1 // SPDX-License-Identifier: GPL-2.0-only OR MIT
2 /* Copyright (c) 2023 Imagination Technologies Ltd. */
3
4 #include "pvr_mmu.h"
5
6 #include "pvr_ccb.h"
7 #include "pvr_device.h"
8 #include "pvr_fw.h"
9 #include "pvr_gem.h"
10 #include "pvr_power.h"
11 #include "pvr_rogue_fwif.h"
12 #include "pvr_rogue_mmu_defs.h"
13
14 #include <drm/drm_drv.h>
15 #include <linux/atomic.h>
16 #include <linux/bitops.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/kmemleak.h>
19 #include <linux/minmax.h>
20 #include <linux/sizes.h>
21
22 #define PVR_SHIFT_FROM_SIZE(size_) (__builtin_ctzll(size_))
23 #define PVR_MASK_FROM_SIZE(size_) (~((size_) - U64_C(1)))
24
25 /*
26 * The value of the device page size (%PVR_DEVICE_PAGE_SIZE) is currently
27 * pegged to the host page size (%PAGE_SIZE). This chunk of macro goodness both
28 * ensures that the selected host page size corresponds to a valid device page
29 * size and sets up values needed by the MMU code below.
30 */
31 #if (PVR_DEVICE_PAGE_SIZE == SZ_4K)
32 # define ROGUE_MMUCTRL_PAGE_SIZE_X ROGUE_MMUCTRL_PAGE_SIZE_4KB
33 # define ROGUE_MMUCTRL_PAGE_X_RANGE_SHIFT ROGUE_MMUCTRL_PAGE_4KB_RANGE_SHIFT
34 # define ROGUE_MMUCTRL_PAGE_X_RANGE_CLRMSK ROGUE_MMUCTRL_PAGE_4KB_RANGE_CLRMSK
35 #elif (PVR_DEVICE_PAGE_SIZE == SZ_16K)
36 # define ROGUE_MMUCTRL_PAGE_SIZE_X ROGUE_MMUCTRL_PAGE_SIZE_16KB
37 # define ROGUE_MMUCTRL_PAGE_X_RANGE_SHIFT ROGUE_MMUCTRL_PAGE_16KB_RANGE_SHIFT
38 # define ROGUE_MMUCTRL_PAGE_X_RANGE_CLRMSK ROGUE_MMUCTRL_PAGE_16KB_RANGE_CLRMSK
39 #elif (PVR_DEVICE_PAGE_SIZE == SZ_64K)
40 # define ROGUE_MMUCTRL_PAGE_SIZE_X ROGUE_MMUCTRL_PAGE_SIZE_64KB
41 # define ROGUE_MMUCTRL_PAGE_X_RANGE_SHIFT ROGUE_MMUCTRL_PAGE_64KB_RANGE_SHIFT
42 # define ROGUE_MMUCTRL_PAGE_X_RANGE_CLRMSK ROGUE_MMUCTRL_PAGE_64KB_RANGE_CLRMSK
43 #elif (PVR_DEVICE_PAGE_SIZE == SZ_256K)
44 # define ROGUE_MMUCTRL_PAGE_SIZE_X ROGUE_MMUCTRL_PAGE_SIZE_256KB
45 # define ROGUE_MMUCTRL_PAGE_X_RANGE_SHIFT ROGUE_MMUCTRL_PAGE_256KB_RANGE_SHIFT
46 # define ROGUE_MMUCTRL_PAGE_X_RANGE_CLRMSK ROGUE_MMUCTRL_PAGE_256KB_RANGE_CLRMSK
47 #elif (PVR_DEVICE_PAGE_SIZE == SZ_1M)
48 # define ROGUE_MMUCTRL_PAGE_SIZE_X ROGUE_MMUCTRL_PAGE_SIZE_1MB
49 # define ROGUE_MMUCTRL_PAGE_X_RANGE_SHIFT ROGUE_MMUCTRL_PAGE_1MB_RANGE_SHIFT
50 # define ROGUE_MMUCTRL_PAGE_X_RANGE_CLRMSK ROGUE_MMUCTRL_PAGE_1MB_RANGE_CLRMSK
51 #elif (PVR_DEVICE_PAGE_SIZE == SZ_2M)
52 # define ROGUE_MMUCTRL_PAGE_SIZE_X ROGUE_MMUCTRL_PAGE_SIZE_2MB
53 # define ROGUE_MMUCTRL_PAGE_X_RANGE_SHIFT ROGUE_MMUCTRL_PAGE_2MB_RANGE_SHIFT
54 # define ROGUE_MMUCTRL_PAGE_X_RANGE_CLRMSK ROGUE_MMUCTRL_PAGE_2MB_RANGE_CLRMSK
55 #else
56 # error Unsupported device page size PVR_DEVICE_PAGE_SIZE
57 #endif
58
59 #define ROGUE_MMUCTRL_ENTRIES_PT_VALUE_X \
60 (ROGUE_MMUCTRL_ENTRIES_PT_VALUE >> \
61 (PVR_DEVICE_PAGE_SHIFT - PVR_SHIFT_FROM_SIZE(SZ_4K)))
62
63 enum pvr_mmu_sync_level {
64 PVR_MMU_SYNC_LEVEL_NONE = -1,
65 PVR_MMU_SYNC_LEVEL_0 = 0,
66 PVR_MMU_SYNC_LEVEL_1 = 1,
67 PVR_MMU_SYNC_LEVEL_2 = 2,
68 };
69
70 #define PVR_MMU_SYNC_LEVEL_0_FLAGS (ROGUE_FWIF_MMUCACHEDATA_FLAGS_PT | \
71 ROGUE_FWIF_MMUCACHEDATA_FLAGS_INTERRUPT | \
72 ROGUE_FWIF_MMUCACHEDATA_FLAGS_TLB)
73 #define PVR_MMU_SYNC_LEVEL_1_FLAGS (PVR_MMU_SYNC_LEVEL_0_FLAGS | ROGUE_FWIF_MMUCACHEDATA_FLAGS_PD)
74 #define PVR_MMU_SYNC_LEVEL_2_FLAGS (PVR_MMU_SYNC_LEVEL_1_FLAGS | ROGUE_FWIF_MMUCACHEDATA_FLAGS_PC)
75
76 /**
77 * pvr_mmu_set_flush_flags() - Set MMU cache flush flags for next call to
78 * pvr_mmu_flush_exec().
79 * @pvr_dev: Target PowerVR device.
80 * @flags: MMU flush flags. Must be one of %PVR_MMU_SYNC_LEVEL_*_FLAGS.
81 *
82 * This function must be called following any possible change to the MMU page
83 * tables.
84 */
pvr_mmu_set_flush_flags(struct pvr_device * pvr_dev,u32 flags)85 static void pvr_mmu_set_flush_flags(struct pvr_device *pvr_dev, u32 flags)
86 {
87 atomic_fetch_or(flags, &pvr_dev->mmu_flush_cache_flags);
88 }
89
90 /**
91 * pvr_mmu_flush_request_all() - Request flush of all MMU caches when
92 * subsequently calling pvr_mmu_flush_exec().
93 * @pvr_dev: Target PowerVR device.
94 *
95 * This function must be called following any possible change to the MMU page
96 * tables.
97 */
pvr_mmu_flush_request_all(struct pvr_device * pvr_dev)98 void pvr_mmu_flush_request_all(struct pvr_device *pvr_dev)
99 {
100 pvr_mmu_set_flush_flags(pvr_dev, PVR_MMU_SYNC_LEVEL_2_FLAGS);
101 }
102
103 /**
104 * pvr_mmu_flush_exec() - Execute a flush of all MMU caches previously
105 * requested.
106 * @pvr_dev: Target PowerVR device.
107 * @wait: Do not return until the flush is completed.
108 *
109 * This function must be called prior to submitting any new GPU job. The flush
110 * will complete before the jobs are scheduled, so this can be called once after
111 * a series of maps. However, a single unmap should always be immediately
112 * followed by a flush and it should be explicitly waited by setting @wait.
113 *
114 * As a failure to flush the MMU caches could risk memory corruption, if the
115 * flush fails (implying the firmware is not responding) then the GPU device is
116 * marked as lost.
117 *
118 * Returns:
119 * * 0 on success when @wait is true, or
120 * * -%EIO if the device is unavailable, or
121 * * Any error encountered while submitting the flush command via the KCCB.
122 */
pvr_mmu_flush_exec(struct pvr_device * pvr_dev,bool wait)123 int pvr_mmu_flush_exec(struct pvr_device *pvr_dev, bool wait)
124 {
125 struct rogue_fwif_kccb_cmd cmd_mmu_cache = {};
126 struct rogue_fwif_mmucachedata *cmd_mmu_cache_data =
127 &cmd_mmu_cache.cmd_data.mmu_cache_data;
128 int err = 0;
129 u32 slot;
130 int idx;
131
132 if (!drm_dev_enter(from_pvr_device(pvr_dev), &idx))
133 return -EIO;
134
135 /* Can't flush MMU if the firmware hasn't booted yet. */
136 if (!pvr_dev->fw_dev.booted)
137 goto err_drm_dev_exit;
138
139 cmd_mmu_cache_data->cache_flags =
140 atomic_xchg(&pvr_dev->mmu_flush_cache_flags, 0);
141
142 if (!cmd_mmu_cache_data->cache_flags)
143 goto err_drm_dev_exit;
144
145 cmd_mmu_cache.cmd_type = ROGUE_FWIF_KCCB_CMD_MMUCACHE;
146
147 pvr_fw_object_get_fw_addr(pvr_dev->fw_dev.mem.mmucache_sync_obj,
148 &cmd_mmu_cache_data->mmu_cache_sync_fw_addr);
149 cmd_mmu_cache_data->mmu_cache_sync_update_value = 0;
150
151 err = pvr_kccb_send_cmd(pvr_dev, &cmd_mmu_cache, &slot);
152 if (err)
153 goto err_reset_and_retry;
154
155 err = pvr_kccb_wait_for_completion(pvr_dev, slot, HZ, NULL);
156 if (err)
157 goto err_reset_and_retry;
158
159 drm_dev_exit(idx);
160
161 return 0;
162
163 err_reset_and_retry:
164 /*
165 * Flush command failure is most likely the result of a firmware lockup. Hard
166 * reset the GPU and retry.
167 */
168 err = pvr_power_reset(pvr_dev, true);
169 if (err)
170 goto err_drm_dev_exit; /* Device is lost. */
171
172 /* Retry sending flush request. */
173 err = pvr_kccb_send_cmd(pvr_dev, &cmd_mmu_cache, &slot);
174 if (err) {
175 pvr_device_lost(pvr_dev);
176 goto err_drm_dev_exit;
177 }
178
179 if (wait) {
180 err = pvr_kccb_wait_for_completion(pvr_dev, slot, HZ, NULL);
181 if (err)
182 pvr_device_lost(pvr_dev);
183 }
184
185 err_drm_dev_exit:
186 drm_dev_exit(idx);
187
188 return err;
189 }
190
191 /**
192 * DOC: PowerVR Virtual Memory Handling
193 */
194 /**
195 * DOC: PowerVR Virtual Memory Handling (constants)
196 *
197 * .. c:macro:: PVR_IDX_INVALID
198 *
199 * Default value for a u16-based index.
200 *
201 * This value cannot be zero, since zero is a valid index value.
202 */
203 #define PVR_IDX_INVALID ((u16)(-1))
204
205 /**
206 * DOC: MMU backing pages
207 */
208 /**
209 * DOC: MMU backing pages (constants)
210 *
211 * .. c:macro:: PVR_MMU_BACKING_PAGE_SIZE
212 *
213 * Page size of a PowerVR device's integrated MMU. The CPU page size must be
214 * at least as large as this value for the current implementation; this is
215 * checked at compile-time.
216 */
217 #define PVR_MMU_BACKING_PAGE_SIZE SZ_4K
218 static_assert(PAGE_SIZE >= PVR_MMU_BACKING_PAGE_SIZE);
219
220 /**
221 * struct pvr_mmu_backing_page - Represents a single page used to back a page
222 * table of any level.
223 * @dma_addr: DMA address of this page.
224 * @host_ptr: CPU address of this page.
225 * @pvr_dev: The PowerVR device to which this page is associated. **For
226 * internal use only.**
227 */
228 struct pvr_mmu_backing_page {
229 dma_addr_t dma_addr;
230 void *host_ptr;
231 /* private: internal use only */
232 struct page *raw_page;
233 struct pvr_device *pvr_dev;
234 };
235
236 /**
237 * pvr_mmu_backing_page_init() - Initialize a MMU backing page.
238 * @page: Target backing page.
239 * @pvr_dev: Target PowerVR device.
240 *
241 * This function performs three distinct operations:
242 *
243 * 1. Allocate a single page,
244 * 2. Map the page to the CPU, and
245 * 3. Map the page to DMA-space.
246 *
247 * It is expected that @page be zeroed (e.g. from kzalloc()) before calling
248 * this function.
249 *
250 * Return:
251 * * 0 on success, or
252 * * -%ENOMEM if allocation of the backing page or mapping of the backing
253 * page to DMA fails.
254 */
255 static int
pvr_mmu_backing_page_init(struct pvr_mmu_backing_page * page,struct pvr_device * pvr_dev)256 pvr_mmu_backing_page_init(struct pvr_mmu_backing_page *page,
257 struct pvr_device *pvr_dev)
258 {
259 struct device *dev = from_pvr_device(pvr_dev)->dev;
260
261 struct page *raw_page;
262 int err;
263
264 dma_addr_t dma_addr;
265 void *host_ptr;
266
267 raw_page = alloc_page(__GFP_ZERO | GFP_KERNEL);
268 if (!raw_page)
269 return -ENOMEM;
270
271 host_ptr = vmap(&raw_page, 1, VM_MAP, pgprot_writecombine(PAGE_KERNEL));
272 if (!host_ptr) {
273 err = -ENOMEM;
274 goto err_free_page;
275 }
276
277 dma_addr = dma_map_page(dev, raw_page, 0, PVR_MMU_BACKING_PAGE_SIZE,
278 DMA_TO_DEVICE);
279 if (dma_mapping_error(dev, dma_addr)) {
280 err = -ENOMEM;
281 goto err_unmap_page;
282 }
283
284 page->dma_addr = dma_addr;
285 page->host_ptr = host_ptr;
286 page->pvr_dev = pvr_dev;
287 page->raw_page = raw_page;
288 kmemleak_alloc(page->host_ptr, PAGE_SIZE, 1, GFP_KERNEL);
289
290 return 0;
291
292 err_unmap_page:
293 vunmap(host_ptr);
294
295 err_free_page:
296 __free_page(raw_page);
297
298 return err;
299 }
300
301 /**
302 * pvr_mmu_backing_page_fini() - Teardown a MMU backing page.
303 * @page: Target backing page.
304 *
305 * This function performs the mirror operations to pvr_mmu_backing_page_init(),
306 * in reverse order:
307 *
308 * 1. Unmap the page from DMA-space,
309 * 2. Unmap the page from the CPU, and
310 * 3. Free the page.
311 *
312 * It also zeros @page.
313 *
314 * It is a no-op to call this function a second (or further) time on any @page.
315 */
316 static void
pvr_mmu_backing_page_fini(struct pvr_mmu_backing_page * page)317 pvr_mmu_backing_page_fini(struct pvr_mmu_backing_page *page)
318 {
319 struct device *dev;
320
321 /* Do nothing if no allocation is present. */
322 if (!page->pvr_dev)
323 return;
324
325 dev = from_pvr_device(page->pvr_dev)->dev;
326
327 dma_unmap_page(dev, page->dma_addr, PVR_MMU_BACKING_PAGE_SIZE,
328 DMA_TO_DEVICE);
329
330 kmemleak_free(page->host_ptr);
331 vunmap(page->host_ptr);
332
333 __free_page(page->raw_page);
334
335 memset(page, 0, sizeof(*page));
336 }
337
338 /**
339 * pvr_mmu_backing_page_sync() - Flush a MMU backing page from the CPU to the
340 * device.
341 * @page: Target backing page.
342 * @flags: MMU flush flags. Must be one of %PVR_MMU_SYNC_LEVEL_*_FLAGS.
343 *
344 * .. caution::
345 *
346 * **This is potentially an expensive function call.** Only call
347 * pvr_mmu_backing_page_sync() once you're sure you have no more changes to
348 * make to the backing page in the immediate future.
349 */
350 static void
pvr_mmu_backing_page_sync(struct pvr_mmu_backing_page * page,u32 flags)351 pvr_mmu_backing_page_sync(struct pvr_mmu_backing_page *page, u32 flags)
352 {
353 struct pvr_device *pvr_dev = page->pvr_dev;
354 struct device *dev;
355
356 /*
357 * Do nothing if no allocation is present. This may be the case if
358 * we are unmapping pages.
359 */
360 if (!pvr_dev)
361 return;
362
363 dev = from_pvr_device(pvr_dev)->dev;
364
365 dma_sync_single_for_device(dev, page->dma_addr,
366 PVR_MMU_BACKING_PAGE_SIZE, DMA_TO_DEVICE);
367
368 pvr_mmu_set_flush_flags(pvr_dev, flags);
369 }
370
371 /**
372 * DOC: Raw page tables
373 */
374
375 #define PVR_PAGE_TABLE_TYPEOF_ENTRY(level_) \
376 typeof_member(struct pvr_page_table_l##level_##_entry_raw, val)
377
378 #define PVR_PAGE_TABLE_FIELD_GET(level_, name_, field_, entry_) \
379 (((entry_).val & \
380 ~ROGUE_MMUCTRL_##name_##_DATA_##field_##_CLRMSK) >> \
381 ROGUE_MMUCTRL_##name_##_DATA_##field_##_SHIFT)
382
383 #define PVR_PAGE_TABLE_FIELD_PREP(level_, name_, field_, val_) \
384 ((((PVR_PAGE_TABLE_TYPEOF_ENTRY(level_))(val_)) \
385 << ROGUE_MMUCTRL_##name_##_DATA_##field_##_SHIFT) & \
386 ~ROGUE_MMUCTRL_##name_##_DATA_##field_##_CLRMSK)
387
388 /**
389 * struct pvr_page_table_l2_entry_raw - A single entry in a level 2 page table.
390 * @val: The raw value of this entry.
391 *
392 * This type is a structure for type-checking purposes. At compile-time, its
393 * size is checked against %ROGUE_MMUCTRL_ENTRY_SIZE_PC_VALUE.
394 *
395 * The value stored in this structure can be decoded using the following bitmap:
396 *
397 * .. flat-table::
398 * :widths: 1 5
399 * :stub-columns: 1
400 *
401 * * - 31..4
402 * - **Level 1 Page Table Base Address:** Bits 39..12 of the L1
403 * page table base address, which is 4KiB aligned.
404 *
405 * * - 3..2
406 * - *(reserved)*
407 *
408 * * - 1
409 * - **Pending:** When valid bit is not set, indicates that a valid
410 * entry is pending and the MMU should wait for the driver to map
411 * the entry. This is used to support page demand mapping of
412 * memory.
413 *
414 * * - 0
415 * - **Valid:** Indicates that the entry contains a valid L1 page
416 * table. If the valid bit is not set, then an attempted use of
417 * the page would result in a page fault.
418 */
419 struct pvr_page_table_l2_entry_raw {
420 u32 val;
421 } __packed;
422 static_assert(sizeof(struct pvr_page_table_l2_entry_raw) * 8 ==
423 ROGUE_MMUCTRL_ENTRY_SIZE_PC_VALUE);
424
425 static bool
pvr_page_table_l2_entry_raw_is_valid(struct pvr_page_table_l2_entry_raw entry)426 pvr_page_table_l2_entry_raw_is_valid(struct pvr_page_table_l2_entry_raw entry)
427 {
428 return PVR_PAGE_TABLE_FIELD_GET(2, PC, VALID, entry);
429 }
430
431 /**
432 * pvr_page_table_l2_entry_raw_set() - Write a valid entry into a raw level 2
433 * page table.
434 * @entry: Target raw level 2 page table entry.
435 * @child_table_dma_addr: DMA address of the level 1 page table to be
436 * associated with @entry.
437 *
438 * When calling this function, @child_table_dma_addr must be a valid DMA
439 * address and a multiple of %ROGUE_MMUCTRL_PC_DATA_PD_BASE_ALIGNSIZE.
440 */
441 static void
pvr_page_table_l2_entry_raw_set(struct pvr_page_table_l2_entry_raw * entry,dma_addr_t child_table_dma_addr)442 pvr_page_table_l2_entry_raw_set(struct pvr_page_table_l2_entry_raw *entry,
443 dma_addr_t child_table_dma_addr)
444 {
445 child_table_dma_addr >>= ROGUE_MMUCTRL_PC_DATA_PD_BASE_ALIGNSHIFT;
446
447 WRITE_ONCE(entry->val,
448 PVR_PAGE_TABLE_FIELD_PREP(2, PC, VALID, true) |
449 PVR_PAGE_TABLE_FIELD_PREP(2, PC, ENTRY_PENDING, false) |
450 PVR_PAGE_TABLE_FIELD_PREP(2, PC, PD_BASE, child_table_dma_addr));
451 }
452
453 static void
pvr_page_table_l2_entry_raw_clear(struct pvr_page_table_l2_entry_raw * entry)454 pvr_page_table_l2_entry_raw_clear(struct pvr_page_table_l2_entry_raw *entry)
455 {
456 WRITE_ONCE(entry->val, 0);
457 }
458
459 /**
460 * struct pvr_page_table_l1_entry_raw - A single entry in a level 1 page table.
461 * @val: The raw value of this entry.
462 *
463 * This type is a structure for type-checking purposes. At compile-time, its
464 * size is checked against %ROGUE_MMUCTRL_ENTRY_SIZE_PD_VALUE.
465 *
466 * The value stored in this structure can be decoded using the following bitmap:
467 *
468 * .. flat-table::
469 * :widths: 1 5
470 * :stub-columns: 1
471 *
472 * * - 63..41
473 * - *(reserved)*
474 *
475 * * - 40
476 * - **Pending:** When valid bit is not set, indicates that a valid entry
477 * is pending and the MMU should wait for the driver to map the entry.
478 * This is used to support page demand mapping of memory.
479 *
480 * * - 39..5
481 * - **Level 0 Page Table Base Address:** The way this value is
482 * interpreted depends on the page size. Bits not specified in the
483 * table below (e.g. bits 11..5 for page size 4KiB) should be
484 * considered reserved.
485 *
486 * This table shows the bits used in an L1 page table entry to
487 * represent the Physical Table Base Address for a given Page Size.
488 * Since each L1 page table entry covers 2MiB of address space, the
489 * maximum page size is 2MiB.
490 *
491 * .. flat-table::
492 * :widths: 1 1 1 1
493 * :header-rows: 1
494 * :stub-columns: 1
495 *
496 * * - Page size
497 * - L0 page table base address bits
498 * - Number of L0 page table entries
499 * - Size of L0 page table
500 *
501 * * - 4KiB
502 * - 39..12
503 * - 512
504 * - 4KiB
505 *
506 * * - 16KiB
507 * - 39..10
508 * - 128
509 * - 1KiB
510 *
511 * * - 64KiB
512 * - 39..8
513 * - 32
514 * - 256B
515 *
516 * * - 256KiB
517 * - 39..6
518 * - 8
519 * - 64B
520 *
521 * * - 1MiB
522 * - 39..5 (4 = '0')
523 * - 2
524 * - 16B
525 *
526 * * - 2MiB
527 * - 39..5 (4..3 = '00')
528 * - 1
529 * - 8B
530 *
531 * * - 4
532 * - *(reserved)*
533 *
534 * * - 3..1
535 * - **Page Size:** Sets the page size, from 4KiB to 2MiB.
536 *
537 * * - 0
538 * - **Valid:** Indicates that the entry contains a valid L0 page table.
539 * If the valid bit is not set, then an attempted use of the page would
540 * result in a page fault.
541 */
542 struct pvr_page_table_l1_entry_raw {
543 u64 val;
544 } __packed;
545 static_assert(sizeof(struct pvr_page_table_l1_entry_raw) * 8 ==
546 ROGUE_MMUCTRL_ENTRY_SIZE_PD_VALUE);
547
548 static bool
pvr_page_table_l1_entry_raw_is_valid(struct pvr_page_table_l1_entry_raw entry)549 pvr_page_table_l1_entry_raw_is_valid(struct pvr_page_table_l1_entry_raw entry)
550 {
551 return PVR_PAGE_TABLE_FIELD_GET(1, PD, VALID, entry);
552 }
553
554 /**
555 * pvr_page_table_l1_entry_raw_set() - Write a valid entry into a raw level 1
556 * page table.
557 * @entry: Target raw level 1 page table entry.
558 * @child_table_dma_addr: DMA address of the level 0 page table to be
559 * associated with @entry.
560 *
561 * When calling this function, @child_table_dma_addr must be a valid DMA
562 * address and a multiple of 4 KiB.
563 */
564 static void
pvr_page_table_l1_entry_raw_set(struct pvr_page_table_l1_entry_raw * entry,dma_addr_t child_table_dma_addr)565 pvr_page_table_l1_entry_raw_set(struct pvr_page_table_l1_entry_raw *entry,
566 dma_addr_t child_table_dma_addr)
567 {
568 WRITE_ONCE(entry->val,
569 PVR_PAGE_TABLE_FIELD_PREP(1, PD, VALID, true) |
570 PVR_PAGE_TABLE_FIELD_PREP(1, PD, ENTRY_PENDING, false) |
571 PVR_PAGE_TABLE_FIELD_PREP(1, PD, PAGE_SIZE, ROGUE_MMUCTRL_PAGE_SIZE_X) |
572 /*
573 * The use of a 4K-specific macro here is correct. It is
574 * a future optimization to allocate sub-host-page-sized
575 * blocks for individual tables, so the condition that any
576 * page table address is aligned to the size of the
577 * largest (a 4KB) table currently holds.
578 */
579 (child_table_dma_addr & ~ROGUE_MMUCTRL_PT_BASE_4KB_RANGE_CLRMSK));
580 }
581
582 static void
pvr_page_table_l1_entry_raw_clear(struct pvr_page_table_l1_entry_raw * entry)583 pvr_page_table_l1_entry_raw_clear(struct pvr_page_table_l1_entry_raw *entry)
584 {
585 WRITE_ONCE(entry->val, 0);
586 }
587
588 /**
589 * struct pvr_page_table_l0_entry_raw - A single entry in a level 0 page table.
590 * @val: The raw value of this entry.
591 *
592 * This type is a structure for type-checking purposes. At compile-time, its
593 * size is checked against %ROGUE_MMUCTRL_ENTRY_SIZE_PT_VALUE.
594 *
595 * The value stored in this structure can be decoded using the following bitmap:
596 *
597 * .. flat-table::
598 * :widths: 1 5
599 * :stub-columns: 1
600 *
601 * * - 63
602 * - *(reserved)*
603 *
604 * * - 62
605 * - **PM/FW Protect:** Indicates a protected region which only the
606 * Parameter Manager (PM) or firmware processor can write to.
607 *
608 * * - 61..40
609 * - **VP Page (High):** Virtual-physical page used for Parameter Manager
610 * (PM) memory. This field is only used if the additional level of PB
611 * virtualization is enabled. The VP Page field is needed by the PM in
612 * order to correctly reconstitute the free lists after render
613 * completion. This (High) field holds bits 39..18 of the value; the
614 * Low field holds bits 17..12. Bits 11..0 are always zero because the
615 * value is always aligned to the 4KiB page size.
616 *
617 * * - 39..12
618 * - **Physical Page Address:** The way this value is interpreted depends
619 * on the page size. Bits not specified in the table below (e.g. bits
620 * 20..12 for page size 2MiB) should be considered reserved.
621 *
622 * This table shows the bits used in an L0 page table entry to represent
623 * the Physical Page Address for a given page size (as defined in the
624 * associated L1 page table entry).
625 *
626 * .. flat-table::
627 * :widths: 1 1
628 * :header-rows: 1
629 * :stub-columns: 1
630 *
631 * * - Page size
632 * - Physical address bits
633 *
634 * * - 4KiB
635 * - 39..12
636 *
637 * * - 16KiB
638 * - 39..14
639 *
640 * * - 64KiB
641 * - 39..16
642 *
643 * * - 256KiB
644 * - 39..18
645 *
646 * * - 1MiB
647 * - 39..20
648 *
649 * * - 2MiB
650 * - 39..21
651 *
652 * * - 11..6
653 * - **VP Page (Low):** Continuation of VP Page (High).
654 *
655 * * - 5
656 * - **Pending:** When valid bit is not set, indicates that a valid entry
657 * is pending and the MMU should wait for the driver to map the entry.
658 * This is used to support page demand mapping of memory.
659 *
660 * * - 4
661 * - **PM Src:** Set on Parameter Manager (PM) allocated page table
662 * entries when indicated by the PM. Note that this bit will only be set
663 * by the PM, not by the device driver.
664 *
665 * * - 3
666 * - **SLC Bypass Control:** Specifies requests to this page should bypass
667 * the System Level Cache (SLC), if enabled in SLC configuration.
668 *
669 * * - 2
670 * - **Cache Coherency:** Indicates that the page is coherent (i.e. it
671 * does not require a cache flush between operations on the CPU and the
672 * device).
673 *
674 * * - 1
675 * - **Read Only:** If set, this bit indicates that the page is read only.
676 * An attempted write to this page would result in a write-protection
677 * fault.
678 *
679 * * - 0
680 * - **Valid:** Indicates that the entry contains a valid page. If the
681 * valid bit is not set, then an attempted use of the page would result
682 * in a page fault.
683 */
684 struct pvr_page_table_l0_entry_raw {
685 u64 val;
686 } __packed;
687 static_assert(sizeof(struct pvr_page_table_l0_entry_raw) * 8 ==
688 ROGUE_MMUCTRL_ENTRY_SIZE_PT_VALUE);
689
690 /**
691 * struct pvr_page_flags_raw - The configurable flags from a single entry in a
692 * level 0 page table.
693 * @val: The raw value of these flags. Since these are a strict subset of
694 * &struct pvr_page_table_l0_entry_raw; use that type for our member here.
695 *
696 * The flags stored in this type are: PM/FW Protect; SLC Bypass Control; Cache
697 * Coherency, and Read Only (bits 62, 3, 2 and 1 respectively).
698 *
699 * This type should never be instantiated directly; instead use
700 * pvr_page_flags_raw_create() to ensure only valid bits of @val are set.
701 */
702 struct pvr_page_flags_raw {
703 struct pvr_page_table_l0_entry_raw val;
704 } __packed;
705 static_assert(sizeof(struct pvr_page_flags_raw) ==
706 sizeof(struct pvr_page_table_l0_entry_raw));
707
708 static bool
pvr_page_table_l0_entry_raw_is_valid(struct pvr_page_table_l0_entry_raw entry)709 pvr_page_table_l0_entry_raw_is_valid(struct pvr_page_table_l0_entry_raw entry)
710 {
711 return PVR_PAGE_TABLE_FIELD_GET(0, PT, VALID, entry);
712 }
713
714 /**
715 * pvr_page_table_l0_entry_raw_set() - Write a valid entry into a raw level 0
716 * page table.
717 * @entry: Target raw level 0 page table entry.
718 * @dma_addr: DMA address of the physical page to be associated with @entry.
719 * @flags: Options to be set on @entry.
720 *
721 * When calling this function, @child_table_dma_addr must be a valid DMA
722 * address and a multiple of %PVR_DEVICE_PAGE_SIZE.
723 *
724 * The @flags parameter is directly assigned into @entry. It is the callers
725 * responsibility to ensure that only bits specified in
726 * &struct pvr_page_flags_raw are set in @flags.
727 */
728 static void
pvr_page_table_l0_entry_raw_set(struct pvr_page_table_l0_entry_raw * entry,dma_addr_t dma_addr,struct pvr_page_flags_raw flags)729 pvr_page_table_l0_entry_raw_set(struct pvr_page_table_l0_entry_raw *entry,
730 dma_addr_t dma_addr,
731 struct pvr_page_flags_raw flags)
732 {
733 WRITE_ONCE(entry->val, PVR_PAGE_TABLE_FIELD_PREP(0, PT, VALID, true) |
734 PVR_PAGE_TABLE_FIELD_PREP(0, PT, ENTRY_PENDING, false) |
735 (dma_addr & ~ROGUE_MMUCTRL_PAGE_X_RANGE_CLRMSK) |
736 flags.val.val);
737 }
738
739 static void
pvr_page_table_l0_entry_raw_clear(struct pvr_page_table_l0_entry_raw * entry)740 pvr_page_table_l0_entry_raw_clear(struct pvr_page_table_l0_entry_raw *entry)
741 {
742 WRITE_ONCE(entry->val, 0);
743 }
744
745 /**
746 * pvr_page_flags_raw_create() - Initialize the flag bits of a raw level 0 page
747 * table entry.
748 * @read_only: This page is read-only (see: Read Only).
749 * @cache_coherent: This page does not require cache flushes (see: Cache
750 * Coherency).
751 * @slc_bypass: This page bypasses the device cache (see: SLC Bypass Control).
752 * @pm_fw_protect: This page is only for use by the firmware or Parameter
753 * Manager (see PM/FW Protect).
754 *
755 * For more details on the use of these four options, see their respective
756 * entries in the table under &struct pvr_page_table_l0_entry_raw.
757 *
758 * Return:
759 * A new &struct pvr_page_flags_raw instance which can be passed directly to
760 * pvr_page_table_l0_entry_raw_set() or pvr_page_table_l0_insert().
761 */
762 static struct pvr_page_flags_raw
pvr_page_flags_raw_create(bool read_only,bool cache_coherent,bool slc_bypass,bool pm_fw_protect)763 pvr_page_flags_raw_create(bool read_only, bool cache_coherent, bool slc_bypass,
764 bool pm_fw_protect)
765 {
766 struct pvr_page_flags_raw flags;
767
768 flags.val.val =
769 PVR_PAGE_TABLE_FIELD_PREP(0, PT, READ_ONLY, read_only) |
770 PVR_PAGE_TABLE_FIELD_PREP(0, PT, CC, cache_coherent) |
771 PVR_PAGE_TABLE_FIELD_PREP(0, PT, SLC_BYPASS_CTRL, slc_bypass) |
772 PVR_PAGE_TABLE_FIELD_PREP(0, PT, PM_META_PROTECT, pm_fw_protect);
773
774 return flags;
775 }
776
777 /**
778 * struct pvr_page_table_l2_raw - The raw data of a level 2 page table.
779 *
780 * This type is a structure for type-checking purposes. At compile-time, its
781 * size is checked against %PVR_MMU_BACKING_PAGE_SIZE.
782 */
783 struct pvr_page_table_l2_raw {
784 /** @entries: The raw values of this table. */
785 struct pvr_page_table_l2_entry_raw
786 entries[ROGUE_MMUCTRL_ENTRIES_PC_VALUE];
787 } __packed;
788 static_assert(sizeof(struct pvr_page_table_l2_raw) == PVR_MMU_BACKING_PAGE_SIZE);
789
790 /**
791 * struct pvr_page_table_l1_raw - The raw data of a level 1 page table.
792 *
793 * This type is a structure for type-checking purposes. At compile-time, its
794 * size is checked against %PVR_MMU_BACKING_PAGE_SIZE.
795 */
796 struct pvr_page_table_l1_raw {
797 /** @entries: The raw values of this table. */
798 struct pvr_page_table_l1_entry_raw
799 entries[ROGUE_MMUCTRL_ENTRIES_PD_VALUE];
800 } __packed;
801 static_assert(sizeof(struct pvr_page_table_l1_raw) == PVR_MMU_BACKING_PAGE_SIZE);
802
803 /**
804 * struct pvr_page_table_l0_raw - The raw data of a level 0 page table.
805 *
806 * This type is a structure for type-checking purposes. At compile-time, its
807 * size is checked against %PVR_MMU_BACKING_PAGE_SIZE.
808 *
809 * .. caution::
810 *
811 * The size of level 0 page tables is variable depending on the page size
812 * specified in the associated level 1 page table entry. Since the device
813 * page size in use is pegged to the host page size, it cannot vary at
814 * runtime. This structure is therefore only defined to contain the required
815 * number of entries for the current device page size. **You should never
816 * read or write beyond the last supported entry.**
817 */
818 struct pvr_page_table_l0_raw {
819 /** @entries: The raw values of this table. */
820 struct pvr_page_table_l0_entry_raw
821 entries[ROGUE_MMUCTRL_ENTRIES_PT_VALUE_X];
822 } __packed;
823 static_assert(sizeof(struct pvr_page_table_l0_raw) <= PVR_MMU_BACKING_PAGE_SIZE);
824
825 /**
826 * DOC: Mirror page tables
827 */
828
829 /*
830 * We pre-declare these types because they cross-depend on pointers to each
831 * other.
832 */
833 struct pvr_page_table_l1;
834 struct pvr_page_table_l0;
835
836 /**
837 * struct pvr_page_table_l2 - A wrapped level 2 page table.
838 *
839 * To access the raw part of this table, use pvr_page_table_l2_get_raw().
840 * Alternatively to access a raw entry directly, use
841 * pvr_page_table_l2_get_entry_raw().
842 *
843 * A level 2 page table forms the root of the page table tree structure, so
844 * this type has no &parent or &parent_idx members.
845 */
846 struct pvr_page_table_l2 {
847 /**
848 * @entries: The children of this node in the page table tree
849 * structure. These are also mirror tables. The indexing of this array
850 * is identical to that of the raw equivalent
851 * (&pvr_page_table_l1_raw.entries).
852 */
853 struct pvr_page_table_l1 *entries[ROGUE_MMUCTRL_ENTRIES_PC_VALUE];
854
855 /**
856 * @backing_page: A handle to the memory which holds the raw
857 * equivalent of this table. **For internal use only.**
858 */
859 struct pvr_mmu_backing_page backing_page;
860
861 /**
862 * @entry_count: The current number of valid entries (that we know of)
863 * in this table. This value is essentially a refcount - the table is
864 * destroyed when this value is decremented to zero by
865 * pvr_page_table_l2_remove().
866 */
867 u16 entry_count;
868 };
869
870 /**
871 * pvr_page_table_l2_init() - Initialize a level 2 page table.
872 * @table: Target level 2 page table.
873 * @pvr_dev: Target PowerVR device
874 *
875 * It is expected that @table be zeroed (e.g. from kzalloc()) before calling
876 * this function.
877 *
878 * Return:
879 * * 0 on success, or
880 * * Any error encountered while intializing &table->backing_page using
881 * pvr_mmu_backing_page_init().
882 */
883 static int
pvr_page_table_l2_init(struct pvr_page_table_l2 * table,struct pvr_device * pvr_dev)884 pvr_page_table_l2_init(struct pvr_page_table_l2 *table,
885 struct pvr_device *pvr_dev)
886 {
887 return pvr_mmu_backing_page_init(&table->backing_page, pvr_dev);
888 }
889
890 /**
891 * pvr_page_table_l2_fini() - Teardown a level 2 page table.
892 * @table: Target level 2 page table.
893 *
894 * It is an error to attempt to use @table after calling this function.
895 */
896 static void
pvr_page_table_l2_fini(struct pvr_page_table_l2 * table)897 pvr_page_table_l2_fini(struct pvr_page_table_l2 *table)
898 {
899 pvr_mmu_backing_page_fini(&table->backing_page);
900 }
901
902 /**
903 * pvr_page_table_l2_sync() - Flush a level 2 page table from the CPU to the
904 * device.
905 * @table: Target level 2 page table.
906 *
907 * This is just a thin wrapper around pvr_mmu_backing_page_sync(), so the
908 * warning there applies here too: **Only call pvr_page_table_l2_sync() once
909 * you're sure you have no more changes to make to** @table **in the immediate
910 * future.**
911 *
912 * If child level 1 page tables of @table also need to be flushed, this should
913 * be done first using pvr_page_table_l1_sync() *before* calling this function.
914 */
915 static void
pvr_page_table_l2_sync(struct pvr_page_table_l2 * table)916 pvr_page_table_l2_sync(struct pvr_page_table_l2 *table)
917 {
918 pvr_mmu_backing_page_sync(&table->backing_page, PVR_MMU_SYNC_LEVEL_2_FLAGS);
919 }
920
921 /**
922 * pvr_page_table_l2_get_raw() - Access the raw equivalent of a mirror level 2
923 * page table.
924 * @table: Target level 2 page table.
925 *
926 * Essentially returns the CPU address of the raw equivalent of @table, cast to
927 * a &struct pvr_page_table_l2_raw pointer.
928 *
929 * You probably want to call pvr_page_table_l2_get_entry_raw() instead.
930 *
931 * Return:
932 * The raw equivalent of @table.
933 */
934 static struct pvr_page_table_l2_raw *
pvr_page_table_l2_get_raw(struct pvr_page_table_l2 * table)935 pvr_page_table_l2_get_raw(struct pvr_page_table_l2 *table)
936 {
937 return table->backing_page.host_ptr;
938 }
939
940 /**
941 * pvr_page_table_l2_get_entry_raw() - Access an entry from the raw equivalent
942 * of a mirror level 2 page table.
943 * @table: Target level 2 page table.
944 * @idx: Index of the entry to access.
945 *
946 * Technically this function returns a pointer to a slot in a raw level 2 page
947 * table, since the returned "entry" is not guaranteed to be valid. The caller
948 * must verify the validity of the entry at the returned address (perhaps using
949 * pvr_page_table_l2_entry_raw_is_valid()) before reading or overwriting it.
950 *
951 * The value of @idx is not checked here; it is the callers responsibility to
952 * ensure @idx refers to a valid index within @table before dereferencing the
953 * returned pointer.
954 *
955 * Return:
956 * A pointer to the requested raw level 2 page table entry.
957 */
958 static struct pvr_page_table_l2_entry_raw *
pvr_page_table_l2_get_entry_raw(struct pvr_page_table_l2 * table,u16 idx)959 pvr_page_table_l2_get_entry_raw(struct pvr_page_table_l2 *table, u16 idx)
960 {
961 return &pvr_page_table_l2_get_raw(table)->entries[idx];
962 }
963
964 /**
965 * pvr_page_table_l2_entry_is_valid() - Check if a level 2 page table entry is
966 * marked as valid.
967 * @table: Target level 2 page table.
968 * @idx: Index of the entry to check.
969 *
970 * The value of @idx is not checked here; it is the callers responsibility to
971 * ensure @idx refers to a valid index within @table before calling this
972 * function.
973 */
974 static bool
pvr_page_table_l2_entry_is_valid(struct pvr_page_table_l2 * table,u16 idx)975 pvr_page_table_l2_entry_is_valid(struct pvr_page_table_l2 *table, u16 idx)
976 {
977 struct pvr_page_table_l2_entry_raw entry_raw =
978 *pvr_page_table_l2_get_entry_raw(table, idx);
979
980 return pvr_page_table_l2_entry_raw_is_valid(entry_raw);
981 }
982
983 /**
984 * struct pvr_page_table_l1 - A wrapped level 1 page table.
985 *
986 * To access the raw part of this table, use pvr_page_table_l1_get_raw().
987 * Alternatively to access a raw entry directly, use
988 * pvr_page_table_l1_get_entry_raw().
989 */
990 struct pvr_page_table_l1 {
991 /**
992 * @entries: The children of this node in the page table tree
993 * structure. These are also mirror tables. The indexing of this array
994 * is identical to that of the raw equivalent
995 * (&pvr_page_table_l0_raw.entries).
996 */
997 struct pvr_page_table_l0 *entries[ROGUE_MMUCTRL_ENTRIES_PD_VALUE];
998
999 /**
1000 * @backing_page: A handle to the memory which holds the raw
1001 * equivalent of this table. **For internal use only.**
1002 */
1003 struct pvr_mmu_backing_page backing_page;
1004
1005 union {
1006 /**
1007 * @parent: The parent of this node in the page table tree structure.
1008 *
1009 * This is also a mirror table.
1010 *
1011 * Only valid when the L1 page table is active. When the L1 page table
1012 * has been removed and queued for destruction, the next_free field
1013 * should be used instead.
1014 */
1015 struct pvr_page_table_l2 *parent;
1016
1017 /**
1018 * @next_free: Pointer to the next L1 page table to take/free.
1019 *
1020 * Used to form a linked list of L1 page tables. This is used
1021 * when preallocating tables and when the page table has been
1022 * removed and queued for destruction.
1023 */
1024 struct pvr_page_table_l1 *next_free;
1025 };
1026
1027 /**
1028 * @parent_idx: The index of the entry in the parent table (see
1029 * @parent) which corresponds to this table.
1030 */
1031 u16 parent_idx;
1032
1033 /**
1034 * @entry_count: The current number of valid entries (that we know of)
1035 * in this table. This value is essentially a refcount - the table is
1036 * destroyed when this value is decremented to zero by
1037 * pvr_page_table_l1_remove().
1038 */
1039 u16 entry_count;
1040 };
1041
1042 /**
1043 * pvr_page_table_l1_init() - Initialize a level 1 page table.
1044 * @table: Target level 1 page table.
1045 * @pvr_dev: Target PowerVR device
1046 *
1047 * When this function returns successfully, @table is still not considered
1048 * valid. It must be inserted into the page table tree structure with
1049 * pvr_page_table_l2_insert() before it is ready for use.
1050 *
1051 * It is expected that @table be zeroed (e.g. from kzalloc()) before calling
1052 * this function.
1053 *
1054 * Return:
1055 * * 0 on success, or
1056 * * Any error encountered while intializing &table->backing_page using
1057 * pvr_mmu_backing_page_init().
1058 */
1059 static int
pvr_page_table_l1_init(struct pvr_page_table_l1 * table,struct pvr_device * pvr_dev)1060 pvr_page_table_l1_init(struct pvr_page_table_l1 *table,
1061 struct pvr_device *pvr_dev)
1062 {
1063 table->parent_idx = PVR_IDX_INVALID;
1064
1065 return pvr_mmu_backing_page_init(&table->backing_page, pvr_dev);
1066 }
1067
1068 /**
1069 * pvr_page_table_l1_free() - Teardown a level 1 page table.
1070 * @table: Target level 1 page table.
1071 *
1072 * It is an error to attempt to use @table after calling this function, even
1073 * indirectly. This includes calling pvr_page_table_l2_remove(), which must
1074 * be called *before* pvr_page_table_l1_free().
1075 */
1076 static void
pvr_page_table_l1_free(struct pvr_page_table_l1 * table)1077 pvr_page_table_l1_free(struct pvr_page_table_l1 *table)
1078 {
1079 pvr_mmu_backing_page_fini(&table->backing_page);
1080 kfree(table);
1081 }
1082
1083 /**
1084 * pvr_page_table_l1_sync() - Flush a level 1 page table from the CPU to the
1085 * device.
1086 * @table: Target level 1 page table.
1087 *
1088 * This is just a thin wrapper around pvr_mmu_backing_page_sync(), so the
1089 * warning there applies here too: **Only call pvr_page_table_l1_sync() once
1090 * you're sure you have no more changes to make to** @table **in the immediate
1091 * future.**
1092 *
1093 * If child level 0 page tables of @table also need to be flushed, this should
1094 * be done first using pvr_page_table_l0_sync() *before* calling this function.
1095 */
1096 static void
pvr_page_table_l1_sync(struct pvr_page_table_l1 * table)1097 pvr_page_table_l1_sync(struct pvr_page_table_l1 *table)
1098 {
1099 pvr_mmu_backing_page_sync(&table->backing_page, PVR_MMU_SYNC_LEVEL_1_FLAGS);
1100 }
1101
1102 /**
1103 * pvr_page_table_l1_get_raw() - Access the raw equivalent of a mirror level 1
1104 * page table.
1105 * @table: Target level 1 page table.
1106 *
1107 * Essentially returns the CPU address of the raw equivalent of @table, cast to
1108 * a &struct pvr_page_table_l1_raw pointer.
1109 *
1110 * You probably want to call pvr_page_table_l1_get_entry_raw() instead.
1111 *
1112 * Return:
1113 * The raw equivalent of @table.
1114 */
1115 static struct pvr_page_table_l1_raw *
pvr_page_table_l1_get_raw(struct pvr_page_table_l1 * table)1116 pvr_page_table_l1_get_raw(struct pvr_page_table_l1 *table)
1117 {
1118 return table->backing_page.host_ptr;
1119 }
1120
1121 /**
1122 * pvr_page_table_l1_get_entry_raw() - Access an entry from the raw equivalent
1123 * of a mirror level 1 page table.
1124 * @table: Target level 1 page table.
1125 * @idx: Index of the entry to access.
1126 *
1127 * Technically this function returns a pointer to a slot in a raw level 1 page
1128 * table, since the returned "entry" is not guaranteed to be valid. The caller
1129 * must verify the validity of the entry at the returned address (perhaps using
1130 * pvr_page_table_l1_entry_raw_is_valid()) before reading or overwriting it.
1131 *
1132 * The value of @idx is not checked here; it is the callers responsibility to
1133 * ensure @idx refers to a valid index within @table before dereferencing the
1134 * returned pointer.
1135 *
1136 * Return:
1137 * A pointer to the requested raw level 1 page table entry.
1138 */
1139 static struct pvr_page_table_l1_entry_raw *
pvr_page_table_l1_get_entry_raw(struct pvr_page_table_l1 * table,u16 idx)1140 pvr_page_table_l1_get_entry_raw(struct pvr_page_table_l1 *table, u16 idx)
1141 {
1142 return &pvr_page_table_l1_get_raw(table)->entries[idx];
1143 }
1144
1145 /**
1146 * pvr_page_table_l1_entry_is_valid() - Check if a level 1 page table entry is
1147 * marked as valid.
1148 * @table: Target level 1 page table.
1149 * @idx: Index of the entry to check.
1150 *
1151 * The value of @idx is not checked here; it is the callers responsibility to
1152 * ensure @idx refers to a valid index within @table before calling this
1153 * function.
1154 */
1155 static bool
pvr_page_table_l1_entry_is_valid(struct pvr_page_table_l1 * table,u16 idx)1156 pvr_page_table_l1_entry_is_valid(struct pvr_page_table_l1 *table, u16 idx)
1157 {
1158 struct pvr_page_table_l1_entry_raw entry_raw =
1159 *pvr_page_table_l1_get_entry_raw(table, idx);
1160
1161 return pvr_page_table_l1_entry_raw_is_valid(entry_raw);
1162 }
1163
1164 /**
1165 * struct pvr_page_table_l0 - A wrapped level 0 page table.
1166 *
1167 * To access the raw part of this table, use pvr_page_table_l0_get_raw().
1168 * Alternatively to access a raw entry directly, use
1169 * pvr_page_table_l0_get_entry_raw().
1170 *
1171 * There is no mirror representation of an individual page, so this type has no
1172 * &entries member.
1173 */
1174 struct pvr_page_table_l0 {
1175 /**
1176 * @backing_page: A handle to the memory which holds the raw
1177 * equivalent of this table. **For internal use only.**
1178 */
1179 struct pvr_mmu_backing_page backing_page;
1180
1181 union {
1182 /**
1183 * @parent: The parent of this node in the page table tree structure.
1184 *
1185 * This is also a mirror table.
1186 *
1187 * Only valid when the L0 page table is active. When the L0 page table
1188 * has been removed and queued for destruction, the next_free field
1189 * should be used instead.
1190 */
1191 struct pvr_page_table_l1 *parent;
1192
1193 /**
1194 * @next_free: Pointer to the next L0 page table to take/free.
1195 *
1196 * Used to form a linked list of L0 page tables. This is used
1197 * when preallocating tables and when the page table has been
1198 * removed and queued for destruction.
1199 */
1200 struct pvr_page_table_l0 *next_free;
1201 };
1202
1203 /**
1204 * @parent_idx: The index of the entry in the parent table (see
1205 * @parent) which corresponds to this table.
1206 */
1207 u16 parent_idx;
1208
1209 /**
1210 * @entry_count: The current number of valid entries (that we know of)
1211 * in this table. This value is essentially a refcount - the table is
1212 * destroyed when this value is decremented to zero by
1213 * pvr_page_table_l0_remove().
1214 */
1215 u16 entry_count;
1216 };
1217
1218 /**
1219 * pvr_page_table_l0_init() - Initialize a level 0 page table.
1220 * @table: Target level 0 page table.
1221 * @pvr_dev: Target PowerVR device
1222 *
1223 * When this function returns successfully, @table is still not considered
1224 * valid. It must be inserted into the page table tree structure with
1225 * pvr_page_table_l1_insert() before it is ready for use.
1226 *
1227 * It is expected that @table be zeroed (e.g. from kzalloc()) before calling
1228 * this function.
1229 *
1230 * Return:
1231 * * 0 on success, or
1232 * * Any error encountered while intializing &table->backing_page using
1233 * pvr_mmu_backing_page_init().
1234 */
1235 static int
pvr_page_table_l0_init(struct pvr_page_table_l0 * table,struct pvr_device * pvr_dev)1236 pvr_page_table_l0_init(struct pvr_page_table_l0 *table,
1237 struct pvr_device *pvr_dev)
1238 {
1239 table->parent_idx = PVR_IDX_INVALID;
1240
1241 return pvr_mmu_backing_page_init(&table->backing_page, pvr_dev);
1242 }
1243
1244 /**
1245 * pvr_page_table_l0_free() - Teardown a level 0 page table.
1246 * @table: Target level 0 page table.
1247 *
1248 * It is an error to attempt to use @table after calling this function, even
1249 * indirectly. This includes calling pvr_page_table_l1_remove(), which must
1250 * be called *before* pvr_page_table_l0_free().
1251 */
1252 static void
pvr_page_table_l0_free(struct pvr_page_table_l0 * table)1253 pvr_page_table_l0_free(struct pvr_page_table_l0 *table)
1254 {
1255 pvr_mmu_backing_page_fini(&table->backing_page);
1256 kfree(table);
1257 }
1258
1259 /**
1260 * pvr_page_table_l0_sync() - Flush a level 0 page table from the CPU to the
1261 * device.
1262 * @table: Target level 0 page table.
1263 *
1264 * This is just a thin wrapper around pvr_mmu_backing_page_sync(), so the
1265 * warning there applies here too: **Only call pvr_page_table_l0_sync() once
1266 * you're sure you have no more changes to make to** @table **in the immediate
1267 * future.**
1268 *
1269 * If child pages of @table also need to be flushed, this should be done first
1270 * using a DMA sync function (e.g. dma_sync_sg_for_device()) *before* calling
1271 * this function.
1272 */
1273 static void
pvr_page_table_l0_sync(struct pvr_page_table_l0 * table)1274 pvr_page_table_l0_sync(struct pvr_page_table_l0 *table)
1275 {
1276 pvr_mmu_backing_page_sync(&table->backing_page, PVR_MMU_SYNC_LEVEL_0_FLAGS);
1277 }
1278
1279 /**
1280 * pvr_page_table_l0_get_raw() - Access the raw equivalent of a mirror level 0
1281 * page table.
1282 * @table: Target level 0 page table.
1283 *
1284 * Essentially returns the CPU address of the raw equivalent of @table, cast to
1285 * a &struct pvr_page_table_l0_raw pointer.
1286 *
1287 * You probably want to call pvr_page_table_l0_get_entry_raw() instead.
1288 *
1289 * Return:
1290 * The raw equivalent of @table.
1291 */
1292 static struct pvr_page_table_l0_raw *
pvr_page_table_l0_get_raw(struct pvr_page_table_l0 * table)1293 pvr_page_table_l0_get_raw(struct pvr_page_table_l0 *table)
1294 {
1295 return table->backing_page.host_ptr;
1296 }
1297
1298 /**
1299 * pvr_page_table_l0_get_entry_raw() - Access an entry from the raw equivalent
1300 * of a mirror level 0 page table.
1301 * @table: Target level 0 page table.
1302 * @idx: Index of the entry to access.
1303 *
1304 * Technically this function returns a pointer to a slot in a raw level 0 page
1305 * table, since the returned "entry" is not guaranteed to be valid. The caller
1306 * must verify the validity of the entry at the returned address (perhaps using
1307 * pvr_page_table_l0_entry_raw_is_valid()) before reading or overwriting it.
1308 *
1309 * The value of @idx is not checked here; it is the callers responsibility to
1310 * ensure @idx refers to a valid index within @table before dereferencing the
1311 * returned pointer. This is espcially important for level 0 page tables, which
1312 * can have a variable number of entries.
1313 *
1314 * Return:
1315 * A pointer to the requested raw level 0 page table entry.
1316 */
1317 static struct pvr_page_table_l0_entry_raw *
pvr_page_table_l0_get_entry_raw(struct pvr_page_table_l0 * table,u16 idx)1318 pvr_page_table_l0_get_entry_raw(struct pvr_page_table_l0 *table, u16 idx)
1319 {
1320 return &pvr_page_table_l0_get_raw(table)->entries[idx];
1321 }
1322
1323 /**
1324 * pvr_page_table_l0_entry_is_valid() - Check if a level 0 page table entry is
1325 * marked as valid.
1326 * @table: Target level 0 page table.
1327 * @idx: Index of the entry to check.
1328 *
1329 * The value of @idx is not checked here; it is the callers responsibility to
1330 * ensure @idx refers to a valid index within @table before calling this
1331 * function.
1332 */
1333 static bool
pvr_page_table_l0_entry_is_valid(struct pvr_page_table_l0 * table,u16 idx)1334 pvr_page_table_l0_entry_is_valid(struct pvr_page_table_l0 *table, u16 idx)
1335 {
1336 struct pvr_page_table_l0_entry_raw entry_raw =
1337 *pvr_page_table_l0_get_entry_raw(table, idx);
1338
1339 return pvr_page_table_l0_entry_raw_is_valid(entry_raw);
1340 }
1341
1342 /**
1343 * struct pvr_mmu_context - context holding data for operations at page
1344 * catalogue level, intended for use with a VM context.
1345 */
1346 struct pvr_mmu_context {
1347 /** @pvr_dev: The PVR device associated with the owning VM context. */
1348 struct pvr_device *pvr_dev;
1349
1350 /** @page_table_l2: The MMU table root. */
1351 struct pvr_page_table_l2 page_table_l2;
1352 };
1353
1354 /**
1355 * struct pvr_page_table_ptr - A reference to a single physical page as indexed
1356 * by the page table structure.
1357 *
1358 * Intended for embedding in a &struct pvr_mmu_op_context.
1359 */
1360 struct pvr_page_table_ptr {
1361 /**
1362 * @l1_table: A cached handle to the level 1 page table the
1363 * context is currently traversing.
1364 */
1365 struct pvr_page_table_l1 *l1_table;
1366
1367 /**
1368 * @l0_table: A cached handle to the level 0 page table the
1369 * context is currently traversing.
1370 */
1371 struct pvr_page_table_l0 *l0_table;
1372
1373 /**
1374 * @l2_idx: Index into the level 2 page table the context is
1375 * currently referencing.
1376 */
1377 u16 l2_idx;
1378
1379 /**
1380 * @l1_idx: Index into the level 1 page table the context is
1381 * currently referencing.
1382 */
1383 u16 l1_idx;
1384
1385 /**
1386 * @l0_idx: Index into the level 0 page table the context is
1387 * currently referencing.
1388 */
1389 u16 l0_idx;
1390 };
1391
1392 /**
1393 * struct pvr_mmu_op_context - context holding data for individual
1394 * device-virtual mapping operations. Intended for use with a VM bind operation.
1395 */
1396 struct pvr_mmu_op_context {
1397 /** @mmu_ctx: The MMU context associated with the owning VM context. */
1398 struct pvr_mmu_context *mmu_ctx;
1399
1400 /** @map: Data specifically for map operations. */
1401 struct {
1402 /**
1403 * @sgt: Scatter gather table containing pages pinned for use by
1404 * this context - these are currently pinned when initialising
1405 * the VM bind operation.
1406 */
1407 struct sg_table *sgt;
1408
1409 /** @sgt_offset: Start address of the device-virtual mapping. */
1410 u64 sgt_offset;
1411
1412 /**
1413 * @l1_prealloc_tables: Preallocated l1 page table objects
1414 * use by this context when creating a page mapping. Linked list
1415 * fully created during initialisation.
1416 */
1417 struct pvr_page_table_l1 *l1_prealloc_tables;
1418
1419 /**
1420 * @l0_prealloc_tables: Preallocated l0 page table objects
1421 * use by this context when creating a page mapping. Linked list
1422 * fully created during initialisation.
1423 */
1424 struct pvr_page_table_l0 *l0_prealloc_tables;
1425 } map;
1426
1427 /** @unmap: Data specifically for unmap operations. */
1428 struct {
1429 /**
1430 * @l1_free_tables: Collects page table objects freed by unmap
1431 * ops. Linked list empty at creation.
1432 */
1433 struct pvr_page_table_l1 *l1_free_tables;
1434
1435 /**
1436 * @l0_free_tables: Collects page table objects freed by unmap
1437 * ops. Linked list empty at creation.
1438 */
1439 struct pvr_page_table_l0 *l0_free_tables;
1440 } unmap;
1441
1442 /**
1443 * @curr_page: A reference to a single physical page as indexed by the
1444 * page table structure.
1445 */
1446 struct pvr_page_table_ptr curr_page;
1447
1448 /**
1449 * @sync_level_required: The maximum level of the page table tree
1450 * structure which has (possibly) been modified since it was last
1451 * flushed to the device.
1452 *
1453 * This field should only be set with pvr_mmu_op_context_require_sync()
1454 * or indirectly by pvr_mmu_op_context_sync_partial().
1455 */
1456 enum pvr_mmu_sync_level sync_level_required;
1457 };
1458
1459 /**
1460 * pvr_page_table_l2_insert() - Insert an entry referring to a level 1 page
1461 * table into a level 2 page table.
1462 * @op_ctx: Target MMU op context pointing at the entry to insert the L1 page
1463 * table into.
1464 * @child_table: Target level 1 page table to be referenced by the new entry.
1465 *
1466 * It is the caller's responsibility to ensure @op_ctx.curr_page points to a
1467 * valid L2 entry.
1468 *
1469 * It is the caller's responsibility to execute any memory barries to ensure
1470 * that the creation of @child_table is ordered before the L2 entry is inserted.
1471 */
1472 static void
pvr_page_table_l2_insert(struct pvr_mmu_op_context * op_ctx,struct pvr_page_table_l1 * child_table)1473 pvr_page_table_l2_insert(struct pvr_mmu_op_context *op_ctx,
1474 struct pvr_page_table_l1 *child_table)
1475 {
1476 struct pvr_page_table_l2 *l2_table =
1477 &op_ctx->mmu_ctx->page_table_l2;
1478 struct pvr_page_table_l2_entry_raw *entry_raw =
1479 pvr_page_table_l2_get_entry_raw(l2_table,
1480 op_ctx->curr_page.l2_idx);
1481
1482 pvr_page_table_l2_entry_raw_set(entry_raw,
1483 child_table->backing_page.dma_addr);
1484
1485 child_table->parent = l2_table;
1486 child_table->parent_idx = op_ctx->curr_page.l2_idx;
1487 l2_table->entries[op_ctx->curr_page.l2_idx] = child_table;
1488 ++l2_table->entry_count;
1489 op_ctx->curr_page.l1_table = child_table;
1490 }
1491
1492 /**
1493 * pvr_page_table_l2_remove() - Remove a level 1 page table from a level 2 page
1494 * table.
1495 * @op_ctx: Target MMU op context pointing at the L2 entry to remove.
1496 *
1497 * It is the caller's responsibility to ensure @op_ctx.curr_page points to a
1498 * valid L2 entry.
1499 */
1500 static void
pvr_page_table_l2_remove(struct pvr_mmu_op_context * op_ctx)1501 pvr_page_table_l2_remove(struct pvr_mmu_op_context *op_ctx)
1502 {
1503 struct pvr_page_table_l2 *l2_table =
1504 &op_ctx->mmu_ctx->page_table_l2;
1505 struct pvr_page_table_l2_entry_raw *entry_raw =
1506 pvr_page_table_l2_get_entry_raw(l2_table,
1507 op_ctx->curr_page.l1_table->parent_idx);
1508
1509 WARN_ON(op_ctx->curr_page.l1_table->parent != l2_table);
1510
1511 pvr_page_table_l2_entry_raw_clear(entry_raw);
1512
1513 l2_table->entries[op_ctx->curr_page.l1_table->parent_idx] = NULL;
1514 op_ctx->curr_page.l1_table->parent_idx = PVR_IDX_INVALID;
1515 op_ctx->curr_page.l1_table->next_free = op_ctx->unmap.l1_free_tables;
1516 op_ctx->unmap.l1_free_tables = op_ctx->curr_page.l1_table;
1517 op_ctx->curr_page.l1_table = NULL;
1518
1519 --l2_table->entry_count;
1520 }
1521
1522 /**
1523 * pvr_page_table_l1_insert() - Insert an entry referring to a level 0 page
1524 * table into a level 1 page table.
1525 * @op_ctx: Target MMU op context pointing at the entry to insert the L0 page
1526 * table into.
1527 * @child_table: L0 page table to insert.
1528 *
1529 * It is the caller's responsibility to ensure @op_ctx.curr_page points to a
1530 * valid L1 entry.
1531 *
1532 * It is the caller's responsibility to execute any memory barries to ensure
1533 * that the creation of @child_table is ordered before the L1 entry is inserted.
1534 */
1535 static void
pvr_page_table_l1_insert(struct pvr_mmu_op_context * op_ctx,struct pvr_page_table_l0 * child_table)1536 pvr_page_table_l1_insert(struct pvr_mmu_op_context *op_ctx,
1537 struct pvr_page_table_l0 *child_table)
1538 {
1539 struct pvr_page_table_l1_entry_raw *entry_raw =
1540 pvr_page_table_l1_get_entry_raw(op_ctx->curr_page.l1_table,
1541 op_ctx->curr_page.l1_idx);
1542
1543 pvr_page_table_l1_entry_raw_set(entry_raw,
1544 child_table->backing_page.dma_addr);
1545
1546 child_table->parent = op_ctx->curr_page.l1_table;
1547 child_table->parent_idx = op_ctx->curr_page.l1_idx;
1548 op_ctx->curr_page.l1_table->entries[op_ctx->curr_page.l1_idx] = child_table;
1549 ++op_ctx->curr_page.l1_table->entry_count;
1550 op_ctx->curr_page.l0_table = child_table;
1551 }
1552
1553 /**
1554 * pvr_page_table_l1_remove() - Remove a level 0 page table from a level 1 page
1555 * table.
1556 * @op_ctx: Target MMU op context pointing at the L1 entry to remove.
1557 *
1558 * If this function results in the L1 table becoming empty, it will be removed
1559 * from its parent level 2 page table and destroyed.
1560 *
1561 * It is the caller's responsibility to ensure @op_ctx.curr_page points to a
1562 * valid L1 entry.
1563 */
1564 static void
pvr_page_table_l1_remove(struct pvr_mmu_op_context * op_ctx)1565 pvr_page_table_l1_remove(struct pvr_mmu_op_context *op_ctx)
1566 {
1567 struct pvr_page_table_l1_entry_raw *entry_raw =
1568 pvr_page_table_l1_get_entry_raw(op_ctx->curr_page.l0_table->parent,
1569 op_ctx->curr_page.l0_table->parent_idx);
1570
1571 WARN_ON(op_ctx->curr_page.l0_table->parent !=
1572 op_ctx->curr_page.l1_table);
1573
1574 pvr_page_table_l1_entry_raw_clear(entry_raw);
1575
1576 op_ctx->curr_page.l1_table->entries[op_ctx->curr_page.l0_table->parent_idx] = NULL;
1577 op_ctx->curr_page.l0_table->parent_idx = PVR_IDX_INVALID;
1578 op_ctx->curr_page.l0_table->next_free = op_ctx->unmap.l0_free_tables;
1579 op_ctx->unmap.l0_free_tables = op_ctx->curr_page.l0_table;
1580 op_ctx->curr_page.l0_table = NULL;
1581
1582 if (--op_ctx->curr_page.l1_table->entry_count == 0) {
1583 /* Clear the parent L2 page table entry. */
1584 if (op_ctx->curr_page.l1_table->parent_idx != PVR_IDX_INVALID)
1585 pvr_page_table_l2_remove(op_ctx);
1586 }
1587 }
1588
1589 /**
1590 * pvr_page_table_l0_insert() - Insert an entry referring to a physical page
1591 * into a level 0 page table.
1592 * @op_ctx: Target MMU op context pointing at the L0 entry to insert.
1593 * @dma_addr: Target DMA address to be referenced by the new entry.
1594 * @flags: Page options to be stored in the new entry.
1595 *
1596 * It is the caller's responsibility to ensure @op_ctx.curr_page points to a
1597 * valid L0 entry.
1598 */
1599 static void
pvr_page_table_l0_insert(struct pvr_mmu_op_context * op_ctx,dma_addr_t dma_addr,struct pvr_page_flags_raw flags)1600 pvr_page_table_l0_insert(struct pvr_mmu_op_context *op_ctx,
1601 dma_addr_t dma_addr, struct pvr_page_flags_raw flags)
1602 {
1603 struct pvr_page_table_l0_entry_raw *entry_raw =
1604 pvr_page_table_l0_get_entry_raw(op_ctx->curr_page.l0_table,
1605 op_ctx->curr_page.l0_idx);
1606
1607 pvr_page_table_l0_entry_raw_set(entry_raw, dma_addr, flags);
1608
1609 /*
1610 * There is no entry to set here - we don't keep a mirror of
1611 * individual pages.
1612 */
1613
1614 ++op_ctx->curr_page.l0_table->entry_count;
1615 }
1616
1617 /**
1618 * pvr_page_table_l0_remove() - Remove a physical page from a level 0 page
1619 * table.
1620 * @op_ctx: Target MMU op context pointing at the L0 entry to remove.
1621 *
1622 * If this function results in the L0 table becoming empty, it will be removed
1623 * from its parent L1 page table and destroyed.
1624 *
1625 * It is the caller's responsibility to ensure @op_ctx.curr_page points to a
1626 * valid L0 entry.
1627 */
1628 static void
pvr_page_table_l0_remove(struct pvr_mmu_op_context * op_ctx)1629 pvr_page_table_l0_remove(struct pvr_mmu_op_context *op_ctx)
1630 {
1631 struct pvr_page_table_l0_entry_raw *entry_raw =
1632 pvr_page_table_l0_get_entry_raw(op_ctx->curr_page.l0_table,
1633 op_ctx->curr_page.l0_idx);
1634
1635 pvr_page_table_l0_entry_raw_clear(entry_raw);
1636
1637 /*
1638 * There is no entry to clear here - we don't keep a mirror of
1639 * individual pages.
1640 */
1641
1642 if (--op_ctx->curr_page.l0_table->entry_count == 0) {
1643 /* Clear the parent L1 page table entry. */
1644 if (op_ctx->curr_page.l0_table->parent_idx != PVR_IDX_INVALID)
1645 pvr_page_table_l1_remove(op_ctx);
1646 }
1647 }
1648
1649 /**
1650 * DOC: Page table index utilities
1651 */
1652
1653 /**
1654 * pvr_page_table_l2_idx() - Calculate the level 2 page table index for a
1655 * device-virtual address.
1656 * @device_addr: Target device-virtual address.
1657 *
1658 * This function does not perform any bounds checking - it is the caller's
1659 * responsibility to ensure that @device_addr is valid before interpreting
1660 * the result.
1661 *
1662 * Return:
1663 * The index into a level 2 page table corresponding to @device_addr.
1664 */
1665 static u16
pvr_page_table_l2_idx(u64 device_addr)1666 pvr_page_table_l2_idx(u64 device_addr)
1667 {
1668 return (device_addr & ~ROGUE_MMUCTRL_VADDR_PC_INDEX_CLRMSK) >>
1669 ROGUE_MMUCTRL_VADDR_PC_INDEX_SHIFT;
1670 }
1671
1672 /**
1673 * pvr_page_table_l1_idx() - Calculate the level 1 page table index for a
1674 * device-virtual address.
1675 * @device_addr: Target device-virtual address.
1676 *
1677 * This function does not perform any bounds checking - it is the caller's
1678 * responsibility to ensure that @device_addr is valid before interpreting
1679 * the result.
1680 *
1681 * Return:
1682 * The index into a level 1 page table corresponding to @device_addr.
1683 */
1684 static u16
pvr_page_table_l1_idx(u64 device_addr)1685 pvr_page_table_l1_idx(u64 device_addr)
1686 {
1687 return (device_addr & ~ROGUE_MMUCTRL_VADDR_PD_INDEX_CLRMSK) >>
1688 ROGUE_MMUCTRL_VADDR_PD_INDEX_SHIFT;
1689 }
1690
1691 /**
1692 * pvr_page_table_l0_idx() - Calculate the level 0 page table index for a
1693 * device-virtual address.
1694 * @device_addr: Target device-virtual address.
1695 *
1696 * This function does not perform any bounds checking - it is the caller's
1697 * responsibility to ensure that @device_addr is valid before interpreting
1698 * the result.
1699 *
1700 * Return:
1701 * The index into a level 0 page table corresponding to @device_addr.
1702 */
1703 static u16
pvr_page_table_l0_idx(u64 device_addr)1704 pvr_page_table_l0_idx(u64 device_addr)
1705 {
1706 return (device_addr & ~ROGUE_MMUCTRL_VADDR_PT_INDEX_CLRMSK) >>
1707 ROGUE_MMUCTRL_PAGE_X_RANGE_SHIFT;
1708 }
1709
1710 /**
1711 * DOC: High-level page table operations
1712 */
1713
1714 /**
1715 * pvr_page_table_l1_get_or_insert() - Retrieves (optionally inserting if
1716 * necessary) a level 1 page table from the specified level 2 page table entry.
1717 * @op_ctx: Target MMU op context.
1718 * @should_insert: [IN] Specifies whether new page tables should be inserted
1719 * when empty page table entries are encountered during traversal.
1720 *
1721 * Return:
1722 * * 0 on success, or
1723 *
1724 * If @should_insert is %false:
1725 * * -%ENXIO if a level 1 page table would have been inserted.
1726 *
1727 * If @should_insert is %true:
1728 * * Any error encountered while inserting the level 1 page table.
1729 */
1730 static int
pvr_page_table_l1_get_or_insert(struct pvr_mmu_op_context * op_ctx,bool should_insert)1731 pvr_page_table_l1_get_or_insert(struct pvr_mmu_op_context *op_ctx,
1732 bool should_insert)
1733 {
1734 struct pvr_page_table_l2 *l2_table =
1735 &op_ctx->mmu_ctx->page_table_l2;
1736 struct pvr_page_table_l1 *table;
1737
1738 if (pvr_page_table_l2_entry_is_valid(l2_table,
1739 op_ctx->curr_page.l2_idx)) {
1740 op_ctx->curr_page.l1_table =
1741 l2_table->entries[op_ctx->curr_page.l2_idx];
1742 return 0;
1743 }
1744
1745 if (!should_insert)
1746 return -ENXIO;
1747
1748 /* Take a prealloced table. */
1749 table = op_ctx->map.l1_prealloc_tables;
1750 if (!table)
1751 return -ENOMEM;
1752
1753 /* Pop */
1754 op_ctx->map.l1_prealloc_tables = table->next_free;
1755 table->next_free = NULL;
1756
1757 /* Ensure new table is fully written out before adding to L2 page table. */
1758 wmb();
1759
1760 pvr_page_table_l2_insert(op_ctx, table);
1761
1762 return 0;
1763 }
1764
1765 /**
1766 * pvr_page_table_l0_get_or_insert() - Retrieves (optionally inserting if
1767 * necessary) a level 0 page table from the specified level 1 page table entry.
1768 * @op_ctx: Target MMU op context.
1769 * @should_insert: [IN] Specifies whether new page tables should be inserted
1770 * when empty page table entries are encountered during traversal.
1771 *
1772 * Return:
1773 * * 0 on success,
1774 *
1775 * If @should_insert is %false:
1776 * * -%ENXIO if a level 0 page table would have been inserted.
1777 *
1778 * If @should_insert is %true:
1779 * * Any error encountered while inserting the level 0 page table.
1780 */
1781 static int
pvr_page_table_l0_get_or_insert(struct pvr_mmu_op_context * op_ctx,bool should_insert)1782 pvr_page_table_l0_get_or_insert(struct pvr_mmu_op_context *op_ctx,
1783 bool should_insert)
1784 {
1785 struct pvr_page_table_l0 *table;
1786
1787 if (pvr_page_table_l1_entry_is_valid(op_ctx->curr_page.l1_table,
1788 op_ctx->curr_page.l1_idx)) {
1789 op_ctx->curr_page.l0_table =
1790 op_ctx->curr_page.l1_table->entries[op_ctx->curr_page.l1_idx];
1791 return 0;
1792 }
1793
1794 if (!should_insert)
1795 return -ENXIO;
1796
1797 /* Take a prealloced table. */
1798 table = op_ctx->map.l0_prealloc_tables;
1799 if (!table)
1800 return -ENOMEM;
1801
1802 /* Pop */
1803 op_ctx->map.l0_prealloc_tables = table->next_free;
1804 table->next_free = NULL;
1805
1806 /* Ensure new table is fully written out before adding to L1 page table. */
1807 wmb();
1808
1809 pvr_page_table_l1_insert(op_ctx, table);
1810
1811 return 0;
1812 }
1813
1814 /**
1815 * pvr_mmu_context_create() - Create an MMU context.
1816 * @pvr_dev: PVR device associated with owning VM context.
1817 *
1818 * Returns:
1819 * * Newly created MMU context object on success, or
1820 * * -%ENOMEM if no memory is available,
1821 * * Any error code returned by pvr_page_table_l2_init().
1822 */
pvr_mmu_context_create(struct pvr_device * pvr_dev)1823 struct pvr_mmu_context *pvr_mmu_context_create(struct pvr_device *pvr_dev)
1824 {
1825 struct pvr_mmu_context *ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1826 int err;
1827
1828 if (!ctx)
1829 return ERR_PTR(-ENOMEM);
1830
1831 err = pvr_page_table_l2_init(&ctx->page_table_l2, pvr_dev);
1832 if (err)
1833 return ERR_PTR(err);
1834
1835 ctx->pvr_dev = pvr_dev;
1836
1837 return ctx;
1838 }
1839
1840 /**
1841 * pvr_mmu_context_destroy() - Destroy an MMU context.
1842 * @ctx: Target MMU context.
1843 */
pvr_mmu_context_destroy(struct pvr_mmu_context * ctx)1844 void pvr_mmu_context_destroy(struct pvr_mmu_context *ctx)
1845 {
1846 pvr_page_table_l2_fini(&ctx->page_table_l2);
1847 kfree(ctx);
1848 }
1849
1850 /**
1851 * pvr_mmu_get_root_table_dma_addr() - Get the DMA address of the root of the
1852 * page table structure behind a VM context.
1853 * @ctx: Target MMU context.
1854 */
pvr_mmu_get_root_table_dma_addr(struct pvr_mmu_context * ctx)1855 dma_addr_t pvr_mmu_get_root_table_dma_addr(struct pvr_mmu_context *ctx)
1856 {
1857 return ctx->page_table_l2.backing_page.dma_addr;
1858 }
1859
1860 /**
1861 * pvr_page_table_l1_alloc() - Allocate a l1 page_table object.
1862 * @ctx: MMU context of owning VM context.
1863 *
1864 * Returns:
1865 * * Newly created page table object on success, or
1866 * * -%ENOMEM if no memory is available,
1867 * * Any error code returned by pvr_page_table_l1_init().
1868 */
1869 static struct pvr_page_table_l1 *
pvr_page_table_l1_alloc(struct pvr_mmu_context * ctx)1870 pvr_page_table_l1_alloc(struct pvr_mmu_context *ctx)
1871 {
1872 int err;
1873
1874 struct pvr_page_table_l1 *table =
1875 kzalloc(sizeof(*table), GFP_KERNEL);
1876
1877 if (!table)
1878 return ERR_PTR(-ENOMEM);
1879
1880 err = pvr_page_table_l1_init(table, ctx->pvr_dev);
1881 if (err) {
1882 kfree(table);
1883 return ERR_PTR(err);
1884 }
1885
1886 return table;
1887 }
1888
1889 /**
1890 * pvr_page_table_l0_alloc() - Allocate a l0 page_table object.
1891 * @ctx: MMU context of owning VM context.
1892 *
1893 * Returns:
1894 * * Newly created page table object on success, or
1895 * * -%ENOMEM if no memory is available,
1896 * * Any error code returned by pvr_page_table_l0_init().
1897 */
1898 static struct pvr_page_table_l0 *
pvr_page_table_l0_alloc(struct pvr_mmu_context * ctx)1899 pvr_page_table_l0_alloc(struct pvr_mmu_context *ctx)
1900 {
1901 int err;
1902
1903 struct pvr_page_table_l0 *table =
1904 kzalloc(sizeof(*table), GFP_KERNEL);
1905
1906 if (!table)
1907 return ERR_PTR(-ENOMEM);
1908
1909 err = pvr_page_table_l0_init(table, ctx->pvr_dev);
1910 if (err) {
1911 kfree(table);
1912 return ERR_PTR(err);
1913 }
1914
1915 return table;
1916 }
1917
1918 /**
1919 * pvr_mmu_op_context_require_sync() - Mark an MMU op context as requiring a
1920 * sync operation for the referenced page tables up to a specified level.
1921 * @op_ctx: Target MMU op context.
1922 * @level: Maximum page table level for which a sync is required.
1923 */
1924 static void
pvr_mmu_op_context_require_sync(struct pvr_mmu_op_context * op_ctx,enum pvr_mmu_sync_level level)1925 pvr_mmu_op_context_require_sync(struct pvr_mmu_op_context *op_ctx,
1926 enum pvr_mmu_sync_level level)
1927 {
1928 if (op_ctx->sync_level_required < level)
1929 op_ctx->sync_level_required = level;
1930 }
1931
1932 /**
1933 * pvr_mmu_op_context_sync_manual() - Trigger a sync of some or all of the
1934 * page tables referenced by a MMU op context.
1935 * @op_ctx: Target MMU op context.
1936 * @level: Maximum page table level to sync.
1937 *
1938 * Do not call this function directly. Instead use
1939 * pvr_mmu_op_context_sync_partial() which is checked against the current
1940 * value of &op_ctx->sync_level_required as set by
1941 * pvr_mmu_op_context_require_sync().
1942 */
1943 static void
pvr_mmu_op_context_sync_manual(struct pvr_mmu_op_context * op_ctx,enum pvr_mmu_sync_level level)1944 pvr_mmu_op_context_sync_manual(struct pvr_mmu_op_context *op_ctx,
1945 enum pvr_mmu_sync_level level)
1946 {
1947 /*
1948 * We sync the page table levels in ascending order (starting from the
1949 * leaf node) to ensure consistency.
1950 */
1951
1952 WARN_ON(level < PVR_MMU_SYNC_LEVEL_NONE);
1953
1954 if (level <= PVR_MMU_SYNC_LEVEL_NONE)
1955 return;
1956
1957 if (op_ctx->curr_page.l0_table)
1958 pvr_page_table_l0_sync(op_ctx->curr_page.l0_table);
1959
1960 if (level < PVR_MMU_SYNC_LEVEL_1)
1961 return;
1962
1963 if (op_ctx->curr_page.l1_table)
1964 pvr_page_table_l1_sync(op_ctx->curr_page.l1_table);
1965
1966 if (level < PVR_MMU_SYNC_LEVEL_2)
1967 return;
1968
1969 pvr_page_table_l2_sync(&op_ctx->mmu_ctx->page_table_l2);
1970 }
1971
1972 /**
1973 * pvr_mmu_op_context_sync_partial() - Trigger a sync of some or all of the
1974 * page tables referenced by a MMU op context.
1975 * @op_ctx: Target MMU op context.
1976 * @level: Requested page table level to sync up to (inclusive).
1977 *
1978 * If @level is greater than the maximum level recorded by @op_ctx as requiring
1979 * a sync operation, only the previously recorded maximum will be used.
1980 *
1981 * Additionally, if @level is greater than or equal to the maximum level
1982 * recorded by @op_ctx as requiring a sync operation, that maximum level will be
1983 * reset as a full sync will be performed. This is equivalent to calling
1984 * pvr_mmu_op_context_sync().
1985 */
1986 static void
pvr_mmu_op_context_sync_partial(struct pvr_mmu_op_context * op_ctx,enum pvr_mmu_sync_level level)1987 pvr_mmu_op_context_sync_partial(struct pvr_mmu_op_context *op_ctx,
1988 enum pvr_mmu_sync_level level)
1989 {
1990 /*
1991 * If the requested sync level is greater than or equal to the
1992 * currently required sync level, we do two things:
1993 * * Don't waste time syncing levels we haven't previously marked as
1994 * requiring a sync, and
1995 * * Reset the required sync level since we are about to sync
1996 * everything that was previously marked as requiring a sync.
1997 */
1998 if (level >= op_ctx->sync_level_required) {
1999 level = op_ctx->sync_level_required;
2000 op_ctx->sync_level_required = PVR_MMU_SYNC_LEVEL_NONE;
2001 }
2002
2003 pvr_mmu_op_context_sync_manual(op_ctx, level);
2004 }
2005
2006 /**
2007 * pvr_mmu_op_context_sync() - Trigger a sync of every page table referenced by
2008 * a MMU op context.
2009 * @op_ctx: Target MMU op context.
2010 *
2011 * The maximum level marked internally as requiring a sync will be reset so
2012 * that subsequent calls to this function will be no-ops unless @op_ctx is
2013 * otherwise updated.
2014 */
2015 static void
pvr_mmu_op_context_sync(struct pvr_mmu_op_context * op_ctx)2016 pvr_mmu_op_context_sync(struct pvr_mmu_op_context *op_ctx)
2017 {
2018 pvr_mmu_op_context_sync_manual(op_ctx, op_ctx->sync_level_required);
2019
2020 op_ctx->sync_level_required = PVR_MMU_SYNC_LEVEL_NONE;
2021 }
2022
2023 /**
2024 * pvr_mmu_op_context_load_tables() - Load pointers to tables in each level of
2025 * the page table tree structure needed to reference the physical page
2026 * referenced by a MMU op context.
2027 * @op_ctx: Target MMU op context.
2028 * @should_create: Specifies whether new page tables should be created when
2029 * empty page table entries are encountered during traversal.
2030 * @load_level_required: Maximum page table level to load.
2031 *
2032 * If @should_create is %true, this function may modify the stored required
2033 * sync level of @op_ctx as new page tables are created and inserted into their
2034 * respective parents.
2035 *
2036 * Since there is only one root page table, it is technically incorrect to call
2037 * this function with a value of @load_level_required greater than or equal to
2038 * the root level number. However, this is not explicitly disallowed here.
2039 *
2040 * Return:
2041 * * 0 on success,
2042 * * Any error returned by pvr_page_table_l1_get_or_create() if
2043 * @load_level_required >= 1 except -%ENXIO, or
2044 * * Any error returned by pvr_page_table_l0_get_or_create() if
2045 * @load_level_required >= 0 except -%ENXIO.
2046 */
2047 static int
pvr_mmu_op_context_load_tables(struct pvr_mmu_op_context * op_ctx,bool should_create,enum pvr_mmu_sync_level load_level_required)2048 pvr_mmu_op_context_load_tables(struct pvr_mmu_op_context *op_ctx,
2049 bool should_create,
2050 enum pvr_mmu_sync_level load_level_required)
2051 {
2052 const struct pvr_page_table_l1 *l1_head_before =
2053 op_ctx->map.l1_prealloc_tables;
2054 const struct pvr_page_table_l0 *l0_head_before =
2055 op_ctx->map.l0_prealloc_tables;
2056 int err;
2057
2058 /* Clear tables we're about to fetch in case of error states. */
2059 if (load_level_required >= PVR_MMU_SYNC_LEVEL_1)
2060 op_ctx->curr_page.l1_table = NULL;
2061
2062 if (load_level_required >= PVR_MMU_SYNC_LEVEL_0)
2063 op_ctx->curr_page.l0_table = NULL;
2064
2065 /* Get or create L1 page table. */
2066 if (load_level_required >= PVR_MMU_SYNC_LEVEL_1) {
2067 err = pvr_page_table_l1_get_or_insert(op_ctx, should_create);
2068 if (err) {
2069 /*
2070 * If @should_create is %false and no L1 page table was
2071 * found, return early but without an error. Since
2072 * pvr_page_table_l1_get_or_create() can only return
2073 * -%ENXIO if @should_create is %false, there is no
2074 * need to check it here.
2075 */
2076 if (err == -ENXIO)
2077 err = 0;
2078
2079 return err;
2080 }
2081 }
2082
2083 /* Get or create L0 page table. */
2084 if (load_level_required >= PVR_MMU_SYNC_LEVEL_0) {
2085 err = pvr_page_table_l0_get_or_insert(op_ctx, should_create);
2086 if (err) {
2087 /*
2088 * If @should_create is %false and no L0 page table was
2089 * found, return early but without an error. Since
2090 * pvr_page_table_l0_get_or_insert() can only return
2091 * -%ENXIO if @should_create is %false, there is no
2092 * need to check it here.
2093 */
2094 if (err == -ENXIO)
2095 err = 0;
2096
2097 /*
2098 * At this point, an L1 page table could have been
2099 * inserted but is now empty due to the failed attempt
2100 * at inserting an L0 page table. In this instance, we
2101 * must remove the empty L1 page table ourselves as
2102 * pvr_page_table_l1_remove() is never called as part
2103 * of the error path in
2104 * pvr_page_table_l0_get_or_insert().
2105 */
2106 if (l1_head_before != op_ctx->map.l1_prealloc_tables) {
2107 pvr_page_table_l2_remove(op_ctx);
2108 pvr_mmu_op_context_require_sync(op_ctx, PVR_MMU_SYNC_LEVEL_2);
2109 }
2110
2111 return err;
2112 }
2113 }
2114
2115 /*
2116 * A sync is only needed if table objects were inserted. This can be
2117 * inferred by checking if the pointer at the head of the linked list
2118 * has changed.
2119 */
2120 if (l1_head_before != op_ctx->map.l1_prealloc_tables)
2121 pvr_mmu_op_context_require_sync(op_ctx, PVR_MMU_SYNC_LEVEL_2);
2122 else if (l0_head_before != op_ctx->map.l0_prealloc_tables)
2123 pvr_mmu_op_context_require_sync(op_ctx, PVR_MMU_SYNC_LEVEL_1);
2124
2125 return 0;
2126 }
2127
2128 /**
2129 * pvr_mmu_op_context_set_curr_page() - Reassign the current page of an MMU op
2130 * context, syncing any page tables previously assigned to it which are no
2131 * longer relevant.
2132 * @op_ctx: Target MMU op context.
2133 * @device_addr: New pointer target.
2134 * @should_create: Specify whether new page tables should be created when
2135 * empty page table entries are encountered during traversal.
2136 *
2137 * This function performs a full sync on the pointer, regardless of which
2138 * levels are modified.
2139 *
2140 * Return:
2141 * * 0 on success, or
2142 * * Any error returned by pvr_mmu_op_context_load_tables().
2143 */
2144 static int
pvr_mmu_op_context_set_curr_page(struct pvr_mmu_op_context * op_ctx,u64 device_addr,bool should_create)2145 pvr_mmu_op_context_set_curr_page(struct pvr_mmu_op_context *op_ctx,
2146 u64 device_addr, bool should_create)
2147 {
2148 pvr_mmu_op_context_sync(op_ctx);
2149
2150 op_ctx->curr_page.l2_idx = pvr_page_table_l2_idx(device_addr);
2151 op_ctx->curr_page.l1_idx = pvr_page_table_l1_idx(device_addr);
2152 op_ctx->curr_page.l0_idx = pvr_page_table_l0_idx(device_addr);
2153 op_ctx->curr_page.l1_table = NULL;
2154 op_ctx->curr_page.l0_table = NULL;
2155
2156 return pvr_mmu_op_context_load_tables(op_ctx, should_create,
2157 PVR_MMU_SYNC_LEVEL_1);
2158 }
2159
2160 /**
2161 * pvr_mmu_op_context_next_page() - Advance the current page of an MMU op
2162 * context.
2163 * @op_ctx: Target MMU op context.
2164 * @should_create: Specify whether new page tables should be created when
2165 * empty page table entries are encountered during traversal.
2166 *
2167 * If @should_create is %false, it is the caller's responsibility to verify that
2168 * the state of the table references in @op_ctx is valid on return. If -%ENXIO
2169 * is returned, at least one of the table references is invalid. It should be
2170 * noted that @op_ctx as a whole will be left in a valid state if -%ENXIO is
2171 * returned, unlike other error codes. The caller should check which references
2172 * are invalid by comparing them to %NULL. Only &@ptr->l2_table is guaranteed
2173 * to be valid, since it represents the root of the page table tree structure.
2174 *
2175 * Return:
2176 * * 0 on success,
2177 * * -%EPERM if the operation would wrap at the top of the page table
2178 * hierarchy,
2179 * * -%ENXIO if @should_create is %false and a page table of any level would
2180 * have otherwise been created, or
2181 * * Any error returned while attempting to create missing page tables if
2182 * @should_create is %true.
2183 */
2184 static int
pvr_mmu_op_context_next_page(struct pvr_mmu_op_context * op_ctx,bool should_create)2185 pvr_mmu_op_context_next_page(struct pvr_mmu_op_context *op_ctx,
2186 bool should_create)
2187 {
2188 s8 load_level_required = PVR_MMU_SYNC_LEVEL_NONE;
2189
2190 if (++op_ctx->curr_page.l0_idx != ROGUE_MMUCTRL_ENTRIES_PT_VALUE_X)
2191 goto load_tables;
2192
2193 op_ctx->curr_page.l0_idx = 0;
2194 load_level_required = PVR_MMU_SYNC_LEVEL_0;
2195
2196 if (++op_ctx->curr_page.l1_idx != ROGUE_MMUCTRL_ENTRIES_PD_VALUE)
2197 goto load_tables;
2198
2199 op_ctx->curr_page.l1_idx = 0;
2200 load_level_required = PVR_MMU_SYNC_LEVEL_1;
2201
2202 if (++op_ctx->curr_page.l2_idx != ROGUE_MMUCTRL_ENTRIES_PC_VALUE)
2203 goto load_tables;
2204
2205 /*
2206 * If the pattern continued, we would set &op_ctx->curr_page.l2_idx to
2207 * zero here. However, that would wrap the top layer of the page table
2208 * hierarchy which is not a valid operation. Instead, we warn and return
2209 * an error.
2210 */
2211 WARN(true,
2212 "%s(%p) attempted to loop the top of the page table hierarchy",
2213 __func__, op_ctx);
2214 return -EPERM;
2215
2216 /* If indices have wrapped, we need to load new tables. */
2217 load_tables:
2218 /* First, flush tables which will be unloaded. */
2219 pvr_mmu_op_context_sync_partial(op_ctx, load_level_required);
2220
2221 /* Then load tables from the required level down. */
2222 return pvr_mmu_op_context_load_tables(op_ctx, should_create,
2223 load_level_required);
2224 }
2225
2226 /**
2227 * DOC: Single page operations
2228 */
2229
2230 /**
2231 * pvr_page_create() - Create a device-virtual memory page and insert it into
2232 * a level 0 page table.
2233 * @op_ctx: Target MMU op context pointing at the device-virtual address of the
2234 * target page.
2235 * @dma_addr: DMA address of the physical page backing the created page.
2236 * @flags: Page options saved on the level 0 page table entry for reading by
2237 * the device.
2238 *
2239 * Return:
2240 * * 0 on success, or
2241 * * -%EEXIST if the requested page already exists.
2242 */
2243 static int
pvr_page_create(struct pvr_mmu_op_context * op_ctx,dma_addr_t dma_addr,struct pvr_page_flags_raw flags)2244 pvr_page_create(struct pvr_mmu_op_context *op_ctx, dma_addr_t dma_addr,
2245 struct pvr_page_flags_raw flags)
2246 {
2247 /* Do not create a new page if one already exists. */
2248 if (pvr_page_table_l0_entry_is_valid(op_ctx->curr_page.l0_table,
2249 op_ctx->curr_page.l0_idx)) {
2250 return -EEXIST;
2251 }
2252
2253 pvr_page_table_l0_insert(op_ctx, dma_addr, flags);
2254
2255 pvr_mmu_op_context_require_sync(op_ctx, PVR_MMU_SYNC_LEVEL_0);
2256
2257 return 0;
2258 }
2259
2260 /**
2261 * pvr_page_destroy() - Destroy a device page after removing it from its
2262 * parent level 0 page table.
2263 * @op_ctx: Target MMU op context.
2264 */
2265 static void
pvr_page_destroy(struct pvr_mmu_op_context * op_ctx)2266 pvr_page_destroy(struct pvr_mmu_op_context *op_ctx)
2267 {
2268 /* Do nothing if the page does not exist. */
2269 if (!pvr_page_table_l0_entry_is_valid(op_ctx->curr_page.l0_table,
2270 op_ctx->curr_page.l0_idx)) {
2271 return;
2272 }
2273
2274 /* Clear the parent L0 page table entry. */
2275 pvr_page_table_l0_remove(op_ctx);
2276
2277 pvr_mmu_op_context_require_sync(op_ctx, PVR_MMU_SYNC_LEVEL_0);
2278 }
2279
2280 /**
2281 * pvr_mmu_op_context_destroy() - Destroy an MMU op context.
2282 * @op_ctx: Target MMU op context.
2283 */
pvr_mmu_op_context_destroy(struct pvr_mmu_op_context * op_ctx)2284 void pvr_mmu_op_context_destroy(struct pvr_mmu_op_context *op_ctx)
2285 {
2286 const bool flush_caches =
2287 op_ctx->sync_level_required != PVR_MMU_SYNC_LEVEL_NONE;
2288
2289 pvr_mmu_op_context_sync(op_ctx);
2290
2291 /* Unmaps should be flushed immediately. Map flushes can be deferred. */
2292 if (flush_caches && !op_ctx->map.sgt)
2293 pvr_mmu_flush_exec(op_ctx->mmu_ctx->pvr_dev, true);
2294
2295 while (op_ctx->map.l0_prealloc_tables) {
2296 struct pvr_page_table_l0 *tmp = op_ctx->map.l0_prealloc_tables;
2297
2298 op_ctx->map.l0_prealloc_tables =
2299 op_ctx->map.l0_prealloc_tables->next_free;
2300 pvr_page_table_l0_free(tmp);
2301 }
2302
2303 while (op_ctx->map.l1_prealloc_tables) {
2304 struct pvr_page_table_l1 *tmp = op_ctx->map.l1_prealloc_tables;
2305
2306 op_ctx->map.l1_prealloc_tables =
2307 op_ctx->map.l1_prealloc_tables->next_free;
2308 pvr_page_table_l1_free(tmp);
2309 }
2310
2311 while (op_ctx->unmap.l0_free_tables) {
2312 struct pvr_page_table_l0 *tmp = op_ctx->unmap.l0_free_tables;
2313
2314 op_ctx->unmap.l0_free_tables =
2315 op_ctx->unmap.l0_free_tables->next_free;
2316 pvr_page_table_l0_free(tmp);
2317 }
2318
2319 while (op_ctx->unmap.l1_free_tables) {
2320 struct pvr_page_table_l1 *tmp = op_ctx->unmap.l1_free_tables;
2321
2322 op_ctx->unmap.l1_free_tables =
2323 op_ctx->unmap.l1_free_tables->next_free;
2324 pvr_page_table_l1_free(tmp);
2325 }
2326
2327 kfree(op_ctx);
2328 }
2329
2330 /**
2331 * pvr_mmu_op_context_create() - Create an MMU op context.
2332 * @ctx: MMU context associated with owning VM context.
2333 * @sgt: Scatter gather table containing pages pinned for use by this context.
2334 * @sgt_offset: Start offset of the requested device-virtual memory mapping.
2335 * @size: Size in bytes of the requested device-virtual memory mapping. For an
2336 * unmapping, this should be zero so that no page tables are allocated.
2337 *
2338 * Returns:
2339 * * Newly created MMU op context object on success, or
2340 * * -%ENOMEM if no memory is available,
2341 * * Any error code returned by pvr_page_table_l2_init().
2342 */
2343 struct pvr_mmu_op_context *
pvr_mmu_op_context_create(struct pvr_mmu_context * ctx,struct sg_table * sgt,u64 sgt_offset,u64 size)2344 pvr_mmu_op_context_create(struct pvr_mmu_context *ctx, struct sg_table *sgt,
2345 u64 sgt_offset, u64 size)
2346 {
2347 int err;
2348
2349 struct pvr_mmu_op_context *op_ctx =
2350 kzalloc(sizeof(*op_ctx), GFP_KERNEL);
2351
2352 if (!op_ctx)
2353 return ERR_PTR(-ENOMEM);
2354
2355 op_ctx->mmu_ctx = ctx;
2356 op_ctx->map.sgt = sgt;
2357 op_ctx->map.sgt_offset = sgt_offset;
2358 op_ctx->sync_level_required = PVR_MMU_SYNC_LEVEL_NONE;
2359
2360 if (size) {
2361 /*
2362 * The number of page table objects we need to prealloc is
2363 * indicated by the mapping size, start offset and the sizes
2364 * of the areas mapped per PT or PD. The range calculation is
2365 * identical to that for the index into a table for a device
2366 * address, so we reuse those functions here.
2367 */
2368 const u32 l1_start_idx = pvr_page_table_l2_idx(sgt_offset);
2369 const u32 l1_end_idx = pvr_page_table_l2_idx(sgt_offset + size);
2370 const u32 l1_count = l1_end_idx - l1_start_idx + 1;
2371 const u32 l0_start_idx = pvr_page_table_l1_idx(sgt_offset);
2372 const u32 l0_end_idx = pvr_page_table_l1_idx(sgt_offset + size);
2373 const u32 l0_count = l0_end_idx - l0_start_idx + 1;
2374
2375 /*
2376 * Alloc and push page table entries until we have enough of
2377 * each type, ending with linked lists of l0 and l1 entries in
2378 * reverse order.
2379 */
2380 for (int i = 0; i < l1_count; i++) {
2381 struct pvr_page_table_l1 *l1_tmp =
2382 pvr_page_table_l1_alloc(ctx);
2383
2384 err = PTR_ERR_OR_ZERO(l1_tmp);
2385 if (err)
2386 goto err_cleanup;
2387
2388 l1_tmp->next_free = op_ctx->map.l1_prealloc_tables;
2389 op_ctx->map.l1_prealloc_tables = l1_tmp;
2390 }
2391
2392 for (int i = 0; i < l0_count; i++) {
2393 struct pvr_page_table_l0 *l0_tmp =
2394 pvr_page_table_l0_alloc(ctx);
2395
2396 err = PTR_ERR_OR_ZERO(l0_tmp);
2397 if (err)
2398 goto err_cleanup;
2399
2400 l0_tmp->next_free = op_ctx->map.l0_prealloc_tables;
2401 op_ctx->map.l0_prealloc_tables = l0_tmp;
2402 }
2403 }
2404
2405 return op_ctx;
2406
2407 err_cleanup:
2408 pvr_mmu_op_context_destroy(op_ctx);
2409
2410 return ERR_PTR(err);
2411 }
2412
2413 /**
2414 * pvr_mmu_op_context_unmap_curr_page() - Unmap pages from a memory context
2415 * starting from the current page of an MMU op context.
2416 * @op_ctx: Target MMU op context pointing at the first page to unmap.
2417 * @nr_pages: Number of pages to unmap.
2418 *
2419 * Return:
2420 * * 0 on success, or
2421 * * Any error encountered while advancing @op_ctx.curr_page with
2422 * pvr_mmu_op_context_next_page() (except -%ENXIO).
2423 */
2424 static int
pvr_mmu_op_context_unmap_curr_page(struct pvr_mmu_op_context * op_ctx,u64 nr_pages)2425 pvr_mmu_op_context_unmap_curr_page(struct pvr_mmu_op_context *op_ctx,
2426 u64 nr_pages)
2427 {
2428 int err;
2429
2430 if (nr_pages == 0)
2431 return 0;
2432
2433 /*
2434 * Destroy first page outside loop, as it doesn't require a page
2435 * advance beforehand. If the L0 page table reference in
2436 * @op_ctx.curr_page is %NULL, there cannot be a mapped page at
2437 * @op_ctx.curr_page (so skip ahead).
2438 */
2439 if (op_ctx->curr_page.l0_table)
2440 pvr_page_destroy(op_ctx);
2441
2442 for (u64 page = 1; page < nr_pages; ++page) {
2443 err = pvr_mmu_op_context_next_page(op_ctx, false);
2444 /*
2445 * If the page table tree structure at @op_ctx.curr_page is
2446 * incomplete, skip ahead. We don't care about unmapping pages
2447 * that cannot exist.
2448 *
2449 * FIXME: This could be made more efficient by jumping ahead
2450 * using pvr_mmu_op_context_set_curr_page().
2451 */
2452 if (err == -ENXIO)
2453 continue;
2454 else if (err)
2455 return err;
2456
2457 pvr_page_destroy(op_ctx);
2458 }
2459
2460 return 0;
2461 }
2462
2463 /**
2464 * pvr_mmu_unmap() - Unmap pages from a memory context.
2465 * @op_ctx: Target MMU op context.
2466 * @device_addr: First device-virtual address to unmap.
2467 * @size: Size in bytes to unmap.
2468 *
2469 * The total amount of device-virtual memory unmapped is
2470 * @nr_pages * %PVR_DEVICE_PAGE_SIZE.
2471 *
2472 * Returns:
2473 * * 0 on success, or
2474 * * Any error code returned by pvr_page_table_ptr_init(), or
2475 * * Any error code returned by pvr_page_table_ptr_unmap().
2476 */
pvr_mmu_unmap(struct pvr_mmu_op_context * op_ctx,u64 device_addr,u64 size)2477 int pvr_mmu_unmap(struct pvr_mmu_op_context *op_ctx, u64 device_addr, u64 size)
2478 {
2479 int err = pvr_mmu_op_context_set_curr_page(op_ctx, device_addr, false);
2480
2481 if (err)
2482 return err;
2483
2484 return pvr_mmu_op_context_unmap_curr_page(op_ctx,
2485 size >> PVR_DEVICE_PAGE_SHIFT);
2486 }
2487
2488 /**
2489 * pvr_mmu_map_sgl() - Map part of a scatter-gather table entry to
2490 * device-virtual memory.
2491 * @op_ctx: Target MMU op context pointing to the first page that should be
2492 * mapped.
2493 * @sgl: Target scatter-gather table entry.
2494 * @offset: Offset into @sgl to map from. Must result in a starting address
2495 * from @sgl which is CPU page-aligned.
2496 * @size: Size of the memory to be mapped in bytes. Must be a non-zero multiple
2497 * of the device page size.
2498 * @page_flags: Page options to be applied to every device-virtual memory page
2499 * in the created mapping.
2500 *
2501 * Return:
2502 * * 0 on success,
2503 * * -%EINVAL if the range specified by @offset and @size is not completely
2504 * within @sgl, or
2505 * * Any error encountered while creating a page with pvr_page_create(), or
2506 * * Any error encountered while advancing @op_ctx.curr_page with
2507 * pvr_mmu_op_context_next_page().
2508 */
2509 static int
pvr_mmu_map_sgl(struct pvr_mmu_op_context * op_ctx,struct scatterlist * sgl,u64 offset,u64 size,struct pvr_page_flags_raw page_flags)2510 pvr_mmu_map_sgl(struct pvr_mmu_op_context *op_ctx, struct scatterlist *sgl,
2511 u64 offset, u64 size, struct pvr_page_flags_raw page_flags)
2512 {
2513 const unsigned int pages = size >> PVR_DEVICE_PAGE_SHIFT;
2514 dma_addr_t dma_addr = sg_dma_address(sgl) + offset;
2515 const unsigned int dma_len = sg_dma_len(sgl);
2516 struct pvr_page_table_ptr ptr_copy;
2517 unsigned int page;
2518 int err;
2519
2520 if (size > dma_len || offset > dma_len - size)
2521 return -EINVAL;
2522
2523 /*
2524 * Before progressing, save a copy of the start pointer so we can use
2525 * it again if we enter an error state and have to destroy pages.
2526 */
2527 memcpy(&ptr_copy, &op_ctx->curr_page, sizeof(ptr_copy));
2528
2529 /*
2530 * Create first page outside loop, as it doesn't require a page advance
2531 * beforehand.
2532 */
2533 err = pvr_page_create(op_ctx, dma_addr, page_flags);
2534 if (err)
2535 return err;
2536
2537 for (page = 1; page < pages; ++page) {
2538 err = pvr_mmu_op_context_next_page(op_ctx, true);
2539 if (err)
2540 goto err_destroy_pages;
2541
2542 dma_addr += PVR_DEVICE_PAGE_SIZE;
2543
2544 err = pvr_page_create(op_ctx, dma_addr, page_flags);
2545 if (err)
2546 goto err_destroy_pages;
2547 }
2548
2549 return 0;
2550
2551 err_destroy_pages:
2552 memcpy(&op_ctx->curr_page, &ptr_copy, sizeof(op_ctx->curr_page));
2553 err = pvr_mmu_op_context_unmap_curr_page(op_ctx, page);
2554
2555 return err;
2556 }
2557
2558 /**
2559 * pvr_mmu_map() - Map an object's virtual memory to physical memory.
2560 * @op_ctx: Target MMU op context.
2561 * @size: Size of memory to be mapped in bytes. Must be a non-zero multiple
2562 * of the device page size.
2563 * @flags: Flags from pvr_gem_object associated with the mapping.
2564 * @device_addr: Virtual device address to map to. Must be device page-aligned.
2565 *
2566 * Returns:
2567 * * 0 on success, or
2568 * * Any error code returned by pvr_page_table_ptr_init(), or
2569 * * Any error code returned by pvr_mmu_map_sgl(), or
2570 * * Any error code returned by pvr_page_table_ptr_next_page().
2571 */
pvr_mmu_map(struct pvr_mmu_op_context * op_ctx,u64 size,u64 flags,u64 device_addr)2572 int pvr_mmu_map(struct pvr_mmu_op_context *op_ctx, u64 size, u64 flags,
2573 u64 device_addr)
2574 {
2575 struct pvr_page_table_ptr ptr_copy;
2576 struct pvr_page_flags_raw flags_raw;
2577 struct scatterlist *sgl;
2578 u64 mapped_size = 0;
2579 unsigned int count;
2580 int err;
2581
2582 if (!size)
2583 return 0;
2584
2585 if ((op_ctx->map.sgt_offset | size) & ~PVR_DEVICE_PAGE_MASK)
2586 return -EINVAL;
2587
2588 err = pvr_mmu_op_context_set_curr_page(op_ctx, device_addr, true);
2589 if (err)
2590 return -EINVAL;
2591
2592 memcpy(&ptr_copy, &op_ctx->curr_page, sizeof(ptr_copy));
2593
2594 flags_raw = pvr_page_flags_raw_create(false, false,
2595 flags & DRM_PVR_BO_BYPASS_DEVICE_CACHE,
2596 flags & DRM_PVR_BO_PM_FW_PROTECT);
2597
2598 /* Map scatter gather table */
2599 for_each_sgtable_dma_sg(op_ctx->map.sgt, sgl, count) {
2600 const size_t sgl_len = sg_dma_len(sgl);
2601 u64 sgl_offset, map_sgl_len;
2602
2603 if (sgl_len <= op_ctx->map.sgt_offset) {
2604 op_ctx->map.sgt_offset -= sgl_len;
2605 continue;
2606 }
2607
2608 sgl_offset = op_ctx->map.sgt_offset;
2609 map_sgl_len = min_t(u64, sgl_len - sgl_offset, size - mapped_size);
2610
2611 err = pvr_mmu_map_sgl(op_ctx, sgl, sgl_offset, map_sgl_len,
2612 flags_raw);
2613 if (err)
2614 break;
2615
2616 /*
2617 * Flag the L0 page table as requiring a flush when the MMU op
2618 * context is destroyed.
2619 */
2620 pvr_mmu_op_context_require_sync(op_ctx, PVR_MMU_SYNC_LEVEL_0);
2621
2622 op_ctx->map.sgt_offset = 0;
2623 mapped_size += map_sgl_len;
2624
2625 if (mapped_size >= size)
2626 break;
2627
2628 err = pvr_mmu_op_context_next_page(op_ctx, true);
2629 if (err)
2630 break;
2631 }
2632
2633 if (err && mapped_size) {
2634 memcpy(&op_ctx->curr_page, &ptr_copy, sizeof(op_ctx->curr_page));
2635 pvr_mmu_op_context_unmap_curr_page(op_ctx,
2636 mapped_size >> PVR_DEVICE_PAGE_SHIFT);
2637 }
2638
2639 return err;
2640 }
2641