1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #pragma ident "%Z%%M% %I% %E% SMI"
27
28 /*
29 * This file contains global data and code shared between master and slave parts
30 * of the pseudo-terminal driver.
31 *
32 * Pseudo terminals (or pt's for short) are allocated dynamically.
33 * pt's are put in the global ptms_slots array indexed by minor numbers.
34 *
35 * The slots array is initially small (of the size NPTY_MIN). When more pt's are
36 * needed than the slot array size, the larger slot array is allocated and all
37 * opened pt's move to the new one.
38 *
39 * Resource allocation:
40 *
41 * pt_ttys structures are allocated via pt_ttys_alloc, which uses
42 * kmem_cache_alloc().
43 * Minor number space is allocated via vmem_alloc() interface.
44 * ptms_slots arrays are allocated via kmem_alloc().
45 *
46 * Minors are started from 1 instead of 0 because vmem_alloc returns 0 in case
47 * of failure. Also, in anticipation of removing clone device interface to
48 * pseudo-terminal subsystem, minor 0 should not be used. (Potential future
49 * development).
50 *
51 * After the table slot size reaches pt_maxdelta, we stop 2^N extension
52 * algorithm and start extending the slot table size by pt_maxdelta.
53 *
54 * Device entries /dev/pts directory are created dynamically by the
55 * /dev filesystem. We no longer call ddi_create_minor_node() on
56 * behalf of the slave driver. The /dev filesystem creates /dev/pts
57 * nodes based on the pt_ttys array.
58 *
59 * Synchronization:
60 *
61 * All global data synchronization between ptm/pts is done via global
62 * ptms_lock mutex which is implicitly initialized by declaring it global.
63 *
64 * Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and
65 * pt_nullmsg) are protected by pt_ttys.pt_lock mutex.
66 *
67 * PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks
68 * which allow reader locks to be reacquired by the same thread (usual
69 * reader/writer locks can't be used for that purpose since it is illegal for
70 * a thread to acquire a lock it already holds, even as a reader). The sole
71 * purpose of these macros is to guarantee that the peer queue will not
72 * disappear (due to closing peer) while it is used. It is safe to use
73 * PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since
74 * they are not real locks but reference counts).
75 *
76 * PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in master/slave
77 * open/close paths to modify ptm_rdq and pts_rdq fields. These fields should
78 * be set to appropriate queues *after* qprocson() is called during open (to
79 * prevent peer from accessing the queue with incomplete plumbing) and set to
80 * NULL before qprocsoff() is called during close. Put and service procedures
81 * use PT_ENTER_READ/PT_EXIT_READ to prevent peer closes.
82 *
83 * The pt_nullmsg field is only used in open/close routines and is also
84 * protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex
85 * holds.
86 *
87 * Lock Ordering:
88 *
89 * If both ptms_lock and per-pty lock should be held, ptms_lock should always
90 * be entered first, followed by per-pty lock.
91 *
92 * Global functions:
93 *
94 * void ptms_init(void);
95 *
96 * Called by pts/ptm _init entry points. It performes one-time
97 * initialization needed for both pts and ptm. This initialization is done
98 * here and not in ptms_initspace because all these data structures are not
99 * needed if pseudo-terminals are not used in the system.
100 *
101 * struct pt_ttys *pt_ttys_alloc(void);
102 *
103 * Allocate new minor number and pseudo-terminal entry. May sleep.
104 * New minor number is recorded in pt_minor field of the entry returned.
105 * This routine also initializes pt_minor and pt_state fields of the new
106 * pseudo-terminal and puts a pointer to it into ptms_slots array.
107 *
108 * struct pt_ttys *ptms_minor2ptty(minor_t minor)
109 *
110 * Find pt_ttys structure by minor number.
111 * Returns NULL when minor is out of range.
112 *
113 * int ptms_minor_valid(minor_t minor, uid_t *ruid, gid_t *rgid)
114 *
115 * Check if minor refers to an allocated pty in the current zone.
116 * Returns
117 * 0 if not allocated or not for this zone.
118 * 1 if an allocated pty in the current zone.
119 * Also returns owner of pty.
120 *
121 * int ptms_minor_exists(minor_t minor)
122 * Check if minor refers to an allocated pty (in any zone)
123 * Returns
124 * 0 if not an allocated pty
125 * 1 if an allocated pty
126 *
127 * void ptms_set_owner(minor_t minor, uid_t ruid, gid_t rgid)
128 *
129 * Sets the owner associated with a pty.
130 *
131 * void ptms_close(struct pt_ttys *pt, uint_t flags_to_clear);
132 *
133 * Clear flags_to_clear in pt and if no one owns it (PTMOPEN/PTSOPEN not
134 * set) free pt entry and corresponding slot.
135 *
136 * Tuneables and configuration:
137 *
138 * pt_cnt: minimum number of pseudo-terminals in the system. The system
139 * should provide at least this number of ptys (provided sufficient
140 * memory is available). It is different from the older semantics
141 * of pt_cnt meaning maximum number of ptys.
142 * Set to 0 by default.
143 *
144 * pt_max_pty: Maximum number of pseudo-terminals in the system. The system
145 * should not allocate more ptys than pt_max_pty (although, it may
146 * impose stricter maximum). Zero value means no user-defined
147 * maximum. This is intended to be used as "denial-of-service"
148 * protection.
149 * Set to 0 by default.
150 *
151 * Both pt_cnt and pt_max_pty may be modified during system lifetime
152 * with their semantics preserved.
153 *
154 * pt_init_cnt: Initial size of ptms_slots array. Set to NPTY_INITIAL.
155 *
156 * pt_ptyofmem: Approximate percentage of system memory that may be
157 * occupied by pty data structures. Initially set to NPTY_PERCENT.
158 * This variable is used once during initialization to estimate
159 * maximum number of ptys in the system. The actual maximum is
160 * determined as minimum of pt_max_pty and calculated value.
161 *
162 * pt_maxdelta: Maximum extension chunk of the slot table.
163 */
164
165
166
167 #include <sys/types.h>
168 #include <sys/param.h>
169 #include <sys/termios.h>
170 #include <sys/stream.h>
171 #include <sys/stropts.h>
172 #include <sys/kmem.h>
173 #include <sys/ptms.h>
174 #include <sys/stat.h>
175 #include <sys/sunddi.h>
176 #include <sys/ddi.h>
177 #include <sys/bitmap.h>
178 #include <sys/sysmacros.h>
179 #include <sys/ddi_impldefs.h>
180 #include <sys/zone.h>
181 #ifdef DEBUG
182 #include <sys/strlog.h>
183 #endif
184
185
186 /* Initial number of ptms slots */
187 #define NPTY_INITIAL 16
188
189 #define NPTY_PERCENT 5
190
191 /* Maximum increment of the slot table size */
192 #define PTY_MAXDELTA 128
193
194 /*
195 * Tuneable variables.
196 */
197 uint_t pt_cnt = 0; /* Minimum number of ptys */
198 size_t pt_max_pty = 0; /* Maximum number of ptys */
199 uint_t pt_init_cnt = NPTY_INITIAL; /* Initial number of ptms slots */
200 uint_t pt_pctofmem = NPTY_PERCENT; /* Percent of memory to use for ptys */
201 uint_t pt_maxdelta = PTY_MAXDELTA; /* Max increment for slot table size */
202
203 /* Other global variables */
204
205 kmutex_t ptms_lock; /* Global data access lock */
206
207 /*
208 * Slot array and its management variables
209 */
210 static struct pt_ttys **ptms_slots = NULL; /* Slots for actual pt structures */
211 static size_t ptms_nslots = 0; /* Size of slot array */
212 static size_t ptms_ptymax = 0; /* Maximum number of ptys */
213 static size_t ptms_inuse = 0; /* # of ptys currently allocated */
214
215 dev_info_t *pts_dip = NULL; /* set if slave is attached */
216
217 static struct kmem_cache *ptms_cache = NULL; /* pty cache */
218
219 static vmem_t *ptms_minor_arena = NULL; /* Arena for device minors */
220
221 static uint_t ptms_roundup(uint_t);
222 static int ptms_constructor(void *, void *, int);
223 static void ptms_destructor(void *, void *);
224 static minor_t ptms_grow(void);
225
226 /*
227 * Total size occupied by one pty. Each pty master/slave pair consumes one
228 * pointer for ptms_slots array, one pt_ttys structure and one empty message
229 * preallocated for pts close.
230 */
231
232 #define PTY_SIZE (sizeof (struct pt_ttys) + \
233 sizeof (struct pt_ttys *) + \
234 sizeof (dblk_t))
235
236 #ifdef DEBUG
237 int ptms_debug = 0;
238 #define PTMOD_ID 5
239 #endif
240
241 /*
242 * Clear all bits of x except the highest bit
243 */
244 #define truncate(x) ((x) <= 2 ? (x) : (1 << (highbit(x) - 1)))
245
246 /*
247 * Roundup the number to the nearest power of 2
248 */
249 static uint_t
ptms_roundup(uint_t x)250 ptms_roundup(uint_t x)
251 {
252 uint_t p = truncate(x); /* x with non-high bits stripped */
253
254 /*
255 * If x is a power of 2, return x, otherwise roundup.
256 */
257 return (p == x ? p : (p * 2));
258 }
259
260 /*
261 * Allocate ptms_slots array and kmem cache for pt_ttys. This initialization is
262 * only called once during system lifetime. Called from ptm or pts _init
263 * routine.
264 */
265 void
ptms_init(void)266 ptms_init(void)
267 {
268 mutex_enter(&ptms_lock);
269
270 if (ptms_slots == NULL) {
271 ptms_slots = kmem_zalloc(pt_init_cnt *
272 sizeof (struct pt_ttys *), KM_SLEEP);
273
274 ptms_cache = kmem_cache_create("pty_map",
275 sizeof (struct pt_ttys), 0, ptms_constructor,
276 ptms_destructor, NULL, NULL, NULL, 0);
277
278 ptms_nslots = pt_init_cnt;
279
280 /* Allocate integer space for minor numbers */
281 ptms_minor_arena = vmem_create("ptms_minor", (void *)1,
282 ptms_nslots, 1, NULL, NULL, NULL, 0,
283 VM_SLEEP | VMC_IDENTIFIER);
284
285 /*
286 * Calculate available number of ptys - how many ptys can we
287 * allocate in pt_pctofmem % of available memory. The value is
288 * rounded up to the nearest power of 2.
289 */
290 ptms_ptymax = ptms_roundup((pt_pctofmem * kmem_maxavail()) /
291 (100 * PTY_SIZE));
292 }
293 mutex_exit(&ptms_lock);
294 }
295
296 /*
297 * This routine attaches the pts dip.
298 */
299 int
ptms_attach_slave(void)300 ptms_attach_slave(void)
301 {
302 if (pts_dip == NULL && i_ddi_attach_pseudo_node("pts") == NULL)
303 return (-1);
304
305 ASSERT(pts_dip);
306 return (0);
307 }
308
309 /*
310 * Called from /dev fs. Checks if dip is attached,
311 * and if it is, returns its major number.
312 */
313 major_t
ptms_slave_attached(void)314 ptms_slave_attached(void)
315 {
316 major_t maj = DDI_MAJOR_T_NONE;
317
318 mutex_enter(&ptms_lock);
319 if (pts_dip)
320 maj = ddi_driver_major(pts_dip);
321 mutex_exit(&ptms_lock);
322
323 return (maj);
324 }
325
326 /*
327 * Allocate new minor number and pseudo-terminal entry. Returns the new entry or
328 * NULL if no memory or maximum number of entries reached.
329 */
330 struct pt_ttys *
pt_ttys_alloc(void)331 pt_ttys_alloc(void)
332 {
333 minor_t dminor;
334 struct pt_ttys *pt = NULL;
335
336 mutex_enter(&ptms_lock);
337
338 /*
339 * Always try to allocate new pty when pt_cnt minimum limit is not
340 * achieved. If it is achieved, the maximum is determined by either
341 * user-specified value (if it is non-zero) or our memory estimations -
342 * whatever is less.
343 */
344 if (ptms_inuse >= pt_cnt) {
345 /*
346 * When system achieved required minimum of ptys, check for the
347 * denial of service limits.
348 *
349 * Since pt_max_pty may be zero, the formula below is used to
350 * avoid conditional expression. It will equal to pt_max_pty if
351 * it is not zero and ptms_ptymax otherwise.
352 */
353 size_t user_max = (pt_max_pty == 0 ? ptms_ptymax : pt_max_pty);
354
355 /* Do not try to allocate more than allowed */
356 if (ptms_inuse >= min(ptms_ptymax, user_max)) {
357 mutex_exit(&ptms_lock);
358 return (NULL);
359 }
360 }
361 ptms_inuse++;
362
363 /*
364 * Allocate new minor number. If this fails, all slots are busy and
365 * we need to grow the hash.
366 */
367 dminor = (minor_t)(uintptr_t)
368 vmem_alloc(ptms_minor_arena, 1, VM_NOSLEEP);
369
370 if (dminor == 0) {
371 /* Grow the cache and retry allocation */
372 dminor = ptms_grow();
373 }
374
375 if (dminor == 0) {
376 /* Not enough memory now */
377 ptms_inuse--;
378 mutex_exit(&ptms_lock);
379 return (NULL);
380 }
381
382 pt = kmem_cache_alloc(ptms_cache, KM_NOSLEEP);
383 if (pt == NULL) {
384 /* Not enough memory - this entry can't be used now. */
385 vmem_free(ptms_minor_arena, (void *)(uintptr_t)dminor, 1);
386 ptms_inuse--;
387 } else {
388 pt->pt_minor = dminor;
389 pt->pt_pid = curproc->p_pid; /* For debugging */
390 pt->pt_state = (PTMOPEN | PTLOCK);
391 pt->pt_zoneid = getzoneid();
392 pt->pt_ruid = 0; /* we don't know uid/gid yet. Report as root */
393 pt->pt_rgid = 0;
394 ASSERT(ptms_slots[dminor - 1] == NULL);
395 ptms_slots[dminor - 1] = pt;
396 }
397
398 mutex_exit(&ptms_lock);
399 return (pt);
400 }
401
402 /*
403 * Get pt_ttys structure by minor number.
404 * Returns NULL when minor is out of range.
405 */
406 struct pt_ttys *
ptms_minor2ptty(minor_t dminor)407 ptms_minor2ptty(minor_t dminor)
408 {
409 struct pt_ttys *pt = NULL;
410
411 ASSERT(mutex_owned(&ptms_lock));
412 if ((dminor >= 1) && (dminor <= ptms_nslots) && ptms_slots != NULL)
413 pt = ptms_slots[dminor - 1];
414
415 return (pt);
416 }
417
418 /*
419 * Invoked in response to chown on /dev/pts nodes to change the
420 * permission on a pty
421 */
422 void
ptms_set_owner(minor_t dminor,uid_t ruid,gid_t rgid)423 ptms_set_owner(minor_t dminor, uid_t ruid, gid_t rgid)
424 {
425 struct pt_ttys *pt;
426
427 ASSERT(ruid >= 0);
428 ASSERT(rgid >= 0);
429
430 if (ruid < 0 || rgid < 0)
431 return;
432
433 /*
434 * /dev/pts/0 is not used, but some applications may check it. There
435 * is no pty backing it - so we have nothing to do.
436 */
437 if (dminor == 0)
438 return;
439
440 mutex_enter(&ptms_lock);
441 pt = ptms_minor2ptty(dminor);
442 if (pt != NULL && pt->pt_zoneid == getzoneid()) {
443 pt->pt_ruid = ruid;
444 pt->pt_rgid = rgid;
445 }
446 mutex_exit(&ptms_lock);
447 }
448
449 /*
450 * Given a ptm/pts minor number
451 * returns:
452 * 1 if the pty is allocated to the current zone.
453 * 0 otherwise
454 *
455 * If the pty is allocated to the current zone, it also returns the owner.
456 */
457 int
ptms_minor_valid(minor_t dminor,uid_t * ruid,gid_t * rgid)458 ptms_minor_valid(minor_t dminor, uid_t *ruid, gid_t *rgid)
459 {
460 struct pt_ttys *pt;
461 int ret;
462
463 ASSERT(ruid);
464 ASSERT(rgid);
465
466 *ruid = (uid_t)-1;
467 *rgid = (gid_t)-1;
468
469 /*
470 * /dev/pts/0 is not used, but some applications may check it, so create
471 * it also. Report the owner as root. It belongs to all zones.
472 */
473 if (dminor == 0) {
474 *ruid = 0;
475 *rgid = 0;
476 return (1);
477 }
478
479 ret = 0;
480 mutex_enter(&ptms_lock);
481 pt = ptms_minor2ptty(dminor);
482 if (pt != NULL) {
483 ASSERT(pt->pt_ruid >= 0);
484 ASSERT(pt->pt_rgid >= 0);
485 if (pt->pt_zoneid == getzoneid()) {
486 ret = 1;
487 *ruid = pt->pt_ruid;
488 *rgid = pt->pt_rgid;
489 }
490 }
491 mutex_exit(&ptms_lock);
492
493 return (ret);
494 }
495
496 /*
497 * Given a ptm/pts minor number
498 * returns:
499 * 0 if the pty is not allocated
500 * 1 if the pty is allocated
501 */
502 int
ptms_minor_exists(minor_t dminor)503 ptms_minor_exists(minor_t dminor)
504 {
505 int ret;
506
507 mutex_enter(&ptms_lock);
508 ret = ptms_minor2ptty(dminor) ? 1 : 0;
509 mutex_exit(&ptms_lock);
510
511 return (ret);
512 }
513
514 /*
515 * Close the pt and clear flags_to_clear.
516 * If pt device is not opened by someone else, free it and clear its slot.
517 */
518 void
ptms_close(struct pt_ttys * pt,uint_t flags_to_clear)519 ptms_close(struct pt_ttys *pt, uint_t flags_to_clear)
520 {
521 uint_t flags;
522
523 ASSERT(MUTEX_NOT_HELD(&ptms_lock));
524 ASSERT(pt != NULL);
525
526 mutex_enter(&ptms_lock);
527
528 mutex_enter(&pt->pt_lock);
529 pt->pt_state &= ~flags_to_clear;
530 flags = pt->pt_state;
531 mutex_exit(&pt->pt_lock);
532
533 if (! (flags & (PTMOPEN | PTSOPEN))) {
534 /* No one owns the entry - free it */
535
536 ASSERT(pt->ptm_rdq == NULL);
537 ASSERT(pt->pts_rdq == NULL);
538 ASSERT(pt->pt_nullmsg == NULL);
539 ASSERT(pt->pt_refcnt == 0);
540 ASSERT(pt->pt_minor <= ptms_nslots);
541 ASSERT(ptms_slots[pt->pt_minor - 1] == pt);
542 ASSERT(ptms_inuse > 0);
543
544 ptms_inuse--;
545
546 pt->pt_pid = 0;
547
548 ptms_slots[pt->pt_minor - 1] = NULL;
549 /* Return minor number to the pool of minors */
550 vmem_free(ptms_minor_arena, (void *)(uintptr_t)pt->pt_minor, 1);
551 /* Return pt to the cache */
552 kmem_cache_free(ptms_cache, pt);
553 }
554 mutex_exit(&ptms_lock);
555 }
556
557 /*
558 * Allocate another slot table twice as large as the original one (limited to
559 * global maximum). Migrate all pt to the new slot table and free the original
560 * one. Create more /devices entries for new devices.
561 */
562 static minor_t
ptms_grow()563 ptms_grow()
564 {
565 minor_t old_size = ptms_nslots;
566 minor_t delta = MIN(pt_maxdelta, old_size);
567 minor_t new_size = old_size + delta;
568 struct pt_ttys **ptms_old = ptms_slots;
569 struct pt_ttys **ptms_new;
570 void *vaddr; /* vmem_add return value */
571
572 ASSERT(MUTEX_HELD(&ptms_lock));
573
574 DDBG("ptmopen(%d): need to grow\n", (int)ptms_inuse);
575
576 /* Allocate new ptms array */
577 ptms_new = kmem_zalloc(new_size * sizeof (struct pt_ttys *),
578 KM_NOSLEEP);
579 if (ptms_new == NULL)
580 return ((minor_t)0);
581
582 /* Increase clone index space */
583 vaddr = vmem_add(ptms_minor_arena, (void *)(uintptr_t)(old_size + 1),
584 new_size - old_size, VM_NOSLEEP);
585
586 if (vaddr == NULL) {
587 kmem_free(ptms_new, new_size * sizeof (struct pt_ttys *));
588 return ((minor_t)0);
589 }
590
591 /* Migrate pt entries to a new location */
592 ptms_nslots = new_size;
593 bcopy(ptms_old, ptms_new, old_size * sizeof (struct pt_ttys *));
594 ptms_slots = ptms_new;
595 kmem_free(ptms_old, old_size * sizeof (struct pt_ttys *));
596
597 /* Allocate minor number and return it */
598 return ((minor_t)(uintptr_t)
599 vmem_alloc(ptms_minor_arena, 1, VM_NOSLEEP));
600 }
601
602 /*ARGSUSED*/
603 static int
ptms_constructor(void * maddr,void * arg,int kmflags)604 ptms_constructor(void *maddr, void *arg, int kmflags)
605 {
606 struct pt_ttys *pt = maddr;
607
608 pt->pts_rdq = NULL;
609 pt->ptm_rdq = NULL;
610 pt->pt_nullmsg = NULL;
611 pt->pt_pid = NULL;
612 pt->pt_minor = NULL;
613 pt->pt_refcnt = 0;
614 pt->pt_state = 0;
615 pt->pt_zoneid = GLOBAL_ZONEID;
616
617 cv_init(&pt->pt_cv, NULL, CV_DEFAULT, NULL);
618 mutex_init(&pt->pt_lock, NULL, MUTEX_DEFAULT, NULL);
619 return (0);
620 }
621
622 /*ARGSUSED*/
623 static void
ptms_destructor(void * maddr,void * arg)624 ptms_destructor(void *maddr, void *arg)
625 {
626 struct pt_ttys *pt = maddr;
627
628 ASSERT(pt->pt_refcnt == 0);
629 ASSERT(pt->pt_state == 0);
630 ASSERT(pt->ptm_rdq == NULL);
631 ASSERT(pt->pts_rdq == NULL);
632
633 mutex_destroy(&pt->pt_lock);
634 cv_destroy(&pt->pt_cv);
635 }
636
637 #ifdef DEBUG
638 void
ptms_log(char * str,uint_t arg)639 ptms_log(char *str, uint_t arg)
640 {
641 if (ptms_debug) {
642 if (ptms_debug & 2)
643 cmn_err(CE_CONT, str, arg);
644 if (ptms_debug & 4)
645 (void) strlog(PTMOD_ID, -1, 0, SL_TRACE | SL_ERROR,
646 str, arg);
647 else
648 (void) strlog(PTMOD_ID, -1, 0, SL_TRACE, str, arg);
649 }
650 }
651
652 void
ptms_logp(char * str,uintptr_t arg)653 ptms_logp(char *str, uintptr_t arg)
654 {
655 if (ptms_debug) {
656 if (ptms_debug & 2)
657 cmn_err(CE_CONT, str, arg);
658 if (ptms_debug & 4)
659 (void) strlog(PTMOD_ID, -1, 0, SL_TRACE | SL_ERROR,
660 str, arg);
661 else
662 (void) strlog(PTMOD_ID, -1, 0, SL_TRACE, str, arg);
663 }
664 }
665 #endif
666