3027  * Here's an example of what can occur:
3028  *
3029  * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
3030  * when visited during the top-down scrub phase, it will be scrubbed twice.
3031  * This negates our scrub optimization, but is otherwise harmless.
3032  *
3033  * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
3034  * on each visit during the top-down scrub phase, it will never be scrubbed.
3035  * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
3036  * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
3037  * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
3038  * while a scrub is in progress, it scrubs the block right then.
3039  */
3040 static void
dsl_scan_ddt(dsl_scan_t * scn,dmu_tx_t * tx)3041 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
3042 {
3043 	ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
3044 	ddt_lightweight_entry_t ddlwe = {0};
3045 	int error;
3046 	uint64_t n = 0;
3047 
3048 	while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &ddlwe)) == 0) {
3049 		ddt_t *ddt;
3050 
3051 		if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
3052 			break;
3053 		dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
3054 		    (longlong_t)ddb->ddb_class,
3055 		    (longlong_t)ddb->ddb_type,
3056 		    (longlong_t)ddb->ddb_checksum,
3057 		    (longlong_t)ddb->ddb_cursor);
3058 
3059 		/* There should be no pending changes to the dedup table */
3060 		ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
3061 		ASSERT(avl_first(&ddt->ddt_tree) == NULL);
3062 
3063 		dsl_scan_ddt_entry(scn, ddb->ddb_checksum, ddt, &ddlwe, tx);
3064 		n++;
3065 
3066 		if (dsl_scan_check_suspend(scn, NULL))
3067 			break;
3068 	}
3069 
3070 	if (error == EAGAIN) {
3071 		dsl_scan_check_suspend(scn, NULL);
3072 		error = 0;
3073 
3074 		zfs_dbgmsg("waiting for ddt to become ready for scan "
3075 		    "on %s with class_max = %u; suspending=%u",
3076 		    scn->scn_dp->dp_spa->spa_name,
3077 		    (int)scn->scn_phys.scn_ddt_class_max,
3078 		    (int)scn->scn_suspending);
3079 	} else
3080 		zfs_dbgmsg("scanned %llu ddt entries on %s with "
3081 		    "class_max = %u; suspending=%u", (longlong_t)n,
3082 		    scn->scn_dp->dp_spa->spa_name,
3083 		    (int)scn->scn_phys.scn_ddt_class_max,
3084 		    (int)scn->scn_suspending);
3085 
3086 	ASSERT(error == 0 || error == ENOENT);
3087 	ASSERT(error != ENOENT ||
3088 	    ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
3089 }
3090 
3091 static uint64_t
dsl_scan_ds_maxtxg(dsl_dataset_t * ds)3092 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
3093 {
3094 	uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
3095 	if (ds->ds_is_snapshot)
3096 		return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
3097 	return (smt);
3098 }
3099 
3100 static void
dsl_scan_visit(dsl_scan_t * scn,dmu_tx_t * tx)3101 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
3102 {
3103 	scan_ds_t *sds;
3104 	dsl_pool_t *dp = scn->scn_dp;
3105 
3106 	if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
3107 	    scn->scn_phys.scn_ddt_class_max) {
3108 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3109 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3110 		dsl_scan_ddt(scn, tx);
3111 		if (scn->scn_suspending)
3112 			return;
3113 	}
3114 
3115 	if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
3116 		/* First do the MOS & ORIGIN */
3117 
3118 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3119 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3120 		dsl_scan_visit_rootbp(scn, NULL,
3121 		    &dp->dp_meta_rootbp, tx);
3122 		if (scn->scn_suspending)
3123 			return;
3124 
3125 		if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
3126 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3127 			    enqueue_cb, NULL, DS_FIND_CHILDREN));
3128 		} else {
3129 			dsl_scan_visitds(scn,
3130 			    dp->dp_origin_snap->ds_object, tx);
3131 		}
3132 		ASSERT(!scn->scn_suspending);
3133 	} else if (scn->scn_phys.scn_bookmark.zb_objset !=
3134 	    ZB_DESTROYED_OBJSET) {
3135 		uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
3136 		/*
3137 		 * If we were suspended, continue from here. Note if the
3138 		 * ds we were suspended on was deleted, the zb_objset may
3139 		 * be -1, so we will skip this and find a new objset
3140 		 * below.
3141 		 */
3142 		dsl_scan_visitds(scn, dsobj, tx);
3143 		if (scn->scn_suspending)
3144 			return;
3145 	}
3146 
3147 	/*
3148 	 * In case we suspended right at the end of the ds, zero the
3149 	 * bookmark so we don't think that we're still trying to resume.
3150 	 */
3151 	memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t));
3152 
3153 	/*
3154 	 * Keep pulling things out of the dataset avl queue. Updates to the
3155 	 * persistent zap-object-as-queue happen only at checkpoints.
3156 	 */
3157 	while ((sds = avl_first(&scn->scn_queue)) != NULL) {
3158 		dsl_dataset_t *ds;
3159 		uint64_t dsobj = sds->sds_dsobj;
3160 		uint64_t txg = sds->sds_txg;
3161 
3162 		/* dequeue and free the ds from the queue */
3163 		scan_ds_queue_remove(scn, dsobj);
3164 		sds = NULL;
3165 
3166 		/* set up min / max txg */
3167 		VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
3168 		if (txg != 0) {
3169 			scn->scn_phys.scn_cur_min_txg =
3170 			    MAX(scn->scn_phys.scn_min_txg, txg);
3171 		} else {
3172 			scn->scn_phys.scn_cur_min_txg =
3173 			    MAX(scn->scn_phys.scn_min_txg,
3174 			    dsl_dataset_phys(ds)->ds_prev_snap_txg);
3175 		}
3176 		scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
3177 		dsl_dataset_rele(ds, FTAG);
3178 
3179 		dsl_scan_visitds(scn, dsobj, tx);
3180 		if (scn->scn_suspending)
3181 			return;
3182 	}
3183 
3184 	/* No more objsets to fetch, we're done */
3185 	scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
3186 	ASSERT0(scn->scn_suspending);
3187 }
3188 
3189 static uint64_t
dsl_scan_count_data_disks(spa_t * spa)3190 dsl_scan_count_data_disks(spa_t *spa)
3191 {
3192 	vdev_t *rvd = spa->spa_root_vdev;
3193 	uint64_t i, leaves = 0;
3194 
3195 	for (i = 0; i < rvd->vdev_children; i++) {
3196 		vdev_t *vd = rvd->vdev_child[i];
3197 		if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache)
3198 			continue;
3199 		leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd);
3200 	}
3201 	return (leaves);
3202 }
3203 
3204 static void
scan_io_queues_update_zio_stats(dsl_scan_io_queue_t * q,const blkptr_t * bp)3205 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
3206 {
3207 	int i;
3208 	uint64_t cur_size = 0;
3209 
3210 	for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3211 		cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
3212 	}
3213 
3214 	q->q_total_zio_size_this_txg += cur_size;
3215 	q->q_zios_this_txg++;
3216 }
3217 
3218 static void
scan_io_queues_update_seg_stats(dsl_scan_io_queue_t * q,uint64_t start,uint64_t end)3219 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
3220     uint64_t end)
3221 {
3222 	q->q_total_seg_size_this_txg += end - start;
3223 	q->q_segs_this_txg++;
3224 }
3225 
3226 static boolean_t
scan_io_queue_check_suspend(dsl_scan_t * scn)3227 scan_io_queue_check_suspend(dsl_scan_t *scn)
3228 {
3229 	/* See comment in dsl_scan_check_suspend() */
3230 	uint64_t curr_time_ns = gethrtime();
3231 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
3232 	uint64_t sync_time_ns = curr_time_ns -
3233 	    scn->scn_dp->dp_spa->spa_sync_starttime;
3234 	uint64_t dirty_min_bytes = zfs_dirty_data_max *
3235 	    zfs_vdev_async_write_active_min_dirty_percent / 100;
3236 	uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3237 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3238 
3239 	return ((NSEC2MSEC(scan_time_ns) > mintime &&
3240 	    (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
3241 	    txg_sync_waiting(scn->scn_dp) ||
3242 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
3243 	    spa_shutting_down(scn->scn_dp->dp_spa));
3244 }
3245 
3246 /*
3247  * Given a list of scan_io_t's in io_list, this issues the I/Os out to
3248  * disk. This consumes the io_list and frees the scan_io_t's. This is
3249  * called when emptying queues, either when we're up against the memory
3250  * limit or when we have finished scanning. Returns B_TRUE if we stopped
3251  * processing the list before we finished. Any sios that were not issued
3252  * will remain in the io_list.
3253  */
3254 static boolean_t
scan_io_queue_issue(dsl_scan_io_queue_t * queue,list_t * io_list)3255 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
3256 {
3257 	dsl_scan_t *scn = queue->q_scn;
3258 	scan_io_t *sio;
3259 	boolean_t suspended = B_FALSE;
3260 
3261 	while ((sio = list_head(io_list)) != NULL) {
3262 		blkptr_t bp;
3263 
3264 		if (scan_io_queue_check_suspend(scn)) {
3265 			suspended = B_TRUE;
3266 			break;
3267 		}
3268 
3269 		sio2bp(sio, &bp);
3270 		scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
3271 		    &sio->sio_zb, queue);
3272 		(void) list_remove_head(io_list);
3273 		scan_io_queues_update_zio_stats(queue, &bp);
3274 		sio_free(sio);
3275 	}
3276 	return (suspended);
3277 }
3278 
3279 /*
3280  * This function removes sios from an IO queue which reside within a given
3281  * zfs_range_seg_t and inserts them (in offset order) into a list. Note that
3282  * we only ever return a maximum of 32 sios at once. If there are more sios
3283  * to process within this segment that did not make it onto the list we
3284  * return B_TRUE and otherwise B_FALSE.
3285  */
3286 static boolean_t
scan_io_queue_gather(dsl_scan_io_queue_t * queue,zfs_range_seg_t * rs,list_t * list)3287 scan_io_queue_gather(dsl_scan_io_queue_t *queue, zfs_range_seg_t *rs,
3288     list_t *list)
3289 {
3290 	scan_io_t *srch_sio, *sio, *next_sio;
3291 	avl_index_t idx;
3292 	uint_t num_sios = 0;
3293 	int64_t bytes_issued = 0;
3294 
3295 	ASSERT(rs != NULL);
3296 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3297 
3298 	srch_sio = sio_alloc(1);
3299 	srch_sio->sio_nr_dvas = 1;
3300 	SIO_SET_OFFSET(srch_sio, zfs_rs_get_start(rs, queue->q_exts_by_addr));
3301 
3302 	/*
3303 	 * The exact start of the extent might not contain any matching zios,
3304 	 * so if that's the case, examine the next one in the tree.
3305 	 */
3306 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
3307 	sio_free(srch_sio);
3308 
3309 	if (sio == NULL)
3310 		sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
3311 
3312 	while (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs,
3313 	    queue->q_exts_by_addr) && num_sios <= 32) {
3314 		ASSERT3U(SIO_GET_OFFSET(sio), >=, zfs_rs_get_start(rs,
3315 		    queue->q_exts_by_addr));
3316 		ASSERT3U(SIO_GET_END_OFFSET(sio), <=, zfs_rs_get_end(rs,
3317 		    queue->q_exts_by_addr));
3318 
3319 		next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
3320 		avl_remove(&queue->q_sios_by_addr, sio);
3321 		if (avl_is_empty(&queue->q_sios_by_addr))
3322 			atomic_add_64(&queue->q_scn->scn_queues_pending, -1);
3323 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
3324 
3325 		bytes_issued += SIO_GET_ASIZE(sio);
3326 		num_sios++;
3327 		list_insert_tail(list, sio);
3328 		sio = next_sio;
3329 	}
3330 
3331 	/*
3332 	 * We limit the number of sios we process at once to 32 to avoid
3333 	 * biting off more than we can chew. If we didn't take everything
3334 	 * in the segment we update it to reflect the work we were able to
3335 	 * complete. Otherwise, we remove it from the range tree entirely.
3336 	 */
3337 	if (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs,
3338 	    queue->q_exts_by_addr)) {
3339 		zfs_range_tree_adjust_fill(queue->q_exts_by_addr, rs,
3340 		    -bytes_issued);
3341 		zfs_range_tree_resize_segment(queue->q_exts_by_addr, rs,
3342 		    SIO_GET_OFFSET(sio), zfs_rs_get_end(rs,
3343 		    queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
3344 		queue->q_last_ext_addr = SIO_GET_OFFSET(sio);
3345 		return (B_TRUE);
3346 	} else {
3347 		uint64_t rstart = zfs_rs_get_start(rs, queue->q_exts_by_addr);
3348 		uint64_t rend = zfs_rs_get_end(rs, queue->q_exts_by_addr);
3349 		zfs_range_tree_remove(queue->q_exts_by_addr, rstart, rend -
3350 		    rstart);
3351 		queue->q_last_ext_addr = -1;
3352 		return (B_FALSE);
3353 	}
3354 }
3355 
3356 /*
3357  * This is called from the queue emptying thread and selects the next
3358  * extent from which we are to issue I/Os. The behavior of this function
3359  * depends on the state of the scan, the current memory consumption and
3360  * whether or not we are performing a scan shutdown.
3361  * 1) We select extents in an elevator algorithm (LBA-order) if the scan
3362  * 	needs to perform a checkpoint
3363  * 2) We select the largest available extent if we are up against the
3364  * 	memory limit.
3365  * 3) Otherwise we don't select any extents.
3366  */
3367 static zfs_range_seg_t *
scan_io_queue_fetch_ext(dsl_scan_io_queue_t * queue)3368 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
3369 {
3370 	dsl_scan_t *scn = queue->q_scn;
3371 	zfs_range_tree_t *rt = queue->q_exts_by_addr;
3372 
3373 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3374 	ASSERT(scn->scn_is_sorted);
3375 
3376 	if (!scn->scn_checkpointing && !scn->scn_clearing)
3377 		return (NULL);
3378 
3379 	/*
3380 	 * During normal clearing, we want to issue our largest segments
3381 	 * first, keeping IO as sequential as possible, and leaving the
3382 	 * smaller extents for later with the hope that they might eventually
3383 	 * grow to larger sequential segments. However, when the scan is
3384 	 * checkpointing, no new extents will be added to the sorting queue,
3385 	 * so the way we are sorted now is as good as it will ever get.
3386 	 * In this case, we instead switch to issuing extents in LBA order.
3387 	 */
3388 	if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) ||
3389 	    zfs_scan_issue_strategy == 1)
3390 		return (zfs_range_tree_first(rt));
3391 
3392 	/*
3393 	 * Try to continue previous extent if it is not completed yet.  After
3394 	 * shrink in scan_io_queue_gather() it may no longer be the best, but
3395 	 * otherwise we leave shorter remnant every txg.
3396 	 */
3397 	uint64_t start;
3398 	uint64_t size = 1ULL << rt->rt_shift;
3399 	zfs_range_seg_t *addr_rs;
3400 	if (queue->q_last_ext_addr != -1) {
3401 		start = queue->q_last_ext_addr;
3402 		addr_rs = zfs_range_tree_find(rt, start, size);
3403 		if (addr_rs != NULL)
3404 			return (addr_rs);
3405 	}
3406 
3407 	/*
3408 	 * Nothing to continue, so find new best extent.
3409 	 */
3410 	uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL);
3411 	if (v == NULL)
3412 		return (NULL);
3413 	queue->q_last_ext_addr = start = *v << rt->rt_shift;
3414 
3415 	/*
3416 	 * We need to get the original entry in the by_addr tree so we can
3417 	 * modify it.
3418 	 */
3419 	addr_rs = zfs_range_tree_find(rt, start, size);
3420 	ASSERT3P(addr_rs, !=, NULL);
3421 	ASSERT3U(zfs_rs_get_start(addr_rs, rt), ==, start);
3422 	ASSERT3U(zfs_rs_get_end(addr_rs, rt), >, start);
3423 	return (addr_rs);
3424 }
3425 
3426 static void
scan_io_queues_run_one(void * arg)3427 scan_io_queues_run_one(void *arg)
3428 {
3429 	dsl_scan_io_queue_t *queue = arg;
3430 	kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3431 	boolean_t suspended = B_FALSE;
3432 	zfs_range_seg_t *rs;
3433 	scan_io_t *sio;
3434 	zio_t *zio;
3435 	list_t sio_list;
3436 
3437 	ASSERT(queue->q_scn->scn_is_sorted);
3438 
3439 	list_create(&sio_list, sizeof (scan_io_t),
3440 	    offsetof(scan_io_t, sio_nodes.sio_list_node));
3441 	zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa,
3442 	    NULL, NULL, NULL, ZIO_FLAG_CANFAIL);
3443 	mutex_enter(q_lock);
3444 	queue->q_zio = zio;
3445 
3446 	/* Calculate maximum in-flight bytes for this vdev. */
3447 	queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit *
3448 	    (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd)));
3449 
3450 	/* reset per-queue scan statistics for this txg */
3451 	queue->q_total_seg_size_this_txg = 0;
3452 	queue->q_segs_this_txg = 0;
3453 	queue->q_total_zio_size_this_txg = 0;
3454 	queue->q_zios_this_txg = 0;
3455 
3456 	/* loop until we run out of time or sios */
3457 	while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3458 		uint64_t seg_start = 0, seg_end = 0;
3459 		boolean_t more_left;
3460 
3461 		ASSERT(list_is_empty(&sio_list));
3462 
3463 		/* loop while we still have sios left to process in this rs */
3464 		do {
3465 			scan_io_t *first_sio, *last_sio;
3466 
3467 			/*
3468 			 * We have selected which extent needs to be
3469 			 * processed next. Gather up the corresponding sios.
3470 			 */
3471 			more_left = scan_io_queue_gather(queue, rs, &sio_list);
3472 			ASSERT(!list_is_empty(&sio_list));
3473 			first_sio = list_head(&sio_list);
3474 			last_sio = list_tail(&sio_list);
3475 
3476 			seg_end = SIO_GET_END_OFFSET(last_sio);
3477 			if (seg_start == 0)
3478 				seg_start = SIO_GET_OFFSET(first_sio);
3479 
3480 			/*
3481 			 * Issuing sios can take a long time so drop the
3482 			 * queue lock. The sio queue won't be updated by
3483 			 * other threads since we're in syncing context so
3484 			 * we can be sure that our trees will remain exactly
3485 			 * as we left them.
3486 			 */
3487 			mutex_exit(q_lock);
3488 			suspended = scan_io_queue_issue(queue, &sio_list);
3489 			mutex_enter(q_lock);
3490 
3491 			if (suspended)
3492 				break;
3493 		} while (more_left);
3494 
3495 		/* update statistics for debugging purposes */
3496 		scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3497 
3498 		if (suspended)
3499 			break;
3500 	}
3501 
3502 	/*
3503 	 * If we were suspended in the middle of processing,
3504 	 * requeue any unfinished sios and exit.
3505 	 */
3506 	while ((sio = list_remove_head(&sio_list)) != NULL)
3507 		scan_io_queue_insert_impl(queue, sio);
3508 
3509 	queue->q_zio = NULL;
3510 	mutex_exit(q_lock);
3511 	zio_nowait(zio);
3512 	list_destroy(&sio_list);
3513 }
3514 
3515 /*
3516  * Performs an emptying run on all scan queues in the pool. This just
3517  * punches out one thread per top-level vdev, each of which processes
3518  * only that vdev's scan queue. We can parallelize the I/O here because
3519  * we know that each queue's I/Os only affect its own top-level vdev.
3520  *
3521  * This function waits for the queue runs to complete, and must be
3522  * called from dsl_scan_sync (or in general, syncing context).
3523  */
3524 static void
scan_io_queues_run(dsl_scan_t * scn)3525 scan_io_queues_run(dsl_scan_t *scn)
3526 {
3527 	spa_t *spa = scn->scn_dp->dp_spa;
3528 
3529 	ASSERT(scn->scn_is_sorted);
3530 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3531 
3532 	if (scn->scn_queues_pending == 0)
3533 		return;
3534 
3535 	if (scn->scn_taskq == NULL) {
3536 		int nthreads = spa->spa_root_vdev->vdev_children;
3537 
3538 		/*
3539 		 * We need to make this taskq *always* execute as many
3540 		 * threads in parallel as we have top-level vdevs and no
3541 		 * less, otherwise strange serialization of the calls to
3542 		 * scan_io_queues_run_one can occur during spa_sync runs
3543 		 * and that significantly impacts performance.
3544 		 */
3545 		scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3546 		    minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3547 	}
3548 
3549 	for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3550 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3551 
3552 		mutex_enter(&vd->vdev_scan_io_queue_lock);
3553 		if (vd->vdev_scan_io_queue != NULL) {
3554 			VERIFY(taskq_dispatch(scn->scn_taskq,
3555 			    scan_io_queues_run_one, vd->vdev_scan_io_queue,
3556 			    TQ_SLEEP) != TASKQID_INVALID);
3557 		}
3558 		mutex_exit(&vd->vdev_scan_io_queue_lock);
3559 	}
3560 
3561 	/*
3562 	 * Wait for the queues to finish issuing their IOs for this run
3563 	 * before we return. There may still be IOs in flight at this
3564 	 * point.
3565 	 */
3566 	taskq_wait(scn->scn_taskq);
3567 }
3568 
3569 static boolean_t
dsl_scan_async_block_should_pause(dsl_scan_t * scn)3570 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3571 {
3572 	uint64_t elapsed_nanosecs;
3573 
3574 	if (zfs_recover)
3575 		return (B_FALSE);
3576 
3577 	if (zfs_async_block_max_blocks != 0 &&
3578 	    scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3579 		return (B_TRUE);
3580 	}
3581 
3582 	if (zfs_max_async_dedup_frees != 0 &&
3583 	    scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
3584 		return (B_TRUE);
3585 	}
3586 
3587 	elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3588 	return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3589 	    (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3590 	    txg_sync_waiting(scn->scn_dp)) ||
3591 	    spa_shutting_down(scn->scn_dp->dp_spa));
3592 }
3593 
3594 static int
dsl_scan_free_block_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)3595 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3596 {
3597 	dsl_scan_t *scn = arg;
3598 
3599 	if (!scn->scn_is_bptree ||
3600 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3601 		if (dsl_scan_async_block_should_pause(scn))
3602 			return (SET_ERROR(ERESTART));
3603 	}
3604 
3605 	zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3606 	    dmu_tx_get_txg(tx), bp, 0));
3607 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3608 	    -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3609 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3610 	scn->scn_visited_this_txg++;
3611 	if (BP_GET_DEDUP(bp))
3612 		scn->scn_dedup_frees_this_txg++;
3613 	return (0);
3614 }
3615 
3616 static void
dsl_scan_update_stats(dsl_scan_t * scn)3617 dsl_scan_update_stats(dsl_scan_t *scn)
3618 {
3619 	spa_t *spa = scn->scn_dp->dp_spa;
3620 	uint64_t i;
3621 	uint64_t seg_size_total = 0, zio_size_total = 0;
3622 	uint64_t seg_count_total = 0, zio_count_total = 0;
3623 
3624 	for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3625 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3626 		dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3627 
3628 		if (queue == NULL)
3629 			continue;
3630 
3631 		seg_size_total += queue->q_total_seg_size_this_txg;
3632 		zio_size_total += queue->q_total_zio_size_this_txg;
3633 		seg_count_total += queue->q_segs_this_txg;
3634 		zio_count_total += queue->q_zios_this_txg;
3635 	}
3636 
3637 	if (seg_count_total == 0 || zio_count_total == 0) {
3638 		scn->scn_avg_seg_size_this_txg = 0;
3639 		scn->scn_avg_zio_size_this_txg = 0;
3640 		scn->scn_segs_this_txg = 0;
3641 		scn->scn_zios_this_txg = 0;
3642 		return;
3643 	}
3644 
3645 	scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3646 	scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3647 	scn->scn_segs_this_txg = seg_count_total;
3648 	scn->scn_zios_this_txg = zio_count_total;
3649 }
3650 
3651 static int
bpobj_dsl_scan_free_block_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3652 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3653     dmu_tx_t *tx)
3654 {
3655 	ASSERT(!bp_freed);
3656 	return (dsl_scan_free_block_cb(arg, bp, tx));
3657 }
3658 
3659 static int
dsl_scan_obsolete_block_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3660 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3661     dmu_tx_t *tx)
3662 {
3663 	ASSERT(!bp_freed);
3664 	dsl_scan_t *scn = arg;
3665 	const dva_t *dva = &bp->blk_dva[0];
3666 
3667 	if (dsl_scan_async_block_should_pause(scn))
3668 		return (SET_ERROR(ERESTART));
3669 
3670 	spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3671 	    DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3672 	    DVA_GET_ASIZE(dva), tx);
3673 	scn->scn_visited_this_txg++;
3674 	return (0);
3675 }
3676 
3677 boolean_t
dsl_scan_active(dsl_scan_t * scn)3678 dsl_scan_active(dsl_scan_t *scn)
3679 {
3680 	spa_t *spa = scn->scn_dp->dp_spa;
3681 	uint64_t used = 0, comp, uncomp;
3682 	boolean_t clones_left;
3683 
3684 	if (spa->spa_load_state != SPA_LOAD_NONE)
3685 		return (B_FALSE);
3686 	if (spa_shutting_down(spa))
3687 		return (B_FALSE);
3688 	if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3689 	    (scn->scn_async_destroying && !scn->scn_async_stalled))
3690 		return (B_TRUE);
3691 
3692 	if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3693 		(void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3694 		    &used, &comp, &uncomp);
3695 	}
3696 	clones_left = spa_livelist_delete_check(spa);
3697 	return ((used != 0) || (clones_left));
3698 }
3699 
3700 boolean_t
dsl_errorscrub_active(dsl_scan_t * scn)3701 dsl_errorscrub_active(dsl_scan_t *scn)
3702 {
3703 	spa_t *spa = scn->scn_dp->dp_spa;
3704 	if (spa->spa_load_state != SPA_LOAD_NONE)
3705 		return (B_FALSE);
3706 	if (spa_shutting_down(spa))
3707 		return (B_FALSE);
3708 	if (dsl_errorscrubbing(scn->scn_dp))
3709 		return (B_TRUE);
3710 	return (B_FALSE);
3711 }
3712 
3713 static boolean_t
dsl_scan_check_deferred(vdev_t * vd)3714 dsl_scan_check_deferred(vdev_t *vd)
3715 {
3716 	boolean_t need_resilver = B_FALSE;
3717 
3718 	for (int c = 0; c < vd->vdev_children; c++) {
3719 		need_resilver |=
3720 		    dsl_scan_check_deferred(vd->vdev_child[c]);
3721 	}
3722 
3723 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3724 	    !vd->vdev_ops->vdev_op_leaf)
3725 		return (need_resilver);
3726 
3727 	if (!vd->vdev_resilver_deferred)
3728 		need_resilver = B_TRUE;
3729 
3730 	return (need_resilver);
3731 }
3732 
3733 static boolean_t
dsl_scan_need_resilver(spa_t * spa,const dva_t * dva,size_t psize,uint64_t phys_birth)3734 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3735     uint64_t phys_birth)
3736 {
3737 	vdev_t *vd;
3738 
3739 	vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3740 
3741 	if (vd->vdev_ops == &vdev_indirect_ops) {
3742 		/*
3743 		 * The indirect vdev can point to multiple
3744 		 * vdevs.  For simplicity, always create
3745 		 * the resilver zio_t. zio_vdev_io_start()
3746 		 * will bypass the child resilver i/o's if
3747 		 * they are on vdevs that don't have DTL's.
3748 		 */
3749 		return (B_TRUE);
3750 	}
3751 
3752 	if (DVA_GET_GANG(dva)) {
3753 		/*
3754 		 * Gang members may be spread across multiple
3755 		 * vdevs, so the best estimate we have is the
3756 		 * scrub range, which has already been checked.
3757 		 * XXX -- it would be better to change our
3758 		 * allocation policy to ensure that all
3759 		 * gang members reside on the same vdev.
3760 		 */
3761 		return (B_TRUE);
3762 	}
3763 
3764 	/*
3765 	 * Check if the top-level vdev must resilver this offset.
3766 	 * When the offset does not intersect with a dirty leaf DTL
3767 	 * then it may be possible to skip the resilver IO.  The psize
3768 	 * is provided instead of asize to simplify the check for RAIDZ.
3769 	 */
3770 	if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
3771 		return (B_FALSE);
3772 
3773 	/*
3774 	 * Check that this top-level vdev has a device under it which
3775 	 * is resilvering and is not deferred.
3776 	 */
3777 	if (!dsl_scan_check_deferred(vd))
3778 		return (B_FALSE);
3779 
3780 	return (B_TRUE);
3781 }
3782 
3783 static int
dsl_process_async_destroys(dsl_pool_t * dp,dmu_tx_t * tx)3784 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3785 {
3786 	dsl_scan_t *scn = dp->dp_scan;
3787 	spa_t *spa = dp->dp_spa;
3788 	int err = 0;
3789 
3790 	if (spa_suspend_async_destroy(spa))
3791 		return (0);
3792 
3793 	if (zfs_free_bpobj_enabled &&
3794 	    spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3795 		scn->scn_is_bptree = B_FALSE;
3796 		scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3797 		scn->scn_zio_root = zio_root(spa, NULL,
3798 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3799 		err = bpobj_iterate(&dp->dp_free_bpobj,
3800 		    bpobj_dsl_scan_free_block_cb, scn, tx);
3801 		VERIFY0(zio_wait(scn->scn_zio_root));
3802 		scn->scn_zio_root = NULL;
3803 
3804 		if (err != 0 && err != ERESTART)
3805 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3806 	}
3807 
3808 	if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3809 		ASSERT(scn->scn_async_destroying);
3810 		scn->scn_is_bptree = B_TRUE;
3811 		scn->scn_zio_root = zio_root(spa, NULL,
3812 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3813 		err = bptree_iterate(dp->dp_meta_objset,
3814 		    dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3815 		VERIFY0(zio_wait(scn->scn_zio_root));
3816 		scn->scn_zio_root = NULL;
3817 
3818 		if (err == EIO || err == ECKSUM) {
3819 			err = 0;
3820 		} else if (err != 0 && err != ERESTART) {
3821 			zfs_panic_recover("error %u from "
3822 			    "traverse_dataset_destroyed()", err);
3823 		}
3824 
3825 		if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3826 			/* finished; deactivate async destroy feature */
3827 			spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3828 			ASSERT(!spa_feature_is_active(spa,
3829 			    SPA_FEATURE_ASYNC_DESTROY));
3830 			VERIFY0(zap_remove(dp->dp_meta_objset,
3831 			    DMU_POOL_DIRECTORY_OBJECT,
3832 			    DMU_POOL_BPTREE_OBJ, tx));
3833 			VERIFY0(bptree_free(dp->dp_meta_objset,
3834 			    dp->dp_bptree_obj, tx));
3835 			dp->dp_bptree_obj = 0;
3836 			scn->scn_async_destroying = B_FALSE;
3837 			scn->scn_async_stalled = B_FALSE;
3838 		} else {
3839 			/*
3840 			 * If we didn't make progress, mark the async
3841 			 * destroy as stalled, so that we will not initiate
3842 			 * a spa_sync() on its behalf.  Note that we only
3843 			 * check this if we are not finished, because if the
3844 			 * bptree had no blocks for us to visit, we can
3845 			 * finish without "making progress".
3846 			 */
3847 			scn->scn_async_stalled =
3848 			    (scn->scn_visited_this_txg == 0);
3849 		}
3850 	}
3851 	if (scn->scn_visited_this_txg) {
3852 		zfs_dbgmsg("freed %llu blocks in %llums from "
3853 		    "free_bpobj/bptree on %s in txg %llu; err=%u",
3854 		    (longlong_t)scn->scn_visited_this_txg,
3855 		    (longlong_t)
3856 		    NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3857 		    spa->spa_name, (longlong_t)tx->tx_txg, err);
3858 		scn->scn_visited_this_txg = 0;
3859 		scn->scn_dedup_frees_this_txg = 0;
3860 
3861 		/*
3862 		 * Write out changes to the DDT and the BRT that may be required
3863 		 * as a result of the blocks freed.  This ensures that the DDT
3864 		 * and the BRT are clean when a scrub/resilver runs.
3865 		 */
3866 		ddt_sync(spa, tx->tx_txg);
3867 		brt_sync(spa, tx->tx_txg);
3868 	}
3869 	if (err != 0)
3870 		return (err);
3871 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3872 	    zfs_free_leak_on_eio &&
3873 	    (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3874 	    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3875 	    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3876 		/*
3877 		 * We have finished background destroying, but there is still
3878 		 * some space left in the dp_free_dir. Transfer this leaked
3879 		 * space to the dp_leak_dir.
3880 		 */
3881 		if (dp->dp_leak_dir == NULL) {
3882 			rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3883 			(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3884 			    LEAK_DIR_NAME, tx);
3885 			VERIFY0(dsl_pool_open_special_dir(dp,
3886 			    LEAK_DIR_NAME, &dp->dp_leak_dir));
3887 			rrw_exit(&dp->dp_config_rwlock, FTAG);
3888 		}
3889 		dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3890 		    dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3891 		    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3892 		    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3893 		dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3894 		    -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3895 		    -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3896 		    -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3897 	}
3898 
3899 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3900 	    !spa_livelist_delete_check(spa)) {
3901 		/* finished; verify that space accounting went to zero */
3902 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3903 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3904 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3905 	}
3906 
3907 	spa_notify_waiters(spa);
3908 
3909 	EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3910 	    0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3911 	    DMU_POOL_OBSOLETE_BPOBJ));
3912 	if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3913 		ASSERT(spa_feature_is_active(dp->dp_spa,
3914 		    SPA_FEATURE_OBSOLETE_COUNTS));
3915 
3916 		scn->scn_is_bptree = B_FALSE;
3917 		scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3918 		err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3919 		    dsl_scan_obsolete_block_cb, scn, tx);
3920 		if (err != 0 && err != ERESTART)
3921 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3922 
3923 		if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3924 			dsl_pool_destroy_obsolete_bpobj(dp, tx);
3925 	}
3926 	return (0);
3927 }
3928 
3929 static void
name_to_bookmark(char * buf,zbookmark_phys_t * zb)3930 name_to_bookmark(char *buf, zbookmark_phys_t *zb)
3931 {
3932 	zb->zb_objset = zfs_strtonum(buf, &buf);
3933 	ASSERT(*buf == ':');
3934 	zb->zb_object = zfs_strtonum(buf + 1, &buf);
3935 	ASSERT(*buf == ':');
3936 	zb->zb_level = (int)zfs_strtonum(buf + 1, &buf);
3937 	ASSERT(*buf == ':');
3938 	zb->zb_blkid = zfs_strtonum(buf + 1, &buf);
3939 	ASSERT(*buf == '\0');
3940 }
3941 
3942 static void
name_to_object(char * buf,uint64_t * obj)3943 name_to_object(char *buf, uint64_t *obj)
3944 {
3945 	*obj = zfs_strtonum(buf, &buf);
3946 	ASSERT(*buf == '\0');
3947 }
3948 
3949 static void
read_by_block_level(dsl_scan_t * scn,zbookmark_phys_t zb)3950 read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb)
3951 {
3952 	dsl_pool_t *dp = scn->scn_dp;
3953 	dsl_dataset_t *ds;
3954 	objset_t *os;
3955 	if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0)
3956 		return;
3957 
3958 	if (dmu_objset_from_ds(ds, &os) != 0) {
3959 		dsl_dataset_rele(ds, FTAG);
3960 		return;
3961 	}
3962 
3963 	/*
3964 	 * If the key is not loaded dbuf_dnode_findbp() will error out with
3965 	 * EACCES. However in that case dnode_hold() will eventually call
3966 	 * dbuf_read()->zio_wait() which may call spa_log_error(). This will
3967 	 * lead to a deadlock due to us holding the mutex spa_errlist_lock.
3968 	 * Avoid this by checking here if the keys are loaded, if not return.
3969 	 * If the keys are not loaded the head_errlog feature is meaningless
3970 	 * as we cannot figure out the birth txg of the block pointer.
3971 	 */
3972 	if (dsl_dataset_get_keystatus(ds->ds_dir) ==
3973 	    ZFS_KEYSTATUS_UNAVAILABLE) {
3974 		dsl_dataset_rele(ds, FTAG);
3975 		return;
3976 	}
3977 
3978 	dnode_t *dn;
3979 	blkptr_t bp;
3980 
3981 	if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) {
3982 		dsl_dataset_rele(ds, FTAG);
3983 		return;
3984 	}
3985 
3986 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
3987 	int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL,
3988 	    NULL);
3989 
3990 	if (error) {
3991 		rw_exit(&dn->dn_struct_rwlock);
3992 		dnode_rele(dn, FTAG);
3993 		dsl_dataset_rele(ds, FTAG);
3994 		return;
3995 	}
3996 
3997 	if (!error && BP_IS_HOLE(&bp)) {
3998 		rw_exit(&dn->dn_struct_rwlock);
3999 		dnode_rele(dn, FTAG);
4000 		dsl_dataset_rele(ds, FTAG);
4001 		return;
4002 	}
4003 
4004 	int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW |
4005 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB;
4006 
4007 	/* If it's an intent log block, failure is expected. */
4008 	if (zb.zb_level == ZB_ZIL_LEVEL)
4009 		zio_flags |= ZIO_FLAG_SPECULATIVE;
4010 
4011 	ASSERT(!BP_IS_EMBEDDED(&bp));
4012 	scan_exec_io(dp, &bp, zio_flags, &zb, NULL);
4013 	rw_exit(&dn->dn_struct_rwlock);
4014 	dnode_rele(dn, FTAG);
4015 	dsl_dataset_rele(ds, FTAG);
4016 }
4017 
4018 /*
4019  * We keep track of the scrubbed error blocks in "count". This will be used
4020  * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This
4021  * function is modelled after check_filesystem().
4022  */
4023 static int
scrub_filesystem(spa_t * spa,uint64_t fs,zbookmark_err_phys_t * zep,int * count)4024 scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep,
4025     int *count)
4026 {
4027 	dsl_dataset_t *ds;
4028 	dsl_pool_t *dp = spa->spa_dsl_pool;
4029 	dsl_scan_t *scn = dp->dp_scan;
4030 
4031 	int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds);
4032 	if (error != 0)
4033 		return (error);
4034 
4035 	uint64_t latest_txg;
4036 	uint64_t txg_to_consider = spa->spa_syncing_txg;
4037 	boolean_t check_snapshot = B_TRUE;
4038 
4039 	error = find_birth_txg(ds, zep, &latest_txg);
4040 
4041 	/*
4042 	 * If find_birth_txg() errors out, then err on the side of caution and
4043 	 * proceed. In worst case scenario scrub all objects. If zep->zb_birth
4044 	 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to
4045 	 * scrub all objects.
4046 	 */
4047 	if (error == 0 && zep->zb_birth == latest_txg) {
4048 		/* Block neither free nor re written. */
4049 		zbookmark_phys_t zb;
4050 		zep_to_zb(fs, zep, &zb);
4051 		scn->scn_zio_root = zio_root(spa, NULL, NULL,
4052 		    ZIO_FLAG_CANFAIL);
4053 		/* We have already acquired the config lock for spa */
4054 		read_by_block_level(scn, zb);
4055 
4056 		(void) zio_wait(scn->scn_zio_root);
4057 		scn->scn_zio_root = NULL;
4058 
4059 		scn->errorscrub_phys.dep_examined++;
4060 		scn->errorscrub_phys.dep_to_examine--;
4061 		(*count)++;
4062 		if ((*count) == zfs_scrub_error_blocks_per_txg ||
4063 		    dsl_error_scrub_check_suspend(scn, &zb)) {
4064 			dsl_dataset_rele(ds, FTAG);
4065 			return (SET_ERROR(EFAULT));
4066 		}
4067 
4068 		check_snapshot = B_FALSE;
4069 	} else if (error == 0) {
4070 		txg_to_consider = latest_txg;
4071 	}
4072 
4073 	/*
4074 	 * Retrieve the number of snapshots if the dataset is not a snapshot.
4075 	 */
4076 	uint64_t snap_count = 0;
4077 	if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) {
4078 
4079 		error = zap_count(spa->spa_meta_objset,
4080 		    dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count);
4081 
4082 		if (error != 0) {
4083 			dsl_dataset_rele(ds, FTAG);
4084 			return (error);
4085 		}
4086 	}
4087 
4088 	if (snap_count == 0) {
4089 		/* Filesystem without snapshots. */
4090 		dsl_dataset_rele(ds, FTAG);
4091 		return (0);
4092 	}
4093 
4094 	uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4095 	uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4096 
4097 	dsl_dataset_rele(ds, FTAG);
4098 
4099 	/* Check only snapshots created from this file system. */
4100 	while (snap_obj != 0 && zep->zb_birth < snap_obj_txg &&
4101 	    snap_obj_txg <= txg_to_consider) {
4102 
4103 		error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds);
4104 		if (error != 0)
4105 			return (error);
4106 
4107 		if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) {
4108 			snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4109 			snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4110 			dsl_dataset_rele(ds, FTAG);
4111 			continue;
4112 		}
4113 
4114 		boolean_t affected = B_TRUE;
4115 		if (check_snapshot) {
4116 			uint64_t blk_txg;
4117 			error = find_birth_txg(ds, zep, &blk_txg);
4118 
4119 			/*
4120 			 * Scrub the snapshot also when zb_birth == 0 or when
4121 			 * find_birth_txg() returns an error.
4122 			 */
4123 			affected = (error == 0 && zep->zb_birth == blk_txg) ||
4124 			    (error != 0) || (zep->zb_birth == 0);
4125 		}
4126 
4127 		/* Scrub snapshots. */
4128 		if (affected) {
4129 			zbookmark_phys_t zb;
4130 			zep_to_zb(snap_obj, zep, &zb);
4131 			scn->scn_zio_root = zio_root(spa, NULL, NULL,
4132 			    ZIO_FLAG_CANFAIL);
4133 			/* We have already acquired the config lock for spa */
4134 			read_by_block_level(scn, zb);
4135 
4136 			(void) zio_wait(scn->scn_zio_root);
4137 			scn->scn_zio_root = NULL;
4138 
4139 			scn->errorscrub_phys.dep_examined++;
4140 			scn->errorscrub_phys.dep_to_examine--;
4141 			(*count)++;
4142 			if ((*count) == zfs_scrub_error_blocks_per_txg ||
4143 			    dsl_error_scrub_check_suspend(scn, &zb)) {
4144 				dsl_dataset_rele(ds, FTAG);
4145 				return (EFAULT);
4146 			}
4147 		}
4148 		snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4149 		snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4150 		dsl_dataset_rele(ds, FTAG);
4151 	}
4152 	return (0);
4153 }
4154 
4155 void
dsl_errorscrub_sync(dsl_pool_t * dp,dmu_tx_t * tx)4156 dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4157 {
4158 	spa_t *spa = dp->dp_spa;
4159 	dsl_scan_t *scn = dp->dp_scan;
4160 
4161 	/*
4162 	 * Only process scans in sync pass 1.
4163 	 */
4164 
4165 	if (spa_sync_pass(spa) > 1)
4166 		return;
4167 
4168 	/*
4169 	 * If the spa is shutting down, then stop scanning. This will
4170 	 * ensure that the scan does not dirty any new data during the
4171 	 * shutdown phase.
4172 	 */
4173 	if (spa_shutting_down(spa))
4174 		return;
4175 
4176 	if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) {
4177 		return;
4178 	}
4179 
4180 	if (dsl_scan_resilvering(scn->scn_dp)) {
4181 		/* cancel the error scrub if resilver started */
4182 		dsl_scan_cancel(scn->scn_dp);
4183 		return;
4184 	}
4185 
4186 	spa->spa_scrub_active = B_TRUE;
4187 	scn->scn_sync_start_time = gethrtime();
4188 
4189 	/*
4190 	 * zfs_scan_suspend_progress can be set to disable scrub progress.
4191 	 * See more detailed comment in dsl_scan_sync().
4192 	 */
4193 	if (zfs_scan_suspend_progress) {
4194 		uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4195 		int mintime = zfs_scrub_min_time_ms;
4196 
4197 		while (zfs_scan_suspend_progress &&
4198 		    !txg_sync_waiting(scn->scn_dp) &&
4199 		    !spa_shutting_down(scn->scn_dp->dp_spa) &&
4200 		    NSEC2MSEC(scan_time_ns) < mintime) {
4201 			delay(hz);
4202 			scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4203 		}
4204 		return;
4205 	}
4206 
4207 	int i = 0;
4208 	zap_attribute_t *za;
4209 	zbookmark_phys_t *zb;
4210 	boolean_t limit_exceeded = B_FALSE;
4211 
4212 	za = zap_attribute_alloc();
4213 	zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP);
4214 
4215 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
4216 		for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4217 		    zap_cursor_advance(&scn->errorscrub_cursor)) {
4218 			name_to_bookmark(za->za_name, zb);
4219 
4220 			scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4221 			    NULL, ZIO_FLAG_CANFAIL);
4222 			dsl_pool_config_enter(dp, FTAG);
4223 			read_by_block_level(scn, *zb);
4224 			dsl_pool_config_exit(dp, FTAG);
4225 
4226 			(void) zio_wait(scn->scn_zio_root);
4227 			scn->scn_zio_root = NULL;
4228 
4229 			scn->errorscrub_phys.dep_examined += 1;
4230 			scn->errorscrub_phys.dep_to_examine -= 1;
4231 			i++;
4232 			if (i == zfs_scrub_error_blocks_per_txg ||
4233 			    dsl_error_scrub_check_suspend(scn, zb)) {
4234 				limit_exceeded = B_TRUE;
4235 				break;
4236 			}
4237 		}
4238 
4239 		if (!limit_exceeded)
4240 			dsl_errorscrub_done(scn, B_TRUE, tx);
4241 
4242 		dsl_errorscrub_sync_state(scn, tx);
4243 		zap_attribute_free(za);
4244 		kmem_free(zb, sizeof (*zb));
4245 		return;
4246 	}
4247 
4248 	int error = 0;
4249 	for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4250 	    zap_cursor_advance(&scn->errorscrub_cursor)) {
4251 
4252 		zap_cursor_t *head_ds_cursor;
4253 		zap_attribute_t *head_ds_attr;
4254 		zbookmark_err_phys_t head_ds_block;
4255 
4256 		head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP);
4257 		head_ds_attr = zap_attribute_alloc();
4258 
4259 		uint64_t head_ds_err_obj = za->za_first_integer;
4260 		uint64_t head_ds;
4261 		name_to_object(za->za_name, &head_ds);
4262 		boolean_t config_held = B_FALSE;
4263 		uint64_t top_affected_fs;
4264 
4265 		for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset,
4266 		    head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor,
4267 		    head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) {
4268 
4269 			name_to_errphys(head_ds_attr->za_name, &head_ds_block);
4270 
4271 			/*
4272 			 * In case we are called from spa_sync the pool
4273 			 * config is already held.
4274 			 */
4275 			if (!dsl_pool_config_held(dp)) {
4276 				dsl_pool_config_enter(dp, FTAG);
4277 				config_held = B_TRUE;
4278 			}
4279 
4280 			error = find_top_affected_fs(spa,
4281 			    head_ds, &head_ds_block, &top_affected_fs);
4282 			if (error)
4283 				break;
4284 
4285 			error = scrub_filesystem(spa, top_affected_fs,
4286 			    &head_ds_block, &i);
4287 
4288 			if (error == SET_ERROR(EFAULT)) {
4289 				limit_exceeded = B_TRUE;
4290 				break;
4291 			}
4292 		}
4293 
4294 		zap_cursor_fini(head_ds_cursor);
4295 		kmem_free(head_ds_cursor, sizeof (*head_ds_cursor));
4296 		zap_attribute_free(head_ds_attr);
4297 
4298 		if (config_held)
4299 			dsl_pool_config_exit(dp, FTAG);
4300 	}
4301 
4302 	zap_attribute_free(za);
4303 	kmem_free(zb, sizeof (*zb));
4304 	if (!limit_exceeded)
4305 		dsl_errorscrub_done(scn, B_TRUE, tx);
4306 
4307 	dsl_errorscrub_sync_state(scn, tx);
4308 }
4309 
4310 /*
4311  * This is the primary entry point for scans that is called from syncing
4312  * context. Scans must happen entirely during syncing context so that we
4313  * can guarantee that blocks we are currently scanning will not change out
4314  * from under us. While a scan is active, this function controls how quickly
4315  * transaction groups proceed, instead of the normal handling provided by
4316  * txg_sync_thread().
4317  */
4318 void
dsl_scan_sync(dsl_pool_t * dp,dmu_tx_t * tx)4319 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4320 {
4321 	int err = 0;
4322 	dsl_scan_t *scn = dp->dp_scan;
4323 	spa_t *spa = dp->dp_spa;
4324 	state_sync_type_t sync_type = SYNC_OPTIONAL;
4325 	int restart_early = 0;
4326 
4327 	if (spa->spa_resilver_deferred) {
4328 		uint64_t to_issue, issued;
4329 
4330 		if (!spa_feature_is_active(dp->dp_spa,
4331 		    SPA_FEATURE_RESILVER_DEFER))
4332 			spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
4333 
4334 		/*
4335 		 * See print_scan_scrub_resilver_status() issued/total_i
4336 		 * @ cmd/zpool/zpool_main.c
4337 		 */
4338 		to_issue =
4339 		    scn->scn_phys.scn_to_examine - scn->scn_phys.scn_skipped;
4340 		issued =
4341 		    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
4342 		restart_early =
4343 		    zfs_resilver_disable_defer ||
4344 		    (issued < (to_issue * zfs_resilver_defer_percent / 100));
4345 	}
4346 
4347 	/*
4348 	 * Only process scans in sync pass 1.
4349 	 */
4350 	if (spa_sync_pass(spa) > 1)
4351 		return;
4352 
4353 
4354 	/*
4355 	 * Check for scn_restart_txg before checking spa_load_state, so
4356 	 * that we can restart an old-style scan while the pool is being
4357 	 * imported (see dsl_scan_init). We also restart scans if there
4358 	 * is a deferred resilver and the user has manually disabled
4359 	 * deferred resilvers via zfs_resilver_disable_defer, or if the
4360 	 * current scan progress is below zfs_resilver_defer_percent.
4361 	 */
4362 	if (dsl_scan_restarting(scn, tx) || restart_early) {
4363 		setup_sync_arg_t setup_sync_arg = {
4364 			.func = POOL_SCAN_SCRUB,
4365 			.txgstart = 0,
4366 			.txgend = 0,
4367 		};
4368 		dsl_scan_done(scn, B_FALSE, tx);
4369 		if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4370 			setup_sync_arg.func = POOL_SCAN_RESILVER;
4371 		zfs_dbgmsg("restarting scan func=%u on %s txg=%llu early=%d",
4372 		    setup_sync_arg.func, dp->dp_spa->spa_name,
4373 		    (longlong_t)tx->tx_txg, restart_early);
4374 		dsl_scan_setup_sync(&setup_sync_arg, tx);
4375 	}
4376 
4377 	/*
4378 	 * If the spa is shutting down, then stop scanning. This will
4379 	 * ensure that the scan does not dirty any new data during the
4380 	 * shutdown phase.
4381 	 */
4382 	if (spa_shutting_down(spa))
4383 		return;
4384 
4385 	/*
4386 	 * If the scan is inactive due to a stalled async destroy, try again.
4387 	 */
4388 	if (!scn->scn_async_stalled && !dsl_scan_active(scn))
4389 		return;
4390 
4391 	/* reset scan statistics */
4392 	scn->scn_visited_this_txg = 0;
4393 	scn->scn_dedup_frees_this_txg = 0;
4394 	scn->scn_holes_this_txg = 0;
4395 	scn->scn_lt_min_this_txg = 0;
4396 	scn->scn_gt_max_this_txg = 0;
4397 	scn->scn_ddt_contained_this_txg = 0;
4398 	scn->scn_objsets_visited_this_txg = 0;
4399 	scn->scn_avg_seg_size_this_txg = 0;
4400 	scn->scn_segs_this_txg = 0;
4401 	scn->scn_avg_zio_size_this_txg = 0;
4402 	scn->scn_zios_this_txg = 0;
4403 	scn->scn_suspending = B_FALSE;
4404 	scn->scn_sync_start_time = gethrtime();
4405 	spa->spa_scrub_active = B_TRUE;
4406 
4407 	/*
4408 	 * First process the async destroys.  If we suspend, don't do
4409 	 * any scrubbing or resilvering.  This ensures that there are no
4410 	 * async destroys while we are scanning, so the scan code doesn't
4411 	 * have to worry about traversing it.  It is also faster to free the
4412 	 * blocks than to scrub them.
4413 	 */
4414 	err = dsl_process_async_destroys(dp, tx);
4415 	if (err != 0)
4416 		return;
4417 
4418 	if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
4419 		return;
4420 
4421 	/*
4422 	 * Wait a few txgs after importing to begin scanning so that
4423 	 * we can get the pool imported quickly.
4424 	 */
4425 	if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
4426 		return;
4427 
4428 	/*
4429 	 * zfs_scan_suspend_progress can be set to disable scan progress.
4430 	 * We don't want to spin the txg_sync thread, so we add a delay
4431 	 * here to simulate the time spent doing a scan. This is mostly
4432 	 * useful for testing and debugging.
4433 	 */
4434 	if (zfs_scan_suspend_progress) {
4435 		uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4436 		uint_t mintime = (scn->scn_phys.scn_func ==
4437 		    POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms :
4438 		    zfs_scrub_min_time_ms;
4439 
4440 		while (zfs_scan_suspend_progress &&
4441 		    !txg_sync_waiting(scn->scn_dp) &&
4442 		    !spa_shutting_down(scn->scn_dp->dp_spa) &&
4443 		    NSEC2MSEC(scan_time_ns) < mintime) {
4444 			delay(hz);
4445 			scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4446 		}
4447 		return;
4448 	}
4449 
4450 	/*
4451 	 * Disabled by default, set zfs_scan_report_txgs to report
4452 	 * average performance over the last zfs_scan_report_txgs TXGs.
4453 	 */
4454 	if (zfs_scan_report_txgs != 0 &&
4455 	    tx->tx_txg % zfs_scan_report_txgs == 0) {
4456 		scn->scn_issued_before_pass += spa->spa_scan_pass_issued;
4457 		spa_scan_stat_init(spa);
4458 	}
4459 
4460 	/*
4461 	 * It is possible to switch from unsorted to sorted at any time,
4462 	 * but afterwards the scan will remain sorted unless reloaded from
4463 	 * a checkpoint after a reboot.
4464 	 */
4465 	if (!zfs_scan_legacy) {
4466 		scn->scn_is_sorted = B_TRUE;
4467 		if (scn->scn_last_checkpoint == 0)
4468 			scn->scn_last_checkpoint = ddi_get_lbolt();
4469 	}
4470 
4471 	/*
4472 	 * For sorted scans, determine what kind of work we will be doing
4473 	 * this txg based on our memory limitations and whether or not we
4474 	 * need to perform a checkpoint.
4475 	 */
4476 	if (scn->scn_is_sorted) {
4477 		/*
4478 		 * If we are over our checkpoint interval, set scn_clearing
4479 		 * so that we can begin checkpointing immediately. The
4480 		 * checkpoint allows us to save a consistent bookmark
4481 		 * representing how much data we have scrubbed so far.
4482 		 * Otherwise, use the memory limit to determine if we should
4483 		 * scan for metadata or start issue scrub IOs. We accumulate
4484 		 * metadata until we hit our hard memory limit at which point
4485 		 * we issue scrub IOs until we are at our soft memory limit.
4486 		 */
4487 		if (scn->scn_checkpointing ||
4488 		    ddi_get_lbolt() - scn->scn_last_checkpoint >
4489 		    SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
4490 			if (!scn->scn_checkpointing)
4491 				zfs_dbgmsg("begin scan checkpoint for %s",
4492 				    spa->spa_name);
4493 
4494 			scn->scn_checkpointing = B_TRUE;
4495 			scn->scn_clearing = B_TRUE;
4496 		} else {
4497 			boolean_t should_clear = dsl_scan_should_clear(scn);
4498 			if (should_clear && !scn->scn_clearing) {
4499 				zfs_dbgmsg("begin scan clearing for %s",
4500 				    spa->spa_name);
4501 				scn->scn_clearing = B_TRUE;
4502 			} else if (!should_clear && scn->scn_clearing) {
4503 				zfs_dbgmsg("finish scan clearing for %s",
4504 				    spa->spa_name);
4505 				scn->scn_clearing = B_FALSE;
4506 			}
4507 		}
4508 	} else {
4509 		ASSERT0(scn->scn_checkpointing);
4510 		ASSERT0(scn->scn_clearing);
4511 	}
4512 
4513 	if (!scn->scn_clearing && scn->scn_done_txg == 0) {
4514 		/* Need to scan metadata for more blocks to scrub */
4515 		dsl_scan_phys_t *scnp = &scn->scn_phys;
4516 		taskqid_t prefetch_tqid;
4517 
4518 		/*
4519 		 * Calculate the max number of in-flight bytes for pool-wide
4520 		 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
4521 		 * Limits for the issuing phase are done per top-level vdev and
4522 		 * are handled separately.
4523 		 */
4524 		scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
4525 		    zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
4526 
4527 		if (scnp->scn_ddt_bookmark.ddb_class <=
4528 		    scnp->scn_ddt_class_max) {
4529 			ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
4530 			zfs_dbgmsg("doing scan sync for %s txg %llu; "
4531 			    "ddt bm=%llu/%llu/%llu/%llx",
4532 			    spa->spa_name,
4533 			    (longlong_t)tx->tx_txg,
4534 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
4535 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
4536 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
4537 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
4538 		} else {
4539 			zfs_dbgmsg("doing scan sync for %s txg %llu; "
4540 			    "bm=%llu/%llu/%llu/%llu",
4541 			    spa->spa_name,
4542 			    (longlong_t)tx->tx_txg,
4543 			    (longlong_t)scnp->scn_bookmark.zb_objset,
4544 			    (longlong_t)scnp->scn_bookmark.zb_object,
4545 			    (longlong_t)scnp->scn_bookmark.zb_level,
4546 			    (longlong_t)scnp->scn_bookmark.zb_blkid);
4547 		}
4548 
4549 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4550 		    NULL, ZIO_FLAG_CANFAIL);
4551 
4552 		scn->scn_prefetch_stop = B_FALSE;
4553 		prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
4554 		    dsl_scan_prefetch_thread, scn, TQ_SLEEP);
4555 		ASSERT(prefetch_tqid != TASKQID_INVALID);
4556 
4557 		dsl_pool_config_enter(dp, FTAG);
4558 		dsl_scan_visit(scn, tx);
4559 		dsl_pool_config_exit(dp, FTAG);
4560 
4561 		mutex_enter(&dp->dp_spa->spa_scrub_lock);
4562 		scn->scn_prefetch_stop = B_TRUE;
4563 		cv_broadcast(&spa->spa_scrub_io_cv);
4564 		mutex_exit(&dp->dp_spa->spa_scrub_lock);
4565 
4566 		taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
4567 		(void) zio_wait(scn->scn_zio_root);
4568 		scn->scn_zio_root = NULL;
4569 
4570 		zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
4571 		    "(%llu os's, %llu holes, %llu < mintxg, "
4572 		    "%llu in ddt, %llu > maxtxg)",
4573 		    (longlong_t)scn->scn_visited_this_txg,
4574 		    spa->spa_name,
4575 		    (longlong_t)NSEC2MSEC(gethrtime() -
4576 		    scn->scn_sync_start_time),
4577 		    (longlong_t)scn->scn_objsets_visited_this_txg,
4578 		    (longlong_t)scn->scn_holes_this_txg,
4579 		    (longlong_t)scn->scn_lt_min_this_txg,
4580 		    (longlong_t)scn->scn_ddt_contained_this_txg,
4581 		    (longlong_t)scn->scn_gt_max_this_txg);
4582 
4583 		if (!scn->scn_suspending) {
4584 			ASSERT0(avl_numnodes(&scn->scn_queue));
4585 			scn->scn_done_txg = tx->tx_txg + 1;
4586 			if (scn->scn_is_sorted) {
4587 				scn->scn_checkpointing = B_TRUE;
4588 				scn->scn_clearing = B_TRUE;
4589 				scn->scn_issued_before_pass +=
4590 				    spa->spa_scan_pass_issued;
4591 				spa_scan_stat_init(spa);
4592 			}
4593 			zfs_dbgmsg("scan complete for %s txg %llu",
4594 			    spa->spa_name,
4595 			    (longlong_t)tx->tx_txg);
4596 		}
4597 	} else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) {
4598 		ASSERT(scn->scn_clearing);
4599 
4600 		/* need to issue scrubbing IOs from per-vdev queues */
4601 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4602 		    NULL, ZIO_FLAG_CANFAIL);
4603 		scan_io_queues_run(scn);
4604 		(void) zio_wait(scn->scn_zio_root);
4605 		scn->scn_zio_root = NULL;
4606 
4607 		/* calculate and dprintf the current memory usage */
4608 		(void) dsl_scan_should_clear(scn);
4609 		dsl_scan_update_stats(scn);
4610 
4611 		zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
4612 		    "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
4613 		    (longlong_t)scn->scn_zios_this_txg,
4614 		    spa->spa_name,
4615 		    (longlong_t)scn->scn_segs_this_txg,
4616 		    (longlong_t)NSEC2MSEC(gethrtime() -
4617 		    scn->scn_sync_start_time),
4618 		    (longlong_t)scn->scn_avg_zio_size_this_txg,
4619 		    (longlong_t)scn->scn_avg_seg_size_this_txg);
4620 	} else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
4621 		/* Finished with everything. Mark the scrub as complete */
4622 		zfs_dbgmsg("scan issuing complete txg %llu for %s",
4623 		    (longlong_t)tx->tx_txg,
4624 		    spa->spa_name);
4625 		ASSERT3U(scn->scn_done_txg, !=, 0);
4626 		ASSERT0(spa->spa_scrub_inflight);
4627 		ASSERT0(scn->scn_queues_pending);
4628 		dsl_scan_done(scn, B_TRUE, tx);
4629 		sync_type = SYNC_MANDATORY;
4630 	}
4631 
4632 	dsl_scan_sync_state(scn, tx, sync_type);
4633 }
4634 
4635 static void
count_block_issued(spa_t * spa,const blkptr_t * bp,boolean_t all)4636 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all)
4637 {
4638 	/*
4639 	 * Don't count embedded bp's, since we already did the work of
4640 	 * scanning these when we scanned the containing block.
4641 	 */
4642 	if (BP_IS_EMBEDDED(bp))
4643 		return;
4644 
4645 	/*
4646 	 * Update the spa's stats on how many bytes we have issued.
4647 	 * Sequential scrubs create a zio for each DVA of the bp. Each
4648 	 * of these will include all DVAs for repair purposes, but the
4649 	 * zio code will only try the first one unless there is an issue.
4650 	 * Therefore, we should only count the first DVA for these IOs.
4651 	 */
4652 	atomic_add_64(&spa->spa_scan_pass_issued,
4653 	    all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4654 }
4655 
4656 static void
count_block_skipped(dsl_scan_t * scn,const blkptr_t * bp,boolean_t all)4657 count_block_skipped(dsl_scan_t *scn, const blkptr_t *bp, boolean_t all)
4658 {
4659 	if (BP_IS_EMBEDDED(bp))
4660 		return;
4661 	atomic_add_64(&scn->scn_phys.scn_skipped,
4662 	    all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4663 }
4664 
4665 static void
count_block(zfs_all_blkstats_t * zab,const blkptr_t * bp)4666 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp)
4667 {
4668 	/*
4669 	 * If we resume after a reboot, zab will be NULL; don't record
4670 	 * incomplete stats in that case.
4671 	 */
4672 	if (zab == NULL)
4673 		return;
4674 
4675 	for (int i = 0; i < 4; i++) {
4676 		int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
4677 		int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
4678 
4679 		if (t & DMU_OT_NEWTYPE)
4680 			t = DMU_OT_OTHER;
4681 		zfs_blkstat_t *zb = &zab->zab_type[l][t];
4682 		int equal;
4683 
4684 		zb->zb_count++;
4685 		zb->zb_asize += BP_GET_ASIZE(bp);
4686 		zb->zb_lsize += BP_GET_LSIZE(bp);
4687 		zb->zb_psize += BP_GET_PSIZE(bp);
4688 		zb->zb_gangs += BP_COUNT_GANG(bp);
4689 
4690 		switch (BP_GET_NDVAS(bp)) {
4691 		case 2:
4692 			if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4693 			    DVA_GET_VDEV(&bp->blk_dva[1]))
4694 				zb->zb_ditto_2_of_2_samevdev++;
4695 			break;
4696 		case 3:
4697 			equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4698 			    DVA_GET_VDEV(&bp->blk_dva[1])) +
4699 			    (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4700 			    DVA_GET_VDEV(&bp->blk_dva[2])) +
4701 			    (DVA_GET_VDEV(&bp->blk_dva[1]) ==
4702 			    DVA_GET_VDEV(&bp->blk_dva[2]));
4703 			if (equal == 1)
4704 				zb->zb_ditto_2_of_3_samevdev++;
4705 			else if (equal == 3)
4706 				zb->zb_ditto_3_of_3_samevdev++;
4707 			break;
4708 		}
4709 	}
4710 }
4711 
4712 static void
scan_io_queue_insert_impl(dsl_scan_io_queue_t * queue,scan_io_t * sio)4713 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
4714 {
4715 	avl_index_t idx;
4716 	dsl_scan_t *scn = queue->q_scn;
4717 
4718 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4719 
4720 	if (unlikely(avl_is_empty(&queue->q_sios_by_addr)))
4721 		atomic_add_64(&scn->scn_queues_pending, 1);
4722 	if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
4723 		/* block is already scheduled for reading */
4724 		sio_free(sio);
4725 		return;
4726 	}
4727 	avl_insert(&queue->q_sios_by_addr, sio, idx);
4728 	queue->q_sio_memused += SIO_GET_MUSED(sio);
4729 	zfs_range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio),
4730 	    SIO_GET_ASIZE(sio));
4731 }
4732 
4733 /*
4734  * Given all the info we got from our metadata scanning process, we
4735  * construct a scan_io_t and insert it into the scan sorting queue. The
4736  * I/O must already be suitable for us to process. This is controlled
4737  * by dsl_scan_enqueue().
4738  */
4739 static void
scan_io_queue_insert(dsl_scan_io_queue_t * queue,const blkptr_t * bp,int dva_i,int zio_flags,const zbookmark_phys_t * zb)4740 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
4741     int zio_flags, const zbookmark_phys_t *zb)
4742 {
4743 	scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
4744 
4745 	ASSERT0(BP_IS_GANG(bp));
4746 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4747 
4748 	bp2sio(bp, sio, dva_i);
4749 	sio->sio_flags = zio_flags;
4750 	sio->sio_zb = *zb;
4751 
4752 	queue->q_last_ext_addr = -1;
4753 	scan_io_queue_insert_impl(queue, sio);
4754 }
4755 
4756 /*
4757  * Given a set of I/O parameters as discovered by the metadata traversal
4758  * process, attempts to place the I/O into the sorted queues (if allowed),
4759  * or immediately executes the I/O.
4760  */
4761 static void
dsl_scan_enqueue(dsl_pool_t * dp,const blkptr_t * bp,int zio_flags,const zbookmark_phys_t * zb)4762 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4763     const zbookmark_phys_t *zb)
4764 {
4765 	spa_t *spa = dp->dp_spa;
4766 
4767 	ASSERT(!BP_IS_EMBEDDED(bp));
4768 
4769 	/*
4770 	 * Gang blocks are hard to issue sequentially, so we just issue them
4771 	 * here immediately instead of queuing them.
4772 	 */
4773 	if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
4774 		scan_exec_io(dp, bp, zio_flags, zb, NULL);
4775 		return;
4776 	}
4777 
4778 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4779 		dva_t dva;
4780 		vdev_t *vdev;
4781 
4782 		dva = bp->blk_dva[i];
4783 		vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
4784 		ASSERT(vdev != NULL);
4785 
4786 		mutex_enter(&vdev->vdev_scan_io_queue_lock);
4787 		if (vdev->vdev_scan_io_queue == NULL)
4788 			vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
4789 		ASSERT(dp->dp_scan != NULL);
4790 		scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
4791 		    i, zio_flags, zb);
4792 		mutex_exit(&vdev->vdev_scan_io_queue_lock);
4793 	}
4794 }
4795 
4796 static int
dsl_scan_scrub_cb(dsl_pool_t * dp,const blkptr_t * bp,const zbookmark_phys_t * zb)4797 dsl_scan_scrub_cb(dsl_pool_t *dp,
4798     const blkptr_t *bp, const zbookmark_phys_t *zb)
4799 {
4800 	dsl_scan_t *scn = dp->dp_scan;
4801 	spa_t *spa = dp->dp_spa;
4802 	uint64_t phys_birth = BP_GET_BIRTH(bp);
4803 	size_t psize = BP_GET_PSIZE(bp);
4804 	boolean_t needs_io = B_FALSE;
4805 	int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
4806 
4807 	count_block(dp->dp_blkstats, bp);
4808 	if (phys_birth <= scn->scn_phys.scn_min_txg ||
4809 	    phys_birth >= scn->scn_phys.scn_max_txg) {
4810 		count_block_skipped(scn, bp, B_TRUE);
4811 		return (0);
4812 	}
4813 
4814 	/* Embedded BP's have phys_birth==0, so we reject them above. */
4815 	ASSERT(!BP_IS_EMBEDDED(bp));
4816 
4817 	ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
4818 	if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
4819 		zio_flags |= ZIO_FLAG_SCRUB;
4820 		needs_io = B_TRUE;
4821 	} else {
4822 		ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
4823 		zio_flags |= ZIO_FLAG_RESILVER;
4824 		needs_io = B_FALSE;
4825 	}
4826 
4827 	/* If it's an intent log block, failure is expected. */
4828 	if (zb->zb_level == ZB_ZIL_LEVEL)
4829 		zio_flags |= ZIO_FLAG_SPECULATIVE;
4830 
4831 	for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4832 		const dva_t *dva = &bp->blk_dva[d];
4833 
4834 		/*
4835 		 * Keep track of how much data we've examined so that
4836 		 * zpool(8) status can make useful progress reports.
4837 		 */
4838 		uint64_t asize = DVA_GET_ASIZE(dva);
4839 		scn->scn_phys.scn_examined += asize;
4840 		spa->spa_scan_pass_exam += asize;
4841 
4842 		/* if it's a resilver, this may not be in the target range */
4843 		if (!needs_io)
4844 			needs_io = dsl_scan_need_resilver(spa, dva, psize,
4845 			    phys_birth);
4846 	}
4847 
4848 	if (needs_io && !zfs_no_scrub_io) {
4849 		dsl_scan_enqueue(dp, bp, zio_flags, zb);
4850 	} else {
4851 		count_block_skipped(scn, bp, B_TRUE);
4852 	}
4853 
4854 	/* do not relocate this block */
4855 	return (0);
4856 }
4857 
4858 static void
dsl_scan_scrub_done(zio_t * zio)4859 dsl_scan_scrub_done(zio_t *zio)
4860 {
4861 	spa_t *spa = zio->io_spa;
4862 	blkptr_t *bp = zio->io_bp;
4863 	dsl_scan_io_queue_t *queue = zio->io_private;
4864 
4865 	abd_free(zio->io_abd);
4866 
4867 	if (queue == NULL) {
4868 		mutex_enter(&spa->spa_scrub_lock);
4869 		ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4870 		spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4871 		cv_broadcast(&spa->spa_scrub_io_cv);
4872 		mutex_exit(&spa->spa_scrub_lock);
4873 	} else {
4874 		mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4875 		ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4876 		queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4877 		cv_broadcast(&queue->q_zio_cv);
4878 		mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4879 	}
4880 
4881 	if (zio->io_error && (zio->io_error != ECKSUM ||
4882 	    !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4883 		if (dsl_errorscrubbing(spa->spa_dsl_pool) &&
4884 		    !dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) {
4885 			atomic_inc_64(&spa->spa_dsl_pool->dp_scan
4886 			    ->errorscrub_phys.dep_errors);
4887 		} else {
4888 			atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys
4889 			    .scn_errors);
4890 		}
4891 	}
4892 }
4893 
4894 /*
4895  * Given a scanning zio's information, executes the zio. The zio need
4896  * not necessarily be only sortable, this function simply executes the
4897  * zio, no matter what it is. The optional queue argument allows the
4898  * caller to specify that they want per top level vdev IO rate limiting
4899  * instead of the legacy global limiting.
4900  */
4901 static void
scan_exec_io(dsl_pool_t * dp,const blkptr_t * bp,int zio_flags,const zbookmark_phys_t * zb,dsl_scan_io_queue_t * queue)4902 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4903     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4904 {
4905 	spa_t *spa = dp->dp_spa;
4906 	dsl_scan_t *scn = dp->dp_scan;
4907 	size_t size = BP_GET_PSIZE(bp);
4908 	abd_t *data = abd_alloc_for_io(size, B_FALSE);
4909 	zio_t *pio;
4910 
4911 	if (queue == NULL) {
4912 		ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4913 		mutex_enter(&spa->spa_scrub_lock);
4914 		while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4915 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4916 		spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4917 		mutex_exit(&spa->spa_scrub_lock);
4918 		pio = scn->scn_zio_root;
4919 	} else {
4920 		kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4921 
4922 		ASSERT3U(queue->q_maxinflight_bytes, >, 0);
4923 		mutex_enter(q_lock);
4924 		while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4925 			cv_wait(&queue->q_zio_cv, q_lock);
4926 		queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4927 		pio = queue->q_zio;
4928 		mutex_exit(q_lock);
4929 	}
4930 
4931 	ASSERT(pio != NULL);
4932 	count_block_issued(spa, bp, queue == NULL);
4933 	zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done,
4934 	    queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4935 }
4936 
4937 /*
4938  * This is the primary extent sorting algorithm. We balance two parameters:
4939  * 1) how many bytes of I/O are in an extent
4940  * 2) how well the extent is filled with I/O (as a fraction of its total size)
4941  * Since we allow extents to have gaps between their constituent I/Os, it's
4942  * possible to have a fairly large extent that contains the same amount of
4943  * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4944  * The algorithm sorts based on a score calculated from the extent's size,
4945  * the relative fill volume (in %) and a "fill weight" parameter that controls
4946  * the split between whether we prefer larger extents or more well populated
4947  * extents:
4948  *
4949  * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4950  *
4951  * Example:
4952  * 1) assume extsz = 64 MiB
4953  * 2) assume fill = 32 MiB (extent is half full)
4954  * 3) assume fill_weight = 3
4955  * 4)	SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4956  *	SCORE = 32M + (50 * 3 * 32M) / 100
4957  *	SCORE = 32M + (4800M / 100)
4958  *	SCORE = 32M + 48M
4959  *	         ^     ^
4960  *	         |     +--- final total relative fill-based score
4961  *	         +--------- final total fill-based score
4962  *	SCORE = 80M
4963  *
4964  * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4965  * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4966  * Note that as an optimization, we replace multiplication and division by
4967  * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4968  *
4969  * Since we do not care if one extent is only few percent better than another,
4970  * compress the score into 6 bits via binary logarithm AKA highbit64() and
4971  * put into otherwise unused due to ashift high bits of offset.  This allows
4972  * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
4973  * with single operation.  Plus it makes scrubs more sequential and reduces
4974  * chances that minor extent change move it within the B-tree.
4975  */
4976 __attribute__((always_inline)) inline
4977 static int
ext_size_compare(const void * x,const void * y)4978 ext_size_compare(const void *x, const void *y)
4979 {
4980 	const uint64_t *a = x, *b = y;
4981 
4982 	return (TREE_CMP(*a, *b));
4983 }
4984 
ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf,uint64_t,ext_size_compare)4985 ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf, uint64_t,
4986     ext_size_compare)
4987 
4988 static void
4989 ext_size_create(zfs_range_tree_t *rt, void *arg)
4990 {
4991 	(void) rt;
4992 	zfs_btree_t *size_tree = arg;
4993 
4994 	zfs_btree_create(size_tree, ext_size_compare, ext_size_find_in_buf,
4995 	    sizeof (uint64_t));
4996 }
4997 
4998 static void
ext_size_destroy(zfs_range_tree_t * rt,void * arg)4999 ext_size_destroy(zfs_range_tree_t *rt, void *arg)
5000 {
5001 	(void) rt;
5002 	zfs_btree_t *size_tree = arg;
5003 	ASSERT0(zfs_btree_numnodes(size_tree));
5004 
5005 	zfs_btree_destroy(size_tree);
5006 }
5007 
5008 static uint64_t
ext_size_value(zfs_range_tree_t * rt,zfs_range_seg_gap_t * rsg)5009 ext_size_value(zfs_range_tree_t *rt, zfs_range_seg_gap_t *rsg)
5010 {
5011 	(void) rt;
5012 	uint64_t size = rsg->rs_end - rsg->rs_start;
5013 	uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) *
5014 	    fill_weight * rsg->rs_fill) >> 7);
5015 	ASSERT3U(rt->rt_shift, >=, 8);
5016 	return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start);
5017 }
5018 
5019 static void
ext_size_add(zfs_range_tree_t * rt,zfs_range_seg_t * rs,void * arg)5020 ext_size_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
5021 {
5022 	zfs_btree_t *size_tree = arg;
5023 	ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP);
5024 	uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs);
5025 	zfs_btree_add(size_tree, &v);
5026 }
5027 
5028 static void
ext_size_remove(zfs_range_tree_t * rt,zfs_range_seg_t * rs,void * arg)5029 ext_size_remove(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
5030 {
5031 	zfs_btree_t *size_tree = arg;
5032 	ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP);
5033 	uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs);
5034 	zfs_btree_remove(size_tree, &v);
5035 }
5036 
5037 static void
ext_size_vacate(zfs_range_tree_t * rt,void * arg)5038 ext_size_vacate(zfs_range_tree_t *rt, void *arg)
5039 {
5040 	zfs_btree_t *size_tree = arg;
5041 	zfs_btree_clear(size_tree);
5042 	zfs_btree_destroy(size_tree);
5043 
5044 	ext_size_create(rt, arg);
5045 }
5046 
5047 static const zfs_range_tree_ops_t ext_size_ops = {
5048 	.rtop_create = ext_size_create,
5049 	.rtop_destroy = ext_size_destroy,
5050 	.rtop_add = ext_size_add,
5051 	.rtop_remove = ext_size_remove,
5052 	.rtop_vacate = ext_size_vacate
5053 };
5054 
5055 /*
5056  * Comparator for the q_sios_by_addr tree. Sorting is simply performed
5057  * based on LBA-order (from lowest to highest).
5058  */
5059 static int
sio_addr_compare(const void * x,const void * y)5060 sio_addr_compare(const void *x, const void *y)
5061 {
5062 	const scan_io_t *a = x, *b = y;
5063 
5064 	return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
5065 }
5066 
5067 /* IO queues are created on demand when they are needed. */
5068 static dsl_scan_io_queue_t *
scan_io_queue_create(vdev_t * vd)5069 scan_io_queue_create(vdev_t *vd)
5070 {
5071 	dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
5072 	dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
5073 
5074 	q->q_scn = scn;
5075 	q->q_vd = vd;
5076 	q->q_sio_memused = 0;
5077 	q->q_last_ext_addr = -1;
5078 	cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
5079 	q->q_exts_by_addr = zfs_range_tree_create_gap(&ext_size_ops,
5080 	    ZFS_RANGE_SEG_GAP, &q->q_exts_by_size, 0, vd->vdev_ashift,
5081 	    zfs_scan_max_ext_gap);
5082 	avl_create(&q->q_sios_by_addr, sio_addr_compare,
5083 	    sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
5084 
5085 	return (q);
5086 }
5087 
5088 /*
5089  * Destroys a scan queue and all segments and scan_io_t's contained in it.
5090  * No further execution of I/O occurs, anything pending in the queue is
5091  * simply freed without being executed.
5092  */
5093 void
dsl_scan_io_queue_destroy(dsl_scan_io_queue_t * queue)5094 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
5095 {
5096 	dsl_scan_t *scn = queue->q_scn;
5097 	scan_io_t *sio;
5098 	void *cookie = NULL;
5099 
5100 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
5101 
5102 	if (!avl_is_empty(&queue->q_sios_by_addr))
5103 		atomic_add_64(&scn->scn_queues_pending, -1);
5104 	while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
5105 	    NULL) {
5106 		ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr,
5107 		    SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
5108 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
5109 		sio_free(sio);
5110 	}
5111 
5112 	ASSERT0(queue->q_sio_memused);
5113 	zfs_range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
5114 	zfs_range_tree_destroy(queue->q_exts_by_addr);
5115 	avl_destroy(&queue->q_sios_by_addr);
5116 	cv_destroy(&queue->q_zio_cv);
5117 
5118 	kmem_free(queue, sizeof (*queue));
5119 }
5120 
5121 /*
5122  * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
5123  * called on behalf of vdev_top_transfer when creating or destroying
5124  * a mirror vdev due to zpool attach/detach.
5125  */
5126 void
dsl_scan_io_queue_vdev_xfer(vdev_t * svd,vdev_t * tvd)5127 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
5128 {
5129 	mutex_enter(&svd->vdev_scan_io_queue_lock);
5130 	mutex_enter(&tvd->vdev_scan_io_queue_lock);
5131 
5132 	VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
5133 	tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
5134 	svd->vdev_scan_io_queue = NULL;
5135 	if (tvd->vdev_scan_io_queue != NULL)
5136 		tvd->vdev_scan_io_queue->q_vd = tvd;
5137 
5138 	mutex_exit(&tvd->vdev_scan_io_queue_lock);
5139 	mutex_exit(&svd->vdev_scan_io_queue_lock);
5140 }
5141 
5142 static void
scan_io_queues_destroy(dsl_scan_t * scn)5143 scan_io_queues_destroy(dsl_scan_t *scn)
5144 {
5145 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
5146 
5147 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
5148 		vdev_t *tvd = rvd->vdev_child[i];
5149 
5150 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
5151 		if (tvd->vdev_scan_io_queue != NULL)
5152 			dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
5153 		tvd->vdev_scan_io_queue = NULL;
5154 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
5155 	}
5156 }
5157 
5158 static void
dsl_scan_freed_dva(spa_t * spa,const blkptr_t * bp,int dva_i)5159 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
5160 {
5161 	dsl_pool_t *dp = spa->spa_dsl_pool;
5162 	dsl_scan_t *scn = dp->dp_scan;
5163 	vdev_t *vdev;
5164 	kmutex_t *q_lock;
5165 	dsl_scan_io_queue_t *queue;
5166 	scan_io_t *srch_sio, *sio;
5167 	avl_index_t idx;
5168 	uint64_t start, size;
5169 
5170 	vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
5171 	ASSERT(vdev != NULL);
5172 	q_lock = &vdev->vdev_scan_io_queue_lock;
5173 	queue = vdev->vdev_scan_io_queue;
5174 
5175 	mutex_enter(q_lock);
5176 	if (queue == NULL) {
5177 		mutex_exit(q_lock);
5178 		return;
5179 	}
5180 
5181 	srch_sio = sio_alloc(BP_GET_NDVAS(bp));
5182 	bp2sio(bp, srch_sio, dva_i);
5183 	start = SIO_GET_OFFSET(srch_sio);
5184 	size = SIO_GET_ASIZE(srch_sio);
5185 
5186 	/*
5187 	 * We can find the zio in two states:
5188 	 * 1) Cold, just sitting in the queue of zio's to be issued at
5189 	 *	some point in the future. In this case, all we do is
5190 	 *	remove the zio from the q_sios_by_addr tree, decrement
5191 	 *	its data volume from the containing zfs_range_seg_t and
5192 	 *	resort the q_exts_by_size tree to reflect that the
5193 	 *	zfs_range_seg_t has lost some of its 'fill'. We don't shorten
5194 	 *	the zfs_range_seg_t - this is usually rare enough not to be
5195 	 *	worth the extra hassle of trying keep track of precise
5196 	 *	extent boundaries.
5197 	 * 2) Hot, where the zio is currently in-flight in
5198 	 *	dsl_scan_issue_ios. In this case, we can't simply
5199 	 *	reach in and stop the in-flight zio's, so we instead
5200 	 *	block the caller. Eventually, dsl_scan_issue_ios will
5201 	 *	be done with issuing the zio's it gathered and will
5202 	 *	signal us.
5203 	 */
5204 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
5205 	sio_free(srch_sio);
5206 
5207 	if (sio != NULL) {
5208 		blkptr_t tmpbp;
5209 
5210 		/* Got it while it was cold in the queue */
5211 		ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
5212 		ASSERT3U(size, ==, SIO_GET_ASIZE(sio));
5213 		avl_remove(&queue->q_sios_by_addr, sio);
5214 		if (avl_is_empty(&queue->q_sios_by_addr))
5215 			atomic_add_64(&scn->scn_queues_pending, -1);
5216 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
5217 
5218 		ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr, start,
5219 		    size));
5220 		zfs_range_tree_remove_fill(queue->q_exts_by_addr, start, size);
5221 
5222 		/* count the block as though we skipped it */
5223 		sio2bp(sio, &tmpbp);
5224 		count_block_skipped(scn, &tmpbp, B_FALSE);
5225 
5226 		sio_free(sio);
5227 	}
5228 	mutex_exit(q_lock);
5229 }
5230 
5231 /*
5232  * Callback invoked when a zio_free() zio is executing. This needs to be
5233  * intercepted to prevent the zio from deallocating a particular portion
5234  * of disk space and it then getting reallocated and written to, while we
5235  * still have it queued up for processing.
5236  */
5237 void
dsl_scan_freed(spa_t * spa,const blkptr_t * bp)5238 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
5239 {
5240 	dsl_pool_t *dp = spa->spa_dsl_pool;
5241 	dsl_scan_t *scn = dp->dp_scan;
5242 
5243 	ASSERT(!BP_IS_EMBEDDED(bp));
5244 	ASSERT(scn != NULL);
5245 	if (!dsl_scan_is_running(scn))
5246 		return;
5247 
5248 	for (int i = 0; i < BP_GET_NDVAS(bp); i++)
5249 		dsl_scan_freed_dva(spa, bp, i);
5250 }
5251 
5252 /*
5253  * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
5254  * not started, start it. Otherwise, only restart if max txg in DTL range is
5255  * greater than the max txg in the current scan. If the DTL max is less than
5256  * the scan max, then the vdev has not missed any new data since the resilver
5257  * started, so a restart is not needed.
5258  */
5259 void
dsl_scan_assess_vdev(dsl_pool_t * dp,vdev_t * vd)5260 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
5261 {
5262 	uint64_t min, max;
5263 
5264 	if (!vdev_resilver_needed(vd, &min, &max))
5265 		return;
5266 
5267 	if (!dsl_scan_resilvering(dp)) {
5268 		spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5269 		return;
5270 	}
5271 
5272 	if (max <= dp->dp_scan->scn_phys.scn_max_txg)
5273 		return;
5274 
5275 	/* restart is needed, check if it can be deferred */
5276 	if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
5277 		vdev_defer_resilver(vd);
5278 	else
5279 		spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5280 }
5281 
5282 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW,
5283 	"Max bytes in flight per leaf vdev for scrubs and resilvers");
5284 
5285 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW,
5286 	"Min millisecs to scrub per txg");
5287 
5288 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW,
5289 	"Min millisecs to obsolete per txg");
5290 
5291 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW,
5292 	"Min millisecs to free per txg");
5293 
5294 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW,
5295 	"Min millisecs to resilver per txg");
5296 
5297 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
5298 	"Set to prevent scans from progressing");
5299 
5300 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
5301 	"Set to disable scrub I/O");
5302 
5303 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
5304 	"Set to disable scrub prefetching");
5305 
5306 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW,
5307 	"Max number of blocks freed in one txg");
5308 
5309 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW,
5310 	"Max number of dedup blocks freed in one txg");
5311 
5312 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
5313 	"Enable processing of the free_bpobj");
5314 
5315 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW,
5316 	"Enable block statistics calculation during scrub");
5317 
5318 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW,
5319 	"Fraction of RAM for scan hard limit");
5320 
5321 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW,
5322 	"IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
5323 
5324 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
5325 	"Scrub using legacy non-sequential method");
5326 
5327 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW,
5328 	"Scan progress on-disk checkpointing interval");
5329 
5330 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW,
5331 	"Max gap in bytes between sequential scrub / resilver I/Os");
5332 
5333 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW,
5334 	"Fraction of hard limit used as soft limit");
5335 
5336 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
5337 	"Tunable to attempt to reduce lock contention");
5338 
5339 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW,
5340 	"Tunable to adjust bias towards more filled segments during scans");
5341 
5342 ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW,
5343 	"Tunable to report resilver performance over the last N txgs");
5344 
5345 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
5346 	"Process all resilvers immediately");
5347 
5348 ZFS_MODULE_PARAM(zfs, zfs_, resilver_defer_percent, UINT, ZMOD_RW,
5349 	"Issued IO percent complete after which resilvers are deferred");
5350 
5351 ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, UINT, ZMOD_RW,
5352 	"Error blocks to be scrubbed in one txg");
5353