1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Peer 2 Peer DMA support.
4 *
5 * Copyright (c) 2016-2018, Logan Gunthorpe
6 * Copyright (c) 2016-2017, Microsemi Corporation
7 * Copyright (c) 2017, Christoph Hellwig
8 * Copyright (c) 2018, Eideticom Inc.
9 */
10
11 #define pr_fmt(fmt) "pci-p2pdma: " fmt
12 #include <linux/ctype.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/pci-p2pdma.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/genalloc.h>
18 #include <linux/memremap.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/random.h>
21 #include <linux/seq_buf.h>
22 #include <linux/xarray.h>
23
24 struct pci_p2pdma {
25 struct gen_pool *pool;
26 bool p2pmem_published;
27 struct xarray map_types;
28 struct p2pdma_provider mem[PCI_STD_NUM_BARS];
29 };
30
31 struct pci_p2pdma_pagemap {
32 struct dev_pagemap pgmap;
33 struct p2pdma_provider *mem;
34 };
35
to_p2p_pgmap(struct dev_pagemap * pgmap)36 static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap)
37 {
38 return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap);
39 }
40
size_show(struct device * dev,struct device_attribute * attr,char * buf)41 static ssize_t size_show(struct device *dev, struct device_attribute *attr,
42 char *buf)
43 {
44 struct pci_dev *pdev = to_pci_dev(dev);
45 struct pci_p2pdma *p2pdma;
46 size_t size = 0;
47
48 rcu_read_lock();
49 p2pdma = rcu_dereference(pdev->p2pdma);
50 if (p2pdma && p2pdma->pool)
51 size = gen_pool_size(p2pdma->pool);
52 rcu_read_unlock();
53
54 return sysfs_emit(buf, "%zd\n", size);
55 }
56 static DEVICE_ATTR_RO(size);
57
available_show(struct device * dev,struct device_attribute * attr,char * buf)58 static ssize_t available_show(struct device *dev, struct device_attribute *attr,
59 char *buf)
60 {
61 struct pci_dev *pdev = to_pci_dev(dev);
62 struct pci_p2pdma *p2pdma;
63 size_t avail = 0;
64
65 rcu_read_lock();
66 p2pdma = rcu_dereference(pdev->p2pdma);
67 if (p2pdma && p2pdma->pool)
68 avail = gen_pool_avail(p2pdma->pool);
69 rcu_read_unlock();
70
71 return sysfs_emit(buf, "%zd\n", avail);
72 }
73 static DEVICE_ATTR_RO(available);
74
published_show(struct device * dev,struct device_attribute * attr,char * buf)75 static ssize_t published_show(struct device *dev, struct device_attribute *attr,
76 char *buf)
77 {
78 struct pci_dev *pdev = to_pci_dev(dev);
79 struct pci_p2pdma *p2pdma;
80 bool published = false;
81
82 rcu_read_lock();
83 p2pdma = rcu_dereference(pdev->p2pdma);
84 if (p2pdma)
85 published = p2pdma->p2pmem_published;
86 rcu_read_unlock();
87
88 return sysfs_emit(buf, "%d\n", published);
89 }
90 static DEVICE_ATTR_RO(published);
91
p2pmem_alloc_mmap(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,struct vm_area_struct * vma)92 static int p2pmem_alloc_mmap(struct file *filp, struct kobject *kobj,
93 const struct bin_attribute *attr, struct vm_area_struct *vma)
94 {
95 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
96 size_t len = vma->vm_end - vma->vm_start;
97 struct pci_p2pdma *p2pdma;
98 struct percpu_ref *ref;
99 unsigned long vaddr;
100 void *kaddr;
101 int ret;
102
103 /* prevent private mappings from being established */
104 if ((vma->vm_flags & VM_MAYSHARE) != VM_MAYSHARE) {
105 pci_info_ratelimited(pdev,
106 "%s: fail, attempted private mapping\n",
107 current->comm);
108 return -EINVAL;
109 }
110
111 if (vma->vm_pgoff) {
112 pci_info_ratelimited(pdev,
113 "%s: fail, attempted mapping with non-zero offset\n",
114 current->comm);
115 return -EINVAL;
116 }
117
118 rcu_read_lock();
119 p2pdma = rcu_dereference(pdev->p2pdma);
120 if (!p2pdma) {
121 ret = -ENODEV;
122 goto out;
123 }
124
125 kaddr = (void *)gen_pool_alloc_owner(p2pdma->pool, len, (void **)&ref);
126 if (!kaddr) {
127 ret = -ENOMEM;
128 goto out;
129 }
130
131 /*
132 * vm_insert_page() can sleep, so a reference is taken to mapping
133 * such that rcu_read_unlock() can be done before inserting the
134 * pages
135 */
136 if (unlikely(!percpu_ref_tryget_live_rcu(ref))) {
137 ret = -ENODEV;
138 goto out_free_mem;
139 }
140 rcu_read_unlock();
141
142 for (vaddr = vma->vm_start; vaddr < vma->vm_end; vaddr += PAGE_SIZE) {
143 struct page *page = virt_to_page(kaddr);
144
145 /*
146 * Initialise the refcount for the freshly allocated page. As
147 * we have just allocated the page no one else should be
148 * using it.
149 */
150 VM_WARN_ON_ONCE_PAGE(!page_ref_count(page), page);
151 set_page_count(page, 1);
152 ret = vm_insert_page(vma, vaddr, page);
153 if (ret) {
154 gen_pool_free(p2pdma->pool, (uintptr_t)kaddr, len);
155 return ret;
156 }
157 percpu_ref_get(ref);
158 put_page(page);
159 kaddr += PAGE_SIZE;
160 len -= PAGE_SIZE;
161 }
162
163 percpu_ref_put(ref);
164
165 return 0;
166 out_free_mem:
167 gen_pool_free(p2pdma->pool, (uintptr_t)kaddr, len);
168 out:
169 rcu_read_unlock();
170 return ret;
171 }
172
173 static const struct bin_attribute p2pmem_alloc_attr = {
174 .attr = { .name = "allocate", .mode = 0660 },
175 .mmap = p2pmem_alloc_mmap,
176 /*
177 * Some places where we want to call mmap (ie. python) will check
178 * that the file size is greater than the mmap size before allowing
179 * the mmap to continue. To work around this, just set the size
180 * to be very large.
181 */
182 .size = SZ_1T,
183 };
184
185 static struct attribute *p2pmem_attrs[] = {
186 &dev_attr_size.attr,
187 &dev_attr_available.attr,
188 &dev_attr_published.attr,
189 NULL,
190 };
191
192 static const struct bin_attribute *const p2pmem_bin_attrs[] = {
193 &p2pmem_alloc_attr,
194 NULL,
195 };
196
197 static const struct attribute_group p2pmem_group = {
198 .attrs = p2pmem_attrs,
199 .bin_attrs = p2pmem_bin_attrs,
200 .name = "p2pmem",
201 };
202
p2pdma_folio_free(struct folio * folio)203 static void p2pdma_folio_free(struct folio *folio)
204 {
205 struct page *page = &folio->page;
206 struct pci_p2pdma_pagemap *pgmap = to_p2p_pgmap(page_pgmap(page));
207 /* safe to dereference while a reference is held to the percpu ref */
208 struct pci_p2pdma *p2pdma = rcu_dereference_protected(
209 to_pci_dev(pgmap->mem->owner)->p2pdma, 1);
210 struct percpu_ref *ref;
211
212 gen_pool_free_owner(p2pdma->pool, (uintptr_t)page_to_virt(page),
213 PAGE_SIZE, (void **)&ref);
214 percpu_ref_put(ref);
215 }
216
217 static const struct dev_pagemap_ops p2pdma_pgmap_ops = {
218 .folio_free = p2pdma_folio_free,
219 };
220
pci_p2pdma_release(void * data)221 static void pci_p2pdma_release(void *data)
222 {
223 struct pci_dev *pdev = data;
224 struct pci_p2pdma *p2pdma;
225
226 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
227 if (!p2pdma)
228 return;
229
230 /* Flush and disable pci_alloc_p2p_mem() */
231 pdev->p2pdma = NULL;
232 if (p2pdma->pool)
233 synchronize_rcu();
234 xa_destroy(&p2pdma->map_types);
235
236 if (!p2pdma->pool)
237 return;
238
239 gen_pool_destroy(p2pdma->pool);
240 sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group);
241 }
242
243 /**
244 * pcim_p2pdma_init - Initialise peer-to-peer DMA providers
245 * @pdev: The PCI device to enable P2PDMA for
246 *
247 * This function initializes the peer-to-peer DMA infrastructure
248 * for a PCI device. It allocates and sets up the necessary data
249 * structures to support P2PDMA operations, including mapping type
250 * tracking.
251 */
pcim_p2pdma_init(struct pci_dev * pdev)252 int pcim_p2pdma_init(struct pci_dev *pdev)
253 {
254 struct pci_p2pdma *p2p;
255 int i, ret;
256
257 p2p = rcu_dereference_protected(pdev->p2pdma, 1);
258 if (p2p)
259 return 0;
260
261 p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL);
262 if (!p2p)
263 return -ENOMEM;
264
265 xa_init(&p2p->map_types);
266 /*
267 * Iterate over all standard PCI BARs and record only those that
268 * correspond to MMIO regions. Skip non-memory resources (e.g. I/O
269 * port BARs) since they cannot be used for peer-to-peer (P2P)
270 * transactions.
271 */
272 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
273 if (!(pci_resource_flags(pdev, i) & IORESOURCE_MEM))
274 continue;
275
276 p2p->mem[i].owner = &pdev->dev;
277 p2p->mem[i].bus_offset =
278 pci_bus_address(pdev, i) - pci_resource_start(pdev, i);
279 }
280
281 ret = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev);
282 if (ret)
283 goto out_p2p;
284
285 rcu_assign_pointer(pdev->p2pdma, p2p);
286 return 0;
287
288 out_p2p:
289 devm_kfree(&pdev->dev, p2p);
290 return ret;
291 }
292 EXPORT_SYMBOL_GPL(pcim_p2pdma_init);
293
294 /**
295 * pcim_p2pdma_provider - Get peer-to-peer DMA provider
296 * @pdev: The PCI device to enable P2PDMA for
297 * @bar: BAR index to get provider
298 *
299 * This function gets peer-to-peer DMA provider for a PCI device. The lifetime
300 * of the provider (and of course the MMIO) is bound to the lifetime of the
301 * driver. A driver calling this function must ensure that all references to the
302 * provider, and any DMA mappings created for any MMIO, are all cleaned up
303 * before the driver remove() completes.
304 *
305 * Since P2P is almost always shared with a second driver this means some system
306 * to notify, invalidate and revoke the MMIO's DMA must be in place to use this
307 * function. For example a revoke can be built using DMABUF.
308 */
pcim_p2pdma_provider(struct pci_dev * pdev,int bar)309 struct p2pdma_provider *pcim_p2pdma_provider(struct pci_dev *pdev, int bar)
310 {
311 struct pci_p2pdma *p2p;
312
313 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM))
314 return NULL;
315
316 p2p = rcu_dereference_protected(pdev->p2pdma, 1);
317 if (WARN_ON(!p2p))
318 /* Someone forgot to call to pcim_p2pdma_init() before */
319 return NULL;
320
321 return &p2p->mem[bar];
322 }
323 EXPORT_SYMBOL_GPL(pcim_p2pdma_provider);
324
pci_p2pdma_setup_pool(struct pci_dev * pdev)325 static int pci_p2pdma_setup_pool(struct pci_dev *pdev)
326 {
327 struct pci_p2pdma *p2pdma;
328 int ret;
329
330 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
331 if (p2pdma->pool)
332 /* We already setup pools, do nothing, */
333 return 0;
334
335 p2pdma->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev));
336 if (!p2pdma->pool)
337 return -ENOMEM;
338
339 ret = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group);
340 if (ret)
341 goto out_pool_destroy;
342
343 return 0;
344
345 out_pool_destroy:
346 gen_pool_destroy(p2pdma->pool);
347 p2pdma->pool = NULL;
348 return ret;
349 }
350
pci_p2pdma_unmap_mappings(void * data)351 static void pci_p2pdma_unmap_mappings(void *data)
352 {
353 struct pci_p2pdma_pagemap *p2p_pgmap = data;
354
355 /*
356 * Removing the alloc attribute from sysfs will call
357 * unmap_mapping_range() on the inode, teardown any existing userspace
358 * mappings and prevent new ones from being created.
359 */
360 sysfs_remove_file_from_group(&p2p_pgmap->mem->owner->kobj,
361 &p2pmem_alloc_attr.attr,
362 p2pmem_group.name);
363 }
364
365 /**
366 * pci_p2pdma_add_resource - add memory for use as p2p memory
367 * @pdev: the device to add the memory to
368 * @bar: PCI BAR to add
369 * @size: size of the memory to add, may be zero to use the whole BAR
370 * @offset: offset into the PCI BAR
371 *
372 * The memory will be given ZONE_DEVICE struct pages so that it may
373 * be used with any DMA request.
374 */
pci_p2pdma_add_resource(struct pci_dev * pdev,int bar,size_t size,u64 offset)375 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size,
376 u64 offset)
377 {
378 struct pci_p2pdma_pagemap *p2p_pgmap;
379 struct p2pdma_provider *mem;
380 struct dev_pagemap *pgmap;
381 struct pci_p2pdma *p2pdma;
382 void *addr;
383 int error;
384
385 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM))
386 return -EINVAL;
387
388 if (offset >= pci_resource_len(pdev, bar))
389 return -EINVAL;
390
391 if (!size)
392 size = pci_resource_len(pdev, bar) - offset;
393
394 if (size + offset > pci_resource_len(pdev, bar))
395 return -EINVAL;
396
397 error = pcim_p2pdma_init(pdev);
398 if (error)
399 return error;
400
401 error = pci_p2pdma_setup_pool(pdev);
402 if (error)
403 return error;
404
405 mem = pcim_p2pdma_provider(pdev, bar);
406 /*
407 * We checked validity of BAR prior to call
408 * to pcim_p2pdma_provider. It should never return NULL.
409 */
410 if (WARN_ON(!mem))
411 return -EINVAL;
412
413 p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL);
414 if (!p2p_pgmap)
415 return -ENOMEM;
416
417 pgmap = &p2p_pgmap->pgmap;
418 pgmap->range.start = pci_resource_start(pdev, bar) + offset;
419 pgmap->range.end = pgmap->range.start + size - 1;
420 pgmap->nr_range = 1;
421 pgmap->type = MEMORY_DEVICE_PCI_P2PDMA;
422 pgmap->ops = &p2pdma_pgmap_ops;
423 p2p_pgmap->mem = mem;
424
425 addr = devm_memremap_pages(&pdev->dev, pgmap);
426 if (IS_ERR(addr)) {
427 error = PTR_ERR(addr);
428 goto pgmap_free;
429 }
430
431 error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_unmap_mappings,
432 p2p_pgmap);
433 if (error)
434 goto pages_free;
435
436 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
437 error = gen_pool_add_owner(p2pdma->pool, (unsigned long)addr,
438 pci_bus_address(pdev, bar) + offset,
439 range_len(&pgmap->range), dev_to_node(&pdev->dev),
440 &pgmap->ref);
441 if (error)
442 goto pages_free;
443
444 pci_info(pdev, "added peer-to-peer DMA memory %#llx-%#llx\n",
445 pgmap->range.start, pgmap->range.end);
446
447 return 0;
448
449 pages_free:
450 devm_memunmap_pages(&pdev->dev, pgmap);
451 pgmap_free:
452 devm_kfree(&pdev->dev, p2p_pgmap);
453 return error;
454 }
455 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource);
456
457 /*
458 * Note this function returns the parent PCI device with a
459 * reference taken. It is the caller's responsibility to drop
460 * the reference.
461 */
find_parent_pci_dev(struct device * dev)462 static struct pci_dev *find_parent_pci_dev(struct device *dev)
463 {
464 struct device *parent;
465
466 dev = get_device(dev);
467
468 while (dev) {
469 if (dev_is_pci(dev))
470 return to_pci_dev(dev);
471
472 parent = get_device(dev->parent);
473 put_device(dev);
474 dev = parent;
475 }
476
477 return NULL;
478 }
479
480 /*
481 * Check if a PCI bridge has its ACS redirection bits set to redirect P2P
482 * TLPs upstream via ACS. Returns 1 if the packets will be redirected
483 * upstream, 0 otherwise.
484 */
pci_bridge_has_acs_redir(struct pci_dev * pdev)485 static int pci_bridge_has_acs_redir(struct pci_dev *pdev)
486 {
487 int pos;
488 u16 ctrl;
489
490 pos = pdev->acs_cap;
491 if (!pos)
492 return 0;
493
494 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
495
496 if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC))
497 return 1;
498
499 return 0;
500 }
501
seq_buf_print_bus_devfn(struct seq_buf * buf,struct pci_dev * pdev)502 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev)
503 {
504 if (!buf)
505 return;
506
507 seq_buf_printf(buf, "%s;", pci_name(pdev));
508 }
509
cpu_supports_p2pdma(void)510 static bool cpu_supports_p2pdma(void)
511 {
512 #ifdef CONFIG_X86
513 struct cpuinfo_x86 *c = &cpu_data(0);
514
515 /* Any AMD CPU whose family ID is Zen or newer supports p2pdma */
516 if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17)
517 return true;
518 #endif
519
520 return false;
521 }
522
523 static const struct pci_p2pdma_whitelist_entry {
524 unsigned short vendor;
525 unsigned short device;
526 enum {
527 REQ_SAME_HOST_BRIDGE = 1 << 0,
528 } flags;
529 } pci_p2pdma_whitelist[] = {
530 /* Intel Xeon E5/Core i7 */
531 {PCI_VENDOR_ID_INTEL, 0x3c00, REQ_SAME_HOST_BRIDGE},
532 {PCI_VENDOR_ID_INTEL, 0x3c01, REQ_SAME_HOST_BRIDGE},
533 /* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */
534 {PCI_VENDOR_ID_INTEL, 0x2f00, REQ_SAME_HOST_BRIDGE},
535 {PCI_VENDOR_ID_INTEL, 0x2f01, REQ_SAME_HOST_BRIDGE},
536 /* Intel Skylake-E */
537 {PCI_VENDOR_ID_INTEL, 0x2030, 0},
538 {PCI_VENDOR_ID_INTEL, 0x2031, 0},
539 {PCI_VENDOR_ID_INTEL, 0x2032, 0},
540 {PCI_VENDOR_ID_INTEL, 0x2033, 0},
541 {PCI_VENDOR_ID_INTEL, 0x2020, 0},
542 {PCI_VENDOR_ID_INTEL, 0x09a2, 0},
543 {}
544 };
545
546 /*
547 * If the first device on host's root bus is either devfn 00.0 or a PCIe
548 * Root Port, return it. Otherwise return NULL.
549 *
550 * We often use a devfn 00.0 "host bridge" in the pci_p2pdma_whitelist[]
551 * (though there is no PCI/PCIe requirement for such a device). On some
552 * platforms, e.g., Intel Skylake, there is no such host bridge device, and
553 * pci_p2pdma_whitelist[] may contain a Root Port at any devfn.
554 *
555 * This function is similar to pci_get_slot(host->bus, 0), but it does
556 * not take the pci_bus_sem lock since __host_bridge_whitelist() must not
557 * sleep.
558 *
559 * For this to be safe, the caller should hold a reference to a device on the
560 * bridge, which should ensure the host_bridge device will not be freed
561 * or removed from the head of the devices list.
562 */
pci_host_bridge_dev(struct pci_host_bridge * host)563 static struct pci_dev *pci_host_bridge_dev(struct pci_host_bridge *host)
564 {
565 struct pci_dev *root;
566
567 root = list_first_entry_or_null(&host->bus->devices,
568 struct pci_dev, bus_list);
569
570 if (!root)
571 return NULL;
572
573 if (root->devfn == PCI_DEVFN(0, 0))
574 return root;
575
576 if (pci_pcie_type(root) == PCI_EXP_TYPE_ROOT_PORT)
577 return root;
578
579 return NULL;
580 }
581
__host_bridge_whitelist(struct pci_host_bridge * host,bool same_host_bridge,bool warn)582 static bool __host_bridge_whitelist(struct pci_host_bridge *host,
583 bool same_host_bridge, bool warn)
584 {
585 struct pci_dev *root = pci_host_bridge_dev(host);
586 const struct pci_p2pdma_whitelist_entry *entry;
587 unsigned short vendor, device;
588
589 if (!root)
590 return false;
591
592 vendor = root->vendor;
593 device = root->device;
594
595 for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) {
596 if (vendor != entry->vendor || device != entry->device)
597 continue;
598 if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge)
599 return false;
600
601 return true;
602 }
603
604 if (warn)
605 pci_warn(root, "Host bridge not in P2PDMA whitelist: %04x:%04x\n",
606 vendor, device);
607
608 return false;
609 }
610
611 /*
612 * If we can't find a common upstream bridge take a look at the root
613 * complex and compare it to a whitelist of known good hardware.
614 */
host_bridge_whitelist(struct pci_dev * a,struct pci_dev * b,bool warn)615 static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b,
616 bool warn)
617 {
618 struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus);
619 struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus);
620
621 if (host_a == host_b)
622 return __host_bridge_whitelist(host_a, true, warn);
623
624 if (__host_bridge_whitelist(host_a, false, warn) &&
625 __host_bridge_whitelist(host_b, false, warn))
626 return true;
627
628 return false;
629 }
630
map_types_idx(struct pci_dev * client)631 static unsigned long map_types_idx(struct pci_dev *client)
632 {
633 return (pci_domain_nr(client->bus) << 16) | pci_dev_id(client);
634 }
635
636 /*
637 * Calculate the P2PDMA mapping type and distance between two PCI devices.
638 *
639 * If the two devices are the same PCI function, return
640 * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 0.
641 *
642 * If they are two functions of the same device, return
643 * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 2 (one hop up to the bridge,
644 * then one hop back down to another function of the same device).
645 *
646 * In the case where two devices are connected to the same PCIe switch,
647 * return a distance of 4. This corresponds to the following PCI tree:
648 *
649 * -+ Root Port
650 * \+ Switch Upstream Port
651 * +-+ Switch Downstream Port 0
652 * + \- Device A
653 * \-+ Switch Downstream Port 1
654 * \- Device B
655 *
656 * The distance is 4 because we traverse from Device A to Downstream Port 0
657 * to the common Switch Upstream Port, back down to Downstream Port 1 and
658 * then to Device B. The mapping type returned depends on the ACS
659 * redirection setting of the ports along the path.
660 *
661 * If ACS redirect is set on any port in the path, traffic between the
662 * devices will go through the host bridge, so return
663 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; otherwise return
664 * PCI_P2PDMA_MAP_BUS_ADDR.
665 *
666 * Any two devices that have a data path that goes through the host bridge
667 * will consult a whitelist. If the host bridge is in the whitelist, return
668 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE with the distance set to the number of
669 * ports per above. If the device is not in the whitelist, return
670 * PCI_P2PDMA_MAP_NOT_SUPPORTED.
671 */
672 static enum pci_p2pdma_map_type
calc_map_type_and_dist(struct pci_dev * provider,struct pci_dev * client,int * dist,bool verbose)673 calc_map_type_and_dist(struct pci_dev *provider, struct pci_dev *client,
674 int *dist, bool verbose)
675 {
676 enum pci_p2pdma_map_type map_type = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
677 struct pci_dev *a = provider, *b = client, *bb;
678 bool acs_redirects = false;
679 struct pci_p2pdma *p2pdma;
680 struct seq_buf acs_list;
681 int acs_cnt = 0;
682 int dist_a = 0;
683 int dist_b = 0;
684 char buf[128];
685
686 seq_buf_init(&acs_list, buf, sizeof(buf));
687
688 /*
689 * Note, we don't need to take references to devices returned by
690 * pci_upstream_bridge() seeing we hold a reference to a child
691 * device which will already hold a reference to the upstream bridge.
692 */
693 while (a) {
694 dist_b = 0;
695
696 if (pci_bridge_has_acs_redir(a)) {
697 seq_buf_print_bus_devfn(&acs_list, a);
698 acs_cnt++;
699 }
700
701 bb = b;
702
703 while (bb) {
704 if (a == bb)
705 goto check_b_path_acs;
706
707 bb = pci_upstream_bridge(bb);
708 dist_b++;
709 }
710
711 a = pci_upstream_bridge(a);
712 dist_a++;
713 }
714
715 *dist = dist_a + dist_b;
716 goto map_through_host_bridge;
717
718 check_b_path_acs:
719 bb = b;
720
721 while (bb) {
722 if (a == bb)
723 break;
724
725 if (pci_bridge_has_acs_redir(bb)) {
726 seq_buf_print_bus_devfn(&acs_list, bb);
727 acs_cnt++;
728 }
729
730 bb = pci_upstream_bridge(bb);
731 }
732
733 *dist = dist_a + dist_b;
734
735 if (!acs_cnt) {
736 map_type = PCI_P2PDMA_MAP_BUS_ADDR;
737 goto done;
738 }
739
740 if (verbose) {
741 acs_list.buffer[acs_list.len-1] = 0; /* drop final semicolon */
742 pci_warn(client, "ACS redirect is set between the client and provider (%s)\n",
743 pci_name(provider));
744 pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n",
745 acs_list.buffer);
746 }
747 acs_redirects = true;
748
749 map_through_host_bridge:
750 if (!cpu_supports_p2pdma() &&
751 !host_bridge_whitelist(provider, client, acs_redirects)) {
752 if (verbose)
753 pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n",
754 pci_name(provider));
755 map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED;
756 }
757 done:
758 rcu_read_lock();
759 p2pdma = rcu_dereference(provider->p2pdma);
760 if (p2pdma)
761 xa_store(&p2pdma->map_types, map_types_idx(client),
762 xa_mk_value(map_type), GFP_ATOMIC);
763 rcu_read_unlock();
764 return map_type;
765 }
766
767 /**
768 * pci_p2pdma_distance_many - Determine the cumulative distance between
769 * a p2pdma provider and the clients in use.
770 * @provider: p2pdma provider to check against the client list
771 * @clients: array of devices to check (NULL-terminated)
772 * @num_clients: number of clients in the array
773 * @verbose: if true, print warnings for devices when we return -1
774 *
775 * Returns -1 if any of the clients are not compatible, otherwise returns a
776 * positive number where a lower number is the preferable choice. (If there's
777 * one client that's the same as the provider it will return 0, which is best
778 * choice).
779 *
780 * "compatible" means the provider and the clients are either all behind
781 * the same PCI root port or the host bridges connected to each of the devices
782 * are listed in the 'pci_p2pdma_whitelist'.
783 */
pci_p2pdma_distance_many(struct pci_dev * provider,struct device ** clients,int num_clients,bool verbose)784 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients,
785 int num_clients, bool verbose)
786 {
787 enum pci_p2pdma_map_type map;
788 bool not_supported = false;
789 struct pci_dev *pci_client;
790 int total_dist = 0;
791 int i, distance;
792
793 if (num_clients == 0)
794 return -1;
795
796 for (i = 0; i < num_clients; i++) {
797 pci_client = find_parent_pci_dev(clients[i]);
798 if (!pci_client) {
799 if (verbose)
800 dev_warn(clients[i],
801 "cannot be used for peer-to-peer DMA as it is not a PCI device\n");
802 return -1;
803 }
804
805 map = calc_map_type_and_dist(provider, pci_client, &distance,
806 verbose);
807
808 pci_dev_put(pci_client);
809
810 if (map == PCI_P2PDMA_MAP_NOT_SUPPORTED)
811 not_supported = true;
812
813 if (not_supported && !verbose)
814 break;
815
816 total_dist += distance;
817 }
818
819 if (not_supported)
820 return -1;
821
822 return total_dist;
823 }
824 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many);
825
826 /**
827 * pci_has_p2pmem - check if a given PCI device has published any p2pmem
828 * @pdev: PCI device to check
829 */
pci_has_p2pmem(struct pci_dev * pdev)830 static bool pci_has_p2pmem(struct pci_dev *pdev)
831 {
832 struct pci_p2pdma *p2pdma;
833 bool res;
834
835 rcu_read_lock();
836 p2pdma = rcu_dereference(pdev->p2pdma);
837 res = p2pdma && p2pdma->p2pmem_published;
838 rcu_read_unlock();
839
840 return res;
841 }
842
843 /**
844 * pci_p2pmem_find_many - find a peer-to-peer DMA memory device compatible with
845 * the specified list of clients and shortest distance
846 * @clients: array of devices to check (NULL-terminated)
847 * @num_clients: number of client devices in the list
848 *
849 * If multiple devices are behind the same switch, the one "closest" to the
850 * client devices in use will be chosen first. (So if one of the providers is
851 * the same as one of the clients, that provider will be used ahead of any
852 * other providers that are unrelated). If multiple providers are an equal
853 * distance away, one will be chosen at random.
854 *
855 * Returns a pointer to the PCI device with a reference taken (use pci_dev_put
856 * to return the reference) or NULL if no compatible device is found. The
857 * found provider will also be assigned to the client list.
858 */
pci_p2pmem_find_many(struct device ** clients,int num_clients)859 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients)
860 {
861 struct pci_dev *pdev = NULL;
862 int distance;
863 int closest_distance = INT_MAX;
864 struct pci_dev **closest_pdevs;
865 int dev_cnt = 0;
866 const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs);
867 int i;
868
869 closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL);
870 if (!closest_pdevs)
871 return NULL;
872
873 for_each_pci_dev(pdev) {
874 if (!pci_has_p2pmem(pdev))
875 continue;
876
877 distance = pci_p2pdma_distance_many(pdev, clients,
878 num_clients, false);
879 if (distance < 0 || distance > closest_distance)
880 continue;
881
882 if (distance == closest_distance && dev_cnt >= max_devs)
883 continue;
884
885 if (distance < closest_distance) {
886 for (i = 0; i < dev_cnt; i++)
887 pci_dev_put(closest_pdevs[i]);
888
889 dev_cnt = 0;
890 closest_distance = distance;
891 }
892
893 closest_pdevs[dev_cnt++] = pci_dev_get(pdev);
894 }
895
896 if (dev_cnt)
897 pdev = pci_dev_get(closest_pdevs[get_random_u32_below(dev_cnt)]);
898
899 for (i = 0; i < dev_cnt; i++)
900 pci_dev_put(closest_pdevs[i]);
901
902 kfree(closest_pdevs);
903 return pdev;
904 }
905 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many);
906
907 /**
908 * pci_alloc_p2pmem - allocate peer-to-peer DMA memory
909 * @pdev: the device to allocate memory from
910 * @size: number of bytes to allocate
911 *
912 * Returns the allocated memory or NULL on error.
913 */
pci_alloc_p2pmem(struct pci_dev * pdev,size_t size)914 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size)
915 {
916 void *ret = NULL;
917 struct percpu_ref *ref;
918 struct pci_p2pdma *p2pdma;
919
920 /*
921 * Pairs with synchronize_rcu() in pci_p2pdma_release() to
922 * ensure pdev->p2pdma is non-NULL for the duration of the
923 * read-lock.
924 */
925 rcu_read_lock();
926 p2pdma = rcu_dereference(pdev->p2pdma);
927 if (unlikely(!p2pdma))
928 goto out;
929
930 ret = (void *)gen_pool_alloc_owner(p2pdma->pool, size, (void **) &ref);
931 if (!ret)
932 goto out;
933
934 if (unlikely(!percpu_ref_tryget_live_rcu(ref))) {
935 gen_pool_free(p2pdma->pool, (unsigned long) ret, size);
936 ret = NULL;
937 }
938 out:
939 rcu_read_unlock();
940 return ret;
941 }
942 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem);
943
944 /**
945 * pci_free_p2pmem - free peer-to-peer DMA memory
946 * @pdev: the device the memory was allocated from
947 * @addr: address of the memory that was allocated
948 * @size: number of bytes that were allocated
949 */
pci_free_p2pmem(struct pci_dev * pdev,void * addr,size_t size)950 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size)
951 {
952 struct percpu_ref *ref;
953 struct pci_p2pdma *p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
954
955 gen_pool_free_owner(p2pdma->pool, (uintptr_t)addr, size,
956 (void **) &ref);
957 percpu_ref_put(ref);
958 }
959 EXPORT_SYMBOL_GPL(pci_free_p2pmem);
960
961 /**
962 * pci_p2pmem_virt_to_bus - return the PCI bus address for a given virtual
963 * address obtained with pci_alloc_p2pmem()
964 * @pdev: the device the memory was allocated from
965 * @addr: address of the memory that was allocated
966 */
pci_p2pmem_virt_to_bus(struct pci_dev * pdev,void * addr)967 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr)
968 {
969 struct pci_p2pdma *p2pdma;
970
971 if (!addr)
972 return 0;
973
974 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
975 if (!p2pdma)
976 return 0;
977
978 /*
979 * Note: when we added the memory to the pool we used the PCI
980 * bus address as the physical address. So gen_pool_virt_to_phys()
981 * actually returns the bus address despite the misleading name.
982 */
983 return gen_pool_virt_to_phys(p2pdma->pool, (unsigned long)addr);
984 }
985 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus);
986
987 /**
988 * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist
989 * @pdev: the device to allocate memory from
990 * @nents: the number of SG entries in the list
991 * @length: number of bytes to allocate
992 *
993 * Return: %NULL on error or &struct scatterlist pointer and @nents on success
994 */
pci_p2pmem_alloc_sgl(struct pci_dev * pdev,unsigned int * nents,u32 length)995 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev,
996 unsigned int *nents, u32 length)
997 {
998 struct scatterlist *sg;
999 void *addr;
1000
1001 sg = kmalloc(sizeof(*sg), GFP_KERNEL);
1002 if (!sg)
1003 return NULL;
1004
1005 sg_init_table(sg, 1);
1006
1007 addr = pci_alloc_p2pmem(pdev, length);
1008 if (!addr)
1009 goto out_free_sg;
1010
1011 sg_set_buf(sg, addr, length);
1012 *nents = 1;
1013 return sg;
1014
1015 out_free_sg:
1016 kfree(sg);
1017 return NULL;
1018 }
1019 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl);
1020
1021 /**
1022 * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl()
1023 * @pdev: the device to allocate memory from
1024 * @sgl: the allocated scatterlist
1025 */
pci_p2pmem_free_sgl(struct pci_dev * pdev,struct scatterlist * sgl)1026 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl)
1027 {
1028 struct scatterlist *sg;
1029 int count;
1030
1031 for_each_sg(sgl, sg, INT_MAX, count) {
1032 if (!sg)
1033 break;
1034
1035 pci_free_p2pmem(pdev, sg_virt(sg), sg->length);
1036 }
1037 kfree(sgl);
1038 }
1039 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl);
1040
1041 /**
1042 * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by
1043 * other devices with pci_p2pmem_find()
1044 * @pdev: the device with peer-to-peer DMA memory to publish
1045 * @publish: set to true to publish the memory, false to unpublish it
1046 *
1047 * Published memory can be used by other PCI device drivers for
1048 * peer-2-peer DMA operations. Non-published memory is reserved for
1049 * exclusive use of the device driver that registers the peer-to-peer
1050 * memory.
1051 */
pci_p2pmem_publish(struct pci_dev * pdev,bool publish)1052 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish)
1053 {
1054 struct pci_p2pdma *p2pdma;
1055
1056 rcu_read_lock();
1057 p2pdma = rcu_dereference(pdev->p2pdma);
1058 if (p2pdma)
1059 p2pdma->p2pmem_published = publish;
1060 rcu_read_unlock();
1061 }
1062 EXPORT_SYMBOL_GPL(pci_p2pmem_publish);
1063
1064 /**
1065 * pci_p2pdma_map_type - Determine the mapping type for P2PDMA transfers
1066 * @provider: P2PDMA provider structure
1067 * @dev: Target device for the transfer
1068 *
1069 * Determines how peer-to-peer DMA transfers should be mapped between
1070 * the provider and the target device. The mapping type indicates whether
1071 * the transfer can be done directly through PCI switches or must go
1072 * through the host bridge.
1073 */
pci_p2pdma_map_type(struct p2pdma_provider * provider,struct device * dev)1074 enum pci_p2pdma_map_type pci_p2pdma_map_type(struct p2pdma_provider *provider,
1075 struct device *dev)
1076 {
1077 enum pci_p2pdma_map_type type = PCI_P2PDMA_MAP_NOT_SUPPORTED;
1078 struct pci_dev *pdev = to_pci_dev(provider->owner);
1079 struct pci_dev *client;
1080 struct pci_p2pdma *p2pdma;
1081 int dist;
1082
1083 if (!pdev->p2pdma)
1084 return PCI_P2PDMA_MAP_NOT_SUPPORTED;
1085
1086 if (!dev_is_pci(dev))
1087 return PCI_P2PDMA_MAP_NOT_SUPPORTED;
1088
1089 client = to_pci_dev(dev);
1090
1091 rcu_read_lock();
1092 p2pdma = rcu_dereference(pdev->p2pdma);
1093
1094 if (p2pdma)
1095 type = xa_to_value(xa_load(&p2pdma->map_types,
1096 map_types_idx(client)));
1097 rcu_read_unlock();
1098
1099 if (type == PCI_P2PDMA_MAP_UNKNOWN)
1100 return calc_map_type_and_dist(pdev, client, &dist, true);
1101
1102 return type;
1103 }
1104
__pci_p2pdma_update_state(struct pci_p2pdma_map_state * state,struct device * dev,struct page * page)1105 void __pci_p2pdma_update_state(struct pci_p2pdma_map_state *state,
1106 struct device *dev, struct page *page)
1107 {
1108 struct pci_p2pdma_pagemap *p2p_pgmap = to_p2p_pgmap(page_pgmap(page));
1109
1110 if (state->mem == p2p_pgmap->mem)
1111 return;
1112
1113 state->mem = p2p_pgmap->mem;
1114 state->map = pci_p2pdma_map_type(p2p_pgmap->mem, dev);
1115 }
1116
1117 /**
1118 * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store
1119 * to enable p2pdma
1120 * @page: contents of the value to be stored
1121 * @p2p_dev: returns the PCI device that was selected to be used
1122 * (if one was specified in the stored value)
1123 * @use_p2pdma: returns whether to enable p2pdma or not
1124 *
1125 * Parses an attribute value to decide whether to enable p2pdma.
1126 * The value can select a PCI device (using its full BDF device
1127 * name) or a boolean (in any format kstrtobool() accepts). A false
1128 * value disables p2pdma, a true value expects the caller
1129 * to automatically find a compatible device and specifying a PCI device
1130 * expects the caller to use the specific provider.
1131 *
1132 * pci_p2pdma_enable_show() should be used as the show operation for
1133 * the attribute.
1134 *
1135 * Returns 0 on success
1136 */
pci_p2pdma_enable_store(const char * page,struct pci_dev ** p2p_dev,bool * use_p2pdma)1137 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev,
1138 bool *use_p2pdma)
1139 {
1140 struct device *dev;
1141
1142 dev = bus_find_device_by_name(&pci_bus_type, NULL, page);
1143 if (dev) {
1144 *use_p2pdma = true;
1145 *p2p_dev = to_pci_dev(dev);
1146
1147 if (!pci_has_p2pmem(*p2p_dev)) {
1148 pci_err(*p2p_dev,
1149 "PCI device has no peer-to-peer memory: %s\n",
1150 page);
1151 pci_dev_put(*p2p_dev);
1152 return -ENODEV;
1153 }
1154
1155 return 0;
1156 } else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) {
1157 /*
1158 * If the user enters a PCI device that doesn't exist
1159 * like "0000:01:00.1", we don't want kstrtobool to think
1160 * it's a '0' when it's clearly not what the user wanted.
1161 * So we require 0's and 1's to be exactly one character.
1162 */
1163 } else if (!kstrtobool(page, use_p2pdma)) {
1164 return 0;
1165 }
1166
1167 pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page);
1168 return -ENODEV;
1169 }
1170 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store);
1171
1172 /**
1173 * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating
1174 * whether p2pdma is enabled
1175 * @page: contents of the stored value
1176 * @p2p_dev: the selected p2p device (NULL if no device is selected)
1177 * @use_p2pdma: whether p2pdma has been enabled
1178 *
1179 * Attributes that use pci_p2pdma_enable_store() should use this function
1180 * to show the value of the attribute.
1181 *
1182 * Returns 0 on success
1183 */
pci_p2pdma_enable_show(char * page,struct pci_dev * p2p_dev,bool use_p2pdma)1184 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev,
1185 bool use_p2pdma)
1186 {
1187 if (!use_p2pdma)
1188 return sprintf(page, "0\n");
1189
1190 if (!p2p_dev)
1191 return sprintf(page, "1\n");
1192
1193 return sprintf(page, "%s\n", pci_name(p2p_dev));
1194 }
1195 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show);
1196