xref: /freebsd/contrib/llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Bitcode/BitcodeCommon.h"
27 #include "llvm/Bitcode/BitcodeReader.h"
28 #include "llvm/Bitcode/LLVMBitCodes.h"
29 #include "llvm/Bitstream/BitCodes.h"
30 #include "llvm/Bitstream/BitstreamWriter.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/ConstantRangeList.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/UseListOrder.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/MC/StringTableBuilder.h"
61 #include "llvm/MC/TargetRegistry.h"
62 #include "llvm/Object/IRSymtab.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/SHA1.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/TargetParser/Triple.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstddef>
76 #include <cstdint>
77 #include <iterator>
78 #include <map>
79 #include <memory>
80 #include <optional>
81 #include <string>
82 #include <utility>
83 #include <vector>
84 
85 using namespace llvm;
86 
87 static cl::opt<unsigned>
88     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
89                    cl::desc("Number of metadatas above which we emit an index "
90                             "to enable lazy-loading"));
91 static cl::opt<uint32_t> FlushThreshold(
92     "bitcode-flush-threshold", cl::Hidden, cl::init(512),
93     cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
94 
95 static cl::opt<bool> WriteRelBFToSummary(
96     "write-relbf-to-summary", cl::Hidden, cl::init(false),
97     cl::desc("Write relative block frequency to function summary "));
98 
99 namespace llvm {
100 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
101 }
102 
103 extern bool WriteNewDbgInfoFormatToBitcode;
104 extern llvm::cl::opt<bool> UseNewDbgInfoFormat;
105 
106 namespace {
107 
108 /// These are manifest constants used by the bitcode writer. They do not need to
109 /// be kept in sync with the reader, but need to be consistent within this file.
110 enum {
111   // VALUE_SYMTAB_BLOCK abbrev id's.
112   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
113   VST_ENTRY_7_ABBREV,
114   VST_ENTRY_6_ABBREV,
115   VST_BBENTRY_6_ABBREV,
116 
117   // CONSTANTS_BLOCK abbrev id's.
118   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
119   CONSTANTS_INTEGER_ABBREV,
120   CONSTANTS_CE_CAST_Abbrev,
121   CONSTANTS_NULL_Abbrev,
122 
123   // FUNCTION_BLOCK abbrev id's.
124   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
125   FUNCTION_INST_UNOP_ABBREV,
126   FUNCTION_INST_UNOP_FLAGS_ABBREV,
127   FUNCTION_INST_BINOP_ABBREV,
128   FUNCTION_INST_BINOP_FLAGS_ABBREV,
129   FUNCTION_INST_CAST_ABBREV,
130   FUNCTION_INST_CAST_FLAGS_ABBREV,
131   FUNCTION_INST_RET_VOID_ABBREV,
132   FUNCTION_INST_RET_VAL_ABBREV,
133   FUNCTION_INST_UNREACHABLE_ABBREV,
134   FUNCTION_INST_GEP_ABBREV,
135   FUNCTION_DEBUG_RECORD_VALUE_ABBREV,
136 };
137 
138 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
139 /// file type.
140 class BitcodeWriterBase {
141 protected:
142   /// The stream created and owned by the client.
143   BitstreamWriter &Stream;
144 
145   StringTableBuilder &StrtabBuilder;
146 
147 public:
148   /// Constructs a BitcodeWriterBase object that writes to the provided
149   /// \p Stream.
BitcodeWriterBase(BitstreamWriter & Stream,StringTableBuilder & StrtabBuilder)150   BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
151       : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
152 
153 protected:
154   void writeModuleVersion();
155 };
156 
writeModuleVersion()157 void BitcodeWriterBase::writeModuleVersion() {
158   // VERSION: [version#]
159   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
160 }
161 
162 /// Base class to manage the module bitcode writing, currently subclassed for
163 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
164 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
165 protected:
166   /// The Module to write to bitcode.
167   const Module &M;
168 
169   /// Enumerates ids for all values in the module.
170   ValueEnumerator VE;
171 
172   /// Optional per-module index to write for ThinLTO.
173   const ModuleSummaryIndex *Index;
174 
175   /// Map that holds the correspondence between GUIDs in the summary index,
176   /// that came from indirect call profiles, and a value id generated by this
177   /// class to use in the VST and summary block records.
178   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
179 
180   /// Tracks the last value id recorded in the GUIDToValueMap.
181   unsigned GlobalValueId;
182 
183   /// Saves the offset of the VSTOffset record that must eventually be
184   /// backpatched with the offset of the actual VST.
185   uint64_t VSTOffsetPlaceholder = 0;
186 
187 public:
188   /// Constructs a ModuleBitcodeWriterBase object for the given Module,
189   /// writing to the provided \p Buffer.
ModuleBitcodeWriterBase(const Module & M,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index)190   ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
191                           BitstreamWriter &Stream,
192                           bool ShouldPreserveUseListOrder,
193                           const ModuleSummaryIndex *Index)
194       : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
195         VE(M, ShouldPreserveUseListOrder), Index(Index) {
196     // Assign ValueIds to any callee values in the index that came from
197     // indirect call profiles and were recorded as a GUID not a Value*
198     // (which would have been assigned an ID by the ValueEnumerator).
199     // The starting ValueId is just after the number of values in the
200     // ValueEnumerator, so that they can be emitted in the VST.
201     GlobalValueId = VE.getValues().size();
202     if (!Index)
203       return;
204     for (const auto &GUIDSummaryLists : *Index)
205       // Examine all summaries for this GUID.
206       for (auto &Summary : GUIDSummaryLists.second.SummaryList)
207         if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) {
208           // For each call in the function summary, see if the call
209           // is to a GUID (which means it is for an indirect call,
210           // otherwise we would have a Value for it). If so, synthesize
211           // a value id.
212           for (auto &CallEdge : FS->calls())
213             if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
214               assignValueId(CallEdge.first.getGUID());
215 
216           // For each referenced variables in the function summary, see if the
217           // variable is represented by a GUID (as opposed to a symbol to
218           // declarations or definitions in the module). If so, synthesize a
219           // value id.
220           for (auto &RefEdge : FS->refs())
221             if (!RefEdge.haveGVs() || !RefEdge.getValue())
222               assignValueId(RefEdge.getGUID());
223         }
224   }
225 
226 protected:
227   void writePerModuleGlobalValueSummary();
228 
229 private:
230   void writePerModuleFunctionSummaryRecord(
231       SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
232       unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
233       unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F);
234   void writeModuleLevelReferences(const GlobalVariable &V,
235                                   SmallVector<uint64_t, 64> &NameVals,
236                                   unsigned FSModRefsAbbrev,
237                                   unsigned FSModVTableRefsAbbrev);
238 
assignValueId(GlobalValue::GUID ValGUID)239   void assignValueId(GlobalValue::GUID ValGUID) {
240     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
241   }
242 
getValueId(GlobalValue::GUID ValGUID)243   unsigned getValueId(GlobalValue::GUID ValGUID) {
244     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
245     // Expect that any GUID value had a value Id assigned by an
246     // earlier call to assignValueId.
247     assert(VMI != GUIDToValueIdMap.end() &&
248            "GUID does not have assigned value Id");
249     return VMI->second;
250   }
251 
252   // Helper to get the valueId for the type of value recorded in VI.
getValueId(ValueInfo VI)253   unsigned getValueId(ValueInfo VI) {
254     if (!VI.haveGVs() || !VI.getValue())
255       return getValueId(VI.getGUID());
256     return VE.getValueID(VI.getValue());
257   }
258 
valueIds()259   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
260 };
261 
262 /// Class to manage the bitcode writing for a module.
263 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
264   /// True if a module hash record should be written.
265   bool GenerateHash;
266 
267   /// If non-null, when GenerateHash is true, the resulting hash is written
268   /// into ModHash.
269   ModuleHash *ModHash;
270 
271   SHA1 Hasher;
272 
273   /// The start bit of the identification block.
274   uint64_t BitcodeStartBit;
275 
276 public:
277   /// Constructs a ModuleBitcodeWriter object for the given Module,
278   /// writing to the provided \p Buffer.
ModuleBitcodeWriter(const Module & M,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash,ModuleHash * ModHash=nullptr)279   ModuleBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
280                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
281                       const ModuleSummaryIndex *Index, bool GenerateHash,
282                       ModuleHash *ModHash = nullptr)
283       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
284                                 ShouldPreserveUseListOrder, Index),
285         GenerateHash(GenerateHash), ModHash(ModHash),
286         BitcodeStartBit(Stream.GetCurrentBitNo()) {}
287 
288   /// Emit the current module to the bitstream.
289   void write();
290 
291 private:
bitcodeStartBit()292   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
293 
294   size_t addToStrtab(StringRef Str);
295 
296   void writeAttributeGroupTable();
297   void writeAttributeTable();
298   void writeTypeTable();
299   void writeComdats();
300   void writeValueSymbolTableForwardDecl();
301   void writeModuleInfo();
302   void writeValueAsMetadata(const ValueAsMetadata *MD,
303                             SmallVectorImpl<uint64_t> &Record);
304   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
305                     unsigned Abbrev);
306   unsigned createDILocationAbbrev();
307   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
308                        unsigned &Abbrev);
309   unsigned createGenericDINodeAbbrev();
310   void writeGenericDINode(const GenericDINode *N,
311                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
312   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
313                        unsigned Abbrev);
314   void writeDIGenericSubrange(const DIGenericSubrange *N,
315                               SmallVectorImpl<uint64_t> &Record,
316                               unsigned Abbrev);
317   void writeDIEnumerator(const DIEnumerator *N,
318                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
319   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
320                         unsigned Abbrev);
321   void writeDIStringType(const DIStringType *N,
322                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
323   void writeDIDerivedType(const DIDerivedType *N,
324                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
325   void writeDICompositeType(const DICompositeType *N,
326                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
327   void writeDISubroutineType(const DISubroutineType *N,
328                              SmallVectorImpl<uint64_t> &Record,
329                              unsigned Abbrev);
330   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
331                    unsigned Abbrev);
332   void writeDICompileUnit(const DICompileUnit *N,
333                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
334   void writeDISubprogram(const DISubprogram *N,
335                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
336   void writeDILexicalBlock(const DILexicalBlock *N,
337                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
338   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
339                                SmallVectorImpl<uint64_t> &Record,
340                                unsigned Abbrev);
341   void writeDICommonBlock(const DICommonBlock *N,
342                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
343   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
344                         unsigned Abbrev);
345   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
346                     unsigned Abbrev);
347   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
348                         unsigned Abbrev);
349   void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record);
350   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
351                      unsigned Abbrev);
352   void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record,
353                        unsigned Abbrev);
354   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
355                                     SmallVectorImpl<uint64_t> &Record,
356                                     unsigned Abbrev);
357   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
358                                      SmallVectorImpl<uint64_t> &Record,
359                                      unsigned Abbrev);
360   void writeDIGlobalVariable(const DIGlobalVariable *N,
361                              SmallVectorImpl<uint64_t> &Record,
362                              unsigned Abbrev);
363   void writeDILocalVariable(const DILocalVariable *N,
364                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
365   void writeDILabel(const DILabel *N,
366                     SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
367   void writeDIExpression(const DIExpression *N,
368                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
369   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
370                                        SmallVectorImpl<uint64_t> &Record,
371                                        unsigned Abbrev);
372   void writeDIObjCProperty(const DIObjCProperty *N,
373                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
374   void writeDIImportedEntity(const DIImportedEntity *N,
375                              SmallVectorImpl<uint64_t> &Record,
376                              unsigned Abbrev);
377   unsigned createNamedMetadataAbbrev();
378   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
379   unsigned createMetadataStringsAbbrev();
380   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
381                             SmallVectorImpl<uint64_t> &Record);
382   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
383                             SmallVectorImpl<uint64_t> &Record,
384                             std::vector<unsigned> *MDAbbrevs = nullptr,
385                             std::vector<uint64_t> *IndexPos = nullptr);
386   void writeModuleMetadata();
387   void writeFunctionMetadata(const Function &F);
388   void writeFunctionMetadataAttachment(const Function &F);
389   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
390                                     const GlobalObject &GO);
391   void writeModuleMetadataKinds();
392   void writeOperandBundleTags();
393   void writeSyncScopeNames();
394   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
395   void writeModuleConstants();
396   bool pushValueAndType(const Value *V, unsigned InstID,
397                         SmallVectorImpl<unsigned> &Vals);
398   void writeOperandBundles(const CallBase &CB, unsigned InstID);
399   void pushValue(const Value *V, unsigned InstID,
400                  SmallVectorImpl<unsigned> &Vals);
401   void pushValueSigned(const Value *V, unsigned InstID,
402                        SmallVectorImpl<uint64_t> &Vals);
403   void writeInstruction(const Instruction &I, unsigned InstID,
404                         SmallVectorImpl<unsigned> &Vals);
405   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
406   void writeGlobalValueSymbolTable(
407       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
408   void writeUseList(UseListOrder &&Order);
409   void writeUseListBlock(const Function *F);
410   void
411   writeFunction(const Function &F,
412                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
413   void writeBlockInfo();
414   void writeModuleHash(StringRef View);
415 
getEncodedSyncScopeID(SyncScope::ID SSID)416   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
417     return unsigned(SSID);
418   }
419 
getEncodedAlign(MaybeAlign Alignment)420   unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
421 };
422 
423 /// Class to manage the bitcode writing for a combined index.
424 class IndexBitcodeWriter : public BitcodeWriterBase {
425   /// The combined index to write to bitcode.
426   const ModuleSummaryIndex &Index;
427 
428   /// When writing combined summaries, provides the set of global value
429   /// summaries for which the value (function, function alias, etc) should be
430   /// imported as a declaration.
431   const GVSummaryPtrSet *DecSummaries = nullptr;
432 
433   /// When writing a subset of the index for distributed backends, client
434   /// provides a map of modules to the corresponding GUIDs/summaries to write.
435   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
436 
437   /// Map that holds the correspondence between the GUID used in the combined
438   /// index and a value id generated by this class to use in references.
439   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
440 
441   // The stack ids used by this index, which will be a subset of those in
442   // the full index in the case of distributed indexes.
443   std::vector<uint64_t> StackIds;
444 
445   // Keep a map of the stack id indices used by records being written for this
446   // index to the index of the corresponding stack id in the above StackIds
447   // vector. Ensures we write each referenced stack id once.
448   DenseMap<unsigned, unsigned> StackIdIndicesToIndex;
449 
450   /// Tracks the last value id recorded in the GUIDToValueMap.
451   unsigned GlobalValueId = 0;
452 
453   /// Tracks the assignment of module paths in the module path string table to
454   /// an id assigned for use in summary references to the module path.
455   DenseMap<StringRef, uint64_t> ModuleIdMap;
456 
457 public:
458   /// Constructs a IndexBitcodeWriter object for the given combined index,
459   /// writing to the provided \p Buffer. When writing a subset of the index
460   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
461   /// If provided, \p DecSummaries specifies the set of summaries for which
462   /// the corresponding functions or aliased functions should be imported as a
463   /// declaration (but not definition) for each module.
IndexBitcodeWriter(BitstreamWriter & Stream,StringTableBuilder & StrtabBuilder,const ModuleSummaryIndex & Index,const GVSummaryPtrSet * DecSummaries=nullptr,const std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex=nullptr)464   IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
465                      const ModuleSummaryIndex &Index,
466                      const GVSummaryPtrSet *DecSummaries = nullptr,
467                      const std::map<std::string, GVSummaryMapTy>
468                          *ModuleToSummariesForIndex = nullptr)
469       : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
470         DecSummaries(DecSummaries),
471         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
472 
473     // See if the StackIdIndex was already added to the StackId map and
474     // vector. If not, record it.
475     auto RecordStackIdReference = [&](unsigned StackIdIndex) {
476       // If the StackIdIndex is not yet in the map, the below insert ensures
477       // that it will point to the new StackIds vector entry we push to just
478       // below.
479       auto Inserted =
480           StackIdIndicesToIndex.insert({StackIdIndex, StackIds.size()});
481       if (Inserted.second)
482         StackIds.push_back(Index.getStackIdAtIndex(StackIdIndex));
483     };
484 
485     // Assign unique value ids to all summaries to be written, for use
486     // in writing out the call graph edges. Save the mapping from GUID
487     // to the new global value id to use when writing those edges, which
488     // are currently saved in the index in terms of GUID.
489     forEachSummary([&](GVInfo I, bool IsAliasee) {
490       GUIDToValueIdMap[I.first] = ++GlobalValueId;
491       if (IsAliasee)
492         return;
493       auto *FS = dyn_cast<FunctionSummary>(I.second);
494       if (!FS)
495         return;
496       // Record all stack id indices actually used in the summary entries being
497       // written, so that we can compact them in the case of distributed ThinLTO
498       // indexes.
499       for (auto &CI : FS->callsites()) {
500         // If the stack id list is empty, this callsite info was synthesized for
501         // a missing tail call frame. Ensure that the callee's GUID gets a value
502         // id. Normally we only generate these for defined summaries, which in
503         // the case of distributed ThinLTO is only the functions already defined
504         // in the module or that we want to import. We don't bother to include
505         // all the callee symbols as they aren't normally needed in the backend.
506         // However, for the synthesized callsite infos we do need the callee
507         // GUID in the backend so that we can correlate the identified callee
508         // with this callsite info (which for non-tail calls is done by the
509         // ordering of the callsite infos and verified via stack ids).
510         if (CI.StackIdIndices.empty()) {
511           GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId;
512           continue;
513         }
514         for (auto Idx : CI.StackIdIndices)
515           RecordStackIdReference(Idx);
516       }
517       for (auto &AI : FS->allocs())
518         for (auto &MIB : AI.MIBs)
519           for (auto Idx : MIB.StackIdIndices)
520             RecordStackIdReference(Idx);
521     });
522   }
523 
524   /// The below iterator returns the GUID and associated summary.
525   using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
526 
527   /// Calls the callback for each value GUID and summary to be written to
528   /// bitcode. This hides the details of whether they are being pulled from the
529   /// entire index or just those in a provided ModuleToSummariesForIndex map.
530   template<typename Functor>
forEachSummary(Functor Callback)531   void forEachSummary(Functor Callback) {
532     if (ModuleToSummariesForIndex) {
533       for (auto &M : *ModuleToSummariesForIndex)
534         for (auto &Summary : M.second) {
535           Callback(Summary, false);
536           // Ensure aliasee is handled, e.g. for assigning a valueId,
537           // even if we are not importing the aliasee directly (the
538           // imported alias will contain a copy of aliasee).
539           if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
540             Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
541         }
542     } else {
543       for (auto &Summaries : Index)
544         for (auto &Summary : Summaries.second.SummaryList)
545           Callback({Summaries.first, Summary.get()}, false);
546     }
547   }
548 
549   /// Calls the callback for each entry in the modulePaths StringMap that
550   /// should be written to the module path string table. This hides the details
551   /// of whether they are being pulled from the entire index or just those in a
552   /// provided ModuleToSummariesForIndex map.
forEachModule(Functor Callback)553   template <typename Functor> void forEachModule(Functor Callback) {
554     if (ModuleToSummariesForIndex) {
555       for (const auto &M : *ModuleToSummariesForIndex) {
556         const auto &MPI = Index.modulePaths().find(M.first);
557         if (MPI == Index.modulePaths().end()) {
558           // This should only happen if the bitcode file was empty, in which
559           // case we shouldn't be importing (the ModuleToSummariesForIndex
560           // would only include the module we are writing and index for).
561           assert(ModuleToSummariesForIndex->size() == 1);
562           continue;
563         }
564         Callback(*MPI);
565       }
566     } else {
567       // Since StringMap iteration order isn't guaranteed, order by path string
568       // first.
569       // FIXME: Make this a vector of StringMapEntry instead to avoid the later
570       // map lookup.
571       std::vector<StringRef> ModulePaths;
572       for (auto &[ModPath, _] : Index.modulePaths())
573         ModulePaths.push_back(ModPath);
574       llvm::sort(ModulePaths.begin(), ModulePaths.end());
575       for (auto &ModPath : ModulePaths)
576         Callback(*Index.modulePaths().find(ModPath));
577     }
578   }
579 
580   /// Main entry point for writing a combined index to bitcode.
581   void write();
582 
583 private:
584   void writeModStrings();
585   void writeCombinedGlobalValueSummary();
586 
getValueId(GlobalValue::GUID ValGUID)587   std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
588     auto VMI = GUIDToValueIdMap.find(ValGUID);
589     if (VMI == GUIDToValueIdMap.end())
590       return std::nullopt;
591     return VMI->second;
592   }
593 
valueIds()594   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
595 };
596 
597 } // end anonymous namespace
598 
getEncodedCastOpcode(unsigned Opcode)599 static unsigned getEncodedCastOpcode(unsigned Opcode) {
600   switch (Opcode) {
601   default: llvm_unreachable("Unknown cast instruction!");
602   case Instruction::Trunc   : return bitc::CAST_TRUNC;
603   case Instruction::ZExt    : return bitc::CAST_ZEXT;
604   case Instruction::SExt    : return bitc::CAST_SEXT;
605   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
606   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
607   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
608   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
609   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
610   case Instruction::FPExt   : return bitc::CAST_FPEXT;
611   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
612   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
613   case Instruction::BitCast : return bitc::CAST_BITCAST;
614   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
615   }
616 }
617 
getEncodedUnaryOpcode(unsigned Opcode)618 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
619   switch (Opcode) {
620   default: llvm_unreachable("Unknown binary instruction!");
621   case Instruction::FNeg: return bitc::UNOP_FNEG;
622   }
623 }
624 
getEncodedBinaryOpcode(unsigned Opcode)625 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
626   switch (Opcode) {
627   default: llvm_unreachable("Unknown binary instruction!");
628   case Instruction::Add:
629   case Instruction::FAdd: return bitc::BINOP_ADD;
630   case Instruction::Sub:
631   case Instruction::FSub: return bitc::BINOP_SUB;
632   case Instruction::Mul:
633   case Instruction::FMul: return bitc::BINOP_MUL;
634   case Instruction::UDiv: return bitc::BINOP_UDIV;
635   case Instruction::FDiv:
636   case Instruction::SDiv: return bitc::BINOP_SDIV;
637   case Instruction::URem: return bitc::BINOP_UREM;
638   case Instruction::FRem:
639   case Instruction::SRem: return bitc::BINOP_SREM;
640   case Instruction::Shl:  return bitc::BINOP_SHL;
641   case Instruction::LShr: return bitc::BINOP_LSHR;
642   case Instruction::AShr: return bitc::BINOP_ASHR;
643   case Instruction::And:  return bitc::BINOP_AND;
644   case Instruction::Or:   return bitc::BINOP_OR;
645   case Instruction::Xor:  return bitc::BINOP_XOR;
646   }
647 }
648 
getEncodedRMWOperation(AtomicRMWInst::BinOp Op)649 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
650   switch (Op) {
651   default: llvm_unreachable("Unknown RMW operation!");
652   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
653   case AtomicRMWInst::Add: return bitc::RMW_ADD;
654   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
655   case AtomicRMWInst::And: return bitc::RMW_AND;
656   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
657   case AtomicRMWInst::Or: return bitc::RMW_OR;
658   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
659   case AtomicRMWInst::Max: return bitc::RMW_MAX;
660   case AtomicRMWInst::Min: return bitc::RMW_MIN;
661   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
662   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
663   case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
664   case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
665   case AtomicRMWInst::FMax: return bitc::RMW_FMAX;
666   case AtomicRMWInst::FMin: return bitc::RMW_FMIN;
667   case AtomicRMWInst::UIncWrap:
668     return bitc::RMW_UINC_WRAP;
669   case AtomicRMWInst::UDecWrap:
670     return bitc::RMW_UDEC_WRAP;
671   }
672 }
673 
getEncodedOrdering(AtomicOrdering Ordering)674 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
675   switch (Ordering) {
676   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
677   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
678   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
679   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
680   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
681   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
682   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
683   }
684   llvm_unreachable("Invalid ordering");
685 }
686 
writeStringRecord(BitstreamWriter & Stream,unsigned Code,StringRef Str,unsigned AbbrevToUse)687 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
688                               StringRef Str, unsigned AbbrevToUse) {
689   SmallVector<unsigned, 64> Vals;
690 
691   // Code: [strchar x N]
692   for (char C : Str) {
693     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
694       AbbrevToUse = 0;
695     Vals.push_back(C);
696   }
697 
698   // Emit the finished record.
699   Stream.EmitRecord(Code, Vals, AbbrevToUse);
700 }
701 
getAttrKindEncoding(Attribute::AttrKind Kind)702 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
703   switch (Kind) {
704   case Attribute::Alignment:
705     return bitc::ATTR_KIND_ALIGNMENT;
706   case Attribute::AllocAlign:
707     return bitc::ATTR_KIND_ALLOC_ALIGN;
708   case Attribute::AllocSize:
709     return bitc::ATTR_KIND_ALLOC_SIZE;
710   case Attribute::AlwaysInline:
711     return bitc::ATTR_KIND_ALWAYS_INLINE;
712   case Attribute::Builtin:
713     return bitc::ATTR_KIND_BUILTIN;
714   case Attribute::ByVal:
715     return bitc::ATTR_KIND_BY_VAL;
716   case Attribute::Convergent:
717     return bitc::ATTR_KIND_CONVERGENT;
718   case Attribute::InAlloca:
719     return bitc::ATTR_KIND_IN_ALLOCA;
720   case Attribute::Cold:
721     return bitc::ATTR_KIND_COLD;
722   case Attribute::DisableSanitizerInstrumentation:
723     return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION;
724   case Attribute::FnRetThunkExtern:
725     return bitc::ATTR_KIND_FNRETTHUNK_EXTERN;
726   case Attribute::Hot:
727     return bitc::ATTR_KIND_HOT;
728   case Attribute::ElementType:
729     return bitc::ATTR_KIND_ELEMENTTYPE;
730   case Attribute::HybridPatchable:
731     return bitc::ATTR_KIND_HYBRID_PATCHABLE;
732   case Attribute::InlineHint:
733     return bitc::ATTR_KIND_INLINE_HINT;
734   case Attribute::InReg:
735     return bitc::ATTR_KIND_IN_REG;
736   case Attribute::JumpTable:
737     return bitc::ATTR_KIND_JUMP_TABLE;
738   case Attribute::MinSize:
739     return bitc::ATTR_KIND_MIN_SIZE;
740   case Attribute::AllocatedPointer:
741     return bitc::ATTR_KIND_ALLOCATED_POINTER;
742   case Attribute::AllocKind:
743     return bitc::ATTR_KIND_ALLOC_KIND;
744   case Attribute::Memory:
745     return bitc::ATTR_KIND_MEMORY;
746   case Attribute::NoFPClass:
747     return bitc::ATTR_KIND_NOFPCLASS;
748   case Attribute::Naked:
749     return bitc::ATTR_KIND_NAKED;
750   case Attribute::Nest:
751     return bitc::ATTR_KIND_NEST;
752   case Attribute::NoAlias:
753     return bitc::ATTR_KIND_NO_ALIAS;
754   case Attribute::NoBuiltin:
755     return bitc::ATTR_KIND_NO_BUILTIN;
756   case Attribute::NoCallback:
757     return bitc::ATTR_KIND_NO_CALLBACK;
758   case Attribute::NoCapture:
759     return bitc::ATTR_KIND_NO_CAPTURE;
760   case Attribute::NoDuplicate:
761     return bitc::ATTR_KIND_NO_DUPLICATE;
762   case Attribute::NoFree:
763     return bitc::ATTR_KIND_NOFREE;
764   case Attribute::NoImplicitFloat:
765     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
766   case Attribute::NoInline:
767     return bitc::ATTR_KIND_NO_INLINE;
768   case Attribute::NoRecurse:
769     return bitc::ATTR_KIND_NO_RECURSE;
770   case Attribute::NoMerge:
771     return bitc::ATTR_KIND_NO_MERGE;
772   case Attribute::NonLazyBind:
773     return bitc::ATTR_KIND_NON_LAZY_BIND;
774   case Attribute::NonNull:
775     return bitc::ATTR_KIND_NON_NULL;
776   case Attribute::Dereferenceable:
777     return bitc::ATTR_KIND_DEREFERENCEABLE;
778   case Attribute::DereferenceableOrNull:
779     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
780   case Attribute::NoRedZone:
781     return bitc::ATTR_KIND_NO_RED_ZONE;
782   case Attribute::NoReturn:
783     return bitc::ATTR_KIND_NO_RETURN;
784   case Attribute::NoSync:
785     return bitc::ATTR_KIND_NOSYNC;
786   case Attribute::NoCfCheck:
787     return bitc::ATTR_KIND_NOCF_CHECK;
788   case Attribute::NoProfile:
789     return bitc::ATTR_KIND_NO_PROFILE;
790   case Attribute::SkipProfile:
791     return bitc::ATTR_KIND_SKIP_PROFILE;
792   case Attribute::NoUnwind:
793     return bitc::ATTR_KIND_NO_UNWIND;
794   case Attribute::NoSanitizeBounds:
795     return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS;
796   case Attribute::NoSanitizeCoverage:
797     return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE;
798   case Attribute::NullPointerIsValid:
799     return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
800   case Attribute::OptimizeForDebugging:
801     return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING;
802   case Attribute::OptForFuzzing:
803     return bitc::ATTR_KIND_OPT_FOR_FUZZING;
804   case Attribute::OptimizeForSize:
805     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
806   case Attribute::OptimizeNone:
807     return bitc::ATTR_KIND_OPTIMIZE_NONE;
808   case Attribute::ReadNone:
809     return bitc::ATTR_KIND_READ_NONE;
810   case Attribute::ReadOnly:
811     return bitc::ATTR_KIND_READ_ONLY;
812   case Attribute::Returned:
813     return bitc::ATTR_KIND_RETURNED;
814   case Attribute::ReturnsTwice:
815     return bitc::ATTR_KIND_RETURNS_TWICE;
816   case Attribute::SExt:
817     return bitc::ATTR_KIND_S_EXT;
818   case Attribute::Speculatable:
819     return bitc::ATTR_KIND_SPECULATABLE;
820   case Attribute::StackAlignment:
821     return bitc::ATTR_KIND_STACK_ALIGNMENT;
822   case Attribute::StackProtect:
823     return bitc::ATTR_KIND_STACK_PROTECT;
824   case Attribute::StackProtectReq:
825     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
826   case Attribute::StackProtectStrong:
827     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
828   case Attribute::SafeStack:
829     return bitc::ATTR_KIND_SAFESTACK;
830   case Attribute::ShadowCallStack:
831     return bitc::ATTR_KIND_SHADOWCALLSTACK;
832   case Attribute::StrictFP:
833     return bitc::ATTR_KIND_STRICT_FP;
834   case Attribute::StructRet:
835     return bitc::ATTR_KIND_STRUCT_RET;
836   case Attribute::SanitizeAddress:
837     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
838   case Attribute::SanitizeHWAddress:
839     return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
840   case Attribute::SanitizeThread:
841     return bitc::ATTR_KIND_SANITIZE_THREAD;
842   case Attribute::SanitizeMemory:
843     return bitc::ATTR_KIND_SANITIZE_MEMORY;
844   case Attribute::SanitizeNumericalStability:
845     return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY;
846   case Attribute::SpeculativeLoadHardening:
847     return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
848   case Attribute::SwiftError:
849     return bitc::ATTR_KIND_SWIFT_ERROR;
850   case Attribute::SwiftSelf:
851     return bitc::ATTR_KIND_SWIFT_SELF;
852   case Attribute::SwiftAsync:
853     return bitc::ATTR_KIND_SWIFT_ASYNC;
854   case Attribute::UWTable:
855     return bitc::ATTR_KIND_UW_TABLE;
856   case Attribute::VScaleRange:
857     return bitc::ATTR_KIND_VSCALE_RANGE;
858   case Attribute::WillReturn:
859     return bitc::ATTR_KIND_WILLRETURN;
860   case Attribute::WriteOnly:
861     return bitc::ATTR_KIND_WRITEONLY;
862   case Attribute::ZExt:
863     return bitc::ATTR_KIND_Z_EXT;
864   case Attribute::ImmArg:
865     return bitc::ATTR_KIND_IMMARG;
866   case Attribute::SanitizeMemTag:
867     return bitc::ATTR_KIND_SANITIZE_MEMTAG;
868   case Attribute::Preallocated:
869     return bitc::ATTR_KIND_PREALLOCATED;
870   case Attribute::NoUndef:
871     return bitc::ATTR_KIND_NOUNDEF;
872   case Attribute::ByRef:
873     return bitc::ATTR_KIND_BYREF;
874   case Attribute::MustProgress:
875     return bitc::ATTR_KIND_MUSTPROGRESS;
876   case Attribute::PresplitCoroutine:
877     return bitc::ATTR_KIND_PRESPLIT_COROUTINE;
878   case Attribute::Writable:
879     return bitc::ATTR_KIND_WRITABLE;
880   case Attribute::CoroDestroyOnlyWhenComplete:
881     return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE;
882   case Attribute::DeadOnUnwind:
883     return bitc::ATTR_KIND_DEAD_ON_UNWIND;
884   case Attribute::Range:
885     return bitc::ATTR_KIND_RANGE;
886   case Attribute::Initializes:
887     return bitc::ATTR_KIND_INITIALIZES;
888   case Attribute::EndAttrKinds:
889     llvm_unreachable("Can not encode end-attribute kinds marker.");
890   case Attribute::None:
891     llvm_unreachable("Can not encode none-attribute.");
892   case Attribute::EmptyKey:
893   case Attribute::TombstoneKey:
894     llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
895   }
896 
897   llvm_unreachable("Trying to encode unknown attribute");
898 }
899 
emitSignedInt64(SmallVectorImpl<uint64_t> & Vals,uint64_t V)900 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
901   if ((int64_t)V >= 0)
902     Vals.push_back(V << 1);
903   else
904     Vals.push_back((-V << 1) | 1);
905 }
906 
emitWideAPInt(SmallVectorImpl<uint64_t> & Vals,const APInt & A)907 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
908   // We have an arbitrary precision integer value to write whose
909   // bit width is > 64. However, in canonical unsigned integer
910   // format it is likely that the high bits are going to be zero.
911   // So, we only write the number of active words.
912   unsigned NumWords = A.getActiveWords();
913   const uint64_t *RawData = A.getRawData();
914   for (unsigned i = 0; i < NumWords; i++)
915     emitSignedInt64(Vals, RawData[i]);
916 }
917 
emitConstantRange(SmallVectorImpl<uint64_t> & Record,const ConstantRange & CR,bool EmitBitWidth)918 static void emitConstantRange(SmallVectorImpl<uint64_t> &Record,
919                               const ConstantRange &CR, bool EmitBitWidth) {
920   unsigned BitWidth = CR.getBitWidth();
921   if (EmitBitWidth)
922     Record.push_back(BitWidth);
923   if (BitWidth > 64) {
924     Record.push_back(CR.getLower().getActiveWords() |
925                      (uint64_t(CR.getUpper().getActiveWords()) << 32));
926     emitWideAPInt(Record, CR.getLower());
927     emitWideAPInt(Record, CR.getUpper());
928   } else {
929     emitSignedInt64(Record, CR.getLower().getSExtValue());
930     emitSignedInt64(Record, CR.getUpper().getSExtValue());
931   }
932 }
933 
writeAttributeGroupTable()934 void ModuleBitcodeWriter::writeAttributeGroupTable() {
935   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
936       VE.getAttributeGroups();
937   if (AttrGrps.empty()) return;
938 
939   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
940 
941   SmallVector<uint64_t, 64> Record;
942   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
943     unsigned AttrListIndex = Pair.first;
944     AttributeSet AS = Pair.second;
945     Record.push_back(VE.getAttributeGroupID(Pair));
946     Record.push_back(AttrListIndex);
947 
948     for (Attribute Attr : AS) {
949       if (Attr.isEnumAttribute()) {
950         Record.push_back(0);
951         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
952       } else if (Attr.isIntAttribute()) {
953         Record.push_back(1);
954         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
955         Record.push_back(Attr.getValueAsInt());
956       } else if (Attr.isStringAttribute()) {
957         StringRef Kind = Attr.getKindAsString();
958         StringRef Val = Attr.getValueAsString();
959 
960         Record.push_back(Val.empty() ? 3 : 4);
961         Record.append(Kind.begin(), Kind.end());
962         Record.push_back(0);
963         if (!Val.empty()) {
964           Record.append(Val.begin(), Val.end());
965           Record.push_back(0);
966         }
967       } else if (Attr.isTypeAttribute()) {
968         Type *Ty = Attr.getValueAsType();
969         Record.push_back(Ty ? 6 : 5);
970         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
971         if (Ty)
972           Record.push_back(VE.getTypeID(Attr.getValueAsType()));
973       } else if (Attr.isConstantRangeAttribute()) {
974         Record.push_back(7);
975         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
976         emitConstantRange(Record, Attr.getValueAsConstantRange(),
977                           /*EmitBitWidth=*/true);
978       } else {
979         assert(Attr.isConstantRangeListAttribute());
980         Record.push_back(8);
981         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
982         ArrayRef<ConstantRange> Val = Attr.getValueAsConstantRangeList();
983         Record.push_back(Val.size());
984         Record.push_back(Val[0].getBitWidth());
985         for (auto &CR : Val)
986           emitConstantRange(Record, CR, /*EmitBitWidth=*/false);
987       }
988     }
989 
990     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
991     Record.clear();
992   }
993 
994   Stream.ExitBlock();
995 }
996 
writeAttributeTable()997 void ModuleBitcodeWriter::writeAttributeTable() {
998   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
999   if (Attrs.empty()) return;
1000 
1001   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
1002 
1003   SmallVector<uint64_t, 64> Record;
1004   for (const AttributeList &AL : Attrs) {
1005     for (unsigned i : AL.indexes()) {
1006       AttributeSet AS = AL.getAttributes(i);
1007       if (AS.hasAttributes())
1008         Record.push_back(VE.getAttributeGroupID({i, AS}));
1009     }
1010 
1011     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
1012     Record.clear();
1013   }
1014 
1015   Stream.ExitBlock();
1016 }
1017 
1018 /// WriteTypeTable - Write out the type table for a module.
writeTypeTable()1019 void ModuleBitcodeWriter::writeTypeTable() {
1020   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
1021 
1022   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
1023   SmallVector<uint64_t, 64> TypeVals;
1024 
1025   uint64_t NumBits = VE.computeBitsRequiredForTypeIndices();
1026 
1027   // Abbrev for TYPE_CODE_OPAQUE_POINTER.
1028   auto Abbv = std::make_shared<BitCodeAbbrev>();
1029   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER));
1030   Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
1031   unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1032 
1033   // Abbrev for TYPE_CODE_FUNCTION.
1034   Abbv = std::make_shared<BitCodeAbbrev>();
1035   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
1036   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
1037   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1038   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1039   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1040 
1041   // Abbrev for TYPE_CODE_STRUCT_ANON.
1042   Abbv = std::make_shared<BitCodeAbbrev>();
1043   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
1044   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
1045   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1046   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1047   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1048 
1049   // Abbrev for TYPE_CODE_STRUCT_NAME.
1050   Abbv = std::make_shared<BitCodeAbbrev>();
1051   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
1052   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1053   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1054   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1055 
1056   // Abbrev for TYPE_CODE_STRUCT_NAMED.
1057   Abbv = std::make_shared<BitCodeAbbrev>();
1058   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
1059   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
1060   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1061   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1062   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1063 
1064   // Abbrev for TYPE_CODE_ARRAY.
1065   Abbv = std::make_shared<BitCodeAbbrev>();
1066   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
1067   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
1068   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1069   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1070 
1071   // Emit an entry count so the reader can reserve space.
1072   TypeVals.push_back(TypeList.size());
1073   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
1074   TypeVals.clear();
1075 
1076   // Loop over all of the types, emitting each in turn.
1077   for (Type *T : TypeList) {
1078     int AbbrevToUse = 0;
1079     unsigned Code = 0;
1080 
1081     switch (T->getTypeID()) {
1082     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
1083     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
1084     case Type::BFloatTyID:    Code = bitc::TYPE_CODE_BFLOAT;    break;
1085     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
1086     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
1087     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
1088     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
1089     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
1090     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
1091     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
1092     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
1093     case Type::X86_AMXTyID:   Code = bitc::TYPE_CODE_X86_AMX;   break;
1094     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
1095     case Type::IntegerTyID:
1096       // INTEGER: [width]
1097       Code = bitc::TYPE_CODE_INTEGER;
1098       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
1099       break;
1100     case Type::PointerTyID: {
1101       PointerType *PTy = cast<PointerType>(T);
1102       unsigned AddressSpace = PTy->getAddressSpace();
1103       // OPAQUE_POINTER: [address space]
1104       Code = bitc::TYPE_CODE_OPAQUE_POINTER;
1105       TypeVals.push_back(AddressSpace);
1106       if (AddressSpace == 0)
1107         AbbrevToUse = OpaquePtrAbbrev;
1108       break;
1109     }
1110     case Type::FunctionTyID: {
1111       FunctionType *FT = cast<FunctionType>(T);
1112       // FUNCTION: [isvararg, retty, paramty x N]
1113       Code = bitc::TYPE_CODE_FUNCTION;
1114       TypeVals.push_back(FT->isVarArg());
1115       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
1116       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
1117         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
1118       AbbrevToUse = FunctionAbbrev;
1119       break;
1120     }
1121     case Type::StructTyID: {
1122       StructType *ST = cast<StructType>(T);
1123       // STRUCT: [ispacked, eltty x N]
1124       TypeVals.push_back(ST->isPacked());
1125       // Output all of the element types.
1126       for (Type *ET : ST->elements())
1127         TypeVals.push_back(VE.getTypeID(ET));
1128 
1129       if (ST->isLiteral()) {
1130         Code = bitc::TYPE_CODE_STRUCT_ANON;
1131         AbbrevToUse = StructAnonAbbrev;
1132       } else {
1133         if (ST->isOpaque()) {
1134           Code = bitc::TYPE_CODE_OPAQUE;
1135         } else {
1136           Code = bitc::TYPE_CODE_STRUCT_NAMED;
1137           AbbrevToUse = StructNamedAbbrev;
1138         }
1139 
1140         // Emit the name if it is present.
1141         if (!ST->getName().empty())
1142           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1143                             StructNameAbbrev);
1144       }
1145       break;
1146     }
1147     case Type::ArrayTyID: {
1148       ArrayType *AT = cast<ArrayType>(T);
1149       // ARRAY: [numelts, eltty]
1150       Code = bitc::TYPE_CODE_ARRAY;
1151       TypeVals.push_back(AT->getNumElements());
1152       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
1153       AbbrevToUse = ArrayAbbrev;
1154       break;
1155     }
1156     case Type::FixedVectorTyID:
1157     case Type::ScalableVectorTyID: {
1158       VectorType *VT = cast<VectorType>(T);
1159       // VECTOR [numelts, eltty] or
1160       //        [numelts, eltty, scalable]
1161       Code = bitc::TYPE_CODE_VECTOR;
1162       TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1163       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
1164       if (isa<ScalableVectorType>(VT))
1165         TypeVals.push_back(true);
1166       break;
1167     }
1168     case Type::TargetExtTyID: {
1169       TargetExtType *TET = cast<TargetExtType>(T);
1170       Code = bitc::TYPE_CODE_TARGET_TYPE;
1171       writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(),
1172                         StructNameAbbrev);
1173       TypeVals.push_back(TET->getNumTypeParameters());
1174       for (Type *InnerTy : TET->type_params())
1175         TypeVals.push_back(VE.getTypeID(InnerTy));
1176       for (unsigned IntParam : TET->int_params())
1177         TypeVals.push_back(IntParam);
1178       break;
1179     }
1180     case Type::TypedPointerTyID:
1181       llvm_unreachable("Typed pointers cannot be added to IR modules");
1182     }
1183 
1184     // Emit the finished record.
1185     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1186     TypeVals.clear();
1187   }
1188 
1189   Stream.ExitBlock();
1190 }
1191 
getEncodedLinkage(const GlobalValue::LinkageTypes Linkage)1192 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
1193   switch (Linkage) {
1194   case GlobalValue::ExternalLinkage:
1195     return 0;
1196   case GlobalValue::WeakAnyLinkage:
1197     return 16;
1198   case GlobalValue::AppendingLinkage:
1199     return 2;
1200   case GlobalValue::InternalLinkage:
1201     return 3;
1202   case GlobalValue::LinkOnceAnyLinkage:
1203     return 18;
1204   case GlobalValue::ExternalWeakLinkage:
1205     return 7;
1206   case GlobalValue::CommonLinkage:
1207     return 8;
1208   case GlobalValue::PrivateLinkage:
1209     return 9;
1210   case GlobalValue::WeakODRLinkage:
1211     return 17;
1212   case GlobalValue::LinkOnceODRLinkage:
1213     return 19;
1214   case GlobalValue::AvailableExternallyLinkage:
1215     return 12;
1216   }
1217   llvm_unreachable("Invalid linkage");
1218 }
1219 
getEncodedLinkage(const GlobalValue & GV)1220 static unsigned getEncodedLinkage(const GlobalValue &GV) {
1221   return getEncodedLinkage(GV.getLinkage());
1222 }
1223 
getEncodedFFlags(FunctionSummary::FFlags Flags)1224 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1225   uint64_t RawFlags = 0;
1226   RawFlags |= Flags.ReadNone;
1227   RawFlags |= (Flags.ReadOnly << 1);
1228   RawFlags |= (Flags.NoRecurse << 2);
1229   RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1230   RawFlags |= (Flags.NoInline << 4);
1231   RawFlags |= (Flags.AlwaysInline << 5);
1232   RawFlags |= (Flags.NoUnwind << 6);
1233   RawFlags |= (Flags.MayThrow << 7);
1234   RawFlags |= (Flags.HasUnknownCall << 8);
1235   RawFlags |= (Flags.MustBeUnreachable << 9);
1236   return RawFlags;
1237 }
1238 
1239 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags
1240 // in BitcodeReader.cpp.
getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags,bool ImportAsDecl=false)1241 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags,
1242                                          bool ImportAsDecl = false) {
1243   uint64_t RawFlags = 0;
1244 
1245   RawFlags |= Flags.NotEligibleToImport; // bool
1246   RawFlags |= (Flags.Live << 1);
1247   RawFlags |= (Flags.DSOLocal << 2);
1248   RawFlags |= (Flags.CanAutoHide << 3);
1249 
1250   // Linkage don't need to be remapped at that time for the summary. Any future
1251   // change to the getEncodedLinkage() function will need to be taken into
1252   // account here as well.
1253   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1254 
1255   RawFlags |= (Flags.Visibility << 8); // 2 bits
1256 
1257   unsigned ImportType = Flags.ImportType | ImportAsDecl;
1258   RawFlags |= (ImportType << 10); // 1 bit
1259 
1260   return RawFlags;
1261 }
1262 
getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags)1263 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1264   uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
1265                       (Flags.Constant << 2) | Flags.VCallVisibility << 3;
1266   return RawFlags;
1267 }
1268 
getEncodedHotnessCallEdgeInfo(const CalleeInfo & CI)1269 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) {
1270   uint64_t RawFlags = 0;
1271 
1272   RawFlags |= CI.Hotness;            // 3 bits
1273   RawFlags |= (CI.HasTailCall << 3); // 1 bit
1274 
1275   return RawFlags;
1276 }
1277 
getEncodedRelBFCallEdgeInfo(const CalleeInfo & CI)1278 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) {
1279   uint64_t RawFlags = 0;
1280 
1281   RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits
1282   RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit
1283 
1284   return RawFlags;
1285 }
1286 
getEncodedVisibility(const GlobalValue & GV)1287 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1288   switch (GV.getVisibility()) {
1289   case GlobalValue::DefaultVisibility:   return 0;
1290   case GlobalValue::HiddenVisibility:    return 1;
1291   case GlobalValue::ProtectedVisibility: return 2;
1292   }
1293   llvm_unreachable("Invalid visibility");
1294 }
1295 
getEncodedDLLStorageClass(const GlobalValue & GV)1296 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1297   switch (GV.getDLLStorageClass()) {
1298   case GlobalValue::DefaultStorageClass:   return 0;
1299   case GlobalValue::DLLImportStorageClass: return 1;
1300   case GlobalValue::DLLExportStorageClass: return 2;
1301   }
1302   llvm_unreachable("Invalid DLL storage class");
1303 }
1304 
getEncodedThreadLocalMode(const GlobalValue & GV)1305 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1306   switch (GV.getThreadLocalMode()) {
1307     case GlobalVariable::NotThreadLocal:         return 0;
1308     case GlobalVariable::GeneralDynamicTLSModel: return 1;
1309     case GlobalVariable::LocalDynamicTLSModel:   return 2;
1310     case GlobalVariable::InitialExecTLSModel:    return 3;
1311     case GlobalVariable::LocalExecTLSModel:      return 4;
1312   }
1313   llvm_unreachable("Invalid TLS model");
1314 }
1315 
getEncodedComdatSelectionKind(const Comdat & C)1316 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1317   switch (C.getSelectionKind()) {
1318   case Comdat::Any:
1319     return bitc::COMDAT_SELECTION_KIND_ANY;
1320   case Comdat::ExactMatch:
1321     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1322   case Comdat::Largest:
1323     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1324   case Comdat::NoDeduplicate:
1325     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1326   case Comdat::SameSize:
1327     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1328   }
1329   llvm_unreachable("Invalid selection kind");
1330 }
1331 
getEncodedUnnamedAddr(const GlobalValue & GV)1332 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1333   switch (GV.getUnnamedAddr()) {
1334   case GlobalValue::UnnamedAddr::None:   return 0;
1335   case GlobalValue::UnnamedAddr::Local:  return 2;
1336   case GlobalValue::UnnamedAddr::Global: return 1;
1337   }
1338   llvm_unreachable("Invalid unnamed_addr");
1339 }
1340 
addToStrtab(StringRef Str)1341 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1342   if (GenerateHash)
1343     Hasher.update(Str);
1344   return StrtabBuilder.add(Str);
1345 }
1346 
writeComdats()1347 void ModuleBitcodeWriter::writeComdats() {
1348   SmallVector<unsigned, 64> Vals;
1349   for (const Comdat *C : VE.getComdats()) {
1350     // COMDAT: [strtab offset, strtab size, selection_kind]
1351     Vals.push_back(addToStrtab(C->getName()));
1352     Vals.push_back(C->getName().size());
1353     Vals.push_back(getEncodedComdatSelectionKind(*C));
1354     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1355     Vals.clear();
1356   }
1357 }
1358 
1359 /// Write a record that will eventually hold the word offset of the
1360 /// module-level VST. For now the offset is 0, which will be backpatched
1361 /// after the real VST is written. Saves the bit offset to backpatch.
writeValueSymbolTableForwardDecl()1362 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1363   // Write a placeholder value in for the offset of the real VST,
1364   // which is written after the function blocks so that it can include
1365   // the offset of each function. The placeholder offset will be
1366   // updated when the real VST is written.
1367   auto Abbv = std::make_shared<BitCodeAbbrev>();
1368   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1369   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1370   // hold the real VST offset. Must use fixed instead of VBR as we don't
1371   // know how many VBR chunks to reserve ahead of time.
1372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1373   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1374 
1375   // Emit the placeholder
1376   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1377   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1378 
1379   // Compute and save the bit offset to the placeholder, which will be
1380   // patched when the real VST is written. We can simply subtract the 32-bit
1381   // fixed size from the current bit number to get the location to backpatch.
1382   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1383 }
1384 
1385 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1386 
1387 /// Determine the encoding to use for the given string name and length.
getStringEncoding(StringRef Str)1388 static StringEncoding getStringEncoding(StringRef Str) {
1389   bool isChar6 = true;
1390   for (char C : Str) {
1391     if (isChar6)
1392       isChar6 = BitCodeAbbrevOp::isChar6(C);
1393     if ((unsigned char)C & 128)
1394       // don't bother scanning the rest.
1395       return SE_Fixed8;
1396   }
1397   if (isChar6)
1398     return SE_Char6;
1399   return SE_Fixed7;
1400 }
1401 
1402 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned),
1403               "Sanitizer Metadata is too large for naive serialization.");
1404 static unsigned
serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata & Meta)1405 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) {
1406   return Meta.NoAddress | (Meta.NoHWAddress << 1) |
1407          (Meta.Memtag << 2) | (Meta.IsDynInit << 3);
1408 }
1409 
1410 /// Emit top-level description of module, including target triple, inline asm,
1411 /// descriptors for global variables, and function prototype info.
1412 /// Returns the bit offset to backpatch with the location of the real VST.
writeModuleInfo()1413 void ModuleBitcodeWriter::writeModuleInfo() {
1414   // Emit various pieces of data attached to a module.
1415   if (!M.getTargetTriple().empty())
1416     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1417                       0 /*TODO*/);
1418   const std::string &DL = M.getDataLayoutStr();
1419   if (!DL.empty())
1420     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1421   if (!M.getModuleInlineAsm().empty())
1422     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1423                       0 /*TODO*/);
1424 
1425   // Emit information about sections and GC, computing how many there are. Also
1426   // compute the maximum alignment value.
1427   std::map<std::string, unsigned> SectionMap;
1428   std::map<std::string, unsigned> GCMap;
1429   MaybeAlign MaxAlignment;
1430   unsigned MaxGlobalType = 0;
1431   const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1432     if (A)
1433       MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1434   };
1435   for (const GlobalVariable &GV : M.globals()) {
1436     UpdateMaxAlignment(GV.getAlign());
1437     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1438     if (GV.hasSection()) {
1439       // Give section names unique ID's.
1440       unsigned &Entry = SectionMap[std::string(GV.getSection())];
1441       if (!Entry) {
1442         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1443                           0 /*TODO*/);
1444         Entry = SectionMap.size();
1445       }
1446     }
1447   }
1448   for (const Function &F : M) {
1449     UpdateMaxAlignment(F.getAlign());
1450     if (F.hasSection()) {
1451       // Give section names unique ID's.
1452       unsigned &Entry = SectionMap[std::string(F.getSection())];
1453       if (!Entry) {
1454         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1455                           0 /*TODO*/);
1456         Entry = SectionMap.size();
1457       }
1458     }
1459     if (F.hasGC()) {
1460       // Same for GC names.
1461       unsigned &Entry = GCMap[F.getGC()];
1462       if (!Entry) {
1463         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1464                           0 /*TODO*/);
1465         Entry = GCMap.size();
1466       }
1467     }
1468   }
1469 
1470   // Emit abbrev for globals, now that we know # sections and max alignment.
1471   unsigned SimpleGVarAbbrev = 0;
1472   if (!M.global_empty()) {
1473     // Add an abbrev for common globals with no visibility or thread localness.
1474     auto Abbv = std::make_shared<BitCodeAbbrev>();
1475     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1476     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1477     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1478     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1479                               Log2_32_Ceil(MaxGlobalType+1)));
1480     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1481                                                            //| explicitType << 1
1482                                                            //| constant
1483     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1484     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1485     if (!MaxAlignment)                                     // Alignment.
1486       Abbv->Add(BitCodeAbbrevOp(0));
1487     else {
1488       unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1489       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1490                                Log2_32_Ceil(MaxEncAlignment+1)));
1491     }
1492     if (SectionMap.empty())                                    // Section.
1493       Abbv->Add(BitCodeAbbrevOp(0));
1494     else
1495       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1496                                Log2_32_Ceil(SectionMap.size()+1)));
1497     // Don't bother emitting vis + thread local.
1498     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1499   }
1500 
1501   SmallVector<unsigned, 64> Vals;
1502   // Emit the module's source file name.
1503   {
1504     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1505     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1506     if (Bits == SE_Char6)
1507       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1508     else if (Bits == SE_Fixed7)
1509       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1510 
1511     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1512     auto Abbv = std::make_shared<BitCodeAbbrev>();
1513     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1514     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1515     Abbv->Add(AbbrevOpToUse);
1516     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1517 
1518     for (const auto P : M.getSourceFileName())
1519       Vals.push_back((unsigned char)P);
1520 
1521     // Emit the finished record.
1522     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1523     Vals.clear();
1524   }
1525 
1526   // Emit the global variable information.
1527   for (const GlobalVariable &GV : M.globals()) {
1528     unsigned AbbrevToUse = 0;
1529 
1530     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1531     //             linkage, alignment, section, visibility, threadlocal,
1532     //             unnamed_addr, externally_initialized, dllstorageclass,
1533     //             comdat, attributes, DSO_Local, GlobalSanitizer, code_model]
1534     Vals.push_back(addToStrtab(GV.getName()));
1535     Vals.push_back(GV.getName().size());
1536     Vals.push_back(VE.getTypeID(GV.getValueType()));
1537     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1538     Vals.push_back(GV.isDeclaration() ? 0 :
1539                    (VE.getValueID(GV.getInitializer()) + 1));
1540     Vals.push_back(getEncodedLinkage(GV));
1541     Vals.push_back(getEncodedAlign(GV.getAlign()));
1542     Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1543                                    : 0);
1544     if (GV.isThreadLocal() ||
1545         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1546         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1547         GV.isExternallyInitialized() ||
1548         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1549         GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() ||
1550         GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) {
1551       Vals.push_back(getEncodedVisibility(GV));
1552       Vals.push_back(getEncodedThreadLocalMode(GV));
1553       Vals.push_back(getEncodedUnnamedAddr(GV));
1554       Vals.push_back(GV.isExternallyInitialized());
1555       Vals.push_back(getEncodedDLLStorageClass(GV));
1556       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1557 
1558       auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1559       Vals.push_back(VE.getAttributeListID(AL));
1560 
1561       Vals.push_back(GV.isDSOLocal());
1562       Vals.push_back(addToStrtab(GV.getPartition()));
1563       Vals.push_back(GV.getPartition().size());
1564 
1565       Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata(
1566                                                       GV.getSanitizerMetadata())
1567                                                 : 0));
1568       Vals.push_back(GV.getCodeModelRaw());
1569     } else {
1570       AbbrevToUse = SimpleGVarAbbrev;
1571     }
1572 
1573     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1574     Vals.clear();
1575   }
1576 
1577   // Emit the function proto information.
1578   for (const Function &F : M) {
1579     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1580     //             linkage, paramattrs, alignment, section, visibility, gc,
1581     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1582     //             prefixdata, personalityfn, DSO_Local, addrspace]
1583     Vals.push_back(addToStrtab(F.getName()));
1584     Vals.push_back(F.getName().size());
1585     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1586     Vals.push_back(F.getCallingConv());
1587     Vals.push_back(F.isDeclaration());
1588     Vals.push_back(getEncodedLinkage(F));
1589     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1590     Vals.push_back(getEncodedAlign(F.getAlign()));
1591     Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1592                                   : 0);
1593     Vals.push_back(getEncodedVisibility(F));
1594     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1595     Vals.push_back(getEncodedUnnamedAddr(F));
1596     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1597                                        : 0);
1598     Vals.push_back(getEncodedDLLStorageClass(F));
1599     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1600     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1601                                      : 0);
1602     Vals.push_back(
1603         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1604 
1605     Vals.push_back(F.isDSOLocal());
1606     Vals.push_back(F.getAddressSpace());
1607     Vals.push_back(addToStrtab(F.getPartition()));
1608     Vals.push_back(F.getPartition().size());
1609 
1610     unsigned AbbrevToUse = 0;
1611     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1612     Vals.clear();
1613   }
1614 
1615   // Emit the alias information.
1616   for (const GlobalAlias &A : M.aliases()) {
1617     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1618     //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1619     //         DSO_Local]
1620     Vals.push_back(addToStrtab(A.getName()));
1621     Vals.push_back(A.getName().size());
1622     Vals.push_back(VE.getTypeID(A.getValueType()));
1623     Vals.push_back(A.getType()->getAddressSpace());
1624     Vals.push_back(VE.getValueID(A.getAliasee()));
1625     Vals.push_back(getEncodedLinkage(A));
1626     Vals.push_back(getEncodedVisibility(A));
1627     Vals.push_back(getEncodedDLLStorageClass(A));
1628     Vals.push_back(getEncodedThreadLocalMode(A));
1629     Vals.push_back(getEncodedUnnamedAddr(A));
1630     Vals.push_back(A.isDSOLocal());
1631     Vals.push_back(addToStrtab(A.getPartition()));
1632     Vals.push_back(A.getPartition().size());
1633 
1634     unsigned AbbrevToUse = 0;
1635     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1636     Vals.clear();
1637   }
1638 
1639   // Emit the ifunc information.
1640   for (const GlobalIFunc &I : M.ifuncs()) {
1641     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1642     //         val#, linkage, visibility, DSO_Local]
1643     Vals.push_back(addToStrtab(I.getName()));
1644     Vals.push_back(I.getName().size());
1645     Vals.push_back(VE.getTypeID(I.getValueType()));
1646     Vals.push_back(I.getType()->getAddressSpace());
1647     Vals.push_back(VE.getValueID(I.getResolver()));
1648     Vals.push_back(getEncodedLinkage(I));
1649     Vals.push_back(getEncodedVisibility(I));
1650     Vals.push_back(I.isDSOLocal());
1651     Vals.push_back(addToStrtab(I.getPartition()));
1652     Vals.push_back(I.getPartition().size());
1653     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1654     Vals.clear();
1655   }
1656 
1657   writeValueSymbolTableForwardDecl();
1658 }
1659 
getOptimizationFlags(const Value * V)1660 static uint64_t getOptimizationFlags(const Value *V) {
1661   uint64_t Flags = 0;
1662 
1663   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1664     if (OBO->hasNoSignedWrap())
1665       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1666     if (OBO->hasNoUnsignedWrap())
1667       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1668   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1669     if (PEO->isExact())
1670       Flags |= 1 << bitc::PEO_EXACT;
1671   } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) {
1672     if (PDI->isDisjoint())
1673       Flags |= 1 << bitc::PDI_DISJOINT;
1674   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1675     if (FPMO->hasAllowReassoc())
1676       Flags |= bitc::AllowReassoc;
1677     if (FPMO->hasNoNaNs())
1678       Flags |= bitc::NoNaNs;
1679     if (FPMO->hasNoInfs())
1680       Flags |= bitc::NoInfs;
1681     if (FPMO->hasNoSignedZeros())
1682       Flags |= bitc::NoSignedZeros;
1683     if (FPMO->hasAllowReciprocal())
1684       Flags |= bitc::AllowReciprocal;
1685     if (FPMO->hasAllowContract())
1686       Flags |= bitc::AllowContract;
1687     if (FPMO->hasApproxFunc())
1688       Flags |= bitc::ApproxFunc;
1689   } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) {
1690     if (NNI->hasNonNeg())
1691       Flags |= 1 << bitc::PNNI_NON_NEG;
1692   } else if (const auto *TI = dyn_cast<TruncInst>(V)) {
1693     if (TI->hasNoSignedWrap())
1694       Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP;
1695     if (TI->hasNoUnsignedWrap())
1696       Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP;
1697   } else if (const auto *GEP = dyn_cast<GEPOperator>(V)) {
1698     if (GEP->isInBounds())
1699       Flags |= 1 << bitc::GEP_INBOUNDS;
1700     if (GEP->hasNoUnsignedSignedWrap())
1701       Flags |= 1 << bitc::GEP_NUSW;
1702     if (GEP->hasNoUnsignedWrap())
1703       Flags |= 1 << bitc::GEP_NUW;
1704   }
1705 
1706   return Flags;
1707 }
1708 
writeValueAsMetadata(const ValueAsMetadata * MD,SmallVectorImpl<uint64_t> & Record)1709 void ModuleBitcodeWriter::writeValueAsMetadata(
1710     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1711   // Mimic an MDNode with a value as one operand.
1712   Value *V = MD->getValue();
1713   Record.push_back(VE.getTypeID(V->getType()));
1714   Record.push_back(VE.getValueID(V));
1715   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1716   Record.clear();
1717 }
1718 
writeMDTuple(const MDTuple * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1719 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1720                                        SmallVectorImpl<uint64_t> &Record,
1721                                        unsigned Abbrev) {
1722   for (const MDOperand &MDO : N->operands()) {
1723     Metadata *MD = MDO;
1724     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1725            "Unexpected function-local metadata");
1726     Record.push_back(VE.getMetadataOrNullID(MD));
1727   }
1728   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1729                                     : bitc::METADATA_NODE,
1730                     Record, Abbrev);
1731   Record.clear();
1732 }
1733 
createDILocationAbbrev()1734 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1735   // Assume the column is usually under 128, and always output the inlined-at
1736   // location (it's never more expensive than building an array size 1).
1737   auto Abbv = std::make_shared<BitCodeAbbrev>();
1738   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1739   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1740   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1741   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1742   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1743   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1744   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1745   return Stream.EmitAbbrev(std::move(Abbv));
1746 }
1747 
writeDILocation(const DILocation * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)1748 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1749                                           SmallVectorImpl<uint64_t> &Record,
1750                                           unsigned &Abbrev) {
1751   if (!Abbrev)
1752     Abbrev = createDILocationAbbrev();
1753 
1754   Record.push_back(N->isDistinct());
1755   Record.push_back(N->getLine());
1756   Record.push_back(N->getColumn());
1757   Record.push_back(VE.getMetadataID(N->getScope()));
1758   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1759   Record.push_back(N->isImplicitCode());
1760 
1761   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1762   Record.clear();
1763 }
1764 
createGenericDINodeAbbrev()1765 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1766   // Assume the column is usually under 128, and always output the inlined-at
1767   // location (it's never more expensive than building an array size 1).
1768   auto Abbv = std::make_shared<BitCodeAbbrev>();
1769   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1770   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1771   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1772   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1773   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1774   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1775   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1776   return Stream.EmitAbbrev(std::move(Abbv));
1777 }
1778 
writeGenericDINode(const GenericDINode * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)1779 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1780                                              SmallVectorImpl<uint64_t> &Record,
1781                                              unsigned &Abbrev) {
1782   if (!Abbrev)
1783     Abbrev = createGenericDINodeAbbrev();
1784 
1785   Record.push_back(N->isDistinct());
1786   Record.push_back(N->getTag());
1787   Record.push_back(0); // Per-tag version field; unused for now.
1788 
1789   for (auto &I : N->operands())
1790     Record.push_back(VE.getMetadataOrNullID(I));
1791 
1792   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1793   Record.clear();
1794 }
1795 
writeDISubrange(const DISubrange * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1796 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1797                                           SmallVectorImpl<uint64_t> &Record,
1798                                           unsigned Abbrev) {
1799   const uint64_t Version = 2 << 1;
1800   Record.push_back((uint64_t)N->isDistinct() | Version);
1801   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1802   Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1803   Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1804   Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1805 
1806   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1807   Record.clear();
1808 }
1809 
writeDIGenericSubrange(const DIGenericSubrange * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1810 void ModuleBitcodeWriter::writeDIGenericSubrange(
1811     const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record,
1812     unsigned Abbrev) {
1813   Record.push_back((uint64_t)N->isDistinct());
1814   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1815   Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1816   Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1817   Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1818 
1819   Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev);
1820   Record.clear();
1821 }
1822 
writeDIEnumerator(const DIEnumerator * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1823 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1824                                             SmallVectorImpl<uint64_t> &Record,
1825                                             unsigned Abbrev) {
1826   const uint64_t IsBigInt = 1 << 2;
1827   Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
1828   Record.push_back(N->getValue().getBitWidth());
1829   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1830   emitWideAPInt(Record, N->getValue());
1831 
1832   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1833   Record.clear();
1834 }
1835 
writeDIBasicType(const DIBasicType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1836 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1837                                            SmallVectorImpl<uint64_t> &Record,
1838                                            unsigned Abbrev) {
1839   Record.push_back(N->isDistinct());
1840   Record.push_back(N->getTag());
1841   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1842   Record.push_back(N->getSizeInBits());
1843   Record.push_back(N->getAlignInBits());
1844   Record.push_back(N->getEncoding());
1845   Record.push_back(N->getFlags());
1846 
1847   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1848   Record.clear();
1849 }
1850 
writeDIStringType(const DIStringType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1851 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N,
1852                                             SmallVectorImpl<uint64_t> &Record,
1853                                             unsigned Abbrev) {
1854   Record.push_back(N->isDistinct());
1855   Record.push_back(N->getTag());
1856   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1857   Record.push_back(VE.getMetadataOrNullID(N->getStringLength()));
1858   Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp()));
1859   Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp()));
1860   Record.push_back(N->getSizeInBits());
1861   Record.push_back(N->getAlignInBits());
1862   Record.push_back(N->getEncoding());
1863 
1864   Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev);
1865   Record.clear();
1866 }
1867 
writeDIDerivedType(const DIDerivedType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1868 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1869                                              SmallVectorImpl<uint64_t> &Record,
1870                                              unsigned Abbrev) {
1871   Record.push_back(N->isDistinct());
1872   Record.push_back(N->getTag());
1873   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1874   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1875   Record.push_back(N->getLine());
1876   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1877   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1878   Record.push_back(N->getSizeInBits());
1879   Record.push_back(N->getAlignInBits());
1880   Record.push_back(N->getOffsetInBits());
1881   Record.push_back(N->getFlags());
1882   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1883 
1884   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1885   // that there is no DWARF address space associated with DIDerivedType.
1886   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1887     Record.push_back(*DWARFAddressSpace + 1);
1888   else
1889     Record.push_back(0);
1890 
1891   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1892 
1893   if (auto PtrAuthData = N->getPtrAuthData())
1894     Record.push_back(PtrAuthData->RawData);
1895   else
1896     Record.push_back(0);
1897 
1898   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1899   Record.clear();
1900 }
1901 
writeDICompositeType(const DICompositeType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1902 void ModuleBitcodeWriter::writeDICompositeType(
1903     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1904     unsigned Abbrev) {
1905   const unsigned IsNotUsedInOldTypeRef = 0x2;
1906   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1907   Record.push_back(N->getTag());
1908   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1909   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1910   Record.push_back(N->getLine());
1911   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1912   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1913   Record.push_back(N->getSizeInBits());
1914   Record.push_back(N->getAlignInBits());
1915   Record.push_back(N->getOffsetInBits());
1916   Record.push_back(N->getFlags());
1917   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1918   Record.push_back(N->getRuntimeLang());
1919   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1920   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1921   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1922   Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1923   Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation()));
1924   Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated()));
1925   Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated()));
1926   Record.push_back(VE.getMetadataOrNullID(N->getRawRank()));
1927   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1928 
1929   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1930   Record.clear();
1931 }
1932 
writeDISubroutineType(const DISubroutineType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1933 void ModuleBitcodeWriter::writeDISubroutineType(
1934     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1935     unsigned Abbrev) {
1936   const unsigned HasNoOldTypeRefs = 0x2;
1937   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1938   Record.push_back(N->getFlags());
1939   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1940   Record.push_back(N->getCC());
1941 
1942   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1943   Record.clear();
1944 }
1945 
writeDIFile(const DIFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1946 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1947                                       SmallVectorImpl<uint64_t> &Record,
1948                                       unsigned Abbrev) {
1949   Record.push_back(N->isDistinct());
1950   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1951   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1952   if (N->getRawChecksum()) {
1953     Record.push_back(N->getRawChecksum()->Kind);
1954     Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1955   } else {
1956     // Maintain backwards compatibility with the old internal representation of
1957     // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1958     Record.push_back(0);
1959     Record.push_back(VE.getMetadataOrNullID(nullptr));
1960   }
1961   auto Source = N->getRawSource();
1962   if (Source)
1963     Record.push_back(VE.getMetadataOrNullID(Source));
1964 
1965   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1966   Record.clear();
1967 }
1968 
writeDICompileUnit(const DICompileUnit * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1969 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1970                                              SmallVectorImpl<uint64_t> &Record,
1971                                              unsigned Abbrev) {
1972   assert(N->isDistinct() && "Expected distinct compile units");
1973   Record.push_back(/* IsDistinct */ true);
1974   Record.push_back(N->getSourceLanguage());
1975   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1976   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1977   Record.push_back(N->isOptimized());
1978   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1979   Record.push_back(N->getRuntimeVersion());
1980   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1981   Record.push_back(N->getEmissionKind());
1982   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1983   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1984   Record.push_back(/* subprograms */ 0);
1985   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1986   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1987   Record.push_back(N->getDWOId());
1988   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1989   Record.push_back(N->getSplitDebugInlining());
1990   Record.push_back(N->getDebugInfoForProfiling());
1991   Record.push_back((unsigned)N->getNameTableKind());
1992   Record.push_back(N->getRangesBaseAddress());
1993   Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
1994   Record.push_back(VE.getMetadataOrNullID(N->getRawSDK()));
1995 
1996   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1997   Record.clear();
1998 }
1999 
writeDISubprogram(const DISubprogram * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2000 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
2001                                             SmallVectorImpl<uint64_t> &Record,
2002                                             unsigned Abbrev) {
2003   const uint64_t HasUnitFlag = 1 << 1;
2004   const uint64_t HasSPFlagsFlag = 1 << 2;
2005   Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
2006   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2007   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2008   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
2009   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2010   Record.push_back(N->getLine());
2011   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2012   Record.push_back(N->getScopeLine());
2013   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
2014   Record.push_back(N->getSPFlags());
2015   Record.push_back(N->getVirtualIndex());
2016   Record.push_back(N->getFlags());
2017   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
2018   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
2019   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
2020   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
2021   Record.push_back(N->getThisAdjustment());
2022   Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
2023   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2024   Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName()));
2025 
2026   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
2027   Record.clear();
2028 }
2029 
writeDILexicalBlock(const DILexicalBlock * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2030 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
2031                                               SmallVectorImpl<uint64_t> &Record,
2032                                               unsigned Abbrev) {
2033   Record.push_back(N->isDistinct());
2034   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2035   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2036   Record.push_back(N->getLine());
2037   Record.push_back(N->getColumn());
2038 
2039   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
2040   Record.clear();
2041 }
2042 
writeDILexicalBlockFile(const DILexicalBlockFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2043 void ModuleBitcodeWriter::writeDILexicalBlockFile(
2044     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
2045     unsigned Abbrev) {
2046   Record.push_back(N->isDistinct());
2047   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2048   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2049   Record.push_back(N->getDiscriminator());
2050 
2051   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
2052   Record.clear();
2053 }
2054 
writeDICommonBlock(const DICommonBlock * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2055 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
2056                                              SmallVectorImpl<uint64_t> &Record,
2057                                              unsigned Abbrev) {
2058   Record.push_back(N->isDistinct());
2059   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2060   Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
2061   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2062   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2063   Record.push_back(N->getLineNo());
2064 
2065   Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
2066   Record.clear();
2067 }
2068 
writeDINamespace(const DINamespace * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2069 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
2070                                            SmallVectorImpl<uint64_t> &Record,
2071                                            unsigned Abbrev) {
2072   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
2073   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2074   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2075 
2076   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
2077   Record.clear();
2078 }
2079 
writeDIMacro(const DIMacro * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2080 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
2081                                        SmallVectorImpl<uint64_t> &Record,
2082                                        unsigned Abbrev) {
2083   Record.push_back(N->isDistinct());
2084   Record.push_back(N->getMacinfoType());
2085   Record.push_back(N->getLine());
2086   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2087   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
2088 
2089   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
2090   Record.clear();
2091 }
2092 
writeDIMacroFile(const DIMacroFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2093 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
2094                                            SmallVectorImpl<uint64_t> &Record,
2095                                            unsigned Abbrev) {
2096   Record.push_back(N->isDistinct());
2097   Record.push_back(N->getMacinfoType());
2098   Record.push_back(N->getLine());
2099   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2100   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2101 
2102   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
2103   Record.clear();
2104 }
2105 
writeDIArgList(const DIArgList * N,SmallVectorImpl<uint64_t> & Record)2106 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N,
2107                                          SmallVectorImpl<uint64_t> &Record) {
2108   Record.reserve(N->getArgs().size());
2109   for (ValueAsMetadata *MD : N->getArgs())
2110     Record.push_back(VE.getMetadataID(MD));
2111 
2112   Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record);
2113   Record.clear();
2114 }
2115 
writeDIModule(const DIModule * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2116 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
2117                                         SmallVectorImpl<uint64_t> &Record,
2118                                         unsigned Abbrev) {
2119   Record.push_back(N->isDistinct());
2120   for (auto &I : N->operands())
2121     Record.push_back(VE.getMetadataOrNullID(I));
2122   Record.push_back(N->getLineNo());
2123   Record.push_back(N->getIsDecl());
2124 
2125   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
2126   Record.clear();
2127 }
2128 
writeDIAssignID(const DIAssignID * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2129 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N,
2130                                           SmallVectorImpl<uint64_t> &Record,
2131                                           unsigned Abbrev) {
2132   // There are no arguments for this metadata type.
2133   Record.push_back(N->isDistinct());
2134   Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev);
2135   Record.clear();
2136 }
2137 
writeDITemplateTypeParameter(const DITemplateTypeParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2138 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
2139     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
2140     unsigned Abbrev) {
2141   Record.push_back(N->isDistinct());
2142   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2143   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2144   Record.push_back(N->isDefault());
2145 
2146   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
2147   Record.clear();
2148 }
2149 
writeDITemplateValueParameter(const DITemplateValueParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2150 void ModuleBitcodeWriter::writeDITemplateValueParameter(
2151     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
2152     unsigned Abbrev) {
2153   Record.push_back(N->isDistinct());
2154   Record.push_back(N->getTag());
2155   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2156   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2157   Record.push_back(N->isDefault());
2158   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
2159 
2160   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
2161   Record.clear();
2162 }
2163 
writeDIGlobalVariable(const DIGlobalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2164 void ModuleBitcodeWriter::writeDIGlobalVariable(
2165     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
2166     unsigned Abbrev) {
2167   const uint64_t Version = 2 << 1;
2168   Record.push_back((uint64_t)N->isDistinct() | Version);
2169   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2170   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2171   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
2172   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2173   Record.push_back(N->getLine());
2174   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2175   Record.push_back(N->isLocalToUnit());
2176   Record.push_back(N->isDefinition());
2177   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
2178   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
2179   Record.push_back(N->getAlignInBits());
2180   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2181 
2182   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
2183   Record.clear();
2184 }
2185 
writeDILocalVariable(const DILocalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2186 void ModuleBitcodeWriter::writeDILocalVariable(
2187     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
2188     unsigned Abbrev) {
2189   // In order to support all possible bitcode formats in BitcodeReader we need
2190   // to distinguish the following cases:
2191   // 1) Record has no artificial tag (Record[1]),
2192   //   has no obsolete inlinedAt field (Record[9]).
2193   //   In this case Record size will be 8, HasAlignment flag is false.
2194   // 2) Record has artificial tag (Record[1]),
2195   //   has no obsolete inlignedAt field (Record[9]).
2196   //   In this case Record size will be 9, HasAlignment flag is false.
2197   // 3) Record has both artificial tag (Record[1]) and
2198   //   obsolete inlignedAt field (Record[9]).
2199   //   In this case Record size will be 10, HasAlignment flag is false.
2200   // 4) Record has neither artificial tag, nor inlignedAt field, but
2201   //   HasAlignment flag is true and Record[8] contains alignment value.
2202   const uint64_t HasAlignmentFlag = 1 << 1;
2203   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
2204   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2205   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2206   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2207   Record.push_back(N->getLine());
2208   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2209   Record.push_back(N->getArg());
2210   Record.push_back(N->getFlags());
2211   Record.push_back(N->getAlignInBits());
2212   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2213 
2214   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
2215   Record.clear();
2216 }
2217 
writeDILabel(const DILabel * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2218 void ModuleBitcodeWriter::writeDILabel(
2219     const DILabel *N, SmallVectorImpl<uint64_t> &Record,
2220     unsigned Abbrev) {
2221   Record.push_back((uint64_t)N->isDistinct());
2222   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2223   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2224   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2225   Record.push_back(N->getLine());
2226 
2227   Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
2228   Record.clear();
2229 }
2230 
writeDIExpression(const DIExpression * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2231 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
2232                                             SmallVectorImpl<uint64_t> &Record,
2233                                             unsigned Abbrev) {
2234   Record.reserve(N->getElements().size() + 1);
2235   const uint64_t Version = 3 << 1;
2236   Record.push_back((uint64_t)N->isDistinct() | Version);
2237   Record.append(N->elements_begin(), N->elements_end());
2238 
2239   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
2240   Record.clear();
2241 }
2242 
writeDIGlobalVariableExpression(const DIGlobalVariableExpression * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2243 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
2244     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
2245     unsigned Abbrev) {
2246   Record.push_back(N->isDistinct());
2247   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
2248   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
2249 
2250   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
2251   Record.clear();
2252 }
2253 
writeDIObjCProperty(const DIObjCProperty * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2254 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
2255                                               SmallVectorImpl<uint64_t> &Record,
2256                                               unsigned Abbrev) {
2257   Record.push_back(N->isDistinct());
2258   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2259   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2260   Record.push_back(N->getLine());
2261   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
2262   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
2263   Record.push_back(N->getAttributes());
2264   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2265 
2266   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
2267   Record.clear();
2268 }
2269 
writeDIImportedEntity(const DIImportedEntity * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2270 void ModuleBitcodeWriter::writeDIImportedEntity(
2271     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
2272     unsigned Abbrev) {
2273   Record.push_back(N->isDistinct());
2274   Record.push_back(N->getTag());
2275   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2276   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
2277   Record.push_back(N->getLine());
2278   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2279   Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
2280   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2281 
2282   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
2283   Record.clear();
2284 }
2285 
createNamedMetadataAbbrev()2286 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
2287   auto Abbv = std::make_shared<BitCodeAbbrev>();
2288   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
2289   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2290   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2291   return Stream.EmitAbbrev(std::move(Abbv));
2292 }
2293 
writeNamedMetadata(SmallVectorImpl<uint64_t> & Record)2294 void ModuleBitcodeWriter::writeNamedMetadata(
2295     SmallVectorImpl<uint64_t> &Record) {
2296   if (M.named_metadata_empty())
2297     return;
2298 
2299   unsigned Abbrev = createNamedMetadataAbbrev();
2300   for (const NamedMDNode &NMD : M.named_metadata()) {
2301     // Write name.
2302     StringRef Str = NMD.getName();
2303     Record.append(Str.bytes_begin(), Str.bytes_end());
2304     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
2305     Record.clear();
2306 
2307     // Write named metadata operands.
2308     for (const MDNode *N : NMD.operands())
2309       Record.push_back(VE.getMetadataID(N));
2310     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
2311     Record.clear();
2312   }
2313 }
2314 
createMetadataStringsAbbrev()2315 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
2316   auto Abbv = std::make_shared<BitCodeAbbrev>();
2317   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
2318   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
2319   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
2320   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2321   return Stream.EmitAbbrev(std::move(Abbv));
2322 }
2323 
2324 /// Write out a record for MDString.
2325 ///
2326 /// All the metadata strings in a metadata block are emitted in a single
2327 /// record.  The sizes and strings themselves are shoved into a blob.
writeMetadataStrings(ArrayRef<const Metadata * > Strings,SmallVectorImpl<uint64_t> & Record)2328 void ModuleBitcodeWriter::writeMetadataStrings(
2329     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
2330   if (Strings.empty())
2331     return;
2332 
2333   // Start the record with the number of strings.
2334   Record.push_back(bitc::METADATA_STRINGS);
2335   Record.push_back(Strings.size());
2336 
2337   // Emit the sizes of the strings in the blob.
2338   SmallString<256> Blob;
2339   {
2340     BitstreamWriter W(Blob);
2341     for (const Metadata *MD : Strings)
2342       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
2343     W.FlushToWord();
2344   }
2345 
2346   // Add the offset to the strings to the record.
2347   Record.push_back(Blob.size());
2348 
2349   // Add the strings to the blob.
2350   for (const Metadata *MD : Strings)
2351     Blob.append(cast<MDString>(MD)->getString());
2352 
2353   // Emit the final record.
2354   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
2355   Record.clear();
2356 }
2357 
2358 // Generates an enum to use as an index in the Abbrev array of Metadata record.
2359 enum MetadataAbbrev : unsigned {
2360 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2361 #include "llvm/IR/Metadata.def"
2362   LastPlusOne
2363 };
2364 
writeMetadataRecords(ArrayRef<const Metadata * > MDs,SmallVectorImpl<uint64_t> & Record,std::vector<unsigned> * MDAbbrevs,std::vector<uint64_t> * IndexPos)2365 void ModuleBitcodeWriter::writeMetadataRecords(
2366     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2367     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2368   if (MDs.empty())
2369     return;
2370 
2371   // Initialize MDNode abbreviations.
2372 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2373 #include "llvm/IR/Metadata.def"
2374 
2375   for (const Metadata *MD : MDs) {
2376     if (IndexPos)
2377       IndexPos->push_back(Stream.GetCurrentBitNo());
2378     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2379       assert(N->isResolved() && "Expected forward references to be resolved");
2380 
2381       switch (N->getMetadataID()) {
2382       default:
2383         llvm_unreachable("Invalid MDNode subclass");
2384 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2385   case Metadata::CLASS##Kind:                                                  \
2386     if (MDAbbrevs)                                                             \
2387       write##CLASS(cast<CLASS>(N), Record,                                     \
2388                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
2389     else                                                                       \
2390       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
2391     continue;
2392 #include "llvm/IR/Metadata.def"
2393       }
2394     }
2395     if (auto *AL = dyn_cast<DIArgList>(MD)) {
2396       writeDIArgList(AL, Record);
2397       continue;
2398     }
2399     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2400   }
2401 }
2402 
writeModuleMetadata()2403 void ModuleBitcodeWriter::writeModuleMetadata() {
2404   if (!VE.hasMDs() && M.named_metadata_empty())
2405     return;
2406 
2407   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2408   SmallVector<uint64_t, 64> Record;
2409 
2410   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2411   // block and load any metadata.
2412   std::vector<unsigned> MDAbbrevs;
2413 
2414   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2415   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2416   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2417       createGenericDINodeAbbrev();
2418 
2419   auto Abbv = std::make_shared<BitCodeAbbrev>();
2420   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2421   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2422   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2423   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2424 
2425   Abbv = std::make_shared<BitCodeAbbrev>();
2426   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2427   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2428   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2429   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2430 
2431   // Emit MDStrings together upfront.
2432   writeMetadataStrings(VE.getMDStrings(), Record);
2433 
2434   // We only emit an index for the metadata record if we have more than a given
2435   // (naive) threshold of metadatas, otherwise it is not worth it.
2436   if (VE.getNonMDStrings().size() > IndexThreshold) {
2437     // Write a placeholder value in for the offset of the metadata index,
2438     // which is written after the records, so that it can include
2439     // the offset of each entry. The placeholder offset will be
2440     // updated after all records are emitted.
2441     uint64_t Vals[] = {0, 0};
2442     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2443   }
2444 
2445   // Compute and save the bit offset to the current position, which will be
2446   // patched when we emit the index later. We can simply subtract the 64-bit
2447   // fixed size from the current bit number to get the location to backpatch.
2448   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2449 
2450   // This index will contain the bitpos for each individual record.
2451   std::vector<uint64_t> IndexPos;
2452   IndexPos.reserve(VE.getNonMDStrings().size());
2453 
2454   // Write all the records
2455   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2456 
2457   if (VE.getNonMDStrings().size() > IndexThreshold) {
2458     // Now that we have emitted all the records we will emit the index. But
2459     // first
2460     // backpatch the forward reference so that the reader can skip the records
2461     // efficiently.
2462     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2463                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2464 
2465     // Delta encode the index.
2466     uint64_t PreviousValue = IndexOffsetRecordBitPos;
2467     for (auto &Elt : IndexPos) {
2468       auto EltDelta = Elt - PreviousValue;
2469       PreviousValue = Elt;
2470       Elt = EltDelta;
2471     }
2472     // Emit the index record.
2473     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2474     IndexPos.clear();
2475   }
2476 
2477   // Write the named metadata now.
2478   writeNamedMetadata(Record);
2479 
2480   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2481     SmallVector<uint64_t, 4> Record;
2482     Record.push_back(VE.getValueID(&GO));
2483     pushGlobalMetadataAttachment(Record, GO);
2484     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2485   };
2486   for (const Function &F : M)
2487     if (F.isDeclaration() && F.hasMetadata())
2488       AddDeclAttachedMetadata(F);
2489   // FIXME: Only store metadata for declarations here, and move data for global
2490   // variable definitions to a separate block (PR28134).
2491   for (const GlobalVariable &GV : M.globals())
2492     if (GV.hasMetadata())
2493       AddDeclAttachedMetadata(GV);
2494 
2495   Stream.ExitBlock();
2496 }
2497 
writeFunctionMetadata(const Function & F)2498 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2499   if (!VE.hasMDs())
2500     return;
2501 
2502   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2503   SmallVector<uint64_t, 64> Record;
2504   writeMetadataStrings(VE.getMDStrings(), Record);
2505   writeMetadataRecords(VE.getNonMDStrings(), Record);
2506   Stream.ExitBlock();
2507 }
2508 
pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> & Record,const GlobalObject & GO)2509 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2510     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2511   // [n x [id, mdnode]]
2512   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2513   GO.getAllMetadata(MDs);
2514   for (const auto &I : MDs) {
2515     Record.push_back(I.first);
2516     Record.push_back(VE.getMetadataID(I.second));
2517   }
2518 }
2519 
writeFunctionMetadataAttachment(const Function & F)2520 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2521   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2522 
2523   SmallVector<uint64_t, 64> Record;
2524 
2525   if (F.hasMetadata()) {
2526     pushGlobalMetadataAttachment(Record, F);
2527     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2528     Record.clear();
2529   }
2530 
2531   // Write metadata attachments
2532   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2533   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2534   for (const BasicBlock &BB : F)
2535     for (const Instruction &I : BB) {
2536       MDs.clear();
2537       I.getAllMetadataOtherThanDebugLoc(MDs);
2538 
2539       // If no metadata, ignore instruction.
2540       if (MDs.empty()) continue;
2541 
2542       Record.push_back(VE.getInstructionID(&I));
2543 
2544       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2545         Record.push_back(MDs[i].first);
2546         Record.push_back(VE.getMetadataID(MDs[i].second));
2547       }
2548       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2549       Record.clear();
2550     }
2551 
2552   Stream.ExitBlock();
2553 }
2554 
writeModuleMetadataKinds()2555 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2556   SmallVector<uint64_t, 64> Record;
2557 
2558   // Write metadata kinds
2559   // METADATA_KIND - [n x [id, name]]
2560   SmallVector<StringRef, 8> Names;
2561   M.getMDKindNames(Names);
2562 
2563   if (Names.empty()) return;
2564 
2565   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2566 
2567   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2568     Record.push_back(MDKindID);
2569     StringRef KName = Names[MDKindID];
2570     Record.append(KName.begin(), KName.end());
2571 
2572     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2573     Record.clear();
2574   }
2575 
2576   Stream.ExitBlock();
2577 }
2578 
writeOperandBundleTags()2579 void ModuleBitcodeWriter::writeOperandBundleTags() {
2580   // Write metadata kinds
2581   //
2582   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2583   //
2584   // OPERAND_BUNDLE_TAG - [strchr x N]
2585 
2586   SmallVector<StringRef, 8> Tags;
2587   M.getOperandBundleTags(Tags);
2588 
2589   if (Tags.empty())
2590     return;
2591 
2592   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2593 
2594   SmallVector<uint64_t, 64> Record;
2595 
2596   for (auto Tag : Tags) {
2597     Record.append(Tag.begin(), Tag.end());
2598 
2599     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2600     Record.clear();
2601   }
2602 
2603   Stream.ExitBlock();
2604 }
2605 
writeSyncScopeNames()2606 void ModuleBitcodeWriter::writeSyncScopeNames() {
2607   SmallVector<StringRef, 8> SSNs;
2608   M.getContext().getSyncScopeNames(SSNs);
2609   if (SSNs.empty())
2610     return;
2611 
2612   Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2613 
2614   SmallVector<uint64_t, 64> Record;
2615   for (auto SSN : SSNs) {
2616     Record.append(SSN.begin(), SSN.end());
2617     Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2618     Record.clear();
2619   }
2620 
2621   Stream.ExitBlock();
2622 }
2623 
writeConstants(unsigned FirstVal,unsigned LastVal,bool isGlobal)2624 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2625                                          bool isGlobal) {
2626   if (FirstVal == LastVal) return;
2627 
2628   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2629 
2630   unsigned AggregateAbbrev = 0;
2631   unsigned String8Abbrev = 0;
2632   unsigned CString7Abbrev = 0;
2633   unsigned CString6Abbrev = 0;
2634   // If this is a constant pool for the module, emit module-specific abbrevs.
2635   if (isGlobal) {
2636     // Abbrev for CST_CODE_AGGREGATE.
2637     auto Abbv = std::make_shared<BitCodeAbbrev>();
2638     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2639     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2640     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2641     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2642 
2643     // Abbrev for CST_CODE_STRING.
2644     Abbv = std::make_shared<BitCodeAbbrev>();
2645     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2646     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2647     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2648     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2649     // Abbrev for CST_CODE_CSTRING.
2650     Abbv = std::make_shared<BitCodeAbbrev>();
2651     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2652     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2653     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2654     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2655     // Abbrev for CST_CODE_CSTRING.
2656     Abbv = std::make_shared<BitCodeAbbrev>();
2657     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2658     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2659     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2660     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2661   }
2662 
2663   SmallVector<uint64_t, 64> Record;
2664 
2665   const ValueEnumerator::ValueList &Vals = VE.getValues();
2666   Type *LastTy = nullptr;
2667   for (unsigned i = FirstVal; i != LastVal; ++i) {
2668     const Value *V = Vals[i].first;
2669     // If we need to switch types, do so now.
2670     if (V->getType() != LastTy) {
2671       LastTy = V->getType();
2672       Record.push_back(VE.getTypeID(LastTy));
2673       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2674                         CONSTANTS_SETTYPE_ABBREV);
2675       Record.clear();
2676     }
2677 
2678     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2679       Record.push_back(VE.getTypeID(IA->getFunctionType()));
2680       Record.push_back(
2681           unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 |
2682           unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3);
2683 
2684       // Add the asm string.
2685       const std::string &AsmStr = IA->getAsmString();
2686       Record.push_back(AsmStr.size());
2687       Record.append(AsmStr.begin(), AsmStr.end());
2688 
2689       // Add the constraint string.
2690       const std::string &ConstraintStr = IA->getConstraintString();
2691       Record.push_back(ConstraintStr.size());
2692       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2693       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2694       Record.clear();
2695       continue;
2696     }
2697     const Constant *C = cast<Constant>(V);
2698     unsigned Code = -1U;
2699     unsigned AbbrevToUse = 0;
2700     if (C->isNullValue()) {
2701       Code = bitc::CST_CODE_NULL;
2702     } else if (isa<PoisonValue>(C)) {
2703       Code = bitc::CST_CODE_POISON;
2704     } else if (isa<UndefValue>(C)) {
2705       Code = bitc::CST_CODE_UNDEF;
2706     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2707       if (IV->getBitWidth() <= 64) {
2708         uint64_t V = IV->getSExtValue();
2709         emitSignedInt64(Record, V);
2710         Code = bitc::CST_CODE_INTEGER;
2711         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2712       } else {                             // Wide integers, > 64 bits in size.
2713         emitWideAPInt(Record, IV->getValue());
2714         Code = bitc::CST_CODE_WIDE_INTEGER;
2715       }
2716     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2717       Code = bitc::CST_CODE_FLOAT;
2718       Type *Ty = CFP->getType()->getScalarType();
2719       if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
2720           Ty->isDoubleTy()) {
2721         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2722       } else if (Ty->isX86_FP80Ty()) {
2723         // api needed to prevent premature destruction
2724         // bits are not in the same order as a normal i80 APInt, compensate.
2725         APInt api = CFP->getValueAPF().bitcastToAPInt();
2726         const uint64_t *p = api.getRawData();
2727         Record.push_back((p[1] << 48) | (p[0] >> 16));
2728         Record.push_back(p[0] & 0xffffLL);
2729       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2730         APInt api = CFP->getValueAPF().bitcastToAPInt();
2731         const uint64_t *p = api.getRawData();
2732         Record.push_back(p[0]);
2733         Record.push_back(p[1]);
2734       } else {
2735         assert(0 && "Unknown FP type!");
2736       }
2737     } else if (isa<ConstantDataSequential>(C) &&
2738                cast<ConstantDataSequential>(C)->isString()) {
2739       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2740       // Emit constant strings specially.
2741       unsigned NumElts = Str->getNumElements();
2742       // If this is a null-terminated string, use the denser CSTRING encoding.
2743       if (Str->isCString()) {
2744         Code = bitc::CST_CODE_CSTRING;
2745         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2746       } else {
2747         Code = bitc::CST_CODE_STRING;
2748         AbbrevToUse = String8Abbrev;
2749       }
2750       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2751       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2752       for (unsigned i = 0; i != NumElts; ++i) {
2753         unsigned char V = Str->getElementAsInteger(i);
2754         Record.push_back(V);
2755         isCStr7 &= (V & 128) == 0;
2756         if (isCStrChar6)
2757           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2758       }
2759 
2760       if (isCStrChar6)
2761         AbbrevToUse = CString6Abbrev;
2762       else if (isCStr7)
2763         AbbrevToUse = CString7Abbrev;
2764     } else if (const ConstantDataSequential *CDS =
2765                   dyn_cast<ConstantDataSequential>(C)) {
2766       Code = bitc::CST_CODE_DATA;
2767       Type *EltTy = CDS->getElementType();
2768       if (isa<IntegerType>(EltTy)) {
2769         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2770           Record.push_back(CDS->getElementAsInteger(i));
2771       } else {
2772         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2773           Record.push_back(
2774               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2775       }
2776     } else if (isa<ConstantAggregate>(C)) {
2777       Code = bitc::CST_CODE_AGGREGATE;
2778       for (const Value *Op : C->operands())
2779         Record.push_back(VE.getValueID(Op));
2780       AbbrevToUse = AggregateAbbrev;
2781     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2782       switch (CE->getOpcode()) {
2783       default:
2784         if (Instruction::isCast(CE->getOpcode())) {
2785           Code = bitc::CST_CODE_CE_CAST;
2786           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2787           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2788           Record.push_back(VE.getValueID(C->getOperand(0)));
2789           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2790         } else {
2791           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2792           Code = bitc::CST_CODE_CE_BINOP;
2793           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2794           Record.push_back(VE.getValueID(C->getOperand(0)));
2795           Record.push_back(VE.getValueID(C->getOperand(1)));
2796           uint64_t Flags = getOptimizationFlags(CE);
2797           if (Flags != 0)
2798             Record.push_back(Flags);
2799         }
2800         break;
2801       case Instruction::FNeg: {
2802         assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2803         Code = bitc::CST_CODE_CE_UNOP;
2804         Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2805         Record.push_back(VE.getValueID(C->getOperand(0)));
2806         uint64_t Flags = getOptimizationFlags(CE);
2807         if (Flags != 0)
2808           Record.push_back(Flags);
2809         break;
2810       }
2811       case Instruction::GetElementPtr: {
2812         Code = bitc::CST_CODE_CE_GEP;
2813         const auto *GO = cast<GEPOperator>(C);
2814         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2815         Record.push_back(getOptimizationFlags(GO));
2816         if (std::optional<ConstantRange> Range = GO->getInRange()) {
2817           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE;
2818           emitConstantRange(Record, *Range, /*EmitBitWidth=*/true);
2819         }
2820         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2821           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2822           Record.push_back(VE.getValueID(C->getOperand(i)));
2823         }
2824         break;
2825       }
2826       case Instruction::ExtractElement:
2827         Code = bitc::CST_CODE_CE_EXTRACTELT;
2828         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2829         Record.push_back(VE.getValueID(C->getOperand(0)));
2830         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2831         Record.push_back(VE.getValueID(C->getOperand(1)));
2832         break;
2833       case Instruction::InsertElement:
2834         Code = bitc::CST_CODE_CE_INSERTELT;
2835         Record.push_back(VE.getValueID(C->getOperand(0)));
2836         Record.push_back(VE.getValueID(C->getOperand(1)));
2837         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2838         Record.push_back(VE.getValueID(C->getOperand(2)));
2839         break;
2840       case Instruction::ShuffleVector:
2841         // If the return type and argument types are the same, this is a
2842         // standard shufflevector instruction.  If the types are different,
2843         // then the shuffle is widening or truncating the input vectors, and
2844         // the argument type must also be encoded.
2845         if (C->getType() == C->getOperand(0)->getType()) {
2846           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2847         } else {
2848           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2849           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2850         }
2851         Record.push_back(VE.getValueID(C->getOperand(0)));
2852         Record.push_back(VE.getValueID(C->getOperand(1)));
2853         Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode()));
2854         break;
2855       }
2856     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2857       Code = bitc::CST_CODE_BLOCKADDRESS;
2858       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2859       Record.push_back(VE.getValueID(BA->getFunction()));
2860       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2861     } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) {
2862       Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT;
2863       Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType()));
2864       Record.push_back(VE.getValueID(Equiv->getGlobalValue()));
2865     } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) {
2866       Code = bitc::CST_CODE_NO_CFI_VALUE;
2867       Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType()));
2868       Record.push_back(VE.getValueID(NC->getGlobalValue()));
2869     } else if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C)) {
2870       Code = bitc::CST_CODE_PTRAUTH;
2871       Record.push_back(VE.getValueID(CPA->getPointer()));
2872       Record.push_back(VE.getValueID(CPA->getKey()));
2873       Record.push_back(VE.getValueID(CPA->getDiscriminator()));
2874       Record.push_back(VE.getValueID(CPA->getAddrDiscriminator()));
2875     } else {
2876 #ifndef NDEBUG
2877       C->dump();
2878 #endif
2879       llvm_unreachable("Unknown constant!");
2880     }
2881     Stream.EmitRecord(Code, Record, AbbrevToUse);
2882     Record.clear();
2883   }
2884 
2885   Stream.ExitBlock();
2886 }
2887 
writeModuleConstants()2888 void ModuleBitcodeWriter::writeModuleConstants() {
2889   const ValueEnumerator::ValueList &Vals = VE.getValues();
2890 
2891   // Find the first constant to emit, which is the first non-globalvalue value.
2892   // We know globalvalues have been emitted by WriteModuleInfo.
2893   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2894     if (!isa<GlobalValue>(Vals[i].first)) {
2895       writeConstants(i, Vals.size(), true);
2896       return;
2897     }
2898   }
2899 }
2900 
2901 /// pushValueAndType - The file has to encode both the value and type id for
2902 /// many values, because we need to know what type to create for forward
2903 /// references.  However, most operands are not forward references, so this type
2904 /// field is not needed.
2905 ///
2906 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2907 /// instruction ID, then it is a forward reference, and it also includes the
2908 /// type ID.  The value ID that is written is encoded relative to the InstID.
pushValueAndType(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2909 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2910                                            SmallVectorImpl<unsigned> &Vals) {
2911   unsigned ValID = VE.getValueID(V);
2912   // Make encoding relative to the InstID.
2913   Vals.push_back(InstID - ValID);
2914   if (ValID >= InstID) {
2915     Vals.push_back(VE.getTypeID(V->getType()));
2916     return true;
2917   }
2918   return false;
2919 }
2920 
writeOperandBundles(const CallBase & CS,unsigned InstID)2921 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
2922                                               unsigned InstID) {
2923   SmallVector<unsigned, 64> Record;
2924   LLVMContext &C = CS.getContext();
2925 
2926   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2927     const auto &Bundle = CS.getOperandBundleAt(i);
2928     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2929 
2930     for (auto &Input : Bundle.Inputs)
2931       pushValueAndType(Input, InstID, Record);
2932 
2933     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2934     Record.clear();
2935   }
2936 }
2937 
2938 /// pushValue - Like pushValueAndType, but where the type of the value is
2939 /// omitted (perhaps it was already encoded in an earlier operand).
pushValue(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2940 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2941                                     SmallVectorImpl<unsigned> &Vals) {
2942   unsigned ValID = VE.getValueID(V);
2943   Vals.push_back(InstID - ValID);
2944 }
2945 
pushValueSigned(const Value * V,unsigned InstID,SmallVectorImpl<uint64_t> & Vals)2946 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2947                                           SmallVectorImpl<uint64_t> &Vals) {
2948   unsigned ValID = VE.getValueID(V);
2949   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2950   emitSignedInt64(Vals, diff);
2951 }
2952 
2953 /// WriteInstruction - Emit an instruction to the specified stream.
writeInstruction(const Instruction & I,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2954 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2955                                            unsigned InstID,
2956                                            SmallVectorImpl<unsigned> &Vals) {
2957   unsigned Code = 0;
2958   unsigned AbbrevToUse = 0;
2959   VE.setInstructionID(&I);
2960   switch (I.getOpcode()) {
2961   default:
2962     if (Instruction::isCast(I.getOpcode())) {
2963       Code = bitc::FUNC_CODE_INST_CAST;
2964       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2965         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2966       Vals.push_back(VE.getTypeID(I.getType()));
2967       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2968       uint64_t Flags = getOptimizationFlags(&I);
2969       if (Flags != 0) {
2970         if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV)
2971           AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV;
2972         Vals.push_back(Flags);
2973       }
2974     } else {
2975       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2976       Code = bitc::FUNC_CODE_INST_BINOP;
2977       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2978         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2979       pushValue(I.getOperand(1), InstID, Vals);
2980       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2981       uint64_t Flags = getOptimizationFlags(&I);
2982       if (Flags != 0) {
2983         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2984           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2985         Vals.push_back(Flags);
2986       }
2987     }
2988     break;
2989   case Instruction::FNeg: {
2990     Code = bitc::FUNC_CODE_INST_UNOP;
2991     if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2992       AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2993     Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2994     uint64_t Flags = getOptimizationFlags(&I);
2995     if (Flags != 0) {
2996       if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2997         AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2998       Vals.push_back(Flags);
2999     }
3000     break;
3001   }
3002   case Instruction::GetElementPtr: {
3003     Code = bitc::FUNC_CODE_INST_GEP;
3004     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
3005     auto &GEPInst = cast<GetElementPtrInst>(I);
3006     Vals.push_back(getOptimizationFlags(&I));
3007     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
3008     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
3009       pushValueAndType(I.getOperand(i), InstID, Vals);
3010     break;
3011   }
3012   case Instruction::ExtractValue: {
3013     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
3014     pushValueAndType(I.getOperand(0), InstID, Vals);
3015     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
3016     Vals.append(EVI->idx_begin(), EVI->idx_end());
3017     break;
3018   }
3019   case Instruction::InsertValue: {
3020     Code = bitc::FUNC_CODE_INST_INSERTVAL;
3021     pushValueAndType(I.getOperand(0), InstID, Vals);
3022     pushValueAndType(I.getOperand(1), InstID, Vals);
3023     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
3024     Vals.append(IVI->idx_begin(), IVI->idx_end());
3025     break;
3026   }
3027   case Instruction::Select: {
3028     Code = bitc::FUNC_CODE_INST_VSELECT;
3029     pushValueAndType(I.getOperand(1), InstID, Vals);
3030     pushValue(I.getOperand(2), InstID, Vals);
3031     pushValueAndType(I.getOperand(0), InstID, Vals);
3032     uint64_t Flags = getOptimizationFlags(&I);
3033     if (Flags != 0)
3034       Vals.push_back(Flags);
3035     break;
3036   }
3037   case Instruction::ExtractElement:
3038     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
3039     pushValueAndType(I.getOperand(0), InstID, Vals);
3040     pushValueAndType(I.getOperand(1), InstID, Vals);
3041     break;
3042   case Instruction::InsertElement:
3043     Code = bitc::FUNC_CODE_INST_INSERTELT;
3044     pushValueAndType(I.getOperand(0), InstID, Vals);
3045     pushValue(I.getOperand(1), InstID, Vals);
3046     pushValueAndType(I.getOperand(2), InstID, Vals);
3047     break;
3048   case Instruction::ShuffleVector:
3049     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
3050     pushValueAndType(I.getOperand(0), InstID, Vals);
3051     pushValue(I.getOperand(1), InstID, Vals);
3052     pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID,
3053               Vals);
3054     break;
3055   case Instruction::ICmp:
3056   case Instruction::FCmp: {
3057     // compare returning Int1Ty or vector of Int1Ty
3058     Code = bitc::FUNC_CODE_INST_CMP2;
3059     pushValueAndType(I.getOperand(0), InstID, Vals);
3060     pushValue(I.getOperand(1), InstID, Vals);
3061     Vals.push_back(cast<CmpInst>(I).getPredicate());
3062     uint64_t Flags = getOptimizationFlags(&I);
3063     if (Flags != 0)
3064       Vals.push_back(Flags);
3065     break;
3066   }
3067 
3068   case Instruction::Ret:
3069     {
3070       Code = bitc::FUNC_CODE_INST_RET;
3071       unsigned NumOperands = I.getNumOperands();
3072       if (NumOperands == 0)
3073         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
3074       else if (NumOperands == 1) {
3075         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
3076           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
3077       } else {
3078         for (unsigned i = 0, e = NumOperands; i != e; ++i)
3079           pushValueAndType(I.getOperand(i), InstID, Vals);
3080       }
3081     }
3082     break;
3083   case Instruction::Br:
3084     {
3085       Code = bitc::FUNC_CODE_INST_BR;
3086       const BranchInst &II = cast<BranchInst>(I);
3087       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
3088       if (II.isConditional()) {
3089         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
3090         pushValue(II.getCondition(), InstID, Vals);
3091       }
3092     }
3093     break;
3094   case Instruction::Switch:
3095     {
3096       Code = bitc::FUNC_CODE_INST_SWITCH;
3097       const SwitchInst &SI = cast<SwitchInst>(I);
3098       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
3099       pushValue(SI.getCondition(), InstID, Vals);
3100       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
3101       for (auto Case : SI.cases()) {
3102         Vals.push_back(VE.getValueID(Case.getCaseValue()));
3103         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
3104       }
3105     }
3106     break;
3107   case Instruction::IndirectBr:
3108     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
3109     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3110     // Encode the address operand as relative, but not the basic blocks.
3111     pushValue(I.getOperand(0), InstID, Vals);
3112     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
3113       Vals.push_back(VE.getValueID(I.getOperand(i)));
3114     break;
3115 
3116   case Instruction::Invoke: {
3117     const InvokeInst *II = cast<InvokeInst>(&I);
3118     const Value *Callee = II->getCalledOperand();
3119     FunctionType *FTy = II->getFunctionType();
3120 
3121     if (II->hasOperandBundles())
3122       writeOperandBundles(*II, InstID);
3123 
3124     Code = bitc::FUNC_CODE_INST_INVOKE;
3125 
3126     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
3127     Vals.push_back(II->getCallingConv() | 1 << 13);
3128     Vals.push_back(VE.getValueID(II->getNormalDest()));
3129     Vals.push_back(VE.getValueID(II->getUnwindDest()));
3130     Vals.push_back(VE.getTypeID(FTy));
3131     pushValueAndType(Callee, InstID, Vals);
3132 
3133     // Emit value #'s for the fixed parameters.
3134     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3135       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3136 
3137     // Emit type/value pairs for varargs params.
3138     if (FTy->isVarArg()) {
3139       for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i)
3140         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3141     }
3142     break;
3143   }
3144   case Instruction::Resume:
3145     Code = bitc::FUNC_CODE_INST_RESUME;
3146     pushValueAndType(I.getOperand(0), InstID, Vals);
3147     break;
3148   case Instruction::CleanupRet: {
3149     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
3150     const auto &CRI = cast<CleanupReturnInst>(I);
3151     pushValue(CRI.getCleanupPad(), InstID, Vals);
3152     if (CRI.hasUnwindDest())
3153       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
3154     break;
3155   }
3156   case Instruction::CatchRet: {
3157     Code = bitc::FUNC_CODE_INST_CATCHRET;
3158     const auto &CRI = cast<CatchReturnInst>(I);
3159     pushValue(CRI.getCatchPad(), InstID, Vals);
3160     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
3161     break;
3162   }
3163   case Instruction::CleanupPad:
3164   case Instruction::CatchPad: {
3165     const auto &FuncletPad = cast<FuncletPadInst>(I);
3166     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
3167                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
3168     pushValue(FuncletPad.getParentPad(), InstID, Vals);
3169 
3170     unsigned NumArgOperands = FuncletPad.arg_size();
3171     Vals.push_back(NumArgOperands);
3172     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
3173       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
3174     break;
3175   }
3176   case Instruction::CatchSwitch: {
3177     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
3178     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
3179 
3180     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
3181 
3182     unsigned NumHandlers = CatchSwitch.getNumHandlers();
3183     Vals.push_back(NumHandlers);
3184     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
3185       Vals.push_back(VE.getValueID(CatchPadBB));
3186 
3187     if (CatchSwitch.hasUnwindDest())
3188       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
3189     break;
3190   }
3191   case Instruction::CallBr: {
3192     const CallBrInst *CBI = cast<CallBrInst>(&I);
3193     const Value *Callee = CBI->getCalledOperand();
3194     FunctionType *FTy = CBI->getFunctionType();
3195 
3196     if (CBI->hasOperandBundles())
3197       writeOperandBundles(*CBI, InstID);
3198 
3199     Code = bitc::FUNC_CODE_INST_CALLBR;
3200 
3201     Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
3202 
3203     Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
3204                    1 << bitc::CALL_EXPLICIT_TYPE);
3205 
3206     Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
3207     Vals.push_back(CBI->getNumIndirectDests());
3208     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
3209       Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
3210 
3211     Vals.push_back(VE.getTypeID(FTy));
3212     pushValueAndType(Callee, InstID, Vals);
3213 
3214     // Emit value #'s for the fixed parameters.
3215     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3216       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3217 
3218     // Emit type/value pairs for varargs params.
3219     if (FTy->isVarArg()) {
3220       for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i)
3221         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3222     }
3223     break;
3224   }
3225   case Instruction::Unreachable:
3226     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
3227     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
3228     break;
3229 
3230   case Instruction::PHI: {
3231     const PHINode &PN = cast<PHINode>(I);
3232     Code = bitc::FUNC_CODE_INST_PHI;
3233     // With the newer instruction encoding, forward references could give
3234     // negative valued IDs.  This is most common for PHIs, so we use
3235     // signed VBRs.
3236     SmallVector<uint64_t, 128> Vals64;
3237     Vals64.push_back(VE.getTypeID(PN.getType()));
3238     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
3239       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
3240       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
3241     }
3242 
3243     uint64_t Flags = getOptimizationFlags(&I);
3244     if (Flags != 0)
3245       Vals64.push_back(Flags);
3246 
3247     // Emit a Vals64 vector and exit.
3248     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
3249     Vals64.clear();
3250     return;
3251   }
3252 
3253   case Instruction::LandingPad: {
3254     const LandingPadInst &LP = cast<LandingPadInst>(I);
3255     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
3256     Vals.push_back(VE.getTypeID(LP.getType()));
3257     Vals.push_back(LP.isCleanup());
3258     Vals.push_back(LP.getNumClauses());
3259     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
3260       if (LP.isCatch(I))
3261         Vals.push_back(LandingPadInst::Catch);
3262       else
3263         Vals.push_back(LandingPadInst::Filter);
3264       pushValueAndType(LP.getClause(I), InstID, Vals);
3265     }
3266     break;
3267   }
3268 
3269   case Instruction::Alloca: {
3270     Code = bitc::FUNC_CODE_INST_ALLOCA;
3271     const AllocaInst &AI = cast<AllocaInst>(I);
3272     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
3273     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3274     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
3275     using APV = AllocaPackedValues;
3276     unsigned Record = 0;
3277     unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
3278     Bitfield::set<APV::AlignLower>(
3279         Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
3280     Bitfield::set<APV::AlignUpper>(Record,
3281                                    EncodedAlign >> APV::AlignLower::Bits);
3282     Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
3283     Bitfield::set<APV::ExplicitType>(Record, true);
3284     Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError());
3285     Vals.push_back(Record);
3286 
3287     unsigned AS = AI.getAddressSpace();
3288     if (AS != M.getDataLayout().getAllocaAddrSpace())
3289       Vals.push_back(AS);
3290     break;
3291   }
3292 
3293   case Instruction::Load:
3294     if (cast<LoadInst>(I).isAtomic()) {
3295       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
3296       pushValueAndType(I.getOperand(0), InstID, Vals);
3297     } else {
3298       Code = bitc::FUNC_CODE_INST_LOAD;
3299       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
3300         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
3301     }
3302     Vals.push_back(VE.getTypeID(I.getType()));
3303     Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign()));
3304     Vals.push_back(cast<LoadInst>(I).isVolatile());
3305     if (cast<LoadInst>(I).isAtomic()) {
3306       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
3307       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
3308     }
3309     break;
3310   case Instruction::Store:
3311     if (cast<StoreInst>(I).isAtomic())
3312       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
3313     else
3314       Code = bitc::FUNC_CODE_INST_STORE;
3315     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
3316     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
3317     Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign()));
3318     Vals.push_back(cast<StoreInst>(I).isVolatile());
3319     if (cast<StoreInst>(I).isAtomic()) {
3320       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
3321       Vals.push_back(
3322           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
3323     }
3324     break;
3325   case Instruction::AtomicCmpXchg:
3326     Code = bitc::FUNC_CODE_INST_CMPXCHG;
3327     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3328     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
3329     pushValue(I.getOperand(2), InstID, Vals);        // newval.
3330     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
3331     Vals.push_back(
3332         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
3333     Vals.push_back(
3334         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
3335     Vals.push_back(
3336         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
3337     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
3338     Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign()));
3339     break;
3340   case Instruction::AtomicRMW:
3341     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
3342     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3343     pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val
3344     Vals.push_back(
3345         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
3346     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
3347     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
3348     Vals.push_back(
3349         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
3350     Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign()));
3351     break;
3352   case Instruction::Fence:
3353     Code = bitc::FUNC_CODE_INST_FENCE;
3354     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
3355     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
3356     break;
3357   case Instruction::Call: {
3358     const CallInst &CI = cast<CallInst>(I);
3359     FunctionType *FTy = CI.getFunctionType();
3360 
3361     if (CI.hasOperandBundles())
3362       writeOperandBundles(CI, InstID);
3363 
3364     Code = bitc::FUNC_CODE_INST_CALL;
3365 
3366     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3367 
3368     unsigned Flags = getOptimizationFlags(&I);
3369     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3370                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3371                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3372                    1 << bitc::CALL_EXPLICIT_TYPE |
3373                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3374                    unsigned(Flags != 0) << bitc::CALL_FMF);
3375     if (Flags != 0)
3376       Vals.push_back(Flags);
3377 
3378     Vals.push_back(VE.getTypeID(FTy));
3379     pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
3380 
3381     // Emit value #'s for the fixed parameters.
3382     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3383       // Check for labels (can happen with asm labels).
3384       if (FTy->getParamType(i)->isLabelTy())
3385         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3386       else
3387         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3388     }
3389 
3390     // Emit type/value pairs for varargs params.
3391     if (FTy->isVarArg()) {
3392       for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
3393         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3394     }
3395     break;
3396   }
3397   case Instruction::VAArg:
3398     Code = bitc::FUNC_CODE_INST_VAARG;
3399     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
3400     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
3401     Vals.push_back(VE.getTypeID(I.getType())); // restype.
3402     break;
3403   case Instruction::Freeze:
3404     Code = bitc::FUNC_CODE_INST_FREEZE;
3405     pushValueAndType(I.getOperand(0), InstID, Vals);
3406     break;
3407   }
3408 
3409   Stream.EmitRecord(Code, Vals, AbbrevToUse);
3410   Vals.clear();
3411 }
3412 
3413 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3414 /// to allow clients to efficiently find the function body.
writeGlobalValueSymbolTable(DenseMap<const Function *,uint64_t> & FunctionToBitcodeIndex)3415 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3416   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3417   // Get the offset of the VST we are writing, and backpatch it into
3418   // the VST forward declaration record.
3419   uint64_t VSTOffset = Stream.GetCurrentBitNo();
3420   // The BitcodeStartBit was the stream offset of the identification block.
3421   VSTOffset -= bitcodeStartBit();
3422   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3423   // Note that we add 1 here because the offset is relative to one word
3424   // before the start of the identification block, which was historically
3425   // always the start of the regular bitcode header.
3426   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3427 
3428   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3429 
3430   auto Abbv = std::make_shared<BitCodeAbbrev>();
3431   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3432   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3433   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3434   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3435 
3436   for (const Function &F : M) {
3437     uint64_t Record[2];
3438 
3439     if (F.isDeclaration())
3440       continue;
3441 
3442     Record[0] = VE.getValueID(&F);
3443 
3444     // Save the word offset of the function (from the start of the
3445     // actual bitcode written to the stream).
3446     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3447     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3448     // Note that we add 1 here because the offset is relative to one word
3449     // before the start of the identification block, which was historically
3450     // always the start of the regular bitcode header.
3451     Record[1] = BitcodeIndex / 32 + 1;
3452 
3453     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3454   }
3455 
3456   Stream.ExitBlock();
3457 }
3458 
3459 /// Emit names for arguments, instructions and basic blocks in a function.
writeFunctionLevelValueSymbolTable(const ValueSymbolTable & VST)3460 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3461     const ValueSymbolTable &VST) {
3462   if (VST.empty())
3463     return;
3464 
3465   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3466 
3467   // FIXME: Set up the abbrev, we know how many values there are!
3468   // FIXME: We know if the type names can use 7-bit ascii.
3469   SmallVector<uint64_t, 64> NameVals;
3470 
3471   for (const ValueName &Name : VST) {
3472     // Figure out the encoding to use for the name.
3473     StringEncoding Bits = getStringEncoding(Name.getKey());
3474 
3475     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3476     NameVals.push_back(VE.getValueID(Name.getValue()));
3477 
3478     // VST_CODE_ENTRY:   [valueid, namechar x N]
3479     // VST_CODE_BBENTRY: [bbid, namechar x N]
3480     unsigned Code;
3481     if (isa<BasicBlock>(Name.getValue())) {
3482       Code = bitc::VST_CODE_BBENTRY;
3483       if (Bits == SE_Char6)
3484         AbbrevToUse = VST_BBENTRY_6_ABBREV;
3485     } else {
3486       Code = bitc::VST_CODE_ENTRY;
3487       if (Bits == SE_Char6)
3488         AbbrevToUse = VST_ENTRY_6_ABBREV;
3489       else if (Bits == SE_Fixed7)
3490         AbbrevToUse = VST_ENTRY_7_ABBREV;
3491     }
3492 
3493     for (const auto P : Name.getKey())
3494       NameVals.push_back((unsigned char)P);
3495 
3496     // Emit the finished record.
3497     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3498     NameVals.clear();
3499   }
3500 
3501   Stream.ExitBlock();
3502 }
3503 
writeUseList(UseListOrder && Order)3504 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3505   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3506   unsigned Code;
3507   if (isa<BasicBlock>(Order.V))
3508     Code = bitc::USELIST_CODE_BB;
3509   else
3510     Code = bitc::USELIST_CODE_DEFAULT;
3511 
3512   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3513   Record.push_back(VE.getValueID(Order.V));
3514   Stream.EmitRecord(Code, Record);
3515 }
3516 
writeUseListBlock(const Function * F)3517 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3518   assert(VE.shouldPreserveUseListOrder() &&
3519          "Expected to be preserving use-list order");
3520 
3521   auto hasMore = [&]() {
3522     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3523   };
3524   if (!hasMore())
3525     // Nothing to do.
3526     return;
3527 
3528   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3529   while (hasMore()) {
3530     writeUseList(std::move(VE.UseListOrders.back()));
3531     VE.UseListOrders.pop_back();
3532   }
3533   Stream.ExitBlock();
3534 }
3535 
3536 /// Emit a function body to the module stream.
writeFunction(const Function & F,DenseMap<const Function *,uint64_t> & FunctionToBitcodeIndex)3537 void ModuleBitcodeWriter::writeFunction(
3538     const Function &F,
3539     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3540   // Save the bitcode index of the start of this function block for recording
3541   // in the VST.
3542   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3543 
3544   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3545   VE.incorporateFunction(F);
3546 
3547   SmallVector<unsigned, 64> Vals;
3548 
3549   // Emit the number of basic blocks, so the reader can create them ahead of
3550   // time.
3551   Vals.push_back(VE.getBasicBlocks().size());
3552   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3553   Vals.clear();
3554 
3555   // If there are function-local constants, emit them now.
3556   unsigned CstStart, CstEnd;
3557   VE.getFunctionConstantRange(CstStart, CstEnd);
3558   writeConstants(CstStart, CstEnd, false);
3559 
3560   // If there is function-local metadata, emit it now.
3561   writeFunctionMetadata(F);
3562 
3563   // Keep a running idea of what the instruction ID is.
3564   unsigned InstID = CstEnd;
3565 
3566   bool NeedsMetadataAttachment = F.hasMetadata();
3567 
3568   DILocation *LastDL = nullptr;
3569   SmallSetVector<Function *, 4> BlockAddressUsers;
3570 
3571   // Finally, emit all the instructions, in order.
3572   for (const BasicBlock &BB : F) {
3573     for (const Instruction &I : BB) {
3574       writeInstruction(I, InstID, Vals);
3575 
3576       if (!I.getType()->isVoidTy())
3577         ++InstID;
3578 
3579       // If the instruction has metadata, write a metadata attachment later.
3580       NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc();
3581 
3582       // If the instruction has a debug location, emit it.
3583       if (DILocation *DL = I.getDebugLoc()) {
3584         if (DL == LastDL) {
3585           // Just repeat the same debug loc as last time.
3586           Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3587         } else {
3588           Vals.push_back(DL->getLine());
3589           Vals.push_back(DL->getColumn());
3590           Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3591           Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3592           Vals.push_back(DL->isImplicitCode());
3593           Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3594           Vals.clear();
3595           LastDL = DL;
3596         }
3597       }
3598 
3599       // If the instruction has DbgRecords attached to it, emit them. Note that
3600       // they come after the instruction so that it's easy to attach them again
3601       // when reading the bitcode, even though conceptually the debug locations
3602       // start "before" the instruction.
3603       if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) {
3604         /// Try to push the value only (unwrapped), otherwise push the
3605         /// metadata wrapped value. Returns true if the value was pushed
3606         /// without the ValueAsMetadata wrapper.
3607         auto PushValueOrMetadata = [&Vals, InstID,
3608                                     this](Metadata *RawLocation) {
3609           assert(RawLocation &&
3610                  "RawLocation unexpectedly null in DbgVariableRecord");
3611           if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) {
3612             SmallVector<unsigned, 2> ValAndType;
3613             // If the value is a fwd-ref the type is also pushed. We don't
3614             // want the type, so fwd-refs are kept wrapped (pushValueAndType
3615             // returns false if the value is pushed without type).
3616             if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) {
3617               Vals.push_back(ValAndType[0]);
3618               return true;
3619             }
3620           }
3621           // The metadata is a DIArgList, or ValueAsMetadata wrapping a
3622           // fwd-ref. Push the metadata ID.
3623           Vals.push_back(VE.getMetadataID(RawLocation));
3624           return false;
3625         };
3626 
3627         // Write out non-instruction debug information attached to this
3628         // instruction. Write it after the instruction so that it's easy to
3629         // re-attach to the instruction reading the records in.
3630         for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) {
3631           if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
3632             Vals.push_back(VE.getMetadataID(&*DLR->getDebugLoc()));
3633             Vals.push_back(VE.getMetadataID(DLR->getLabel()));
3634             Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals);
3635             Vals.clear();
3636             continue;
3637           }
3638 
3639           // First 3 fields are common to all kinds:
3640           //   DILocation, DILocalVariable, DIExpression
3641           // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
3642           //   ..., LocationMetadata
3643           // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
3644           //   ..., Value
3645           // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
3646           //   ..., LocationMetadata
3647           // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
3648           //   ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
3649           DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
3650           Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc()));
3651           Vals.push_back(VE.getMetadataID(DVR.getVariable()));
3652           Vals.push_back(VE.getMetadataID(DVR.getExpression()));
3653           if (DVR.isDbgValue()) {
3654             if (PushValueOrMetadata(DVR.getRawLocation()))
3655               Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals,
3656                                 FUNCTION_DEBUG_RECORD_VALUE_ABBREV);
3657             else
3658               Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals);
3659           } else if (DVR.isDbgDeclare()) {
3660             Vals.push_back(VE.getMetadataID(DVR.getRawLocation()));
3661             Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals);
3662           } else {
3663             assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind");
3664             Vals.push_back(VE.getMetadataID(DVR.getRawLocation()));
3665             Vals.push_back(VE.getMetadataID(DVR.getAssignID()));
3666             Vals.push_back(VE.getMetadataID(DVR.getAddressExpression()));
3667             Vals.push_back(VE.getMetadataID(DVR.getRawAddress()));
3668             Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals);
3669           }
3670           Vals.clear();
3671         }
3672       }
3673     }
3674 
3675     if (BlockAddress *BA = BlockAddress::lookup(&BB)) {
3676       SmallVector<Value *> Worklist{BA};
3677       SmallPtrSet<Value *, 8> Visited{BA};
3678       while (!Worklist.empty()) {
3679         Value *V = Worklist.pop_back_val();
3680         for (User *U : V->users()) {
3681           if (auto *I = dyn_cast<Instruction>(U)) {
3682             Function *P = I->getFunction();
3683             if (P != &F)
3684               BlockAddressUsers.insert(P);
3685           } else if (isa<Constant>(U) && !isa<GlobalValue>(U) &&
3686                      Visited.insert(U).second)
3687             Worklist.push_back(U);
3688         }
3689       }
3690     }
3691   }
3692 
3693   if (!BlockAddressUsers.empty()) {
3694     Vals.resize(BlockAddressUsers.size());
3695     for (auto I : llvm::enumerate(BlockAddressUsers))
3696       Vals[I.index()] = VE.getValueID(I.value());
3697     Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals);
3698     Vals.clear();
3699   }
3700 
3701   // Emit names for all the instructions etc.
3702   if (auto *Symtab = F.getValueSymbolTable())
3703     writeFunctionLevelValueSymbolTable(*Symtab);
3704 
3705   if (NeedsMetadataAttachment)
3706     writeFunctionMetadataAttachment(F);
3707   if (VE.shouldPreserveUseListOrder())
3708     writeUseListBlock(&F);
3709   VE.purgeFunction();
3710   Stream.ExitBlock();
3711 }
3712 
3713 // Emit blockinfo, which defines the standard abbreviations etc.
writeBlockInfo()3714 void ModuleBitcodeWriter::writeBlockInfo() {
3715   // We only want to emit block info records for blocks that have multiple
3716   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3717   // Other blocks can define their abbrevs inline.
3718   Stream.EnterBlockInfoBlock();
3719 
3720   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3721     auto Abbv = std::make_shared<BitCodeAbbrev>();
3722     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3723     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3724     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3725     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3726     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3727         VST_ENTRY_8_ABBREV)
3728       llvm_unreachable("Unexpected abbrev ordering!");
3729   }
3730 
3731   { // 7-bit fixed width VST_CODE_ENTRY strings.
3732     auto Abbv = std::make_shared<BitCodeAbbrev>();
3733     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3734     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3735     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3736     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3737     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3738         VST_ENTRY_7_ABBREV)
3739       llvm_unreachable("Unexpected abbrev ordering!");
3740   }
3741   { // 6-bit char6 VST_CODE_ENTRY strings.
3742     auto Abbv = std::make_shared<BitCodeAbbrev>();
3743     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3744     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3745     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3746     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3747     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3748         VST_ENTRY_6_ABBREV)
3749       llvm_unreachable("Unexpected abbrev ordering!");
3750   }
3751   { // 6-bit char6 VST_CODE_BBENTRY strings.
3752     auto Abbv = std::make_shared<BitCodeAbbrev>();
3753     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3754     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3755     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3756     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3757     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3758         VST_BBENTRY_6_ABBREV)
3759       llvm_unreachable("Unexpected abbrev ordering!");
3760   }
3761 
3762   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3763     auto Abbv = std::make_shared<BitCodeAbbrev>();
3764     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3765     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3766                               VE.computeBitsRequiredForTypeIndices()));
3767     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3768         CONSTANTS_SETTYPE_ABBREV)
3769       llvm_unreachable("Unexpected abbrev ordering!");
3770   }
3771 
3772   { // INTEGER abbrev for CONSTANTS_BLOCK.
3773     auto Abbv = std::make_shared<BitCodeAbbrev>();
3774     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3775     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3776     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3777         CONSTANTS_INTEGER_ABBREV)
3778       llvm_unreachable("Unexpected abbrev ordering!");
3779   }
3780 
3781   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3782     auto Abbv = std::make_shared<BitCodeAbbrev>();
3783     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3784     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3785     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3786                               VE.computeBitsRequiredForTypeIndices()));
3787     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3788 
3789     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3790         CONSTANTS_CE_CAST_Abbrev)
3791       llvm_unreachable("Unexpected abbrev ordering!");
3792   }
3793   { // NULL abbrev for CONSTANTS_BLOCK.
3794     auto Abbv = std::make_shared<BitCodeAbbrev>();
3795     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3796     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3797         CONSTANTS_NULL_Abbrev)
3798       llvm_unreachable("Unexpected abbrev ordering!");
3799   }
3800 
3801   // FIXME: This should only use space for first class types!
3802 
3803   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3804     auto Abbv = std::make_shared<BitCodeAbbrev>();
3805     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3806     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3807     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3808                               VE.computeBitsRequiredForTypeIndices()));
3809     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3810     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3811     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3812         FUNCTION_INST_LOAD_ABBREV)
3813       llvm_unreachable("Unexpected abbrev ordering!");
3814   }
3815   { // INST_UNOP abbrev for FUNCTION_BLOCK.
3816     auto Abbv = std::make_shared<BitCodeAbbrev>();
3817     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3818     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3819     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3820     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3821         FUNCTION_INST_UNOP_ABBREV)
3822       llvm_unreachable("Unexpected abbrev ordering!");
3823   }
3824   { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3825     auto Abbv = std::make_shared<BitCodeAbbrev>();
3826     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3827     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3828     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3829     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3830     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3831         FUNCTION_INST_UNOP_FLAGS_ABBREV)
3832       llvm_unreachable("Unexpected abbrev ordering!");
3833   }
3834   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3835     auto Abbv = std::make_shared<BitCodeAbbrev>();
3836     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3837     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3838     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3839     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3840     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3841         FUNCTION_INST_BINOP_ABBREV)
3842       llvm_unreachable("Unexpected abbrev ordering!");
3843   }
3844   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3845     auto Abbv = std::make_shared<BitCodeAbbrev>();
3846     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3847     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3848     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3849     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3850     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3851     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3852         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3853       llvm_unreachable("Unexpected abbrev ordering!");
3854   }
3855   { // INST_CAST abbrev for FUNCTION_BLOCK.
3856     auto Abbv = std::make_shared<BitCodeAbbrev>();
3857     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3858     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3859     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3860                               VE.computeBitsRequiredForTypeIndices()));
3861     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3862     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3863         FUNCTION_INST_CAST_ABBREV)
3864       llvm_unreachable("Unexpected abbrev ordering!");
3865   }
3866   { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK.
3867     auto Abbv = std::make_shared<BitCodeAbbrev>();
3868     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3869     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3870     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3871                               VE.computeBitsRequiredForTypeIndices()));
3872     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3873     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3874     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3875         FUNCTION_INST_CAST_FLAGS_ABBREV)
3876       llvm_unreachable("Unexpected abbrev ordering!");
3877   }
3878 
3879   { // INST_RET abbrev for FUNCTION_BLOCK.
3880     auto Abbv = std::make_shared<BitCodeAbbrev>();
3881     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3882     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3883         FUNCTION_INST_RET_VOID_ABBREV)
3884       llvm_unreachable("Unexpected abbrev ordering!");
3885   }
3886   { // INST_RET abbrev for FUNCTION_BLOCK.
3887     auto Abbv = std::make_shared<BitCodeAbbrev>();
3888     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3889     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3890     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3891         FUNCTION_INST_RET_VAL_ABBREV)
3892       llvm_unreachable("Unexpected abbrev ordering!");
3893   }
3894   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3895     auto Abbv = std::make_shared<BitCodeAbbrev>();
3896     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3897     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3898         FUNCTION_INST_UNREACHABLE_ABBREV)
3899       llvm_unreachable("Unexpected abbrev ordering!");
3900   }
3901   {
3902     auto Abbv = std::make_shared<BitCodeAbbrev>();
3903     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3904     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3905     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3906                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3907     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3908     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3909     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3910         FUNCTION_INST_GEP_ABBREV)
3911       llvm_unreachable("Unexpected abbrev ordering!");
3912   }
3913   {
3914     auto Abbv = std::make_shared<BitCodeAbbrev>();
3915     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE));
3916     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc
3917     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var
3918     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr
3919     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val
3920     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3921         FUNCTION_DEBUG_RECORD_VALUE_ABBREV)
3922       llvm_unreachable("Unexpected abbrev ordering! 1");
3923   }
3924   Stream.ExitBlock();
3925 }
3926 
3927 /// Write the module path strings, currently only used when generating
3928 /// a combined index file.
writeModStrings()3929 void IndexBitcodeWriter::writeModStrings() {
3930   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3931 
3932   // TODO: See which abbrev sizes we actually need to emit
3933 
3934   // 8-bit fixed-width MST_ENTRY strings.
3935   auto Abbv = std::make_shared<BitCodeAbbrev>();
3936   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3937   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3938   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3939   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3940   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3941 
3942   // 7-bit fixed width MST_ENTRY strings.
3943   Abbv = std::make_shared<BitCodeAbbrev>();
3944   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3945   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3946   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3947   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3948   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3949 
3950   // 6-bit char6 MST_ENTRY strings.
3951   Abbv = std::make_shared<BitCodeAbbrev>();
3952   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3953   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3954   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3955   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3956   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3957 
3958   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3959   Abbv = std::make_shared<BitCodeAbbrev>();
3960   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3961   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3962   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3963   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3964   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3965   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3966   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3967 
3968   SmallVector<unsigned, 64> Vals;
3969   forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) {
3970     StringRef Key = MPSE.getKey();
3971     const auto &Hash = MPSE.getValue();
3972     StringEncoding Bits = getStringEncoding(Key);
3973     unsigned AbbrevToUse = Abbrev8Bit;
3974     if (Bits == SE_Char6)
3975       AbbrevToUse = Abbrev6Bit;
3976     else if (Bits == SE_Fixed7)
3977       AbbrevToUse = Abbrev7Bit;
3978 
3979     auto ModuleId = ModuleIdMap.size();
3980     ModuleIdMap[Key] = ModuleId;
3981     Vals.push_back(ModuleId);
3982     Vals.append(Key.begin(), Key.end());
3983 
3984     // Emit the finished record.
3985     Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3986 
3987     // Emit an optional hash for the module now
3988     if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3989       Vals.assign(Hash.begin(), Hash.end());
3990       // Emit the hash record.
3991       Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3992     }
3993 
3994     Vals.clear();
3995   });
3996   Stream.ExitBlock();
3997 }
3998 
3999 /// Write the function type metadata related records that need to appear before
4000 /// a function summary entry (whether per-module or combined).
4001 template <typename Fn>
writeFunctionTypeMetadataRecords(BitstreamWriter & Stream,FunctionSummary * FS,Fn GetValueID)4002 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
4003                                              FunctionSummary *FS,
4004                                              Fn GetValueID) {
4005   if (!FS->type_tests().empty())
4006     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
4007 
4008   SmallVector<uint64_t, 64> Record;
4009 
4010   auto WriteVFuncIdVec = [&](uint64_t Ty,
4011                              ArrayRef<FunctionSummary::VFuncId> VFs) {
4012     if (VFs.empty())
4013       return;
4014     Record.clear();
4015     for (auto &VF : VFs) {
4016       Record.push_back(VF.GUID);
4017       Record.push_back(VF.Offset);
4018     }
4019     Stream.EmitRecord(Ty, Record);
4020   };
4021 
4022   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
4023                   FS->type_test_assume_vcalls());
4024   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
4025                   FS->type_checked_load_vcalls());
4026 
4027   auto WriteConstVCallVec = [&](uint64_t Ty,
4028                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
4029     for (auto &VC : VCs) {
4030       Record.clear();
4031       Record.push_back(VC.VFunc.GUID);
4032       Record.push_back(VC.VFunc.Offset);
4033       llvm::append_range(Record, VC.Args);
4034       Stream.EmitRecord(Ty, Record);
4035     }
4036   };
4037 
4038   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
4039                      FS->type_test_assume_const_vcalls());
4040   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
4041                      FS->type_checked_load_const_vcalls());
4042 
4043   auto WriteRange = [&](ConstantRange Range) {
4044     Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
4045     assert(Range.getLower().getNumWords() == 1);
4046     assert(Range.getUpper().getNumWords() == 1);
4047     emitSignedInt64(Record, *Range.getLower().getRawData());
4048     emitSignedInt64(Record, *Range.getUpper().getRawData());
4049   };
4050 
4051   if (!FS->paramAccesses().empty()) {
4052     Record.clear();
4053     for (auto &Arg : FS->paramAccesses()) {
4054       size_t UndoSize = Record.size();
4055       Record.push_back(Arg.ParamNo);
4056       WriteRange(Arg.Use);
4057       Record.push_back(Arg.Calls.size());
4058       for (auto &Call : Arg.Calls) {
4059         Record.push_back(Call.ParamNo);
4060         std::optional<unsigned> ValueID = GetValueID(Call.Callee);
4061         if (!ValueID) {
4062           // If ValueID is unknown we can't drop just this call, we must drop
4063           // entire parameter.
4064           Record.resize(UndoSize);
4065           break;
4066         }
4067         Record.push_back(*ValueID);
4068         WriteRange(Call.Offsets);
4069       }
4070     }
4071     if (!Record.empty())
4072       Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record);
4073   }
4074 }
4075 
4076 /// Collect type IDs from type tests used by function.
4077 static void
getReferencedTypeIds(FunctionSummary * FS,std::set<GlobalValue::GUID> & ReferencedTypeIds)4078 getReferencedTypeIds(FunctionSummary *FS,
4079                      std::set<GlobalValue::GUID> &ReferencedTypeIds) {
4080   if (!FS->type_tests().empty())
4081     for (auto &TT : FS->type_tests())
4082       ReferencedTypeIds.insert(TT);
4083 
4084   auto GetReferencedTypesFromVFuncIdVec =
4085       [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
4086         for (auto &VF : VFs)
4087           ReferencedTypeIds.insert(VF.GUID);
4088       };
4089 
4090   GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
4091   GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
4092 
4093   auto GetReferencedTypesFromConstVCallVec =
4094       [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
4095         for (auto &VC : VCs)
4096           ReferencedTypeIds.insert(VC.VFunc.GUID);
4097       };
4098 
4099   GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
4100   GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
4101 }
4102 
writeWholeProgramDevirtResolutionByArg(SmallVector<uint64_t,64> & NameVals,const std::vector<uint64_t> & args,const WholeProgramDevirtResolution::ByArg & ByArg)4103 static void writeWholeProgramDevirtResolutionByArg(
4104     SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
4105     const WholeProgramDevirtResolution::ByArg &ByArg) {
4106   NameVals.push_back(args.size());
4107   llvm::append_range(NameVals, args);
4108 
4109   NameVals.push_back(ByArg.TheKind);
4110   NameVals.push_back(ByArg.Info);
4111   NameVals.push_back(ByArg.Byte);
4112   NameVals.push_back(ByArg.Bit);
4113 }
4114 
writeWholeProgramDevirtResolution(SmallVector<uint64_t,64> & NameVals,StringTableBuilder & StrtabBuilder,uint64_t Id,const WholeProgramDevirtResolution & Wpd)4115 static void writeWholeProgramDevirtResolution(
4116     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
4117     uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
4118   NameVals.push_back(Id);
4119 
4120   NameVals.push_back(Wpd.TheKind);
4121   NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
4122   NameVals.push_back(Wpd.SingleImplName.size());
4123 
4124   NameVals.push_back(Wpd.ResByArg.size());
4125   for (auto &A : Wpd.ResByArg)
4126     writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
4127 }
4128 
writeTypeIdSummaryRecord(SmallVector<uint64_t,64> & NameVals,StringTableBuilder & StrtabBuilder,const std::string & Id,const TypeIdSummary & Summary)4129 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
4130                                      StringTableBuilder &StrtabBuilder,
4131                                      const std::string &Id,
4132                                      const TypeIdSummary &Summary) {
4133   NameVals.push_back(StrtabBuilder.add(Id));
4134   NameVals.push_back(Id.size());
4135 
4136   NameVals.push_back(Summary.TTRes.TheKind);
4137   NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
4138   NameVals.push_back(Summary.TTRes.AlignLog2);
4139   NameVals.push_back(Summary.TTRes.SizeM1);
4140   NameVals.push_back(Summary.TTRes.BitMask);
4141   NameVals.push_back(Summary.TTRes.InlineBits);
4142 
4143   for (auto &W : Summary.WPDRes)
4144     writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
4145                                       W.second);
4146 }
4147 
writeTypeIdCompatibleVtableSummaryRecord(SmallVector<uint64_t,64> & NameVals,StringTableBuilder & StrtabBuilder,const std::string & Id,const TypeIdCompatibleVtableInfo & Summary,ValueEnumerator & VE)4148 static void writeTypeIdCompatibleVtableSummaryRecord(
4149     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
4150     const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
4151     ValueEnumerator &VE) {
4152   NameVals.push_back(StrtabBuilder.add(Id));
4153   NameVals.push_back(Id.size());
4154 
4155   for (auto &P : Summary) {
4156     NameVals.push_back(P.AddressPointOffset);
4157     NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
4158   }
4159 }
4160 
writeFunctionHeapProfileRecords(BitstreamWriter & Stream,FunctionSummary * FS,unsigned CallsiteAbbrev,unsigned AllocAbbrev,bool PerModule,std::function<unsigned (const ValueInfo & VI)> GetValueID,std::function<unsigned (unsigned)> GetStackIndex)4161 static void writeFunctionHeapProfileRecords(
4162     BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev,
4163     unsigned AllocAbbrev, bool PerModule,
4164     std::function<unsigned(const ValueInfo &VI)> GetValueID,
4165     std::function<unsigned(unsigned)> GetStackIndex) {
4166   SmallVector<uint64_t> Record;
4167 
4168   for (auto &CI : FS->callsites()) {
4169     Record.clear();
4170     // Per module callsite clones should always have a single entry of
4171     // value 0.
4172     assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0));
4173     Record.push_back(GetValueID(CI.Callee));
4174     if (!PerModule) {
4175       Record.push_back(CI.StackIdIndices.size());
4176       Record.push_back(CI.Clones.size());
4177     }
4178     for (auto Id : CI.StackIdIndices)
4179       Record.push_back(GetStackIndex(Id));
4180     if (!PerModule) {
4181       for (auto V : CI.Clones)
4182         Record.push_back(V);
4183     }
4184     Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO
4185                                 : bitc::FS_COMBINED_CALLSITE_INFO,
4186                       Record, CallsiteAbbrev);
4187   }
4188 
4189   for (auto &AI : FS->allocs()) {
4190     Record.clear();
4191     // Per module alloc versions should always have a single entry of
4192     // value 0.
4193     assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0));
4194     Record.push_back(AI.MIBs.size());
4195     if (!PerModule)
4196       Record.push_back(AI.Versions.size());
4197     for (auto &MIB : AI.MIBs) {
4198       Record.push_back((uint8_t)MIB.AllocType);
4199       Record.push_back(MIB.StackIdIndices.size());
4200       for (auto Id : MIB.StackIdIndices)
4201         Record.push_back(GetStackIndex(Id));
4202     }
4203     if (!PerModule) {
4204       for (auto V : AI.Versions)
4205         Record.push_back(V);
4206     }
4207     assert(AI.TotalSizes.empty() || AI.TotalSizes.size() == AI.MIBs.size());
4208     if (!AI.TotalSizes.empty()) {
4209       for (auto Size : AI.TotalSizes)
4210         Record.push_back(Size);
4211     }
4212     Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO
4213                                 : bitc::FS_COMBINED_ALLOC_INFO,
4214                       Record, AllocAbbrev);
4215   }
4216 }
4217 
4218 // Helper to emit a single function summary record.
writePerModuleFunctionSummaryRecord(SmallVector<uint64_t,64> & NameVals,GlobalValueSummary * Summary,unsigned ValueID,unsigned FSCallsRelBFAbbrev,unsigned FSCallsProfileAbbrev,unsigned CallsiteAbbrev,unsigned AllocAbbrev,const Function & F)4219 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
4220     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
4221     unsigned ValueID, unsigned FSCallsRelBFAbbrev,
4222     unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev,
4223     unsigned AllocAbbrev, const Function &F) {
4224   NameVals.push_back(ValueID);
4225 
4226   FunctionSummary *FS = cast<FunctionSummary>(Summary);
4227 
4228   writeFunctionTypeMetadataRecords(
4229       Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> {
4230         return {VE.getValueID(VI.getValue())};
4231       });
4232 
4233   writeFunctionHeapProfileRecords(
4234       Stream, FS, CallsiteAbbrev, AllocAbbrev,
4235       /*PerModule*/ true,
4236       /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); },
4237       /*GetStackIndex*/ [&](unsigned I) { return I; });
4238 
4239   auto SpecialRefCnts = FS->specialRefCounts();
4240   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4241   NameVals.push_back(FS->instCount());
4242   NameVals.push_back(getEncodedFFlags(FS->fflags()));
4243   NameVals.push_back(FS->refs().size());
4244   NameVals.push_back(SpecialRefCnts.first);  // rorefcnt
4245   NameVals.push_back(SpecialRefCnts.second); // worefcnt
4246 
4247   for (auto &RI : FS->refs())
4248     NameVals.push_back(getValueId(RI));
4249 
4250   const bool UseRelBFRecord =
4251       WriteRelBFToSummary && !F.hasProfileData() &&
4252       ForceSummaryEdgesCold == FunctionSummary::FSHT_None;
4253   for (auto &ECI : FS->calls()) {
4254     NameVals.push_back(getValueId(ECI.first));
4255     if (UseRelBFRecord)
4256       NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second));
4257     else
4258       NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second));
4259   }
4260 
4261   unsigned FSAbbrev =
4262       (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev);
4263   unsigned Code =
4264       (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE);
4265 
4266   // Emit the finished record.
4267   Stream.EmitRecord(Code, NameVals, FSAbbrev);
4268   NameVals.clear();
4269 }
4270 
4271 // Collect the global value references in the given variable's initializer,
4272 // and emit them in a summary record.
writeModuleLevelReferences(const GlobalVariable & V,SmallVector<uint64_t,64> & NameVals,unsigned FSModRefsAbbrev,unsigned FSModVTableRefsAbbrev)4273 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
4274     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
4275     unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
4276   auto VI = Index->getValueInfo(V.getGUID());
4277   if (!VI || VI.getSummaryList().empty()) {
4278     // Only declarations should not have a summary (a declaration might however
4279     // have a summary if the def was in module level asm).
4280     assert(V.isDeclaration());
4281     return;
4282   }
4283   auto *Summary = VI.getSummaryList()[0].get();
4284   NameVals.push_back(VE.getValueID(&V));
4285   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
4286   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4287   NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4288 
4289   auto VTableFuncs = VS->vTableFuncs();
4290   if (!VTableFuncs.empty())
4291     NameVals.push_back(VS->refs().size());
4292 
4293   unsigned SizeBeforeRefs = NameVals.size();
4294   for (auto &RI : VS->refs())
4295     NameVals.push_back(VE.getValueID(RI.getValue()));
4296   // Sort the refs for determinism output, the vector returned by FS->refs() has
4297   // been initialized from a DenseSet.
4298   llvm::sort(drop_begin(NameVals, SizeBeforeRefs));
4299 
4300   if (VTableFuncs.empty())
4301     Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
4302                       FSModRefsAbbrev);
4303   else {
4304     // VTableFuncs pairs should already be sorted by offset.
4305     for (auto &P : VTableFuncs) {
4306       NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
4307       NameVals.push_back(P.VTableOffset);
4308     }
4309 
4310     Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
4311                       FSModVTableRefsAbbrev);
4312   }
4313   NameVals.clear();
4314 }
4315 
4316 /// Emit the per-module summary section alongside the rest of
4317 /// the module's bitcode.
writePerModuleGlobalValueSummary()4318 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
4319   // By default we compile with ThinLTO if the module has a summary, but the
4320   // client can request full LTO with a module flag.
4321   bool IsThinLTO = true;
4322   if (auto *MD =
4323           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
4324     IsThinLTO = MD->getZExtValue();
4325   Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
4326                                  : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
4327                        4);
4328 
4329   Stream.EmitRecord(
4330       bitc::FS_VERSION,
4331       ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4332 
4333   // Write the index flags.
4334   uint64_t Flags = 0;
4335   // Bits 1-3 are set only in the combined index, skip them.
4336   if (Index->enableSplitLTOUnit())
4337     Flags |= 0x8;
4338   if (Index->hasUnifiedLTO())
4339     Flags |= 0x200;
4340 
4341   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
4342 
4343   if (Index->begin() == Index->end()) {
4344     Stream.ExitBlock();
4345     return;
4346   }
4347 
4348   for (const auto &GVI : valueIds()) {
4349     Stream.EmitRecord(bitc::FS_VALUE_GUID,
4350                       ArrayRef<uint64_t>{GVI.second, GVI.first});
4351   }
4352 
4353   if (!Index->stackIds().empty()) {
4354     auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4355     StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4356     // numids x stackid
4357     StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4358     StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4359     unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4360     Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId);
4361   }
4362 
4363   // Abbrev for FS_PERMODULE_PROFILE.
4364   auto Abbv = std::make_shared<BitCodeAbbrev>();
4365   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
4366   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4367   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // flags
4368   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4369   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4370   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4371   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4373   // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4374   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4375   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4376   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4377 
4378   // Abbrev for FS_PERMODULE_RELBF.
4379   Abbv = std::make_shared<BitCodeAbbrev>();
4380   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
4381   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4382   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4383   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4384   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4385   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4386   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4387   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4388   // numrefs x valueid, n x (valueid, rel_block_freq+tailcall])
4389   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4390   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4391   unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4392 
4393   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
4394   Abbv = std::make_shared<BitCodeAbbrev>();
4395   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
4396   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4397   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4398   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
4399   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4400   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4401 
4402   // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
4403   Abbv = std::make_shared<BitCodeAbbrev>();
4404   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
4405   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4406   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4407   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4408   // numrefs x valueid, n x (valueid , offset)
4409   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4410   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4411   unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4412 
4413   // Abbrev for FS_ALIAS.
4414   Abbv = std::make_shared<BitCodeAbbrev>();
4415   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
4416   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4417   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4418   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4419   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4420 
4421   // Abbrev for FS_TYPE_ID_METADATA
4422   Abbv = std::make_shared<BitCodeAbbrev>();
4423   Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
4424   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
4425   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
4426   // n x (valueid , offset)
4427   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4428   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4429   unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4430 
4431   Abbv = std::make_shared<BitCodeAbbrev>();
4432   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO));
4433   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4434   // n x stackidindex
4435   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4436   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4437   unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4438 
4439   Abbv = std::make_shared<BitCodeAbbrev>();
4440   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO));
4441   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib
4442   // n x (alloc type, numstackids, numstackids x stackidindex)
4443   // optional: nummib x total size
4444   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4445   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4446   unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4447 
4448   SmallVector<uint64_t, 64> NameVals;
4449   // Iterate over the list of functions instead of the Index to
4450   // ensure the ordering is stable.
4451   for (const Function &F : M) {
4452     // Summary emission does not support anonymous functions, they have to
4453     // renamed using the anonymous function renaming pass.
4454     if (!F.hasName())
4455       report_fatal_error("Unexpected anonymous function when writing summary");
4456 
4457     ValueInfo VI = Index->getValueInfo(F.getGUID());
4458     if (!VI || VI.getSummaryList().empty()) {
4459       // Only declarations should not have a summary (a declaration might
4460       // however have a summary if the def was in module level asm).
4461       assert(F.isDeclaration());
4462       continue;
4463     }
4464     auto *Summary = VI.getSummaryList()[0].get();
4465     writePerModuleFunctionSummaryRecord(
4466         NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev,
4467         FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F);
4468   }
4469 
4470   // Capture references from GlobalVariable initializers, which are outside
4471   // of a function scope.
4472   for (const GlobalVariable &G : M.globals())
4473     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
4474                                FSModVTableRefsAbbrev);
4475 
4476   for (const GlobalAlias &A : M.aliases()) {
4477     auto *Aliasee = A.getAliaseeObject();
4478     // Skip ifunc and nameless functions which don't have an entry in the
4479     // summary.
4480     if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee))
4481       continue;
4482     auto AliasId = VE.getValueID(&A);
4483     auto AliaseeId = VE.getValueID(Aliasee);
4484     NameVals.push_back(AliasId);
4485     auto *Summary = Index->getGlobalValueSummary(A);
4486     AliasSummary *AS = cast<AliasSummary>(Summary);
4487     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4488     NameVals.push_back(AliaseeId);
4489     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
4490     NameVals.clear();
4491   }
4492 
4493   for (auto &S : Index->typeIdCompatibleVtableMap()) {
4494     writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
4495                                              S.second, VE);
4496     Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
4497                       TypeIdCompatibleVtableAbbrev);
4498     NameVals.clear();
4499   }
4500 
4501   if (Index->getBlockCount())
4502     Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4503                       ArrayRef<uint64_t>{Index->getBlockCount()});
4504 
4505   Stream.ExitBlock();
4506 }
4507 
4508 /// Emit the combined summary section into the combined index file.
writeCombinedGlobalValueSummary()4509 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
4510   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
4511   Stream.EmitRecord(
4512       bitc::FS_VERSION,
4513       ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4514 
4515   // Write the index flags.
4516   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()});
4517 
4518   for (const auto &GVI : valueIds()) {
4519     Stream.EmitRecord(bitc::FS_VALUE_GUID,
4520                       ArrayRef<uint64_t>{GVI.second, GVI.first});
4521   }
4522 
4523   // Write the stack ids used by this index, which will be a subset of those in
4524   // the full index in the case of distributed indexes.
4525   if (!StackIds.empty()) {
4526     auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4527     StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4528     // numids x stackid
4529     StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4530     StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4531     unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4532     Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId);
4533   }
4534 
4535   // Abbrev for FS_COMBINED_PROFILE.
4536   auto Abbv = std::make_shared<BitCodeAbbrev>();
4537   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
4538   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4539   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4540   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4541   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4542   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4543   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
4544   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4545   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4546   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4547   // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4548   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4549   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4550   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4551 
4552   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
4553   Abbv = std::make_shared<BitCodeAbbrev>();
4554   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
4555   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4556   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4557   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4558   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
4559   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4560   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4561 
4562   // Abbrev for FS_COMBINED_ALIAS.
4563   Abbv = std::make_shared<BitCodeAbbrev>();
4564   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
4565   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4566   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4567   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4568   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4569   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4570 
4571   Abbv = std::make_shared<BitCodeAbbrev>();
4572   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO));
4573   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4574   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices
4575   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4576   // numstackindices x stackidindex, numver x version
4577   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4578   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4579   unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4580 
4581   Abbv = std::make_shared<BitCodeAbbrev>();
4582   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO));
4583   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib
4584   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4585   // nummib x (alloc type, numstackids, numstackids x stackidindex),
4586   // numver x version
4587   // optional: nummib x total size
4588   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4589   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4590   unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4591 
4592   auto shouldImportValueAsDecl = [&](GlobalValueSummary *GVS) -> bool {
4593     if (DecSummaries == nullptr)
4594       return false;
4595     return DecSummaries->count(GVS);
4596   };
4597 
4598   // The aliases are emitted as a post-pass, and will point to the value
4599   // id of the aliasee. Save them in a vector for post-processing.
4600   SmallVector<AliasSummary *, 64> Aliases;
4601 
4602   // Save the value id for each summary for alias emission.
4603   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
4604 
4605   SmallVector<uint64_t, 64> NameVals;
4606 
4607   // Set that will be populated during call to writeFunctionTypeMetadataRecords
4608   // with the type ids referenced by this index file.
4609   std::set<GlobalValue::GUID> ReferencedTypeIds;
4610 
4611   // For local linkage, we also emit the original name separately
4612   // immediately after the record.
4613   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
4614     // We don't need to emit the original name if we are writing the index for
4615     // distributed backends (in which case ModuleToSummariesForIndex is
4616     // non-null). The original name is only needed during the thin link, since
4617     // for SamplePGO the indirect call targets for local functions have
4618     // have the original name annotated in profile.
4619     // Continue to emit it when writing out the entire combined index, which is
4620     // used in testing the thin link via llvm-lto.
4621     if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage()))
4622       return;
4623     NameVals.push_back(S.getOriginalName());
4624     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
4625     NameVals.clear();
4626   };
4627 
4628   std::set<GlobalValue::GUID> DefOrUseGUIDs;
4629   forEachSummary([&](GVInfo I, bool IsAliasee) {
4630     GlobalValueSummary *S = I.second;
4631     assert(S);
4632     DefOrUseGUIDs.insert(I.first);
4633     for (const ValueInfo &VI : S->refs())
4634       DefOrUseGUIDs.insert(VI.getGUID());
4635 
4636     auto ValueId = getValueId(I.first);
4637     assert(ValueId);
4638     SummaryToValueIdMap[S] = *ValueId;
4639 
4640     // If this is invoked for an aliasee, we want to record the above
4641     // mapping, but then not emit a summary entry (if the aliasee is
4642     // to be imported, we will invoke this separately with IsAliasee=false).
4643     if (IsAliasee)
4644       return;
4645 
4646     if (auto *AS = dyn_cast<AliasSummary>(S)) {
4647       // Will process aliases as a post-pass because the reader wants all
4648       // global to be loaded first.
4649       Aliases.push_back(AS);
4650       return;
4651     }
4652 
4653     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4654       NameVals.push_back(*ValueId);
4655       assert(ModuleIdMap.count(VS->modulePath()));
4656       NameVals.push_back(ModuleIdMap[VS->modulePath()]);
4657       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4658       NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4659       for (auto &RI : VS->refs()) {
4660         auto RefValueId = getValueId(RI.getGUID());
4661         if (!RefValueId)
4662           continue;
4663         NameVals.push_back(*RefValueId);
4664       }
4665 
4666       // Emit the finished record.
4667       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4668                         FSModRefsAbbrev);
4669       NameVals.clear();
4670       MaybeEmitOriginalName(*S);
4671       return;
4672     }
4673 
4674     auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> {
4675       if (!VI)
4676         return std::nullopt;
4677       return getValueId(VI.getGUID());
4678     };
4679 
4680     auto *FS = cast<FunctionSummary>(S);
4681     writeFunctionTypeMetadataRecords(Stream, FS, GetValueId);
4682     getReferencedTypeIds(FS, ReferencedTypeIds);
4683 
4684     writeFunctionHeapProfileRecords(
4685         Stream, FS, CallsiteAbbrev, AllocAbbrev,
4686         /*PerModule*/ false,
4687         /*GetValueId*/
4688         [&](const ValueInfo &VI) -> unsigned {
4689           std::optional<unsigned> ValueID = GetValueId(VI);
4690           // This can happen in shared index files for distributed ThinLTO if
4691           // the callee function summary is not included. Record 0 which we
4692           // will have to deal with conservatively when doing any kind of
4693           // validation in the ThinLTO backends.
4694           if (!ValueID)
4695             return 0;
4696           return *ValueID;
4697         },
4698         /*GetStackIndex*/
4699         [&](unsigned I) {
4700           // Get the corresponding index into the list of StackIds actually
4701           // being written for this combined index (which may be a subset in
4702           // the case of distributed indexes).
4703           assert(StackIdIndicesToIndex.contains(I));
4704           return StackIdIndicesToIndex[I];
4705         });
4706 
4707     NameVals.push_back(*ValueId);
4708     assert(ModuleIdMap.count(FS->modulePath()));
4709     NameVals.push_back(ModuleIdMap[FS->modulePath()]);
4710     NameVals.push_back(
4711         getEncodedGVSummaryFlags(FS->flags(), shouldImportValueAsDecl(FS)));
4712     NameVals.push_back(FS->instCount());
4713     NameVals.push_back(getEncodedFFlags(FS->fflags()));
4714     NameVals.push_back(FS->entryCount());
4715 
4716     // Fill in below
4717     NameVals.push_back(0); // numrefs
4718     NameVals.push_back(0); // rorefcnt
4719     NameVals.push_back(0); // worefcnt
4720 
4721     unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4722     for (auto &RI : FS->refs()) {
4723       auto RefValueId = getValueId(RI.getGUID());
4724       if (!RefValueId)
4725         continue;
4726       NameVals.push_back(*RefValueId);
4727       if (RI.isReadOnly())
4728         RORefCnt++;
4729       else if (RI.isWriteOnly())
4730         WORefCnt++;
4731       Count++;
4732     }
4733     NameVals[6] = Count;
4734     NameVals[7] = RORefCnt;
4735     NameVals[8] = WORefCnt;
4736 
4737     for (auto &EI : FS->calls()) {
4738       // If this GUID doesn't have a value id, it doesn't have a function
4739       // summary and we don't need to record any calls to it.
4740       std::optional<unsigned> CallValueId = GetValueId(EI.first);
4741       if (!CallValueId)
4742         continue;
4743       NameVals.push_back(*CallValueId);
4744       NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second));
4745     }
4746 
4747     // Emit the finished record.
4748     Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals,
4749                       FSCallsProfileAbbrev);
4750     NameVals.clear();
4751     MaybeEmitOriginalName(*S);
4752   });
4753 
4754   for (auto *AS : Aliases) {
4755     auto AliasValueId = SummaryToValueIdMap[AS];
4756     assert(AliasValueId);
4757     NameVals.push_back(AliasValueId);
4758     assert(ModuleIdMap.count(AS->modulePath()));
4759     NameVals.push_back(ModuleIdMap[AS->modulePath()]);
4760     NameVals.push_back(
4761         getEncodedGVSummaryFlags(AS->flags(), shouldImportValueAsDecl(AS)));
4762     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4763     assert(AliaseeValueId);
4764     NameVals.push_back(AliaseeValueId);
4765 
4766     // Emit the finished record.
4767     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4768     NameVals.clear();
4769     MaybeEmitOriginalName(*AS);
4770 
4771     if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4772       getReferencedTypeIds(FS, ReferencedTypeIds);
4773   }
4774 
4775   if (!Index.cfiFunctionDefs().empty()) {
4776     for (auto &S : Index.cfiFunctionDefs()) {
4777       if (DefOrUseGUIDs.count(
4778               GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4779         NameVals.push_back(StrtabBuilder.add(S));
4780         NameVals.push_back(S.size());
4781       }
4782     }
4783     if (!NameVals.empty()) {
4784       Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4785       NameVals.clear();
4786     }
4787   }
4788 
4789   if (!Index.cfiFunctionDecls().empty()) {
4790     for (auto &S : Index.cfiFunctionDecls()) {
4791       if (DefOrUseGUIDs.count(
4792               GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4793         NameVals.push_back(StrtabBuilder.add(S));
4794         NameVals.push_back(S.size());
4795       }
4796     }
4797     if (!NameVals.empty()) {
4798       Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4799       NameVals.clear();
4800     }
4801   }
4802 
4803   // Walk the GUIDs that were referenced, and write the
4804   // corresponding type id records.
4805   for (auto &T : ReferencedTypeIds) {
4806     auto TidIter = Index.typeIds().equal_range(T);
4807     for (auto It = TidIter.first; It != TidIter.second; ++It) {
4808       writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4809                                It->second.second);
4810       Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4811       NameVals.clear();
4812     }
4813   }
4814 
4815   if (Index.getBlockCount())
4816     Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4817                       ArrayRef<uint64_t>{Index.getBlockCount()});
4818 
4819   Stream.ExitBlock();
4820 }
4821 
4822 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4823 /// current llvm version, and a record for the epoch number.
writeIdentificationBlock(BitstreamWriter & Stream)4824 static void writeIdentificationBlock(BitstreamWriter &Stream) {
4825   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4826 
4827   // Write the "user readable" string identifying the bitcode producer
4828   auto Abbv = std::make_shared<BitCodeAbbrev>();
4829   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4830   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4831   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4832   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4833   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4834                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4835 
4836   // Write the epoch version
4837   Abbv = std::make_shared<BitCodeAbbrev>();
4838   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4839   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4840   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4841   constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}};
4842   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4843   Stream.ExitBlock();
4844 }
4845 
writeModuleHash(StringRef View)4846 void ModuleBitcodeWriter::writeModuleHash(StringRef View) {
4847   // Emit the module's hash.
4848   // MODULE_CODE_HASH: [5*i32]
4849   if (GenerateHash) {
4850     uint32_t Vals[5];
4851     Hasher.update(ArrayRef<uint8_t>(
4852         reinterpret_cast<const uint8_t *>(View.data()), View.size()));
4853     std::array<uint8_t, 20> Hash = Hasher.result();
4854     for (int Pos = 0; Pos < 20; Pos += 4) {
4855       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4856     }
4857 
4858     // Emit the finished record.
4859     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4860 
4861     if (ModHash)
4862       // Save the written hash value.
4863       llvm::copy(Vals, std::begin(*ModHash));
4864   }
4865 }
4866 
write()4867 void ModuleBitcodeWriter::write() {
4868   writeIdentificationBlock(Stream);
4869 
4870   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4871   // We will want to write the module hash at this point. Block any flushing so
4872   // we can have access to the whole underlying data later.
4873   Stream.markAndBlockFlushing();
4874 
4875   writeModuleVersion();
4876 
4877   // Emit blockinfo, which defines the standard abbreviations etc.
4878   writeBlockInfo();
4879 
4880   // Emit information describing all of the types in the module.
4881   writeTypeTable();
4882 
4883   // Emit information about attribute groups.
4884   writeAttributeGroupTable();
4885 
4886   // Emit information about parameter attributes.
4887   writeAttributeTable();
4888 
4889   writeComdats();
4890 
4891   // Emit top-level description of module, including target triple, inline asm,
4892   // descriptors for global variables, and function prototype info.
4893   writeModuleInfo();
4894 
4895   // Emit constants.
4896   writeModuleConstants();
4897 
4898   // Emit metadata kind names.
4899   writeModuleMetadataKinds();
4900 
4901   // Emit metadata.
4902   writeModuleMetadata();
4903 
4904   // Emit module-level use-lists.
4905   if (VE.shouldPreserveUseListOrder())
4906     writeUseListBlock(nullptr);
4907 
4908   writeOperandBundleTags();
4909   writeSyncScopeNames();
4910 
4911   // Emit function bodies.
4912   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4913   for (const Function &F : M)
4914     if (!F.isDeclaration())
4915       writeFunction(F, FunctionToBitcodeIndex);
4916 
4917   // Need to write after the above call to WriteFunction which populates
4918   // the summary information in the index.
4919   if (Index)
4920     writePerModuleGlobalValueSummary();
4921 
4922   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4923 
4924   writeModuleHash(Stream.getMarkedBufferAndResumeFlushing());
4925 
4926   Stream.ExitBlock();
4927 }
4928 
writeInt32ToBuffer(uint32_t Value,SmallVectorImpl<char> & Buffer,uint32_t & Position)4929 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4930                                uint32_t &Position) {
4931   support::endian::write32le(&Buffer[Position], Value);
4932   Position += 4;
4933 }
4934 
4935 /// If generating a bc file on darwin, we have to emit a
4936 /// header and trailer to make it compatible with the system archiver.  To do
4937 /// this we emit the following header, and then emit a trailer that pads the
4938 /// file out to be a multiple of 16 bytes.
4939 ///
4940 /// struct bc_header {
4941 ///   uint32_t Magic;         // 0x0B17C0DE
4942 ///   uint32_t Version;       // Version, currently always 0.
4943 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4944 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
4945 ///   uint32_t CPUType;       // CPU specifier.
4946 ///   ... potentially more later ...
4947 /// };
emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> & Buffer,const Triple & TT)4948 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4949                                          const Triple &TT) {
4950   unsigned CPUType = ~0U;
4951 
4952   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4953   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4954   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
4955   // specific constants here because they are implicitly part of the Darwin ABI.
4956   enum {
4957     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
4958     DARWIN_CPU_TYPE_X86        = 7,
4959     DARWIN_CPU_TYPE_ARM        = 12,
4960     DARWIN_CPU_TYPE_POWERPC    = 18
4961   };
4962 
4963   Triple::ArchType Arch = TT.getArch();
4964   if (Arch == Triple::x86_64)
4965     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4966   else if (Arch == Triple::x86)
4967     CPUType = DARWIN_CPU_TYPE_X86;
4968   else if (Arch == Triple::ppc)
4969     CPUType = DARWIN_CPU_TYPE_POWERPC;
4970   else if (Arch == Triple::ppc64)
4971     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4972   else if (Arch == Triple::arm || Arch == Triple::thumb)
4973     CPUType = DARWIN_CPU_TYPE_ARM;
4974 
4975   // Traditional Bitcode starts after header.
4976   assert(Buffer.size() >= BWH_HeaderSize &&
4977          "Expected header size to be reserved");
4978   unsigned BCOffset = BWH_HeaderSize;
4979   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4980 
4981   // Write the magic and version.
4982   unsigned Position = 0;
4983   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4984   writeInt32ToBuffer(0, Buffer, Position); // Version.
4985   writeInt32ToBuffer(BCOffset, Buffer, Position);
4986   writeInt32ToBuffer(BCSize, Buffer, Position);
4987   writeInt32ToBuffer(CPUType, Buffer, Position);
4988 
4989   // If the file is not a multiple of 16 bytes, insert dummy padding.
4990   while (Buffer.size() & 15)
4991     Buffer.push_back(0);
4992 }
4993 
4994 /// Helper to write the header common to all bitcode files.
writeBitcodeHeader(BitstreamWriter & Stream)4995 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4996   // Emit the file header.
4997   Stream.Emit((unsigned)'B', 8);
4998   Stream.Emit((unsigned)'C', 8);
4999   Stream.Emit(0x0, 4);
5000   Stream.Emit(0xC, 4);
5001   Stream.Emit(0xE, 4);
5002   Stream.Emit(0xD, 4);
5003 }
5004 
BitcodeWriter(SmallVectorImpl<char> & Buffer)5005 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
5006     : Stream(new BitstreamWriter(Buffer)) {
5007   writeBitcodeHeader(*Stream);
5008 }
5009 
BitcodeWriter(raw_ostream & FS)5010 BitcodeWriter::BitcodeWriter(raw_ostream &FS)
5011     : Stream(new BitstreamWriter(FS, FlushThreshold)) {
5012   writeBitcodeHeader(*Stream);
5013 }
5014 
~BitcodeWriter()5015 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
5016 
writeBlob(unsigned Block,unsigned Record,StringRef Blob)5017 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
5018   Stream->EnterSubblock(Block, 3);
5019 
5020   auto Abbv = std::make_shared<BitCodeAbbrev>();
5021   Abbv->Add(BitCodeAbbrevOp(Record));
5022   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
5023   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
5024 
5025   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
5026 
5027   Stream->ExitBlock();
5028 }
5029 
writeSymtab()5030 void BitcodeWriter::writeSymtab() {
5031   assert(!WroteStrtab && !WroteSymtab);
5032 
5033   // If any module has module-level inline asm, we will require a registered asm
5034   // parser for the target so that we can create an accurate symbol table for
5035   // the module.
5036   for (Module *M : Mods) {
5037     if (M->getModuleInlineAsm().empty())
5038       continue;
5039 
5040     std::string Err;
5041     const Triple TT(M->getTargetTriple());
5042     const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
5043     if (!T || !T->hasMCAsmParser())
5044       return;
5045   }
5046 
5047   WroteSymtab = true;
5048   SmallVector<char, 0> Symtab;
5049   // The irsymtab::build function may be unable to create a symbol table if the
5050   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
5051   // table is not required for correctness, but we still want to be able to
5052   // write malformed modules to bitcode files, so swallow the error.
5053   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
5054     consumeError(std::move(E));
5055     return;
5056   }
5057 
5058   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
5059             {Symtab.data(), Symtab.size()});
5060 }
5061 
writeStrtab()5062 void BitcodeWriter::writeStrtab() {
5063   assert(!WroteStrtab);
5064 
5065   std::vector<char> Strtab;
5066   StrtabBuilder.finalizeInOrder();
5067   Strtab.resize(StrtabBuilder.getSize());
5068   StrtabBuilder.write((uint8_t *)Strtab.data());
5069 
5070   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
5071             {Strtab.data(), Strtab.size()});
5072 
5073   WroteStrtab = true;
5074 }
5075 
copyStrtab(StringRef Strtab)5076 void BitcodeWriter::copyStrtab(StringRef Strtab) {
5077   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
5078   WroteStrtab = true;
5079 }
5080 
writeModule(const Module & M,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash,ModuleHash * ModHash)5081 void BitcodeWriter::writeModule(const Module &M,
5082                                 bool ShouldPreserveUseListOrder,
5083                                 const ModuleSummaryIndex *Index,
5084                                 bool GenerateHash, ModuleHash *ModHash) {
5085   assert(!WroteStrtab);
5086 
5087   // The Mods vector is used by irsymtab::build, which requires non-const
5088   // Modules in case it needs to materialize metadata. But the bitcode writer
5089   // requires that the module is materialized, so we can cast to non-const here,
5090   // after checking that it is in fact materialized.
5091   assert(M.isMaterialized());
5092   Mods.push_back(const_cast<Module *>(&M));
5093 
5094   ModuleBitcodeWriter ModuleWriter(M, StrtabBuilder, *Stream,
5095                                    ShouldPreserveUseListOrder, Index,
5096                                    GenerateHash, ModHash);
5097   ModuleWriter.write();
5098 }
5099 
writeIndex(const ModuleSummaryIndex * Index,const std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex,const GVSummaryPtrSet * DecSummaries)5100 void BitcodeWriter::writeIndex(
5101     const ModuleSummaryIndex *Index,
5102     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex,
5103     const GVSummaryPtrSet *DecSummaries) {
5104   IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, DecSummaries,
5105                                  ModuleToSummariesForIndex);
5106   IndexWriter.write();
5107 }
5108 
5109 /// Write the specified module to the specified output stream.
WriteBitcodeToFile(const Module & M,raw_ostream & Out,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash,ModuleHash * ModHash)5110 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
5111                               bool ShouldPreserveUseListOrder,
5112                               const ModuleSummaryIndex *Index,
5113                               bool GenerateHash, ModuleHash *ModHash) {
5114   auto Write = [&](BitcodeWriter &Writer) {
5115     Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
5116                        ModHash);
5117     Writer.writeSymtab();
5118     Writer.writeStrtab();
5119   };
5120   Triple TT(M.getTargetTriple());
5121   if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) {
5122     // If this is darwin or another generic macho target, reserve space for the
5123     // header. Note that the header is computed *after* the output is known, so
5124     // we currently explicitly use a buffer, write to it, and then subsequently
5125     // flush to Out.
5126     SmallVector<char, 0> Buffer;
5127     Buffer.reserve(256 * 1024);
5128     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
5129     BitcodeWriter Writer(Buffer);
5130     Write(Writer);
5131     emitDarwinBCHeaderAndTrailer(Buffer, TT);
5132     Out.write(Buffer.data(), Buffer.size());
5133   } else {
5134     BitcodeWriter Writer(Out);
5135     Write(Writer);
5136   }
5137 }
5138 
write()5139 void IndexBitcodeWriter::write() {
5140   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
5141 
5142   writeModuleVersion();
5143 
5144   // Write the module paths in the combined index.
5145   writeModStrings();
5146 
5147   // Write the summary combined index records.
5148   writeCombinedGlobalValueSummary();
5149 
5150   Stream.ExitBlock();
5151 }
5152 
5153 // Write the specified module summary index to the given raw output stream,
5154 // where it will be written in a new bitcode block. This is used when
5155 // writing the combined index file for ThinLTO. When writing a subset of the
5156 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
writeIndexToFile(const ModuleSummaryIndex & Index,raw_ostream & Out,const std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex,const GVSummaryPtrSet * DecSummaries)5157 void llvm::writeIndexToFile(
5158     const ModuleSummaryIndex &Index, raw_ostream &Out,
5159     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex,
5160     const GVSummaryPtrSet *DecSummaries) {
5161   SmallVector<char, 0> Buffer;
5162   Buffer.reserve(256 * 1024);
5163 
5164   BitcodeWriter Writer(Buffer);
5165   Writer.writeIndex(&Index, ModuleToSummariesForIndex, DecSummaries);
5166   Writer.writeStrtab();
5167 
5168   Out.write((char *)&Buffer.front(), Buffer.size());
5169 }
5170 
5171 namespace {
5172 
5173 /// Class to manage the bitcode writing for a thin link bitcode file.
5174 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
5175   /// ModHash is for use in ThinLTO incremental build, generated while writing
5176   /// the module bitcode file.
5177   const ModuleHash *ModHash;
5178 
5179 public:
ThinLinkBitcodeWriter(const Module & M,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream,const ModuleSummaryIndex & Index,const ModuleHash & ModHash)5180   ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
5181                         BitstreamWriter &Stream,
5182                         const ModuleSummaryIndex &Index,
5183                         const ModuleHash &ModHash)
5184       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
5185                                 /*ShouldPreserveUseListOrder=*/false, &Index),
5186         ModHash(&ModHash) {}
5187 
5188   void write();
5189 
5190 private:
5191   void writeSimplifiedModuleInfo();
5192 };
5193 
5194 } // end anonymous namespace
5195 
5196 // This function writes a simpilified module info for thin link bitcode file.
5197 // It only contains the source file name along with the name(the offset and
5198 // size in strtab) and linkage for global values. For the global value info
5199 // entry, in order to keep linkage at offset 5, there are three zeros used
5200 // as padding.
writeSimplifiedModuleInfo()5201 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
5202   SmallVector<unsigned, 64> Vals;
5203   // Emit the module's source file name.
5204   {
5205     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
5206     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
5207     if (Bits == SE_Char6)
5208       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
5209     else if (Bits == SE_Fixed7)
5210       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
5211 
5212     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5213     auto Abbv = std::make_shared<BitCodeAbbrev>();
5214     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
5215     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
5216     Abbv->Add(AbbrevOpToUse);
5217     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
5218 
5219     for (const auto P : M.getSourceFileName())
5220       Vals.push_back((unsigned char)P);
5221 
5222     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
5223     Vals.clear();
5224   }
5225 
5226   // Emit the global variable information.
5227   for (const GlobalVariable &GV : M.globals()) {
5228     // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
5229     Vals.push_back(StrtabBuilder.add(GV.getName()));
5230     Vals.push_back(GV.getName().size());
5231     Vals.push_back(0);
5232     Vals.push_back(0);
5233     Vals.push_back(0);
5234     Vals.push_back(getEncodedLinkage(GV));
5235 
5236     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
5237     Vals.clear();
5238   }
5239 
5240   // Emit the function proto information.
5241   for (const Function &F : M) {
5242     // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
5243     Vals.push_back(StrtabBuilder.add(F.getName()));
5244     Vals.push_back(F.getName().size());
5245     Vals.push_back(0);
5246     Vals.push_back(0);
5247     Vals.push_back(0);
5248     Vals.push_back(getEncodedLinkage(F));
5249 
5250     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
5251     Vals.clear();
5252   }
5253 
5254   // Emit the alias information.
5255   for (const GlobalAlias &A : M.aliases()) {
5256     // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
5257     Vals.push_back(StrtabBuilder.add(A.getName()));
5258     Vals.push_back(A.getName().size());
5259     Vals.push_back(0);
5260     Vals.push_back(0);
5261     Vals.push_back(0);
5262     Vals.push_back(getEncodedLinkage(A));
5263 
5264     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
5265     Vals.clear();
5266   }
5267 
5268   // Emit the ifunc information.
5269   for (const GlobalIFunc &I : M.ifuncs()) {
5270     // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
5271     Vals.push_back(StrtabBuilder.add(I.getName()));
5272     Vals.push_back(I.getName().size());
5273     Vals.push_back(0);
5274     Vals.push_back(0);
5275     Vals.push_back(0);
5276     Vals.push_back(getEncodedLinkage(I));
5277 
5278     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
5279     Vals.clear();
5280   }
5281 }
5282 
write()5283 void ThinLinkBitcodeWriter::write() {
5284   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
5285 
5286   writeModuleVersion();
5287 
5288   writeSimplifiedModuleInfo();
5289 
5290   writePerModuleGlobalValueSummary();
5291 
5292   // Write module hash.
5293   Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
5294 
5295   Stream.ExitBlock();
5296 }
5297 
writeThinLinkBitcode(const Module & M,const ModuleSummaryIndex & Index,const ModuleHash & ModHash)5298 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
5299                                          const ModuleSummaryIndex &Index,
5300                                          const ModuleHash &ModHash) {
5301   assert(!WroteStrtab);
5302 
5303   // The Mods vector is used by irsymtab::build, which requires non-const
5304   // Modules in case it needs to materialize metadata. But the bitcode writer
5305   // requires that the module is materialized, so we can cast to non-const here,
5306   // after checking that it is in fact materialized.
5307   assert(M.isMaterialized());
5308   Mods.push_back(const_cast<Module *>(&M));
5309 
5310   ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
5311                                        ModHash);
5312   ThinLinkWriter.write();
5313 }
5314 
5315 // Write the specified thin link bitcode file to the given raw output stream,
5316 // where it will be written in a new bitcode block. This is used when
5317 // writing the per-module index file for ThinLTO.
writeThinLinkBitcodeToFile(const Module & M,raw_ostream & Out,const ModuleSummaryIndex & Index,const ModuleHash & ModHash)5318 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
5319                                       const ModuleSummaryIndex &Index,
5320                                       const ModuleHash &ModHash) {
5321   SmallVector<char, 0> Buffer;
5322   Buffer.reserve(256 * 1024);
5323 
5324   BitcodeWriter Writer(Buffer);
5325   Writer.writeThinLinkBitcode(M, Index, ModHash);
5326   Writer.writeSymtab();
5327   Writer.writeStrtab();
5328 
5329   Out.write((char *)&Buffer.front(), Buffer.size());
5330 }
5331 
getSectionNameForBitcode(const Triple & T)5332 static const char *getSectionNameForBitcode(const Triple &T) {
5333   switch (T.getObjectFormat()) {
5334   case Triple::MachO:
5335     return "__LLVM,__bitcode";
5336   case Triple::COFF:
5337   case Triple::ELF:
5338   case Triple::Wasm:
5339   case Triple::UnknownObjectFormat:
5340     return ".llvmbc";
5341   case Triple::GOFF:
5342     llvm_unreachable("GOFF is not yet implemented");
5343     break;
5344   case Triple::SPIRV:
5345     if (T.getVendor() == Triple::AMD)
5346       return ".llvmbc";
5347     llvm_unreachable("SPIRV is not yet implemented");
5348     break;
5349   case Triple::XCOFF:
5350     llvm_unreachable("XCOFF is not yet implemented");
5351     break;
5352   case Triple::DXContainer:
5353     llvm_unreachable("DXContainer is not yet implemented");
5354     break;
5355   }
5356   llvm_unreachable("Unimplemented ObjectFormatType");
5357 }
5358 
getSectionNameForCommandline(const Triple & T)5359 static const char *getSectionNameForCommandline(const Triple &T) {
5360   switch (T.getObjectFormat()) {
5361   case Triple::MachO:
5362     return "__LLVM,__cmdline";
5363   case Triple::COFF:
5364   case Triple::ELF:
5365   case Triple::Wasm:
5366   case Triple::UnknownObjectFormat:
5367     return ".llvmcmd";
5368   case Triple::GOFF:
5369     llvm_unreachable("GOFF is not yet implemented");
5370     break;
5371   case Triple::SPIRV:
5372     if (T.getVendor() == Triple::AMD)
5373       return ".llvmcmd";
5374     llvm_unreachable("SPIRV is not yet implemented");
5375     break;
5376   case Triple::XCOFF:
5377     llvm_unreachable("XCOFF is not yet implemented");
5378     break;
5379   case Triple::DXContainer:
5380     llvm_unreachable("DXC is not yet implemented");
5381     break;
5382   }
5383   llvm_unreachable("Unimplemented ObjectFormatType");
5384 }
5385 
embedBitcodeInModule(llvm::Module & M,llvm::MemoryBufferRef Buf,bool EmbedBitcode,bool EmbedCmdline,const std::vector<uint8_t> & CmdArgs)5386 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
5387                                 bool EmbedBitcode, bool EmbedCmdline,
5388                                 const std::vector<uint8_t> &CmdArgs) {
5389   // Save llvm.compiler.used and remove it.
5390   SmallVector<Constant *, 2> UsedArray;
5391   SmallVector<GlobalValue *, 4> UsedGlobals;
5392   Type *UsedElementType = PointerType::getUnqual(M.getContext());
5393   GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
5394   for (auto *GV : UsedGlobals) {
5395     if (GV->getName() != "llvm.embedded.module" &&
5396         GV->getName() != "llvm.cmdline")
5397       UsedArray.push_back(
5398           ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5399   }
5400   if (Used)
5401     Used->eraseFromParent();
5402 
5403   // Embed the bitcode for the llvm module.
5404   std::string Data;
5405   ArrayRef<uint8_t> ModuleData;
5406   Triple T(M.getTargetTriple());
5407 
5408   if (EmbedBitcode) {
5409     if (Buf.getBufferSize() == 0 ||
5410         !isBitcode((const unsigned char *)Buf.getBufferStart(),
5411                    (const unsigned char *)Buf.getBufferEnd())) {
5412       // If the input is LLVM Assembly, bitcode is produced by serializing
5413       // the module. Use-lists order need to be preserved in this case.
5414       llvm::raw_string_ostream OS(Data);
5415       llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
5416       ModuleData =
5417           ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
5418     } else
5419       // If the input is LLVM bitcode, write the input byte stream directly.
5420       ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
5421                                      Buf.getBufferSize());
5422   }
5423   llvm::Constant *ModuleConstant =
5424       llvm::ConstantDataArray::get(M.getContext(), ModuleData);
5425   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
5426       M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
5427       ModuleConstant);
5428   GV->setSection(getSectionNameForBitcode(T));
5429   // Set alignment to 1 to prevent padding between two contributions from input
5430   // sections after linking.
5431   GV->setAlignment(Align(1));
5432   UsedArray.push_back(
5433       ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5434   if (llvm::GlobalVariable *Old =
5435           M.getGlobalVariable("llvm.embedded.module", true)) {
5436     assert(Old->hasZeroLiveUses() &&
5437            "llvm.embedded.module can only be used once in llvm.compiler.used");
5438     GV->takeName(Old);
5439     Old->eraseFromParent();
5440   } else {
5441     GV->setName("llvm.embedded.module");
5442   }
5443 
5444   // Skip if only bitcode needs to be embedded.
5445   if (EmbedCmdline) {
5446     // Embed command-line options.
5447     ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()),
5448                               CmdArgs.size());
5449     llvm::Constant *CmdConstant =
5450         llvm::ConstantDataArray::get(M.getContext(), CmdData);
5451     GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
5452                                   llvm::GlobalValue::PrivateLinkage,
5453                                   CmdConstant);
5454     GV->setSection(getSectionNameForCommandline(T));
5455     GV->setAlignment(Align(1));
5456     UsedArray.push_back(
5457         ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5458     if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
5459       assert(Old->hasZeroLiveUses() &&
5460              "llvm.cmdline can only be used once in llvm.compiler.used");
5461       GV->takeName(Old);
5462       Old->eraseFromParent();
5463     } else {
5464       GV->setName("llvm.cmdline");
5465     }
5466   }
5467 
5468   if (UsedArray.empty())
5469     return;
5470 
5471   // Recreate llvm.compiler.used.
5472   ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
5473   auto *NewUsed = new GlobalVariable(
5474       M, ATy, false, llvm::GlobalValue::AppendingLinkage,
5475       llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
5476   NewUsed->setSection("llvm.metadata");
5477 }
5478