1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __LINUX_PWM_H 3 #define __LINUX_PWM_H 4 5 #include <linux/cdev.h> 6 #include <linux/device.h> 7 #include <linux/err.h> 8 #include <linux/module.h> 9 #include <linux/mutex.h> 10 #include <linux/of.h> 11 12 MODULE_IMPORT_NS("PWM"); 13 14 struct pwm_chip; 15 16 /** 17 * enum pwm_polarity - polarity of a PWM signal 18 * @PWM_POLARITY_NORMAL: a high signal for the duration of the duty- 19 * cycle, followed by a low signal for the remainder of the pulse 20 * period 21 * @PWM_POLARITY_INVERSED: a low signal for the duration of the duty- 22 * cycle, followed by a high signal for the remainder of the pulse 23 * period 24 */ 25 enum pwm_polarity { 26 PWM_POLARITY_NORMAL, 27 PWM_POLARITY_INVERSED, 28 }; 29 30 /** 31 * struct pwm_args - board-dependent PWM arguments 32 * @period: reference period 33 * @polarity: reference polarity 34 * 35 * This structure describes board-dependent arguments attached to a PWM 36 * device. These arguments are usually retrieved from the PWM lookup table or 37 * device tree. 38 * 39 * Do not confuse this with the PWM state: PWM arguments represent the initial 40 * configuration that users want to use on this PWM device rather than the 41 * current PWM hardware state. 42 */ 43 struct pwm_args { 44 u64 period; 45 enum pwm_polarity polarity; 46 }; 47 48 enum { 49 PWMF_REQUESTED = 0, 50 PWMF_EXPORTED = 1, 51 }; 52 53 /** 54 * struct pwm_waveform - description of a PWM waveform 55 * @period_length_ns: PWM period 56 * @duty_length_ns: PWM duty cycle 57 * @duty_offset_ns: offset of the rising edge from the period's start 58 * 59 * This is a representation of a PWM waveform alternative to struct pwm_state 60 * below. It's more expressive than struct pwm_state as it contains a 61 * duty_offset_ns and so can represent offsets other than zero (with .polarity = 62 * PWM_POLARITY_NORMAL) and period - duty_cycle (.polarity = 63 * PWM_POLARITY_INVERSED). 64 * 65 * Note there is no explicit bool for enabled. A "disabled" PWM is represented 66 * by .period_length_ns = 0. Note further that the behaviour of a "disabled" PWM 67 * is undefined. Depending on the hardware's capabilities it might drive the 68 * active or inactive level, go high-z or even continue to toggle. 69 * 70 * The unit for all three members is nanoseconds. 71 */ 72 struct pwm_waveform { 73 u64 period_length_ns; 74 u64 duty_length_ns; 75 u64 duty_offset_ns; 76 }; 77 78 /* 79 * struct pwm_state - state of a PWM channel 80 * @period: PWM period (in nanoseconds) 81 * @duty_cycle: PWM duty cycle (in nanoseconds) 82 * @polarity: PWM polarity 83 * @enabled: PWM enabled status 84 * @usage_power: If set, the PWM driver is only required to maintain the power 85 * output but has more freedom regarding signal form. 86 * If supported, the signal can be optimized, for example to 87 * improve EMI by phase shifting individual channels. 88 */ 89 struct pwm_state { 90 u64 period; 91 u64 duty_cycle; 92 enum pwm_polarity polarity; 93 bool enabled; 94 bool usage_power; 95 }; 96 97 /** 98 * struct pwm_device - PWM channel object 99 * @label: name of the PWM device 100 * @flags: flags associated with the PWM device 101 * @hwpwm: per-chip relative index of the PWM device 102 * @chip: PWM chip providing this PWM device 103 * @args: PWM arguments 104 * @state: last applied state 105 * @last: last implemented state (for PWM_DEBUG) 106 */ 107 struct pwm_device { 108 const char *label; 109 unsigned long flags; 110 unsigned int hwpwm; 111 struct pwm_chip *chip; 112 113 struct pwm_args args; 114 struct pwm_state state; 115 struct pwm_state last; 116 }; 117 118 /** 119 * pwm_get_state() - retrieve the current PWM state 120 * @pwm: PWM device 121 * @state: state to fill with the current PWM state 122 * 123 * The returned PWM state represents the state that was applied by a previous call to 124 * pwm_apply_might_sleep(). Drivers may have to slightly tweak that state before programming it to 125 * hardware. If pwm_apply_might_sleep() was never called, this returns either the current hardware 126 * state (if supported) or the default settings. 127 */ 128 static inline void pwm_get_state(const struct pwm_device *pwm, 129 struct pwm_state *state) 130 { 131 *state = pwm->state; 132 } 133 134 static inline bool pwm_is_enabled(const struct pwm_device *pwm) 135 { 136 struct pwm_state state; 137 138 pwm_get_state(pwm, &state); 139 140 return state.enabled; 141 } 142 143 static inline u64 pwm_get_period(const struct pwm_device *pwm) 144 { 145 struct pwm_state state; 146 147 pwm_get_state(pwm, &state); 148 149 return state.period; 150 } 151 152 static inline u64 pwm_get_duty_cycle(const struct pwm_device *pwm) 153 { 154 struct pwm_state state; 155 156 pwm_get_state(pwm, &state); 157 158 return state.duty_cycle; 159 } 160 161 static inline enum pwm_polarity pwm_get_polarity(const struct pwm_device *pwm) 162 { 163 struct pwm_state state; 164 165 pwm_get_state(pwm, &state); 166 167 return state.polarity; 168 } 169 170 static inline void pwm_get_args(const struct pwm_device *pwm, 171 struct pwm_args *args) 172 { 173 *args = pwm->args; 174 } 175 176 /** 177 * pwm_init_state() - prepare a new state to be applied with pwm_apply_might_sleep() 178 * @pwm: PWM device 179 * @state: state to fill with the prepared PWM state 180 * 181 * This functions prepares a state that can later be tweaked and applied 182 * to the PWM device with pwm_apply_might_sleep(). This is a convenient function 183 * that first retrieves the current PWM state and the replaces the period 184 * and polarity fields with the reference values defined in pwm->args. 185 * Once the function returns, you can adjust the ->enabled and ->duty_cycle 186 * fields according to your needs before calling pwm_apply_might_sleep(). 187 * 188 * ->duty_cycle is initially set to zero to avoid cases where the current 189 * ->duty_cycle value exceed the pwm_args->period one, which would trigger 190 * an error if the user calls pwm_apply_might_sleep() without adjusting ->duty_cycle 191 * first. 192 */ 193 static inline void pwm_init_state(const struct pwm_device *pwm, 194 struct pwm_state *state) 195 { 196 struct pwm_args args; 197 198 /* First get the current state. */ 199 pwm_get_state(pwm, state); 200 201 /* Then fill it with the reference config */ 202 pwm_get_args(pwm, &args); 203 204 state->period = args.period; 205 state->polarity = args.polarity; 206 state->duty_cycle = 0; 207 state->usage_power = false; 208 } 209 210 /** 211 * pwm_get_relative_duty_cycle() - Get a relative duty cycle value 212 * @state: PWM state to extract the duty cycle from 213 * @scale: target scale of the relative duty cycle 214 * 215 * This functions converts the absolute duty cycle stored in @state (expressed 216 * in nanosecond) into a value relative to the period. 217 * 218 * For example if you want to get the duty_cycle expressed in percent, call: 219 * 220 * pwm_get_state(pwm, &state); 221 * duty = pwm_get_relative_duty_cycle(&state, 100); 222 * 223 * Returns: rounded relative duty cycle multiplied by @scale 224 */ 225 static inline unsigned int 226 pwm_get_relative_duty_cycle(const struct pwm_state *state, unsigned int scale) 227 { 228 if (!state->period) 229 return 0; 230 231 return DIV_ROUND_CLOSEST_ULL((u64)state->duty_cycle * scale, 232 state->period); 233 } 234 235 /** 236 * pwm_set_relative_duty_cycle() - Set a relative duty cycle value 237 * @state: PWM state to fill 238 * @duty_cycle: relative duty cycle value 239 * @scale: scale in which @duty_cycle is expressed 240 * 241 * This functions converts a relative into an absolute duty cycle (expressed 242 * in nanoseconds), and puts the result in state->duty_cycle. 243 * 244 * For example if you want to configure a 50% duty cycle, call: 245 * 246 * pwm_init_state(pwm, &state); 247 * pwm_set_relative_duty_cycle(&state, 50, 100); 248 * pwm_apply_might_sleep(pwm, &state); 249 * 250 * Returns: 0 on success or ``-EINVAL`` if @duty_cycle and/or @scale are 251 * inconsistent (@scale == 0 or @duty_cycle > @scale) 252 */ 253 static inline int 254 pwm_set_relative_duty_cycle(struct pwm_state *state, unsigned int duty_cycle, 255 unsigned int scale) 256 { 257 if (!scale || duty_cycle > scale) 258 return -EINVAL; 259 260 state->duty_cycle = DIV_ROUND_CLOSEST_ULL((u64)duty_cycle * 261 state->period, 262 scale); 263 264 return 0; 265 } 266 267 /** 268 * struct pwm_capture - PWM capture data 269 * @period: period of the PWM signal (in nanoseconds) 270 * @duty_cycle: duty cycle of the PWM signal (in nanoseconds) 271 */ 272 struct pwm_capture { 273 unsigned int period; 274 unsigned int duty_cycle; 275 }; 276 277 #define PWM_WFHWSIZE 20 278 279 /** 280 * struct pwm_ops - PWM controller operations 281 * @request: optional hook for requesting a PWM 282 * @free: optional hook for freeing a PWM 283 * @capture: capture and report PWM signal 284 * @sizeof_wfhw: size (in bytes) of driver specific waveform presentation 285 * @round_waveform_tohw: convert a struct pwm_waveform to driver specific presentation 286 * @round_waveform_fromhw: convert a driver specific waveform presentation to struct pwm_waveform 287 * @read_waveform: read driver specific waveform presentation from hardware 288 * @write_waveform: write driver specific waveform presentation to hardware 289 * @apply: atomically apply a new PWM config 290 * @get_state: get the current PWM state. 291 */ 292 struct pwm_ops { 293 int (*request)(struct pwm_chip *chip, struct pwm_device *pwm); 294 void (*free)(struct pwm_chip *chip, struct pwm_device *pwm); 295 int (*capture)(struct pwm_chip *chip, struct pwm_device *pwm, 296 struct pwm_capture *result, unsigned long timeout); 297 298 size_t sizeof_wfhw; 299 int (*round_waveform_tohw)(struct pwm_chip *chip, struct pwm_device *pwm, 300 const struct pwm_waveform *wf, void *wfhw); 301 int (*round_waveform_fromhw)(struct pwm_chip *chip, struct pwm_device *pwm, 302 const void *wfhw, struct pwm_waveform *wf); 303 int (*read_waveform)(struct pwm_chip *chip, struct pwm_device *pwm, 304 void *wfhw); 305 int (*write_waveform)(struct pwm_chip *chip, struct pwm_device *pwm, 306 const void *wfhw); 307 308 int (*apply)(struct pwm_chip *chip, struct pwm_device *pwm, 309 const struct pwm_state *state); 310 int (*get_state)(struct pwm_chip *chip, struct pwm_device *pwm, 311 struct pwm_state *state); 312 }; 313 314 /** 315 * struct pwm_chip - abstract a PWM controller 316 * @dev: device providing the PWMs 317 * @cdev: &struct cdev for this device 318 * @ops: callbacks for this PWM controller 319 * @owner: module providing this chip 320 * @id: unique number of this PWM chip 321 * @npwm: number of PWMs controlled by this chip 322 * @of_xlate: request a PWM device given a device tree PWM specifier 323 * @atomic: can the driver's ->apply() be called in atomic context 324 * @uses_pwmchip_alloc: signals if pwmchip_allow was used to allocate this chip 325 * @operational: signals if the chip can be used (or is already deregistered) 326 * @nonatomic_lock: mutex for nonatomic chips 327 * @atomic_lock: mutex for atomic chips 328 * @pwms: array of PWM devices allocated by the framework 329 */ 330 struct pwm_chip { 331 struct device dev; 332 struct cdev cdev; 333 const struct pwm_ops *ops; 334 struct module *owner; 335 unsigned int id; 336 unsigned int npwm; 337 338 struct pwm_device * (*of_xlate)(struct pwm_chip *chip, 339 const struct of_phandle_args *args); 340 bool atomic; 341 342 /* only used internally by the PWM framework */ 343 bool uses_pwmchip_alloc; 344 bool operational; 345 union { 346 /* 347 * depending on the chip being atomic or not either the mutex or 348 * the spinlock is used. It protects .operational and 349 * synchronizes the callbacks in .ops 350 */ 351 struct mutex nonatomic_lock; 352 spinlock_t atomic_lock; 353 }; 354 struct pwm_device pwms[] __counted_by(npwm); 355 }; 356 357 /** 358 * pwmchip_supports_waveform() - checks if the given chip supports waveform callbacks 359 * @chip: The pwm_chip to test 360 * 361 * Returns: true iff the pwm chip support the waveform functions like 362 * pwm_set_waveform_might_sleep() and pwm_round_waveform_might_sleep() 363 */ 364 static inline bool pwmchip_supports_waveform(struct pwm_chip *chip) 365 { 366 /* 367 * only check for .write_waveform(). If that is available, 368 * .round_waveform_tohw() and .round_waveform_fromhw() asserted to be 369 * available, too, in pwmchip_add(). 370 */ 371 return chip->ops->write_waveform != NULL; 372 } 373 374 static inline struct device *pwmchip_parent(const struct pwm_chip *chip) 375 { 376 return chip->dev.parent; 377 } 378 379 static inline void *pwmchip_get_drvdata(const struct pwm_chip *chip) 380 { 381 return dev_get_drvdata(&chip->dev); 382 } 383 384 static inline void pwmchip_set_drvdata(struct pwm_chip *chip, void *data) 385 { 386 dev_set_drvdata(&chip->dev, data); 387 } 388 389 #if IS_REACHABLE(CONFIG_PWM) 390 391 /* PWM consumer APIs */ 392 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf); 393 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf); 394 int pwm_set_waveform_might_sleep(struct pwm_device *pwm, const struct pwm_waveform *wf, bool exact); 395 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state); 396 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state); 397 int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state); 398 int pwm_adjust_config(struct pwm_device *pwm); 399 400 /** 401 * pwm_config() - change a PWM device configuration 402 * @pwm: PWM device 403 * @duty_ns: "on" time (in nanoseconds) 404 * @period_ns: duration (in nanoseconds) of one cycle 405 * 406 * Returns: 0 on success or a negative error code on failure. 407 */ 408 static inline int pwm_config(struct pwm_device *pwm, int duty_ns, 409 int period_ns) 410 { 411 struct pwm_state state; 412 413 if (!pwm) 414 return -EINVAL; 415 416 if (duty_ns < 0 || period_ns < 0) 417 return -EINVAL; 418 419 pwm_get_state(pwm, &state); 420 if (state.duty_cycle == duty_ns && state.period == period_ns) 421 return 0; 422 423 state.duty_cycle = duty_ns; 424 state.period = period_ns; 425 return pwm_apply_might_sleep(pwm, &state); 426 } 427 428 /** 429 * pwm_enable() - start a PWM output toggling 430 * @pwm: PWM device 431 * 432 * Returns: 0 on success or a negative error code on failure. 433 */ 434 static inline int pwm_enable(struct pwm_device *pwm) 435 { 436 struct pwm_state state; 437 438 if (!pwm) 439 return -EINVAL; 440 441 pwm_get_state(pwm, &state); 442 if (state.enabled) 443 return 0; 444 445 state.enabled = true; 446 return pwm_apply_might_sleep(pwm, &state); 447 } 448 449 /** 450 * pwm_disable() - stop a PWM output toggling 451 * @pwm: PWM device 452 */ 453 static inline void pwm_disable(struct pwm_device *pwm) 454 { 455 struct pwm_state state; 456 457 if (!pwm) 458 return; 459 460 pwm_get_state(pwm, &state); 461 if (!state.enabled) 462 return; 463 464 state.enabled = false; 465 pwm_apply_might_sleep(pwm, &state); 466 } 467 468 /** 469 * pwm_might_sleep() - is pwm_apply_atomic() supported? 470 * @pwm: PWM device 471 * 472 * Returns: false if pwm_apply_atomic() can be called from atomic context. 473 */ 474 static inline bool pwm_might_sleep(struct pwm_device *pwm) 475 { 476 return !pwm->chip->atomic; 477 } 478 479 /* PWM provider APIs */ 480 void pwmchip_put(struct pwm_chip *chip); 481 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv); 482 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv); 483 484 int __pwmchip_add(struct pwm_chip *chip, struct module *owner); 485 #define pwmchip_add(chip) __pwmchip_add(chip, THIS_MODULE) 486 void pwmchip_remove(struct pwm_chip *chip); 487 488 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner); 489 #define devm_pwmchip_add(dev, chip) __devm_pwmchip_add(dev, chip, THIS_MODULE) 490 491 struct pwm_device *of_pwm_xlate_with_flags(struct pwm_chip *chip, 492 const struct of_phandle_args *args); 493 struct pwm_device *of_pwm_single_xlate(struct pwm_chip *chip, 494 const struct of_phandle_args *args); 495 496 struct pwm_device *pwm_get(struct device *dev, const char *con_id); 497 void pwm_put(struct pwm_device *pwm); 498 499 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id); 500 struct pwm_device *devm_fwnode_pwm_get(struct device *dev, 501 struct fwnode_handle *fwnode, 502 const char *con_id); 503 #else 504 static inline bool pwm_might_sleep(struct pwm_device *pwm) 505 { 506 return true; 507 } 508 509 static inline int pwm_apply_might_sleep(struct pwm_device *pwm, 510 const struct pwm_state *state) 511 { 512 might_sleep(); 513 return -EOPNOTSUPP; 514 } 515 516 static inline int pwm_apply_atomic(struct pwm_device *pwm, 517 const struct pwm_state *state) 518 { 519 return -EOPNOTSUPP; 520 } 521 522 static inline int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state) 523 { 524 return -EOPNOTSUPP; 525 } 526 527 static inline int pwm_adjust_config(struct pwm_device *pwm) 528 { 529 return -EOPNOTSUPP; 530 } 531 532 static inline int pwm_config(struct pwm_device *pwm, int duty_ns, 533 int period_ns) 534 { 535 might_sleep(); 536 return -EINVAL; 537 } 538 539 static inline int pwm_enable(struct pwm_device *pwm) 540 { 541 might_sleep(); 542 return -EINVAL; 543 } 544 545 static inline void pwm_disable(struct pwm_device *pwm) 546 { 547 might_sleep(); 548 } 549 550 static inline void pwmchip_put(struct pwm_chip *chip) 551 { 552 } 553 554 static inline struct pwm_chip *pwmchip_alloc(struct device *parent, 555 unsigned int npwm, 556 size_t sizeof_priv) 557 { 558 return ERR_PTR(-EINVAL); 559 } 560 561 static inline struct pwm_chip *devm_pwmchip_alloc(struct device *parent, 562 unsigned int npwm, 563 size_t sizeof_priv) 564 { 565 return pwmchip_alloc(parent, npwm, sizeof_priv); 566 } 567 568 static inline int pwmchip_add(struct pwm_chip *chip) 569 { 570 return -EINVAL; 571 } 572 573 static inline int pwmchip_remove(struct pwm_chip *chip) 574 { 575 return -EINVAL; 576 } 577 578 static inline int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip) 579 { 580 return -EINVAL; 581 } 582 583 static inline struct pwm_device *pwm_get(struct device *dev, 584 const char *consumer) 585 { 586 might_sleep(); 587 return ERR_PTR(-ENODEV); 588 } 589 590 static inline void pwm_put(struct pwm_device *pwm) 591 { 592 might_sleep(); 593 } 594 595 static inline struct pwm_device *devm_pwm_get(struct device *dev, 596 const char *consumer) 597 { 598 might_sleep(); 599 return ERR_PTR(-ENODEV); 600 } 601 602 static inline struct pwm_device * 603 devm_fwnode_pwm_get(struct device *dev, struct fwnode_handle *fwnode, 604 const char *con_id) 605 { 606 might_sleep(); 607 return ERR_PTR(-ENODEV); 608 } 609 #endif 610 611 static inline void pwm_apply_args(struct pwm_device *pwm) 612 { 613 struct pwm_state state = { }; 614 615 /* 616 * PWM users calling pwm_apply_args() expect to have a fresh config 617 * where the polarity and period are set according to pwm_args info. 618 * The problem is, polarity can only be changed when the PWM is 619 * disabled. 620 * 621 * PWM drivers supporting hardware readout may declare the PWM device 622 * as enabled, and prevent polarity setting, which changes from the 623 * existing behavior, where all PWM devices are declared as disabled 624 * at startup (even if they are actually enabled), thus authorizing 625 * polarity setting. 626 * 627 * To fulfill this requirement, we apply a new state which disables 628 * the PWM device and set the reference period and polarity config. 629 * 630 * Note that PWM users requiring a smooth handover between the 631 * bootloader and the kernel (like critical regulators controlled by 632 * PWM devices) will have to switch to the atomic API and avoid calling 633 * pwm_apply_args(). 634 */ 635 636 state.enabled = false; 637 state.polarity = pwm->args.polarity; 638 state.period = pwm->args.period; 639 state.usage_power = false; 640 641 pwm_apply_might_sleep(pwm, &state); 642 } 643 644 struct pwm_lookup { 645 struct list_head list; 646 const char *provider; 647 unsigned int index; 648 const char *dev_id; 649 const char *con_id; 650 unsigned int period; 651 enum pwm_polarity polarity; 652 const char *module; /* optional, may be NULL */ 653 }; 654 655 #define PWM_LOOKUP_WITH_MODULE(_provider, _index, _dev_id, _con_id, \ 656 _period, _polarity, _module) \ 657 { \ 658 .provider = _provider, \ 659 .index = _index, \ 660 .dev_id = _dev_id, \ 661 .con_id = _con_id, \ 662 .period = _period, \ 663 .polarity = _polarity, \ 664 .module = _module, \ 665 } 666 667 #define PWM_LOOKUP(_provider, _index, _dev_id, _con_id, _period, _polarity) \ 668 PWM_LOOKUP_WITH_MODULE(_provider, _index, _dev_id, _con_id, _period, \ 669 _polarity, NULL) 670 671 #if IS_REACHABLE(CONFIG_PWM) 672 void pwm_add_table(struct pwm_lookup *table, size_t num); 673 void pwm_remove_table(struct pwm_lookup *table, size_t num); 674 #else 675 static inline void pwm_add_table(struct pwm_lookup *table, size_t num) 676 { 677 } 678 679 static inline void pwm_remove_table(struct pwm_lookup *table, size_t num) 680 { 681 } 682 #endif 683 684 #endif /* __LINUX_PWM_H */ 685