xref: /linux/drivers/ptp/ptp_clock.c (revision 5c8013ae2e86ec36b07500ba4cacb14ab4d6f728)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PTP 1588 clock support
4  *
5  * Copyright (C) 2010 OMICRON electronics GmbH
6  */
7 #include <linux/device.h>
8 #include <linux/err.h>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/posix-clock.h>
13 #include <linux/pps_kernel.h>
14 #include <linux/slab.h>
15 #include <linux/syscalls.h>
16 #include <linux/uaccess.h>
17 #include <linux/debugfs.h>
18 #include <linux/xarray.h>
19 #include <uapi/linux/sched/types.h>
20 
21 #include "ptp_private.h"
22 
23 #define PTP_MAX_ALARMS 4
24 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
25 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
26 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
27 
28 const struct class ptp_class = {
29 	.name = "ptp",
30 	.dev_groups = ptp_groups
31 };
32 
33 /* private globals */
34 
35 static dev_t ptp_devt;
36 
37 static DEFINE_XARRAY_ALLOC(ptp_clocks_map);
38 
39 /* time stamp event queue operations */
40 
queue_free(struct timestamp_event_queue * q)41 static inline int queue_free(struct timestamp_event_queue *q)
42 {
43 	return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
44 }
45 
enqueue_external_timestamp(struct timestamp_event_queue * queue,struct ptp_clock_event * src)46 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
47 				       struct ptp_clock_event *src)
48 {
49 	struct ptp_extts_event *dst;
50 	struct timespec64 offset_ts;
51 	unsigned long flags;
52 	s64 seconds;
53 	u32 remainder;
54 
55 	if (src->type == PTP_CLOCK_EXTTS) {
56 		seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
57 	} else if (src->type == PTP_CLOCK_EXTOFF) {
58 		offset_ts = ns_to_timespec64(src->offset);
59 		seconds = offset_ts.tv_sec;
60 		remainder = offset_ts.tv_nsec;
61 	} else {
62 		WARN(1, "%s: unknown type %d\n", __func__, src->type);
63 		return;
64 	}
65 
66 	spin_lock_irqsave(&queue->lock, flags);
67 
68 	dst = &queue->buf[queue->tail];
69 	dst->index = src->index;
70 	dst->flags = PTP_EXTTS_EVENT_VALID;
71 	dst->t.sec = seconds;
72 	dst->t.nsec = remainder;
73 	if (src->type == PTP_CLOCK_EXTOFF)
74 		dst->flags |= PTP_EXT_OFFSET;
75 
76 	/* Both WRITE_ONCE() are paired with READ_ONCE() in queue_cnt() */
77 	if (!queue_free(queue))
78 		WRITE_ONCE(queue->head, (queue->head + 1) % PTP_MAX_TIMESTAMPS);
79 
80 	WRITE_ONCE(queue->tail, (queue->tail + 1) % PTP_MAX_TIMESTAMPS);
81 
82 	spin_unlock_irqrestore(&queue->lock, flags);
83 }
84 
85 /* posix clock implementation */
86 
ptp_clock_getres(struct posix_clock * pc,struct timespec64 * tp)87 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
88 {
89 	tp->tv_sec = 0;
90 	tp->tv_nsec = 1;
91 	return 0;
92 }
93 
ptp_clock_settime(struct posix_clock * pc,const struct timespec64 * tp)94 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
95 {
96 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
97 
98 	if (ptp_clock_freerun(ptp)) {
99 		pr_err("ptp: physical clock is free running\n");
100 		return -EBUSY;
101 	}
102 
103 	return  ptp->info->settime64(ptp->info, tp);
104 }
105 
ptp_clock_gettime(struct posix_clock * pc,struct timespec64 * tp)106 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
107 {
108 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
109 	int err;
110 
111 	if (ptp->info->gettimex64)
112 		err = ptp->info->gettimex64(ptp->info, tp, NULL);
113 	else
114 		err = ptp->info->gettime64(ptp->info, tp);
115 	return err;
116 }
117 
ptp_clock_adjtime(struct posix_clock * pc,struct __kernel_timex * tx)118 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
119 {
120 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
121 	struct ptp_clock_info *ops;
122 	int err = -EOPNOTSUPP;
123 
124 	if (tx->modes & (ADJ_SETOFFSET | ADJ_FREQUENCY | ADJ_OFFSET) &&
125 	    ptp_clock_freerun(ptp)) {
126 		pr_err("ptp: physical clock is free running\n");
127 		return -EBUSY;
128 	}
129 
130 	ops = ptp->info;
131 
132 	if (tx->modes & ADJ_SETOFFSET) {
133 		struct timespec64 ts;
134 		ktime_t kt;
135 		s64 delta;
136 
137 		ts.tv_sec  = tx->time.tv_sec;
138 		ts.tv_nsec = tx->time.tv_usec;
139 
140 		if (!(tx->modes & ADJ_NANO))
141 			ts.tv_nsec *= 1000;
142 
143 		if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
144 			return -EINVAL;
145 
146 		kt = timespec64_to_ktime(ts);
147 		delta = ktime_to_ns(kt);
148 		err = ops->adjtime(ops, delta);
149 	} else if (tx->modes & ADJ_FREQUENCY) {
150 		long ppb = scaled_ppm_to_ppb(tx->freq);
151 		if (ppb > ops->max_adj || ppb < -ops->max_adj)
152 			return -ERANGE;
153 		err = ops->adjfine(ops, tx->freq);
154 		if (!err)
155 			ptp->dialed_frequency = tx->freq;
156 	} else if (tx->modes & ADJ_OFFSET) {
157 		if (ops->adjphase) {
158 			s32 max_phase_adj = ops->getmaxphase(ops);
159 			s32 offset = tx->offset;
160 
161 			if (!(tx->modes & ADJ_NANO))
162 				offset *= NSEC_PER_USEC;
163 
164 			if (offset > max_phase_adj || offset < -max_phase_adj)
165 				return -ERANGE;
166 
167 			err = ops->adjphase(ops, offset);
168 		}
169 	} else if (tx->modes == 0) {
170 		tx->freq = ptp->dialed_frequency;
171 		err = 0;
172 	}
173 
174 	return err;
175 }
176 
177 static struct posix_clock_operations ptp_clock_ops = {
178 	.owner		= THIS_MODULE,
179 	.clock_adjtime	= ptp_clock_adjtime,
180 	.clock_gettime	= ptp_clock_gettime,
181 	.clock_getres	= ptp_clock_getres,
182 	.clock_settime	= ptp_clock_settime,
183 	.ioctl		= ptp_ioctl,
184 	.open		= ptp_open,
185 	.release	= ptp_release,
186 	.poll		= ptp_poll,
187 	.read		= ptp_read,
188 };
189 
ptp_clock_release(struct device * dev)190 static void ptp_clock_release(struct device *dev)
191 {
192 	struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
193 	struct timestamp_event_queue *tsevq;
194 	unsigned long flags;
195 
196 	ptp_cleanup_pin_groups(ptp);
197 	kfree(ptp->vclock_index);
198 	mutex_destroy(&ptp->pincfg_mux);
199 	mutex_destroy(&ptp->n_vclocks_mux);
200 	/* Delete first entry */
201 	spin_lock_irqsave(&ptp->tsevqs_lock, flags);
202 	tsevq = list_first_entry(&ptp->tsevqs, struct timestamp_event_queue,
203 				 qlist);
204 	list_del(&tsevq->qlist);
205 	spin_unlock_irqrestore(&ptp->tsevqs_lock, flags);
206 	bitmap_free(tsevq->mask);
207 	kfree(tsevq);
208 	debugfs_remove(ptp->debugfs_root);
209 	xa_erase(&ptp_clocks_map, ptp->index);
210 	kfree(ptp);
211 }
212 
ptp_getcycles64(struct ptp_clock_info * info,struct timespec64 * ts)213 static int ptp_getcycles64(struct ptp_clock_info *info, struct timespec64 *ts)
214 {
215 	if (info->getcyclesx64)
216 		return info->getcyclesx64(info, ts, NULL);
217 	else
218 		return info->gettime64(info, ts);
219 }
220 
ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * request,int on)221 static int ptp_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *request, int on)
222 {
223 	return -EOPNOTSUPP;
224 }
225 
ptp_aux_kworker(struct kthread_work * work)226 static void ptp_aux_kworker(struct kthread_work *work)
227 {
228 	struct ptp_clock *ptp = container_of(work, struct ptp_clock,
229 					     aux_work.work);
230 	struct ptp_clock_info *info = ptp->info;
231 	long delay;
232 
233 	delay = info->do_aux_work(info);
234 
235 	if (delay >= 0)
236 		kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
237 }
238 
239 /* public interface */
240 
ptp_clock_register(struct ptp_clock_info * info,struct device * parent)241 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
242 				     struct device *parent)
243 {
244 	struct ptp_clock *ptp;
245 	struct timestamp_event_queue *queue = NULL;
246 	int err, index, major = MAJOR(ptp_devt);
247 	char debugfsname[16];
248 	size_t size;
249 
250 	if (info->n_alarm > PTP_MAX_ALARMS)
251 		return ERR_PTR(-EINVAL);
252 
253 	/* Initialize a clock structure. */
254 	ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
255 	if (!ptp) {
256 		err = -ENOMEM;
257 		goto no_memory;
258 	}
259 
260 	err = xa_alloc(&ptp_clocks_map, &index, ptp, xa_limit_31b,
261 		       GFP_KERNEL);
262 	if (err)
263 		goto no_slot;
264 
265 	ptp->clock.ops = ptp_clock_ops;
266 	ptp->info = info;
267 	ptp->devid = MKDEV(major, index);
268 	ptp->index = index;
269 	INIT_LIST_HEAD(&ptp->tsevqs);
270 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
271 	if (!queue) {
272 		err = -ENOMEM;
273 		goto no_memory_queue;
274 	}
275 	list_add_tail(&queue->qlist, &ptp->tsevqs);
276 	spin_lock_init(&ptp->tsevqs_lock);
277 	queue->mask = bitmap_alloc(PTP_MAX_CHANNELS, GFP_KERNEL);
278 	if (!queue->mask) {
279 		err = -ENOMEM;
280 		goto no_memory_bitmap;
281 	}
282 	bitmap_set(queue->mask, 0, PTP_MAX_CHANNELS);
283 	spin_lock_init(&queue->lock);
284 	mutex_init(&ptp->pincfg_mux);
285 	mutex_init(&ptp->n_vclocks_mux);
286 	init_waitqueue_head(&ptp->tsev_wq);
287 
288 	if (ptp->info->getcycles64 || ptp->info->getcyclesx64) {
289 		ptp->has_cycles = true;
290 		if (!ptp->info->getcycles64 && ptp->info->getcyclesx64)
291 			ptp->info->getcycles64 = ptp_getcycles64;
292 	} else {
293 		/* Free running cycle counter not supported, use time. */
294 		ptp->info->getcycles64 = ptp_getcycles64;
295 
296 		if (ptp->info->gettimex64)
297 			ptp->info->getcyclesx64 = ptp->info->gettimex64;
298 
299 		if (ptp->info->getcrosststamp)
300 			ptp->info->getcrosscycles = ptp->info->getcrosststamp;
301 	}
302 
303 	if (!ptp->info->enable)
304 		ptp->info->enable = ptp_enable;
305 
306 	if (ptp->info->do_aux_work) {
307 		kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
308 		ptp->kworker = kthread_run_worker(0, "ptp%d", ptp->index);
309 		if (IS_ERR(ptp->kworker)) {
310 			err = PTR_ERR(ptp->kworker);
311 			pr_err("failed to create ptp aux_worker %d\n", err);
312 			goto kworker_err;
313 		}
314 	}
315 
316 	/* PTP virtual clock is being registered under physical clock */
317 	if (parent && parent->class && parent->class->name &&
318 	    strcmp(parent->class->name, "ptp") == 0)
319 		ptp->is_virtual_clock = true;
320 
321 	if (!ptp->is_virtual_clock) {
322 		ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS;
323 
324 		size = sizeof(int) * ptp->max_vclocks;
325 		ptp->vclock_index = kzalloc(size, GFP_KERNEL);
326 		if (!ptp->vclock_index) {
327 			err = -ENOMEM;
328 			goto no_mem_for_vclocks;
329 		}
330 	}
331 
332 	err = ptp_populate_pin_groups(ptp);
333 	if (err)
334 		goto no_pin_groups;
335 
336 	/* Register a new PPS source. */
337 	if (info->pps) {
338 		struct pps_source_info pps;
339 		memset(&pps, 0, sizeof(pps));
340 		snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
341 		pps.mode = PTP_PPS_MODE;
342 		pps.owner = info->owner;
343 		ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
344 		if (IS_ERR(ptp->pps_source)) {
345 			err = PTR_ERR(ptp->pps_source);
346 			pr_err("failed to register pps source\n");
347 			goto no_pps;
348 		}
349 		ptp->pps_source->lookup_cookie = ptp;
350 	}
351 
352 	/* Initialize a new device of our class in our clock structure. */
353 	device_initialize(&ptp->dev);
354 	ptp->dev.devt = ptp->devid;
355 	ptp->dev.class = &ptp_class;
356 	ptp->dev.parent = parent;
357 	ptp->dev.groups = ptp->pin_attr_groups;
358 	ptp->dev.release = ptp_clock_release;
359 	dev_set_drvdata(&ptp->dev, ptp);
360 	dev_set_name(&ptp->dev, "ptp%d", ptp->index);
361 
362 	/* Create a posix clock and link it to the device. */
363 	err = posix_clock_register(&ptp->clock, &ptp->dev);
364 	if (err) {
365 		if (ptp->pps_source)
366 			pps_unregister_source(ptp->pps_source);
367 
368 		if (ptp->kworker)
369 			kthread_destroy_worker(ptp->kworker);
370 
371 		put_device(&ptp->dev);
372 
373 		pr_err("failed to create posix clock\n");
374 		return ERR_PTR(err);
375 	}
376 
377 	/* Debugfs initialization */
378 	snprintf(debugfsname, sizeof(debugfsname), "ptp%d", ptp->index);
379 	ptp->debugfs_root = debugfs_create_dir(debugfsname, NULL);
380 
381 	return ptp;
382 
383 no_pps:
384 	ptp_cleanup_pin_groups(ptp);
385 no_pin_groups:
386 	kfree(ptp->vclock_index);
387 no_mem_for_vclocks:
388 	if (ptp->kworker)
389 		kthread_destroy_worker(ptp->kworker);
390 kworker_err:
391 	mutex_destroy(&ptp->pincfg_mux);
392 	mutex_destroy(&ptp->n_vclocks_mux);
393 	bitmap_free(queue->mask);
394 no_memory_bitmap:
395 	list_del(&queue->qlist);
396 	kfree(queue);
397 no_memory_queue:
398 	xa_erase(&ptp_clocks_map, index);
399 no_slot:
400 	kfree(ptp);
401 no_memory:
402 	return ERR_PTR(err);
403 }
404 EXPORT_SYMBOL(ptp_clock_register);
405 
unregister_vclock(struct device * dev,void * data)406 static int unregister_vclock(struct device *dev, void *data)
407 {
408 	struct ptp_clock *ptp = dev_get_drvdata(dev);
409 
410 	ptp_vclock_unregister(info_to_vclock(ptp->info));
411 	return 0;
412 }
413 
ptp_clock_unregister(struct ptp_clock * ptp)414 int ptp_clock_unregister(struct ptp_clock *ptp)
415 {
416 	if (ptp_vclock_in_use(ptp)) {
417 		device_for_each_child(&ptp->dev, NULL, unregister_vclock);
418 	}
419 
420 	ptp->defunct = 1;
421 	wake_up_interruptible(&ptp->tsev_wq);
422 
423 	if (ptp->kworker) {
424 		kthread_cancel_delayed_work_sync(&ptp->aux_work);
425 		kthread_destroy_worker(ptp->kworker);
426 	}
427 
428 	/* Release the clock's resources. */
429 	if (ptp->pps_source)
430 		pps_unregister_source(ptp->pps_source);
431 
432 	posix_clock_unregister(&ptp->clock);
433 
434 	return 0;
435 }
436 EXPORT_SYMBOL(ptp_clock_unregister);
437 
ptp_clock_event(struct ptp_clock * ptp,struct ptp_clock_event * event)438 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
439 {
440 	struct timestamp_event_queue *tsevq;
441 	struct pps_event_time evt;
442 	unsigned long flags;
443 
444 	switch (event->type) {
445 
446 	case PTP_CLOCK_ALARM:
447 		break;
448 
449 	case PTP_CLOCK_EXTTS:
450 	case PTP_CLOCK_EXTOFF:
451 		/* Enqueue timestamp on selected queues */
452 		spin_lock_irqsave(&ptp->tsevqs_lock, flags);
453 		list_for_each_entry(tsevq, &ptp->tsevqs, qlist) {
454 			if (test_bit((unsigned int)event->index, tsevq->mask))
455 				enqueue_external_timestamp(tsevq, event);
456 		}
457 		spin_unlock_irqrestore(&ptp->tsevqs_lock, flags);
458 		wake_up_interruptible(&ptp->tsev_wq);
459 		break;
460 
461 	case PTP_CLOCK_PPS:
462 		pps_get_ts(&evt);
463 		pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
464 		break;
465 
466 	case PTP_CLOCK_PPSUSR:
467 		pps_event(ptp->pps_source, &event->pps_times,
468 			  PTP_PPS_EVENT, NULL);
469 		break;
470 	}
471 }
472 EXPORT_SYMBOL(ptp_clock_event);
473 
ptp_clock_index(struct ptp_clock * ptp)474 int ptp_clock_index(struct ptp_clock *ptp)
475 {
476 	return ptp->index;
477 }
478 EXPORT_SYMBOL(ptp_clock_index);
479 
ptp_find_pin(struct ptp_clock * ptp,enum ptp_pin_function func,unsigned int chan)480 int ptp_find_pin(struct ptp_clock *ptp,
481 		 enum ptp_pin_function func, unsigned int chan)
482 {
483 	struct ptp_pin_desc *pin = NULL;
484 	int i;
485 
486 	for (i = 0; i < ptp->info->n_pins; i++) {
487 		if (ptp->info->pin_config[i].func == func &&
488 		    ptp->info->pin_config[i].chan == chan) {
489 			pin = &ptp->info->pin_config[i];
490 			break;
491 		}
492 	}
493 
494 	return pin ? i : -1;
495 }
496 EXPORT_SYMBOL(ptp_find_pin);
497 
ptp_find_pin_unlocked(struct ptp_clock * ptp,enum ptp_pin_function func,unsigned int chan)498 int ptp_find_pin_unlocked(struct ptp_clock *ptp,
499 			  enum ptp_pin_function func, unsigned int chan)
500 {
501 	int result;
502 
503 	mutex_lock(&ptp->pincfg_mux);
504 
505 	result = ptp_find_pin(ptp, func, chan);
506 
507 	mutex_unlock(&ptp->pincfg_mux);
508 
509 	return result;
510 }
511 EXPORT_SYMBOL(ptp_find_pin_unlocked);
512 
ptp_schedule_worker(struct ptp_clock * ptp,unsigned long delay)513 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
514 {
515 	return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
516 }
517 EXPORT_SYMBOL(ptp_schedule_worker);
518 
ptp_cancel_worker_sync(struct ptp_clock * ptp)519 void ptp_cancel_worker_sync(struct ptp_clock *ptp)
520 {
521 	kthread_cancel_delayed_work_sync(&ptp->aux_work);
522 }
523 EXPORT_SYMBOL(ptp_cancel_worker_sync);
524 
525 /* module operations */
526 
ptp_exit(void)527 static void __exit ptp_exit(void)
528 {
529 	class_unregister(&ptp_class);
530 	unregister_chrdev_region(ptp_devt, MINORMASK + 1);
531 	xa_destroy(&ptp_clocks_map);
532 }
533 
ptp_init(void)534 static int __init ptp_init(void)
535 {
536 	int err;
537 
538 	err = class_register(&ptp_class);
539 	if (err) {
540 		pr_err("ptp: failed to allocate class\n");
541 		return err;
542 	}
543 
544 	err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
545 	if (err < 0) {
546 		pr_err("ptp: failed to allocate device region\n");
547 		goto no_region;
548 	}
549 
550 	pr_info("PTP clock support registered\n");
551 	return 0;
552 
553 no_region:
554 	class_unregister(&ptp_class);
555 	return err;
556 }
557 
558 subsys_initcall(ptp_init);
559 module_exit(ptp_exit);
560 
561 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
562 MODULE_DESCRIPTION("PTP clocks support");
563 MODULE_LICENSE("GPL");
564