xref: /linux/include/linux/pwm.h (revision 4f9786035f9e519db41375818e1d0b5f20da2f10)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_PWM_H
3 #define __LINUX_PWM_H
4 
5 #include <linux/device.h>
6 #include <linux/err.h>
7 #include <linux/module.h>
8 #include <linux/mutex.h>
9 #include <linux/of.h>
10 
11 MODULE_IMPORT_NS("PWM");
12 
13 struct pwm_chip;
14 
15 /**
16  * enum pwm_polarity - polarity of a PWM signal
17  * @PWM_POLARITY_NORMAL: a high signal for the duration of the duty-
18  * cycle, followed by a low signal for the remainder of the pulse
19  * period
20  * @PWM_POLARITY_INVERSED: a low signal for the duration of the duty-
21  * cycle, followed by a high signal for the remainder of the pulse
22  * period
23  */
24 enum pwm_polarity {
25 	PWM_POLARITY_NORMAL,
26 	PWM_POLARITY_INVERSED,
27 };
28 
29 /**
30  * struct pwm_args - board-dependent PWM arguments
31  * @period: reference period
32  * @polarity: reference polarity
33  *
34  * This structure describes board-dependent arguments attached to a PWM
35  * device. These arguments are usually retrieved from the PWM lookup table or
36  * device tree.
37  *
38  * Do not confuse this with the PWM state: PWM arguments represent the initial
39  * configuration that users want to use on this PWM device rather than the
40  * current PWM hardware state.
41  */
42 struct pwm_args {
43 	u64 period;
44 	enum pwm_polarity polarity;
45 };
46 
47 enum {
48 	PWMF_REQUESTED = 0,
49 	PWMF_EXPORTED = 1,
50 };
51 
52 /**
53  * struct pwm_waveform - description of a PWM waveform
54  * @period_length_ns: PWM period
55  * @duty_length_ns: PWM duty cycle
56  * @duty_offset_ns: offset of the rising edge from the period's start
57  *
58  * This is a representation of a PWM waveform alternative to struct pwm_state
59  * below. It's more expressive than struct pwm_state as it contains a
60  * duty_offset_ns and so can represent offsets other than zero (with .polarity =
61  * PWM_POLARITY_NORMAL) and period - duty_cycle (.polarity =
62  * PWM_POLARITY_INVERSED).
63  *
64  * Note there is no explicit bool for enabled. A "disabled" PWM is represented
65  * by .period_length_ns = 0. Note further that the behaviour of a "disabled" PWM
66  * is undefined. Depending on the hardware's capabilities it might drive the
67  * active or inactive level, go high-z or even continue to toggle.
68  *
69  * The unit for all three members is nanoseconds.
70  */
71 struct pwm_waveform {
72 	u64 period_length_ns;
73 	u64 duty_length_ns;
74 	u64 duty_offset_ns;
75 };
76 
77 /*
78  * struct pwm_state - state of a PWM channel
79  * @period: PWM period (in nanoseconds)
80  * @duty_cycle: PWM duty cycle (in nanoseconds)
81  * @polarity: PWM polarity
82  * @enabled: PWM enabled status
83  * @usage_power: If set, the PWM driver is only required to maintain the power
84  *               output but has more freedom regarding signal form.
85  *               If supported, the signal can be optimized, for example to
86  *               improve EMI by phase shifting individual channels.
87  */
88 struct pwm_state {
89 	u64 period;
90 	u64 duty_cycle;
91 	enum pwm_polarity polarity;
92 	bool enabled;
93 	bool usage_power;
94 };
95 
96 /**
97  * struct pwm_device - PWM channel object
98  * @label: name of the PWM device
99  * @flags: flags associated with the PWM device
100  * @hwpwm: per-chip relative index of the PWM device
101  * @chip: PWM chip providing this PWM device
102  * @args: PWM arguments
103  * @state: last applied state
104  * @last: last implemented state (for PWM_DEBUG)
105  */
106 struct pwm_device {
107 	const char *label;
108 	unsigned long flags;
109 	unsigned int hwpwm;
110 	struct pwm_chip *chip;
111 
112 	struct pwm_args args;
113 	struct pwm_state state;
114 	struct pwm_state last;
115 };
116 
117 /**
118  * pwm_get_state() - retrieve the current PWM state
119  * @pwm: PWM device
120  * @state: state to fill with the current PWM state
121  *
122  * The returned PWM state represents the state that was applied by a previous call to
123  * pwm_apply_might_sleep(). Drivers may have to slightly tweak that state before programming it to
124  * hardware. If pwm_apply_might_sleep() was never called, this returns either the current hardware
125  * state (if supported) or the default settings.
126  */
pwm_get_state(const struct pwm_device * pwm,struct pwm_state * state)127 static inline void pwm_get_state(const struct pwm_device *pwm,
128 				 struct pwm_state *state)
129 {
130 	*state = pwm->state;
131 }
132 
pwm_is_enabled(const struct pwm_device * pwm)133 static inline bool pwm_is_enabled(const struct pwm_device *pwm)
134 {
135 	struct pwm_state state;
136 
137 	pwm_get_state(pwm, &state);
138 
139 	return state.enabled;
140 }
141 
pwm_get_period(const struct pwm_device * pwm)142 static inline u64 pwm_get_period(const struct pwm_device *pwm)
143 {
144 	struct pwm_state state;
145 
146 	pwm_get_state(pwm, &state);
147 
148 	return state.period;
149 }
150 
pwm_get_duty_cycle(const struct pwm_device * pwm)151 static inline u64 pwm_get_duty_cycle(const struct pwm_device *pwm)
152 {
153 	struct pwm_state state;
154 
155 	pwm_get_state(pwm, &state);
156 
157 	return state.duty_cycle;
158 }
159 
pwm_get_polarity(const struct pwm_device * pwm)160 static inline enum pwm_polarity pwm_get_polarity(const struct pwm_device *pwm)
161 {
162 	struct pwm_state state;
163 
164 	pwm_get_state(pwm, &state);
165 
166 	return state.polarity;
167 }
168 
pwm_get_args(const struct pwm_device * pwm,struct pwm_args * args)169 static inline void pwm_get_args(const struct pwm_device *pwm,
170 				struct pwm_args *args)
171 {
172 	*args = pwm->args;
173 }
174 
175 /**
176  * pwm_init_state() - prepare a new state to be applied with pwm_apply_might_sleep()
177  * @pwm: PWM device
178  * @state: state to fill with the prepared PWM state
179  *
180  * This functions prepares a state that can later be tweaked and applied
181  * to the PWM device with pwm_apply_might_sleep(). This is a convenient function
182  * that first retrieves the current PWM state and the replaces the period
183  * and polarity fields with the reference values defined in pwm->args.
184  * Once the function returns, you can adjust the ->enabled and ->duty_cycle
185  * fields according to your needs before calling pwm_apply_might_sleep().
186  *
187  * ->duty_cycle is initially set to zero to avoid cases where the current
188  * ->duty_cycle value exceed the pwm_args->period one, which would trigger
189  * an error if the user calls pwm_apply_might_sleep() without adjusting ->duty_cycle
190  * first.
191  */
pwm_init_state(const struct pwm_device * pwm,struct pwm_state * state)192 static inline void pwm_init_state(const struct pwm_device *pwm,
193 				  struct pwm_state *state)
194 {
195 	struct pwm_args args;
196 
197 	/* First get the current state. */
198 	pwm_get_state(pwm, state);
199 
200 	/* Then fill it with the reference config */
201 	pwm_get_args(pwm, &args);
202 
203 	state->period = args.period;
204 	state->polarity = args.polarity;
205 	state->duty_cycle = 0;
206 	state->usage_power = false;
207 }
208 
209 /**
210  * pwm_get_relative_duty_cycle() - Get a relative duty cycle value
211  * @state: PWM state to extract the duty cycle from
212  * @scale: target scale of the relative duty cycle
213  *
214  * This functions converts the absolute duty cycle stored in @state (expressed
215  * in nanosecond) into a value relative to the period.
216  *
217  * For example if you want to get the duty_cycle expressed in percent, call:
218  *
219  * pwm_get_state(pwm, &state);
220  * duty = pwm_get_relative_duty_cycle(&state, 100);
221  *
222  * Returns: rounded relative duty cycle multiplied by @scale
223  */
224 static inline unsigned int
pwm_get_relative_duty_cycle(const struct pwm_state * state,unsigned int scale)225 pwm_get_relative_duty_cycle(const struct pwm_state *state, unsigned int scale)
226 {
227 	if (!state->period)
228 		return 0;
229 
230 	return DIV_ROUND_CLOSEST_ULL((u64)state->duty_cycle * scale,
231 				     state->period);
232 }
233 
234 /**
235  * pwm_set_relative_duty_cycle() - Set a relative duty cycle value
236  * @state: PWM state to fill
237  * @duty_cycle: relative duty cycle value
238  * @scale: scale in which @duty_cycle is expressed
239  *
240  * This functions converts a relative into an absolute duty cycle (expressed
241  * in nanoseconds), and puts the result in state->duty_cycle.
242  *
243  * For example if you want to configure a 50% duty cycle, call:
244  *
245  * pwm_init_state(pwm, &state);
246  * pwm_set_relative_duty_cycle(&state, 50, 100);
247  * pwm_apply_might_sleep(pwm, &state);
248  *
249  * Returns: 0 on success or ``-EINVAL`` if @duty_cycle and/or @scale are
250  * inconsistent (@scale == 0 or @duty_cycle > @scale)
251  */
252 static inline int
pwm_set_relative_duty_cycle(struct pwm_state * state,unsigned int duty_cycle,unsigned int scale)253 pwm_set_relative_duty_cycle(struct pwm_state *state, unsigned int duty_cycle,
254 			    unsigned int scale)
255 {
256 	if (!scale || duty_cycle > scale)
257 		return -EINVAL;
258 
259 	state->duty_cycle = DIV_ROUND_CLOSEST_ULL((u64)duty_cycle *
260 						  state->period,
261 						  scale);
262 
263 	return 0;
264 }
265 
266 /**
267  * struct pwm_capture - PWM capture data
268  * @period: period of the PWM signal (in nanoseconds)
269  * @duty_cycle: duty cycle of the PWM signal (in nanoseconds)
270  */
271 struct pwm_capture {
272 	unsigned int period;
273 	unsigned int duty_cycle;
274 };
275 
276 /**
277  * struct pwm_ops - PWM controller operations
278  * @request: optional hook for requesting a PWM
279  * @free: optional hook for freeing a PWM
280  * @capture: capture and report PWM signal
281  * @sizeof_wfhw: size (in bytes) of driver specific waveform presentation
282  * @round_waveform_tohw: convert a struct pwm_waveform to driver specific presentation
283  * @round_waveform_fromhw: convert a driver specific waveform presentation to struct pwm_waveform
284  * @read_waveform: read driver specific waveform presentation from hardware
285  * @write_waveform: write driver specific waveform presentation to hardware
286  * @apply: atomically apply a new PWM config
287  * @get_state: get the current PWM state.
288  */
289 struct pwm_ops {
290 	int (*request)(struct pwm_chip *chip, struct pwm_device *pwm);
291 	void (*free)(struct pwm_chip *chip, struct pwm_device *pwm);
292 	int (*capture)(struct pwm_chip *chip, struct pwm_device *pwm,
293 		       struct pwm_capture *result, unsigned long timeout);
294 
295 	size_t sizeof_wfhw;
296 	int (*round_waveform_tohw)(struct pwm_chip *chip, struct pwm_device *pwm,
297 				   const struct pwm_waveform *wf, void *wfhw);
298 	int (*round_waveform_fromhw)(struct pwm_chip *chip, struct pwm_device *pwm,
299 				     const void *wfhw, struct pwm_waveform *wf);
300 	int (*read_waveform)(struct pwm_chip *chip, struct pwm_device *pwm,
301 			    void *wfhw);
302 	int (*write_waveform)(struct pwm_chip *chip, struct pwm_device *pwm,
303 			      const void *wfhw);
304 
305 	int (*apply)(struct pwm_chip *chip, struct pwm_device *pwm,
306 		     const struct pwm_state *state);
307 	int (*get_state)(struct pwm_chip *chip, struct pwm_device *pwm,
308 			 struct pwm_state *state);
309 };
310 
311 /**
312  * struct pwm_chip - abstract a PWM controller
313  * @dev: device providing the PWMs
314  * @ops: callbacks for this PWM controller
315  * @owner: module providing this chip
316  * @id: unique number of this PWM chip
317  * @npwm: number of PWMs controlled by this chip
318  * @of_xlate: request a PWM device given a device tree PWM specifier
319  * @atomic: can the driver's ->apply() be called in atomic context
320  * @uses_pwmchip_alloc: signals if pwmchip_allow was used to allocate this chip
321  * @operational: signals if the chip can be used (or is already deregistered)
322  * @nonatomic_lock: mutex for nonatomic chips
323  * @atomic_lock: mutex for atomic chips
324  * @pwms: array of PWM devices allocated by the framework
325  */
326 struct pwm_chip {
327 	struct device dev;
328 	const struct pwm_ops *ops;
329 	struct module *owner;
330 	unsigned int id;
331 	unsigned int npwm;
332 
333 	struct pwm_device * (*of_xlate)(struct pwm_chip *chip,
334 					const struct of_phandle_args *args);
335 	bool atomic;
336 
337 	/* only used internally by the PWM framework */
338 	bool uses_pwmchip_alloc;
339 	bool operational;
340 	union {
341 		/*
342 		 * depending on the chip being atomic or not either the mutex or
343 		 * the spinlock is used. It protects .operational and
344 		 * synchronizes the callbacks in .ops
345 		 */
346 		struct mutex nonatomic_lock;
347 		spinlock_t atomic_lock;
348 	};
349 	struct pwm_device pwms[] __counted_by(npwm);
350 };
351 
352 /**
353  * pwmchip_supports_waveform() - checks if the given chip supports waveform callbacks
354  * @chip: The pwm_chip to test
355  *
356  * Returns: true iff the pwm chip support the waveform functions like
357  * pwm_set_waveform_might_sleep() and pwm_round_waveform_might_sleep()
358  */
pwmchip_supports_waveform(struct pwm_chip * chip)359 static inline bool pwmchip_supports_waveform(struct pwm_chip *chip)
360 {
361 	/*
362 	 * only check for .write_waveform(). If that is available,
363 	 * .round_waveform_tohw() and .round_waveform_fromhw() asserted to be
364 	 * available, too, in pwmchip_add().
365 	 */
366 	return chip->ops->write_waveform != NULL;
367 }
368 
pwmchip_parent(const struct pwm_chip * chip)369 static inline struct device *pwmchip_parent(const struct pwm_chip *chip)
370 {
371 	return chip->dev.parent;
372 }
373 
pwmchip_get_drvdata(const struct pwm_chip * chip)374 static inline void *pwmchip_get_drvdata(const struct pwm_chip *chip)
375 {
376 	return dev_get_drvdata(&chip->dev);
377 }
378 
pwmchip_set_drvdata(struct pwm_chip * chip,void * data)379 static inline void pwmchip_set_drvdata(struct pwm_chip *chip, void *data)
380 {
381 	dev_set_drvdata(&chip->dev, data);
382 }
383 
384 #if IS_REACHABLE(CONFIG_PWM)
385 
386 /* PWM consumer APIs */
387 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf);
388 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf);
389 int pwm_set_waveform_might_sleep(struct pwm_device *pwm, const struct pwm_waveform *wf, bool exact);
390 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state);
391 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state);
392 int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state);
393 int pwm_adjust_config(struct pwm_device *pwm);
394 
395 /**
396  * pwm_config() - change a PWM device configuration
397  * @pwm: PWM device
398  * @duty_ns: "on" time (in nanoseconds)
399  * @period_ns: duration (in nanoseconds) of one cycle
400  *
401  * Returns: 0 on success or a negative error code on failure.
402  */
pwm_config(struct pwm_device * pwm,int duty_ns,int period_ns)403 static inline int pwm_config(struct pwm_device *pwm, int duty_ns,
404 			     int period_ns)
405 {
406 	struct pwm_state state;
407 
408 	if (!pwm)
409 		return -EINVAL;
410 
411 	if (duty_ns < 0 || period_ns < 0)
412 		return -EINVAL;
413 
414 	pwm_get_state(pwm, &state);
415 	if (state.duty_cycle == duty_ns && state.period == period_ns)
416 		return 0;
417 
418 	state.duty_cycle = duty_ns;
419 	state.period = period_ns;
420 	return pwm_apply_might_sleep(pwm, &state);
421 }
422 
423 /**
424  * pwm_enable() - start a PWM output toggling
425  * @pwm: PWM device
426  *
427  * Returns: 0 on success or a negative error code on failure.
428  */
pwm_enable(struct pwm_device * pwm)429 static inline int pwm_enable(struct pwm_device *pwm)
430 {
431 	struct pwm_state state;
432 
433 	if (!pwm)
434 		return -EINVAL;
435 
436 	pwm_get_state(pwm, &state);
437 	if (state.enabled)
438 		return 0;
439 
440 	state.enabled = true;
441 	return pwm_apply_might_sleep(pwm, &state);
442 }
443 
444 /**
445  * pwm_disable() - stop a PWM output toggling
446  * @pwm: PWM device
447  */
pwm_disable(struct pwm_device * pwm)448 static inline void pwm_disable(struct pwm_device *pwm)
449 {
450 	struct pwm_state state;
451 
452 	if (!pwm)
453 		return;
454 
455 	pwm_get_state(pwm, &state);
456 	if (!state.enabled)
457 		return;
458 
459 	state.enabled = false;
460 	pwm_apply_might_sleep(pwm, &state);
461 }
462 
463 /**
464  * pwm_might_sleep() - is pwm_apply_atomic() supported?
465  * @pwm: PWM device
466  *
467  * Returns: false if pwm_apply_atomic() can be called from atomic context.
468  */
pwm_might_sleep(struct pwm_device * pwm)469 static inline bool pwm_might_sleep(struct pwm_device *pwm)
470 {
471 	return !pwm->chip->atomic;
472 }
473 
474 /* PWM provider APIs */
475 void pwmchip_put(struct pwm_chip *chip);
476 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv);
477 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv);
478 
479 int __pwmchip_add(struct pwm_chip *chip, struct module *owner);
480 #define pwmchip_add(chip) __pwmchip_add(chip, THIS_MODULE)
481 void pwmchip_remove(struct pwm_chip *chip);
482 
483 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner);
484 #define devm_pwmchip_add(dev, chip) __devm_pwmchip_add(dev, chip, THIS_MODULE)
485 
486 struct pwm_device *of_pwm_xlate_with_flags(struct pwm_chip *chip,
487 		const struct of_phandle_args *args);
488 struct pwm_device *of_pwm_single_xlate(struct pwm_chip *chip,
489 				       const struct of_phandle_args *args);
490 
491 struct pwm_device *pwm_get(struct device *dev, const char *con_id);
492 void pwm_put(struct pwm_device *pwm);
493 
494 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id);
495 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
496 				       struct fwnode_handle *fwnode,
497 				       const char *con_id);
498 #else
pwm_might_sleep(struct pwm_device * pwm)499 static inline bool pwm_might_sleep(struct pwm_device *pwm)
500 {
501 	return true;
502 }
503 
pwm_apply_might_sleep(struct pwm_device * pwm,const struct pwm_state * state)504 static inline int pwm_apply_might_sleep(struct pwm_device *pwm,
505 					const struct pwm_state *state)
506 {
507 	might_sleep();
508 	return -EOPNOTSUPP;
509 }
510 
pwm_apply_atomic(struct pwm_device * pwm,const struct pwm_state * state)511 static inline int pwm_apply_atomic(struct pwm_device *pwm,
512 				   const struct pwm_state *state)
513 {
514 	return -EOPNOTSUPP;
515 }
516 
pwm_get_state_hw(struct pwm_device * pwm,struct pwm_state * state)517 static inline int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state)
518 {
519 	return -EOPNOTSUPP;
520 }
521 
pwm_adjust_config(struct pwm_device * pwm)522 static inline int pwm_adjust_config(struct pwm_device *pwm)
523 {
524 	return -EOPNOTSUPP;
525 }
526 
pwm_config(struct pwm_device * pwm,int duty_ns,int period_ns)527 static inline int pwm_config(struct pwm_device *pwm, int duty_ns,
528 			     int period_ns)
529 {
530 	might_sleep();
531 	return -EINVAL;
532 }
533 
pwm_enable(struct pwm_device * pwm)534 static inline int pwm_enable(struct pwm_device *pwm)
535 {
536 	might_sleep();
537 	return -EINVAL;
538 }
539 
pwm_disable(struct pwm_device * pwm)540 static inline void pwm_disable(struct pwm_device *pwm)
541 {
542 	might_sleep();
543 }
544 
pwmchip_put(struct pwm_chip * chip)545 static inline void pwmchip_put(struct pwm_chip *chip)
546 {
547 }
548 
pwmchip_alloc(struct device * parent,unsigned int npwm,size_t sizeof_priv)549 static inline struct pwm_chip *pwmchip_alloc(struct device *parent,
550 					     unsigned int npwm,
551 					     size_t sizeof_priv)
552 {
553 	return ERR_PTR(-EINVAL);
554 }
555 
devm_pwmchip_alloc(struct device * parent,unsigned int npwm,size_t sizeof_priv)556 static inline struct pwm_chip *devm_pwmchip_alloc(struct device *parent,
557 						  unsigned int npwm,
558 						  size_t sizeof_priv)
559 {
560 	return pwmchip_alloc(parent, npwm, sizeof_priv);
561 }
562 
pwmchip_add(struct pwm_chip * chip)563 static inline int pwmchip_add(struct pwm_chip *chip)
564 {
565 	return -EINVAL;
566 }
567 
pwmchip_remove(struct pwm_chip * chip)568 static inline int pwmchip_remove(struct pwm_chip *chip)
569 {
570 	return -EINVAL;
571 }
572 
devm_pwmchip_add(struct device * dev,struct pwm_chip * chip)573 static inline int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
574 {
575 	return -EINVAL;
576 }
577 
pwm_get(struct device * dev,const char * consumer)578 static inline struct pwm_device *pwm_get(struct device *dev,
579 					 const char *consumer)
580 {
581 	might_sleep();
582 	return ERR_PTR(-ENODEV);
583 }
584 
pwm_put(struct pwm_device * pwm)585 static inline void pwm_put(struct pwm_device *pwm)
586 {
587 	might_sleep();
588 }
589 
devm_pwm_get(struct device * dev,const char * consumer)590 static inline struct pwm_device *devm_pwm_get(struct device *dev,
591 					      const char *consumer)
592 {
593 	might_sleep();
594 	return ERR_PTR(-ENODEV);
595 }
596 
597 static inline struct pwm_device *
devm_fwnode_pwm_get(struct device * dev,struct fwnode_handle * fwnode,const char * con_id)598 devm_fwnode_pwm_get(struct device *dev, struct fwnode_handle *fwnode,
599 		    const char *con_id)
600 {
601 	might_sleep();
602 	return ERR_PTR(-ENODEV);
603 }
604 #endif
605 
pwm_apply_args(struct pwm_device * pwm)606 static inline void pwm_apply_args(struct pwm_device *pwm)
607 {
608 	struct pwm_state state = { };
609 
610 	/*
611 	 * PWM users calling pwm_apply_args() expect to have a fresh config
612 	 * where the polarity and period are set according to pwm_args info.
613 	 * The problem is, polarity can only be changed when the PWM is
614 	 * disabled.
615 	 *
616 	 * PWM drivers supporting hardware readout may declare the PWM device
617 	 * as enabled, and prevent polarity setting, which changes from the
618 	 * existing behavior, where all PWM devices are declared as disabled
619 	 * at startup (even if they are actually enabled), thus authorizing
620 	 * polarity setting.
621 	 *
622 	 * To fulfill this requirement, we apply a new state which disables
623 	 * the PWM device and set the reference period and polarity config.
624 	 *
625 	 * Note that PWM users requiring a smooth handover between the
626 	 * bootloader and the kernel (like critical regulators controlled by
627 	 * PWM devices) will have to switch to the atomic API and avoid calling
628 	 * pwm_apply_args().
629 	 */
630 
631 	state.enabled = false;
632 	state.polarity = pwm->args.polarity;
633 	state.period = pwm->args.period;
634 	state.usage_power = false;
635 
636 	pwm_apply_might_sleep(pwm, &state);
637 }
638 
639 struct pwm_lookup {
640 	struct list_head list;
641 	const char *provider;
642 	unsigned int index;
643 	const char *dev_id;
644 	const char *con_id;
645 	unsigned int period;
646 	enum pwm_polarity polarity;
647 	const char *module; /* optional, may be NULL */
648 };
649 
650 #define PWM_LOOKUP_WITH_MODULE(_provider, _index, _dev_id, _con_id,	\
651 			       _period, _polarity, _module)		\
652 	{								\
653 		.provider = _provider,					\
654 		.index = _index,					\
655 		.dev_id = _dev_id,					\
656 		.con_id = _con_id,					\
657 		.period = _period,					\
658 		.polarity = _polarity,					\
659 		.module = _module,					\
660 	}
661 
662 #define PWM_LOOKUP(_provider, _index, _dev_id, _con_id, _period, _polarity) \
663 	PWM_LOOKUP_WITH_MODULE(_provider, _index, _dev_id, _con_id, _period, \
664 			       _polarity, NULL)
665 
666 #if IS_REACHABLE(CONFIG_PWM)
667 void pwm_add_table(struct pwm_lookup *table, size_t num);
668 void pwm_remove_table(struct pwm_lookup *table, size_t num);
669 #else
pwm_add_table(struct pwm_lookup * table,size_t num)670 static inline void pwm_add_table(struct pwm_lookup *table, size_t num)
671 {
672 }
673 
pwm_remove_table(struct pwm_lookup * table,size_t num)674 static inline void pwm_remove_table(struct pwm_lookup *table, size_t num)
675 {
676 }
677 #endif
678 
679 #endif /* __LINUX_PWM_H */
680