1 // SPDX-License-Identifier: GPL-2.0-only OR MIT
2 /* Copyright (c) 2023 Imagination Technologies Ltd. */
3
4 #include "pvr_vm.h"
5
6 #include "pvr_device.h"
7 #include "pvr_drv.h"
8 #include "pvr_gem.h"
9 #include "pvr_mmu.h"
10 #include "pvr_rogue_fwif.h"
11 #include "pvr_rogue_heap_config.h"
12
13 #include <drm/drm_exec.h>
14 #include <drm/drm_gem.h>
15 #include <drm/drm_gpuvm.h>
16
17 #include <linux/bug.h>
18 #include <linux/container_of.h>
19 #include <linux/err.h>
20 #include <linux/errno.h>
21 #include <linux/gfp_types.h>
22 #include <linux/kref.h>
23 #include <linux/mutex.h>
24 #include <linux/stddef.h>
25
26 /**
27 * DOC: Memory context
28 *
29 * This is the "top level" datatype in the VM code. It's exposed in the public
30 * API as an opaque handle.
31 */
32
33 /**
34 * struct pvr_vm_context - Context type used to represent a single VM.
35 */
36 struct pvr_vm_context {
37 /**
38 * @pvr_dev: The PowerVR device to which this context is bound.
39 * This binding is immutable for the life of the context.
40 */
41 struct pvr_device *pvr_dev;
42
43 /** @mmu_ctx: The context for binding to physical memory. */
44 struct pvr_mmu_context *mmu_ctx;
45
46 /** @gpuvm_mgr: GPUVM object associated with this context. */
47 struct drm_gpuvm gpuvm_mgr;
48
49 /** @lock: Global lock on this VM. */
50 struct mutex lock;
51
52 /**
53 * @fw_mem_ctx_obj: Firmware object representing firmware memory
54 * context.
55 */
56 struct pvr_fw_object *fw_mem_ctx_obj;
57
58 /** @ref_count: Reference count of object. */
59 struct kref ref_count;
60
61 /**
62 * @dummy_gem: GEM object to enable VM reservation. All private BOs
63 * should use the @dummy_gem.resv and not their own _resv field.
64 */
65 struct drm_gem_object dummy_gem;
66 };
67
68 static inline
to_pvr_vm_context(struct drm_gpuvm * gpuvm)69 struct pvr_vm_context *to_pvr_vm_context(struct drm_gpuvm *gpuvm)
70 {
71 return container_of(gpuvm, struct pvr_vm_context, gpuvm_mgr);
72 }
73
pvr_vm_context_get(struct pvr_vm_context * vm_ctx)74 struct pvr_vm_context *pvr_vm_context_get(struct pvr_vm_context *vm_ctx)
75 {
76 if (vm_ctx)
77 kref_get(&vm_ctx->ref_count);
78
79 return vm_ctx;
80 }
81
82 /**
83 * pvr_vm_get_page_table_root_addr() - Get the DMA address of the root of the
84 * page table structure behind a VM context.
85 * @vm_ctx: Target VM context.
86 */
pvr_vm_get_page_table_root_addr(struct pvr_vm_context * vm_ctx)87 dma_addr_t pvr_vm_get_page_table_root_addr(struct pvr_vm_context *vm_ctx)
88 {
89 return pvr_mmu_get_root_table_dma_addr(vm_ctx->mmu_ctx);
90 }
91
92 /**
93 * pvr_vm_get_dma_resv() - Expose the dma_resv owned by the VM context.
94 * @vm_ctx: Target VM context.
95 *
96 * This is used to allow private BOs to share a dma_resv for faster fence
97 * updates.
98 *
99 * Returns: The dma_resv pointer.
100 */
pvr_vm_get_dma_resv(struct pvr_vm_context * vm_ctx)101 struct dma_resv *pvr_vm_get_dma_resv(struct pvr_vm_context *vm_ctx)
102 {
103 return vm_ctx->dummy_gem.resv;
104 }
105
106 /**
107 * DOC: Memory mappings
108 */
109
110 /**
111 * struct pvr_vm_gpuva - Wrapper type representing a single VM mapping.
112 */
113 struct pvr_vm_gpuva {
114 /** @base: The wrapped drm_gpuva object. */
115 struct drm_gpuva base;
116 };
117
118 #define to_pvr_vm_gpuva(va) container_of_const(va, struct pvr_vm_gpuva, base)
119
120 enum pvr_vm_bind_type {
121 PVR_VM_BIND_TYPE_MAP,
122 PVR_VM_BIND_TYPE_UNMAP,
123 };
124
125 /**
126 * struct pvr_vm_bind_op - Context of a map/unmap operation.
127 */
128 struct pvr_vm_bind_op {
129 /** @type: Map or unmap. */
130 enum pvr_vm_bind_type type;
131
132 /** @pvr_obj: Object associated with mapping (map only). */
133 struct pvr_gem_object *pvr_obj;
134
135 /**
136 * @vm_ctx: VM context where the mapping will be created or destroyed.
137 */
138 struct pvr_vm_context *vm_ctx;
139
140 /** @mmu_op_ctx: MMU op context. */
141 struct pvr_mmu_op_context *mmu_op_ctx;
142
143 /** @gpuvm_bo: Prealloced wrapped BO for attaching to the gpuvm. */
144 struct drm_gpuvm_bo *gpuvm_bo;
145
146 /**
147 * @new_va: Prealloced VA mapping object (init in callback).
148 * Used when creating a mapping.
149 */
150 struct pvr_vm_gpuva *new_va;
151
152 /**
153 * @prev_va: Prealloced VA mapping object (init in callback).
154 * Used when a mapping or unmapping operation overlaps an existing
155 * mapping and splits away the beginning into a new mapping.
156 */
157 struct pvr_vm_gpuva *prev_va;
158
159 /**
160 * @next_va: Prealloced VA mapping object (init in callback).
161 * Used when a mapping or unmapping operation overlaps an existing
162 * mapping and splits away the end into a new mapping.
163 */
164 struct pvr_vm_gpuva *next_va;
165
166 /** @offset: Offset into @pvr_obj to begin mapping from. */
167 u64 offset;
168
169 /** @device_addr: Device-virtual address at the start of the mapping. */
170 u64 device_addr;
171
172 /** @size: Size of the desired mapping. */
173 u64 size;
174 };
175
176 /**
177 * pvr_vm_bind_op_exec() - Execute a single bind op.
178 * @bind_op: Bind op context.
179 *
180 * Returns:
181 * * 0 on success,
182 * * Any error code returned by drm_gpuva_sm_map(), drm_gpuva_sm_unmap(), or
183 * a callback function.
184 */
pvr_vm_bind_op_exec(struct pvr_vm_bind_op * bind_op)185 static int pvr_vm_bind_op_exec(struct pvr_vm_bind_op *bind_op)
186 {
187 switch (bind_op->type) {
188 case PVR_VM_BIND_TYPE_MAP:
189 return drm_gpuvm_sm_map(&bind_op->vm_ctx->gpuvm_mgr,
190 bind_op, bind_op->device_addr,
191 bind_op->size,
192 gem_from_pvr_gem(bind_op->pvr_obj),
193 bind_op->offset);
194
195 case PVR_VM_BIND_TYPE_UNMAP:
196 return drm_gpuvm_sm_unmap(&bind_op->vm_ctx->gpuvm_mgr,
197 bind_op, bind_op->device_addr,
198 bind_op->size);
199 }
200
201 /*
202 * This shouldn't happen unless something went wrong
203 * in drm_sched.
204 */
205 WARN_ON(1);
206 return -EINVAL;
207 }
208
pvr_vm_bind_op_fini(struct pvr_vm_bind_op * bind_op)209 static void pvr_vm_bind_op_fini(struct pvr_vm_bind_op *bind_op)
210 {
211 drm_gpuvm_bo_put(bind_op->gpuvm_bo);
212
213 kfree(bind_op->new_va);
214 kfree(bind_op->prev_va);
215 kfree(bind_op->next_va);
216
217 if (bind_op->pvr_obj)
218 pvr_gem_object_put(bind_op->pvr_obj);
219
220 if (bind_op->mmu_op_ctx)
221 pvr_mmu_op_context_destroy(bind_op->mmu_op_ctx);
222 }
223
224 static int
pvr_vm_bind_op_map_init(struct pvr_vm_bind_op * bind_op,struct pvr_vm_context * vm_ctx,struct pvr_gem_object * pvr_obj,u64 offset,u64 device_addr,u64 size)225 pvr_vm_bind_op_map_init(struct pvr_vm_bind_op *bind_op,
226 struct pvr_vm_context *vm_ctx,
227 struct pvr_gem_object *pvr_obj, u64 offset,
228 u64 device_addr, u64 size)
229 {
230 struct drm_gem_object *obj = gem_from_pvr_gem(pvr_obj);
231 const bool is_user = vm_ctx != vm_ctx->pvr_dev->kernel_vm_ctx;
232 const u64 pvr_obj_size = pvr_gem_object_size(pvr_obj);
233 struct sg_table *sgt;
234 u64 offset_plus_size;
235 int err;
236
237 if (check_add_overflow(offset, size, &offset_plus_size))
238 return -EINVAL;
239
240 if (is_user &&
241 !pvr_find_heap_containing(vm_ctx->pvr_dev, device_addr, size)) {
242 return -EINVAL;
243 }
244
245 if (!pvr_device_addr_and_size_are_valid(vm_ctx, device_addr, size) ||
246 offset & ~PAGE_MASK || size & ~PAGE_MASK ||
247 offset >= pvr_obj_size || offset_plus_size > pvr_obj_size)
248 return -EINVAL;
249
250 bind_op->type = PVR_VM_BIND_TYPE_MAP;
251
252 dma_resv_lock(obj->resv, NULL);
253 bind_op->gpuvm_bo = drm_gpuvm_bo_obtain(&vm_ctx->gpuvm_mgr, obj);
254 dma_resv_unlock(obj->resv);
255 if (IS_ERR(bind_op->gpuvm_bo))
256 return PTR_ERR(bind_op->gpuvm_bo);
257
258 bind_op->new_va = kzalloc(sizeof(*bind_op->new_va), GFP_KERNEL);
259 bind_op->prev_va = kzalloc(sizeof(*bind_op->prev_va), GFP_KERNEL);
260 bind_op->next_va = kzalloc(sizeof(*bind_op->next_va), GFP_KERNEL);
261 if (!bind_op->new_va || !bind_op->prev_va || !bind_op->next_va) {
262 err = -ENOMEM;
263 goto err_bind_op_fini;
264 }
265
266 /* Pin pages so they're ready for use. */
267 sgt = pvr_gem_object_get_pages_sgt(pvr_obj);
268 err = PTR_ERR_OR_ZERO(sgt);
269 if (err)
270 goto err_bind_op_fini;
271
272 bind_op->mmu_op_ctx =
273 pvr_mmu_op_context_create(vm_ctx->mmu_ctx, sgt, offset, size);
274 err = PTR_ERR_OR_ZERO(bind_op->mmu_op_ctx);
275 if (err) {
276 bind_op->mmu_op_ctx = NULL;
277 goto err_bind_op_fini;
278 }
279
280 bind_op->pvr_obj = pvr_obj;
281 bind_op->vm_ctx = vm_ctx;
282 bind_op->device_addr = device_addr;
283 bind_op->size = size;
284 bind_op->offset = offset;
285
286 return 0;
287
288 err_bind_op_fini:
289 pvr_vm_bind_op_fini(bind_op);
290
291 return err;
292 }
293
294 static int
pvr_vm_bind_op_unmap_init(struct pvr_vm_bind_op * bind_op,struct pvr_vm_context * vm_ctx,struct pvr_gem_object * pvr_obj,u64 device_addr,u64 size)295 pvr_vm_bind_op_unmap_init(struct pvr_vm_bind_op *bind_op,
296 struct pvr_vm_context *vm_ctx,
297 struct pvr_gem_object *pvr_obj,
298 u64 device_addr, u64 size)
299 {
300 int err;
301
302 if (!pvr_device_addr_and_size_are_valid(vm_ctx, device_addr, size))
303 return -EINVAL;
304
305 bind_op->type = PVR_VM_BIND_TYPE_UNMAP;
306
307 bind_op->prev_va = kzalloc(sizeof(*bind_op->prev_va), GFP_KERNEL);
308 bind_op->next_va = kzalloc(sizeof(*bind_op->next_va), GFP_KERNEL);
309 if (!bind_op->prev_va || !bind_op->next_va) {
310 err = -ENOMEM;
311 goto err_bind_op_fini;
312 }
313
314 bind_op->mmu_op_ctx =
315 pvr_mmu_op_context_create(vm_ctx->mmu_ctx, NULL, 0, 0);
316 err = PTR_ERR_OR_ZERO(bind_op->mmu_op_ctx);
317 if (err) {
318 bind_op->mmu_op_ctx = NULL;
319 goto err_bind_op_fini;
320 }
321
322 bind_op->pvr_obj = pvr_obj;
323 bind_op->vm_ctx = vm_ctx;
324 bind_op->device_addr = device_addr;
325 bind_op->size = size;
326
327 return 0;
328
329 err_bind_op_fini:
330 pvr_vm_bind_op_fini(bind_op);
331
332 return err;
333 }
334
335 /**
336 * pvr_vm_gpuva_map() - Insert a mapping into a memory context.
337 * @op: gpuva op containing the remap details.
338 * @op_ctx: Operation context.
339 *
340 * Context: Called by drm_gpuvm_sm_map following a successful mapping while
341 * @op_ctx.vm_ctx mutex is held.
342 *
343 * Return:
344 * * 0 on success, or
345 * * Any error returned by pvr_mmu_map().
346 */
347 static int
pvr_vm_gpuva_map(struct drm_gpuva_op * op,void * op_ctx)348 pvr_vm_gpuva_map(struct drm_gpuva_op *op, void *op_ctx)
349 {
350 struct pvr_gem_object *pvr_gem = gem_to_pvr_gem(op->map.gem.obj);
351 struct pvr_vm_bind_op *ctx = op_ctx;
352 int err;
353
354 if ((op->map.gem.offset | op->map.va.range) & ~PVR_DEVICE_PAGE_MASK)
355 return -EINVAL;
356
357 err = pvr_mmu_map(ctx->mmu_op_ctx, op->map.va.range, pvr_gem->flags,
358 op->map.va.addr);
359 if (err)
360 return err;
361
362 drm_gpuva_map(&ctx->vm_ctx->gpuvm_mgr, &ctx->new_va->base, &op->map);
363 drm_gpuva_link(&ctx->new_va->base, ctx->gpuvm_bo);
364 ctx->new_va = NULL;
365
366 return 0;
367 }
368
369 /**
370 * pvr_vm_gpuva_unmap() - Remove a mapping from a memory context.
371 * @op: gpuva op containing the unmap details.
372 * @op_ctx: Operation context.
373 *
374 * Context: Called by drm_gpuvm_sm_unmap following a successful unmapping while
375 * @op_ctx.vm_ctx mutex is held.
376 *
377 * Return:
378 * * 0 on success, or
379 * * Any error returned by pvr_mmu_unmap().
380 */
381 static int
pvr_vm_gpuva_unmap(struct drm_gpuva_op * op,void * op_ctx)382 pvr_vm_gpuva_unmap(struct drm_gpuva_op *op, void *op_ctx)
383 {
384 struct pvr_vm_bind_op *ctx = op_ctx;
385
386 int err = pvr_mmu_unmap(ctx->mmu_op_ctx, op->unmap.va->va.addr,
387 op->unmap.va->va.range);
388
389 if (err)
390 return err;
391
392 drm_gpuva_unmap(&op->unmap);
393 drm_gpuva_unlink(op->unmap.va);
394 kfree(to_pvr_vm_gpuva(op->unmap.va));
395
396 return 0;
397 }
398
399 /**
400 * pvr_vm_gpuva_remap() - Remap a mapping within a memory context.
401 * @op: gpuva op containing the remap details.
402 * @op_ctx: Operation context.
403 *
404 * Context: Called by either drm_gpuvm_sm_map or drm_gpuvm_sm_unmap when a
405 * mapping or unmapping operation causes a region to be split. The
406 * @op_ctx.vm_ctx mutex is held.
407 *
408 * Return:
409 * * 0 on success, or
410 * * Any error returned by pvr_vm_gpuva_unmap() or pvr_vm_gpuva_unmap().
411 */
412 static int
pvr_vm_gpuva_remap(struct drm_gpuva_op * op,void * op_ctx)413 pvr_vm_gpuva_remap(struct drm_gpuva_op *op, void *op_ctx)
414 {
415 struct pvr_vm_bind_op *ctx = op_ctx;
416 u64 va_start = 0, va_range = 0;
417 int err;
418
419 drm_gpuva_op_remap_to_unmap_range(&op->remap, &va_start, &va_range);
420 err = pvr_mmu_unmap(ctx->mmu_op_ctx, va_start, va_range);
421 if (err)
422 return err;
423
424 /* No actual remap required: the page table tree depth is fixed to 3,
425 * and we use 4k page table entries only for now.
426 */
427 drm_gpuva_remap(&ctx->prev_va->base, &ctx->next_va->base, &op->remap);
428
429 if (op->remap.prev) {
430 pvr_gem_object_get(gem_to_pvr_gem(ctx->prev_va->base.gem.obj));
431 drm_gpuva_link(&ctx->prev_va->base, ctx->gpuvm_bo);
432 ctx->prev_va = NULL;
433 }
434
435 if (op->remap.next) {
436 pvr_gem_object_get(gem_to_pvr_gem(ctx->next_va->base.gem.obj));
437 drm_gpuva_link(&ctx->next_va->base, ctx->gpuvm_bo);
438 ctx->next_va = NULL;
439 }
440
441 drm_gpuva_unlink(op->remap.unmap->va);
442 kfree(to_pvr_vm_gpuva(op->remap.unmap->va));
443
444 return 0;
445 }
446
447 /*
448 * Public API
449 *
450 * For an overview of these functions, see *DOC: Public API* in "pvr_vm.h".
451 */
452
453 /**
454 * pvr_device_addr_is_valid() - Tests whether a device-virtual address
455 * is valid.
456 * @device_addr: Virtual device address to test.
457 *
458 * Return:
459 * * %true if @device_addr is within the valid range for a device page
460 * table and is aligned to the device page size, or
461 * * %false otherwise.
462 */
463 bool
pvr_device_addr_is_valid(u64 device_addr)464 pvr_device_addr_is_valid(u64 device_addr)
465 {
466 return (device_addr & ~PVR_PAGE_TABLE_ADDR_MASK) == 0 &&
467 (device_addr & ~PVR_DEVICE_PAGE_MASK) == 0;
468 }
469
470 /**
471 * pvr_device_addr_and_size_are_valid() - Tests whether a device-virtual
472 * address and associated size are both valid.
473 * @vm_ctx: Target VM context.
474 * @device_addr: Virtual device address to test.
475 * @size: Size of the range based at @device_addr to test.
476 *
477 * Calling pvr_device_addr_is_valid() twice (once on @size, and again on
478 * @device_addr + @size) to verify a device-virtual address range initially
479 * seems intuitive, but it produces a false-negative when the address range
480 * is right at the end of device-virtual address space.
481 *
482 * This function catches that corner case, as well as checking that
483 * @size is non-zero.
484 *
485 * Return:
486 * * %true if @device_addr is device page aligned; @size is device page
487 * aligned; the range specified by @device_addr and @size is within the
488 * bounds of the device-virtual address space, and @size is non-zero, or
489 * * %false otherwise.
490 */
491 bool
pvr_device_addr_and_size_are_valid(struct pvr_vm_context * vm_ctx,u64 device_addr,u64 size)492 pvr_device_addr_and_size_are_valid(struct pvr_vm_context *vm_ctx,
493 u64 device_addr, u64 size)
494 {
495 return pvr_device_addr_is_valid(device_addr) &&
496 drm_gpuvm_range_valid(&vm_ctx->gpuvm_mgr, device_addr, size) &&
497 size != 0 && (size & ~PVR_DEVICE_PAGE_MASK) == 0 &&
498 (device_addr + size <= PVR_PAGE_TABLE_ADDR_SPACE_SIZE);
499 }
500
pvr_gpuvm_free(struct drm_gpuvm * gpuvm)501 static void pvr_gpuvm_free(struct drm_gpuvm *gpuvm)
502 {
503 kfree(to_pvr_vm_context(gpuvm));
504 }
505
506 static const struct drm_gpuvm_ops pvr_vm_gpuva_ops = {
507 .vm_free = pvr_gpuvm_free,
508 .sm_step_map = pvr_vm_gpuva_map,
509 .sm_step_remap = pvr_vm_gpuva_remap,
510 .sm_step_unmap = pvr_vm_gpuva_unmap,
511 };
512
513 static void
fw_mem_context_init(void * cpu_ptr,void * priv)514 fw_mem_context_init(void *cpu_ptr, void *priv)
515 {
516 struct rogue_fwif_fwmemcontext *fw_mem_ctx = cpu_ptr;
517 struct pvr_vm_context *vm_ctx = priv;
518
519 fw_mem_ctx->pc_dev_paddr = pvr_vm_get_page_table_root_addr(vm_ctx);
520 fw_mem_ctx->page_cat_base_reg_set = ROGUE_FW_BIF_INVALID_PCSET;
521 }
522
523 /**
524 * pvr_vm_create_context() - Create a new VM context.
525 * @pvr_dev: Target PowerVR device.
526 * @is_userspace_context: %true if this context is for userspace. This will
527 * create a firmware memory context for the VM context
528 * and disable warnings when tearing down mappings.
529 *
530 * Return:
531 * * A handle to the newly-minted VM context on success,
532 * * -%EINVAL if the feature "virtual address space bits" on @pvr_dev is
533 * missing or has an unsupported value,
534 * * -%ENOMEM if allocation of the structure behind the opaque handle fails,
535 * or
536 * * Any error encountered while setting up internal structures.
537 */
538 struct pvr_vm_context *
pvr_vm_create_context(struct pvr_device * pvr_dev,bool is_userspace_context)539 pvr_vm_create_context(struct pvr_device *pvr_dev, bool is_userspace_context)
540 {
541 struct drm_device *drm_dev = from_pvr_device(pvr_dev);
542
543 struct pvr_vm_context *vm_ctx;
544 u16 device_addr_bits;
545
546 int err;
547
548 err = PVR_FEATURE_VALUE(pvr_dev, virtual_address_space_bits,
549 &device_addr_bits);
550 if (err) {
551 drm_err(drm_dev,
552 "Failed to get device virtual address space bits\n");
553 return ERR_PTR(err);
554 }
555
556 if (device_addr_bits != PVR_PAGE_TABLE_ADDR_BITS) {
557 drm_err(drm_dev,
558 "Device has unsupported virtual address space size\n");
559 return ERR_PTR(-EINVAL);
560 }
561
562 vm_ctx = kzalloc(sizeof(*vm_ctx), GFP_KERNEL);
563 if (!vm_ctx)
564 return ERR_PTR(-ENOMEM);
565
566 vm_ctx->pvr_dev = pvr_dev;
567
568 vm_ctx->mmu_ctx = pvr_mmu_context_create(pvr_dev);
569 err = PTR_ERR_OR_ZERO(vm_ctx->mmu_ctx);
570 if (err)
571 goto err_free;
572
573 if (is_userspace_context) {
574 err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_fwmemcontext),
575 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
576 fw_mem_context_init, vm_ctx, &vm_ctx->fw_mem_ctx_obj);
577
578 if (err)
579 goto err_page_table_destroy;
580 }
581
582 drm_gem_private_object_init(&pvr_dev->base, &vm_ctx->dummy_gem, 0);
583 drm_gpuvm_init(&vm_ctx->gpuvm_mgr,
584 is_userspace_context ? "PowerVR-user-VM" : "PowerVR-FW-VM",
585 0, &pvr_dev->base, &vm_ctx->dummy_gem,
586 0, 1ULL << device_addr_bits, 0, 0, &pvr_vm_gpuva_ops);
587
588 mutex_init(&vm_ctx->lock);
589 kref_init(&vm_ctx->ref_count);
590
591 return vm_ctx;
592
593 err_page_table_destroy:
594 pvr_mmu_context_destroy(vm_ctx->mmu_ctx);
595
596 err_free:
597 kfree(vm_ctx);
598
599 return ERR_PTR(err);
600 }
601
602 /**
603 * pvr_vm_context_release() - Teardown a VM context.
604 * @ref_count: Pointer to reference counter of the VM context.
605 *
606 * This function also ensures that no mappings are left dangling by calling
607 * pvr_vm_unmap_all.
608 */
609 static void
pvr_vm_context_release(struct kref * ref_count)610 pvr_vm_context_release(struct kref *ref_count)
611 {
612 struct pvr_vm_context *vm_ctx =
613 container_of(ref_count, struct pvr_vm_context, ref_count);
614
615 if (vm_ctx->fw_mem_ctx_obj)
616 pvr_fw_object_destroy(vm_ctx->fw_mem_ctx_obj);
617
618 pvr_vm_unmap_all(vm_ctx);
619
620 pvr_mmu_context_destroy(vm_ctx->mmu_ctx);
621 drm_gem_private_object_fini(&vm_ctx->dummy_gem);
622 mutex_destroy(&vm_ctx->lock);
623
624 drm_gpuvm_put(&vm_ctx->gpuvm_mgr);
625 }
626
627 /**
628 * pvr_vm_context_lookup() - Look up VM context from handle
629 * @pvr_file: Pointer to pvr_file structure.
630 * @handle: Object handle.
631 *
632 * Takes reference on VM context object. Call pvr_vm_context_put() to release.
633 *
634 * Returns:
635 * * The requested object on success, or
636 * * %NULL on failure (object does not exist in list, or is not a VM context)
637 */
638 struct pvr_vm_context *
pvr_vm_context_lookup(struct pvr_file * pvr_file,u32 handle)639 pvr_vm_context_lookup(struct pvr_file *pvr_file, u32 handle)
640 {
641 struct pvr_vm_context *vm_ctx;
642
643 xa_lock(&pvr_file->vm_ctx_handles);
644 vm_ctx = xa_load(&pvr_file->vm_ctx_handles, handle);
645 pvr_vm_context_get(vm_ctx);
646 xa_unlock(&pvr_file->vm_ctx_handles);
647
648 return vm_ctx;
649 }
650
651 /**
652 * pvr_vm_context_put() - Release a reference on a VM context
653 * @vm_ctx: Target VM context.
654 *
655 * Returns:
656 * * %true if the VM context was destroyed, or
657 * * %false if there are any references still remaining.
658 */
659 bool
pvr_vm_context_put(struct pvr_vm_context * vm_ctx)660 pvr_vm_context_put(struct pvr_vm_context *vm_ctx)
661 {
662 if (vm_ctx)
663 return kref_put(&vm_ctx->ref_count, pvr_vm_context_release);
664
665 return true;
666 }
667
668 /**
669 * pvr_destroy_vm_contexts_for_file: Destroy any VM contexts associated with the
670 * given file.
671 * @pvr_file: Pointer to pvr_file structure.
672 *
673 * Removes all vm_contexts associated with @pvr_file from the device VM context
674 * list and drops initial references. vm_contexts will then be destroyed once
675 * all outstanding references are dropped.
676 */
pvr_destroy_vm_contexts_for_file(struct pvr_file * pvr_file)677 void pvr_destroy_vm_contexts_for_file(struct pvr_file *pvr_file)
678 {
679 struct pvr_vm_context *vm_ctx;
680 unsigned long handle;
681
682 xa_for_each(&pvr_file->vm_ctx_handles, handle, vm_ctx) {
683 /* vm_ctx is not used here because that would create a race with xa_erase */
684 pvr_vm_context_put(xa_erase(&pvr_file->vm_ctx_handles, handle));
685 }
686 }
687
688 static int
pvr_vm_lock_extra(struct drm_gpuvm_exec * vm_exec)689 pvr_vm_lock_extra(struct drm_gpuvm_exec *vm_exec)
690 {
691 struct pvr_vm_bind_op *bind_op = vm_exec->extra.priv;
692 struct pvr_gem_object *pvr_obj = bind_op->pvr_obj;
693
694 /* Acquire lock on the GEM object being mapped/unmapped. */
695 return drm_exec_lock_obj(&vm_exec->exec, gem_from_pvr_gem(pvr_obj));
696 }
697
698 /**
699 * pvr_vm_map() - Map a section of physical memory into a section of
700 * device-virtual memory.
701 * @vm_ctx: Target VM context.
702 * @pvr_obj: Target PowerVR memory object.
703 * @pvr_obj_offset: Offset into @pvr_obj to map from.
704 * @device_addr: Virtual device address at the start of the requested mapping.
705 * @size: Size of the requested mapping.
706 *
707 * No handle is returned to represent the mapping. Instead, callers should
708 * remember @device_addr and use that as a handle.
709 *
710 * Return:
711 * * 0 on success,
712 * * -%EINVAL if @device_addr is not a valid page-aligned device-virtual
713 * address; the region specified by @pvr_obj_offset and @size does not fall
714 * entirely within @pvr_obj, or any part of the specified region of @pvr_obj
715 * is not device-virtual page-aligned,
716 * * Any error encountered while performing internal operations required to
717 * destroy the mapping (returned from pvr_vm_gpuva_map or
718 * pvr_vm_gpuva_remap).
719 */
720 int
pvr_vm_map(struct pvr_vm_context * vm_ctx,struct pvr_gem_object * pvr_obj,u64 pvr_obj_offset,u64 device_addr,u64 size)721 pvr_vm_map(struct pvr_vm_context *vm_ctx, struct pvr_gem_object *pvr_obj,
722 u64 pvr_obj_offset, u64 device_addr, u64 size)
723 {
724 struct pvr_vm_bind_op bind_op = {0};
725 struct drm_gpuvm_exec vm_exec = {
726 .vm = &vm_ctx->gpuvm_mgr,
727 .flags = DRM_EXEC_INTERRUPTIBLE_WAIT |
728 DRM_EXEC_IGNORE_DUPLICATES,
729 .extra = {
730 .fn = pvr_vm_lock_extra,
731 .priv = &bind_op,
732 },
733 };
734
735 int err = pvr_vm_bind_op_map_init(&bind_op, vm_ctx, pvr_obj,
736 pvr_obj_offset, device_addr,
737 size);
738
739 if (err)
740 return err;
741
742 pvr_gem_object_get(pvr_obj);
743
744 err = drm_gpuvm_exec_lock(&vm_exec);
745 if (err)
746 goto err_cleanup;
747
748 err = pvr_vm_bind_op_exec(&bind_op);
749
750 drm_gpuvm_exec_unlock(&vm_exec);
751
752 err_cleanup:
753 pvr_vm_bind_op_fini(&bind_op);
754
755 return err;
756 }
757
758 /**
759 * pvr_vm_unmap_obj_locked() - Unmap an already mapped section of device-virtual
760 * memory.
761 * @vm_ctx: Target VM context.
762 * @pvr_obj: Target PowerVR memory object.
763 * @device_addr: Virtual device address at the start of the target mapping.
764 * @size: Size of the target mapping.
765 *
766 * Return:
767 * * 0 on success,
768 * * -%EINVAL if @device_addr is not a valid page-aligned device-virtual
769 * address,
770 * * Any error encountered while performing internal operations required to
771 * destroy the mapping (returned from pvr_vm_gpuva_unmap or
772 * pvr_vm_gpuva_remap).
773 *
774 * The vm_ctx->lock must be held when calling this function.
775 */
776 static int
pvr_vm_unmap_obj_locked(struct pvr_vm_context * vm_ctx,struct pvr_gem_object * pvr_obj,u64 device_addr,u64 size)777 pvr_vm_unmap_obj_locked(struct pvr_vm_context *vm_ctx,
778 struct pvr_gem_object *pvr_obj,
779 u64 device_addr, u64 size)
780 {
781 struct pvr_vm_bind_op bind_op = {0};
782 struct drm_gpuvm_exec vm_exec = {
783 .vm = &vm_ctx->gpuvm_mgr,
784 .flags = DRM_EXEC_INTERRUPTIBLE_WAIT |
785 DRM_EXEC_IGNORE_DUPLICATES,
786 .extra = {
787 .fn = pvr_vm_lock_extra,
788 .priv = &bind_op,
789 },
790 };
791
792 int err = pvr_vm_bind_op_unmap_init(&bind_op, vm_ctx, pvr_obj,
793 device_addr, size);
794 if (err)
795 return err;
796
797 pvr_gem_object_get(pvr_obj);
798
799 err = drm_gpuvm_exec_lock(&vm_exec);
800 if (err)
801 goto err_cleanup;
802
803 err = pvr_vm_bind_op_exec(&bind_op);
804
805 drm_gpuvm_exec_unlock(&vm_exec);
806
807 err_cleanup:
808 pvr_vm_bind_op_fini(&bind_op);
809
810 return err;
811 }
812
813 /**
814 * pvr_vm_unmap_obj() - Unmap an already mapped section of device-virtual
815 * memory.
816 * @vm_ctx: Target VM context.
817 * @pvr_obj: Target PowerVR memory object.
818 * @device_addr: Virtual device address at the start of the target mapping.
819 * @size: Size of the target mapping.
820 *
821 * Return:
822 * * 0 on success,
823 * * Any error encountered by pvr_vm_unmap_obj_locked.
824 */
825 int
pvr_vm_unmap_obj(struct pvr_vm_context * vm_ctx,struct pvr_gem_object * pvr_obj,u64 device_addr,u64 size)826 pvr_vm_unmap_obj(struct pvr_vm_context *vm_ctx, struct pvr_gem_object *pvr_obj,
827 u64 device_addr, u64 size)
828 {
829 int err;
830
831 mutex_lock(&vm_ctx->lock);
832 err = pvr_vm_unmap_obj_locked(vm_ctx, pvr_obj, device_addr, size);
833 mutex_unlock(&vm_ctx->lock);
834
835 return err;
836 }
837
838 /**
839 * pvr_vm_unmap() - Unmap an already mapped section of device-virtual memory.
840 * @vm_ctx: Target VM context.
841 * @device_addr: Virtual device address at the start of the target mapping.
842 * @size: Size of the target mapping.
843 *
844 * Return:
845 * * 0 on success,
846 * * Any error encountered by drm_gpuva_find,
847 * * Any error encountered by pvr_vm_unmap_obj_locked.
848 */
849 int
pvr_vm_unmap(struct pvr_vm_context * vm_ctx,u64 device_addr,u64 size)850 pvr_vm_unmap(struct pvr_vm_context *vm_ctx, u64 device_addr, u64 size)
851 {
852 struct pvr_gem_object *pvr_obj;
853 struct drm_gpuva *va;
854 int err;
855
856 mutex_lock(&vm_ctx->lock);
857
858 va = drm_gpuva_find(&vm_ctx->gpuvm_mgr, device_addr, size);
859 if (va) {
860 pvr_obj = gem_to_pvr_gem(va->gem.obj);
861 err = pvr_vm_unmap_obj_locked(vm_ctx, pvr_obj,
862 va->va.addr, va->va.range);
863 } else {
864 err = -ENOENT;
865 }
866
867 mutex_unlock(&vm_ctx->lock);
868
869 return err;
870 }
871
872 /**
873 * pvr_vm_unmap_all() - Unmap all mappings associated with a VM context.
874 * @vm_ctx: Target VM context.
875 *
876 * This function ensures that no mappings are left dangling by unmapping them
877 * all in order of ascending device-virtual address.
878 */
879 void
pvr_vm_unmap_all(struct pvr_vm_context * vm_ctx)880 pvr_vm_unmap_all(struct pvr_vm_context *vm_ctx)
881 {
882 mutex_lock(&vm_ctx->lock);
883
884 for (;;) {
885 struct pvr_gem_object *pvr_obj;
886 struct drm_gpuva *va;
887
888 va = drm_gpuva_find_first(&vm_ctx->gpuvm_mgr,
889 vm_ctx->gpuvm_mgr.mm_start,
890 vm_ctx->gpuvm_mgr.mm_range);
891 if (!va)
892 break;
893
894 pvr_obj = gem_to_pvr_gem(va->gem.obj);
895
896 WARN_ON(pvr_vm_unmap_obj_locked(vm_ctx, pvr_obj,
897 va->va.addr, va->va.range));
898 }
899
900 mutex_unlock(&vm_ctx->lock);
901 }
902
903 /* Static data areas are determined by firmware. */
904 static const struct drm_pvr_static_data_area static_data_areas[] = {
905 {
906 .area_usage = DRM_PVR_STATIC_DATA_AREA_FENCE,
907 .location_heap_id = DRM_PVR_HEAP_GENERAL,
908 .offset = 0,
909 .size = 128,
910 },
911 {
912 .area_usage = DRM_PVR_STATIC_DATA_AREA_YUV_CSC,
913 .location_heap_id = DRM_PVR_HEAP_GENERAL,
914 .offset = 128,
915 .size = 1024,
916 },
917 {
918 .area_usage = DRM_PVR_STATIC_DATA_AREA_VDM_SYNC,
919 .location_heap_id = DRM_PVR_HEAP_PDS_CODE_DATA,
920 .offset = 0,
921 .size = 128,
922 },
923 {
924 .area_usage = DRM_PVR_STATIC_DATA_AREA_EOT,
925 .location_heap_id = DRM_PVR_HEAP_PDS_CODE_DATA,
926 .offset = 128,
927 .size = 128,
928 },
929 {
930 .area_usage = DRM_PVR_STATIC_DATA_AREA_VDM_SYNC,
931 .location_heap_id = DRM_PVR_HEAP_USC_CODE,
932 .offset = 0,
933 .size = 128,
934 },
935 };
936
937 #define GET_RESERVED_SIZE(last_offset, last_size) round_up((last_offset) + (last_size), PAGE_SIZE)
938
939 /*
940 * The values given to GET_RESERVED_SIZE() are taken from the last entry in the corresponding
941 * static data area for each heap.
942 */
943 static const struct drm_pvr_heap pvr_heaps[] = {
944 [DRM_PVR_HEAP_GENERAL] = {
945 .base = ROGUE_GENERAL_HEAP_BASE,
946 .size = ROGUE_GENERAL_HEAP_SIZE,
947 .flags = 0,
948 .page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
949 },
950 [DRM_PVR_HEAP_PDS_CODE_DATA] = {
951 .base = ROGUE_PDSCODEDATA_HEAP_BASE,
952 .size = ROGUE_PDSCODEDATA_HEAP_SIZE,
953 .flags = 0,
954 .page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
955 },
956 [DRM_PVR_HEAP_USC_CODE] = {
957 .base = ROGUE_USCCODE_HEAP_BASE,
958 .size = ROGUE_USCCODE_HEAP_SIZE,
959 .flags = 0,
960 .page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
961 },
962 [DRM_PVR_HEAP_RGNHDR] = {
963 .base = ROGUE_RGNHDR_HEAP_BASE,
964 .size = ROGUE_RGNHDR_HEAP_SIZE,
965 .flags = 0,
966 .page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
967 },
968 [DRM_PVR_HEAP_VIS_TEST] = {
969 .base = ROGUE_VISTEST_HEAP_BASE,
970 .size = ROGUE_VISTEST_HEAP_SIZE,
971 .flags = 0,
972 .page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
973 },
974 [DRM_PVR_HEAP_TRANSFER_FRAG] = {
975 .base = ROGUE_TRANSFER_FRAG_HEAP_BASE,
976 .size = ROGUE_TRANSFER_FRAG_HEAP_SIZE,
977 .flags = 0,
978 .page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
979 },
980 };
981
982 int
pvr_static_data_areas_get(const struct pvr_device * pvr_dev,struct drm_pvr_ioctl_dev_query_args * args)983 pvr_static_data_areas_get(const struct pvr_device *pvr_dev,
984 struct drm_pvr_ioctl_dev_query_args *args)
985 {
986 struct drm_pvr_dev_query_static_data_areas query = {0};
987 int err;
988
989 if (!args->pointer) {
990 args->size = sizeof(struct drm_pvr_dev_query_static_data_areas);
991 return 0;
992 }
993
994 err = PVR_UOBJ_GET(query, args->size, args->pointer);
995 if (err < 0)
996 return err;
997
998 if (!query.static_data_areas.array) {
999 query.static_data_areas.count = ARRAY_SIZE(static_data_areas);
1000 query.static_data_areas.stride = sizeof(struct drm_pvr_static_data_area);
1001 goto copy_out;
1002 }
1003
1004 if (query.static_data_areas.count > ARRAY_SIZE(static_data_areas))
1005 query.static_data_areas.count = ARRAY_SIZE(static_data_areas);
1006
1007 err = PVR_UOBJ_SET_ARRAY(&query.static_data_areas, static_data_areas);
1008 if (err < 0)
1009 return err;
1010
1011 copy_out:
1012 err = PVR_UOBJ_SET(args->pointer, args->size, query);
1013 if (err < 0)
1014 return err;
1015
1016 args->size = sizeof(query);
1017 return 0;
1018 }
1019
1020 int
pvr_heap_info_get(const struct pvr_device * pvr_dev,struct drm_pvr_ioctl_dev_query_args * args)1021 pvr_heap_info_get(const struct pvr_device *pvr_dev,
1022 struct drm_pvr_ioctl_dev_query_args *args)
1023 {
1024 struct drm_pvr_dev_query_heap_info query = {0};
1025 u64 dest;
1026 int err;
1027
1028 if (!args->pointer) {
1029 args->size = sizeof(struct drm_pvr_dev_query_heap_info);
1030 return 0;
1031 }
1032
1033 err = PVR_UOBJ_GET(query, args->size, args->pointer);
1034 if (err < 0)
1035 return err;
1036
1037 if (!query.heaps.array) {
1038 query.heaps.count = ARRAY_SIZE(pvr_heaps);
1039 query.heaps.stride = sizeof(struct drm_pvr_heap);
1040 goto copy_out;
1041 }
1042
1043 if (query.heaps.count > ARRAY_SIZE(pvr_heaps))
1044 query.heaps.count = ARRAY_SIZE(pvr_heaps);
1045
1046 /* Region header heap is only present if BRN63142 is present. */
1047 dest = query.heaps.array;
1048 for (size_t i = 0; i < query.heaps.count; i++) {
1049 struct drm_pvr_heap heap = pvr_heaps[i];
1050
1051 if (i == DRM_PVR_HEAP_RGNHDR && !PVR_HAS_QUIRK(pvr_dev, 63142))
1052 heap.size = 0;
1053
1054 err = PVR_UOBJ_SET(dest, query.heaps.stride, heap);
1055 if (err < 0)
1056 return err;
1057
1058 dest += query.heaps.stride;
1059 }
1060
1061 copy_out:
1062 err = PVR_UOBJ_SET(args->pointer, args->size, query);
1063 if (err < 0)
1064 return err;
1065
1066 args->size = sizeof(query);
1067 return 0;
1068 }
1069
1070 /**
1071 * pvr_heap_contains_range() - Determine if a given heap contains the specified
1072 * device-virtual address range.
1073 * @pvr_heap: Target heap.
1074 * @start: Inclusive start of the target range.
1075 * @end: Inclusive end of the target range.
1076 *
1077 * It is an error to call this function with values of @start and @end that do
1078 * not satisfy the condition @start <= @end.
1079 */
1080 static __always_inline bool
pvr_heap_contains_range(const struct drm_pvr_heap * pvr_heap,u64 start,u64 end)1081 pvr_heap_contains_range(const struct drm_pvr_heap *pvr_heap, u64 start, u64 end)
1082 {
1083 return pvr_heap->base <= start && end < pvr_heap->base + pvr_heap->size;
1084 }
1085
1086 /**
1087 * pvr_find_heap_containing() - Find a heap which contains the specified
1088 * device-virtual address range.
1089 * @pvr_dev: Target PowerVR device.
1090 * @start: Start of the target range.
1091 * @size: Size of the target range.
1092 *
1093 * Return:
1094 * * A pointer to a constant instance of struct drm_pvr_heap representing the
1095 * heap containing the entire range specified by @start and @size on
1096 * success, or
1097 * * %NULL if no such heap exists.
1098 */
1099 const struct drm_pvr_heap *
pvr_find_heap_containing(struct pvr_device * pvr_dev,u64 start,u64 size)1100 pvr_find_heap_containing(struct pvr_device *pvr_dev, u64 start, u64 size)
1101 {
1102 u64 end;
1103
1104 if (check_add_overflow(start, size - 1, &end))
1105 return NULL;
1106
1107 /*
1108 * There are no guarantees about the order of address ranges in
1109 * &pvr_heaps, so iterate over the entire array for a heap whose
1110 * range completely encompasses the given range.
1111 */
1112 for (u32 heap_id = 0; heap_id < ARRAY_SIZE(pvr_heaps); heap_id++) {
1113 /* Filter heaps that present only with an associated quirk */
1114 if (heap_id == DRM_PVR_HEAP_RGNHDR &&
1115 !PVR_HAS_QUIRK(pvr_dev, 63142)) {
1116 continue;
1117 }
1118
1119 if (pvr_heap_contains_range(&pvr_heaps[heap_id], start, end))
1120 return &pvr_heaps[heap_id];
1121 }
1122
1123 return NULL;
1124 }
1125
1126 /**
1127 * pvr_vm_find_gem_object() - Look up a buffer object from a given
1128 * device-virtual address.
1129 * @vm_ctx: [IN] Target VM context.
1130 * @device_addr: [IN] Virtual device address at the start of the required
1131 * object.
1132 * @mapped_offset_out: [OUT] Pointer to location to write offset of the start
1133 * of the mapped region within the buffer object. May be
1134 * %NULL if this information is not required.
1135 * @mapped_size_out: [OUT] Pointer to location to write size of the mapped
1136 * region. May be %NULL if this information is not required.
1137 *
1138 * If successful, a reference will be taken on the buffer object. The caller
1139 * must drop the reference with pvr_gem_object_put().
1140 *
1141 * Return:
1142 * * The PowerVR buffer object mapped at @device_addr if one exists, or
1143 * * %NULL otherwise.
1144 */
1145 struct pvr_gem_object *
pvr_vm_find_gem_object(struct pvr_vm_context * vm_ctx,u64 device_addr,u64 * mapped_offset_out,u64 * mapped_size_out)1146 pvr_vm_find_gem_object(struct pvr_vm_context *vm_ctx, u64 device_addr,
1147 u64 *mapped_offset_out, u64 *mapped_size_out)
1148 {
1149 struct pvr_gem_object *pvr_obj;
1150 struct drm_gpuva *va;
1151
1152 mutex_lock(&vm_ctx->lock);
1153
1154 va = drm_gpuva_find_first(&vm_ctx->gpuvm_mgr, device_addr, 1);
1155 if (!va)
1156 goto err_unlock;
1157
1158 pvr_obj = gem_to_pvr_gem(va->gem.obj);
1159 pvr_gem_object_get(pvr_obj);
1160
1161 if (mapped_offset_out)
1162 *mapped_offset_out = va->gem.offset;
1163 if (mapped_size_out)
1164 *mapped_size_out = va->va.range;
1165
1166 mutex_unlock(&vm_ctx->lock);
1167
1168 return pvr_obj;
1169
1170 err_unlock:
1171 mutex_unlock(&vm_ctx->lock);
1172
1173 return NULL;
1174 }
1175
1176 /**
1177 * pvr_vm_get_fw_mem_context: Get object representing firmware memory context
1178 * @vm_ctx: Target VM context.
1179 *
1180 * Returns:
1181 * * FW object representing firmware memory context, or
1182 * * %NULL if this VM context does not have a firmware memory context.
1183 */
1184 struct pvr_fw_object *
pvr_vm_get_fw_mem_context(struct pvr_vm_context * vm_ctx)1185 pvr_vm_get_fw_mem_context(struct pvr_vm_context *vm_ctx)
1186 {
1187 return vm_ctx->fw_mem_ctx_obj;
1188 }
1189