1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_PWM_H
3 #define __LINUX_PWM_H
4
5 #include <linux/device.h>
6 #include <linux/err.h>
7 #include <linux/module.h>
8 #include <linux/mutex.h>
9 #include <linux/of.h>
10
11 MODULE_IMPORT_NS("PWM");
12
13 struct pwm_chip;
14
15 /**
16 * enum pwm_polarity - polarity of a PWM signal
17 * @PWM_POLARITY_NORMAL: a high signal for the duration of the duty-
18 * cycle, followed by a low signal for the remainder of the pulse
19 * period
20 * @PWM_POLARITY_INVERSED: a low signal for the duration of the duty-
21 * cycle, followed by a high signal for the remainder of the pulse
22 * period
23 */
24 enum pwm_polarity {
25 PWM_POLARITY_NORMAL,
26 PWM_POLARITY_INVERSED,
27 };
28
29 /**
30 * struct pwm_args - board-dependent PWM arguments
31 * @period: reference period
32 * @polarity: reference polarity
33 *
34 * This structure describes board-dependent arguments attached to a PWM
35 * device. These arguments are usually retrieved from the PWM lookup table or
36 * device tree.
37 *
38 * Do not confuse this with the PWM state: PWM arguments represent the initial
39 * configuration that users want to use on this PWM device rather than the
40 * current PWM hardware state.
41 */
42 struct pwm_args {
43 u64 period;
44 enum pwm_polarity polarity;
45 };
46
47 enum {
48 PWMF_REQUESTED = 0,
49 PWMF_EXPORTED = 1,
50 };
51
52 /**
53 * struct pwm_waveform - description of a PWM waveform
54 * @period_length_ns: PWM period
55 * @duty_length_ns: PWM duty cycle
56 * @duty_offset_ns: offset of the rising edge from the period's start
57 *
58 * This is a representation of a PWM waveform alternative to struct pwm_state
59 * below. It's more expressive than struct pwm_state as it contains a
60 * duty_offset_ns and so can represent offsets other than zero (with .polarity =
61 * PWM_POLARITY_NORMAL) and period - duty_cycle (.polarity =
62 * PWM_POLARITY_INVERSED).
63 *
64 * Note there is no explicit bool for enabled. A "disabled" PWM is represented
65 * by .period_length_ns = 0. Note further that the behaviour of a "disabled" PWM
66 * is undefined. Depending on the hardware's capabilities it might drive the
67 * active or inactive level, go high-z or even continue to toggle.
68 *
69 * The unit for all three members is nanoseconds.
70 */
71 struct pwm_waveform {
72 u64 period_length_ns;
73 u64 duty_length_ns;
74 u64 duty_offset_ns;
75 };
76
77 /*
78 * struct pwm_state - state of a PWM channel
79 * @period: PWM period (in nanoseconds)
80 * @duty_cycle: PWM duty cycle (in nanoseconds)
81 * @polarity: PWM polarity
82 * @enabled: PWM enabled status
83 * @usage_power: If set, the PWM driver is only required to maintain the power
84 * output but has more freedom regarding signal form.
85 * If supported, the signal can be optimized, for example to
86 * improve EMI by phase shifting individual channels.
87 */
88 struct pwm_state {
89 u64 period;
90 u64 duty_cycle;
91 enum pwm_polarity polarity;
92 bool enabled;
93 bool usage_power;
94 };
95
96 /**
97 * struct pwm_device - PWM channel object
98 * @label: name of the PWM device
99 * @flags: flags associated with the PWM device
100 * @hwpwm: per-chip relative index of the PWM device
101 * @chip: PWM chip providing this PWM device
102 * @args: PWM arguments
103 * @state: last applied state
104 * @last: last implemented state (for PWM_DEBUG)
105 */
106 struct pwm_device {
107 const char *label;
108 unsigned long flags;
109 unsigned int hwpwm;
110 struct pwm_chip *chip;
111
112 struct pwm_args args;
113 struct pwm_state state;
114 struct pwm_state last;
115 };
116
117 /**
118 * pwm_get_state() - retrieve the current PWM state
119 * @pwm: PWM device
120 * @state: state to fill with the current PWM state
121 *
122 * The returned PWM state represents the state that was applied by a previous call to
123 * pwm_apply_might_sleep(). Drivers may have to slightly tweak that state before programming it to
124 * hardware. If pwm_apply_might_sleep() was never called, this returns either the current hardware
125 * state (if supported) or the default settings.
126 */
pwm_get_state(const struct pwm_device * pwm,struct pwm_state * state)127 static inline void pwm_get_state(const struct pwm_device *pwm,
128 struct pwm_state *state)
129 {
130 *state = pwm->state;
131 }
132
pwm_is_enabled(const struct pwm_device * pwm)133 static inline bool pwm_is_enabled(const struct pwm_device *pwm)
134 {
135 struct pwm_state state;
136
137 pwm_get_state(pwm, &state);
138
139 return state.enabled;
140 }
141
pwm_get_period(const struct pwm_device * pwm)142 static inline u64 pwm_get_period(const struct pwm_device *pwm)
143 {
144 struct pwm_state state;
145
146 pwm_get_state(pwm, &state);
147
148 return state.period;
149 }
150
pwm_get_duty_cycle(const struct pwm_device * pwm)151 static inline u64 pwm_get_duty_cycle(const struct pwm_device *pwm)
152 {
153 struct pwm_state state;
154
155 pwm_get_state(pwm, &state);
156
157 return state.duty_cycle;
158 }
159
pwm_get_polarity(const struct pwm_device * pwm)160 static inline enum pwm_polarity pwm_get_polarity(const struct pwm_device *pwm)
161 {
162 struct pwm_state state;
163
164 pwm_get_state(pwm, &state);
165
166 return state.polarity;
167 }
168
pwm_get_args(const struct pwm_device * pwm,struct pwm_args * args)169 static inline void pwm_get_args(const struct pwm_device *pwm,
170 struct pwm_args *args)
171 {
172 *args = pwm->args;
173 }
174
175 /**
176 * pwm_init_state() - prepare a new state to be applied with pwm_apply_might_sleep()
177 * @pwm: PWM device
178 * @state: state to fill with the prepared PWM state
179 *
180 * This functions prepares a state that can later be tweaked and applied
181 * to the PWM device with pwm_apply_might_sleep(). This is a convenient function
182 * that first retrieves the current PWM state and the replaces the period
183 * and polarity fields with the reference values defined in pwm->args.
184 * Once the function returns, you can adjust the ->enabled and ->duty_cycle
185 * fields according to your needs before calling pwm_apply_might_sleep().
186 *
187 * ->duty_cycle is initially set to zero to avoid cases where the current
188 * ->duty_cycle value exceed the pwm_args->period one, which would trigger
189 * an error if the user calls pwm_apply_might_sleep() without adjusting ->duty_cycle
190 * first.
191 */
pwm_init_state(const struct pwm_device * pwm,struct pwm_state * state)192 static inline void pwm_init_state(const struct pwm_device *pwm,
193 struct pwm_state *state)
194 {
195 struct pwm_args args;
196
197 /* First get the current state. */
198 pwm_get_state(pwm, state);
199
200 /* Then fill it with the reference config */
201 pwm_get_args(pwm, &args);
202
203 state->period = args.period;
204 state->polarity = args.polarity;
205 state->duty_cycle = 0;
206 state->usage_power = false;
207 }
208
209 /**
210 * pwm_get_relative_duty_cycle() - Get a relative duty cycle value
211 * @state: PWM state to extract the duty cycle from
212 * @scale: target scale of the relative duty cycle
213 *
214 * This functions converts the absolute duty cycle stored in @state (expressed
215 * in nanosecond) into a value relative to the period.
216 *
217 * For example if you want to get the duty_cycle expressed in percent, call:
218 *
219 * pwm_get_state(pwm, &state);
220 * duty = pwm_get_relative_duty_cycle(&state, 100);
221 *
222 * Returns: rounded relative duty cycle multiplied by @scale
223 */
224 static inline unsigned int
pwm_get_relative_duty_cycle(const struct pwm_state * state,unsigned int scale)225 pwm_get_relative_duty_cycle(const struct pwm_state *state, unsigned int scale)
226 {
227 if (!state->period)
228 return 0;
229
230 return DIV_ROUND_CLOSEST_ULL((u64)state->duty_cycle * scale,
231 state->period);
232 }
233
234 /**
235 * pwm_set_relative_duty_cycle() - Set a relative duty cycle value
236 * @state: PWM state to fill
237 * @duty_cycle: relative duty cycle value
238 * @scale: scale in which @duty_cycle is expressed
239 *
240 * This functions converts a relative into an absolute duty cycle (expressed
241 * in nanoseconds), and puts the result in state->duty_cycle.
242 *
243 * For example if you want to configure a 50% duty cycle, call:
244 *
245 * pwm_init_state(pwm, &state);
246 * pwm_set_relative_duty_cycle(&state, 50, 100);
247 * pwm_apply_might_sleep(pwm, &state);
248 *
249 * Returns: 0 on success or ``-EINVAL`` if @duty_cycle and/or @scale are
250 * inconsistent (@scale == 0 or @duty_cycle > @scale)
251 */
252 static inline int
pwm_set_relative_duty_cycle(struct pwm_state * state,unsigned int duty_cycle,unsigned int scale)253 pwm_set_relative_duty_cycle(struct pwm_state *state, unsigned int duty_cycle,
254 unsigned int scale)
255 {
256 if (!scale || duty_cycle > scale)
257 return -EINVAL;
258
259 state->duty_cycle = DIV_ROUND_CLOSEST_ULL((u64)duty_cycle *
260 state->period,
261 scale);
262
263 return 0;
264 }
265
266 /**
267 * struct pwm_capture - PWM capture data
268 * @period: period of the PWM signal (in nanoseconds)
269 * @duty_cycle: duty cycle of the PWM signal (in nanoseconds)
270 */
271 struct pwm_capture {
272 unsigned int period;
273 unsigned int duty_cycle;
274 };
275
276 /**
277 * struct pwm_ops - PWM controller operations
278 * @request: optional hook for requesting a PWM
279 * @free: optional hook for freeing a PWM
280 * @capture: capture and report PWM signal
281 * @sizeof_wfhw: size (in bytes) of driver specific waveform presentation
282 * @round_waveform_tohw: convert a struct pwm_waveform to driver specific presentation
283 * @round_waveform_fromhw: convert a driver specific waveform presentation to struct pwm_waveform
284 * @read_waveform: read driver specific waveform presentation from hardware
285 * @write_waveform: write driver specific waveform presentation to hardware
286 * @apply: atomically apply a new PWM config
287 * @get_state: get the current PWM state.
288 */
289 struct pwm_ops {
290 int (*request)(struct pwm_chip *chip, struct pwm_device *pwm);
291 void (*free)(struct pwm_chip *chip, struct pwm_device *pwm);
292 int (*capture)(struct pwm_chip *chip, struct pwm_device *pwm,
293 struct pwm_capture *result, unsigned long timeout);
294
295 size_t sizeof_wfhw;
296 int (*round_waveform_tohw)(struct pwm_chip *chip, struct pwm_device *pwm,
297 const struct pwm_waveform *wf, void *wfhw);
298 int (*round_waveform_fromhw)(struct pwm_chip *chip, struct pwm_device *pwm,
299 const void *wfhw, struct pwm_waveform *wf);
300 int (*read_waveform)(struct pwm_chip *chip, struct pwm_device *pwm,
301 void *wfhw);
302 int (*write_waveform)(struct pwm_chip *chip, struct pwm_device *pwm,
303 const void *wfhw);
304
305 int (*apply)(struct pwm_chip *chip, struct pwm_device *pwm,
306 const struct pwm_state *state);
307 int (*get_state)(struct pwm_chip *chip, struct pwm_device *pwm,
308 struct pwm_state *state);
309 };
310
311 /**
312 * struct pwm_chip - abstract a PWM controller
313 * @dev: device providing the PWMs
314 * @ops: callbacks for this PWM controller
315 * @owner: module providing this chip
316 * @id: unique number of this PWM chip
317 * @npwm: number of PWMs controlled by this chip
318 * @of_xlate: request a PWM device given a device tree PWM specifier
319 * @atomic: can the driver's ->apply() be called in atomic context
320 * @uses_pwmchip_alloc: signals if pwmchip_allow was used to allocate this chip
321 * @operational: signals if the chip can be used (or is already deregistered)
322 * @nonatomic_lock: mutex for nonatomic chips
323 * @atomic_lock: mutex for atomic chips
324 * @pwms: array of PWM devices allocated by the framework
325 */
326 struct pwm_chip {
327 struct device dev;
328 const struct pwm_ops *ops;
329 struct module *owner;
330 unsigned int id;
331 unsigned int npwm;
332
333 struct pwm_device * (*of_xlate)(struct pwm_chip *chip,
334 const struct of_phandle_args *args);
335 bool atomic;
336
337 /* only used internally by the PWM framework */
338 bool uses_pwmchip_alloc;
339 bool operational;
340 union {
341 /*
342 * depending on the chip being atomic or not either the mutex or
343 * the spinlock is used. It protects .operational and
344 * synchronizes the callbacks in .ops
345 */
346 struct mutex nonatomic_lock;
347 spinlock_t atomic_lock;
348 };
349 struct pwm_device pwms[] __counted_by(npwm);
350 };
351
352 /**
353 * pwmchip_supports_waveform() - checks if the given chip supports waveform callbacks
354 * @chip: The pwm_chip to test
355 *
356 * Returns: true iff the pwm chip support the waveform functions like
357 * pwm_set_waveform_might_sleep() and pwm_round_waveform_might_sleep()
358 */
pwmchip_supports_waveform(struct pwm_chip * chip)359 static inline bool pwmchip_supports_waveform(struct pwm_chip *chip)
360 {
361 /*
362 * only check for .write_waveform(). If that is available,
363 * .round_waveform_tohw() and .round_waveform_fromhw() asserted to be
364 * available, too, in pwmchip_add().
365 */
366 return chip->ops->write_waveform != NULL;
367 }
368
pwmchip_parent(const struct pwm_chip * chip)369 static inline struct device *pwmchip_parent(const struct pwm_chip *chip)
370 {
371 return chip->dev.parent;
372 }
373
pwmchip_get_drvdata(const struct pwm_chip * chip)374 static inline void *pwmchip_get_drvdata(const struct pwm_chip *chip)
375 {
376 return dev_get_drvdata(&chip->dev);
377 }
378
pwmchip_set_drvdata(struct pwm_chip * chip,void * data)379 static inline void pwmchip_set_drvdata(struct pwm_chip *chip, void *data)
380 {
381 dev_set_drvdata(&chip->dev, data);
382 }
383
384 #if IS_REACHABLE(CONFIG_PWM)
385
386 /* PWM consumer APIs */
387 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf);
388 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf);
389 int pwm_set_waveform_might_sleep(struct pwm_device *pwm, const struct pwm_waveform *wf, bool exact);
390 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state);
391 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state);
392 int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state);
393 int pwm_adjust_config(struct pwm_device *pwm);
394
395 /**
396 * pwm_config() - change a PWM device configuration
397 * @pwm: PWM device
398 * @duty_ns: "on" time (in nanoseconds)
399 * @period_ns: duration (in nanoseconds) of one cycle
400 *
401 * Returns: 0 on success or a negative error code on failure.
402 */
pwm_config(struct pwm_device * pwm,int duty_ns,int period_ns)403 static inline int pwm_config(struct pwm_device *pwm, int duty_ns,
404 int period_ns)
405 {
406 struct pwm_state state;
407
408 if (!pwm)
409 return -EINVAL;
410
411 if (duty_ns < 0 || period_ns < 0)
412 return -EINVAL;
413
414 pwm_get_state(pwm, &state);
415 if (state.duty_cycle == duty_ns && state.period == period_ns)
416 return 0;
417
418 state.duty_cycle = duty_ns;
419 state.period = period_ns;
420 return pwm_apply_might_sleep(pwm, &state);
421 }
422
423 /**
424 * pwm_enable() - start a PWM output toggling
425 * @pwm: PWM device
426 *
427 * Returns: 0 on success or a negative error code on failure.
428 */
pwm_enable(struct pwm_device * pwm)429 static inline int pwm_enable(struct pwm_device *pwm)
430 {
431 struct pwm_state state;
432
433 if (!pwm)
434 return -EINVAL;
435
436 pwm_get_state(pwm, &state);
437 if (state.enabled)
438 return 0;
439
440 state.enabled = true;
441 return pwm_apply_might_sleep(pwm, &state);
442 }
443
444 /**
445 * pwm_disable() - stop a PWM output toggling
446 * @pwm: PWM device
447 */
pwm_disable(struct pwm_device * pwm)448 static inline void pwm_disable(struct pwm_device *pwm)
449 {
450 struct pwm_state state;
451
452 if (!pwm)
453 return;
454
455 pwm_get_state(pwm, &state);
456 if (!state.enabled)
457 return;
458
459 state.enabled = false;
460 pwm_apply_might_sleep(pwm, &state);
461 }
462
463 /**
464 * pwm_might_sleep() - is pwm_apply_atomic() supported?
465 * @pwm: PWM device
466 *
467 * Returns: false if pwm_apply_atomic() can be called from atomic context.
468 */
pwm_might_sleep(struct pwm_device * pwm)469 static inline bool pwm_might_sleep(struct pwm_device *pwm)
470 {
471 return !pwm->chip->atomic;
472 }
473
474 /* PWM provider APIs */
475 void pwmchip_put(struct pwm_chip *chip);
476 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv);
477 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv);
478
479 int __pwmchip_add(struct pwm_chip *chip, struct module *owner);
480 #define pwmchip_add(chip) __pwmchip_add(chip, THIS_MODULE)
481 void pwmchip_remove(struct pwm_chip *chip);
482
483 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner);
484 #define devm_pwmchip_add(dev, chip) __devm_pwmchip_add(dev, chip, THIS_MODULE)
485
486 struct pwm_device *of_pwm_xlate_with_flags(struct pwm_chip *chip,
487 const struct of_phandle_args *args);
488 struct pwm_device *of_pwm_single_xlate(struct pwm_chip *chip,
489 const struct of_phandle_args *args);
490
491 struct pwm_device *pwm_get(struct device *dev, const char *con_id);
492 void pwm_put(struct pwm_device *pwm);
493
494 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id);
495 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
496 struct fwnode_handle *fwnode,
497 const char *con_id);
498 #else
pwm_might_sleep(struct pwm_device * pwm)499 static inline bool pwm_might_sleep(struct pwm_device *pwm)
500 {
501 return true;
502 }
503
pwm_apply_might_sleep(struct pwm_device * pwm,const struct pwm_state * state)504 static inline int pwm_apply_might_sleep(struct pwm_device *pwm,
505 const struct pwm_state *state)
506 {
507 might_sleep();
508 return -EOPNOTSUPP;
509 }
510
pwm_apply_atomic(struct pwm_device * pwm,const struct pwm_state * state)511 static inline int pwm_apply_atomic(struct pwm_device *pwm,
512 const struct pwm_state *state)
513 {
514 return -EOPNOTSUPP;
515 }
516
pwm_get_state_hw(struct pwm_device * pwm,struct pwm_state * state)517 static inline int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state)
518 {
519 return -EOPNOTSUPP;
520 }
521
pwm_adjust_config(struct pwm_device * pwm)522 static inline int pwm_adjust_config(struct pwm_device *pwm)
523 {
524 return -EOPNOTSUPP;
525 }
526
pwm_config(struct pwm_device * pwm,int duty_ns,int period_ns)527 static inline int pwm_config(struct pwm_device *pwm, int duty_ns,
528 int period_ns)
529 {
530 might_sleep();
531 return -EINVAL;
532 }
533
pwm_enable(struct pwm_device * pwm)534 static inline int pwm_enable(struct pwm_device *pwm)
535 {
536 might_sleep();
537 return -EINVAL;
538 }
539
pwm_disable(struct pwm_device * pwm)540 static inline void pwm_disable(struct pwm_device *pwm)
541 {
542 might_sleep();
543 }
544
pwmchip_put(struct pwm_chip * chip)545 static inline void pwmchip_put(struct pwm_chip *chip)
546 {
547 }
548
pwmchip_alloc(struct device * parent,unsigned int npwm,size_t sizeof_priv)549 static inline struct pwm_chip *pwmchip_alloc(struct device *parent,
550 unsigned int npwm,
551 size_t sizeof_priv)
552 {
553 return ERR_PTR(-EINVAL);
554 }
555
devm_pwmchip_alloc(struct device * parent,unsigned int npwm,size_t sizeof_priv)556 static inline struct pwm_chip *devm_pwmchip_alloc(struct device *parent,
557 unsigned int npwm,
558 size_t sizeof_priv)
559 {
560 return pwmchip_alloc(parent, npwm, sizeof_priv);
561 }
562
pwmchip_add(struct pwm_chip * chip)563 static inline int pwmchip_add(struct pwm_chip *chip)
564 {
565 return -EINVAL;
566 }
567
pwmchip_remove(struct pwm_chip * chip)568 static inline int pwmchip_remove(struct pwm_chip *chip)
569 {
570 return -EINVAL;
571 }
572
devm_pwmchip_add(struct device * dev,struct pwm_chip * chip)573 static inline int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
574 {
575 return -EINVAL;
576 }
577
pwm_get(struct device * dev,const char * consumer)578 static inline struct pwm_device *pwm_get(struct device *dev,
579 const char *consumer)
580 {
581 might_sleep();
582 return ERR_PTR(-ENODEV);
583 }
584
pwm_put(struct pwm_device * pwm)585 static inline void pwm_put(struct pwm_device *pwm)
586 {
587 might_sleep();
588 }
589
devm_pwm_get(struct device * dev,const char * consumer)590 static inline struct pwm_device *devm_pwm_get(struct device *dev,
591 const char *consumer)
592 {
593 might_sleep();
594 return ERR_PTR(-ENODEV);
595 }
596
597 static inline struct pwm_device *
devm_fwnode_pwm_get(struct device * dev,struct fwnode_handle * fwnode,const char * con_id)598 devm_fwnode_pwm_get(struct device *dev, struct fwnode_handle *fwnode,
599 const char *con_id)
600 {
601 might_sleep();
602 return ERR_PTR(-ENODEV);
603 }
604 #endif
605
pwm_apply_args(struct pwm_device * pwm)606 static inline void pwm_apply_args(struct pwm_device *pwm)
607 {
608 struct pwm_state state = { };
609
610 /*
611 * PWM users calling pwm_apply_args() expect to have a fresh config
612 * where the polarity and period are set according to pwm_args info.
613 * The problem is, polarity can only be changed when the PWM is
614 * disabled.
615 *
616 * PWM drivers supporting hardware readout may declare the PWM device
617 * as enabled, and prevent polarity setting, which changes from the
618 * existing behavior, where all PWM devices are declared as disabled
619 * at startup (even if they are actually enabled), thus authorizing
620 * polarity setting.
621 *
622 * To fulfill this requirement, we apply a new state which disables
623 * the PWM device and set the reference period and polarity config.
624 *
625 * Note that PWM users requiring a smooth handover between the
626 * bootloader and the kernel (like critical regulators controlled by
627 * PWM devices) will have to switch to the atomic API and avoid calling
628 * pwm_apply_args().
629 */
630
631 state.enabled = false;
632 state.polarity = pwm->args.polarity;
633 state.period = pwm->args.period;
634 state.usage_power = false;
635
636 pwm_apply_might_sleep(pwm, &state);
637 }
638
639 struct pwm_lookup {
640 struct list_head list;
641 const char *provider;
642 unsigned int index;
643 const char *dev_id;
644 const char *con_id;
645 unsigned int period;
646 enum pwm_polarity polarity;
647 const char *module; /* optional, may be NULL */
648 };
649
650 #define PWM_LOOKUP_WITH_MODULE(_provider, _index, _dev_id, _con_id, \
651 _period, _polarity, _module) \
652 { \
653 .provider = _provider, \
654 .index = _index, \
655 .dev_id = _dev_id, \
656 .con_id = _con_id, \
657 .period = _period, \
658 .polarity = _polarity, \
659 .module = _module, \
660 }
661
662 #define PWM_LOOKUP(_provider, _index, _dev_id, _con_id, _period, _polarity) \
663 PWM_LOOKUP_WITH_MODULE(_provider, _index, _dev_id, _con_id, _period, \
664 _polarity, NULL)
665
666 #if IS_REACHABLE(CONFIG_PWM)
667 void pwm_add_table(struct pwm_lookup *table, size_t num);
668 void pwm_remove_table(struct pwm_lookup *table, size_t num);
669 #else
pwm_add_table(struct pwm_lookup * table,size_t num)670 static inline void pwm_add_table(struct pwm_lookup *table, size_t num)
671 {
672 }
673
pwm_remove_table(struct pwm_lookup * table,size_t num)674 static inline void pwm_remove_table(struct pwm_lookup *table, size_t num)
675 {
676 }
677 #endif
678
679 #endif /* __LINUX_PWM_H */
680