1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
4 *
5 * Note: This driver is a cleanroom reimplementation based on reverse
6 * engineered documentation written by Carl-Daniel Hailfinger
7 * and Andrew de Quincey.
8 *
9 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10 * trademarks of NVIDIA Corporation in the United States and other
11 * countries.
12 *
13 * Copyright (C) 2003,4,5 Manfred Spraul
14 * Copyright (C) 2004 Andrew de Quincey (wol support)
15 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16 * IRQ rate fixes, bigendian fixes, cleanups, verification)
17 * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
18 *
19 * Known bugs:
20 * We suspect that on some hardware no TX done interrupts are generated.
21 * This means recovery from netif_stop_queue only happens if the hw timer
22 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
23 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
24 * If your hardware reliably generates tx done interrupts, then you can remove
25 * DEV_NEED_TIMERIRQ from the driver_data flags.
26 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
27 * superfluous timer interrupts from the nic.
28 */
29
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
32 #define FORCEDETH_VERSION "0.64"
33 #define DRV_NAME "forcedeth"
34
35 #include <linux/module.h>
36 #include <linux/types.h>
37 #include <linux/pci.h>
38 #include <linux/interrupt.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/delay.h>
42 #include <linux/sched.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/timer.h>
46 #include <linux/skbuff.h>
47 #include <linux/mii.h>
48 #include <linux/random.h>
49 #include <linux/if_vlan.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/slab.h>
52 #include <linux/uaccess.h>
53 #include <linux/prefetch.h>
54 #include <linux/u64_stats_sync.h>
55 #include <linux/io.h>
56
57 #include <asm/irq.h>
58
59 #define TX_WORK_PER_LOOP NAPI_POLL_WEIGHT
60 #define RX_WORK_PER_LOOP NAPI_POLL_WEIGHT
61
62 /*
63 * Hardware access:
64 */
65
66 #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */
67 #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */
68 #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */
69 #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */
70 #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */
71 #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */
72 #define DEV_HAS_MSI 0x0000040 /* device supports MSI */
73 #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */
74 #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */
75 #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */
76 #define DEV_HAS_STATISTICS_V2 0x0000400 /* device supports hw statistics version 2 */
77 #define DEV_HAS_STATISTICS_V3 0x0000800 /* device supports hw statistics version 3 */
78 #define DEV_HAS_STATISTICS_V12 0x0000600 /* device supports hw statistics version 1 and 2 */
79 #define DEV_HAS_STATISTICS_V123 0x0000e00 /* device supports hw statistics version 1, 2, and 3 */
80 #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */
81 #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */
82 #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */
83 #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */
84 #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */
85 #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */
86 #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */
87 #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */
88 #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */
89 #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */
90 #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */
91 #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */
92 #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */
93
94 enum {
95 NvRegIrqStatus = 0x000,
96 #define NVREG_IRQSTAT_MIIEVENT 0x040
97 #define NVREG_IRQSTAT_MASK 0x83ff
98 NvRegIrqMask = 0x004,
99 #define NVREG_IRQ_RX_ERROR 0x0001
100 #define NVREG_IRQ_RX 0x0002
101 #define NVREG_IRQ_RX_NOBUF 0x0004
102 #define NVREG_IRQ_TX_ERR 0x0008
103 #define NVREG_IRQ_TX_OK 0x0010
104 #define NVREG_IRQ_TIMER 0x0020
105 #define NVREG_IRQ_LINK 0x0040
106 #define NVREG_IRQ_RX_FORCED 0x0080
107 #define NVREG_IRQ_TX_FORCED 0x0100
108 #define NVREG_IRQ_RECOVER_ERROR 0x8200
109 #define NVREG_IRQMASK_THROUGHPUT 0x00df
110 #define NVREG_IRQMASK_CPU 0x0060
111 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
112 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
113 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
114
115 NvRegUnknownSetupReg6 = 0x008,
116 #define NVREG_UNKSETUP6_VAL 3
117
118 /*
119 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
120 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
121 */
122 NvRegPollingInterval = 0x00c,
123 #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
124 #define NVREG_POLL_DEFAULT_CPU 13
125 NvRegMSIMap0 = 0x020,
126 NvRegMSIMap1 = 0x024,
127 NvRegMSIIrqMask = 0x030,
128 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
129 NvRegMisc1 = 0x080,
130 #define NVREG_MISC1_PAUSE_TX 0x01
131 #define NVREG_MISC1_HD 0x02
132 #define NVREG_MISC1_FORCE 0x3b0f3c
133
134 NvRegMacReset = 0x34,
135 #define NVREG_MAC_RESET_ASSERT 0x0F3
136 NvRegTransmitterControl = 0x084,
137 #define NVREG_XMITCTL_START 0x01
138 #define NVREG_XMITCTL_MGMT_ST 0x40000000
139 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
140 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
141 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
142 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
143 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
144 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
145 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
146 #define NVREG_XMITCTL_HOST_LOADED 0x00004000
147 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
148 #define NVREG_XMITCTL_DATA_START 0x00100000
149 #define NVREG_XMITCTL_DATA_READY 0x00010000
150 #define NVREG_XMITCTL_DATA_ERROR 0x00020000
151 NvRegTransmitterStatus = 0x088,
152 #define NVREG_XMITSTAT_BUSY 0x01
153
154 NvRegPacketFilterFlags = 0x8c,
155 #define NVREG_PFF_PAUSE_RX 0x08
156 #define NVREG_PFF_ALWAYS 0x7F0000
157 #define NVREG_PFF_PROMISC 0x80
158 #define NVREG_PFF_MYADDR 0x20
159 #define NVREG_PFF_LOOPBACK 0x10
160
161 NvRegOffloadConfig = 0x90,
162 #define NVREG_OFFLOAD_HOMEPHY 0x601
163 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
164 NvRegReceiverControl = 0x094,
165 #define NVREG_RCVCTL_START 0x01
166 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
167 NvRegReceiverStatus = 0x98,
168 #define NVREG_RCVSTAT_BUSY 0x01
169
170 NvRegSlotTime = 0x9c,
171 #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
172 #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
173 #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
174 #define NVREG_SLOTTIME_HALF 0x0000ff00
175 #define NVREG_SLOTTIME_DEFAULT 0x00007f00
176 #define NVREG_SLOTTIME_MASK 0x000000ff
177
178 NvRegTxDeferral = 0xA0,
179 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
180 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
181 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
182 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
183 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
184 #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
185 NvRegRxDeferral = 0xA4,
186 #define NVREG_RX_DEFERRAL_DEFAULT 0x16
187 NvRegMacAddrA = 0xA8,
188 NvRegMacAddrB = 0xAC,
189 NvRegMulticastAddrA = 0xB0,
190 #define NVREG_MCASTADDRA_FORCE 0x01
191 NvRegMulticastAddrB = 0xB4,
192 NvRegMulticastMaskA = 0xB8,
193 #define NVREG_MCASTMASKA_NONE 0xffffffff
194 NvRegMulticastMaskB = 0xBC,
195 #define NVREG_MCASTMASKB_NONE 0xffff
196
197 NvRegPhyInterface = 0xC0,
198 #define PHY_RGMII 0x10000000
199 NvRegBackOffControl = 0xC4,
200 #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
201 #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
202 #define NVREG_BKOFFCTRL_SELECT 24
203 #define NVREG_BKOFFCTRL_GEAR 12
204
205 NvRegTxRingPhysAddr = 0x100,
206 NvRegRxRingPhysAddr = 0x104,
207 NvRegRingSizes = 0x108,
208 #define NVREG_RINGSZ_TXSHIFT 0
209 #define NVREG_RINGSZ_RXSHIFT 16
210 NvRegTransmitPoll = 0x10c,
211 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
212 NvRegLinkSpeed = 0x110,
213 #define NVREG_LINKSPEED_FORCE 0x10000
214 #define NVREG_LINKSPEED_10 1000
215 #define NVREG_LINKSPEED_100 100
216 #define NVREG_LINKSPEED_1000 50
217 #define NVREG_LINKSPEED_MASK (0xFFF)
218 NvRegUnknownSetupReg5 = 0x130,
219 #define NVREG_UNKSETUP5_BIT31 (1<<31)
220 NvRegTxWatermark = 0x13c,
221 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
222 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
223 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
224 NvRegTxRxControl = 0x144,
225 #define NVREG_TXRXCTL_KICK 0x0001
226 #define NVREG_TXRXCTL_BIT1 0x0002
227 #define NVREG_TXRXCTL_BIT2 0x0004
228 #define NVREG_TXRXCTL_IDLE 0x0008
229 #define NVREG_TXRXCTL_RESET 0x0010
230 #define NVREG_TXRXCTL_RXCHECK 0x0400
231 #define NVREG_TXRXCTL_DESC_1 0
232 #define NVREG_TXRXCTL_DESC_2 0x002100
233 #define NVREG_TXRXCTL_DESC_3 0xc02200
234 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
235 #define NVREG_TXRXCTL_VLANINS 0x00080
236 NvRegTxRingPhysAddrHigh = 0x148,
237 NvRegRxRingPhysAddrHigh = 0x14C,
238 NvRegTxPauseFrame = 0x170,
239 #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
240 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
241 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
242 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
243 NvRegTxPauseFrameLimit = 0x174,
244 #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
245 NvRegMIIStatus = 0x180,
246 #define NVREG_MIISTAT_ERROR 0x0001
247 #define NVREG_MIISTAT_LINKCHANGE 0x0008
248 #define NVREG_MIISTAT_MASK_RW 0x0007
249 #define NVREG_MIISTAT_MASK_ALL 0x000f
250 NvRegMIIMask = 0x184,
251 #define NVREG_MII_LINKCHANGE 0x0008
252
253 NvRegAdapterControl = 0x188,
254 #define NVREG_ADAPTCTL_START 0x02
255 #define NVREG_ADAPTCTL_LINKUP 0x04
256 #define NVREG_ADAPTCTL_PHYVALID 0x40000
257 #define NVREG_ADAPTCTL_RUNNING 0x100000
258 #define NVREG_ADAPTCTL_PHYSHIFT 24
259 NvRegMIISpeed = 0x18c,
260 #define NVREG_MIISPEED_BIT8 (1<<8)
261 #define NVREG_MIIDELAY 5
262 NvRegMIIControl = 0x190,
263 #define NVREG_MIICTL_INUSE 0x08000
264 #define NVREG_MIICTL_WRITE 0x00400
265 #define NVREG_MIICTL_ADDRSHIFT 5
266 NvRegMIIData = 0x194,
267 NvRegTxUnicast = 0x1a0,
268 NvRegTxMulticast = 0x1a4,
269 NvRegTxBroadcast = 0x1a8,
270 NvRegWakeUpFlags = 0x200,
271 #define NVREG_WAKEUPFLAGS_VAL 0x7770
272 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
273 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
274 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
275 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
276 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
277 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
278 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
279 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
280 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
281 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
282
283 NvRegMgmtUnitGetVersion = 0x204,
284 #define NVREG_MGMTUNITGETVERSION 0x01
285 NvRegMgmtUnitVersion = 0x208,
286 #define NVREG_MGMTUNITVERSION 0x08
287 NvRegPowerCap = 0x268,
288 #define NVREG_POWERCAP_D3SUPP (1<<30)
289 #define NVREG_POWERCAP_D2SUPP (1<<26)
290 #define NVREG_POWERCAP_D1SUPP (1<<25)
291 NvRegPowerState = 0x26c,
292 #define NVREG_POWERSTATE_POWEREDUP 0x8000
293 #define NVREG_POWERSTATE_VALID 0x0100
294 #define NVREG_POWERSTATE_MASK 0x0003
295 #define NVREG_POWERSTATE_D0 0x0000
296 #define NVREG_POWERSTATE_D1 0x0001
297 #define NVREG_POWERSTATE_D2 0x0002
298 #define NVREG_POWERSTATE_D3 0x0003
299 NvRegMgmtUnitControl = 0x278,
300 #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
301 NvRegTxCnt = 0x280,
302 NvRegTxZeroReXmt = 0x284,
303 NvRegTxOneReXmt = 0x288,
304 NvRegTxManyReXmt = 0x28c,
305 NvRegTxLateCol = 0x290,
306 NvRegTxUnderflow = 0x294,
307 NvRegTxLossCarrier = 0x298,
308 NvRegTxExcessDef = 0x29c,
309 NvRegTxRetryErr = 0x2a0,
310 NvRegRxFrameErr = 0x2a4,
311 NvRegRxExtraByte = 0x2a8,
312 NvRegRxLateCol = 0x2ac,
313 NvRegRxRunt = 0x2b0,
314 NvRegRxFrameTooLong = 0x2b4,
315 NvRegRxOverflow = 0x2b8,
316 NvRegRxFCSErr = 0x2bc,
317 NvRegRxFrameAlignErr = 0x2c0,
318 NvRegRxLenErr = 0x2c4,
319 NvRegRxUnicast = 0x2c8,
320 NvRegRxMulticast = 0x2cc,
321 NvRegRxBroadcast = 0x2d0,
322 NvRegTxDef = 0x2d4,
323 NvRegTxFrame = 0x2d8,
324 NvRegRxCnt = 0x2dc,
325 NvRegTxPause = 0x2e0,
326 NvRegRxPause = 0x2e4,
327 NvRegRxDropFrame = 0x2e8,
328 NvRegVlanControl = 0x300,
329 #define NVREG_VLANCONTROL_ENABLE 0x2000
330 NvRegMSIXMap0 = 0x3e0,
331 NvRegMSIXMap1 = 0x3e4,
332 NvRegMSIXIrqStatus = 0x3f0,
333
334 NvRegPowerState2 = 0x600,
335 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
336 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
337 #define NVREG_POWERSTATE2_PHY_RESET 0x0004
338 #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00
339 };
340
341 /* Big endian: should work, but is untested */
342 struct ring_desc {
343 __le32 buf;
344 __le32 flaglen;
345 };
346
347 struct ring_desc_ex {
348 __le32 bufhigh;
349 __le32 buflow;
350 __le32 txvlan;
351 __le32 flaglen;
352 };
353
354 union ring_type {
355 struct ring_desc *orig;
356 struct ring_desc_ex *ex;
357 };
358
359 #define FLAG_MASK_V1 0xffff0000
360 #define FLAG_MASK_V2 0xffffc000
361 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
362 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
363
364 #define NV_TX_LASTPACKET (1<<16)
365 #define NV_TX_RETRYERROR (1<<19)
366 #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
367 #define NV_TX_FORCED_INTERRUPT (1<<24)
368 #define NV_TX_DEFERRED (1<<26)
369 #define NV_TX_CARRIERLOST (1<<27)
370 #define NV_TX_LATECOLLISION (1<<28)
371 #define NV_TX_UNDERFLOW (1<<29)
372 #define NV_TX_ERROR (1<<30)
373 #define NV_TX_VALID (1<<31)
374
375 #define NV_TX2_LASTPACKET (1<<29)
376 #define NV_TX2_RETRYERROR (1<<18)
377 #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
378 #define NV_TX2_FORCED_INTERRUPT (1<<30)
379 #define NV_TX2_DEFERRED (1<<25)
380 #define NV_TX2_CARRIERLOST (1<<26)
381 #define NV_TX2_LATECOLLISION (1<<27)
382 #define NV_TX2_UNDERFLOW (1<<28)
383 /* error and valid are the same for both */
384 #define NV_TX2_ERROR (1<<30)
385 #define NV_TX2_VALID (1<<31)
386 #define NV_TX2_TSO (1<<28)
387 #define NV_TX2_TSO_SHIFT 14
388 #define NV_TX2_TSO_MAX_SHIFT 14
389 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
390 #define NV_TX2_CHECKSUM_L3 (1<<27)
391 #define NV_TX2_CHECKSUM_L4 (1<<26)
392
393 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
394
395 #define NV_RX_DESCRIPTORVALID (1<<16)
396 #define NV_RX_MISSEDFRAME (1<<17)
397 #define NV_RX_SUBTRACT1 (1<<18)
398 #define NV_RX_ERROR1 (1<<23)
399 #define NV_RX_ERROR2 (1<<24)
400 #define NV_RX_ERROR3 (1<<25)
401 #define NV_RX_ERROR4 (1<<26)
402 #define NV_RX_CRCERR (1<<27)
403 #define NV_RX_OVERFLOW (1<<28)
404 #define NV_RX_FRAMINGERR (1<<29)
405 #define NV_RX_ERROR (1<<30)
406 #define NV_RX_AVAIL (1<<31)
407 #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
408
409 #define NV_RX2_CHECKSUMMASK (0x1C000000)
410 #define NV_RX2_CHECKSUM_IP (0x10000000)
411 #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
412 #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
413 #define NV_RX2_DESCRIPTORVALID (1<<29)
414 #define NV_RX2_SUBTRACT1 (1<<25)
415 #define NV_RX2_ERROR1 (1<<18)
416 #define NV_RX2_ERROR2 (1<<19)
417 #define NV_RX2_ERROR3 (1<<20)
418 #define NV_RX2_ERROR4 (1<<21)
419 #define NV_RX2_CRCERR (1<<22)
420 #define NV_RX2_OVERFLOW (1<<23)
421 #define NV_RX2_FRAMINGERR (1<<24)
422 /* error and avail are the same for both */
423 #define NV_RX2_ERROR (1<<30)
424 #define NV_RX2_AVAIL (1<<31)
425 #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
426
427 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
428 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
429
430 /* Miscellaneous hardware related defines: */
431 #define NV_PCI_REGSZ_VER1 0x270
432 #define NV_PCI_REGSZ_VER2 0x2d4
433 #define NV_PCI_REGSZ_VER3 0x604
434 #define NV_PCI_REGSZ_MAX 0x604
435
436 /* various timeout delays: all in usec */
437 #define NV_TXRX_RESET_DELAY 4
438 #define NV_TXSTOP_DELAY1 10
439 #define NV_TXSTOP_DELAY1MAX 500000
440 #define NV_TXSTOP_DELAY2 100
441 #define NV_RXSTOP_DELAY1 10
442 #define NV_RXSTOP_DELAY1MAX 500000
443 #define NV_RXSTOP_DELAY2 100
444 #define NV_SETUP5_DELAY 5
445 #define NV_SETUP5_DELAYMAX 50000
446 #define NV_POWERUP_DELAY 5
447 #define NV_POWERUP_DELAYMAX 5000
448 #define NV_MIIBUSY_DELAY 50
449 #define NV_MIIPHY_DELAY 10
450 #define NV_MIIPHY_DELAYMAX 10000
451 #define NV_MAC_RESET_DELAY 64
452
453 #define NV_WAKEUPPATTERNS 5
454 #define NV_WAKEUPMASKENTRIES 4
455
456 /* General driver defaults */
457 #define NV_WATCHDOG_TIMEO (5*HZ)
458
459 #define RX_RING_DEFAULT 512
460 #define TX_RING_DEFAULT 256
461 #define RX_RING_MIN 128
462 #define TX_RING_MIN 64
463 #define RING_MAX_DESC_VER_1 1024
464 #define RING_MAX_DESC_VER_2_3 16384
465
466 /* rx/tx mac addr + type + vlan + align + slack*/
467 #define NV_RX_HEADERS (64)
468 /* even more slack. */
469 #define NV_RX_ALLOC_PAD (64)
470
471 /* maximum mtu size */
472 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
473 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
474
475 #define OOM_REFILL (1+HZ/20)
476 #define POLL_WAIT (1+HZ/100)
477 #define LINK_TIMEOUT (3*HZ)
478 #define STATS_INTERVAL (10*HZ)
479
480 /*
481 * desc_ver values:
482 * The nic supports three different descriptor types:
483 * - DESC_VER_1: Original
484 * - DESC_VER_2: support for jumbo frames.
485 * - DESC_VER_3: 64-bit format.
486 */
487 #define DESC_VER_1 1
488 #define DESC_VER_2 2
489 #define DESC_VER_3 3
490
491 /* PHY defines */
492 #define PHY_OUI_MARVELL 0x5043
493 #define PHY_OUI_CICADA 0x03f1
494 #define PHY_OUI_VITESSE 0x01c1
495 #define PHY_OUI_REALTEK 0x0732
496 #define PHY_OUI_REALTEK2 0x0020
497 #define PHYID1_OUI_MASK 0x03ff
498 #define PHYID1_OUI_SHFT 6
499 #define PHYID2_OUI_MASK 0xfc00
500 #define PHYID2_OUI_SHFT 10
501 #define PHYID2_MODEL_MASK 0x03f0
502 #define PHY_MODEL_REALTEK_8211 0x0110
503 #define PHY_REV_MASK 0x0001
504 #define PHY_REV_REALTEK_8211B 0x0000
505 #define PHY_REV_REALTEK_8211C 0x0001
506 #define PHY_MODEL_REALTEK_8201 0x0200
507 #define PHY_MODEL_MARVELL_E3016 0x0220
508 #define PHY_MARVELL_E3016_INITMASK 0x0300
509 #define PHY_CICADA_INIT1 0x0f000
510 #define PHY_CICADA_INIT2 0x0e00
511 #define PHY_CICADA_INIT3 0x01000
512 #define PHY_CICADA_INIT4 0x0200
513 #define PHY_CICADA_INIT5 0x0004
514 #define PHY_CICADA_INIT6 0x02000
515 #define PHY_VITESSE_INIT_REG1 0x1f
516 #define PHY_VITESSE_INIT_REG2 0x10
517 #define PHY_VITESSE_INIT_REG3 0x11
518 #define PHY_VITESSE_INIT_REG4 0x12
519 #define PHY_VITESSE_INIT_MSK1 0xc
520 #define PHY_VITESSE_INIT_MSK2 0x0180
521 #define PHY_VITESSE_INIT1 0x52b5
522 #define PHY_VITESSE_INIT2 0xaf8a
523 #define PHY_VITESSE_INIT3 0x8
524 #define PHY_VITESSE_INIT4 0x8f8a
525 #define PHY_VITESSE_INIT5 0xaf86
526 #define PHY_VITESSE_INIT6 0x8f86
527 #define PHY_VITESSE_INIT7 0xaf82
528 #define PHY_VITESSE_INIT8 0x0100
529 #define PHY_VITESSE_INIT9 0x8f82
530 #define PHY_VITESSE_INIT10 0x0
531 #define PHY_REALTEK_INIT_REG1 0x1f
532 #define PHY_REALTEK_INIT_REG2 0x19
533 #define PHY_REALTEK_INIT_REG3 0x13
534 #define PHY_REALTEK_INIT_REG4 0x14
535 #define PHY_REALTEK_INIT_REG5 0x18
536 #define PHY_REALTEK_INIT_REG6 0x11
537 #define PHY_REALTEK_INIT_REG7 0x01
538 #define PHY_REALTEK_INIT1 0x0000
539 #define PHY_REALTEK_INIT2 0x8e00
540 #define PHY_REALTEK_INIT3 0x0001
541 #define PHY_REALTEK_INIT4 0xad17
542 #define PHY_REALTEK_INIT5 0xfb54
543 #define PHY_REALTEK_INIT6 0xf5c7
544 #define PHY_REALTEK_INIT7 0x1000
545 #define PHY_REALTEK_INIT8 0x0003
546 #define PHY_REALTEK_INIT9 0x0008
547 #define PHY_REALTEK_INIT10 0x0005
548 #define PHY_REALTEK_INIT11 0x0200
549 #define PHY_REALTEK_INIT_MSK1 0x0003
550
551 #define PHY_GIGABIT 0x0100
552
553 #define PHY_TIMEOUT 0x1
554 #define PHY_ERROR 0x2
555
556 #define PHY_100 0x1
557 #define PHY_1000 0x2
558 #define PHY_HALF 0x100
559
560 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
561 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
562 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
563 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
564 #define NV_PAUSEFRAME_RX_REQ 0x0010
565 #define NV_PAUSEFRAME_TX_REQ 0x0020
566 #define NV_PAUSEFRAME_AUTONEG 0x0040
567
568 /* MSI/MSI-X defines */
569 #define NV_MSI_X_MAX_VECTORS 8
570 #define NV_MSI_X_VECTORS_MASK 0x000f
571 #define NV_MSI_CAPABLE 0x0010
572 #define NV_MSI_X_CAPABLE 0x0020
573 #define NV_MSI_ENABLED 0x0040
574 #define NV_MSI_X_ENABLED 0x0080
575
576 #define NV_MSI_X_VECTOR_ALL 0x0
577 #define NV_MSI_X_VECTOR_RX 0x0
578 #define NV_MSI_X_VECTOR_TX 0x1
579 #define NV_MSI_X_VECTOR_OTHER 0x2
580
581 #define NV_MSI_PRIV_OFFSET 0x68
582 #define NV_MSI_PRIV_VALUE 0xffffffff
583
584 #define NV_RESTART_TX 0x1
585 #define NV_RESTART_RX 0x2
586
587 #define NV_TX_LIMIT_COUNT 16
588
589 #define NV_DYNAMIC_THRESHOLD 4
590 #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
591
592 /* statistics */
593 struct nv_ethtool_str {
594 char name[ETH_GSTRING_LEN];
595 };
596
597 static const struct nv_ethtool_str nv_estats_str[] = {
598 { "tx_bytes" }, /* includes Ethernet FCS CRC */
599 { "tx_zero_rexmt" },
600 { "tx_one_rexmt" },
601 { "tx_many_rexmt" },
602 { "tx_late_collision" },
603 { "tx_fifo_errors" },
604 { "tx_carrier_errors" },
605 { "tx_excess_deferral" },
606 { "tx_retry_error" },
607 { "rx_frame_error" },
608 { "rx_extra_byte" },
609 { "rx_late_collision" },
610 { "rx_runt" },
611 { "rx_frame_too_long" },
612 { "rx_over_errors" },
613 { "rx_crc_errors" },
614 { "rx_frame_align_error" },
615 { "rx_length_error" },
616 { "rx_unicast" },
617 { "rx_multicast" },
618 { "rx_broadcast" },
619 { "rx_packets" },
620 { "rx_errors_total" },
621 { "tx_errors_total" },
622
623 /* version 2 stats */
624 { "tx_deferral" },
625 { "tx_packets" },
626 { "rx_bytes" }, /* includes Ethernet FCS CRC */
627 { "tx_pause" },
628 { "rx_pause" },
629 { "rx_drop_frame" },
630
631 /* version 3 stats */
632 { "tx_unicast" },
633 { "tx_multicast" },
634 { "tx_broadcast" }
635 };
636
637 struct nv_ethtool_stats {
638 u64 tx_bytes; /* should be ifconfig->tx_bytes + 4*tx_packets */
639 u64 tx_zero_rexmt;
640 u64 tx_one_rexmt;
641 u64 tx_many_rexmt;
642 u64 tx_late_collision;
643 u64 tx_fifo_errors;
644 u64 tx_carrier_errors;
645 u64 tx_excess_deferral;
646 u64 tx_retry_error;
647 u64 rx_frame_error;
648 u64 rx_extra_byte;
649 u64 rx_late_collision;
650 u64 rx_runt;
651 u64 rx_frame_too_long;
652 u64 rx_over_errors;
653 u64 rx_crc_errors;
654 u64 rx_frame_align_error;
655 u64 rx_length_error;
656 u64 rx_unicast;
657 u64 rx_multicast;
658 u64 rx_broadcast;
659 u64 rx_packets; /* should be ifconfig->rx_packets */
660 u64 rx_errors_total;
661 u64 tx_errors_total;
662
663 /* version 2 stats */
664 u64 tx_deferral;
665 u64 tx_packets; /* should be ifconfig->tx_packets */
666 u64 rx_bytes; /* should be ifconfig->rx_bytes + 4*rx_packets */
667 u64 tx_pause;
668 u64 rx_pause;
669 u64 rx_drop_frame;
670
671 /* version 3 stats */
672 u64 tx_unicast;
673 u64 tx_multicast;
674 u64 tx_broadcast;
675 };
676
677 #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
678 #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
679 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
680
681 /* diagnostics */
682 #define NV_TEST_COUNT_BASE 3
683 #define NV_TEST_COUNT_EXTENDED 4
684
685 static const struct nv_ethtool_str nv_etests_str[] = {
686 { "link (online/offline)" },
687 { "register (offline) " },
688 { "interrupt (offline) " },
689 { "loopback (offline) " }
690 };
691
692 struct register_test {
693 __u32 reg;
694 __u32 mask;
695 };
696
697 static const struct register_test nv_registers_test[] = {
698 { NvRegUnknownSetupReg6, 0x01 },
699 { NvRegMisc1, 0x03c },
700 { NvRegOffloadConfig, 0x03ff },
701 { NvRegMulticastAddrA, 0xffffffff },
702 { NvRegTxWatermark, 0x0ff },
703 { NvRegWakeUpFlags, 0x07777 },
704 { 0, 0 }
705 };
706
707 struct nv_skb_map {
708 struct sk_buff *skb;
709 dma_addr_t dma;
710 unsigned int dma_len:31;
711 unsigned int dma_single:1;
712 struct ring_desc_ex *first_tx_desc;
713 struct nv_skb_map *next_tx_ctx;
714 };
715
716 struct nv_txrx_stats {
717 u64 stat_rx_packets;
718 u64 stat_rx_bytes; /* not always available in HW */
719 u64 stat_rx_missed_errors;
720 u64 stat_rx_dropped;
721 u64 stat_tx_packets; /* not always available in HW */
722 u64 stat_tx_bytes;
723 u64 stat_tx_dropped;
724 };
725
726 #define nv_txrx_stats_inc(member) \
727 __this_cpu_inc(np->txrx_stats->member)
728 #define nv_txrx_stats_add(member, count) \
729 __this_cpu_add(np->txrx_stats->member, (count))
730
731 /*
732 * SMP locking:
733 * All hardware access under netdev_priv(dev)->lock, except the performance
734 * critical parts:
735 * - rx is (pseudo-) lockless: it relies on the single-threading provided
736 * by the arch code for interrupts.
737 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
738 * needs netdev_priv(dev)->lock :-(
739 * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
740 *
741 * Hardware stats updates are protected by hwstats_lock:
742 * - updated by nv_do_stats_poll (timer). This is meant to avoid
743 * integer wraparound in the NIC stats registers, at low frequency
744 * (0.1 Hz)
745 * - updated by nv_get_ethtool_stats + nv_get_stats64
746 *
747 * Software stats are accessed only through 64b synchronization points
748 * and are not subject to other synchronization techniques (single
749 * update thread on the TX or RX paths).
750 */
751
752 /* in dev: base, irq */
753 struct fe_priv {
754 spinlock_t lock;
755
756 struct net_device *dev;
757 struct napi_struct napi;
758
759 /* hardware stats are updated in syscall and timer */
760 spinlock_t hwstats_lock;
761 struct nv_ethtool_stats estats;
762
763 int in_shutdown;
764 u32 linkspeed;
765 int duplex;
766 int autoneg;
767 int fixed_mode;
768 int phyaddr;
769 int wolenabled;
770 unsigned int phy_oui;
771 unsigned int phy_model;
772 unsigned int phy_rev;
773 u16 gigabit;
774 int intr_test;
775 int recover_error;
776 int quiet_count;
777
778 /* General data: RO fields */
779 dma_addr_t ring_addr;
780 struct pci_dev *pci_dev;
781 u32 orig_mac[2];
782 u32 events;
783 u32 irqmask;
784 u32 desc_ver;
785 u32 txrxctl_bits;
786 u32 vlanctl_bits;
787 u32 driver_data;
788 u32 device_id;
789 u32 register_size;
790 u32 mac_in_use;
791 int mgmt_version;
792 int mgmt_sema;
793
794 void __iomem *base;
795
796 /* rx specific fields.
797 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
798 */
799 union ring_type get_rx, put_rx, last_rx;
800 struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
801 struct nv_skb_map *last_rx_ctx;
802 struct nv_skb_map *rx_skb;
803
804 union ring_type rx_ring;
805 unsigned int rx_buf_sz;
806 unsigned int pkt_limit;
807 struct timer_list oom_kick;
808 struct timer_list nic_poll;
809 struct timer_list stats_poll;
810 u32 nic_poll_irq;
811 int rx_ring_size;
812
813 /* RX software stats */
814 struct u64_stats_sync swstats_rx_syncp;
815 struct nv_txrx_stats __percpu *txrx_stats;
816
817 /* media detection workaround.
818 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
819 */
820 int need_linktimer;
821 unsigned long link_timeout;
822 /*
823 * tx specific fields.
824 */
825 union ring_type get_tx, put_tx, last_tx;
826 struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
827 struct nv_skb_map *last_tx_ctx;
828 struct nv_skb_map *tx_skb;
829
830 union ring_type tx_ring;
831 u32 tx_flags;
832 int tx_ring_size;
833 int tx_limit;
834 u32 tx_pkts_in_progress;
835 struct nv_skb_map *tx_change_owner;
836 struct nv_skb_map *tx_end_flip;
837 int tx_stop;
838
839 /* TX software stats */
840 struct u64_stats_sync swstats_tx_syncp;
841
842 /* msi/msi-x fields */
843 u32 msi_flags;
844 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
845
846 /* flow control */
847 u32 pause_flags;
848
849 /* power saved state */
850 u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
851
852 /* for different msi-x irq type */
853 char name_rx[IFNAMSIZ + 3]; /* -rx */
854 char name_tx[IFNAMSIZ + 3]; /* -tx */
855 char name_other[IFNAMSIZ + 6]; /* -other */
856 };
857
858 /*
859 * Maximum number of loops until we assume that a bit in the irq mask
860 * is stuck. Overridable with module param.
861 */
862 static int max_interrupt_work = 4;
863
864 /*
865 * Optimization can be either throuput mode or cpu mode
866 *
867 * Throughput Mode: Every tx and rx packet will generate an interrupt.
868 * CPU Mode: Interrupts are controlled by a timer.
869 */
870 enum {
871 NV_OPTIMIZATION_MODE_THROUGHPUT,
872 NV_OPTIMIZATION_MODE_CPU,
873 NV_OPTIMIZATION_MODE_DYNAMIC
874 };
875 static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
876
877 /*
878 * Poll interval for timer irq
879 *
880 * This interval determines how frequent an interrupt is generated.
881 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
882 * Min = 0, and Max = 65535
883 */
884 static int poll_interval = -1;
885
886 /*
887 * MSI interrupts
888 */
889 enum {
890 NV_MSI_INT_DISABLED,
891 NV_MSI_INT_ENABLED
892 };
893 static int msi = NV_MSI_INT_ENABLED;
894
895 /*
896 * MSIX interrupts
897 */
898 enum {
899 NV_MSIX_INT_DISABLED,
900 NV_MSIX_INT_ENABLED
901 };
902 static int msix = NV_MSIX_INT_ENABLED;
903
904 /*
905 * DMA 64bit
906 */
907 enum {
908 NV_DMA_64BIT_DISABLED,
909 NV_DMA_64BIT_ENABLED
910 };
911 static int dma_64bit = NV_DMA_64BIT_ENABLED;
912
913 /*
914 * Debug output control for tx_timeout
915 */
916 static bool debug_tx_timeout = false;
917
918 /*
919 * Crossover Detection
920 * Realtek 8201 phy + some OEM boards do not work properly.
921 */
922 enum {
923 NV_CROSSOVER_DETECTION_DISABLED,
924 NV_CROSSOVER_DETECTION_ENABLED
925 };
926 static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
927
928 /*
929 * Power down phy when interface is down (persists through reboot;
930 * older Linux and other OSes may not power it up again)
931 */
932 static int phy_power_down;
933
get_nvpriv(struct net_device * dev)934 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
935 {
936 return netdev_priv(dev);
937 }
938
get_hwbase(struct net_device * dev)939 static inline u8 __iomem *get_hwbase(struct net_device *dev)
940 {
941 return ((struct fe_priv *)netdev_priv(dev))->base;
942 }
943
pci_push(u8 __iomem * base)944 static inline void pci_push(u8 __iomem *base)
945 {
946 /* force out pending posted writes */
947 readl(base);
948 }
949
nv_descr_getlength(struct ring_desc * prd,u32 v)950 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
951 {
952 return le32_to_cpu(prd->flaglen)
953 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
954 }
955
nv_descr_getlength_ex(struct ring_desc_ex * prd,u32 v)956 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
957 {
958 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
959 }
960
nv_optimized(struct fe_priv * np)961 static bool nv_optimized(struct fe_priv *np)
962 {
963 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
964 return false;
965 return true;
966 }
967
reg_delay(struct net_device * dev,int offset,u32 mask,u32 target,int delay,int delaymax)968 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
969 int delay, int delaymax)
970 {
971 u8 __iomem *base = get_hwbase(dev);
972
973 pci_push(base);
974 do {
975 udelay(delay);
976 delaymax -= delay;
977 if (delaymax < 0)
978 return 1;
979 } while ((readl(base + offset) & mask) != target);
980 return 0;
981 }
982
983 #define NV_SETUP_RX_RING 0x01
984 #define NV_SETUP_TX_RING 0x02
985
dma_low(dma_addr_t addr)986 static inline u32 dma_low(dma_addr_t addr)
987 {
988 return addr;
989 }
990
dma_high(dma_addr_t addr)991 static inline u32 dma_high(dma_addr_t addr)
992 {
993 return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
994 }
995
setup_hw_rings(struct net_device * dev,int rxtx_flags)996 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
997 {
998 struct fe_priv *np = get_nvpriv(dev);
999 u8 __iomem *base = get_hwbase(dev);
1000
1001 if (!nv_optimized(np)) {
1002 if (rxtx_flags & NV_SETUP_RX_RING)
1003 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
1004 if (rxtx_flags & NV_SETUP_TX_RING)
1005 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
1006 } else {
1007 if (rxtx_flags & NV_SETUP_RX_RING) {
1008 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
1009 writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
1010 }
1011 if (rxtx_flags & NV_SETUP_TX_RING) {
1012 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
1013 writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
1014 }
1015 }
1016 }
1017
free_rings(struct net_device * dev)1018 static void free_rings(struct net_device *dev)
1019 {
1020 struct fe_priv *np = get_nvpriv(dev);
1021
1022 if (!nv_optimized(np)) {
1023 if (np->rx_ring.orig)
1024 dma_free_coherent(&np->pci_dev->dev,
1025 sizeof(struct ring_desc) *
1026 (np->rx_ring_size +
1027 np->tx_ring_size),
1028 np->rx_ring.orig, np->ring_addr);
1029 } else {
1030 if (np->rx_ring.ex)
1031 dma_free_coherent(&np->pci_dev->dev,
1032 sizeof(struct ring_desc_ex) *
1033 (np->rx_ring_size +
1034 np->tx_ring_size),
1035 np->rx_ring.ex, np->ring_addr);
1036 }
1037 kfree(np->rx_skb);
1038 kfree(np->tx_skb);
1039 }
1040
using_multi_irqs(struct net_device * dev)1041 static int using_multi_irqs(struct net_device *dev)
1042 {
1043 struct fe_priv *np = get_nvpriv(dev);
1044
1045 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1046 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))
1047 return 0;
1048 else
1049 return 1;
1050 }
1051
nv_txrx_gate(struct net_device * dev,bool gate)1052 static void nv_txrx_gate(struct net_device *dev, bool gate)
1053 {
1054 struct fe_priv *np = get_nvpriv(dev);
1055 u8 __iomem *base = get_hwbase(dev);
1056 u32 powerstate;
1057
1058 if (!np->mac_in_use &&
1059 (np->driver_data & DEV_HAS_POWER_CNTRL)) {
1060 powerstate = readl(base + NvRegPowerState2);
1061 if (gate)
1062 powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
1063 else
1064 powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
1065 writel(powerstate, base + NvRegPowerState2);
1066 }
1067 }
1068
nv_enable_irq(struct net_device * dev)1069 static void nv_enable_irq(struct net_device *dev)
1070 {
1071 struct fe_priv *np = get_nvpriv(dev);
1072
1073 if (!using_multi_irqs(dev)) {
1074 if (np->msi_flags & NV_MSI_X_ENABLED)
1075 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1076 else
1077 enable_irq(np->pci_dev->irq);
1078 } else {
1079 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1080 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1081 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1082 }
1083 }
1084
nv_disable_irq(struct net_device * dev)1085 static void nv_disable_irq(struct net_device *dev)
1086 {
1087 struct fe_priv *np = get_nvpriv(dev);
1088
1089 if (!using_multi_irqs(dev)) {
1090 if (np->msi_flags & NV_MSI_X_ENABLED)
1091 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1092 else
1093 disable_irq(np->pci_dev->irq);
1094 } else {
1095 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1096 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1097 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1098 }
1099 }
1100
1101 /* In MSIX mode, a write to irqmask behaves as XOR */
nv_enable_hw_interrupts(struct net_device * dev,u32 mask)1102 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
1103 {
1104 u8 __iomem *base = get_hwbase(dev);
1105
1106 writel(mask, base + NvRegIrqMask);
1107 }
1108
nv_disable_hw_interrupts(struct net_device * dev,u32 mask)1109 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
1110 {
1111 struct fe_priv *np = get_nvpriv(dev);
1112 u8 __iomem *base = get_hwbase(dev);
1113
1114 if (np->msi_flags & NV_MSI_X_ENABLED) {
1115 writel(mask, base + NvRegIrqMask);
1116 } else {
1117 if (np->msi_flags & NV_MSI_ENABLED)
1118 writel(0, base + NvRegMSIIrqMask);
1119 writel(0, base + NvRegIrqMask);
1120 }
1121 }
1122
1123 #define MII_READ (-1)
1124 /* mii_rw: read/write a register on the PHY.
1125 *
1126 * Caller must guarantee serialization
1127 */
mii_rw(struct net_device * dev,int addr,int miireg,int value)1128 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
1129 {
1130 u8 __iomem *base = get_hwbase(dev);
1131 u32 reg;
1132 int retval;
1133
1134 writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
1135
1136 reg = readl(base + NvRegMIIControl);
1137 if (reg & NVREG_MIICTL_INUSE) {
1138 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1139 udelay(NV_MIIBUSY_DELAY);
1140 }
1141
1142 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1143 if (value != MII_READ) {
1144 writel(value, base + NvRegMIIData);
1145 reg |= NVREG_MIICTL_WRITE;
1146 }
1147 writel(reg, base + NvRegMIIControl);
1148
1149 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1150 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX)) {
1151 retval = -1;
1152 } else if (value != MII_READ) {
1153 /* it was a write operation - fewer failures are detectable */
1154 retval = 0;
1155 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1156 retval = -1;
1157 } else {
1158 retval = readl(base + NvRegMIIData);
1159 }
1160
1161 return retval;
1162 }
1163
phy_reset(struct net_device * dev,u32 bmcr_setup)1164 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1165 {
1166 struct fe_priv *np = netdev_priv(dev);
1167 u32 miicontrol;
1168 unsigned int tries = 0;
1169
1170 miicontrol = BMCR_RESET | bmcr_setup;
1171 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol))
1172 return -1;
1173
1174 /* wait for 500ms */
1175 msleep(500);
1176
1177 /* must wait till reset is deasserted */
1178 while (miicontrol & BMCR_RESET) {
1179 usleep_range(10000, 20000);
1180 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1181 /* FIXME: 100 tries seem excessive */
1182 if (tries++ > 100)
1183 return -1;
1184 }
1185 return 0;
1186 }
1187
init_realtek_8211b(struct net_device * dev,struct fe_priv * np)1188 static int init_realtek_8211b(struct net_device *dev, struct fe_priv *np)
1189 {
1190 static const struct {
1191 int reg;
1192 int init;
1193 } ri[] = {
1194 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 },
1195 { PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2 },
1196 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3 },
1197 { PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4 },
1198 { PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5 },
1199 { PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6 },
1200 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 },
1201 };
1202 int i;
1203
1204 for (i = 0; i < ARRAY_SIZE(ri); i++) {
1205 if (mii_rw(dev, np->phyaddr, ri[i].reg, ri[i].init))
1206 return PHY_ERROR;
1207 }
1208
1209 return 0;
1210 }
1211
init_realtek_8211c(struct net_device * dev,struct fe_priv * np)1212 static int init_realtek_8211c(struct net_device *dev, struct fe_priv *np)
1213 {
1214 u32 reg;
1215 u8 __iomem *base = get_hwbase(dev);
1216 u32 powerstate = readl(base + NvRegPowerState2);
1217
1218 /* need to perform hw phy reset */
1219 powerstate |= NVREG_POWERSTATE2_PHY_RESET;
1220 writel(powerstate, base + NvRegPowerState2);
1221 msleep(25);
1222
1223 powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
1224 writel(powerstate, base + NvRegPowerState2);
1225 msleep(25);
1226
1227 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1228 reg |= PHY_REALTEK_INIT9;
1229 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg))
1230 return PHY_ERROR;
1231 if (mii_rw(dev, np->phyaddr,
1232 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10))
1233 return PHY_ERROR;
1234 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
1235 if (!(reg & PHY_REALTEK_INIT11)) {
1236 reg |= PHY_REALTEK_INIT11;
1237 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg))
1238 return PHY_ERROR;
1239 }
1240 if (mii_rw(dev, np->phyaddr,
1241 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1))
1242 return PHY_ERROR;
1243
1244 return 0;
1245 }
1246
init_realtek_8201(struct net_device * dev,struct fe_priv * np)1247 static int init_realtek_8201(struct net_device *dev, struct fe_priv *np)
1248 {
1249 u32 phy_reserved;
1250
1251 if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
1252 phy_reserved = mii_rw(dev, np->phyaddr,
1253 PHY_REALTEK_INIT_REG6, MII_READ);
1254 phy_reserved |= PHY_REALTEK_INIT7;
1255 if (mii_rw(dev, np->phyaddr,
1256 PHY_REALTEK_INIT_REG6, phy_reserved))
1257 return PHY_ERROR;
1258 }
1259
1260 return 0;
1261 }
1262
init_realtek_8201_cross(struct net_device * dev,struct fe_priv * np)1263 static int init_realtek_8201_cross(struct net_device *dev, struct fe_priv *np)
1264 {
1265 u32 phy_reserved;
1266
1267 if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
1268 if (mii_rw(dev, np->phyaddr,
1269 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3))
1270 return PHY_ERROR;
1271 phy_reserved = mii_rw(dev, np->phyaddr,
1272 PHY_REALTEK_INIT_REG2, MII_READ);
1273 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
1274 phy_reserved |= PHY_REALTEK_INIT3;
1275 if (mii_rw(dev, np->phyaddr,
1276 PHY_REALTEK_INIT_REG2, phy_reserved))
1277 return PHY_ERROR;
1278 if (mii_rw(dev, np->phyaddr,
1279 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1))
1280 return PHY_ERROR;
1281 }
1282
1283 return 0;
1284 }
1285
init_cicada(struct net_device * dev,struct fe_priv * np,u32 phyinterface)1286 static int init_cicada(struct net_device *dev, struct fe_priv *np,
1287 u32 phyinterface)
1288 {
1289 u32 phy_reserved;
1290
1291 if (phyinterface & PHY_RGMII) {
1292 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1293 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
1294 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
1295 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved))
1296 return PHY_ERROR;
1297 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1298 phy_reserved |= PHY_CICADA_INIT5;
1299 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved))
1300 return PHY_ERROR;
1301 }
1302 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1303 phy_reserved |= PHY_CICADA_INIT6;
1304 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved))
1305 return PHY_ERROR;
1306
1307 return 0;
1308 }
1309
init_vitesse(struct net_device * dev,struct fe_priv * np)1310 static int init_vitesse(struct net_device *dev, struct fe_priv *np)
1311 {
1312 u32 phy_reserved;
1313
1314 if (mii_rw(dev, np->phyaddr,
1315 PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1))
1316 return PHY_ERROR;
1317 if (mii_rw(dev, np->phyaddr,
1318 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2))
1319 return PHY_ERROR;
1320 phy_reserved = mii_rw(dev, np->phyaddr,
1321 PHY_VITESSE_INIT_REG4, MII_READ);
1322 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
1323 return PHY_ERROR;
1324 phy_reserved = mii_rw(dev, np->phyaddr,
1325 PHY_VITESSE_INIT_REG3, MII_READ);
1326 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1327 phy_reserved |= PHY_VITESSE_INIT3;
1328 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
1329 return PHY_ERROR;
1330 if (mii_rw(dev, np->phyaddr,
1331 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4))
1332 return PHY_ERROR;
1333 if (mii_rw(dev, np->phyaddr,
1334 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5))
1335 return PHY_ERROR;
1336 phy_reserved = mii_rw(dev, np->phyaddr,
1337 PHY_VITESSE_INIT_REG4, MII_READ);
1338 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1339 phy_reserved |= PHY_VITESSE_INIT3;
1340 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
1341 return PHY_ERROR;
1342 phy_reserved = mii_rw(dev, np->phyaddr,
1343 PHY_VITESSE_INIT_REG3, MII_READ);
1344 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
1345 return PHY_ERROR;
1346 if (mii_rw(dev, np->phyaddr,
1347 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6))
1348 return PHY_ERROR;
1349 if (mii_rw(dev, np->phyaddr,
1350 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7))
1351 return PHY_ERROR;
1352 phy_reserved = mii_rw(dev, np->phyaddr,
1353 PHY_VITESSE_INIT_REG4, MII_READ);
1354 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
1355 return PHY_ERROR;
1356 phy_reserved = mii_rw(dev, np->phyaddr,
1357 PHY_VITESSE_INIT_REG3, MII_READ);
1358 phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
1359 phy_reserved |= PHY_VITESSE_INIT8;
1360 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
1361 return PHY_ERROR;
1362 if (mii_rw(dev, np->phyaddr,
1363 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9))
1364 return PHY_ERROR;
1365 if (mii_rw(dev, np->phyaddr,
1366 PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10))
1367 return PHY_ERROR;
1368
1369 return 0;
1370 }
1371
phy_init(struct net_device * dev)1372 static int phy_init(struct net_device *dev)
1373 {
1374 struct fe_priv *np = get_nvpriv(dev);
1375 u8 __iomem *base = get_hwbase(dev);
1376 u32 phyinterface;
1377 u32 mii_status, mii_control, mii_control_1000, reg;
1378
1379 /* phy errata for E3016 phy */
1380 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1381 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1382 reg &= ~PHY_MARVELL_E3016_INITMASK;
1383 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1384 netdev_info(dev, "%s: phy write to errata reg failed\n",
1385 pci_name(np->pci_dev));
1386 return PHY_ERROR;
1387 }
1388 }
1389 if (np->phy_oui == PHY_OUI_REALTEK) {
1390 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1391 np->phy_rev == PHY_REV_REALTEK_8211B) {
1392 if (init_realtek_8211b(dev, np)) {
1393 netdev_info(dev, "%s: phy init failed\n",
1394 pci_name(np->pci_dev));
1395 return PHY_ERROR;
1396 }
1397 } else if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1398 np->phy_rev == PHY_REV_REALTEK_8211C) {
1399 if (init_realtek_8211c(dev, np)) {
1400 netdev_info(dev, "%s: phy init failed\n",
1401 pci_name(np->pci_dev));
1402 return PHY_ERROR;
1403 }
1404 } else if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1405 if (init_realtek_8201(dev, np)) {
1406 netdev_info(dev, "%s: phy init failed\n",
1407 pci_name(np->pci_dev));
1408 return PHY_ERROR;
1409 }
1410 }
1411 }
1412
1413 /* set advertise register */
1414 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1415 reg |= (ADVERTISE_10HALF | ADVERTISE_10FULL |
1416 ADVERTISE_100HALF | ADVERTISE_100FULL |
1417 ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1418 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1419 netdev_info(dev, "%s: phy write to advertise failed\n",
1420 pci_name(np->pci_dev));
1421 return PHY_ERROR;
1422 }
1423
1424 /* get phy interface type */
1425 phyinterface = readl(base + NvRegPhyInterface);
1426
1427 /* see if gigabit phy */
1428 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1429 if (mii_status & PHY_GIGABIT) {
1430 np->gigabit = PHY_GIGABIT;
1431 mii_control_1000 = mii_rw(dev, np->phyaddr,
1432 MII_CTRL1000, MII_READ);
1433 mii_control_1000 &= ~ADVERTISE_1000HALF;
1434 if (phyinterface & PHY_RGMII)
1435 mii_control_1000 |= ADVERTISE_1000FULL;
1436 else
1437 mii_control_1000 &= ~ADVERTISE_1000FULL;
1438
1439 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1440 netdev_info(dev, "%s: phy init failed\n",
1441 pci_name(np->pci_dev));
1442 return PHY_ERROR;
1443 }
1444 } else
1445 np->gigabit = 0;
1446
1447 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1448 mii_control |= BMCR_ANENABLE;
1449
1450 if (np->phy_oui == PHY_OUI_REALTEK &&
1451 np->phy_model == PHY_MODEL_REALTEK_8211 &&
1452 np->phy_rev == PHY_REV_REALTEK_8211C) {
1453 /* start autoneg since we already performed hw reset above */
1454 mii_control |= BMCR_ANRESTART;
1455 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1456 netdev_info(dev, "%s: phy init failed\n",
1457 pci_name(np->pci_dev));
1458 return PHY_ERROR;
1459 }
1460 } else {
1461 /* reset the phy
1462 * (certain phys need bmcr to be setup with reset)
1463 */
1464 if (phy_reset(dev, mii_control)) {
1465 netdev_info(dev, "%s: phy reset failed\n",
1466 pci_name(np->pci_dev));
1467 return PHY_ERROR;
1468 }
1469 }
1470
1471 /* phy vendor specific configuration */
1472 if (np->phy_oui == PHY_OUI_CICADA) {
1473 if (init_cicada(dev, np, phyinterface)) {
1474 netdev_info(dev, "%s: phy init failed\n",
1475 pci_name(np->pci_dev));
1476 return PHY_ERROR;
1477 }
1478 } else if (np->phy_oui == PHY_OUI_VITESSE) {
1479 if (init_vitesse(dev, np)) {
1480 netdev_info(dev, "%s: phy init failed\n",
1481 pci_name(np->pci_dev));
1482 return PHY_ERROR;
1483 }
1484 } else if (np->phy_oui == PHY_OUI_REALTEK) {
1485 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1486 np->phy_rev == PHY_REV_REALTEK_8211B) {
1487 /* reset could have cleared these out, set them back */
1488 if (init_realtek_8211b(dev, np)) {
1489 netdev_info(dev, "%s: phy init failed\n",
1490 pci_name(np->pci_dev));
1491 return PHY_ERROR;
1492 }
1493 } else if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1494 if (init_realtek_8201(dev, np) ||
1495 init_realtek_8201_cross(dev, np)) {
1496 netdev_info(dev, "%s: phy init failed\n",
1497 pci_name(np->pci_dev));
1498 return PHY_ERROR;
1499 }
1500 }
1501 }
1502
1503 /* some phys clear out pause advertisement on reset, set it back */
1504 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1505
1506 /* restart auto negotiation, power down phy */
1507 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1508 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1509 if (phy_power_down)
1510 mii_control |= BMCR_PDOWN;
1511 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control))
1512 return PHY_ERROR;
1513
1514 return 0;
1515 }
1516
nv_start_rx(struct net_device * dev)1517 static void nv_start_rx(struct net_device *dev)
1518 {
1519 struct fe_priv *np = netdev_priv(dev);
1520 u8 __iomem *base = get_hwbase(dev);
1521 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1522
1523 /* Already running? Stop it. */
1524 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1525 rx_ctrl &= ~NVREG_RCVCTL_START;
1526 writel(rx_ctrl, base + NvRegReceiverControl);
1527 pci_push(base);
1528 }
1529 writel(np->linkspeed, base + NvRegLinkSpeed);
1530 pci_push(base);
1531 rx_ctrl |= NVREG_RCVCTL_START;
1532 if (np->mac_in_use)
1533 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1534 writel(rx_ctrl, base + NvRegReceiverControl);
1535 pci_push(base);
1536 }
1537
nv_stop_rx(struct net_device * dev)1538 static void nv_stop_rx(struct net_device *dev)
1539 {
1540 struct fe_priv *np = netdev_priv(dev);
1541 u8 __iomem *base = get_hwbase(dev);
1542 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1543
1544 if (!np->mac_in_use)
1545 rx_ctrl &= ~NVREG_RCVCTL_START;
1546 else
1547 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1548 writel(rx_ctrl, base + NvRegReceiverControl);
1549 if (reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1550 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX))
1551 netdev_info(dev, "%s: ReceiverStatus remained busy\n",
1552 __func__);
1553
1554 udelay(NV_RXSTOP_DELAY2);
1555 if (!np->mac_in_use)
1556 writel(0, base + NvRegLinkSpeed);
1557 }
1558
nv_start_tx(struct net_device * dev)1559 static void nv_start_tx(struct net_device *dev)
1560 {
1561 struct fe_priv *np = netdev_priv(dev);
1562 u8 __iomem *base = get_hwbase(dev);
1563 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1564
1565 tx_ctrl |= NVREG_XMITCTL_START;
1566 if (np->mac_in_use)
1567 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1568 writel(tx_ctrl, base + NvRegTransmitterControl);
1569 pci_push(base);
1570 }
1571
nv_stop_tx(struct net_device * dev)1572 static void nv_stop_tx(struct net_device *dev)
1573 {
1574 struct fe_priv *np = netdev_priv(dev);
1575 u8 __iomem *base = get_hwbase(dev);
1576 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1577
1578 if (!np->mac_in_use)
1579 tx_ctrl &= ~NVREG_XMITCTL_START;
1580 else
1581 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1582 writel(tx_ctrl, base + NvRegTransmitterControl);
1583 if (reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1584 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX))
1585 netdev_info(dev, "%s: TransmitterStatus remained busy\n",
1586 __func__);
1587
1588 udelay(NV_TXSTOP_DELAY2);
1589 if (!np->mac_in_use)
1590 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
1591 base + NvRegTransmitPoll);
1592 }
1593
nv_start_rxtx(struct net_device * dev)1594 static void nv_start_rxtx(struct net_device *dev)
1595 {
1596 nv_start_rx(dev);
1597 nv_start_tx(dev);
1598 }
1599
nv_stop_rxtx(struct net_device * dev)1600 static void nv_stop_rxtx(struct net_device *dev)
1601 {
1602 nv_stop_rx(dev);
1603 nv_stop_tx(dev);
1604 }
1605
nv_txrx_reset(struct net_device * dev)1606 static void nv_txrx_reset(struct net_device *dev)
1607 {
1608 struct fe_priv *np = netdev_priv(dev);
1609 u8 __iomem *base = get_hwbase(dev);
1610
1611 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1612 pci_push(base);
1613 udelay(NV_TXRX_RESET_DELAY);
1614 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1615 pci_push(base);
1616 }
1617
nv_mac_reset(struct net_device * dev)1618 static void nv_mac_reset(struct net_device *dev)
1619 {
1620 struct fe_priv *np = netdev_priv(dev);
1621 u8 __iomem *base = get_hwbase(dev);
1622 u32 temp1, temp2, temp3;
1623
1624 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1625 pci_push(base);
1626
1627 /* save registers since they will be cleared on reset */
1628 temp1 = readl(base + NvRegMacAddrA);
1629 temp2 = readl(base + NvRegMacAddrB);
1630 temp3 = readl(base + NvRegTransmitPoll);
1631
1632 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1633 pci_push(base);
1634 udelay(NV_MAC_RESET_DELAY);
1635 writel(0, base + NvRegMacReset);
1636 pci_push(base);
1637 udelay(NV_MAC_RESET_DELAY);
1638
1639 /* restore saved registers */
1640 writel(temp1, base + NvRegMacAddrA);
1641 writel(temp2, base + NvRegMacAddrB);
1642 writel(temp3, base + NvRegTransmitPoll);
1643
1644 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1645 pci_push(base);
1646 }
1647
1648 /* Caller must appropriately lock netdev_priv(dev)->hwstats_lock */
nv_update_stats(struct net_device * dev)1649 static void nv_update_stats(struct net_device *dev)
1650 {
1651 struct fe_priv *np = netdev_priv(dev);
1652 u8 __iomem *base = get_hwbase(dev);
1653
1654 lockdep_assert_held(&np->hwstats_lock);
1655
1656 /* query hardware */
1657 np->estats.tx_bytes += readl(base + NvRegTxCnt);
1658 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
1659 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
1660 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
1661 np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
1662 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
1663 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
1664 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
1665 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
1666 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
1667 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
1668 np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
1669 np->estats.rx_runt += readl(base + NvRegRxRunt);
1670 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
1671 np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
1672 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
1673 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
1674 np->estats.rx_length_error += readl(base + NvRegRxLenErr);
1675 np->estats.rx_unicast += readl(base + NvRegRxUnicast);
1676 np->estats.rx_multicast += readl(base + NvRegRxMulticast);
1677 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
1678 np->estats.rx_packets =
1679 np->estats.rx_unicast +
1680 np->estats.rx_multicast +
1681 np->estats.rx_broadcast;
1682 np->estats.rx_errors_total =
1683 np->estats.rx_crc_errors +
1684 np->estats.rx_over_errors +
1685 np->estats.rx_frame_error +
1686 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
1687 np->estats.rx_late_collision +
1688 np->estats.rx_runt +
1689 np->estats.rx_frame_too_long;
1690 np->estats.tx_errors_total =
1691 np->estats.tx_late_collision +
1692 np->estats.tx_fifo_errors +
1693 np->estats.tx_carrier_errors +
1694 np->estats.tx_excess_deferral +
1695 np->estats.tx_retry_error;
1696
1697 if (np->driver_data & DEV_HAS_STATISTICS_V2) {
1698 np->estats.tx_deferral += readl(base + NvRegTxDef);
1699 np->estats.tx_packets += readl(base + NvRegTxFrame);
1700 np->estats.rx_bytes += readl(base + NvRegRxCnt);
1701 np->estats.tx_pause += readl(base + NvRegTxPause);
1702 np->estats.rx_pause += readl(base + NvRegRxPause);
1703 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
1704 np->estats.rx_errors_total += np->estats.rx_drop_frame;
1705 }
1706
1707 if (np->driver_data & DEV_HAS_STATISTICS_V3) {
1708 np->estats.tx_unicast += readl(base + NvRegTxUnicast);
1709 np->estats.tx_multicast += readl(base + NvRegTxMulticast);
1710 np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
1711 }
1712 }
1713
nv_get_stats(int cpu,struct fe_priv * np,struct rtnl_link_stats64 * storage)1714 static void nv_get_stats(int cpu, struct fe_priv *np,
1715 struct rtnl_link_stats64 *storage)
1716 {
1717 struct nv_txrx_stats *src = per_cpu_ptr(np->txrx_stats, cpu);
1718 unsigned int syncp_start;
1719 u64 rx_packets, rx_bytes, rx_dropped, rx_missed_errors;
1720 u64 tx_packets, tx_bytes, tx_dropped;
1721
1722 do {
1723 syncp_start = u64_stats_fetch_begin(&np->swstats_rx_syncp);
1724 rx_packets = src->stat_rx_packets;
1725 rx_bytes = src->stat_rx_bytes;
1726 rx_dropped = src->stat_rx_dropped;
1727 rx_missed_errors = src->stat_rx_missed_errors;
1728 } while (u64_stats_fetch_retry(&np->swstats_rx_syncp, syncp_start));
1729
1730 storage->rx_packets += rx_packets;
1731 storage->rx_bytes += rx_bytes;
1732 storage->rx_dropped += rx_dropped;
1733 storage->rx_missed_errors += rx_missed_errors;
1734
1735 do {
1736 syncp_start = u64_stats_fetch_begin(&np->swstats_tx_syncp);
1737 tx_packets = src->stat_tx_packets;
1738 tx_bytes = src->stat_tx_bytes;
1739 tx_dropped = src->stat_tx_dropped;
1740 } while (u64_stats_fetch_retry(&np->swstats_tx_syncp, syncp_start));
1741
1742 storage->tx_packets += tx_packets;
1743 storage->tx_bytes += tx_bytes;
1744 storage->tx_dropped += tx_dropped;
1745 }
1746
1747 /*
1748 * nv_get_stats64: dev->ndo_get_stats64 function
1749 * Get latest stats value from the nic.
1750 * Called with rcu_read_lock() held -
1751 * only synchronized against unregister_netdevice.
1752 */
1753 static void
nv_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * storage)1754 nv_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage)
1755 __acquires(&netdev_priv(dev)->hwstats_lock)
1756 __releases(&netdev_priv(dev)->hwstats_lock)
1757 {
1758 struct fe_priv *np = netdev_priv(dev);
1759 int cpu;
1760
1761 /*
1762 * Note: because HW stats are not always available and for
1763 * consistency reasons, the following ifconfig stats are
1764 * managed by software: rx_bytes, tx_bytes, rx_packets and
1765 * tx_packets. The related hardware stats reported by ethtool
1766 * should be equivalent to these ifconfig stats, with 4
1767 * additional bytes per packet (Ethernet FCS CRC), except for
1768 * tx_packets when TSO kicks in.
1769 */
1770
1771 /* software stats */
1772 for_each_online_cpu(cpu)
1773 nv_get_stats(cpu, np, storage);
1774
1775 /* If the nic supports hw counters then retrieve latest values */
1776 if (np->driver_data & DEV_HAS_STATISTICS_V123) {
1777 spin_lock_bh(&np->hwstats_lock);
1778
1779 nv_update_stats(dev);
1780
1781 /* generic stats */
1782 storage->rx_errors = np->estats.rx_errors_total;
1783 storage->tx_errors = np->estats.tx_errors_total;
1784
1785 /* meaningful only when NIC supports stats v3 */
1786 storage->multicast = np->estats.rx_multicast;
1787
1788 /* detailed rx_errors */
1789 storage->rx_length_errors = np->estats.rx_length_error;
1790 storage->rx_over_errors = np->estats.rx_over_errors;
1791 storage->rx_crc_errors = np->estats.rx_crc_errors;
1792 storage->rx_frame_errors = np->estats.rx_frame_align_error;
1793 storage->rx_fifo_errors = np->estats.rx_drop_frame;
1794
1795 /* detailed tx_errors */
1796 storage->tx_carrier_errors = np->estats.tx_carrier_errors;
1797 storage->tx_fifo_errors = np->estats.tx_fifo_errors;
1798
1799 spin_unlock_bh(&np->hwstats_lock);
1800 }
1801 }
1802
1803 /*
1804 * nv_alloc_rx: fill rx ring entries.
1805 * Return 1 if the allocations for the skbs failed and the
1806 * rx engine is without Available descriptors
1807 */
nv_alloc_rx(struct net_device * dev)1808 static int nv_alloc_rx(struct net_device *dev)
1809 {
1810 struct fe_priv *np = netdev_priv(dev);
1811 struct ring_desc *less_rx;
1812
1813 less_rx = np->get_rx.orig;
1814 if (less_rx-- == np->rx_ring.orig)
1815 less_rx = np->last_rx.orig;
1816
1817 while (np->put_rx.orig != less_rx) {
1818 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD);
1819 if (likely(skb)) {
1820 np->put_rx_ctx->skb = skb;
1821 np->put_rx_ctx->dma = dma_map_single(&np->pci_dev->dev,
1822 skb->data,
1823 skb_tailroom(skb),
1824 DMA_FROM_DEVICE);
1825 if (unlikely(dma_mapping_error(&np->pci_dev->dev,
1826 np->put_rx_ctx->dma))) {
1827 kfree_skb(skb);
1828 goto packet_dropped;
1829 }
1830 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1831 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
1832 wmb();
1833 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1834 if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
1835 np->put_rx.orig = np->rx_ring.orig;
1836 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1837 np->put_rx_ctx = np->rx_skb;
1838 } else {
1839 packet_dropped:
1840 u64_stats_update_begin(&np->swstats_rx_syncp);
1841 nv_txrx_stats_inc(stat_rx_dropped);
1842 u64_stats_update_end(&np->swstats_rx_syncp);
1843 return 1;
1844 }
1845 }
1846 return 0;
1847 }
1848
nv_alloc_rx_optimized(struct net_device * dev)1849 static int nv_alloc_rx_optimized(struct net_device *dev)
1850 {
1851 struct fe_priv *np = netdev_priv(dev);
1852 struct ring_desc_ex *less_rx;
1853
1854 less_rx = np->get_rx.ex;
1855 if (less_rx-- == np->rx_ring.ex)
1856 less_rx = np->last_rx.ex;
1857
1858 while (np->put_rx.ex != less_rx) {
1859 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD);
1860 if (likely(skb)) {
1861 np->put_rx_ctx->skb = skb;
1862 np->put_rx_ctx->dma = dma_map_single(&np->pci_dev->dev,
1863 skb->data,
1864 skb_tailroom(skb),
1865 DMA_FROM_DEVICE);
1866 if (unlikely(dma_mapping_error(&np->pci_dev->dev,
1867 np->put_rx_ctx->dma))) {
1868 kfree_skb(skb);
1869 goto packet_dropped;
1870 }
1871 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1872 np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
1873 np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
1874 wmb();
1875 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1876 if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
1877 np->put_rx.ex = np->rx_ring.ex;
1878 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1879 np->put_rx_ctx = np->rx_skb;
1880 } else {
1881 packet_dropped:
1882 u64_stats_update_begin(&np->swstats_rx_syncp);
1883 nv_txrx_stats_inc(stat_rx_dropped);
1884 u64_stats_update_end(&np->swstats_rx_syncp);
1885 return 1;
1886 }
1887 }
1888 return 0;
1889 }
1890
1891 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
nv_do_rx_refill(struct timer_list * t)1892 static void nv_do_rx_refill(struct timer_list *t)
1893 {
1894 struct fe_priv *np = from_timer(np, t, oom_kick);
1895
1896 /* Just reschedule NAPI rx processing */
1897 napi_schedule(&np->napi);
1898 }
1899
nv_init_rx(struct net_device * dev)1900 static void nv_init_rx(struct net_device *dev)
1901 {
1902 struct fe_priv *np = netdev_priv(dev);
1903 int i;
1904
1905 np->get_rx = np->rx_ring;
1906 np->put_rx = np->rx_ring;
1907
1908 if (!nv_optimized(np))
1909 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
1910 else
1911 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
1912 np->get_rx_ctx = np->rx_skb;
1913 np->put_rx_ctx = np->rx_skb;
1914 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
1915
1916 for (i = 0; i < np->rx_ring_size; i++) {
1917 if (!nv_optimized(np)) {
1918 np->rx_ring.orig[i].flaglen = 0;
1919 np->rx_ring.orig[i].buf = 0;
1920 } else {
1921 np->rx_ring.ex[i].flaglen = 0;
1922 np->rx_ring.ex[i].txvlan = 0;
1923 np->rx_ring.ex[i].bufhigh = 0;
1924 np->rx_ring.ex[i].buflow = 0;
1925 }
1926 np->rx_skb[i].skb = NULL;
1927 np->rx_skb[i].dma = 0;
1928 }
1929 }
1930
nv_init_tx(struct net_device * dev)1931 static void nv_init_tx(struct net_device *dev)
1932 {
1933 struct fe_priv *np = netdev_priv(dev);
1934 int i;
1935
1936 np->get_tx = np->tx_ring;
1937 np->put_tx = np->tx_ring;
1938
1939 if (!nv_optimized(np))
1940 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
1941 else
1942 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
1943 np->get_tx_ctx = np->tx_skb;
1944 np->put_tx_ctx = np->tx_skb;
1945 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
1946 netdev_reset_queue(np->dev);
1947 np->tx_pkts_in_progress = 0;
1948 np->tx_change_owner = NULL;
1949 np->tx_end_flip = NULL;
1950 np->tx_stop = 0;
1951
1952 for (i = 0; i < np->tx_ring_size; i++) {
1953 if (!nv_optimized(np)) {
1954 np->tx_ring.orig[i].flaglen = 0;
1955 np->tx_ring.orig[i].buf = 0;
1956 } else {
1957 np->tx_ring.ex[i].flaglen = 0;
1958 np->tx_ring.ex[i].txvlan = 0;
1959 np->tx_ring.ex[i].bufhigh = 0;
1960 np->tx_ring.ex[i].buflow = 0;
1961 }
1962 np->tx_skb[i].skb = NULL;
1963 np->tx_skb[i].dma = 0;
1964 np->tx_skb[i].dma_len = 0;
1965 np->tx_skb[i].dma_single = 0;
1966 np->tx_skb[i].first_tx_desc = NULL;
1967 np->tx_skb[i].next_tx_ctx = NULL;
1968 }
1969 }
1970
nv_init_ring(struct net_device * dev)1971 static int nv_init_ring(struct net_device *dev)
1972 {
1973 struct fe_priv *np = netdev_priv(dev);
1974
1975 nv_init_tx(dev);
1976 nv_init_rx(dev);
1977
1978 if (!nv_optimized(np))
1979 return nv_alloc_rx(dev);
1980 else
1981 return nv_alloc_rx_optimized(dev);
1982 }
1983
nv_unmap_txskb(struct fe_priv * np,struct nv_skb_map * tx_skb)1984 static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
1985 {
1986 if (tx_skb->dma) {
1987 if (tx_skb->dma_single)
1988 dma_unmap_single(&np->pci_dev->dev, tx_skb->dma,
1989 tx_skb->dma_len,
1990 DMA_TO_DEVICE);
1991 else
1992 dma_unmap_page(&np->pci_dev->dev, tx_skb->dma,
1993 tx_skb->dma_len,
1994 DMA_TO_DEVICE);
1995 tx_skb->dma = 0;
1996 }
1997 }
1998
nv_release_txskb(struct fe_priv * np,struct nv_skb_map * tx_skb)1999 static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
2000 {
2001 nv_unmap_txskb(np, tx_skb);
2002 if (tx_skb->skb) {
2003 dev_kfree_skb_any(tx_skb->skb);
2004 tx_skb->skb = NULL;
2005 return 1;
2006 }
2007 return 0;
2008 }
2009
nv_drain_tx(struct net_device * dev)2010 static void nv_drain_tx(struct net_device *dev)
2011 {
2012 struct fe_priv *np = netdev_priv(dev);
2013 unsigned int i;
2014
2015 for (i = 0; i < np->tx_ring_size; i++) {
2016 if (!nv_optimized(np)) {
2017 np->tx_ring.orig[i].flaglen = 0;
2018 np->tx_ring.orig[i].buf = 0;
2019 } else {
2020 np->tx_ring.ex[i].flaglen = 0;
2021 np->tx_ring.ex[i].txvlan = 0;
2022 np->tx_ring.ex[i].bufhigh = 0;
2023 np->tx_ring.ex[i].buflow = 0;
2024 }
2025 if (nv_release_txskb(np, &np->tx_skb[i])) {
2026 u64_stats_update_begin(&np->swstats_tx_syncp);
2027 nv_txrx_stats_inc(stat_tx_dropped);
2028 u64_stats_update_end(&np->swstats_tx_syncp);
2029 }
2030 np->tx_skb[i].dma = 0;
2031 np->tx_skb[i].dma_len = 0;
2032 np->tx_skb[i].dma_single = 0;
2033 np->tx_skb[i].first_tx_desc = NULL;
2034 np->tx_skb[i].next_tx_ctx = NULL;
2035 }
2036 np->tx_pkts_in_progress = 0;
2037 np->tx_change_owner = NULL;
2038 np->tx_end_flip = NULL;
2039 }
2040
nv_drain_rx(struct net_device * dev)2041 static void nv_drain_rx(struct net_device *dev)
2042 {
2043 struct fe_priv *np = netdev_priv(dev);
2044 int i;
2045
2046 for (i = 0; i < np->rx_ring_size; i++) {
2047 if (!nv_optimized(np)) {
2048 np->rx_ring.orig[i].flaglen = 0;
2049 np->rx_ring.orig[i].buf = 0;
2050 } else {
2051 np->rx_ring.ex[i].flaglen = 0;
2052 np->rx_ring.ex[i].txvlan = 0;
2053 np->rx_ring.ex[i].bufhigh = 0;
2054 np->rx_ring.ex[i].buflow = 0;
2055 }
2056 wmb();
2057 if (np->rx_skb[i].skb) {
2058 dma_unmap_single(&np->pci_dev->dev, np->rx_skb[i].dma,
2059 (skb_end_pointer(np->rx_skb[i].skb) -
2060 np->rx_skb[i].skb->data),
2061 DMA_FROM_DEVICE);
2062 dev_kfree_skb(np->rx_skb[i].skb);
2063 np->rx_skb[i].skb = NULL;
2064 }
2065 }
2066 }
2067
nv_drain_rxtx(struct net_device * dev)2068 static void nv_drain_rxtx(struct net_device *dev)
2069 {
2070 nv_drain_tx(dev);
2071 nv_drain_rx(dev);
2072 }
2073
nv_get_empty_tx_slots(struct fe_priv * np)2074 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
2075 {
2076 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
2077 }
2078
nv_legacybackoff_reseed(struct net_device * dev)2079 static void nv_legacybackoff_reseed(struct net_device *dev)
2080 {
2081 u8 __iomem *base = get_hwbase(dev);
2082 u32 reg;
2083 u32 low;
2084 int tx_status = 0;
2085
2086 reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
2087 get_random_bytes(&low, sizeof(low));
2088 reg |= low & NVREG_SLOTTIME_MASK;
2089
2090 /* Need to stop tx before change takes effect.
2091 * Caller has already gained np->lock.
2092 */
2093 tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
2094 if (tx_status)
2095 nv_stop_tx(dev);
2096 nv_stop_rx(dev);
2097 writel(reg, base + NvRegSlotTime);
2098 if (tx_status)
2099 nv_start_tx(dev);
2100 nv_start_rx(dev);
2101 }
2102
2103 /* Gear Backoff Seeds */
2104 #define BACKOFF_SEEDSET_ROWS 8
2105 #define BACKOFF_SEEDSET_LFSRS 15
2106
2107 /* Known Good seed sets */
2108 static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2109 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2110 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
2111 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2112 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
2113 {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
2114 {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
2115 {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
2116 {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184} };
2117
2118 static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2119 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2120 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2121 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
2122 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2123 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2124 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2125 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2126 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395} };
2127
nv_gear_backoff_reseed(struct net_device * dev)2128 static void nv_gear_backoff_reseed(struct net_device *dev)
2129 {
2130 u8 __iomem *base = get_hwbase(dev);
2131 u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
2132 u32 temp, seedset, combinedSeed;
2133 int i;
2134
2135 /* Setup seed for free running LFSR */
2136 /* We are going to read the time stamp counter 3 times
2137 and swizzle bits around to increase randomness */
2138 get_random_bytes(&miniseed1, sizeof(miniseed1));
2139 miniseed1 &= 0x0fff;
2140 if (miniseed1 == 0)
2141 miniseed1 = 0xabc;
2142
2143 get_random_bytes(&miniseed2, sizeof(miniseed2));
2144 miniseed2 &= 0x0fff;
2145 if (miniseed2 == 0)
2146 miniseed2 = 0xabc;
2147 miniseed2_reversed =
2148 ((miniseed2 & 0xF00) >> 8) |
2149 (miniseed2 & 0x0F0) |
2150 ((miniseed2 & 0x00F) << 8);
2151
2152 get_random_bytes(&miniseed3, sizeof(miniseed3));
2153 miniseed3 &= 0x0fff;
2154 if (miniseed3 == 0)
2155 miniseed3 = 0xabc;
2156 miniseed3_reversed =
2157 ((miniseed3 & 0xF00) >> 8) |
2158 (miniseed3 & 0x0F0) |
2159 ((miniseed3 & 0x00F) << 8);
2160
2161 combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
2162 (miniseed2 ^ miniseed3_reversed);
2163
2164 /* Seeds can not be zero */
2165 if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
2166 combinedSeed |= 0x08;
2167 if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
2168 combinedSeed |= 0x8000;
2169
2170 /* No need to disable tx here */
2171 temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
2172 temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
2173 temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
2174 writel(temp, base + NvRegBackOffControl);
2175
2176 /* Setup seeds for all gear LFSRs. */
2177 get_random_bytes(&seedset, sizeof(seedset));
2178 seedset = seedset % BACKOFF_SEEDSET_ROWS;
2179 for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++) {
2180 temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
2181 temp |= main_seedset[seedset][i-1] & 0x3ff;
2182 temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
2183 writel(temp, base + NvRegBackOffControl);
2184 }
2185 }
2186
2187 /*
2188 * nv_start_xmit: dev->hard_start_xmit function
2189 * Called with netif_tx_lock held.
2190 */
nv_start_xmit(struct sk_buff * skb,struct net_device * dev)2191 static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
2192 {
2193 struct fe_priv *np = netdev_priv(dev);
2194 u32 tx_flags = 0;
2195 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
2196 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2197 unsigned int i;
2198 u32 offset = 0;
2199 u32 bcnt;
2200 u32 size = skb_headlen(skb);
2201 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2202 u32 empty_slots;
2203 struct ring_desc *put_tx;
2204 struct ring_desc *start_tx;
2205 struct ring_desc *prev_tx;
2206 struct nv_skb_map *prev_tx_ctx;
2207 struct nv_skb_map *tmp_tx_ctx = NULL, *start_tx_ctx = NULL;
2208 unsigned long flags;
2209 netdev_tx_t ret = NETDEV_TX_OK;
2210
2211 /* add fragments to entries count */
2212 for (i = 0; i < fragments; i++) {
2213 u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2214
2215 entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) +
2216 ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2217 }
2218
2219 spin_lock_irqsave(&np->lock, flags);
2220 empty_slots = nv_get_empty_tx_slots(np);
2221 if (unlikely(empty_slots <= entries)) {
2222 netif_stop_queue(dev);
2223 np->tx_stop = 1;
2224 spin_unlock_irqrestore(&np->lock, flags);
2225
2226 /* When normal packets and/or xmit_more packets fill up
2227 * tx_desc, it is necessary to trigger NIC tx reg.
2228 */
2229 ret = NETDEV_TX_BUSY;
2230 goto txkick;
2231 }
2232 spin_unlock_irqrestore(&np->lock, flags);
2233
2234 start_tx = put_tx = np->put_tx.orig;
2235
2236 /* setup the header buffer */
2237 do {
2238 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2239 np->put_tx_ctx->dma = dma_map_single(&np->pci_dev->dev,
2240 skb->data + offset, bcnt,
2241 DMA_TO_DEVICE);
2242 if (unlikely(dma_mapping_error(&np->pci_dev->dev,
2243 np->put_tx_ctx->dma))) {
2244 /* on DMA mapping error - drop the packet */
2245 dev_kfree_skb_any(skb);
2246 u64_stats_update_begin(&np->swstats_tx_syncp);
2247 nv_txrx_stats_inc(stat_tx_dropped);
2248 u64_stats_update_end(&np->swstats_tx_syncp);
2249
2250 ret = NETDEV_TX_OK;
2251
2252 goto dma_error;
2253 }
2254 np->put_tx_ctx->dma_len = bcnt;
2255 np->put_tx_ctx->dma_single = 1;
2256 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2257 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2258
2259 tx_flags = np->tx_flags;
2260 offset += bcnt;
2261 size -= bcnt;
2262 if (unlikely(put_tx++ == np->last_tx.orig))
2263 put_tx = np->tx_ring.orig;
2264 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2265 np->put_tx_ctx = np->tx_skb;
2266 } while (size);
2267
2268 /* setup the fragments */
2269 for (i = 0; i < fragments; i++) {
2270 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2271 u32 frag_size = skb_frag_size(frag);
2272 offset = 0;
2273
2274 do {
2275 if (!start_tx_ctx)
2276 start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx;
2277
2278 bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size;
2279 np->put_tx_ctx->dma = skb_frag_dma_map(
2280 &np->pci_dev->dev,
2281 frag, offset,
2282 bcnt,
2283 DMA_TO_DEVICE);
2284 if (unlikely(dma_mapping_error(&np->pci_dev->dev,
2285 np->put_tx_ctx->dma))) {
2286
2287 /* Unwind the mapped fragments */
2288 do {
2289 nv_unmap_txskb(np, start_tx_ctx);
2290 if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx))
2291 tmp_tx_ctx = np->tx_skb;
2292 } while (tmp_tx_ctx != np->put_tx_ctx);
2293 dev_kfree_skb_any(skb);
2294 np->put_tx_ctx = start_tx_ctx;
2295 u64_stats_update_begin(&np->swstats_tx_syncp);
2296 nv_txrx_stats_inc(stat_tx_dropped);
2297 u64_stats_update_end(&np->swstats_tx_syncp);
2298
2299 ret = NETDEV_TX_OK;
2300
2301 goto dma_error;
2302 }
2303
2304 np->put_tx_ctx->dma_len = bcnt;
2305 np->put_tx_ctx->dma_single = 0;
2306 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2307 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2308
2309 offset += bcnt;
2310 frag_size -= bcnt;
2311 if (unlikely(put_tx++ == np->last_tx.orig))
2312 put_tx = np->tx_ring.orig;
2313 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2314 np->put_tx_ctx = np->tx_skb;
2315 } while (frag_size);
2316 }
2317
2318 if (unlikely(put_tx == np->tx_ring.orig))
2319 prev_tx = np->last_tx.orig;
2320 else
2321 prev_tx = put_tx - 1;
2322
2323 if (unlikely(np->put_tx_ctx == np->tx_skb))
2324 prev_tx_ctx = np->last_tx_ctx;
2325 else
2326 prev_tx_ctx = np->put_tx_ctx - 1;
2327
2328 /* set last fragment flag */
2329 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
2330
2331 /* save skb in this slot's context area */
2332 prev_tx_ctx->skb = skb;
2333
2334 if (skb_is_gso(skb))
2335 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2336 else
2337 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2338 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2339
2340 spin_lock_irqsave(&np->lock, flags);
2341
2342 /* set tx flags */
2343 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2344
2345 netdev_sent_queue(np->dev, skb->len);
2346
2347 skb_tx_timestamp(skb);
2348
2349 np->put_tx.orig = put_tx;
2350
2351 spin_unlock_irqrestore(&np->lock, flags);
2352
2353 txkick:
2354 if (netif_queue_stopped(dev) || !netdev_xmit_more()) {
2355 u32 txrxctl_kick;
2356 dma_error:
2357 txrxctl_kick = NVREG_TXRXCTL_KICK | np->txrxctl_bits;
2358 writel(txrxctl_kick, get_hwbase(dev) + NvRegTxRxControl);
2359 }
2360
2361 return ret;
2362 }
2363
nv_start_xmit_optimized(struct sk_buff * skb,struct net_device * dev)2364 static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb,
2365 struct net_device *dev)
2366 {
2367 struct fe_priv *np = netdev_priv(dev);
2368 u32 tx_flags = 0;
2369 u32 tx_flags_extra;
2370 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2371 unsigned int i;
2372 u32 offset = 0;
2373 u32 bcnt;
2374 u32 size = skb_headlen(skb);
2375 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2376 u32 empty_slots;
2377 struct ring_desc_ex *put_tx;
2378 struct ring_desc_ex *start_tx;
2379 struct ring_desc_ex *prev_tx;
2380 struct nv_skb_map *prev_tx_ctx;
2381 struct nv_skb_map *start_tx_ctx = NULL;
2382 struct nv_skb_map *tmp_tx_ctx = NULL;
2383 unsigned long flags;
2384 netdev_tx_t ret = NETDEV_TX_OK;
2385
2386 /* add fragments to entries count */
2387 for (i = 0; i < fragments; i++) {
2388 u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2389
2390 entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) +
2391 ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2392 }
2393
2394 spin_lock_irqsave(&np->lock, flags);
2395 empty_slots = nv_get_empty_tx_slots(np);
2396 if (unlikely(empty_slots <= entries)) {
2397 netif_stop_queue(dev);
2398 np->tx_stop = 1;
2399 spin_unlock_irqrestore(&np->lock, flags);
2400
2401 /* When normal packets and/or xmit_more packets fill up
2402 * tx_desc, it is necessary to trigger NIC tx reg.
2403 */
2404 ret = NETDEV_TX_BUSY;
2405
2406 goto txkick;
2407 }
2408 spin_unlock_irqrestore(&np->lock, flags);
2409
2410 start_tx = put_tx = np->put_tx.ex;
2411 start_tx_ctx = np->put_tx_ctx;
2412
2413 /* setup the header buffer */
2414 do {
2415 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2416 np->put_tx_ctx->dma = dma_map_single(&np->pci_dev->dev,
2417 skb->data + offset, bcnt,
2418 DMA_TO_DEVICE);
2419 if (unlikely(dma_mapping_error(&np->pci_dev->dev,
2420 np->put_tx_ctx->dma))) {
2421 /* on DMA mapping error - drop the packet */
2422 dev_kfree_skb_any(skb);
2423 u64_stats_update_begin(&np->swstats_tx_syncp);
2424 nv_txrx_stats_inc(stat_tx_dropped);
2425 u64_stats_update_end(&np->swstats_tx_syncp);
2426
2427 ret = NETDEV_TX_OK;
2428
2429 goto dma_error;
2430 }
2431 np->put_tx_ctx->dma_len = bcnt;
2432 np->put_tx_ctx->dma_single = 1;
2433 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2434 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2435 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2436
2437 tx_flags = NV_TX2_VALID;
2438 offset += bcnt;
2439 size -= bcnt;
2440 if (unlikely(put_tx++ == np->last_tx.ex))
2441 put_tx = np->tx_ring.ex;
2442 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2443 np->put_tx_ctx = np->tx_skb;
2444 } while (size);
2445
2446 /* setup the fragments */
2447 for (i = 0; i < fragments; i++) {
2448 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2449 u32 frag_size = skb_frag_size(frag);
2450 offset = 0;
2451
2452 do {
2453 bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size;
2454 if (!start_tx_ctx)
2455 start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx;
2456 np->put_tx_ctx->dma = skb_frag_dma_map(
2457 &np->pci_dev->dev,
2458 frag, offset,
2459 bcnt,
2460 DMA_TO_DEVICE);
2461
2462 if (unlikely(dma_mapping_error(&np->pci_dev->dev,
2463 np->put_tx_ctx->dma))) {
2464
2465 /* Unwind the mapped fragments */
2466 do {
2467 nv_unmap_txskb(np, start_tx_ctx);
2468 if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx))
2469 tmp_tx_ctx = np->tx_skb;
2470 } while (tmp_tx_ctx != np->put_tx_ctx);
2471 dev_kfree_skb_any(skb);
2472 np->put_tx_ctx = start_tx_ctx;
2473 u64_stats_update_begin(&np->swstats_tx_syncp);
2474 nv_txrx_stats_inc(stat_tx_dropped);
2475 u64_stats_update_end(&np->swstats_tx_syncp);
2476
2477 ret = NETDEV_TX_OK;
2478
2479 goto dma_error;
2480 }
2481 np->put_tx_ctx->dma_len = bcnt;
2482 np->put_tx_ctx->dma_single = 0;
2483 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2484 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2485 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2486
2487 offset += bcnt;
2488 frag_size -= bcnt;
2489 if (unlikely(put_tx++ == np->last_tx.ex))
2490 put_tx = np->tx_ring.ex;
2491 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2492 np->put_tx_ctx = np->tx_skb;
2493 } while (frag_size);
2494 }
2495
2496 if (unlikely(put_tx == np->tx_ring.ex))
2497 prev_tx = np->last_tx.ex;
2498 else
2499 prev_tx = put_tx - 1;
2500
2501 if (unlikely(np->put_tx_ctx == np->tx_skb))
2502 prev_tx_ctx = np->last_tx_ctx;
2503 else
2504 prev_tx_ctx = np->put_tx_ctx - 1;
2505
2506 /* set last fragment flag */
2507 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
2508
2509 /* save skb in this slot's context area */
2510 prev_tx_ctx->skb = skb;
2511
2512 if (skb_is_gso(skb))
2513 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2514 else
2515 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2516 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2517
2518 /* vlan tag */
2519 if (skb_vlan_tag_present(skb))
2520 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT |
2521 skb_vlan_tag_get(skb));
2522 else
2523 start_tx->txvlan = 0;
2524
2525 spin_lock_irqsave(&np->lock, flags);
2526
2527 if (np->tx_limit) {
2528 /* Limit the number of outstanding tx. Setup all fragments, but
2529 * do not set the VALID bit on the first descriptor. Save a pointer
2530 * to that descriptor and also for next skb_map element.
2531 */
2532
2533 if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
2534 if (!np->tx_change_owner)
2535 np->tx_change_owner = start_tx_ctx;
2536
2537 /* remove VALID bit */
2538 tx_flags &= ~NV_TX2_VALID;
2539 start_tx_ctx->first_tx_desc = start_tx;
2540 start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
2541 np->tx_end_flip = np->put_tx_ctx;
2542 } else {
2543 np->tx_pkts_in_progress++;
2544 }
2545 }
2546
2547 /* set tx flags */
2548 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2549
2550 netdev_sent_queue(np->dev, skb->len);
2551
2552 skb_tx_timestamp(skb);
2553
2554 np->put_tx.ex = put_tx;
2555
2556 spin_unlock_irqrestore(&np->lock, flags);
2557
2558 txkick:
2559 if (netif_queue_stopped(dev) || !netdev_xmit_more()) {
2560 u32 txrxctl_kick;
2561 dma_error:
2562 txrxctl_kick = NVREG_TXRXCTL_KICK | np->txrxctl_bits;
2563 writel(txrxctl_kick, get_hwbase(dev) + NvRegTxRxControl);
2564 }
2565
2566 return ret;
2567 }
2568
nv_tx_flip_ownership(struct net_device * dev)2569 static inline void nv_tx_flip_ownership(struct net_device *dev)
2570 {
2571 struct fe_priv *np = netdev_priv(dev);
2572
2573 np->tx_pkts_in_progress--;
2574 if (np->tx_change_owner) {
2575 np->tx_change_owner->first_tx_desc->flaglen |=
2576 cpu_to_le32(NV_TX2_VALID);
2577 np->tx_pkts_in_progress++;
2578
2579 np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
2580 if (np->tx_change_owner == np->tx_end_flip)
2581 np->tx_change_owner = NULL;
2582
2583 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2584 }
2585 }
2586
2587 /*
2588 * nv_tx_done: check for completed packets, release the skbs.
2589 *
2590 * Caller must own np->lock.
2591 */
nv_tx_done(struct net_device * dev,int limit)2592 static int nv_tx_done(struct net_device *dev, int limit)
2593 {
2594 struct fe_priv *np = netdev_priv(dev);
2595 u32 flags;
2596 int tx_work = 0;
2597 struct ring_desc *orig_get_tx = np->get_tx.orig;
2598 unsigned int bytes_compl = 0;
2599
2600 while ((np->get_tx.orig != np->put_tx.orig) &&
2601 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
2602 (tx_work < limit)) {
2603
2604 nv_unmap_txskb(np, np->get_tx_ctx);
2605
2606 if (np->desc_ver == DESC_VER_1) {
2607 if (flags & NV_TX_LASTPACKET) {
2608 if (unlikely(flags & NV_TX_ERROR)) {
2609 if ((flags & NV_TX_RETRYERROR)
2610 && !(flags & NV_TX_RETRYCOUNT_MASK))
2611 nv_legacybackoff_reseed(dev);
2612 } else {
2613 unsigned int len;
2614
2615 u64_stats_update_begin(&np->swstats_tx_syncp);
2616 nv_txrx_stats_inc(stat_tx_packets);
2617 len = np->get_tx_ctx->skb->len;
2618 nv_txrx_stats_add(stat_tx_bytes, len);
2619 u64_stats_update_end(&np->swstats_tx_syncp);
2620 }
2621 bytes_compl += np->get_tx_ctx->skb->len;
2622 dev_kfree_skb_any(np->get_tx_ctx->skb);
2623 np->get_tx_ctx->skb = NULL;
2624 tx_work++;
2625 }
2626 } else {
2627 if (flags & NV_TX2_LASTPACKET) {
2628 if (unlikely(flags & NV_TX2_ERROR)) {
2629 if ((flags & NV_TX2_RETRYERROR)
2630 && !(flags & NV_TX2_RETRYCOUNT_MASK))
2631 nv_legacybackoff_reseed(dev);
2632 } else {
2633 unsigned int len;
2634
2635 u64_stats_update_begin(&np->swstats_tx_syncp);
2636 nv_txrx_stats_inc(stat_tx_packets);
2637 len = np->get_tx_ctx->skb->len;
2638 nv_txrx_stats_add(stat_tx_bytes, len);
2639 u64_stats_update_end(&np->swstats_tx_syncp);
2640 }
2641 bytes_compl += np->get_tx_ctx->skb->len;
2642 dev_kfree_skb_any(np->get_tx_ctx->skb);
2643 np->get_tx_ctx->skb = NULL;
2644 tx_work++;
2645 }
2646 }
2647 if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
2648 np->get_tx.orig = np->tx_ring.orig;
2649 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2650 np->get_tx_ctx = np->tx_skb;
2651 }
2652
2653 netdev_completed_queue(np->dev, tx_work, bytes_compl);
2654
2655 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
2656 np->tx_stop = 0;
2657 netif_wake_queue(dev);
2658 }
2659 return tx_work;
2660 }
2661
nv_tx_done_optimized(struct net_device * dev,int limit)2662 static int nv_tx_done_optimized(struct net_device *dev, int limit)
2663 {
2664 struct fe_priv *np = netdev_priv(dev);
2665 u32 flags;
2666 int tx_work = 0;
2667 struct ring_desc_ex *orig_get_tx = np->get_tx.ex;
2668 unsigned long bytes_cleaned = 0;
2669
2670 while ((np->get_tx.ex != np->put_tx.ex) &&
2671 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX2_VALID) &&
2672 (tx_work < limit)) {
2673
2674 nv_unmap_txskb(np, np->get_tx_ctx);
2675
2676 if (flags & NV_TX2_LASTPACKET) {
2677 if (unlikely(flags & NV_TX2_ERROR)) {
2678 if ((flags & NV_TX2_RETRYERROR)
2679 && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
2680 if (np->driver_data & DEV_HAS_GEAR_MODE)
2681 nv_gear_backoff_reseed(dev);
2682 else
2683 nv_legacybackoff_reseed(dev);
2684 }
2685 } else {
2686 unsigned int len;
2687
2688 u64_stats_update_begin(&np->swstats_tx_syncp);
2689 nv_txrx_stats_inc(stat_tx_packets);
2690 len = np->get_tx_ctx->skb->len;
2691 nv_txrx_stats_add(stat_tx_bytes, len);
2692 u64_stats_update_end(&np->swstats_tx_syncp);
2693 }
2694
2695 bytes_cleaned += np->get_tx_ctx->skb->len;
2696 dev_kfree_skb_any(np->get_tx_ctx->skb);
2697 np->get_tx_ctx->skb = NULL;
2698 tx_work++;
2699
2700 if (np->tx_limit)
2701 nv_tx_flip_ownership(dev);
2702 }
2703
2704 if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
2705 np->get_tx.ex = np->tx_ring.ex;
2706 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2707 np->get_tx_ctx = np->tx_skb;
2708 }
2709
2710 netdev_completed_queue(np->dev, tx_work, bytes_cleaned);
2711
2712 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
2713 np->tx_stop = 0;
2714 netif_wake_queue(dev);
2715 }
2716 return tx_work;
2717 }
2718
2719 /*
2720 * nv_tx_timeout: dev->tx_timeout function
2721 * Called with netif_tx_lock held.
2722 */
nv_tx_timeout(struct net_device * dev,unsigned int txqueue)2723 static void nv_tx_timeout(struct net_device *dev, unsigned int txqueue)
2724 {
2725 struct fe_priv *np = netdev_priv(dev);
2726 u8 __iomem *base = get_hwbase(dev);
2727 u32 status;
2728 union ring_type put_tx;
2729 int saved_tx_limit;
2730
2731 if (np->msi_flags & NV_MSI_X_ENABLED)
2732 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2733 else
2734 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2735
2736 netdev_warn(dev, "Got tx_timeout. irq status: %08x\n", status);
2737
2738 if (unlikely(debug_tx_timeout)) {
2739 int i;
2740
2741 netdev_info(dev, "Ring at %lx\n", (unsigned long)np->ring_addr);
2742 netdev_info(dev, "Dumping tx registers\n");
2743 for (i = 0; i <= np->register_size; i += 32) {
2744 netdev_info(dev,
2745 "%3x: %08x %08x %08x %08x "
2746 "%08x %08x %08x %08x\n",
2747 i,
2748 readl(base + i + 0), readl(base + i + 4),
2749 readl(base + i + 8), readl(base + i + 12),
2750 readl(base + i + 16), readl(base + i + 20),
2751 readl(base + i + 24), readl(base + i + 28));
2752 }
2753 netdev_info(dev, "Dumping tx ring\n");
2754 for (i = 0; i < np->tx_ring_size; i += 4) {
2755 if (!nv_optimized(np)) {
2756 netdev_info(dev,
2757 "%03x: %08x %08x // %08x %08x "
2758 "// %08x %08x // %08x %08x\n",
2759 i,
2760 le32_to_cpu(np->tx_ring.orig[i].buf),
2761 le32_to_cpu(np->tx_ring.orig[i].flaglen),
2762 le32_to_cpu(np->tx_ring.orig[i+1].buf),
2763 le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
2764 le32_to_cpu(np->tx_ring.orig[i+2].buf),
2765 le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
2766 le32_to_cpu(np->tx_ring.orig[i+3].buf),
2767 le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
2768 } else {
2769 netdev_info(dev,
2770 "%03x: %08x %08x %08x "
2771 "// %08x %08x %08x "
2772 "// %08x %08x %08x "
2773 "// %08x %08x %08x\n",
2774 i,
2775 le32_to_cpu(np->tx_ring.ex[i].bufhigh),
2776 le32_to_cpu(np->tx_ring.ex[i].buflow),
2777 le32_to_cpu(np->tx_ring.ex[i].flaglen),
2778 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
2779 le32_to_cpu(np->tx_ring.ex[i+1].buflow),
2780 le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
2781 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
2782 le32_to_cpu(np->tx_ring.ex[i+2].buflow),
2783 le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
2784 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
2785 le32_to_cpu(np->tx_ring.ex[i+3].buflow),
2786 le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
2787 }
2788 }
2789 }
2790
2791 spin_lock_irq(&np->lock);
2792
2793 /* 1) stop tx engine */
2794 nv_stop_tx(dev);
2795
2796 /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
2797 saved_tx_limit = np->tx_limit;
2798 np->tx_limit = 0; /* prevent giving HW any limited pkts */
2799 np->tx_stop = 0; /* prevent waking tx queue */
2800 if (!nv_optimized(np))
2801 nv_tx_done(dev, np->tx_ring_size);
2802 else
2803 nv_tx_done_optimized(dev, np->tx_ring_size);
2804
2805 /* save current HW position */
2806 if (np->tx_change_owner)
2807 put_tx.ex = np->tx_change_owner->first_tx_desc;
2808 else
2809 put_tx = np->put_tx;
2810
2811 /* 3) clear all tx state */
2812 nv_drain_tx(dev);
2813 nv_init_tx(dev);
2814
2815 /* 4) restore state to current HW position */
2816 np->get_tx = np->put_tx = put_tx;
2817 np->tx_limit = saved_tx_limit;
2818
2819 /* 5) restart tx engine */
2820 nv_start_tx(dev);
2821 netif_wake_queue(dev);
2822 spin_unlock_irq(&np->lock);
2823 }
2824
2825 /*
2826 * Called when the nic notices a mismatch between the actual data len on the
2827 * wire and the len indicated in the 802 header
2828 */
nv_getlen(struct net_device * dev,void * packet,int datalen)2829 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
2830 {
2831 int hdrlen; /* length of the 802 header */
2832 int protolen; /* length as stored in the proto field */
2833
2834 /* 1) calculate len according to header */
2835 if (((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
2836 protolen = ntohs(((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto);
2837 hdrlen = VLAN_HLEN;
2838 } else {
2839 protolen = ntohs(((struct ethhdr *)packet)->h_proto);
2840 hdrlen = ETH_HLEN;
2841 }
2842 if (protolen > ETH_DATA_LEN)
2843 return datalen; /* Value in proto field not a len, no checks possible */
2844
2845 protolen += hdrlen;
2846 /* consistency checks: */
2847 if (datalen > ETH_ZLEN) {
2848 if (datalen >= protolen) {
2849 /* more data on wire than in 802 header, trim of
2850 * additional data.
2851 */
2852 return protolen;
2853 } else {
2854 /* less data on wire than mentioned in header.
2855 * Discard the packet.
2856 */
2857 return -1;
2858 }
2859 } else {
2860 /* short packet. Accept only if 802 values are also short */
2861 if (protolen > ETH_ZLEN) {
2862 return -1;
2863 }
2864 return datalen;
2865 }
2866 }
2867
rx_missing_handler(u32 flags,struct fe_priv * np)2868 static void rx_missing_handler(u32 flags, struct fe_priv *np)
2869 {
2870 if (flags & NV_RX_MISSEDFRAME) {
2871 u64_stats_update_begin(&np->swstats_rx_syncp);
2872 nv_txrx_stats_inc(stat_rx_missed_errors);
2873 u64_stats_update_end(&np->swstats_rx_syncp);
2874 }
2875 }
2876
nv_rx_process(struct net_device * dev,int limit)2877 static int nv_rx_process(struct net_device *dev, int limit)
2878 {
2879 struct fe_priv *np = netdev_priv(dev);
2880 u32 flags;
2881 int rx_work = 0;
2882 struct sk_buff *skb;
2883 int len;
2884
2885 while ((np->get_rx.orig != np->put_rx.orig) &&
2886 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
2887 (rx_work < limit)) {
2888
2889 /*
2890 * the packet is for us - immediately tear down the pci mapping.
2891 * TODO: check if a prefetch of the first cacheline improves
2892 * the performance.
2893 */
2894 dma_unmap_single(&np->pci_dev->dev, np->get_rx_ctx->dma,
2895 np->get_rx_ctx->dma_len,
2896 DMA_FROM_DEVICE);
2897 skb = np->get_rx_ctx->skb;
2898 np->get_rx_ctx->skb = NULL;
2899
2900 /* look at what we actually got: */
2901 if (np->desc_ver == DESC_VER_1) {
2902 if (likely(flags & NV_RX_DESCRIPTORVALID)) {
2903 len = flags & LEN_MASK_V1;
2904 if (unlikely(flags & NV_RX_ERROR)) {
2905 if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
2906 len = nv_getlen(dev, skb->data, len);
2907 if (len < 0) {
2908 dev_kfree_skb(skb);
2909 goto next_pkt;
2910 }
2911 }
2912 /* framing errors are soft errors */
2913 else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
2914 if (flags & NV_RX_SUBTRACT1)
2915 len--;
2916 }
2917 /* the rest are hard errors */
2918 else {
2919 rx_missing_handler(flags, np);
2920 dev_kfree_skb(skb);
2921 goto next_pkt;
2922 }
2923 }
2924 } else {
2925 dev_kfree_skb(skb);
2926 goto next_pkt;
2927 }
2928 } else {
2929 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2930 len = flags & LEN_MASK_V2;
2931 if (unlikely(flags & NV_RX2_ERROR)) {
2932 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2933 len = nv_getlen(dev, skb->data, len);
2934 if (len < 0) {
2935 dev_kfree_skb(skb);
2936 goto next_pkt;
2937 }
2938 }
2939 /* framing errors are soft errors */
2940 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2941 if (flags & NV_RX2_SUBTRACT1)
2942 len--;
2943 }
2944 /* the rest are hard errors */
2945 else {
2946 dev_kfree_skb(skb);
2947 goto next_pkt;
2948 }
2949 }
2950 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2951 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2952 skb->ip_summed = CHECKSUM_UNNECESSARY;
2953 } else {
2954 dev_kfree_skb(skb);
2955 goto next_pkt;
2956 }
2957 }
2958 /* got a valid packet - forward it to the network core */
2959 skb_put(skb, len);
2960 skb->protocol = eth_type_trans(skb, dev);
2961 napi_gro_receive(&np->napi, skb);
2962 u64_stats_update_begin(&np->swstats_rx_syncp);
2963 nv_txrx_stats_inc(stat_rx_packets);
2964 nv_txrx_stats_add(stat_rx_bytes, len);
2965 u64_stats_update_end(&np->swstats_rx_syncp);
2966 next_pkt:
2967 if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
2968 np->get_rx.orig = np->rx_ring.orig;
2969 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2970 np->get_rx_ctx = np->rx_skb;
2971
2972 rx_work++;
2973 }
2974
2975 return rx_work;
2976 }
2977
nv_rx_process_optimized(struct net_device * dev,int limit)2978 static int nv_rx_process_optimized(struct net_device *dev, int limit)
2979 {
2980 struct fe_priv *np = netdev_priv(dev);
2981 u32 flags;
2982 u32 vlanflags = 0;
2983 int rx_work = 0;
2984 struct sk_buff *skb;
2985 int len;
2986
2987 while ((np->get_rx.ex != np->put_rx.ex) &&
2988 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
2989 (rx_work < limit)) {
2990
2991 /*
2992 * the packet is for us - immediately tear down the pci mapping.
2993 * TODO: check if a prefetch of the first cacheline improves
2994 * the performance.
2995 */
2996 dma_unmap_single(&np->pci_dev->dev, np->get_rx_ctx->dma,
2997 np->get_rx_ctx->dma_len,
2998 DMA_FROM_DEVICE);
2999 skb = np->get_rx_ctx->skb;
3000 np->get_rx_ctx->skb = NULL;
3001
3002 /* look at what we actually got: */
3003 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
3004 len = flags & LEN_MASK_V2;
3005 if (unlikely(flags & NV_RX2_ERROR)) {
3006 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
3007 len = nv_getlen(dev, skb->data, len);
3008 if (len < 0) {
3009 dev_kfree_skb(skb);
3010 goto next_pkt;
3011 }
3012 }
3013 /* framing errors are soft errors */
3014 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
3015 if (flags & NV_RX2_SUBTRACT1)
3016 len--;
3017 }
3018 /* the rest are hard errors */
3019 else {
3020 dev_kfree_skb(skb);
3021 goto next_pkt;
3022 }
3023 }
3024
3025 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
3026 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
3027 skb->ip_summed = CHECKSUM_UNNECESSARY;
3028
3029 /* got a valid packet - forward it to the network core */
3030 skb_put(skb, len);
3031 skb->protocol = eth_type_trans(skb, dev);
3032 prefetch(skb->data);
3033
3034 vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
3035
3036 /*
3037 * There's need to check for NETIF_F_HW_VLAN_CTAG_RX
3038 * here. Even if vlan rx accel is disabled,
3039 * NV_RX3_VLAN_TAG_PRESENT is pseudo randomly set.
3040 */
3041 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3042 vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
3043 u16 vid = vlanflags & NV_RX3_VLAN_TAG_MASK;
3044
3045 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
3046 }
3047 napi_gro_receive(&np->napi, skb);
3048 u64_stats_update_begin(&np->swstats_rx_syncp);
3049 nv_txrx_stats_inc(stat_rx_packets);
3050 nv_txrx_stats_add(stat_rx_bytes, len);
3051 u64_stats_update_end(&np->swstats_rx_syncp);
3052 } else {
3053 dev_kfree_skb(skb);
3054 }
3055 next_pkt:
3056 if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
3057 np->get_rx.ex = np->rx_ring.ex;
3058 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
3059 np->get_rx_ctx = np->rx_skb;
3060
3061 rx_work++;
3062 }
3063
3064 return rx_work;
3065 }
3066
set_bufsize(struct net_device * dev)3067 static void set_bufsize(struct net_device *dev)
3068 {
3069 struct fe_priv *np = netdev_priv(dev);
3070
3071 if (dev->mtu <= ETH_DATA_LEN)
3072 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
3073 else
3074 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
3075 }
3076
3077 /*
3078 * nv_change_mtu: dev->change_mtu function
3079 * Called with RTNL held for read.
3080 */
nv_change_mtu(struct net_device * dev,int new_mtu)3081 static int nv_change_mtu(struct net_device *dev, int new_mtu)
3082 {
3083 struct fe_priv *np = netdev_priv(dev);
3084 int old_mtu;
3085
3086 old_mtu = dev->mtu;
3087 WRITE_ONCE(dev->mtu, new_mtu);
3088
3089 /* return early if the buffer sizes will not change */
3090 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
3091 return 0;
3092
3093 /* synchronized against open : rtnl_lock() held by caller */
3094 if (netif_running(dev)) {
3095 u8 __iomem *base = get_hwbase(dev);
3096 /*
3097 * It seems that the nic preloads valid ring entries into an
3098 * internal buffer. The procedure for flushing everything is
3099 * guessed, there is probably a simpler approach.
3100 * Changing the MTU is a rare event, it shouldn't matter.
3101 */
3102 nv_disable_irq(dev);
3103 napi_disable(&np->napi);
3104 netif_tx_lock_bh(dev);
3105 netif_addr_lock(dev);
3106 spin_lock(&np->lock);
3107 /* stop engines */
3108 nv_stop_rxtx(dev);
3109 nv_txrx_reset(dev);
3110 /* drain rx queue */
3111 nv_drain_rxtx(dev);
3112 /* reinit driver view of the rx queue */
3113 set_bufsize(dev);
3114 if (nv_init_ring(dev)) {
3115 if (!np->in_shutdown)
3116 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3117 }
3118 /* reinit nic view of the rx queue */
3119 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3120 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3121 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3122 base + NvRegRingSizes);
3123 pci_push(base);
3124 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3125 pci_push(base);
3126
3127 /* restart rx engine */
3128 nv_start_rxtx(dev);
3129 spin_unlock(&np->lock);
3130 netif_addr_unlock(dev);
3131 netif_tx_unlock_bh(dev);
3132 napi_enable(&np->napi);
3133 nv_enable_irq(dev);
3134 }
3135 return 0;
3136 }
3137
nv_copy_mac_to_hw(struct net_device * dev)3138 static void nv_copy_mac_to_hw(struct net_device *dev)
3139 {
3140 u8 __iomem *base = get_hwbase(dev);
3141 u32 mac[2];
3142
3143 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
3144 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
3145 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
3146
3147 writel(mac[0], base + NvRegMacAddrA);
3148 writel(mac[1], base + NvRegMacAddrB);
3149 }
3150
3151 /*
3152 * nv_set_mac_address: dev->set_mac_address function
3153 * Called with rtnl_lock() held.
3154 */
nv_set_mac_address(struct net_device * dev,void * addr)3155 static int nv_set_mac_address(struct net_device *dev, void *addr)
3156 {
3157 struct fe_priv *np = netdev_priv(dev);
3158 struct sockaddr *macaddr = (struct sockaddr *)addr;
3159
3160 if (!is_valid_ether_addr(macaddr->sa_data))
3161 return -EADDRNOTAVAIL;
3162
3163 /* synchronized against open : rtnl_lock() held by caller */
3164 eth_hw_addr_set(dev, macaddr->sa_data);
3165
3166 if (netif_running(dev)) {
3167 netif_tx_lock_bh(dev);
3168 netif_addr_lock(dev);
3169 spin_lock_irq(&np->lock);
3170
3171 /* stop rx engine */
3172 nv_stop_rx(dev);
3173
3174 /* set mac address */
3175 nv_copy_mac_to_hw(dev);
3176
3177 /* restart rx engine */
3178 nv_start_rx(dev);
3179 spin_unlock_irq(&np->lock);
3180 netif_addr_unlock(dev);
3181 netif_tx_unlock_bh(dev);
3182 } else {
3183 nv_copy_mac_to_hw(dev);
3184 }
3185 return 0;
3186 }
3187
3188 /*
3189 * nv_set_multicast: dev->set_multicast function
3190 * Called with netif_tx_lock held.
3191 */
nv_set_multicast(struct net_device * dev)3192 static void nv_set_multicast(struct net_device *dev)
3193 {
3194 struct fe_priv *np = netdev_priv(dev);
3195 u8 __iomem *base = get_hwbase(dev);
3196 u32 addr[2];
3197 u32 mask[2];
3198 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
3199
3200 memset(addr, 0, sizeof(addr));
3201 memset(mask, 0, sizeof(mask));
3202
3203 if (dev->flags & IFF_PROMISC) {
3204 pff |= NVREG_PFF_PROMISC;
3205 } else {
3206 pff |= NVREG_PFF_MYADDR;
3207
3208 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
3209 u32 alwaysOff[2];
3210 u32 alwaysOn[2];
3211
3212 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
3213 if (dev->flags & IFF_ALLMULTI) {
3214 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
3215 } else {
3216 struct netdev_hw_addr *ha;
3217
3218 netdev_for_each_mc_addr(ha, dev) {
3219 unsigned char *hw_addr = ha->addr;
3220 u32 a, b;
3221
3222 a = le32_to_cpu(*(__le32 *) hw_addr);
3223 b = le16_to_cpu(*(__le16 *) (&hw_addr[4]));
3224 alwaysOn[0] &= a;
3225 alwaysOff[0] &= ~a;
3226 alwaysOn[1] &= b;
3227 alwaysOff[1] &= ~b;
3228 }
3229 }
3230 addr[0] = alwaysOn[0];
3231 addr[1] = alwaysOn[1];
3232 mask[0] = alwaysOn[0] | alwaysOff[0];
3233 mask[1] = alwaysOn[1] | alwaysOff[1];
3234 } else {
3235 mask[0] = NVREG_MCASTMASKA_NONE;
3236 mask[1] = NVREG_MCASTMASKB_NONE;
3237 }
3238 }
3239 addr[0] |= NVREG_MCASTADDRA_FORCE;
3240 pff |= NVREG_PFF_ALWAYS;
3241 spin_lock_irq(&np->lock);
3242 nv_stop_rx(dev);
3243 writel(addr[0], base + NvRegMulticastAddrA);
3244 writel(addr[1], base + NvRegMulticastAddrB);
3245 writel(mask[0], base + NvRegMulticastMaskA);
3246 writel(mask[1], base + NvRegMulticastMaskB);
3247 writel(pff, base + NvRegPacketFilterFlags);
3248 nv_start_rx(dev);
3249 spin_unlock_irq(&np->lock);
3250 }
3251
nv_update_pause(struct net_device * dev,u32 pause_flags)3252 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
3253 {
3254 struct fe_priv *np = netdev_priv(dev);
3255 u8 __iomem *base = get_hwbase(dev);
3256
3257 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
3258
3259 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
3260 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
3261 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
3262 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
3263 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3264 } else {
3265 writel(pff, base + NvRegPacketFilterFlags);
3266 }
3267 }
3268 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
3269 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
3270 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
3271 u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
3272 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
3273 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
3274 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
3275 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
3276 /* limit the number of tx pause frames to a default of 8 */
3277 writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
3278 }
3279 writel(pause_enable, base + NvRegTxPauseFrame);
3280 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
3281 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3282 } else {
3283 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
3284 writel(regmisc, base + NvRegMisc1);
3285 }
3286 }
3287 }
3288
nv_force_linkspeed(struct net_device * dev,int speed,int duplex)3289 static void nv_force_linkspeed(struct net_device *dev, int speed, int duplex)
3290 {
3291 struct fe_priv *np = netdev_priv(dev);
3292 u8 __iomem *base = get_hwbase(dev);
3293 u32 phyreg, txreg;
3294 int mii_status;
3295
3296 np->linkspeed = NVREG_LINKSPEED_FORCE|speed;
3297 np->duplex = duplex;
3298
3299 /* see if gigabit phy */
3300 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3301 if (mii_status & PHY_GIGABIT) {
3302 np->gigabit = PHY_GIGABIT;
3303 phyreg = readl(base + NvRegSlotTime);
3304 phyreg &= ~(0x3FF00);
3305 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
3306 phyreg |= NVREG_SLOTTIME_10_100_FULL;
3307 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
3308 phyreg |= NVREG_SLOTTIME_10_100_FULL;
3309 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
3310 phyreg |= NVREG_SLOTTIME_1000_FULL;
3311 writel(phyreg, base + NvRegSlotTime);
3312 }
3313
3314 phyreg = readl(base + NvRegPhyInterface);
3315 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
3316 if (np->duplex == 0)
3317 phyreg |= PHY_HALF;
3318 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
3319 phyreg |= PHY_100;
3320 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
3321 NVREG_LINKSPEED_1000)
3322 phyreg |= PHY_1000;
3323 writel(phyreg, base + NvRegPhyInterface);
3324
3325 if (phyreg & PHY_RGMII) {
3326 if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
3327 NVREG_LINKSPEED_1000)
3328 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
3329 else
3330 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
3331 } else {
3332 txreg = NVREG_TX_DEFERRAL_DEFAULT;
3333 }
3334 writel(txreg, base + NvRegTxDeferral);
3335
3336 if (np->desc_ver == DESC_VER_1) {
3337 txreg = NVREG_TX_WM_DESC1_DEFAULT;
3338 } else {
3339 if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
3340 NVREG_LINKSPEED_1000)
3341 txreg = NVREG_TX_WM_DESC2_3_1000;
3342 else
3343 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
3344 }
3345 writel(txreg, base + NvRegTxWatermark);
3346
3347 writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD),
3348 base + NvRegMisc1);
3349 pci_push(base);
3350 writel(np->linkspeed, base + NvRegLinkSpeed);
3351 pci_push(base);
3352 }
3353
3354 /**
3355 * nv_update_linkspeed - Setup the MAC according to the link partner
3356 * @dev: Network device to be configured
3357 *
3358 * The function queries the PHY and checks if there is a link partner.
3359 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
3360 * set to 10 MBit HD.
3361 *
3362 * The function returns 0 if there is no link partner and 1 if there is
3363 * a good link partner.
3364 */
nv_update_linkspeed(struct net_device * dev)3365 static int nv_update_linkspeed(struct net_device *dev)
3366 {
3367 struct fe_priv *np = netdev_priv(dev);
3368 u8 __iomem *base = get_hwbase(dev);
3369 int adv = 0;
3370 int lpa = 0;
3371 int adv_lpa, adv_pause, lpa_pause;
3372 int newls = np->linkspeed;
3373 int newdup = np->duplex;
3374 int mii_status;
3375 u32 bmcr;
3376 int retval = 0;
3377 u32 control_1000, status_1000, phyreg, pause_flags, txreg;
3378 u32 txrxFlags = 0;
3379 u32 phy_exp;
3380
3381 /* If device loopback is enabled, set carrier on and enable max link
3382 * speed.
3383 */
3384 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3385 if (bmcr & BMCR_LOOPBACK) {
3386 if (netif_running(dev)) {
3387 nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 1);
3388 if (!netif_carrier_ok(dev))
3389 netif_carrier_on(dev);
3390 }
3391 return 1;
3392 }
3393
3394 /* BMSR_LSTATUS is latched, read it twice:
3395 * we want the current value.
3396 */
3397 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3398 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3399
3400 if (!(mii_status & BMSR_LSTATUS)) {
3401 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3402 newdup = 0;
3403 retval = 0;
3404 goto set_speed;
3405 }
3406
3407 if (np->autoneg == 0) {
3408 if (np->fixed_mode & LPA_100FULL) {
3409 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3410 newdup = 1;
3411 } else if (np->fixed_mode & LPA_100HALF) {
3412 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3413 newdup = 0;
3414 } else if (np->fixed_mode & LPA_10FULL) {
3415 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3416 newdup = 1;
3417 } else {
3418 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3419 newdup = 0;
3420 }
3421 retval = 1;
3422 goto set_speed;
3423 }
3424 /* check auto negotiation is complete */
3425 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
3426 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
3427 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3428 newdup = 0;
3429 retval = 0;
3430 goto set_speed;
3431 }
3432
3433 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3434 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
3435
3436 retval = 1;
3437 if (np->gigabit == PHY_GIGABIT) {
3438 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3439 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
3440
3441 if ((control_1000 & ADVERTISE_1000FULL) &&
3442 (status_1000 & LPA_1000FULL)) {
3443 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
3444 newdup = 1;
3445 goto set_speed;
3446 }
3447 }
3448
3449 /* FIXME: handle parallel detection properly */
3450 adv_lpa = lpa & adv;
3451 if (adv_lpa & LPA_100FULL) {
3452 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3453 newdup = 1;
3454 } else if (adv_lpa & LPA_100HALF) {
3455 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3456 newdup = 0;
3457 } else if (adv_lpa & LPA_10FULL) {
3458 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3459 newdup = 1;
3460 } else if (adv_lpa & LPA_10HALF) {
3461 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3462 newdup = 0;
3463 } else {
3464 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3465 newdup = 0;
3466 }
3467
3468 set_speed:
3469 if (np->duplex == newdup && np->linkspeed == newls)
3470 return retval;
3471
3472 np->duplex = newdup;
3473 np->linkspeed = newls;
3474
3475 /* The transmitter and receiver must be restarted for safe update */
3476 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
3477 txrxFlags |= NV_RESTART_TX;
3478 nv_stop_tx(dev);
3479 }
3480 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
3481 txrxFlags |= NV_RESTART_RX;
3482 nv_stop_rx(dev);
3483 }
3484
3485 if (np->gigabit == PHY_GIGABIT) {
3486 phyreg = readl(base + NvRegSlotTime);
3487 phyreg &= ~(0x3FF00);
3488 if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
3489 ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
3490 phyreg |= NVREG_SLOTTIME_10_100_FULL;
3491 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
3492 phyreg |= NVREG_SLOTTIME_1000_FULL;
3493 writel(phyreg, base + NvRegSlotTime);
3494 }
3495
3496 phyreg = readl(base + NvRegPhyInterface);
3497 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
3498 if (np->duplex == 0)
3499 phyreg |= PHY_HALF;
3500 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
3501 phyreg |= PHY_100;
3502 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3503 phyreg |= PHY_1000;
3504 writel(phyreg, base + NvRegPhyInterface);
3505
3506 phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
3507 if (phyreg & PHY_RGMII) {
3508 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
3509 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
3510 } else {
3511 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
3512 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
3513 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
3514 else
3515 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
3516 } else {
3517 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
3518 }
3519 }
3520 } else {
3521 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
3522 txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
3523 else
3524 txreg = NVREG_TX_DEFERRAL_DEFAULT;
3525 }
3526 writel(txreg, base + NvRegTxDeferral);
3527
3528 if (np->desc_ver == DESC_VER_1) {
3529 txreg = NVREG_TX_WM_DESC1_DEFAULT;
3530 } else {
3531 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3532 txreg = NVREG_TX_WM_DESC2_3_1000;
3533 else
3534 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
3535 }
3536 writel(txreg, base + NvRegTxWatermark);
3537
3538 writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD),
3539 base + NvRegMisc1);
3540 pci_push(base);
3541 writel(np->linkspeed, base + NvRegLinkSpeed);
3542 pci_push(base);
3543
3544 pause_flags = 0;
3545 /* setup pause frame */
3546 if (netif_running(dev) && (np->duplex != 0)) {
3547 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
3548 adv_pause = adv & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3549 lpa_pause = lpa & (LPA_PAUSE_CAP | LPA_PAUSE_ASYM);
3550
3551 switch (adv_pause) {
3552 case ADVERTISE_PAUSE_CAP:
3553 if (lpa_pause & LPA_PAUSE_CAP) {
3554 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3555 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3556 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3557 }
3558 break;
3559 case ADVERTISE_PAUSE_ASYM:
3560 if (lpa_pause == (LPA_PAUSE_CAP | LPA_PAUSE_ASYM))
3561 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3562 break;
3563 case ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM:
3564 if (lpa_pause & LPA_PAUSE_CAP) {
3565 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3566 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3567 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3568 }
3569 if (lpa_pause == LPA_PAUSE_ASYM)
3570 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3571 break;
3572 }
3573 } else {
3574 pause_flags = np->pause_flags;
3575 }
3576 }
3577 nv_update_pause(dev, pause_flags);
3578
3579 if (txrxFlags & NV_RESTART_TX)
3580 nv_start_tx(dev);
3581 if (txrxFlags & NV_RESTART_RX)
3582 nv_start_rx(dev);
3583
3584 return retval;
3585 }
3586
nv_linkchange(struct net_device * dev)3587 static void nv_linkchange(struct net_device *dev)
3588 {
3589 if (nv_update_linkspeed(dev)) {
3590 if (!netif_carrier_ok(dev)) {
3591 netif_carrier_on(dev);
3592 netdev_info(dev, "link up\n");
3593 nv_txrx_gate(dev, false);
3594 nv_start_rx(dev);
3595 }
3596 } else {
3597 if (netif_carrier_ok(dev)) {
3598 netif_carrier_off(dev);
3599 netdev_info(dev, "link down\n");
3600 nv_txrx_gate(dev, true);
3601 nv_stop_rx(dev);
3602 }
3603 }
3604 }
3605
nv_link_irq(struct net_device * dev)3606 static void nv_link_irq(struct net_device *dev)
3607 {
3608 u8 __iomem *base = get_hwbase(dev);
3609 u32 miistat;
3610
3611 miistat = readl(base + NvRegMIIStatus);
3612 writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
3613
3614 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
3615 nv_linkchange(dev);
3616 }
3617
nv_msi_workaround(struct fe_priv * np)3618 static void nv_msi_workaround(struct fe_priv *np)
3619 {
3620
3621 /* Need to toggle the msi irq mask within the ethernet device,
3622 * otherwise, future interrupts will not be detected.
3623 */
3624 if (np->msi_flags & NV_MSI_ENABLED) {
3625 u8 __iomem *base = np->base;
3626
3627 writel(0, base + NvRegMSIIrqMask);
3628 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3629 }
3630 }
3631
nv_change_interrupt_mode(struct net_device * dev,int total_work)3632 static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
3633 {
3634 struct fe_priv *np = netdev_priv(dev);
3635
3636 if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
3637 if (total_work > NV_DYNAMIC_THRESHOLD) {
3638 /* transition to poll based interrupts */
3639 np->quiet_count = 0;
3640 if (np->irqmask != NVREG_IRQMASK_CPU) {
3641 np->irqmask = NVREG_IRQMASK_CPU;
3642 return 1;
3643 }
3644 } else {
3645 if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
3646 np->quiet_count++;
3647 } else {
3648 /* reached a period of low activity, switch
3649 to per tx/rx packet interrupts */
3650 if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
3651 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
3652 return 1;
3653 }
3654 }
3655 }
3656 }
3657 return 0;
3658 }
3659
nv_nic_irq(int foo,void * data)3660 static irqreturn_t nv_nic_irq(int foo, void *data)
3661 {
3662 struct net_device *dev = (struct net_device *) data;
3663 struct fe_priv *np = netdev_priv(dev);
3664 u8 __iomem *base = get_hwbase(dev);
3665
3666 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3667 np->events = readl(base + NvRegIrqStatus);
3668 writel(np->events, base + NvRegIrqStatus);
3669 } else {
3670 np->events = readl(base + NvRegMSIXIrqStatus);
3671 writel(np->events, base + NvRegMSIXIrqStatus);
3672 }
3673 if (!(np->events & np->irqmask))
3674 return IRQ_NONE;
3675
3676 nv_msi_workaround(np);
3677
3678 if (napi_schedule_prep(&np->napi)) {
3679 /*
3680 * Disable further irq's (msix not enabled with napi)
3681 */
3682 writel(0, base + NvRegIrqMask);
3683 __napi_schedule(&np->napi);
3684 }
3685
3686 return IRQ_HANDLED;
3687 }
3688
3689 /* All _optimized functions are used to help increase performance
3690 * (reduce CPU and increase throughput). They use descripter version 3,
3691 * compiler directives, and reduce memory accesses.
3692 */
nv_nic_irq_optimized(int foo,void * data)3693 static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
3694 {
3695 struct net_device *dev = (struct net_device *) data;
3696 struct fe_priv *np = netdev_priv(dev);
3697 u8 __iomem *base = get_hwbase(dev);
3698
3699 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3700 np->events = readl(base + NvRegIrqStatus);
3701 writel(np->events, base + NvRegIrqStatus);
3702 } else {
3703 np->events = readl(base + NvRegMSIXIrqStatus);
3704 writel(np->events, base + NvRegMSIXIrqStatus);
3705 }
3706 if (!(np->events & np->irqmask))
3707 return IRQ_NONE;
3708
3709 nv_msi_workaround(np);
3710
3711 if (napi_schedule_prep(&np->napi)) {
3712 /*
3713 * Disable further irq's (msix not enabled with napi)
3714 */
3715 writel(0, base + NvRegIrqMask);
3716 __napi_schedule(&np->napi);
3717 }
3718
3719 return IRQ_HANDLED;
3720 }
3721
nv_nic_irq_tx(int foo,void * data)3722 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
3723 {
3724 struct net_device *dev = (struct net_device *) data;
3725 struct fe_priv *np = netdev_priv(dev);
3726 u8 __iomem *base = get_hwbase(dev);
3727 u32 events;
3728 int i;
3729 unsigned long flags;
3730
3731 for (i = 0;; i++) {
3732 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
3733 writel(events, base + NvRegMSIXIrqStatus);
3734 netdev_dbg(dev, "tx irq events: %08x\n", events);
3735 if (!(events & np->irqmask))
3736 break;
3737
3738 spin_lock_irqsave(&np->lock, flags);
3739 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3740 spin_unlock_irqrestore(&np->lock, flags);
3741
3742 if (unlikely(i > max_interrupt_work)) {
3743 spin_lock_irqsave(&np->lock, flags);
3744 /* disable interrupts on the nic */
3745 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
3746 pci_push(base);
3747
3748 if (!np->in_shutdown) {
3749 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
3750 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3751 }
3752 spin_unlock_irqrestore(&np->lock, flags);
3753 netdev_dbg(dev, "%s: too many iterations (%d)\n",
3754 __func__, i);
3755 break;
3756 }
3757
3758 }
3759
3760 return IRQ_RETVAL(i);
3761 }
3762
nv_napi_poll(struct napi_struct * napi,int budget)3763 static int nv_napi_poll(struct napi_struct *napi, int budget)
3764 {
3765 struct fe_priv *np = container_of(napi, struct fe_priv, napi);
3766 struct net_device *dev = np->dev;
3767 u8 __iomem *base = get_hwbase(dev);
3768 unsigned long flags;
3769 int retcode;
3770 int rx_count, tx_work = 0, rx_work = 0;
3771
3772 do {
3773 if (!nv_optimized(np)) {
3774 spin_lock_irqsave(&np->lock, flags);
3775 tx_work += nv_tx_done(dev, np->tx_ring_size);
3776 spin_unlock_irqrestore(&np->lock, flags);
3777
3778 rx_count = nv_rx_process(dev, budget - rx_work);
3779 retcode = nv_alloc_rx(dev);
3780 } else {
3781 spin_lock_irqsave(&np->lock, flags);
3782 tx_work += nv_tx_done_optimized(dev, np->tx_ring_size);
3783 spin_unlock_irqrestore(&np->lock, flags);
3784
3785 rx_count = nv_rx_process_optimized(dev,
3786 budget - rx_work);
3787 retcode = nv_alloc_rx_optimized(dev);
3788 }
3789 } while (retcode == 0 &&
3790 rx_count > 0 && (rx_work += rx_count) < budget);
3791
3792 if (retcode) {
3793 spin_lock_irqsave(&np->lock, flags);
3794 if (!np->in_shutdown)
3795 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3796 spin_unlock_irqrestore(&np->lock, flags);
3797 }
3798
3799 nv_change_interrupt_mode(dev, tx_work + rx_work);
3800
3801 if (unlikely(np->events & NVREG_IRQ_LINK)) {
3802 spin_lock_irqsave(&np->lock, flags);
3803 nv_link_irq(dev);
3804 spin_unlock_irqrestore(&np->lock, flags);
3805 }
3806 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3807 spin_lock_irqsave(&np->lock, flags);
3808 nv_linkchange(dev);
3809 spin_unlock_irqrestore(&np->lock, flags);
3810 np->link_timeout = jiffies + LINK_TIMEOUT;
3811 }
3812 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3813 spin_lock_irqsave(&np->lock, flags);
3814 if (!np->in_shutdown) {
3815 np->nic_poll_irq = np->irqmask;
3816 np->recover_error = 1;
3817 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3818 }
3819 spin_unlock_irqrestore(&np->lock, flags);
3820 napi_complete(napi);
3821 return rx_work;
3822 }
3823
3824 if (rx_work < budget) {
3825 /* re-enable interrupts
3826 (msix not enabled in napi) */
3827 napi_complete_done(napi, rx_work);
3828
3829 writel(np->irqmask, base + NvRegIrqMask);
3830 }
3831 return rx_work;
3832 }
3833
nv_nic_irq_rx(int foo,void * data)3834 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3835 {
3836 struct net_device *dev = (struct net_device *) data;
3837 struct fe_priv *np = netdev_priv(dev);
3838 u8 __iomem *base = get_hwbase(dev);
3839 u32 events;
3840 int i;
3841 unsigned long flags;
3842
3843 for (i = 0;; i++) {
3844 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3845 writel(events, base + NvRegMSIXIrqStatus);
3846 netdev_dbg(dev, "rx irq events: %08x\n", events);
3847 if (!(events & np->irqmask))
3848 break;
3849
3850 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3851 if (unlikely(nv_alloc_rx_optimized(dev))) {
3852 spin_lock_irqsave(&np->lock, flags);
3853 if (!np->in_shutdown)
3854 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3855 spin_unlock_irqrestore(&np->lock, flags);
3856 }
3857 }
3858
3859 if (unlikely(i > max_interrupt_work)) {
3860 spin_lock_irqsave(&np->lock, flags);
3861 /* disable interrupts on the nic */
3862 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3863 pci_push(base);
3864
3865 if (!np->in_shutdown) {
3866 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
3867 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3868 }
3869 spin_unlock_irqrestore(&np->lock, flags);
3870 netdev_dbg(dev, "%s: too many iterations (%d)\n",
3871 __func__, i);
3872 break;
3873 }
3874 }
3875
3876 return IRQ_RETVAL(i);
3877 }
3878
nv_nic_irq_other(int foo,void * data)3879 static irqreturn_t nv_nic_irq_other(int foo, void *data)
3880 {
3881 struct net_device *dev = (struct net_device *) data;
3882 struct fe_priv *np = netdev_priv(dev);
3883 u8 __iomem *base = get_hwbase(dev);
3884 u32 events;
3885 int i;
3886 unsigned long flags;
3887
3888 for (i = 0;; i++) {
3889 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
3890 writel(events, base + NvRegMSIXIrqStatus);
3891 netdev_dbg(dev, "irq events: %08x\n", events);
3892 if (!(events & np->irqmask))
3893 break;
3894
3895 /* check tx in case we reached max loop limit in tx isr */
3896 spin_lock_irqsave(&np->lock, flags);
3897 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3898 spin_unlock_irqrestore(&np->lock, flags);
3899
3900 if (events & NVREG_IRQ_LINK) {
3901 spin_lock_irqsave(&np->lock, flags);
3902 nv_link_irq(dev);
3903 spin_unlock_irqrestore(&np->lock, flags);
3904 }
3905 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
3906 spin_lock_irqsave(&np->lock, flags);
3907 nv_linkchange(dev);
3908 spin_unlock_irqrestore(&np->lock, flags);
3909 np->link_timeout = jiffies + LINK_TIMEOUT;
3910 }
3911 if (events & NVREG_IRQ_RECOVER_ERROR) {
3912 spin_lock_irqsave(&np->lock, flags);
3913 /* disable interrupts on the nic */
3914 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3915 pci_push(base);
3916
3917 if (!np->in_shutdown) {
3918 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3919 np->recover_error = 1;
3920 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3921 }
3922 spin_unlock_irqrestore(&np->lock, flags);
3923 break;
3924 }
3925 if (unlikely(i > max_interrupt_work)) {
3926 spin_lock_irqsave(&np->lock, flags);
3927 /* disable interrupts on the nic */
3928 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3929 pci_push(base);
3930
3931 if (!np->in_shutdown) {
3932 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3933 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3934 }
3935 spin_unlock_irqrestore(&np->lock, flags);
3936 netdev_dbg(dev, "%s: too many iterations (%d)\n",
3937 __func__, i);
3938 break;
3939 }
3940
3941 }
3942
3943 return IRQ_RETVAL(i);
3944 }
3945
nv_nic_irq_test(int foo,void * data)3946 static irqreturn_t nv_nic_irq_test(int foo, void *data)
3947 {
3948 struct net_device *dev = (struct net_device *) data;
3949 struct fe_priv *np = netdev_priv(dev);
3950 u8 __iomem *base = get_hwbase(dev);
3951 u32 events;
3952
3953 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3954 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3955 writel(events & NVREG_IRQ_TIMER, base + NvRegIrqStatus);
3956 } else {
3957 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3958 writel(events & NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
3959 }
3960 pci_push(base);
3961 if (!(events & NVREG_IRQ_TIMER))
3962 return IRQ_RETVAL(0);
3963
3964 nv_msi_workaround(np);
3965
3966 spin_lock(&np->lock);
3967 np->intr_test = 1;
3968 spin_unlock(&np->lock);
3969
3970 return IRQ_RETVAL(1);
3971 }
3972
set_msix_vector_map(struct net_device * dev,u32 vector,u32 irqmask)3973 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3974 {
3975 u8 __iomem *base = get_hwbase(dev);
3976 int i;
3977 u32 msixmap = 0;
3978
3979 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3980 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3981 * the remaining 8 interrupts.
3982 */
3983 for (i = 0; i < 8; i++) {
3984 if ((irqmask >> i) & 0x1)
3985 msixmap |= vector << (i << 2);
3986 }
3987 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3988
3989 msixmap = 0;
3990 for (i = 0; i < 8; i++) {
3991 if ((irqmask >> (i + 8)) & 0x1)
3992 msixmap |= vector << (i << 2);
3993 }
3994 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3995 }
3996
nv_request_irq(struct net_device * dev,int intr_test)3997 static int nv_request_irq(struct net_device *dev, int intr_test)
3998 {
3999 struct fe_priv *np = get_nvpriv(dev);
4000 u8 __iomem *base = get_hwbase(dev);
4001 int ret;
4002 int i;
4003 irqreturn_t (*handler)(int foo, void *data);
4004
4005 if (intr_test) {
4006 handler = nv_nic_irq_test;
4007 } else {
4008 if (nv_optimized(np))
4009 handler = nv_nic_irq_optimized;
4010 else
4011 handler = nv_nic_irq;
4012 }
4013
4014 if (np->msi_flags & NV_MSI_X_CAPABLE) {
4015 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
4016 np->msi_x_entry[i].entry = i;
4017 ret = pci_enable_msix_range(np->pci_dev,
4018 np->msi_x_entry,
4019 np->msi_flags & NV_MSI_X_VECTORS_MASK,
4020 np->msi_flags & NV_MSI_X_VECTORS_MASK);
4021 if (ret > 0) {
4022 np->msi_flags |= NV_MSI_X_ENABLED;
4023 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
4024 /* Request irq for rx handling */
4025 sprintf(np->name_rx, "%s-rx", dev->name);
4026 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
4027 nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev);
4028 if (ret) {
4029 netdev_info(dev,
4030 "request_irq failed for rx %d\n",
4031 ret);
4032 pci_disable_msix(np->pci_dev);
4033 np->msi_flags &= ~NV_MSI_X_ENABLED;
4034 goto out_err;
4035 }
4036 /* Request irq for tx handling */
4037 sprintf(np->name_tx, "%s-tx", dev->name);
4038 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
4039 nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev);
4040 if (ret) {
4041 netdev_info(dev,
4042 "request_irq failed for tx %d\n",
4043 ret);
4044 pci_disable_msix(np->pci_dev);
4045 np->msi_flags &= ~NV_MSI_X_ENABLED;
4046 goto out_free_rx;
4047 }
4048 /* Request irq for link and timer handling */
4049 sprintf(np->name_other, "%s-other", dev->name);
4050 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
4051 nv_nic_irq_other, IRQF_SHARED, np->name_other, dev);
4052 if (ret) {
4053 netdev_info(dev,
4054 "request_irq failed for link %d\n",
4055 ret);
4056 pci_disable_msix(np->pci_dev);
4057 np->msi_flags &= ~NV_MSI_X_ENABLED;
4058 goto out_free_tx;
4059 }
4060 /* map interrupts to their respective vector */
4061 writel(0, base + NvRegMSIXMap0);
4062 writel(0, base + NvRegMSIXMap1);
4063 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
4064 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
4065 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
4066 } else {
4067 /* Request irq for all interrupts */
4068 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector,
4069 handler, IRQF_SHARED, dev->name, dev);
4070 if (ret) {
4071 netdev_info(dev,
4072 "request_irq failed %d\n",
4073 ret);
4074 pci_disable_msix(np->pci_dev);
4075 np->msi_flags &= ~NV_MSI_X_ENABLED;
4076 goto out_err;
4077 }
4078
4079 /* map interrupts to vector 0 */
4080 writel(0, base + NvRegMSIXMap0);
4081 writel(0, base + NvRegMSIXMap1);
4082 }
4083 netdev_info(dev, "MSI-X enabled\n");
4084 return 0;
4085 }
4086 }
4087 if (np->msi_flags & NV_MSI_CAPABLE) {
4088 ret = pci_enable_msi(np->pci_dev);
4089 if (ret == 0) {
4090 np->msi_flags |= NV_MSI_ENABLED;
4091 ret = request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev);
4092 if (ret) {
4093 netdev_info(dev, "request_irq failed %d\n",
4094 ret);
4095 pci_disable_msi(np->pci_dev);
4096 np->msi_flags &= ~NV_MSI_ENABLED;
4097 goto out_err;
4098 }
4099
4100 /* map interrupts to vector 0 */
4101 writel(0, base + NvRegMSIMap0);
4102 writel(0, base + NvRegMSIMap1);
4103 /* enable msi vector 0 */
4104 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
4105 netdev_info(dev, "MSI enabled\n");
4106 return 0;
4107 }
4108 }
4109
4110 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
4111 goto out_err;
4112
4113 return 0;
4114 out_free_tx:
4115 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
4116 out_free_rx:
4117 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
4118 out_err:
4119 return 1;
4120 }
4121
nv_free_irq(struct net_device * dev)4122 static void nv_free_irq(struct net_device *dev)
4123 {
4124 struct fe_priv *np = get_nvpriv(dev);
4125 int i;
4126
4127 if (np->msi_flags & NV_MSI_X_ENABLED) {
4128 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
4129 free_irq(np->msi_x_entry[i].vector, dev);
4130 pci_disable_msix(np->pci_dev);
4131 np->msi_flags &= ~NV_MSI_X_ENABLED;
4132 } else {
4133 free_irq(np->pci_dev->irq, dev);
4134 if (np->msi_flags & NV_MSI_ENABLED) {
4135 pci_disable_msi(np->pci_dev);
4136 np->msi_flags &= ~NV_MSI_ENABLED;
4137 }
4138 }
4139 }
4140
nv_do_nic_poll(struct timer_list * t)4141 static void nv_do_nic_poll(struct timer_list *t)
4142 {
4143 struct fe_priv *np = from_timer(np, t, nic_poll);
4144 struct net_device *dev = np->dev;
4145 u8 __iomem *base = get_hwbase(dev);
4146 u32 mask = 0;
4147 unsigned long flags;
4148 unsigned int irq = 0;
4149
4150 /*
4151 * First disable irq(s) and then
4152 * reenable interrupts on the nic, we have to do this before calling
4153 * nv_nic_irq because that may decide to do otherwise
4154 */
4155
4156 if (!using_multi_irqs(dev)) {
4157 if (np->msi_flags & NV_MSI_X_ENABLED)
4158 irq = np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector;
4159 else
4160 irq = np->pci_dev->irq;
4161 mask = np->irqmask;
4162 } else {
4163 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4164 irq = np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector;
4165 mask |= NVREG_IRQ_RX_ALL;
4166 }
4167 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4168 irq = np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector;
4169 mask |= NVREG_IRQ_TX_ALL;
4170 }
4171 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4172 irq = np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector;
4173 mask |= NVREG_IRQ_OTHER;
4174 }
4175 }
4176
4177 disable_irq_nosync_lockdep_irqsave(irq, &flags);
4178 synchronize_irq(irq);
4179
4180 if (np->recover_error) {
4181 np->recover_error = 0;
4182 netdev_info(dev, "MAC in recoverable error state\n");
4183 if (netif_running(dev)) {
4184 netif_tx_lock_bh(dev);
4185 netif_addr_lock(dev);
4186 spin_lock(&np->lock);
4187 /* stop engines */
4188 nv_stop_rxtx(dev);
4189 if (np->driver_data & DEV_HAS_POWER_CNTRL)
4190 nv_mac_reset(dev);
4191 nv_txrx_reset(dev);
4192 /* drain rx queue */
4193 nv_drain_rxtx(dev);
4194 /* reinit driver view of the rx queue */
4195 set_bufsize(dev);
4196 if (nv_init_ring(dev)) {
4197 if (!np->in_shutdown)
4198 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4199 }
4200 /* reinit nic view of the rx queue */
4201 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4202 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4203 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4204 base + NvRegRingSizes);
4205 pci_push(base);
4206 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4207 pci_push(base);
4208 /* clear interrupts */
4209 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4210 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4211 else
4212 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4213
4214 /* restart rx engine */
4215 nv_start_rxtx(dev);
4216 spin_unlock(&np->lock);
4217 netif_addr_unlock(dev);
4218 netif_tx_unlock_bh(dev);
4219 }
4220 }
4221
4222 writel(mask, base + NvRegIrqMask);
4223 pci_push(base);
4224
4225 if (!using_multi_irqs(dev)) {
4226 np->nic_poll_irq = 0;
4227 if (nv_optimized(np))
4228 nv_nic_irq_optimized(0, dev);
4229 else
4230 nv_nic_irq(0, dev);
4231 } else {
4232 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4233 np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
4234 nv_nic_irq_rx(0, dev);
4235 }
4236 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4237 np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
4238 nv_nic_irq_tx(0, dev);
4239 }
4240 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4241 np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
4242 nv_nic_irq_other(0, dev);
4243 }
4244 }
4245
4246 enable_irq_lockdep_irqrestore(irq, &flags);
4247 }
4248
4249 #ifdef CONFIG_NET_POLL_CONTROLLER
nv_poll_controller(struct net_device * dev)4250 static void nv_poll_controller(struct net_device *dev)
4251 {
4252 struct fe_priv *np = netdev_priv(dev);
4253
4254 nv_do_nic_poll(&np->nic_poll);
4255 }
4256 #endif
4257
nv_do_stats_poll(struct timer_list * t)4258 static void nv_do_stats_poll(struct timer_list *t)
4259 __acquires(&netdev_priv(dev)->hwstats_lock)
4260 __releases(&netdev_priv(dev)->hwstats_lock)
4261 {
4262 struct fe_priv *np = from_timer(np, t, stats_poll);
4263 struct net_device *dev = np->dev;
4264
4265 /* If lock is currently taken, the stats are being refreshed
4266 * and hence fresh enough */
4267 if (spin_trylock(&np->hwstats_lock)) {
4268 nv_update_stats(dev);
4269 spin_unlock(&np->hwstats_lock);
4270 }
4271
4272 if (!np->in_shutdown)
4273 mod_timer(&np->stats_poll,
4274 round_jiffies(jiffies + STATS_INTERVAL));
4275 }
4276
nv_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)4277 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4278 {
4279 struct fe_priv *np = netdev_priv(dev);
4280 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
4281 strscpy(info->version, FORCEDETH_VERSION, sizeof(info->version));
4282 strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
4283 }
4284
nv_get_wol(struct net_device * dev,struct ethtool_wolinfo * wolinfo)4285 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4286 {
4287 struct fe_priv *np = netdev_priv(dev);
4288 wolinfo->supported = WAKE_MAGIC;
4289
4290 spin_lock_irq(&np->lock);
4291 if (np->wolenabled)
4292 wolinfo->wolopts = WAKE_MAGIC;
4293 spin_unlock_irq(&np->lock);
4294 }
4295
nv_set_wol(struct net_device * dev,struct ethtool_wolinfo * wolinfo)4296 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4297 {
4298 struct fe_priv *np = netdev_priv(dev);
4299 u8 __iomem *base = get_hwbase(dev);
4300 u32 flags = 0;
4301
4302 if (wolinfo->wolopts == 0) {
4303 np->wolenabled = 0;
4304 } else if (wolinfo->wolopts & WAKE_MAGIC) {
4305 np->wolenabled = 1;
4306 flags = NVREG_WAKEUPFLAGS_ENABLE;
4307 }
4308 if (netif_running(dev)) {
4309 spin_lock_irq(&np->lock);
4310 writel(flags, base + NvRegWakeUpFlags);
4311 spin_unlock_irq(&np->lock);
4312 }
4313 device_set_wakeup_enable(&np->pci_dev->dev, np->wolenabled);
4314 return 0;
4315 }
4316
nv_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)4317 static int nv_get_link_ksettings(struct net_device *dev,
4318 struct ethtool_link_ksettings *cmd)
4319 {
4320 struct fe_priv *np = netdev_priv(dev);
4321 u32 speed, supported, advertising;
4322 int adv;
4323
4324 spin_lock_irq(&np->lock);
4325 cmd->base.port = PORT_MII;
4326 if (!netif_running(dev)) {
4327 /* We do not track link speed / duplex setting if the
4328 * interface is disabled. Force a link check */
4329 if (nv_update_linkspeed(dev)) {
4330 netif_carrier_on(dev);
4331 } else {
4332 netif_carrier_off(dev);
4333 }
4334 }
4335
4336 if (netif_carrier_ok(dev)) {
4337 switch (np->linkspeed & (NVREG_LINKSPEED_MASK)) {
4338 case NVREG_LINKSPEED_10:
4339 speed = SPEED_10;
4340 break;
4341 case NVREG_LINKSPEED_100:
4342 speed = SPEED_100;
4343 break;
4344 case NVREG_LINKSPEED_1000:
4345 speed = SPEED_1000;
4346 break;
4347 default:
4348 speed = -1;
4349 break;
4350 }
4351 cmd->base.duplex = DUPLEX_HALF;
4352 if (np->duplex)
4353 cmd->base.duplex = DUPLEX_FULL;
4354 } else {
4355 speed = SPEED_UNKNOWN;
4356 cmd->base.duplex = DUPLEX_UNKNOWN;
4357 }
4358 cmd->base.speed = speed;
4359 cmd->base.autoneg = np->autoneg;
4360
4361 advertising = ADVERTISED_MII;
4362 if (np->autoneg) {
4363 advertising |= ADVERTISED_Autoneg;
4364 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4365 if (adv & ADVERTISE_10HALF)
4366 advertising |= ADVERTISED_10baseT_Half;
4367 if (adv & ADVERTISE_10FULL)
4368 advertising |= ADVERTISED_10baseT_Full;
4369 if (adv & ADVERTISE_100HALF)
4370 advertising |= ADVERTISED_100baseT_Half;
4371 if (adv & ADVERTISE_100FULL)
4372 advertising |= ADVERTISED_100baseT_Full;
4373 if (np->gigabit == PHY_GIGABIT) {
4374 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4375 if (adv & ADVERTISE_1000FULL)
4376 advertising |= ADVERTISED_1000baseT_Full;
4377 }
4378 }
4379 supported = (SUPPORTED_Autoneg |
4380 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
4381 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
4382 SUPPORTED_MII);
4383 if (np->gigabit == PHY_GIGABIT)
4384 supported |= SUPPORTED_1000baseT_Full;
4385
4386 cmd->base.phy_address = np->phyaddr;
4387
4388 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4389 supported);
4390 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4391 advertising);
4392
4393 /* ignore maxtxpkt, maxrxpkt for now */
4394 spin_unlock_irq(&np->lock);
4395 return 0;
4396 }
4397
nv_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)4398 static int nv_set_link_ksettings(struct net_device *dev,
4399 const struct ethtool_link_ksettings *cmd)
4400 {
4401 struct fe_priv *np = netdev_priv(dev);
4402 u32 speed = cmd->base.speed;
4403 u32 advertising;
4404
4405 ethtool_convert_link_mode_to_legacy_u32(&advertising,
4406 cmd->link_modes.advertising);
4407
4408 if (cmd->base.port != PORT_MII)
4409 return -EINVAL;
4410 if (cmd->base.phy_address != np->phyaddr) {
4411 /* TODO: support switching between multiple phys. Should be
4412 * trivial, but not enabled due to lack of test hardware. */
4413 return -EINVAL;
4414 }
4415 if (cmd->base.autoneg == AUTONEG_ENABLE) {
4416 u32 mask;
4417
4418 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
4419 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
4420 if (np->gigabit == PHY_GIGABIT)
4421 mask |= ADVERTISED_1000baseT_Full;
4422
4423 if ((advertising & mask) == 0)
4424 return -EINVAL;
4425
4426 } else if (cmd->base.autoneg == AUTONEG_DISABLE) {
4427 /* Note: autonegotiation disable, speed 1000 intentionally
4428 * forbidden - no one should need that. */
4429
4430 if (speed != SPEED_10 && speed != SPEED_100)
4431 return -EINVAL;
4432 if (cmd->base.duplex != DUPLEX_HALF &&
4433 cmd->base.duplex != DUPLEX_FULL)
4434 return -EINVAL;
4435 } else {
4436 return -EINVAL;
4437 }
4438
4439 netif_carrier_off(dev);
4440 if (netif_running(dev)) {
4441 unsigned long flags;
4442
4443 nv_disable_irq(dev);
4444 netif_tx_lock_bh(dev);
4445 netif_addr_lock(dev);
4446 /* with plain spinlock lockdep complains */
4447 spin_lock_irqsave(&np->lock, flags);
4448 /* stop engines */
4449 /* FIXME:
4450 * this can take some time, and interrupts are disabled
4451 * due to spin_lock_irqsave, but let's hope no daemon
4452 * is going to change the settings very often...
4453 * Worst case:
4454 * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
4455 * + some minor delays, which is up to a second approximately
4456 */
4457 nv_stop_rxtx(dev);
4458 spin_unlock_irqrestore(&np->lock, flags);
4459 netif_addr_unlock(dev);
4460 netif_tx_unlock_bh(dev);
4461 }
4462
4463 if (cmd->base.autoneg == AUTONEG_ENABLE) {
4464 int adv, bmcr;
4465
4466 np->autoneg = 1;
4467
4468 /* advertise only what has been requested */
4469 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4470 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4471 if (advertising & ADVERTISED_10baseT_Half)
4472 adv |= ADVERTISE_10HALF;
4473 if (advertising & ADVERTISED_10baseT_Full)
4474 adv |= ADVERTISE_10FULL;
4475 if (advertising & ADVERTISED_100baseT_Half)
4476 adv |= ADVERTISE_100HALF;
4477 if (advertising & ADVERTISED_100baseT_Full)
4478 adv |= ADVERTISE_100FULL;
4479 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */
4480 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4481 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4482 adv |= ADVERTISE_PAUSE_ASYM;
4483 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4484
4485 if (np->gigabit == PHY_GIGABIT) {
4486 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4487 adv &= ~ADVERTISE_1000FULL;
4488 if (advertising & ADVERTISED_1000baseT_Full)
4489 adv |= ADVERTISE_1000FULL;
4490 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4491 }
4492
4493 if (netif_running(dev))
4494 netdev_info(dev, "link down\n");
4495 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4496 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4497 bmcr |= BMCR_ANENABLE;
4498 /* reset the phy in order for settings to stick,
4499 * and cause autoneg to start */
4500 if (phy_reset(dev, bmcr)) {
4501 netdev_info(dev, "phy reset failed\n");
4502 return -EINVAL;
4503 }
4504 } else {
4505 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4506 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4507 }
4508 } else {
4509 int adv, bmcr;
4510
4511 np->autoneg = 0;
4512
4513 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4514 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4515 if (speed == SPEED_10 && cmd->base.duplex == DUPLEX_HALF)
4516 adv |= ADVERTISE_10HALF;
4517 if (speed == SPEED_10 && cmd->base.duplex == DUPLEX_FULL)
4518 adv |= ADVERTISE_10FULL;
4519 if (speed == SPEED_100 && cmd->base.duplex == DUPLEX_HALF)
4520 adv |= ADVERTISE_100HALF;
4521 if (speed == SPEED_100 && cmd->base.duplex == DUPLEX_FULL)
4522 adv |= ADVERTISE_100FULL;
4523 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4524 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisements but disable tx pause */
4525 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4526 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4527 }
4528 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
4529 adv |= ADVERTISE_PAUSE_ASYM;
4530 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4531 }
4532 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4533 np->fixed_mode = adv;
4534
4535 if (np->gigabit == PHY_GIGABIT) {
4536 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4537 adv &= ~ADVERTISE_1000FULL;
4538 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4539 }
4540
4541 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4542 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
4543 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
4544 bmcr |= BMCR_FULLDPLX;
4545 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
4546 bmcr |= BMCR_SPEED100;
4547 if (np->phy_oui == PHY_OUI_MARVELL) {
4548 /* reset the phy in order for forced mode settings to stick */
4549 if (phy_reset(dev, bmcr)) {
4550 netdev_info(dev, "phy reset failed\n");
4551 return -EINVAL;
4552 }
4553 } else {
4554 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4555 if (netif_running(dev)) {
4556 /* Wait a bit and then reconfigure the nic. */
4557 udelay(10);
4558 nv_linkchange(dev);
4559 }
4560 }
4561 }
4562
4563 if (netif_running(dev)) {
4564 nv_start_rxtx(dev);
4565 nv_enable_irq(dev);
4566 }
4567
4568 return 0;
4569 }
4570
4571 #define FORCEDETH_REGS_VER 1
4572
nv_get_regs_len(struct net_device * dev)4573 static int nv_get_regs_len(struct net_device *dev)
4574 {
4575 struct fe_priv *np = netdev_priv(dev);
4576 return np->register_size;
4577 }
4578
nv_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * buf)4579 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
4580 {
4581 struct fe_priv *np = netdev_priv(dev);
4582 u8 __iomem *base = get_hwbase(dev);
4583 u32 *rbuf = buf;
4584 int i;
4585
4586 regs->version = FORCEDETH_REGS_VER;
4587 spin_lock_irq(&np->lock);
4588 for (i = 0; i < np->register_size/sizeof(u32); i++)
4589 rbuf[i] = readl(base + i*sizeof(u32));
4590 spin_unlock_irq(&np->lock);
4591 }
4592
nv_nway_reset(struct net_device * dev)4593 static int nv_nway_reset(struct net_device *dev)
4594 {
4595 struct fe_priv *np = netdev_priv(dev);
4596 int ret;
4597
4598 if (np->autoneg) {
4599 int bmcr;
4600
4601 netif_carrier_off(dev);
4602 if (netif_running(dev)) {
4603 nv_disable_irq(dev);
4604 netif_tx_lock_bh(dev);
4605 netif_addr_lock(dev);
4606 spin_lock(&np->lock);
4607 /* stop engines */
4608 nv_stop_rxtx(dev);
4609 spin_unlock(&np->lock);
4610 netif_addr_unlock(dev);
4611 netif_tx_unlock_bh(dev);
4612 netdev_info(dev, "link down\n");
4613 }
4614
4615 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4616 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4617 bmcr |= BMCR_ANENABLE;
4618 /* reset the phy in order for settings to stick*/
4619 if (phy_reset(dev, bmcr)) {
4620 netdev_info(dev, "phy reset failed\n");
4621 return -EINVAL;
4622 }
4623 } else {
4624 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4625 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4626 }
4627
4628 if (netif_running(dev)) {
4629 nv_start_rxtx(dev);
4630 nv_enable_irq(dev);
4631 }
4632 ret = 0;
4633 } else {
4634 ret = -EINVAL;
4635 }
4636
4637 return ret;
4638 }
4639
nv_get_ringparam(struct net_device * dev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)4640 static void nv_get_ringparam(struct net_device *dev,
4641 struct ethtool_ringparam *ring,
4642 struct kernel_ethtool_ringparam *kernel_ring,
4643 struct netlink_ext_ack *extack)
4644 {
4645 struct fe_priv *np = netdev_priv(dev);
4646
4647 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4648 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4649
4650 ring->rx_pending = np->rx_ring_size;
4651 ring->tx_pending = np->tx_ring_size;
4652 }
4653
nv_set_ringparam(struct net_device * dev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)4654 static int nv_set_ringparam(struct net_device *dev,
4655 struct ethtool_ringparam *ring,
4656 struct kernel_ethtool_ringparam *kernel_ring,
4657 struct netlink_ext_ack *extack)
4658 {
4659 struct fe_priv *np = netdev_priv(dev);
4660 u8 __iomem *base = get_hwbase(dev);
4661 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
4662 dma_addr_t ring_addr;
4663
4664 if (ring->rx_pending < RX_RING_MIN ||
4665 ring->tx_pending < TX_RING_MIN ||
4666 ring->rx_mini_pending != 0 ||
4667 ring->rx_jumbo_pending != 0 ||
4668 (np->desc_ver == DESC_VER_1 &&
4669 (ring->rx_pending > RING_MAX_DESC_VER_1 ||
4670 ring->tx_pending > RING_MAX_DESC_VER_1)) ||
4671 (np->desc_ver != DESC_VER_1 &&
4672 (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
4673 ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
4674 return -EINVAL;
4675 }
4676
4677 /* allocate new rings */
4678 if (!nv_optimized(np)) {
4679 rxtx_ring = dma_alloc_coherent(&np->pci_dev->dev,
4680 sizeof(struct ring_desc) *
4681 (ring->rx_pending +
4682 ring->tx_pending),
4683 &ring_addr, GFP_ATOMIC);
4684 } else {
4685 rxtx_ring = dma_alloc_coherent(&np->pci_dev->dev,
4686 sizeof(struct ring_desc_ex) *
4687 (ring->rx_pending +
4688 ring->tx_pending),
4689 &ring_addr, GFP_ATOMIC);
4690 }
4691 rx_skbuff = kmalloc_array(ring->rx_pending, sizeof(struct nv_skb_map),
4692 GFP_KERNEL);
4693 tx_skbuff = kmalloc_array(ring->tx_pending, sizeof(struct nv_skb_map),
4694 GFP_KERNEL);
4695 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
4696 /* fall back to old rings */
4697 if (!nv_optimized(np)) {
4698 if (rxtx_ring)
4699 dma_free_coherent(&np->pci_dev->dev,
4700 sizeof(struct ring_desc) *
4701 (ring->rx_pending +
4702 ring->tx_pending),
4703 rxtx_ring, ring_addr);
4704 } else {
4705 if (rxtx_ring)
4706 dma_free_coherent(&np->pci_dev->dev,
4707 sizeof(struct ring_desc_ex) *
4708 (ring->rx_pending +
4709 ring->tx_pending),
4710 rxtx_ring, ring_addr);
4711 }
4712
4713 kfree(rx_skbuff);
4714 kfree(tx_skbuff);
4715 goto exit;
4716 }
4717
4718 if (netif_running(dev)) {
4719 nv_disable_irq(dev);
4720 napi_disable(&np->napi);
4721 netif_tx_lock_bh(dev);
4722 netif_addr_lock(dev);
4723 spin_lock(&np->lock);
4724 /* stop engines */
4725 nv_stop_rxtx(dev);
4726 nv_txrx_reset(dev);
4727 /* drain queues */
4728 nv_drain_rxtx(dev);
4729 /* delete queues */
4730 free_rings(dev);
4731 }
4732
4733 /* set new values */
4734 np->rx_ring_size = ring->rx_pending;
4735 np->tx_ring_size = ring->tx_pending;
4736
4737 if (!nv_optimized(np)) {
4738 np->rx_ring.orig = (struct ring_desc *)rxtx_ring;
4739 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4740 } else {
4741 np->rx_ring.ex = (struct ring_desc_ex *)rxtx_ring;
4742 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4743 }
4744 np->rx_skb = (struct nv_skb_map *)rx_skbuff;
4745 np->tx_skb = (struct nv_skb_map *)tx_skbuff;
4746 np->ring_addr = ring_addr;
4747
4748 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4749 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
4750
4751 if (netif_running(dev)) {
4752 /* reinit driver view of the queues */
4753 set_bufsize(dev);
4754 if (nv_init_ring(dev)) {
4755 if (!np->in_shutdown)
4756 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4757 }
4758
4759 /* reinit nic view of the queues */
4760 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4761 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4762 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4763 base + NvRegRingSizes);
4764 pci_push(base);
4765 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4766 pci_push(base);
4767
4768 /* restart engines */
4769 nv_start_rxtx(dev);
4770 spin_unlock(&np->lock);
4771 netif_addr_unlock(dev);
4772 netif_tx_unlock_bh(dev);
4773 napi_enable(&np->napi);
4774 nv_enable_irq(dev);
4775 }
4776 return 0;
4777 exit:
4778 return -ENOMEM;
4779 }
4780
nv_get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * pause)4781 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4782 {
4783 struct fe_priv *np = netdev_priv(dev);
4784
4785 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
4786 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
4787 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
4788 }
4789
nv_set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * pause)4790 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4791 {
4792 struct fe_priv *np = netdev_priv(dev);
4793 int adv, bmcr;
4794
4795 if ((!np->autoneg && np->duplex == 0) ||
4796 (np->autoneg && !pause->autoneg && np->duplex == 0)) {
4797 netdev_info(dev, "can not set pause settings when forced link is in half duplex\n");
4798 return -EINVAL;
4799 }
4800 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
4801 netdev_info(dev, "hardware does not support tx pause frames\n");
4802 return -EINVAL;
4803 }
4804
4805 netif_carrier_off(dev);
4806 if (netif_running(dev)) {
4807 nv_disable_irq(dev);
4808 netif_tx_lock_bh(dev);
4809 netif_addr_lock(dev);
4810 spin_lock(&np->lock);
4811 /* stop engines */
4812 nv_stop_rxtx(dev);
4813 spin_unlock(&np->lock);
4814 netif_addr_unlock(dev);
4815 netif_tx_unlock_bh(dev);
4816 }
4817
4818 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
4819 if (pause->rx_pause)
4820 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
4821 if (pause->tx_pause)
4822 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
4823
4824 if (np->autoneg && pause->autoneg) {
4825 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
4826
4827 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4828 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4829 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */
4830 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4831 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4832 adv |= ADVERTISE_PAUSE_ASYM;
4833 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4834
4835 if (netif_running(dev))
4836 netdev_info(dev, "link down\n");
4837 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4838 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4839 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4840 } else {
4841 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4842 if (pause->rx_pause)
4843 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4844 if (pause->tx_pause)
4845 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4846
4847 if (!netif_running(dev))
4848 nv_update_linkspeed(dev);
4849 else
4850 nv_update_pause(dev, np->pause_flags);
4851 }
4852
4853 if (netif_running(dev)) {
4854 nv_start_rxtx(dev);
4855 nv_enable_irq(dev);
4856 }
4857 return 0;
4858 }
4859
nv_set_loopback(struct net_device * dev,netdev_features_t features)4860 static int nv_set_loopback(struct net_device *dev, netdev_features_t features)
4861 {
4862 struct fe_priv *np = netdev_priv(dev);
4863 unsigned long flags;
4864 u32 miicontrol;
4865 int err, retval = 0;
4866
4867 spin_lock_irqsave(&np->lock, flags);
4868 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4869 if (features & NETIF_F_LOOPBACK) {
4870 if (miicontrol & BMCR_LOOPBACK) {
4871 spin_unlock_irqrestore(&np->lock, flags);
4872 netdev_info(dev, "Loopback already enabled\n");
4873 return 0;
4874 }
4875 nv_disable_irq(dev);
4876 /* Turn on loopback mode */
4877 miicontrol |= BMCR_LOOPBACK | BMCR_FULLDPLX | BMCR_SPEED1000;
4878 err = mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol);
4879 if (err) {
4880 retval = PHY_ERROR;
4881 spin_unlock_irqrestore(&np->lock, flags);
4882 phy_init(dev);
4883 } else {
4884 if (netif_running(dev)) {
4885 /* Force 1000 Mbps full-duplex */
4886 nv_force_linkspeed(dev, NVREG_LINKSPEED_1000,
4887 1);
4888 /* Force link up */
4889 netif_carrier_on(dev);
4890 }
4891 spin_unlock_irqrestore(&np->lock, flags);
4892 netdev_info(dev,
4893 "Internal PHY loopback mode enabled.\n");
4894 }
4895 } else {
4896 if (!(miicontrol & BMCR_LOOPBACK)) {
4897 spin_unlock_irqrestore(&np->lock, flags);
4898 netdev_info(dev, "Loopback already disabled\n");
4899 return 0;
4900 }
4901 nv_disable_irq(dev);
4902 /* Turn off loopback */
4903 spin_unlock_irqrestore(&np->lock, flags);
4904 netdev_info(dev, "Internal PHY loopback mode disabled.\n");
4905 phy_init(dev);
4906 }
4907 msleep(500);
4908 spin_lock_irqsave(&np->lock, flags);
4909 nv_enable_irq(dev);
4910 spin_unlock_irqrestore(&np->lock, flags);
4911
4912 return retval;
4913 }
4914
nv_fix_features(struct net_device * dev,netdev_features_t features)4915 static netdev_features_t nv_fix_features(struct net_device *dev,
4916 netdev_features_t features)
4917 {
4918 /* vlan is dependent on rx checksum offload */
4919 if (features & (NETIF_F_HW_VLAN_CTAG_TX|NETIF_F_HW_VLAN_CTAG_RX))
4920 features |= NETIF_F_RXCSUM;
4921
4922 return features;
4923 }
4924
nv_vlan_mode(struct net_device * dev,netdev_features_t features)4925 static void nv_vlan_mode(struct net_device *dev, netdev_features_t features)
4926 {
4927 struct fe_priv *np = get_nvpriv(dev);
4928
4929 spin_lock_irq(&np->lock);
4930
4931 if (features & NETIF_F_HW_VLAN_CTAG_RX)
4932 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP;
4933 else
4934 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
4935
4936 if (features & NETIF_F_HW_VLAN_CTAG_TX)
4937 np->txrxctl_bits |= NVREG_TXRXCTL_VLANINS;
4938 else
4939 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
4940
4941 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4942
4943 spin_unlock_irq(&np->lock);
4944 }
4945
nv_set_features(struct net_device * dev,netdev_features_t features)4946 static int nv_set_features(struct net_device *dev, netdev_features_t features)
4947 {
4948 struct fe_priv *np = netdev_priv(dev);
4949 u8 __iomem *base = get_hwbase(dev);
4950 netdev_features_t changed = dev->features ^ features;
4951 int retval;
4952
4953 if ((changed & NETIF_F_LOOPBACK) && netif_running(dev)) {
4954 retval = nv_set_loopback(dev, features);
4955 if (retval != 0)
4956 return retval;
4957 }
4958
4959 if (changed & NETIF_F_RXCSUM) {
4960 spin_lock_irq(&np->lock);
4961
4962 if (features & NETIF_F_RXCSUM)
4963 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4964 else
4965 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
4966
4967 if (netif_running(dev))
4968 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4969
4970 spin_unlock_irq(&np->lock);
4971 }
4972
4973 if (changed & (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX))
4974 nv_vlan_mode(dev, features);
4975
4976 return 0;
4977 }
4978
nv_get_sset_count(struct net_device * dev,int sset)4979 static int nv_get_sset_count(struct net_device *dev, int sset)
4980 {
4981 struct fe_priv *np = netdev_priv(dev);
4982
4983 switch (sset) {
4984 case ETH_SS_TEST:
4985 if (np->driver_data & DEV_HAS_TEST_EXTENDED)
4986 return NV_TEST_COUNT_EXTENDED;
4987 else
4988 return NV_TEST_COUNT_BASE;
4989 case ETH_SS_STATS:
4990 if (np->driver_data & DEV_HAS_STATISTICS_V3)
4991 return NV_DEV_STATISTICS_V3_COUNT;
4992 else if (np->driver_data & DEV_HAS_STATISTICS_V2)
4993 return NV_DEV_STATISTICS_V2_COUNT;
4994 else if (np->driver_data & DEV_HAS_STATISTICS_V1)
4995 return NV_DEV_STATISTICS_V1_COUNT;
4996 else
4997 return 0;
4998 default:
4999 return -EOPNOTSUPP;
5000 }
5001 }
5002
nv_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * estats,u64 * buffer)5003 static void nv_get_ethtool_stats(struct net_device *dev,
5004 struct ethtool_stats *estats, u64 *buffer)
5005 __acquires(&netdev_priv(dev)->hwstats_lock)
5006 __releases(&netdev_priv(dev)->hwstats_lock)
5007 {
5008 struct fe_priv *np = netdev_priv(dev);
5009
5010 spin_lock_bh(&np->hwstats_lock);
5011 nv_update_stats(dev);
5012 memcpy(buffer, &np->estats,
5013 nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
5014 spin_unlock_bh(&np->hwstats_lock);
5015 }
5016
nv_link_test(struct net_device * dev)5017 static int nv_link_test(struct net_device *dev)
5018 {
5019 struct fe_priv *np = netdev_priv(dev);
5020 int mii_status;
5021
5022 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
5023 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
5024
5025 /* check phy link status */
5026 if (!(mii_status & BMSR_LSTATUS))
5027 return 0;
5028 else
5029 return 1;
5030 }
5031
nv_register_test(struct net_device * dev)5032 static int nv_register_test(struct net_device *dev)
5033 {
5034 u8 __iomem *base = get_hwbase(dev);
5035 int i = 0;
5036 u32 orig_read, new_read;
5037
5038 do {
5039 orig_read = readl(base + nv_registers_test[i].reg);
5040
5041 /* xor with mask to toggle bits */
5042 orig_read ^= nv_registers_test[i].mask;
5043
5044 writel(orig_read, base + nv_registers_test[i].reg);
5045
5046 new_read = readl(base + nv_registers_test[i].reg);
5047
5048 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
5049 return 0;
5050
5051 /* restore original value */
5052 orig_read ^= nv_registers_test[i].mask;
5053 writel(orig_read, base + nv_registers_test[i].reg);
5054
5055 } while (nv_registers_test[++i].reg != 0);
5056
5057 return 1;
5058 }
5059
nv_interrupt_test(struct net_device * dev)5060 static int nv_interrupt_test(struct net_device *dev)
5061 {
5062 struct fe_priv *np = netdev_priv(dev);
5063 u8 __iomem *base = get_hwbase(dev);
5064 int ret = 1;
5065 int testcnt;
5066 u32 save_msi_flags, save_poll_interval = 0;
5067
5068 if (netif_running(dev)) {
5069 /* free current irq */
5070 nv_free_irq(dev);
5071 save_poll_interval = readl(base+NvRegPollingInterval);
5072 }
5073
5074 /* flag to test interrupt handler */
5075 np->intr_test = 0;
5076
5077 /* setup test irq */
5078 save_msi_flags = np->msi_flags;
5079 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
5080 np->msi_flags |= 0x001; /* setup 1 vector */
5081 if (nv_request_irq(dev, 1))
5082 return 0;
5083
5084 /* setup timer interrupt */
5085 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
5086 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
5087
5088 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
5089
5090 /* wait for at least one interrupt */
5091 msleep(100);
5092
5093 spin_lock_irq(&np->lock);
5094
5095 /* flag should be set within ISR */
5096 testcnt = np->intr_test;
5097 if (!testcnt)
5098 ret = 2;
5099
5100 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
5101 if (!(np->msi_flags & NV_MSI_X_ENABLED))
5102 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5103 else
5104 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
5105
5106 spin_unlock_irq(&np->lock);
5107
5108 nv_free_irq(dev);
5109
5110 np->msi_flags = save_msi_flags;
5111
5112 if (netif_running(dev)) {
5113 writel(save_poll_interval, base + NvRegPollingInterval);
5114 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
5115 /* restore original irq */
5116 if (nv_request_irq(dev, 0))
5117 return 0;
5118 }
5119
5120 return ret;
5121 }
5122
nv_loopback_test(struct net_device * dev)5123 static int nv_loopback_test(struct net_device *dev)
5124 {
5125 struct fe_priv *np = netdev_priv(dev);
5126 u8 __iomem *base = get_hwbase(dev);
5127 struct sk_buff *tx_skb, *rx_skb;
5128 dma_addr_t test_dma_addr;
5129 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
5130 u32 flags;
5131 int len, i, pkt_len;
5132 u8 *pkt_data;
5133 u32 filter_flags = 0;
5134 u32 misc1_flags = 0;
5135 int ret = 1;
5136
5137 if (netif_running(dev)) {
5138 nv_disable_irq(dev);
5139 filter_flags = readl(base + NvRegPacketFilterFlags);
5140 misc1_flags = readl(base + NvRegMisc1);
5141 } else {
5142 nv_txrx_reset(dev);
5143 }
5144
5145 /* reinit driver view of the rx queue */
5146 set_bufsize(dev);
5147 nv_init_ring(dev);
5148
5149 /* setup hardware for loopback */
5150 writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
5151 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
5152
5153 /* reinit nic view of the rx queue */
5154 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5155 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5156 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5157 base + NvRegRingSizes);
5158 pci_push(base);
5159
5160 /* restart rx engine */
5161 nv_start_rxtx(dev);
5162
5163 /* setup packet for tx */
5164 pkt_len = ETH_DATA_LEN;
5165 tx_skb = netdev_alloc_skb(dev, pkt_len);
5166 if (!tx_skb) {
5167 ret = 0;
5168 goto out;
5169 }
5170 test_dma_addr = dma_map_single(&np->pci_dev->dev, tx_skb->data,
5171 skb_tailroom(tx_skb),
5172 DMA_FROM_DEVICE);
5173 if (unlikely(dma_mapping_error(&np->pci_dev->dev,
5174 test_dma_addr))) {
5175 dev_kfree_skb_any(tx_skb);
5176 goto out;
5177 }
5178 pkt_data = skb_put(tx_skb, pkt_len);
5179 for (i = 0; i < pkt_len; i++)
5180 pkt_data[i] = (u8)(i & 0xff);
5181
5182 if (!nv_optimized(np)) {
5183 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
5184 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5185 } else {
5186 np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
5187 np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
5188 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5189 }
5190 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5191 pci_push(get_hwbase(dev));
5192
5193 msleep(500);
5194
5195 /* check for rx of the packet */
5196 if (!nv_optimized(np)) {
5197 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
5198 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
5199
5200 } else {
5201 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
5202 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
5203 }
5204
5205 if (flags & NV_RX_AVAIL) {
5206 ret = 0;
5207 } else if (np->desc_ver == DESC_VER_1) {
5208 if (flags & NV_RX_ERROR)
5209 ret = 0;
5210 } else {
5211 if (flags & NV_RX2_ERROR)
5212 ret = 0;
5213 }
5214
5215 if (ret) {
5216 if (len != pkt_len) {
5217 ret = 0;
5218 } else {
5219 rx_skb = np->rx_skb[0].skb;
5220 for (i = 0; i < pkt_len; i++) {
5221 if (rx_skb->data[i] != (u8)(i & 0xff)) {
5222 ret = 0;
5223 break;
5224 }
5225 }
5226 }
5227 }
5228
5229 dma_unmap_single(&np->pci_dev->dev, test_dma_addr,
5230 (skb_end_pointer(tx_skb) - tx_skb->data),
5231 DMA_TO_DEVICE);
5232 dev_kfree_skb_any(tx_skb);
5233 out:
5234 /* stop engines */
5235 nv_stop_rxtx(dev);
5236 nv_txrx_reset(dev);
5237 /* drain rx queue */
5238 nv_drain_rxtx(dev);
5239
5240 if (netif_running(dev)) {
5241 writel(misc1_flags, base + NvRegMisc1);
5242 writel(filter_flags, base + NvRegPacketFilterFlags);
5243 nv_enable_irq(dev);
5244 }
5245
5246 return ret;
5247 }
5248
nv_self_test(struct net_device * dev,struct ethtool_test * test,u64 * buffer)5249 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
5250 {
5251 struct fe_priv *np = netdev_priv(dev);
5252 u8 __iomem *base = get_hwbase(dev);
5253 int result, count;
5254
5255 count = nv_get_sset_count(dev, ETH_SS_TEST);
5256 memset(buffer, 0, count * sizeof(u64));
5257
5258 if (!nv_link_test(dev)) {
5259 test->flags |= ETH_TEST_FL_FAILED;
5260 buffer[0] = 1;
5261 }
5262
5263 if (test->flags & ETH_TEST_FL_OFFLINE) {
5264 if (netif_running(dev)) {
5265 netif_stop_queue(dev);
5266 napi_disable(&np->napi);
5267 netif_tx_lock_bh(dev);
5268 netif_addr_lock(dev);
5269 spin_lock_irq(&np->lock);
5270 nv_disable_hw_interrupts(dev, np->irqmask);
5271 if (!(np->msi_flags & NV_MSI_X_ENABLED))
5272 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5273 else
5274 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
5275 /* stop engines */
5276 nv_stop_rxtx(dev);
5277 nv_txrx_reset(dev);
5278 /* drain rx queue */
5279 nv_drain_rxtx(dev);
5280 spin_unlock_irq(&np->lock);
5281 netif_addr_unlock(dev);
5282 netif_tx_unlock_bh(dev);
5283 }
5284
5285 if (!nv_register_test(dev)) {
5286 test->flags |= ETH_TEST_FL_FAILED;
5287 buffer[1] = 1;
5288 }
5289
5290 result = nv_interrupt_test(dev);
5291 if (result != 1) {
5292 test->flags |= ETH_TEST_FL_FAILED;
5293 buffer[2] = 1;
5294 }
5295 if (result == 0) {
5296 /* bail out */
5297 return;
5298 }
5299
5300 if (count > NV_TEST_COUNT_BASE && !nv_loopback_test(dev)) {
5301 test->flags |= ETH_TEST_FL_FAILED;
5302 buffer[3] = 1;
5303 }
5304
5305 if (netif_running(dev)) {
5306 /* reinit driver view of the rx queue */
5307 set_bufsize(dev);
5308 if (nv_init_ring(dev)) {
5309 if (!np->in_shutdown)
5310 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5311 }
5312 /* reinit nic view of the rx queue */
5313 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5314 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5315 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5316 base + NvRegRingSizes);
5317 pci_push(base);
5318 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5319 pci_push(base);
5320 /* restart rx engine */
5321 nv_start_rxtx(dev);
5322 netif_start_queue(dev);
5323 napi_enable(&np->napi);
5324 nv_enable_hw_interrupts(dev, np->irqmask);
5325 }
5326 }
5327 }
5328
nv_get_strings(struct net_device * dev,u32 stringset,u8 * buffer)5329 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
5330 {
5331 switch (stringset) {
5332 case ETH_SS_STATS:
5333 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
5334 break;
5335 case ETH_SS_TEST:
5336 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
5337 break;
5338 }
5339 }
5340
5341 static const struct ethtool_ops ops = {
5342 .get_drvinfo = nv_get_drvinfo,
5343 .get_link = ethtool_op_get_link,
5344 .get_wol = nv_get_wol,
5345 .set_wol = nv_set_wol,
5346 .get_regs_len = nv_get_regs_len,
5347 .get_regs = nv_get_regs,
5348 .nway_reset = nv_nway_reset,
5349 .get_ringparam = nv_get_ringparam,
5350 .set_ringparam = nv_set_ringparam,
5351 .get_pauseparam = nv_get_pauseparam,
5352 .set_pauseparam = nv_set_pauseparam,
5353 .get_strings = nv_get_strings,
5354 .get_ethtool_stats = nv_get_ethtool_stats,
5355 .get_sset_count = nv_get_sset_count,
5356 .self_test = nv_self_test,
5357 .get_ts_info = ethtool_op_get_ts_info,
5358 .get_link_ksettings = nv_get_link_ksettings,
5359 .set_link_ksettings = nv_set_link_ksettings,
5360 };
5361
5362 /* The mgmt unit and driver use a semaphore to access the phy during init */
nv_mgmt_acquire_sema(struct net_device * dev)5363 static int nv_mgmt_acquire_sema(struct net_device *dev)
5364 {
5365 struct fe_priv *np = netdev_priv(dev);
5366 u8 __iomem *base = get_hwbase(dev);
5367 int i;
5368 u32 tx_ctrl, mgmt_sema;
5369
5370 for (i = 0; i < 10; i++) {
5371 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
5372 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
5373 break;
5374 msleep(500);
5375 }
5376
5377 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
5378 return 0;
5379
5380 for (i = 0; i < 2; i++) {
5381 tx_ctrl = readl(base + NvRegTransmitterControl);
5382 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
5383 writel(tx_ctrl, base + NvRegTransmitterControl);
5384
5385 /* verify that semaphore was acquired */
5386 tx_ctrl = readl(base + NvRegTransmitterControl);
5387 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
5388 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
5389 np->mgmt_sema = 1;
5390 return 1;
5391 } else
5392 udelay(50);
5393 }
5394
5395 return 0;
5396 }
5397
nv_mgmt_release_sema(struct net_device * dev)5398 static void nv_mgmt_release_sema(struct net_device *dev)
5399 {
5400 struct fe_priv *np = netdev_priv(dev);
5401 u8 __iomem *base = get_hwbase(dev);
5402 u32 tx_ctrl;
5403
5404 if (np->driver_data & DEV_HAS_MGMT_UNIT) {
5405 if (np->mgmt_sema) {
5406 tx_ctrl = readl(base + NvRegTransmitterControl);
5407 tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
5408 writel(tx_ctrl, base + NvRegTransmitterControl);
5409 }
5410 }
5411 }
5412
5413
nv_mgmt_get_version(struct net_device * dev)5414 static int nv_mgmt_get_version(struct net_device *dev)
5415 {
5416 struct fe_priv *np = netdev_priv(dev);
5417 u8 __iomem *base = get_hwbase(dev);
5418 u32 data_ready = readl(base + NvRegTransmitterControl);
5419 u32 data_ready2 = 0;
5420 unsigned long start;
5421 int ready = 0;
5422
5423 writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
5424 writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
5425 start = jiffies;
5426 while (time_before(jiffies, start + 5*HZ)) {
5427 data_ready2 = readl(base + NvRegTransmitterControl);
5428 if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
5429 ready = 1;
5430 break;
5431 }
5432 schedule_timeout_uninterruptible(1);
5433 }
5434
5435 if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
5436 return 0;
5437
5438 np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
5439
5440 return 1;
5441 }
5442
nv_open(struct net_device * dev)5443 static int nv_open(struct net_device *dev)
5444 {
5445 struct fe_priv *np = netdev_priv(dev);
5446 u8 __iomem *base = get_hwbase(dev);
5447 int ret = 1;
5448 int oom, i;
5449 u32 low;
5450
5451 /* power up phy */
5452 mii_rw(dev, np->phyaddr, MII_BMCR,
5453 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
5454
5455 nv_txrx_gate(dev, false);
5456 /* erase previous misconfiguration */
5457 if (np->driver_data & DEV_HAS_POWER_CNTRL)
5458 nv_mac_reset(dev);
5459 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5460 writel(0, base + NvRegMulticastAddrB);
5461 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5462 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5463 writel(0, base + NvRegPacketFilterFlags);
5464
5465 writel(0, base + NvRegTransmitterControl);
5466 writel(0, base + NvRegReceiverControl);
5467
5468 writel(0, base + NvRegAdapterControl);
5469
5470 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
5471 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
5472
5473 /* initialize descriptor rings */
5474 set_bufsize(dev);
5475 oom = nv_init_ring(dev);
5476
5477 writel(0, base + NvRegLinkSpeed);
5478 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5479 nv_txrx_reset(dev);
5480 writel(0, base + NvRegUnknownSetupReg6);
5481
5482 np->in_shutdown = 0;
5483
5484 /* give hw rings */
5485 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5486 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5487 base + NvRegRingSizes);
5488
5489 writel(np->linkspeed, base + NvRegLinkSpeed);
5490 if (np->desc_ver == DESC_VER_1)
5491 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
5492 else
5493 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
5494 writel(np->txrxctl_bits, base + NvRegTxRxControl);
5495 writel(np->vlanctl_bits, base + NvRegVlanControl);
5496 pci_push(base);
5497 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
5498 if (reg_delay(dev, NvRegUnknownSetupReg5,
5499 NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
5500 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX))
5501 netdev_info(dev,
5502 "%s: SetupReg5, Bit 31 remained off\n", __func__);
5503
5504 writel(0, base + NvRegMIIMask);
5505 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5506 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5507
5508 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
5509 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
5510 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
5511 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5512
5513 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
5514
5515 get_random_bytes(&low, sizeof(low));
5516 low &= NVREG_SLOTTIME_MASK;
5517 if (np->desc_ver == DESC_VER_1) {
5518 writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
5519 } else {
5520 if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
5521 /* setup legacy backoff */
5522 writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
5523 } else {
5524 writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
5525 nv_gear_backoff_reseed(dev);
5526 }
5527 }
5528 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
5529 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
5530 if (poll_interval == -1) {
5531 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
5532 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
5533 else
5534 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
5535 } else
5536 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
5537 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
5538 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
5539 base + NvRegAdapterControl);
5540 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
5541 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
5542 if (np->wolenabled)
5543 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
5544
5545 i = readl(base + NvRegPowerState);
5546 if ((i & NVREG_POWERSTATE_POWEREDUP) == 0)
5547 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
5548
5549 pci_push(base);
5550 udelay(10);
5551 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
5552
5553 nv_disable_hw_interrupts(dev, np->irqmask);
5554 pci_push(base);
5555 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5556 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5557 pci_push(base);
5558
5559 if (nv_request_irq(dev, 0))
5560 goto out_drain;
5561
5562 /* ask for interrupts */
5563 nv_enable_hw_interrupts(dev, np->irqmask);
5564
5565 netdev_lock(dev);
5566 spin_lock_irq(&np->lock);
5567 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5568 writel(0, base + NvRegMulticastAddrB);
5569 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5570 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5571 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5572 /* One manual link speed update: Interrupts are enabled, future link
5573 * speed changes cause interrupts and are handled by nv_link_irq().
5574 */
5575 readl(base + NvRegMIIStatus);
5576 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5577
5578 /* set linkspeed to invalid value, thus force nv_update_linkspeed
5579 * to init hw */
5580 np->linkspeed = 0;
5581 ret = nv_update_linkspeed(dev);
5582 nv_start_rxtx(dev);
5583 netif_start_queue(dev);
5584 napi_enable_locked(&np->napi);
5585
5586 if (ret) {
5587 netif_carrier_on(dev);
5588 } else {
5589 netdev_info(dev, "no link during initialization\n");
5590 netif_carrier_off(dev);
5591 }
5592 if (oom)
5593 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5594
5595 /* start statistics timer */
5596 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5597 mod_timer(&np->stats_poll,
5598 round_jiffies(jiffies + STATS_INTERVAL));
5599
5600 spin_unlock_irq(&np->lock);
5601 netdev_unlock(dev);
5602
5603 /* If the loopback feature was set while the device was down, make sure
5604 * that it's set correctly now.
5605 */
5606 if (dev->features & NETIF_F_LOOPBACK)
5607 nv_set_loopback(dev, dev->features);
5608
5609 return 0;
5610 out_drain:
5611 nv_drain_rxtx(dev);
5612 return ret;
5613 }
5614
nv_close(struct net_device * dev)5615 static int nv_close(struct net_device *dev)
5616 {
5617 struct fe_priv *np = netdev_priv(dev);
5618 u8 __iomem *base;
5619
5620 spin_lock_irq(&np->lock);
5621 np->in_shutdown = 1;
5622 spin_unlock_irq(&np->lock);
5623 napi_disable(&np->napi);
5624 synchronize_irq(np->pci_dev->irq);
5625
5626 del_timer_sync(&np->oom_kick);
5627 del_timer_sync(&np->nic_poll);
5628 del_timer_sync(&np->stats_poll);
5629
5630 netif_stop_queue(dev);
5631 spin_lock_irq(&np->lock);
5632 nv_update_pause(dev, 0); /* otherwise stop_tx bricks NIC */
5633 nv_stop_rxtx(dev);
5634 nv_txrx_reset(dev);
5635
5636 /* disable interrupts on the nic or we will lock up */
5637 base = get_hwbase(dev);
5638 nv_disable_hw_interrupts(dev, np->irqmask);
5639 pci_push(base);
5640
5641 spin_unlock_irq(&np->lock);
5642
5643 nv_free_irq(dev);
5644
5645 nv_drain_rxtx(dev);
5646
5647 if (np->wolenabled || !phy_power_down) {
5648 nv_txrx_gate(dev, false);
5649 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5650 nv_start_rx(dev);
5651 } else {
5652 /* power down phy */
5653 mii_rw(dev, np->phyaddr, MII_BMCR,
5654 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
5655 nv_txrx_gate(dev, true);
5656 }
5657
5658 /* FIXME: power down nic */
5659
5660 return 0;
5661 }
5662
5663 static const struct net_device_ops nv_netdev_ops = {
5664 .ndo_open = nv_open,
5665 .ndo_stop = nv_close,
5666 .ndo_get_stats64 = nv_get_stats64,
5667 .ndo_start_xmit = nv_start_xmit,
5668 .ndo_tx_timeout = nv_tx_timeout,
5669 .ndo_change_mtu = nv_change_mtu,
5670 .ndo_fix_features = nv_fix_features,
5671 .ndo_set_features = nv_set_features,
5672 .ndo_validate_addr = eth_validate_addr,
5673 .ndo_set_mac_address = nv_set_mac_address,
5674 .ndo_set_rx_mode = nv_set_multicast,
5675 #ifdef CONFIG_NET_POLL_CONTROLLER
5676 .ndo_poll_controller = nv_poll_controller,
5677 #endif
5678 };
5679
5680 static const struct net_device_ops nv_netdev_ops_optimized = {
5681 .ndo_open = nv_open,
5682 .ndo_stop = nv_close,
5683 .ndo_get_stats64 = nv_get_stats64,
5684 .ndo_start_xmit = nv_start_xmit_optimized,
5685 .ndo_tx_timeout = nv_tx_timeout,
5686 .ndo_change_mtu = nv_change_mtu,
5687 .ndo_fix_features = nv_fix_features,
5688 .ndo_set_features = nv_set_features,
5689 .ndo_validate_addr = eth_validate_addr,
5690 .ndo_set_mac_address = nv_set_mac_address,
5691 .ndo_set_rx_mode = nv_set_multicast,
5692 #ifdef CONFIG_NET_POLL_CONTROLLER
5693 .ndo_poll_controller = nv_poll_controller,
5694 #endif
5695 };
5696
nv_probe(struct pci_dev * pci_dev,const struct pci_device_id * id)5697 static int nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
5698 {
5699 struct net_device *dev;
5700 struct fe_priv *np;
5701 unsigned long addr;
5702 u8 __iomem *base;
5703 int err, i;
5704 u32 powerstate, txreg;
5705 u32 phystate_orig = 0, phystate;
5706 int phyinitialized = 0;
5707 static int printed_version;
5708 u8 mac[ETH_ALEN];
5709
5710 if (!printed_version++)
5711 pr_info("Reverse Engineered nForce ethernet driver. Version %s.\n",
5712 FORCEDETH_VERSION);
5713
5714 dev = alloc_etherdev(sizeof(struct fe_priv));
5715 err = -ENOMEM;
5716 if (!dev)
5717 goto out;
5718
5719 np = netdev_priv(dev);
5720 np->dev = dev;
5721 np->pci_dev = pci_dev;
5722 spin_lock_init(&np->lock);
5723 spin_lock_init(&np->hwstats_lock);
5724 SET_NETDEV_DEV(dev, &pci_dev->dev);
5725 u64_stats_init(&np->swstats_rx_syncp);
5726 u64_stats_init(&np->swstats_tx_syncp);
5727 np->txrx_stats = alloc_percpu(struct nv_txrx_stats);
5728 if (!np->txrx_stats) {
5729 pr_err("np->txrx_stats, alloc memory error.\n");
5730 err = -ENOMEM;
5731 goto out_alloc_percpu;
5732 }
5733
5734 timer_setup(&np->oom_kick, nv_do_rx_refill, 0);
5735 timer_setup(&np->nic_poll, nv_do_nic_poll, 0);
5736 timer_setup(&np->stats_poll, nv_do_stats_poll, TIMER_DEFERRABLE);
5737
5738 err = pci_enable_device(pci_dev);
5739 if (err)
5740 goto out_free;
5741
5742 pci_set_master(pci_dev);
5743
5744 err = pci_request_regions(pci_dev, DRV_NAME);
5745 if (err < 0)
5746 goto out_disable;
5747
5748 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5749 np->register_size = NV_PCI_REGSZ_VER3;
5750 else if (id->driver_data & DEV_HAS_STATISTICS_V1)
5751 np->register_size = NV_PCI_REGSZ_VER2;
5752 else
5753 np->register_size = NV_PCI_REGSZ_VER1;
5754
5755 err = -EINVAL;
5756 addr = 0;
5757 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5758 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
5759 pci_resource_len(pci_dev, i) >= np->register_size) {
5760 addr = pci_resource_start(pci_dev, i);
5761 break;
5762 }
5763 }
5764 if (i == DEVICE_COUNT_RESOURCE) {
5765 dev_info(&pci_dev->dev, "Couldn't find register window\n");
5766 goto out_relreg;
5767 }
5768
5769 /* copy of driver data */
5770 np->driver_data = id->driver_data;
5771 /* copy of device id */
5772 np->device_id = id->device;
5773
5774 /* handle different descriptor versions */
5775 if (id->driver_data & DEV_HAS_HIGH_DMA) {
5776 /* packet format 3: supports 40-bit addressing */
5777 np->desc_ver = DESC_VER_3;
5778 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
5779 if (dma_64bit) {
5780 if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(39)))
5781 dev_info(&pci_dev->dev,
5782 "64-bit DMA failed, using 32-bit addressing\n");
5783 else
5784 dev->features |= NETIF_F_HIGHDMA;
5785 }
5786 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
5787 /* packet format 2: supports jumbo frames */
5788 np->desc_ver = DESC_VER_2;
5789 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
5790 } else {
5791 /* original packet format */
5792 np->desc_ver = DESC_VER_1;
5793 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
5794 }
5795
5796 np->pkt_limit = NV_PKTLIMIT_1;
5797 if (id->driver_data & DEV_HAS_LARGEDESC)
5798 np->pkt_limit = NV_PKTLIMIT_2;
5799
5800 if (id->driver_data & DEV_HAS_CHECKSUM) {
5801 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
5802 dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_SG |
5803 NETIF_F_TSO | NETIF_F_RXCSUM;
5804 }
5805
5806 np->vlanctl_bits = 0;
5807 if (id->driver_data & DEV_HAS_VLAN) {
5808 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
5809 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX |
5810 NETIF_F_HW_VLAN_CTAG_TX;
5811 }
5812
5813 dev->features |= dev->hw_features;
5814
5815 /* Add loopback capability to the device. */
5816 dev->hw_features |= NETIF_F_LOOPBACK;
5817
5818 /* MTU range: 64 - 1500 or 9100 */
5819 dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
5820 dev->max_mtu = np->pkt_limit;
5821
5822 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
5823 if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
5824 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
5825 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
5826 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
5827 }
5828
5829 err = -ENOMEM;
5830 np->base = ioremap(addr, np->register_size);
5831 if (!np->base)
5832 goto out_relreg;
5833
5834 np->rx_ring_size = RX_RING_DEFAULT;
5835 np->tx_ring_size = TX_RING_DEFAULT;
5836
5837 if (!nv_optimized(np)) {
5838 np->rx_ring.orig = dma_alloc_coherent(&pci_dev->dev,
5839 sizeof(struct ring_desc) *
5840 (np->rx_ring_size +
5841 np->tx_ring_size),
5842 &np->ring_addr,
5843 GFP_KERNEL);
5844 if (!np->rx_ring.orig)
5845 goto out_unmap;
5846 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
5847 } else {
5848 np->rx_ring.ex = dma_alloc_coherent(&pci_dev->dev,
5849 sizeof(struct ring_desc_ex) *
5850 (np->rx_ring_size +
5851 np->tx_ring_size),
5852 &np->ring_addr, GFP_KERNEL);
5853 if (!np->rx_ring.ex)
5854 goto out_unmap;
5855 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
5856 }
5857 np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5858 np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5859 if (!np->rx_skb || !np->tx_skb)
5860 goto out_freering;
5861
5862 if (!nv_optimized(np))
5863 dev->netdev_ops = &nv_netdev_ops;
5864 else
5865 dev->netdev_ops = &nv_netdev_ops_optimized;
5866
5867 netif_napi_add(dev, &np->napi, nv_napi_poll);
5868 dev->ethtool_ops = &ops;
5869 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
5870
5871 pci_set_drvdata(pci_dev, dev);
5872
5873 /* read the mac address */
5874 base = get_hwbase(dev);
5875 np->orig_mac[0] = readl(base + NvRegMacAddrA);
5876 np->orig_mac[1] = readl(base + NvRegMacAddrB);
5877
5878 /* check the workaround bit for correct mac address order */
5879 txreg = readl(base + NvRegTransmitPoll);
5880 if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
5881 /* mac address is already in correct order */
5882 mac[0] = (np->orig_mac[0] >> 0) & 0xff;
5883 mac[1] = (np->orig_mac[0] >> 8) & 0xff;
5884 mac[2] = (np->orig_mac[0] >> 16) & 0xff;
5885 mac[3] = (np->orig_mac[0] >> 24) & 0xff;
5886 mac[4] = (np->orig_mac[1] >> 0) & 0xff;
5887 mac[5] = (np->orig_mac[1] >> 8) & 0xff;
5888 } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
5889 /* mac address is already in correct order */
5890 mac[0] = (np->orig_mac[0] >> 0) & 0xff;
5891 mac[1] = (np->orig_mac[0] >> 8) & 0xff;
5892 mac[2] = (np->orig_mac[0] >> 16) & 0xff;
5893 mac[3] = (np->orig_mac[0] >> 24) & 0xff;
5894 mac[4] = (np->orig_mac[1] >> 0) & 0xff;
5895 mac[5] = (np->orig_mac[1] >> 8) & 0xff;
5896 /*
5897 * Set orig mac address back to the reversed version.
5898 * This flag will be cleared during low power transition.
5899 * Therefore, we should always put back the reversed address.
5900 */
5901 np->orig_mac[0] = (mac[5] << 0) + (mac[4] << 8) +
5902 (mac[3] << 16) + (mac[2] << 24);
5903 np->orig_mac[1] = (mac[1] << 0) + (mac[0] << 8);
5904 } else {
5905 /* need to reverse mac address to correct order */
5906 mac[0] = (np->orig_mac[1] >> 8) & 0xff;
5907 mac[1] = (np->orig_mac[1] >> 0) & 0xff;
5908 mac[2] = (np->orig_mac[0] >> 24) & 0xff;
5909 mac[3] = (np->orig_mac[0] >> 16) & 0xff;
5910 mac[4] = (np->orig_mac[0] >> 8) & 0xff;
5911 mac[5] = (np->orig_mac[0] >> 0) & 0xff;
5912 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5913 dev_dbg(&pci_dev->dev,
5914 "%s: set workaround bit for reversed mac addr\n",
5915 __func__);
5916 }
5917
5918 if (is_valid_ether_addr(mac)) {
5919 eth_hw_addr_set(dev, mac);
5920 } else {
5921 /*
5922 * Bad mac address. At least one bios sets the mac address
5923 * to 01:23:45:67:89:ab
5924 */
5925 dev_err(&pci_dev->dev,
5926 "Invalid MAC address detected: %pM - Please complain to your hardware vendor.\n",
5927 mac);
5928 eth_hw_addr_random(dev);
5929 dev_err(&pci_dev->dev,
5930 "Using random MAC address: %pM\n", dev->dev_addr);
5931 }
5932
5933 /* set mac address */
5934 nv_copy_mac_to_hw(dev);
5935
5936 /* disable WOL */
5937 writel(0, base + NvRegWakeUpFlags);
5938 np->wolenabled = 0;
5939 device_set_wakeup_enable(&pci_dev->dev, false);
5940
5941 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
5942
5943 /* take phy and nic out of low power mode */
5944 powerstate = readl(base + NvRegPowerState2);
5945 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
5946 if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) &&
5947 pci_dev->revision >= 0xA3)
5948 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
5949 writel(powerstate, base + NvRegPowerState2);
5950 }
5951
5952 if (np->desc_ver == DESC_VER_1)
5953 np->tx_flags = NV_TX_VALID;
5954 else
5955 np->tx_flags = NV_TX2_VALID;
5956
5957 np->msi_flags = 0;
5958 if ((id->driver_data & DEV_HAS_MSI) && msi)
5959 np->msi_flags |= NV_MSI_CAPABLE;
5960
5961 if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
5962 /* msix has had reported issues when modifying irqmask
5963 as in the case of napi, therefore, disable for now
5964 */
5965 #if 0
5966 np->msi_flags |= NV_MSI_X_CAPABLE;
5967 #endif
5968 }
5969
5970 if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
5971 np->irqmask = NVREG_IRQMASK_CPU;
5972 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5973 np->msi_flags |= 0x0001;
5974 } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
5975 !(id->driver_data & DEV_NEED_TIMERIRQ)) {
5976 /* start off in throughput mode */
5977 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5978 /* remove support for msix mode */
5979 np->msi_flags &= ~NV_MSI_X_CAPABLE;
5980 } else {
5981 optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
5982 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5983 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5984 np->msi_flags |= 0x0003;
5985 }
5986
5987 if (id->driver_data & DEV_NEED_TIMERIRQ)
5988 np->irqmask |= NVREG_IRQ_TIMER;
5989 if (id->driver_data & DEV_NEED_LINKTIMER) {
5990 np->need_linktimer = 1;
5991 np->link_timeout = jiffies + LINK_TIMEOUT;
5992 } else {
5993 np->need_linktimer = 0;
5994 }
5995
5996 /* Limit the number of tx's outstanding for hw bug */
5997 if (id->driver_data & DEV_NEED_TX_LIMIT) {
5998 np->tx_limit = 1;
5999 if (((id->driver_data & DEV_NEED_TX_LIMIT2) == DEV_NEED_TX_LIMIT2) &&
6000 pci_dev->revision >= 0xA2)
6001 np->tx_limit = 0;
6002 }
6003
6004 /* clear phy state and temporarily halt phy interrupts */
6005 writel(0, base + NvRegMIIMask);
6006 phystate = readl(base + NvRegAdapterControl);
6007 if (phystate & NVREG_ADAPTCTL_RUNNING) {
6008 phystate_orig = 1;
6009 phystate &= ~NVREG_ADAPTCTL_RUNNING;
6010 writel(phystate, base + NvRegAdapterControl);
6011 }
6012 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
6013
6014 if (id->driver_data & DEV_HAS_MGMT_UNIT) {
6015 /* management unit running on the mac? */
6016 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
6017 (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
6018 nv_mgmt_acquire_sema(dev) &&
6019 nv_mgmt_get_version(dev)) {
6020 np->mac_in_use = 1;
6021 if (np->mgmt_version > 0)
6022 np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
6023 /* management unit setup the phy already? */
6024 if (np->mac_in_use &&
6025 ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
6026 NVREG_XMITCTL_SYNC_PHY_INIT)) {
6027 /* phy is inited by mgmt unit */
6028 phyinitialized = 1;
6029 } else {
6030 /* we need to init the phy */
6031 }
6032 }
6033 }
6034
6035 /* find a suitable phy */
6036 for (i = 1; i <= 32; i++) {
6037 int id1, id2;
6038 int phyaddr = i & 0x1F;
6039
6040 spin_lock_irq(&np->lock);
6041 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
6042 spin_unlock_irq(&np->lock);
6043 if (id1 < 0 || id1 == 0xffff)
6044 continue;
6045 spin_lock_irq(&np->lock);
6046 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
6047 spin_unlock_irq(&np->lock);
6048 if (id2 < 0 || id2 == 0xffff)
6049 continue;
6050
6051 np->phy_model = id2 & PHYID2_MODEL_MASK;
6052 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
6053 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
6054 np->phyaddr = phyaddr;
6055 np->phy_oui = id1 | id2;
6056
6057 /* Realtek hardcoded phy id1 to all zero's on certain phys */
6058 if (np->phy_oui == PHY_OUI_REALTEK2)
6059 np->phy_oui = PHY_OUI_REALTEK;
6060 /* Setup phy revision for Realtek */
6061 if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
6062 np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
6063
6064 break;
6065 }
6066 if (i == 33) {
6067 dev_info(&pci_dev->dev, "open: Could not find a valid PHY\n");
6068 goto out_error;
6069 }
6070
6071 if (!phyinitialized) {
6072 /* reset it */
6073 phy_init(dev);
6074 } else {
6075 /* see if it is a gigabit phy */
6076 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
6077 if (mii_status & PHY_GIGABIT)
6078 np->gigabit = PHY_GIGABIT;
6079 }
6080
6081 /* set default link speed settings */
6082 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
6083 np->duplex = 0;
6084 np->autoneg = 1;
6085
6086 err = register_netdev(dev);
6087 if (err) {
6088 dev_info(&pci_dev->dev, "unable to register netdev: %d\n", err);
6089 goto out_error;
6090 }
6091
6092 netif_carrier_off(dev);
6093
6094 /* Some NICs freeze when TX pause is enabled while NIC is
6095 * down, and this stays across warm reboots. The sequence
6096 * below should be enough to recover from that state.
6097 */
6098 nv_update_pause(dev, 0);
6099 nv_start_tx(dev);
6100 nv_stop_tx(dev);
6101
6102 if (id->driver_data & DEV_HAS_VLAN)
6103 nv_vlan_mode(dev, dev->features);
6104
6105 dev_info(&pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, addr %pM\n",
6106 dev->name, np->phy_oui, np->phyaddr, dev->dev_addr);
6107
6108 dev_info(&pci_dev->dev, "%s%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
6109 dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
6110 dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
6111 "csum " : "",
6112 dev->features & (NETIF_F_HW_VLAN_CTAG_RX |
6113 NETIF_F_HW_VLAN_CTAG_TX) ?
6114 "vlan " : "",
6115 dev->features & (NETIF_F_LOOPBACK) ?
6116 "loopback " : "",
6117 id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
6118 id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
6119 id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
6120 np->gigabit == PHY_GIGABIT ? "gbit " : "",
6121 np->need_linktimer ? "lnktim " : "",
6122 np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
6123 np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
6124 np->desc_ver);
6125
6126 return 0;
6127
6128 out_error:
6129 nv_mgmt_release_sema(dev);
6130 if (phystate_orig)
6131 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
6132 out_freering:
6133 free_rings(dev);
6134 out_unmap:
6135 iounmap(get_hwbase(dev));
6136 out_relreg:
6137 pci_release_regions(pci_dev);
6138 out_disable:
6139 pci_disable_device(pci_dev);
6140 out_free:
6141 free_percpu(np->txrx_stats);
6142 out_alloc_percpu:
6143 free_netdev(dev);
6144 out:
6145 return err;
6146 }
6147
nv_restore_phy(struct net_device * dev)6148 static void nv_restore_phy(struct net_device *dev)
6149 {
6150 struct fe_priv *np = netdev_priv(dev);
6151 u16 phy_reserved, mii_control;
6152
6153 if (np->phy_oui == PHY_OUI_REALTEK &&
6154 np->phy_model == PHY_MODEL_REALTEK_8201 &&
6155 phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
6156 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
6157 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
6158 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
6159 phy_reserved |= PHY_REALTEK_INIT8;
6160 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
6161 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
6162
6163 /* restart auto negotiation */
6164 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
6165 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
6166 mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
6167 }
6168 }
6169
nv_restore_mac_addr(struct pci_dev * pci_dev)6170 static void nv_restore_mac_addr(struct pci_dev *pci_dev)
6171 {
6172 struct net_device *dev = pci_get_drvdata(pci_dev);
6173 struct fe_priv *np = netdev_priv(dev);
6174 u8 __iomem *base = get_hwbase(dev);
6175
6176 /* special op: write back the misordered MAC address - otherwise
6177 * the next nv_probe would see a wrong address.
6178 */
6179 writel(np->orig_mac[0], base + NvRegMacAddrA);
6180 writel(np->orig_mac[1], base + NvRegMacAddrB);
6181 writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
6182 base + NvRegTransmitPoll);
6183 }
6184
nv_remove(struct pci_dev * pci_dev)6185 static void nv_remove(struct pci_dev *pci_dev)
6186 {
6187 struct net_device *dev = pci_get_drvdata(pci_dev);
6188 struct fe_priv *np = netdev_priv(dev);
6189
6190 free_percpu(np->txrx_stats);
6191
6192 unregister_netdev(dev);
6193
6194 nv_restore_mac_addr(pci_dev);
6195
6196 /* restore any phy related changes */
6197 nv_restore_phy(dev);
6198
6199 nv_mgmt_release_sema(dev);
6200
6201 /* free all structures */
6202 free_rings(dev);
6203 iounmap(get_hwbase(dev));
6204 pci_release_regions(pci_dev);
6205 pci_disable_device(pci_dev);
6206 free_netdev(dev);
6207 }
6208
6209 #ifdef CONFIG_PM_SLEEP
nv_suspend(struct device * device)6210 static int nv_suspend(struct device *device)
6211 {
6212 struct net_device *dev = dev_get_drvdata(device);
6213 struct fe_priv *np = netdev_priv(dev);
6214 u8 __iomem *base = get_hwbase(dev);
6215 int i;
6216
6217 if (netif_running(dev)) {
6218 /* Gross. */
6219 nv_close(dev);
6220 }
6221 netif_device_detach(dev);
6222
6223 /* save non-pci configuration space */
6224 for (i = 0; i <= np->register_size/sizeof(u32); i++)
6225 np->saved_config_space[i] = readl(base + i*sizeof(u32));
6226
6227 return 0;
6228 }
6229
nv_resume(struct device * device)6230 static int nv_resume(struct device *device)
6231 {
6232 struct pci_dev *pdev = to_pci_dev(device);
6233 struct net_device *dev = pci_get_drvdata(pdev);
6234 struct fe_priv *np = netdev_priv(dev);
6235 u8 __iomem *base = get_hwbase(dev);
6236 int i, rc = 0;
6237
6238 /* restore non-pci configuration space */
6239 for (i = 0; i <= np->register_size/sizeof(u32); i++)
6240 writel(np->saved_config_space[i], base+i*sizeof(u32));
6241
6242 if (np->driver_data & DEV_NEED_MSI_FIX)
6243 pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
6244
6245 /* restore phy state, including autoneg */
6246 phy_init(dev);
6247
6248 netif_device_attach(dev);
6249 if (netif_running(dev)) {
6250 rc = nv_open(dev);
6251 nv_set_multicast(dev);
6252 }
6253 return rc;
6254 }
6255
6256 static SIMPLE_DEV_PM_OPS(nv_pm_ops, nv_suspend, nv_resume);
6257 #define NV_PM_OPS (&nv_pm_ops)
6258
6259 #else
6260 #define NV_PM_OPS NULL
6261 #endif /* CONFIG_PM_SLEEP */
6262
6263 #ifdef CONFIG_PM
nv_shutdown(struct pci_dev * pdev)6264 static void nv_shutdown(struct pci_dev *pdev)
6265 {
6266 struct net_device *dev = pci_get_drvdata(pdev);
6267 struct fe_priv *np = netdev_priv(dev);
6268
6269 if (netif_running(dev))
6270 nv_close(dev);
6271
6272 /*
6273 * Restore the MAC so a kernel started by kexec won't get confused.
6274 * If we really go for poweroff, we must not restore the MAC,
6275 * otherwise the MAC for WOL will be reversed at least on some boards.
6276 */
6277 if (system_state != SYSTEM_POWER_OFF)
6278 nv_restore_mac_addr(pdev);
6279
6280 pci_disable_device(pdev);
6281 /*
6282 * Apparently it is not possible to reinitialise from D3 hot,
6283 * only put the device into D3 if we really go for poweroff.
6284 */
6285 if (system_state == SYSTEM_POWER_OFF) {
6286 pci_wake_from_d3(pdev, np->wolenabled);
6287 pci_set_power_state(pdev, PCI_D3hot);
6288 }
6289 }
6290 #else
6291 #define nv_shutdown NULL
6292 #endif /* CONFIG_PM */
6293
6294 static const struct pci_device_id pci_tbl[] = {
6295 { /* nForce Ethernet Controller */
6296 PCI_DEVICE(0x10DE, 0x01C3),
6297 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6298 },
6299 { /* nForce2 Ethernet Controller */
6300 PCI_DEVICE(0x10DE, 0x0066),
6301 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6302 },
6303 { /* nForce3 Ethernet Controller */
6304 PCI_DEVICE(0x10DE, 0x00D6),
6305 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6306 },
6307 { /* nForce3 Ethernet Controller */
6308 PCI_DEVICE(0x10DE, 0x0086),
6309 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6310 },
6311 { /* nForce3 Ethernet Controller */
6312 PCI_DEVICE(0x10DE, 0x008C),
6313 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6314 },
6315 { /* nForce3 Ethernet Controller */
6316 PCI_DEVICE(0x10DE, 0x00E6),
6317 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6318 },
6319 { /* nForce3 Ethernet Controller */
6320 PCI_DEVICE(0x10DE, 0x00DF),
6321 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6322 },
6323 { /* CK804 Ethernet Controller */
6324 PCI_DEVICE(0x10DE, 0x0056),
6325 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6326 },
6327 { /* CK804 Ethernet Controller */
6328 PCI_DEVICE(0x10DE, 0x0057),
6329 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6330 },
6331 { /* MCP04 Ethernet Controller */
6332 PCI_DEVICE(0x10DE, 0x0037),
6333 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6334 },
6335 { /* MCP04 Ethernet Controller */
6336 PCI_DEVICE(0x10DE, 0x0038),
6337 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6338 },
6339 { /* MCP51 Ethernet Controller */
6340 PCI_DEVICE(0x10DE, 0x0268),
6341 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
6342 },
6343 { /* MCP51 Ethernet Controller */
6344 PCI_DEVICE(0x10DE, 0x0269),
6345 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
6346 },
6347 { /* MCP55 Ethernet Controller */
6348 PCI_DEVICE(0x10DE, 0x0372),
6349 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
6350 },
6351 { /* MCP55 Ethernet Controller */
6352 PCI_DEVICE(0x10DE, 0x0373),
6353 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
6354 },
6355 { /* MCP61 Ethernet Controller */
6356 PCI_DEVICE(0x10DE, 0x03E5),
6357 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6358 },
6359 { /* MCP61 Ethernet Controller */
6360 PCI_DEVICE(0x10DE, 0x03E6),
6361 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6362 },
6363 { /* MCP61 Ethernet Controller */
6364 PCI_DEVICE(0x10DE, 0x03EE),
6365 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6366 },
6367 { /* MCP61 Ethernet Controller */
6368 PCI_DEVICE(0x10DE, 0x03EF),
6369 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6370 },
6371 { /* MCP65 Ethernet Controller */
6372 PCI_DEVICE(0x10DE, 0x0450),
6373 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6374 },
6375 { /* MCP65 Ethernet Controller */
6376 PCI_DEVICE(0x10DE, 0x0451),
6377 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6378 },
6379 { /* MCP65 Ethernet Controller */
6380 PCI_DEVICE(0x10DE, 0x0452),
6381 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6382 },
6383 { /* MCP65 Ethernet Controller */
6384 PCI_DEVICE(0x10DE, 0x0453),
6385 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6386 },
6387 { /* MCP67 Ethernet Controller */
6388 PCI_DEVICE(0x10DE, 0x054C),
6389 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6390 },
6391 { /* MCP67 Ethernet Controller */
6392 PCI_DEVICE(0x10DE, 0x054D),
6393 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6394 },
6395 { /* MCP67 Ethernet Controller */
6396 PCI_DEVICE(0x10DE, 0x054E),
6397 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6398 },
6399 { /* MCP67 Ethernet Controller */
6400 PCI_DEVICE(0x10DE, 0x054F),
6401 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6402 },
6403 { /* MCP73 Ethernet Controller */
6404 PCI_DEVICE(0x10DE, 0x07DC),
6405 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6406 },
6407 { /* MCP73 Ethernet Controller */
6408 PCI_DEVICE(0x10DE, 0x07DD),
6409 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6410 },
6411 { /* MCP73 Ethernet Controller */
6412 PCI_DEVICE(0x10DE, 0x07DE),
6413 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6414 },
6415 { /* MCP73 Ethernet Controller */
6416 PCI_DEVICE(0x10DE, 0x07DF),
6417 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6418 },
6419 { /* MCP77 Ethernet Controller */
6420 PCI_DEVICE(0x10DE, 0x0760),
6421 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6422 },
6423 { /* MCP77 Ethernet Controller */
6424 PCI_DEVICE(0x10DE, 0x0761),
6425 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6426 },
6427 { /* MCP77 Ethernet Controller */
6428 PCI_DEVICE(0x10DE, 0x0762),
6429 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6430 },
6431 { /* MCP77 Ethernet Controller */
6432 PCI_DEVICE(0x10DE, 0x0763),
6433 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6434 },
6435 { /* MCP79 Ethernet Controller */
6436 PCI_DEVICE(0x10DE, 0x0AB0),
6437 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6438 },
6439 { /* MCP79 Ethernet Controller */
6440 PCI_DEVICE(0x10DE, 0x0AB1),
6441 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6442 },
6443 { /* MCP79 Ethernet Controller */
6444 PCI_DEVICE(0x10DE, 0x0AB2),
6445 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6446 },
6447 { /* MCP79 Ethernet Controller */
6448 PCI_DEVICE(0x10DE, 0x0AB3),
6449 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6450 },
6451 { /* MCP89 Ethernet Controller */
6452 PCI_DEVICE(0x10DE, 0x0D7D),
6453 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX,
6454 },
6455 {0,},
6456 };
6457
6458 static struct pci_driver forcedeth_pci_driver = {
6459 .name = DRV_NAME,
6460 .id_table = pci_tbl,
6461 .probe = nv_probe,
6462 .remove = nv_remove,
6463 .shutdown = nv_shutdown,
6464 .driver.pm = NV_PM_OPS,
6465 };
6466
6467 module_param(max_interrupt_work, int, 0);
6468 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
6469 module_param(optimization_mode, int, 0);
6470 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
6471 module_param(poll_interval, int, 0);
6472 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
6473 module_param(msi, int, 0);
6474 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
6475 module_param(msix, int, 0);
6476 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
6477 module_param(dma_64bit, int, 0);
6478 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
6479 module_param(phy_cross, int, 0);
6480 MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
6481 module_param(phy_power_down, int, 0);
6482 MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
6483 module_param(debug_tx_timeout, bool, 0);
6484 MODULE_PARM_DESC(debug_tx_timeout,
6485 "Dump tx related registers and ring when tx_timeout happens");
6486
6487 module_pci_driver(forcedeth_pci_driver);
6488 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
6489 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
6490 MODULE_LICENSE("GPL");
6491 MODULE_DEVICE_TABLE(pci, pci_tbl);
6492