1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 */
27
28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
29 /* All Rights Reserved */
30
31 #include <sys/param.h>
32 #include <sys/types.h>
33 #include <sys/bitmap.h>
34 #include <sys/sysmacros.h>
35 #include <sys/systm.h>
36 #include <sys/cred.h>
37 #include <sys/user.h>
38 #include <sys/errno.h>
39 #include <sys/proc.h>
40 #include <sys/poll_impl.h> /* only needed for kludge in sigwaiting_send() */
41 #include <sys/signal.h>
42 #include <sys/siginfo.h>
43 #include <sys/fault.h>
44 #include <sys/ucontext.h>
45 #include <sys/procfs.h>
46 #include <sys/wait.h>
47 #include <sys/class.h>
48 #include <sys/mman.h>
49 #include <sys/procset.h>
50 #include <sys/kmem.h>
51 #include <sys/cpuvar.h>
52 #include <sys/prsystm.h>
53 #include <sys/debug.h>
54 #include <vm/as.h>
55 #include <sys/bitmap.h>
56 #include <c2/audit.h>
57 #include <sys/core.h>
58 #include <sys/schedctl.h>
59 #include <sys/contract/process_impl.h>
60 #include <sys/cyclic.h>
61 #include <sys/dtrace.h>
62 #include <sys/sdt.h>
63
64 const k_sigset_t nullsmask = {0, 0, 0};
65
66 const k_sigset_t fillset = /* MUST be contiguous */
67 {FILLSET0, FILLSET1, FILLSET2};
68
69 const k_sigset_t cantmask =
70 {CANTMASK0, CANTMASK1, CANTMASK2};
71
72 const k_sigset_t cantreset =
73 {(sigmask(SIGILL)|sigmask(SIGTRAP)|sigmask(SIGPWR)), 0, 0};
74
75 const k_sigset_t ignoredefault =
76 {(sigmask(SIGCONT)|sigmask(SIGCLD)|sigmask(SIGPWR)
77 |sigmask(SIGWINCH)|sigmask(SIGURG)|sigmask(SIGWAITING)),
78 (sigmask(SIGLWP)|sigmask(SIGCANCEL)|sigmask(SIGFREEZE)
79 |sigmask(SIGTHAW)|sigmask(SIGXRES)|sigmask(SIGJVM1)
80 |sigmask(SIGJVM2)|sigmask(SIGINFO)), 0};
81
82 const k_sigset_t stopdefault =
83 {(sigmask(SIGSTOP)|sigmask(SIGTSTP)|sigmask(SIGTTOU)|sigmask(SIGTTIN)),
84 0, 0};
85
86 const k_sigset_t coredefault =
87 {(sigmask(SIGQUIT)|sigmask(SIGILL)|sigmask(SIGTRAP)|sigmask(SIGIOT)
88 |sigmask(SIGEMT)|sigmask(SIGFPE)|sigmask(SIGBUS)|sigmask(SIGSEGV)
89 |sigmask(SIGSYS)|sigmask(SIGXCPU)|sigmask(SIGXFSZ)), 0, 0};
90
91 const k_sigset_t holdvfork =
92 {(sigmask(SIGTTOU)|sigmask(SIGTTIN)|sigmask(SIGTSTP)), 0, 0};
93
94 static int isjobstop(int);
95 static void post_sigcld(proc_t *, sigqueue_t *);
96
97 /*
98 * Internal variables for counting number of user thread stop requests posted.
99 * They may not be accurate at some special situation such as that a virtually
100 * stopped thread starts to run.
101 */
102 static int num_utstop;
103 /*
104 * Internal variables for broadcasting an event when all thread stop requests
105 * are processed.
106 */
107 static kcondvar_t utstop_cv;
108
109 static kmutex_t thread_stop_lock;
110 void del_one_utstop(void);
111
112 /*
113 * Send the specified signal to the specified process.
114 */
115 void
psignal(proc_t * p,int sig)116 psignal(proc_t *p, int sig)
117 {
118 mutex_enter(&p->p_lock);
119 sigtoproc(p, NULL, sig);
120 mutex_exit(&p->p_lock);
121 }
122
123 /*
124 * Send the specified signal to the specified thread.
125 */
126 void
tsignal(kthread_t * t,int sig)127 tsignal(kthread_t *t, int sig)
128 {
129 proc_t *p = ttoproc(t);
130
131 mutex_enter(&p->p_lock);
132 sigtoproc(p, t, sig);
133 mutex_exit(&p->p_lock);
134 }
135
136 int
signal_is_blocked(kthread_t * t,int sig)137 signal_is_blocked(kthread_t *t, int sig)
138 {
139 return (sigismember(&t->t_hold, sig) ||
140 (schedctl_sigblock(t) && !sigismember(&cantmask, sig)));
141 }
142
143 /*
144 * Return true if the signal can safely be discarded on generation.
145 * That is, if there is no need for the signal on the receiving end.
146 * The answer is true if the process is a zombie or
147 * if all of these conditions are true:
148 * the signal is being ignored
149 * the process is single-threaded
150 * the signal is not being traced by /proc
151 * the signal is not blocked by the process
152 * the signal is not being accepted via sigwait()
153 */
154 static int
sig_discardable(proc_t * p,int sig)155 sig_discardable(proc_t *p, int sig)
156 {
157 kthread_t *t = p->p_tlist;
158
159 return (t == NULL || /* if zombie or ... */
160 (sigismember(&p->p_ignore, sig) && /* signal is ignored */
161 t->t_forw == t && /* and single-threaded */
162 !tracing(p, sig) && /* and no /proc tracing */
163 !signal_is_blocked(t, sig) && /* and signal not blocked */
164 !sigismember(&t->t_sigwait, sig))); /* and not being accepted */
165 }
166
167 /*
168 * Return true if this thread is going to eat this signal soon.
169 * Note that, if the signal is SIGKILL, we force stopped threads to be
170 * set running (to make SIGKILL be a sure kill), but only if the process
171 * is not currently locked by /proc (the P_PR_LOCK flag). Code in /proc
172 * relies on the fact that a process will not change shape while P_PR_LOCK
173 * is set (it drops and reacquires p->p_lock while leaving P_PR_LOCK set).
174 * We wish that we could simply call prbarrier() below, in sigtoproc(), to
175 * ensure that the process is not locked by /proc, but prbarrier() drops
176 * and reacquires p->p_lock and dropping p->p_lock here would be damaging.
177 */
178 int
eat_signal(kthread_t * t,int sig)179 eat_signal(kthread_t *t, int sig)
180 {
181 int rval = 0;
182 ASSERT(THREAD_LOCK_HELD(t));
183
184 /*
185 * Do not do anything if the target thread has the signal blocked.
186 */
187 if (!signal_is_blocked(t, sig)) {
188 t->t_sig_check = 1; /* have thread do an issig */
189 if (ISWAKEABLE(t) || ISWAITING(t)) {
190 setrun_locked(t);
191 rval = 1;
192 } else if (t->t_state == TS_STOPPED && sig == SIGKILL &&
193 !(ttoproc(t)->p_proc_flag & P_PR_LOCK)) {
194 ttoproc(t)->p_stopsig = 0;
195 t->t_dtrace_stop = 0;
196 t->t_schedflag |= TS_XSTART | TS_PSTART;
197 setrun_locked(t);
198 } else if (t != curthread && t->t_state == TS_ONPROC) {
199 aston(t); /* make it do issig promptly */
200 if (t->t_cpu != CPU)
201 poke_cpu(t->t_cpu->cpu_id);
202 rval = 1;
203 } else if (t->t_state == TS_RUN) {
204 rval = 1;
205 }
206 }
207
208 return (rval);
209 }
210
211 /*
212 * Post a signal.
213 * If a non-null thread pointer is passed, then post the signal
214 * to the thread/lwp, otherwise post the signal to the process.
215 */
216 void
sigtoproc(proc_t * p,kthread_t * t,int sig)217 sigtoproc(proc_t *p, kthread_t *t, int sig)
218 {
219 kthread_t *tt;
220 int ext = !(curproc->p_flag & SSYS) &&
221 (curproc->p_ct_process != p->p_ct_process);
222
223 ASSERT(MUTEX_HELD(&p->p_lock));
224
225 /* System processes don't get signals */
226 if (sig <= 0 || sig >= NSIG || (p->p_flag & SSYS))
227 return;
228
229 /*
230 * Regardless of origin or directedness,
231 * SIGKILL kills all lwps in the process immediately
232 * and jobcontrol signals affect all lwps in the process.
233 */
234 if (sig == SIGKILL) {
235 p->p_flag |= SKILLED | (ext ? SEXTKILLED : 0);
236 t = NULL;
237 } else if (sig == SIGCONT) {
238 /*
239 * The SSCONT flag will remain set until a stopping
240 * signal comes in (below). This is harmless.
241 */
242 p->p_flag |= SSCONT;
243 sigdelq(p, NULL, SIGSTOP);
244 sigdelq(p, NULL, SIGTSTP);
245 sigdelq(p, NULL, SIGTTOU);
246 sigdelq(p, NULL, SIGTTIN);
247 sigdiffset(&p->p_sig, &stopdefault);
248 sigdiffset(&p->p_extsig, &stopdefault);
249 p->p_stopsig = 0;
250 if ((tt = p->p_tlist) != NULL) {
251 do {
252 sigdelq(p, tt, SIGSTOP);
253 sigdelq(p, tt, SIGTSTP);
254 sigdelq(p, tt, SIGTTOU);
255 sigdelq(p, tt, SIGTTIN);
256 sigdiffset(&tt->t_sig, &stopdefault);
257 sigdiffset(&tt->t_extsig, &stopdefault);
258 } while ((tt = tt->t_forw) != p->p_tlist);
259 }
260 if ((tt = p->p_tlist) != NULL) {
261 do {
262 thread_lock(tt);
263 if (tt->t_state == TS_STOPPED &&
264 tt->t_whystop == PR_JOBCONTROL) {
265 tt->t_schedflag |= TS_XSTART;
266 setrun_locked(tt);
267 }
268 thread_unlock(tt);
269 } while ((tt = tt->t_forw) != p->p_tlist);
270 }
271 } else if (sigismember(&stopdefault, sig)) {
272 /*
273 * This test has a race condition which we can't fix:
274 * By the time the stopping signal is received by
275 * the target process/thread, the signal handler
276 * and/or the detached state might have changed.
277 */
278 if (PTOU(p)->u_signal[sig-1] == SIG_DFL &&
279 (sig == SIGSTOP || !p->p_pgidp->pid_pgorphaned))
280 p->p_flag &= ~SSCONT;
281 sigdelq(p, NULL, SIGCONT);
282 sigdelset(&p->p_sig, SIGCONT);
283 sigdelset(&p->p_extsig, SIGCONT);
284 if ((tt = p->p_tlist) != NULL) {
285 do {
286 sigdelq(p, tt, SIGCONT);
287 sigdelset(&tt->t_sig, SIGCONT);
288 sigdelset(&tt->t_extsig, SIGCONT);
289 } while ((tt = tt->t_forw) != p->p_tlist);
290 }
291 }
292
293 if (sig_discardable(p, sig)) {
294 DTRACE_PROC3(signal__discard, kthread_t *, p->p_tlist,
295 proc_t *, p, int, sig);
296 return;
297 }
298
299 if (t != NULL) {
300 /*
301 * This is a directed signal, wake up the lwp.
302 */
303 sigaddset(&t->t_sig, sig);
304 if (ext)
305 sigaddset(&t->t_extsig, sig);
306 thread_lock(t);
307 (void) eat_signal(t, sig);
308 thread_unlock(t);
309 DTRACE_PROC2(signal__send, kthread_t *, t, int, sig);
310 } else if ((tt = p->p_tlist) != NULL) {
311 /*
312 * Make sure that some lwp that already exists
313 * in the process fields the signal soon.
314 * Wake up an interruptibly sleeping lwp if necessary.
315 * For SIGKILL make all of the lwps see the signal;
316 * This is needed to guarantee a sure kill for processes
317 * with a mix of realtime and non-realtime threads.
318 */
319 int su = 0;
320
321 sigaddset(&p->p_sig, sig);
322 if (ext)
323 sigaddset(&p->p_extsig, sig);
324 do {
325 thread_lock(tt);
326 if (eat_signal(tt, sig) && sig != SIGKILL) {
327 thread_unlock(tt);
328 break;
329 }
330 if (SUSPENDED(tt))
331 su++;
332 thread_unlock(tt);
333 } while ((tt = tt->t_forw) != p->p_tlist);
334 /*
335 * If the process is deadlocked, make somebody run and die.
336 */
337 if (sig == SIGKILL && p->p_stat != SIDL &&
338 p->p_lwprcnt == 0 && p->p_lwpcnt == su &&
339 !(p->p_proc_flag & P_PR_LOCK)) {
340 thread_lock(tt);
341 p->p_lwprcnt++;
342 tt->t_schedflag |= TS_CSTART;
343 setrun_locked(tt);
344 thread_unlock(tt);
345 }
346
347 DTRACE_PROC2(signal__send, kthread_t *, tt, int, sig);
348 }
349 }
350
351 static int
isjobstop(int sig)352 isjobstop(int sig)
353 {
354 proc_t *p = ttoproc(curthread);
355
356 ASSERT(MUTEX_HELD(&p->p_lock));
357
358 if (PTOU(curproc)->u_signal[sig-1] == SIG_DFL &&
359 sigismember(&stopdefault, sig)) {
360 /*
361 * If SIGCONT has been posted since we promoted this signal
362 * from pending to current, then don't do a jobcontrol stop.
363 */
364 if (!(p->p_flag & SSCONT) &&
365 (sig == SIGSTOP || !p->p_pgidp->pid_pgorphaned) &&
366 curthread != p->p_agenttp) {
367 sigqueue_t *sqp;
368
369 stop(PR_JOBCONTROL, sig);
370 mutex_exit(&p->p_lock);
371 sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
372 mutex_enter(&pidlock);
373 /*
374 * Only the first lwp to continue notifies the parent.
375 */
376 if (p->p_pidflag & CLDCONT)
377 siginfofree(sqp);
378 else {
379 p->p_pidflag |= CLDCONT;
380 p->p_wcode = CLD_CONTINUED;
381 p->p_wdata = SIGCONT;
382 sigcld(p, sqp);
383 }
384 mutex_exit(&pidlock);
385 mutex_enter(&p->p_lock);
386 }
387 return (1);
388 }
389 return (0);
390 }
391
392 /*
393 * Returns true if the current process has a signal to process, and
394 * the signal is not held. The signal to process is put in p_cursig.
395 * This is asked at least once each time a process enters the system
396 * (though this can usually be done without actually calling issig by
397 * checking the pending signal masks). A signal does not do anything
398 * directly to a process; it sets a flag that asks the process to do
399 * something to itself.
400 *
401 * The "why" argument indicates the allowable side-effects of the call:
402 *
403 * FORREAL: Extract the next pending signal from p_sig into p_cursig;
404 * stop the process if a stop has been requested or if a traced signal
405 * is pending.
406 *
407 * JUSTLOOKING: Don't stop the process, just indicate whether or not
408 * a signal might be pending (FORREAL is needed to tell for sure).
409 *
410 * XXX: Changes to the logic in these routines should be propagated
411 * to lm_sigispending(). See bug 1201594.
412 */
413
414 static int issig_forreal(void);
415 static int issig_justlooking(void);
416
417 int
issig(int why)418 issig(int why)
419 {
420 ASSERT(why == FORREAL || why == JUSTLOOKING);
421
422 return ((why == FORREAL)? issig_forreal() : issig_justlooking());
423 }
424
425
426 static int
issig_justlooking(void)427 issig_justlooking(void)
428 {
429 kthread_t *t = curthread;
430 klwp_t *lwp = ttolwp(t);
431 proc_t *p = ttoproc(t);
432 k_sigset_t set;
433
434 /*
435 * This function answers the question:
436 * "Is there any reason to call issig_forreal()?"
437 *
438 * We have to answer the question w/o grabbing any locks
439 * because we are (most likely) being called after we
440 * put ourselves on the sleep queue.
441 */
442
443 if (t->t_dtrace_stop | t->t_dtrace_sig)
444 return (1);
445
446 /*
447 * Another piece of complexity in this process. When single-stepping a
448 * process, we don't want an intervening signal or TP_PAUSE request to
449 * suspend the current thread. Otherwise, the controlling process will
450 * hang beacuse we will be stopped with TS_PSTART set in t_schedflag.
451 * We will trigger any remaining signals when we re-enter the kernel on
452 * the single step trap.
453 */
454 if (lwp->lwp_pcb.pcb_flags & NORMAL_STEP)
455 return (0);
456
457 if ((lwp->lwp_asleep && MUSTRETURN(p, t)) ||
458 (p->p_flag & (SEXITLWPS|SKILLED)) ||
459 (lwp->lwp_nostop == 0 &&
460 (p->p_stopsig | (p->p_flag & (SHOLDFORK1|SHOLDWATCH)) |
461 (t->t_proc_flag &
462 (TP_PRSTOP|TP_HOLDLWP|TP_CHKPT|TP_PAUSE)))) ||
463 lwp->lwp_cursig)
464 return (1);
465
466 if (p->p_flag & SVFWAIT)
467 return (0);
468 set = p->p_sig;
469 sigorset(&set, &t->t_sig);
470 if (schedctl_sigblock(t)) /* all blockable signals blocked */
471 sigandset(&set, &cantmask);
472 else
473 sigdiffset(&set, &t->t_hold);
474 if (p->p_flag & SVFORK)
475 sigdiffset(&set, &holdvfork);
476
477 if (!sigisempty(&set)) {
478 int sig;
479
480 for (sig = 1; sig < NSIG; sig++) {
481 if (sigismember(&set, sig) &&
482 (tracing(p, sig) ||
483 sigismember(&t->t_sigwait, sig) ||
484 !sigismember(&p->p_ignore, sig))) {
485 /*
486 * Don't promote a signal that will stop
487 * the process when lwp_nostop is set.
488 */
489 if (!lwp->lwp_nostop ||
490 PTOU(p)->u_signal[sig-1] != SIG_DFL ||
491 !sigismember(&stopdefault, sig))
492 return (1);
493 }
494 }
495 }
496
497 return (0);
498 }
499
500 static int
issig_forreal(void)501 issig_forreal(void)
502 {
503 int sig = 0, ext = 0;
504 kthread_t *t = curthread;
505 klwp_t *lwp = ttolwp(t);
506 proc_t *p = ttoproc(t);
507 int toproc = 0;
508 int sigcld_found = 0;
509 int nostop_break = 0;
510
511 ASSERT(t->t_state == TS_ONPROC);
512
513 mutex_enter(&p->p_lock);
514 schedctl_finish_sigblock(t);
515
516 if (t->t_dtrace_stop | t->t_dtrace_sig) {
517 if (t->t_dtrace_stop) {
518 /*
519 * If DTrace's "stop" action has been invoked on us,
520 * set TP_PRSTOP.
521 */
522 t->t_proc_flag |= TP_PRSTOP;
523 }
524
525 if (t->t_dtrace_sig != 0) {
526 k_siginfo_t info;
527
528 /*
529 * Post the signal generated as the result of
530 * DTrace's "raise" action as a normal signal before
531 * the full-fledged signal checking begins.
532 */
533 bzero(&info, sizeof (info));
534 info.si_signo = t->t_dtrace_sig;
535 info.si_code = SI_DTRACE;
536
537 sigaddq(p, NULL, &info, KM_NOSLEEP);
538
539 t->t_dtrace_sig = 0;
540 }
541 }
542
543 for (;;) {
544 if (p->p_flag & (SEXITLWPS|SKILLED)) {
545 lwp->lwp_cursig = sig = SIGKILL;
546 lwp->lwp_extsig = ext = (p->p_flag & SEXTKILLED) != 0;
547 t->t_sig_check = 1;
548 break;
549 }
550
551 /*
552 * Another piece of complexity in this process. When
553 * single-stepping a process, we don't want an intervening
554 * signal or TP_PAUSE request to suspend the current thread.
555 * Otherwise, the controlling process will hang beacuse we will
556 * be stopped with TS_PSTART set in t_schedflag. We will
557 * trigger any remaining signals when we re-enter the kernel on
558 * the single step trap.
559 */
560 if (lwp->lwp_pcb.pcb_flags & NORMAL_STEP) {
561 sig = 0;
562 break;
563 }
564
565 /*
566 * Hold the lwp here for watchpoint manipulation.
567 */
568 if ((t->t_proc_flag & TP_PAUSE) && !lwp->lwp_nostop) {
569 stop(PR_SUSPENDED, SUSPEND_PAUSE);
570 continue;
571 }
572
573 if (lwp->lwp_asleep && MUSTRETURN(p, t)) {
574 if ((sig = lwp->lwp_cursig) != 0) {
575 /*
576 * Make sure we call ISSIG() in post_syscall()
577 * to re-validate this current signal.
578 */
579 t->t_sig_check = 1;
580 }
581 break;
582 }
583
584 /*
585 * If the request is PR_CHECKPOINT, ignore the rest of signals
586 * or requests. Honor other stop requests or signals later.
587 * Go back to top of loop here to check if an exit or hold
588 * event has occurred while stopped.
589 */
590 if ((t->t_proc_flag & TP_CHKPT) && !lwp->lwp_nostop) {
591 stop(PR_CHECKPOINT, 0);
592 continue;
593 }
594
595 /*
596 * Honor SHOLDFORK1, SHOLDWATCH, and TP_HOLDLWP before dealing
597 * with signals or /proc. Another lwp is executing fork1(),
598 * or is undergoing watchpoint activity (remapping a page),
599 * or is executing lwp_suspend() on this lwp.
600 * Again, go back to top of loop to check if an exit
601 * or hold event has occurred while stopped.
602 */
603 if (((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) ||
604 (t->t_proc_flag & TP_HOLDLWP)) && !lwp->lwp_nostop) {
605 stop(PR_SUSPENDED, SUSPEND_NORMAL);
606 continue;
607 }
608
609 /*
610 * Honor requested stop before dealing with the
611 * current signal; a debugger may change it.
612 * Do not want to go back to loop here since this is a special
613 * stop that means: make incremental progress before the next
614 * stop. The danger is that returning to top of loop would most
615 * likely drop the thread right back here to stop soon after it
616 * was continued, violating the incremental progress request.
617 */
618 if ((t->t_proc_flag & TP_PRSTOP) && !lwp->lwp_nostop)
619 stop(PR_REQUESTED, 0);
620
621 /*
622 * If a debugger wants us to take a signal it will have
623 * left it in lwp->lwp_cursig. If lwp_cursig has been cleared
624 * or if it's being ignored, we continue on looking for another
625 * signal. Otherwise we return the specified signal, provided
626 * it's not a signal that causes a job control stop.
627 *
628 * When stopped on PR_JOBCONTROL, there is no current
629 * signal; we cancel lwp->lwp_cursig temporarily before
630 * calling isjobstop(). The current signal may be reset
631 * by a debugger while we are stopped in isjobstop().
632 *
633 * If the current thread is accepting the signal
634 * (via sigwait(), sigwaitinfo(), or sigtimedwait()),
635 * we allow the signal to be accepted, even if it is
636 * being ignored, and without causing a job control stop.
637 */
638 if ((sig = lwp->lwp_cursig) != 0) {
639 ext = lwp->lwp_extsig;
640 lwp->lwp_cursig = 0;
641 lwp->lwp_extsig = 0;
642 if (sigismember(&t->t_sigwait, sig) ||
643 (!sigismember(&p->p_ignore, sig) &&
644 !isjobstop(sig))) {
645 if (p->p_flag & (SEXITLWPS|SKILLED)) {
646 sig = SIGKILL;
647 ext = (p->p_flag & SEXTKILLED) != 0;
648 }
649 lwp->lwp_cursig = (uchar_t)sig;
650 lwp->lwp_extsig = (uchar_t)ext;
651 break;
652 }
653 /*
654 * The signal is being ignored or it caused a
655 * job-control stop. If another current signal
656 * has not been established, return the current
657 * siginfo, if any, to the memory manager.
658 */
659 if (lwp->lwp_cursig == 0 && lwp->lwp_curinfo != NULL) {
660 siginfofree(lwp->lwp_curinfo);
661 lwp->lwp_curinfo = NULL;
662 }
663 /*
664 * Loop around again in case we were stopped
665 * on a job control signal and a /proc stop
666 * request was posted or another current signal
667 * was established while we were stopped.
668 */
669 continue;
670 }
671
672 if (p->p_stopsig && !lwp->lwp_nostop &&
673 curthread != p->p_agenttp) {
674 /*
675 * Some lwp in the process has already stopped
676 * showing PR_JOBCONTROL. This is a stop in
677 * sympathy with the other lwp, even if this
678 * lwp is blocking the stopping signal.
679 */
680 stop(PR_JOBCONTROL, p->p_stopsig);
681 continue;
682 }
683
684 /*
685 * Loop on the pending signals until we find a
686 * non-held signal that is traced or not ignored.
687 * First check the signals pending for the lwp,
688 * then the signals pending for the process as a whole.
689 */
690 for (;;) {
691 if ((sig = fsig(&t->t_sig, t)) != 0) {
692 toproc = 0;
693 if (tracing(p, sig) ||
694 sigismember(&t->t_sigwait, sig) ||
695 !sigismember(&p->p_ignore, sig)) {
696 if (sigismember(&t->t_extsig, sig))
697 ext = 1;
698 break;
699 }
700 sigdelset(&t->t_sig, sig);
701 sigdelset(&t->t_extsig, sig);
702 sigdelq(p, t, sig);
703 } else if ((sig = fsig(&p->p_sig, t)) != 0) {
704 if (sig == SIGCLD)
705 sigcld_found = 1;
706 toproc = 1;
707 if (tracing(p, sig) ||
708 sigismember(&t->t_sigwait, sig) ||
709 !sigismember(&p->p_ignore, sig)) {
710 if (sigismember(&p->p_extsig, sig))
711 ext = 1;
712 break;
713 }
714 sigdelset(&p->p_sig, sig);
715 sigdelset(&p->p_extsig, sig);
716 sigdelq(p, NULL, sig);
717 } else {
718 /* no signal was found */
719 break;
720 }
721 }
722
723 if (sig == 0) { /* no signal was found */
724 if (p->p_flag & (SEXITLWPS|SKILLED)) {
725 lwp->lwp_cursig = SIGKILL;
726 sig = SIGKILL;
727 ext = (p->p_flag & SEXTKILLED) != 0;
728 }
729 break;
730 }
731
732 /*
733 * If we have been informed not to stop (i.e., we are being
734 * called from within a network operation), then don't promote
735 * the signal at this time, just return the signal number.
736 * We will call issig() again later when it is safe.
737 *
738 * fsig() does not return a jobcontrol stopping signal
739 * with a default action of stopping the process if
740 * lwp_nostop is set, so we won't be causing a bogus
741 * EINTR by this action. (Such a signal is eaten by
742 * isjobstop() when we loop around to do final checks.)
743 */
744 if (lwp->lwp_nostop) {
745 nostop_break = 1;
746 break;
747 }
748
749 /*
750 * Promote the signal from pending to current.
751 *
752 * Note that sigdeq() will set lwp->lwp_curinfo to NULL
753 * if no siginfo_t exists for this signal.
754 */
755 lwp->lwp_cursig = (uchar_t)sig;
756 lwp->lwp_extsig = (uchar_t)ext;
757 t->t_sig_check = 1; /* so post_syscall will see signal */
758 ASSERT(lwp->lwp_curinfo == NULL);
759 sigdeq(p, toproc ? NULL : t, sig, &lwp->lwp_curinfo);
760
761 if (tracing(p, sig))
762 stop(PR_SIGNALLED, sig);
763
764 /*
765 * Loop around to check for requested stop before
766 * performing the usual current-signal actions.
767 */
768 }
769
770 mutex_exit(&p->p_lock);
771
772 /*
773 * If SIGCLD was dequeued from the process's signal queue,
774 * search for other pending SIGCLD's from the list of children.
775 */
776 if (sigcld_found)
777 sigcld_repost();
778
779 if (sig != 0)
780 (void) undo_watch_step(NULL);
781
782 /*
783 * If we have been blocked since the p_lock was dropped off
784 * above, then this promoted signal might have been handled
785 * already when we were on the way back from sleep queue, so
786 * just ignore it.
787 * If we have been informed not to stop, just return the signal
788 * number. Also see comments above.
789 */
790 if (!nostop_break) {
791 sig = lwp->lwp_cursig;
792 }
793
794 return (sig != 0);
795 }
796
797 /*
798 * Return true if the process is currently stopped showing PR_JOBCONTROL.
799 * This is true only if all of the process's lwp's are so stopped.
800 * If this is asked by one of the lwps in the process, exclude that lwp.
801 */
802 int
jobstopped(proc_t * p)803 jobstopped(proc_t *p)
804 {
805 kthread_t *t;
806
807 ASSERT(MUTEX_HELD(&p->p_lock));
808
809 if ((t = p->p_tlist) == NULL)
810 return (0);
811
812 do {
813 thread_lock(t);
814 /* ignore current, zombie and suspended lwps in the test */
815 if (!(t == curthread || t->t_state == TS_ZOMB ||
816 SUSPENDED(t)) &&
817 (t->t_state != TS_STOPPED ||
818 t->t_whystop != PR_JOBCONTROL)) {
819 thread_unlock(t);
820 return (0);
821 }
822 thread_unlock(t);
823 } while ((t = t->t_forw) != p->p_tlist);
824
825 return (1);
826 }
827
828 /*
829 * Put ourself (curthread) into the stopped state and notify tracers.
830 */
831 void
stop(int why,int what)832 stop(int why, int what)
833 {
834 kthread_t *t = curthread;
835 proc_t *p = ttoproc(t);
836 klwp_t *lwp = ttolwp(t);
837 kthread_t *tx;
838 lwpent_t *lep;
839 int procstop;
840 int flags = TS_ALLSTART;
841 hrtime_t stoptime;
842
843 /*
844 * Can't stop a system process.
845 */
846 if (p == NULL || lwp == NULL || (p->p_flag & SSYS) || p->p_as == &kas)
847 return;
848
849 ASSERT(MUTEX_HELD(&p->p_lock));
850
851 if (why != PR_SUSPENDED && why != PR_CHECKPOINT) {
852 /*
853 * Don't stop an lwp with SIGKILL pending.
854 * Don't stop if the process or lwp is exiting.
855 */
856 if (lwp->lwp_cursig == SIGKILL ||
857 sigismember(&t->t_sig, SIGKILL) ||
858 sigismember(&p->p_sig, SIGKILL) ||
859 (t->t_proc_flag & TP_LWPEXIT) ||
860 (p->p_flag & (SEXITLWPS|SKILLED))) {
861 p->p_stopsig = 0;
862 t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP);
863 return;
864 }
865 }
866
867 /*
868 * Make sure we don't deadlock on a recursive call to prstop().
869 * prstop() sets the lwp_nostop flag.
870 */
871 if (lwp->lwp_nostop)
872 return;
873
874 /*
875 * Make sure the lwp is in an orderly state for inspection
876 * by a debugger through /proc or for dumping via core().
877 */
878 schedctl_finish_sigblock(t);
879 t->t_proc_flag |= TP_STOPPING; /* must set before dropping p_lock */
880 mutex_exit(&p->p_lock);
881 stoptime = gethrtime();
882 prstop(why, what);
883 (void) undo_watch_step(NULL);
884 mutex_enter(&p->p_lock);
885 ASSERT(t->t_state == TS_ONPROC);
886
887 switch (why) {
888 case PR_CHECKPOINT:
889 /*
890 * The situation may have changed since we dropped
891 * and reacquired p->p_lock. Double-check now
892 * whether we should stop or not.
893 */
894 if (!(t->t_proc_flag & TP_CHKPT)) {
895 t->t_proc_flag &= ~TP_STOPPING;
896 return;
897 }
898 t->t_proc_flag &= ~TP_CHKPT;
899 flags &= ~TS_RESUME;
900 break;
901
902 case PR_JOBCONTROL:
903 ASSERT(what == SIGSTOP || what == SIGTSTP ||
904 what == SIGTTIN || what == SIGTTOU);
905 flags &= ~TS_XSTART;
906 break;
907
908 case PR_SUSPENDED:
909 ASSERT(what == SUSPEND_NORMAL || what == SUSPEND_PAUSE);
910 /*
911 * The situation may have changed since we dropped
912 * and reacquired p->p_lock. Double-check now
913 * whether we should stop or not.
914 */
915 if (what == SUSPEND_PAUSE) {
916 if (!(t->t_proc_flag & TP_PAUSE)) {
917 t->t_proc_flag &= ~TP_STOPPING;
918 return;
919 }
920 flags &= ~TS_UNPAUSE;
921 } else {
922 if (!((t->t_proc_flag & TP_HOLDLWP) ||
923 (p->p_flag & (SHOLDFORK|SHOLDFORK1|SHOLDWATCH)))) {
924 t->t_proc_flag &= ~TP_STOPPING;
925 return;
926 }
927 /*
928 * If SHOLDFORK is in effect and we are stopping
929 * while asleep (not at the top of the stack),
930 * we return now to allow the hold to take effect
931 * when we reach the top of the kernel stack.
932 */
933 if (lwp->lwp_asleep && (p->p_flag & SHOLDFORK)) {
934 t->t_proc_flag &= ~TP_STOPPING;
935 return;
936 }
937 flags &= ~TS_CSTART;
938 }
939 break;
940
941 default: /* /proc stop */
942 flags &= ~TS_PSTART;
943 /*
944 * Do synchronous stop unless the async-stop flag is set.
945 * If why is PR_REQUESTED and t->t_dtrace_stop flag is set,
946 * then no debugger is present and we also do synchronous stop.
947 */
948 if ((why != PR_REQUESTED || t->t_dtrace_stop) &&
949 !(p->p_proc_flag & P_PR_ASYNC)) {
950 int notify;
951
952 for (tx = t->t_forw; tx != t; tx = tx->t_forw) {
953 notify = 0;
954 thread_lock(tx);
955 if (ISTOPPED(tx) ||
956 (tx->t_proc_flag & TP_PRSTOP)) {
957 thread_unlock(tx);
958 continue;
959 }
960 tx->t_proc_flag |= TP_PRSTOP;
961 tx->t_sig_check = 1;
962 if (tx->t_state == TS_SLEEP &&
963 (tx->t_flag & T_WAKEABLE)) {
964 /*
965 * Don't actually wake it up if it's
966 * in one of the lwp_*() syscalls.
967 * Mark it virtually stopped and
968 * notify /proc waiters (below).
969 */
970 if (tx->t_wchan0 == NULL)
971 setrun_locked(tx);
972 else {
973 tx->t_proc_flag |= TP_PRVSTOP;
974 tx->t_stoptime = stoptime;
975 notify = 1;
976 }
977 }
978
979 /* Move waiting thread to run queue */
980 if (ISWAITING(tx))
981 setrun_locked(tx);
982
983 /*
984 * force the thread into the kernel
985 * if it is not already there.
986 */
987 if (tx->t_state == TS_ONPROC &&
988 tx->t_cpu != CPU)
989 poke_cpu(tx->t_cpu->cpu_id);
990 thread_unlock(tx);
991 lep = p->p_lwpdir[tx->t_dslot].ld_entry;
992 if (notify && lep->le_trace)
993 prnotify(lep->le_trace);
994 }
995 /*
996 * We do this just in case one of the threads we asked
997 * to stop is in holdlwps() (called from cfork()) or
998 * lwp_suspend().
999 */
1000 cv_broadcast(&p->p_holdlwps);
1001 }
1002 break;
1003 }
1004
1005 t->t_stoptime = stoptime;
1006
1007 if (why == PR_JOBCONTROL || (why == PR_SUSPENDED && p->p_stopsig)) {
1008 /*
1009 * Determine if the whole process is jobstopped.
1010 */
1011 if (jobstopped(p)) {
1012 sigqueue_t *sqp;
1013 int sig;
1014
1015 if ((sig = p->p_stopsig) == 0)
1016 p->p_stopsig = (uchar_t)(sig = what);
1017 mutex_exit(&p->p_lock);
1018 sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
1019 mutex_enter(&pidlock);
1020 /*
1021 * The last lwp to stop notifies the parent.
1022 * Turn off the CLDCONT flag now so the first
1023 * lwp to continue knows what to do.
1024 */
1025 p->p_pidflag &= ~CLDCONT;
1026 p->p_wcode = CLD_STOPPED;
1027 p->p_wdata = sig;
1028 sigcld(p, sqp);
1029 /*
1030 * Grab p->p_lock before releasing pidlock so the
1031 * parent and the child don't have a race condition.
1032 */
1033 mutex_enter(&p->p_lock);
1034 mutex_exit(&pidlock);
1035 p->p_stopsig = 0;
1036 } else if (why == PR_JOBCONTROL && p->p_stopsig == 0) {
1037 /*
1038 * Set p->p_stopsig and wake up sleeping lwps
1039 * so they will stop in sympathy with this lwp.
1040 */
1041 p->p_stopsig = (uchar_t)what;
1042 pokelwps(p);
1043 /*
1044 * We do this just in case one of the threads we asked
1045 * to stop is in holdlwps() (called from cfork()) or
1046 * lwp_suspend().
1047 */
1048 cv_broadcast(&p->p_holdlwps);
1049 }
1050 }
1051
1052 if (why != PR_JOBCONTROL && why != PR_CHECKPOINT) {
1053 /*
1054 * Do process-level notification when all lwps are
1055 * either stopped on events of interest to /proc
1056 * or are stopped showing PR_SUSPENDED or are zombies.
1057 */
1058 procstop = 1;
1059 for (tx = t->t_forw; procstop && tx != t; tx = tx->t_forw) {
1060 if (VSTOPPED(tx))
1061 continue;
1062 thread_lock(tx);
1063 switch (tx->t_state) {
1064 case TS_ZOMB:
1065 break;
1066 case TS_STOPPED:
1067 /* neither ISTOPPED nor SUSPENDED? */
1068 if ((tx->t_schedflag &
1069 (TS_CSTART | TS_UNPAUSE | TS_PSTART)) ==
1070 (TS_CSTART | TS_UNPAUSE | TS_PSTART))
1071 procstop = 0;
1072 break;
1073 case TS_SLEEP:
1074 /* not paused for watchpoints? */
1075 if (!(tx->t_flag & T_WAKEABLE) ||
1076 tx->t_wchan0 == NULL ||
1077 !(tx->t_proc_flag & TP_PAUSE))
1078 procstop = 0;
1079 break;
1080 default:
1081 procstop = 0;
1082 break;
1083 }
1084 thread_unlock(tx);
1085 }
1086 if (procstop) {
1087 /* there must not be any remapped watched pages now */
1088 ASSERT(p->p_mapcnt == 0);
1089 if (p->p_proc_flag & P_PR_PTRACE) {
1090 /* ptrace() compatibility */
1091 mutex_exit(&p->p_lock);
1092 mutex_enter(&pidlock);
1093 p->p_wcode = CLD_TRAPPED;
1094 p->p_wdata = (why == PR_SIGNALLED)?
1095 what : SIGTRAP;
1096 cv_broadcast(&p->p_parent->p_cv);
1097 /*
1098 * Grab p->p_lock before releasing pidlock so
1099 * parent and child don't have a race condition.
1100 */
1101 mutex_enter(&p->p_lock);
1102 mutex_exit(&pidlock);
1103 }
1104 if (p->p_trace) /* /proc */
1105 prnotify(p->p_trace);
1106 cv_broadcast(&pr_pid_cv[p->p_slot]); /* pauselwps() */
1107 cv_broadcast(&p->p_holdlwps); /* holdwatch() */
1108 }
1109 if (why != PR_SUSPENDED) {
1110 lep = p->p_lwpdir[t->t_dslot].ld_entry;
1111 if (lep->le_trace) /* /proc */
1112 prnotify(lep->le_trace);
1113 /*
1114 * Special notification for creation of the agent lwp.
1115 */
1116 if (t == p->p_agenttp &&
1117 (t->t_proc_flag & TP_PRSTOP) &&
1118 p->p_trace)
1119 prnotify(p->p_trace);
1120 /*
1121 * The situation may have changed since we dropped
1122 * and reacquired p->p_lock. Double-check now
1123 * whether we should stop or not.
1124 */
1125 if (!(t->t_proc_flag & TP_STOPPING)) {
1126 if (t->t_proc_flag & TP_PRSTOP)
1127 t->t_proc_flag |= TP_STOPPING;
1128 }
1129 t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP);
1130 prnostep(lwp);
1131 }
1132 }
1133
1134 if (why == PR_SUSPENDED) {
1135
1136 /*
1137 * We always broadcast in the case of SUSPEND_PAUSE. This is
1138 * because checks for TP_PAUSE take precedence over checks for
1139 * SHOLDWATCH. If a thread is trying to stop because of
1140 * SUSPEND_PAUSE and tries to do a holdwatch(), it will be
1141 * waiting for the rest of the threads to enter a stopped state.
1142 * If we are stopping for a SUSPEND_PAUSE, we may be the last
1143 * lwp and not know it, so broadcast just in case.
1144 */
1145 if (what == SUSPEND_PAUSE ||
1146 --p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP))
1147 cv_broadcast(&p->p_holdlwps);
1148
1149 }
1150
1151 /*
1152 * Need to do this here (rather than after the thread is officially
1153 * stopped) because we can't call mutex_enter from a stopped thread.
1154 */
1155 if (why == PR_CHECKPOINT)
1156 del_one_utstop();
1157
1158 thread_lock(t);
1159 ASSERT((t->t_schedflag & TS_ALLSTART) == 0);
1160 t->t_schedflag |= flags;
1161 t->t_whystop = (short)why;
1162 t->t_whatstop = (short)what;
1163 CL_STOP(t, why, what);
1164 (void) new_mstate(t, LMS_STOPPED);
1165 thread_stop(t); /* set stop state and drop lock */
1166
1167 if (why != PR_SUSPENDED && why != PR_CHECKPOINT) {
1168 /*
1169 * We may have gotten a SIGKILL or a SIGCONT when
1170 * we released p->p_lock; make one last check.
1171 * Also check for a /proc run-on-last-close.
1172 */
1173 if (sigismember(&t->t_sig, SIGKILL) ||
1174 sigismember(&p->p_sig, SIGKILL) ||
1175 (t->t_proc_flag & TP_LWPEXIT) ||
1176 (p->p_flag & (SEXITLWPS|SKILLED))) {
1177 p->p_stopsig = 0;
1178 thread_lock(t);
1179 t->t_schedflag |= TS_XSTART | TS_PSTART;
1180 setrun_locked(t);
1181 thread_unlock_nopreempt(t);
1182 } else if (why == PR_JOBCONTROL) {
1183 if (p->p_flag & SSCONT) {
1184 /*
1185 * This resulted from a SIGCONT posted
1186 * while we were not holding p->p_lock.
1187 */
1188 p->p_stopsig = 0;
1189 thread_lock(t);
1190 t->t_schedflag |= TS_XSTART;
1191 setrun_locked(t);
1192 thread_unlock_nopreempt(t);
1193 }
1194 } else if (!(t->t_proc_flag & TP_STOPPING)) {
1195 /*
1196 * This resulted from a /proc run-on-last-close.
1197 */
1198 thread_lock(t);
1199 t->t_schedflag |= TS_PSTART;
1200 setrun_locked(t);
1201 thread_unlock_nopreempt(t);
1202 }
1203 }
1204
1205 t->t_proc_flag &= ~TP_STOPPING;
1206 mutex_exit(&p->p_lock);
1207
1208 swtch();
1209 setallwatch(); /* reestablish any watchpoints set while stopped */
1210 mutex_enter(&p->p_lock);
1211 prbarrier(p); /* barrier against /proc locking */
1212 }
1213
1214 /* Interface for resetting user thread stop count. */
1215 void
utstop_init(void)1216 utstop_init(void)
1217 {
1218 mutex_enter(&thread_stop_lock);
1219 num_utstop = 0;
1220 mutex_exit(&thread_stop_lock);
1221 }
1222
1223 /* Interface for registering a user thread stop request. */
1224 void
add_one_utstop(void)1225 add_one_utstop(void)
1226 {
1227 mutex_enter(&thread_stop_lock);
1228 num_utstop++;
1229 mutex_exit(&thread_stop_lock);
1230 }
1231
1232 /* Interface for cancelling a user thread stop request */
1233 void
del_one_utstop(void)1234 del_one_utstop(void)
1235 {
1236 mutex_enter(&thread_stop_lock);
1237 num_utstop--;
1238 if (num_utstop == 0)
1239 cv_broadcast(&utstop_cv);
1240 mutex_exit(&thread_stop_lock);
1241 }
1242
1243 /* Interface to wait for all user threads to be stopped */
1244 void
utstop_timedwait(clock_t ticks)1245 utstop_timedwait(clock_t ticks)
1246 {
1247 mutex_enter(&thread_stop_lock);
1248 if (num_utstop > 0)
1249 (void) cv_reltimedwait(&utstop_cv, &thread_stop_lock, ticks,
1250 TR_CLOCK_TICK);
1251 mutex_exit(&thread_stop_lock);
1252 }
1253
1254 /*
1255 * Perform the action specified by the current signal.
1256 * The usual sequence is:
1257 * if (issig())
1258 * psig();
1259 * The signal bit has already been cleared by issig(),
1260 * the current signal number has been stored in lwp_cursig,
1261 * and the current siginfo is now referenced by lwp_curinfo.
1262 */
1263 void
psig(void)1264 psig(void)
1265 {
1266 kthread_t *t = curthread;
1267 proc_t *p = ttoproc(t);
1268 klwp_t *lwp = ttolwp(t);
1269 void (*func)();
1270 int sig, rc, code, ext;
1271 pid_t pid = -1;
1272 id_t ctid = 0;
1273 zoneid_t zoneid = -1;
1274 sigqueue_t *sqp = NULL;
1275 uint32_t auditing = AU_AUDITING();
1276
1277 mutex_enter(&p->p_lock);
1278 schedctl_finish_sigblock(t);
1279 code = CLD_KILLED;
1280
1281 if (p->p_flag & SEXITLWPS) {
1282 lwp_exit();
1283 return; /* not reached */
1284 }
1285 sig = lwp->lwp_cursig;
1286 ext = lwp->lwp_extsig;
1287
1288 ASSERT(sig < NSIG);
1289
1290 /*
1291 * Re-check lwp_cursig after we acquire p_lock. Since p_lock was
1292 * dropped between issig() and psig(), a debugger may have cleared
1293 * lwp_cursig via /proc in the intervening window.
1294 */
1295 if (sig == 0) {
1296 if (lwp->lwp_curinfo) {
1297 siginfofree(lwp->lwp_curinfo);
1298 lwp->lwp_curinfo = NULL;
1299 }
1300 if (t->t_flag & T_TOMASK) { /* sigsuspend or pollsys */
1301 t->t_flag &= ~T_TOMASK;
1302 t->t_hold = lwp->lwp_sigoldmask;
1303 }
1304 mutex_exit(&p->p_lock);
1305 return;
1306 }
1307 func = PTOU(curproc)->u_signal[sig-1];
1308
1309 /*
1310 * The signal disposition could have changed since we promoted
1311 * this signal from pending to current (we dropped p->p_lock).
1312 * This can happen only in a multi-threaded process.
1313 */
1314 if (sigismember(&p->p_ignore, sig) ||
1315 (func == SIG_DFL && sigismember(&stopdefault, sig))) {
1316 lwp->lwp_cursig = 0;
1317 lwp->lwp_extsig = 0;
1318 if (lwp->lwp_curinfo) {
1319 siginfofree(lwp->lwp_curinfo);
1320 lwp->lwp_curinfo = NULL;
1321 }
1322 if (t->t_flag & T_TOMASK) { /* sigsuspend or pollsys */
1323 t->t_flag &= ~T_TOMASK;
1324 t->t_hold = lwp->lwp_sigoldmask;
1325 }
1326 mutex_exit(&p->p_lock);
1327 return;
1328 }
1329
1330 /*
1331 * We check lwp_curinfo first since pr_setsig can actually
1332 * stuff a sigqueue_t there for SIGKILL.
1333 */
1334 if (lwp->lwp_curinfo) {
1335 sqp = lwp->lwp_curinfo;
1336 } else if (sig == SIGKILL && p->p_killsqp) {
1337 sqp = p->p_killsqp;
1338 }
1339
1340 if (sqp != NULL) {
1341 if (SI_FROMUSER(&sqp->sq_info)) {
1342 pid = sqp->sq_info.si_pid;
1343 ctid = sqp->sq_info.si_ctid;
1344 zoneid = sqp->sq_info.si_zoneid;
1345 }
1346 /*
1347 * If we have a sigqueue_t, its sq_external value
1348 * trumps the lwp_extsig value. It is theoretically
1349 * possible to make lwp_extsig reflect reality, but it
1350 * would unnecessarily complicate things elsewhere.
1351 */
1352 ext = sqp->sq_external;
1353 }
1354
1355 if (func == SIG_DFL) {
1356 mutex_exit(&p->p_lock);
1357 DTRACE_PROC3(signal__handle, int, sig, k_siginfo_t *,
1358 NULL, void (*)(void), func);
1359 } else {
1360 k_siginfo_t *sip = NULL;
1361
1362 /*
1363 * If DTrace user-land tracing is active, give DTrace a
1364 * chance to defer the signal until after tracing is
1365 * complete.
1366 */
1367 if (t->t_dtrace_on && dtrace_safe_defer_signal()) {
1368 mutex_exit(&p->p_lock);
1369 return;
1370 }
1371
1372 /*
1373 * save siginfo pointer here, in case the
1374 * the signal's reset bit is on
1375 *
1376 * The presence of a current signal prevents paging
1377 * from succeeding over a network. We copy the current
1378 * signal information to the side and cancel the current
1379 * signal so that sendsig() will succeed.
1380 */
1381 if (sigismember(&p->p_siginfo, sig)) {
1382 sip = &lwp->lwp_siginfo;
1383 if (sqp) {
1384 bcopy(&sqp->sq_info, sip, sizeof (*sip));
1385 /*
1386 * If we were interrupted out of a system call
1387 * due to pthread_cancel(), inform libc.
1388 */
1389 if (sig == SIGCANCEL &&
1390 sip->si_code == SI_LWP &&
1391 t->t_sysnum != 0)
1392 schedctl_cancel_eintr();
1393 } else if (sig == SIGPROF && sip->si_signo == SIGPROF &&
1394 t->t_rprof != NULL && t->t_rprof->rp_anystate) {
1395 /* EMPTY */;
1396 } else {
1397 bzero(sip, sizeof (*sip));
1398 sip->si_signo = sig;
1399 sip->si_code = SI_NOINFO;
1400 }
1401 }
1402
1403 if (t->t_flag & T_TOMASK)
1404 t->t_flag &= ~T_TOMASK;
1405 else
1406 lwp->lwp_sigoldmask = t->t_hold;
1407 sigorset(&t->t_hold, &PTOU(curproc)->u_sigmask[sig-1]);
1408 if (!sigismember(&PTOU(curproc)->u_signodefer, sig))
1409 sigaddset(&t->t_hold, sig);
1410 if (sigismember(&PTOU(curproc)->u_sigresethand, sig))
1411 setsigact(sig, SIG_DFL, &nullsmask, 0);
1412
1413 DTRACE_PROC3(signal__handle, int, sig, k_siginfo_t *,
1414 sip, void (*)(void), func);
1415
1416 lwp->lwp_cursig = 0;
1417 lwp->lwp_extsig = 0;
1418 if (lwp->lwp_curinfo) {
1419 /* p->p_killsqp is freed by freeproc */
1420 siginfofree(lwp->lwp_curinfo);
1421 lwp->lwp_curinfo = NULL;
1422 }
1423 mutex_exit(&p->p_lock);
1424 lwp->lwp_ru.nsignals++;
1425
1426 if (p->p_model == DATAMODEL_NATIVE)
1427 rc = sendsig(sig, sip, func);
1428 #ifdef _SYSCALL32_IMPL
1429 else
1430 rc = sendsig32(sig, sip, func);
1431 #endif /* _SYSCALL32_IMPL */
1432 if (rc)
1433 return;
1434 sig = lwp->lwp_cursig = SIGSEGV;
1435 ext = 0; /* lwp_extsig was set above */
1436 pid = -1;
1437 ctid = 0;
1438 }
1439
1440 if (sigismember(&coredefault, sig)) {
1441 /*
1442 * Terminate all LWPs but don't discard them.
1443 * If another lwp beat us to the punch by calling exit(),
1444 * evaporate now.
1445 */
1446 proc_is_exiting(p);
1447 if (exitlwps(1) != 0) {
1448 mutex_enter(&p->p_lock);
1449 lwp_exit();
1450 }
1451 /* if we got a SIGKILL from anywhere, no core dump */
1452 if (p->p_flag & SKILLED) {
1453 sig = SIGKILL;
1454 ext = (p->p_flag & SEXTKILLED) != 0;
1455 } else {
1456 if (auditing) /* audit core dump */
1457 audit_core_start(sig);
1458 if (core(sig, ext) == 0)
1459 code = CLD_DUMPED;
1460 if (auditing) /* audit core dump */
1461 audit_core_finish(code);
1462 }
1463 }
1464
1465 /*
1466 * Generate a contract event once if the process is killed
1467 * by a signal.
1468 */
1469 if (ext) {
1470 proc_is_exiting(p);
1471 if (exitlwps(0) != 0) {
1472 mutex_enter(&p->p_lock);
1473 lwp_exit();
1474 }
1475 contract_process_sig(p->p_ct_process, p, sig, pid, ctid,
1476 zoneid);
1477 }
1478
1479 exit(code, sig);
1480 }
1481
1482 /*
1483 * Find next unheld signal in ssp for thread t.
1484 */
1485 int
fsig(k_sigset_t * ssp,kthread_t * t)1486 fsig(k_sigset_t *ssp, kthread_t *t)
1487 {
1488 proc_t *p = ttoproc(t);
1489 user_t *up = PTOU(p);
1490 int i;
1491 k_sigset_t temp;
1492
1493 ASSERT(MUTEX_HELD(&p->p_lock));
1494
1495 /*
1496 * Don't promote any signals for the parent of a vfork()d
1497 * child that hasn't yet released the parent's memory.
1498 */
1499 if (p->p_flag & SVFWAIT)
1500 return (0);
1501
1502 temp = *ssp;
1503 sigdiffset(&temp, &t->t_hold);
1504
1505 /*
1506 * Don't promote stopping signals (except SIGSTOP) for a child
1507 * of vfork() that hasn't yet released the parent's memory.
1508 */
1509 if (p->p_flag & SVFORK)
1510 sigdiffset(&temp, &holdvfork);
1511
1512 /*
1513 * Don't promote a signal that will stop
1514 * the process when lwp_nostop is set.
1515 */
1516 if (ttolwp(t)->lwp_nostop) {
1517 sigdelset(&temp, SIGSTOP);
1518 if (!p->p_pgidp->pid_pgorphaned) {
1519 if (up->u_signal[SIGTSTP-1] == SIG_DFL)
1520 sigdelset(&temp, SIGTSTP);
1521 if (up->u_signal[SIGTTIN-1] == SIG_DFL)
1522 sigdelset(&temp, SIGTTIN);
1523 if (up->u_signal[SIGTTOU-1] == SIG_DFL)
1524 sigdelset(&temp, SIGTTOU);
1525 }
1526 }
1527
1528 /*
1529 * Choose SIGKILL and SIGPROF before all other pending signals.
1530 * The rest are promoted in signal number order.
1531 */
1532 if (sigismember(&temp, SIGKILL))
1533 return (SIGKILL);
1534 if (sigismember(&temp, SIGPROF))
1535 return (SIGPROF);
1536
1537 for (i = 0; i < sizeof (temp) / sizeof (temp.__sigbits[0]); i++) {
1538 if (temp.__sigbits[i])
1539 return ((i * NBBY * sizeof (temp.__sigbits[0])) +
1540 lowbit(temp.__sigbits[i]));
1541 }
1542
1543 return (0);
1544 }
1545
1546 void
setsigact(int sig,void (* disp)(),const k_sigset_t * mask,int flags)1547 setsigact(int sig, void (*disp)(), const k_sigset_t *mask, int flags)
1548 {
1549 proc_t *p = ttoproc(curthread);
1550 kthread_t *t;
1551
1552 ASSERT(MUTEX_HELD(&p->p_lock));
1553
1554 PTOU(curproc)->u_signal[sig - 1] = disp;
1555
1556 /*
1557 * Honor the SA_SIGINFO flag if the signal is being caught.
1558 * Force the SA_SIGINFO flag if the signal is not being caught.
1559 * This is necessary to make sigqueue() and sigwaitinfo() work
1560 * properly together when the signal is set to default or is
1561 * being temporarily ignored.
1562 */
1563 if ((flags & SA_SIGINFO) || disp == SIG_DFL || disp == SIG_IGN)
1564 sigaddset(&p->p_siginfo, sig);
1565 else
1566 sigdelset(&p->p_siginfo, sig);
1567
1568 if (disp != SIG_DFL && disp != SIG_IGN) {
1569 sigdelset(&p->p_ignore, sig);
1570 PTOU(curproc)->u_sigmask[sig - 1] = *mask;
1571 if (!sigismember(&cantreset, sig)) {
1572 if (flags & SA_RESETHAND)
1573 sigaddset(&PTOU(curproc)->u_sigresethand, sig);
1574 else
1575 sigdelset(&PTOU(curproc)->u_sigresethand, sig);
1576 }
1577 if (flags & SA_NODEFER)
1578 sigaddset(&PTOU(curproc)->u_signodefer, sig);
1579 else
1580 sigdelset(&PTOU(curproc)->u_signodefer, sig);
1581 if (flags & SA_RESTART)
1582 sigaddset(&PTOU(curproc)->u_sigrestart, sig);
1583 else
1584 sigdelset(&PTOU(curproc)->u_sigrestart, sig);
1585 if (flags & SA_ONSTACK)
1586 sigaddset(&PTOU(curproc)->u_sigonstack, sig);
1587 else
1588 sigdelset(&PTOU(curproc)->u_sigonstack, sig);
1589 } else if (disp == SIG_IGN ||
1590 (disp == SIG_DFL && sigismember(&ignoredefault, sig))) {
1591 /*
1592 * Setting the signal action to SIG_IGN results in the
1593 * discarding of all pending signals of that signal number.
1594 * Setting the signal action to SIG_DFL does the same *only*
1595 * if the signal's default behavior is to be ignored.
1596 */
1597 sigaddset(&p->p_ignore, sig);
1598 sigdelset(&p->p_sig, sig);
1599 sigdelset(&p->p_extsig, sig);
1600 sigdelq(p, NULL, sig);
1601 t = p->p_tlist;
1602 do {
1603 sigdelset(&t->t_sig, sig);
1604 sigdelset(&t->t_extsig, sig);
1605 sigdelq(p, t, sig);
1606 } while ((t = t->t_forw) != p->p_tlist);
1607 } else {
1608 /*
1609 * The signal action is being set to SIG_DFL and the default
1610 * behavior is to do something: make sure it is not ignored.
1611 */
1612 sigdelset(&p->p_ignore, sig);
1613 }
1614
1615 if (sig == SIGCLD) {
1616 if (flags & SA_NOCLDWAIT)
1617 p->p_flag |= SNOWAIT;
1618 else
1619 p->p_flag &= ~SNOWAIT;
1620
1621 if (flags & SA_NOCLDSTOP)
1622 p->p_flag &= ~SJCTL;
1623 else
1624 p->p_flag |= SJCTL;
1625
1626 if ((p->p_flag & SNOWAIT) || disp == SIG_IGN) {
1627 proc_t *cp, *tp;
1628
1629 mutex_exit(&p->p_lock);
1630 mutex_enter(&pidlock);
1631 for (cp = p->p_child; cp != NULL; cp = tp) {
1632 tp = cp->p_sibling;
1633 if (cp->p_stat == SZOMB &&
1634 !(cp->p_pidflag & CLDWAITPID))
1635 freeproc(cp);
1636 }
1637 mutex_exit(&pidlock);
1638 mutex_enter(&p->p_lock);
1639 }
1640 }
1641 }
1642
1643 /*
1644 * Set all signal actions not already set to SIG_DFL or SIG_IGN to SIG_DFL.
1645 * Called from exec_common() for a process undergoing execve()
1646 * and from cfork() for a newly-created child of vfork().
1647 * In the vfork() case, 'p' is not the current process.
1648 * In both cases, there is only one thread in the process.
1649 */
1650 void
sigdefault(proc_t * p)1651 sigdefault(proc_t *p)
1652 {
1653 kthread_t *t = p->p_tlist;
1654 struct user *up = PTOU(p);
1655 int sig;
1656
1657 ASSERT(MUTEX_HELD(&p->p_lock));
1658
1659 for (sig = 1; sig < NSIG; sig++) {
1660 if (up->u_signal[sig - 1] != SIG_DFL &&
1661 up->u_signal[sig - 1] != SIG_IGN) {
1662 up->u_signal[sig - 1] = SIG_DFL;
1663 sigemptyset(&up->u_sigmask[sig - 1]);
1664 if (sigismember(&ignoredefault, sig)) {
1665 sigdelq(p, NULL, sig);
1666 sigdelq(p, t, sig);
1667 }
1668 if (sig == SIGCLD)
1669 p->p_flag &= ~(SNOWAIT|SJCTL);
1670 }
1671 }
1672 sigorset(&p->p_ignore, &ignoredefault);
1673 sigfillset(&p->p_siginfo);
1674 sigdiffset(&p->p_siginfo, &cantmask);
1675 sigdiffset(&p->p_sig, &ignoredefault);
1676 sigdiffset(&p->p_extsig, &ignoredefault);
1677 sigdiffset(&t->t_sig, &ignoredefault);
1678 sigdiffset(&t->t_extsig, &ignoredefault);
1679 }
1680
1681 void
sigcld(proc_t * cp,sigqueue_t * sqp)1682 sigcld(proc_t *cp, sigqueue_t *sqp)
1683 {
1684 proc_t *pp = cp->p_parent;
1685
1686 ASSERT(MUTEX_HELD(&pidlock));
1687
1688 switch (cp->p_wcode) {
1689 case CLD_EXITED:
1690 case CLD_DUMPED:
1691 case CLD_KILLED:
1692 ASSERT(cp->p_stat == SZOMB);
1693 /*
1694 * The broadcast on p_srwchan_cv is a kludge to
1695 * wakeup a possible thread in uadmin(A_SHUTDOWN).
1696 */
1697 cv_broadcast(&cp->p_srwchan_cv);
1698
1699 /*
1700 * Add to newstate list of the parent
1701 */
1702 add_ns(pp, cp);
1703
1704 cv_broadcast(&pp->p_cv);
1705 if ((pp->p_flag & SNOWAIT) ||
1706 PTOU(pp)->u_signal[SIGCLD - 1] == SIG_IGN) {
1707 if (!(cp->p_pidflag & CLDWAITPID))
1708 freeproc(cp);
1709 } else if (!(cp->p_pidflag & CLDNOSIGCHLD)) {
1710 post_sigcld(cp, sqp);
1711 sqp = NULL;
1712 }
1713 break;
1714
1715 case CLD_STOPPED:
1716 case CLD_CONTINUED:
1717 cv_broadcast(&pp->p_cv);
1718 if (pp->p_flag & SJCTL) {
1719 post_sigcld(cp, sqp);
1720 sqp = NULL;
1721 }
1722 break;
1723 }
1724
1725 if (sqp)
1726 siginfofree(sqp);
1727 }
1728
1729 /*
1730 * Common code called from sigcld() and from
1731 * waitid() and issig_forreal() via sigcld_repost().
1732 * Give the parent process a SIGCLD if it does not have one pending,
1733 * else mark the child process so a SIGCLD can be posted later.
1734 */
1735 static void
post_sigcld(proc_t * cp,sigqueue_t * sqp)1736 post_sigcld(proc_t *cp, sigqueue_t *sqp)
1737 {
1738 proc_t *pp = cp->p_parent;
1739 k_siginfo_t info;
1740
1741 ASSERT(MUTEX_HELD(&pidlock));
1742 mutex_enter(&pp->p_lock);
1743
1744 /*
1745 * If a SIGCLD is pending, then just mark the child process
1746 * so that its SIGCLD will be posted later, when the first
1747 * SIGCLD is taken off the queue or when the parent is ready
1748 * to receive it or accept it, if ever.
1749 */
1750 if (sigismember(&pp->p_sig, SIGCLD)) {
1751 cp->p_pidflag |= CLDPEND;
1752 } else {
1753 cp->p_pidflag &= ~CLDPEND;
1754 if (sqp == NULL) {
1755 /*
1756 * This can only happen when the parent is init.
1757 * (See call to sigcld(q, NULL) in exit().)
1758 * Use KM_NOSLEEP to avoid deadlock.
1759 */
1760 ASSERT(pp == proc_init);
1761 winfo(cp, &info, 0);
1762 sigaddq(pp, NULL, &info, KM_NOSLEEP);
1763 } else {
1764 winfo(cp, &sqp->sq_info, 0);
1765 sigaddqa(pp, NULL, sqp);
1766 sqp = NULL;
1767 }
1768 }
1769
1770 mutex_exit(&pp->p_lock);
1771
1772 if (sqp)
1773 siginfofree(sqp);
1774 }
1775
1776 /*
1777 * Search for a child that has a pending SIGCLD for us, the parent.
1778 * The queue of SIGCLD signals is implied by the list of children.
1779 * We post the SIGCLD signals one at a time so they don't get lost.
1780 * When one is dequeued, another is enqueued, until there are no more.
1781 */
1782 void
sigcld_repost()1783 sigcld_repost()
1784 {
1785 proc_t *pp = curproc;
1786 proc_t *cp;
1787 sigqueue_t *sqp;
1788
1789 sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
1790 mutex_enter(&pidlock);
1791 for (cp = pp->p_child; cp; cp = cp->p_sibling) {
1792 if (cp->p_pidflag & CLDPEND) {
1793 post_sigcld(cp, sqp);
1794 mutex_exit(&pidlock);
1795 return;
1796 }
1797 }
1798 mutex_exit(&pidlock);
1799 kmem_free(sqp, sizeof (sigqueue_t));
1800 }
1801
1802 /*
1803 * count number of sigqueue send by sigaddqa()
1804 */
1805 void
sigqsend(int cmd,proc_t * p,kthread_t * t,sigqueue_t * sigqp)1806 sigqsend(int cmd, proc_t *p, kthread_t *t, sigqueue_t *sigqp)
1807 {
1808 sigqhdr_t *sqh;
1809
1810 sqh = (sigqhdr_t *)sigqp->sq_backptr;
1811 ASSERT(sqh);
1812
1813 mutex_enter(&sqh->sqb_lock);
1814 sqh->sqb_sent++;
1815 mutex_exit(&sqh->sqb_lock);
1816
1817 if (cmd == SN_SEND)
1818 sigaddqa(p, t, sigqp);
1819 else
1820 siginfofree(sigqp);
1821 }
1822
1823 int
sigsendproc(proc_t * p,sigsend_t * pv)1824 sigsendproc(proc_t *p, sigsend_t *pv)
1825 {
1826 struct cred *cr;
1827 proc_t *myprocp = curproc;
1828
1829 ASSERT(MUTEX_HELD(&pidlock));
1830
1831 if (p->p_pid == 1 && pv->sig && sigismember(&cantmask, pv->sig))
1832 return (EPERM);
1833
1834 cr = CRED();
1835
1836 if (pv->checkperm == 0 ||
1837 (pv->sig == SIGCONT && p->p_sessp == myprocp->p_sessp) ||
1838 prochasprocperm(p, myprocp, cr)) {
1839 pv->perm++;
1840 if (pv->sig) {
1841 /* Make sure we should be setting si_pid and friends */
1842 ASSERT(pv->sicode <= 0);
1843 if (SI_CANQUEUE(pv->sicode)) {
1844 sigqueue_t *sqp;
1845
1846 mutex_enter(&myprocp->p_lock);
1847 sqp = sigqalloc(myprocp->p_sigqhdr);
1848 mutex_exit(&myprocp->p_lock);
1849 if (sqp == NULL)
1850 return (EAGAIN);
1851 sqp->sq_info.si_signo = pv->sig;
1852 sqp->sq_info.si_code = pv->sicode;
1853 sqp->sq_info.si_pid = myprocp->p_pid;
1854 sqp->sq_info.si_ctid = PRCTID(myprocp);
1855 sqp->sq_info.si_zoneid = getzoneid();
1856 sqp->sq_info.si_uid = crgetruid(cr);
1857 sqp->sq_info.si_value = pv->value;
1858 mutex_enter(&p->p_lock);
1859 sigqsend(SN_SEND, p, NULL, sqp);
1860 mutex_exit(&p->p_lock);
1861 } else {
1862 k_siginfo_t info;
1863 bzero(&info, sizeof (info));
1864 info.si_signo = pv->sig;
1865 info.si_code = pv->sicode;
1866 info.si_pid = myprocp->p_pid;
1867 info.si_ctid = PRCTID(myprocp);
1868 info.si_zoneid = getzoneid();
1869 info.si_uid = crgetruid(cr);
1870 mutex_enter(&p->p_lock);
1871 /*
1872 * XXX: Should be KM_SLEEP but
1873 * we have to avoid deadlock.
1874 */
1875 sigaddq(p, NULL, &info, KM_NOSLEEP);
1876 mutex_exit(&p->p_lock);
1877 }
1878 }
1879 }
1880
1881 return (0);
1882 }
1883
1884 int
sigsendset(procset_t * psp,sigsend_t * pv)1885 sigsendset(procset_t *psp, sigsend_t *pv)
1886 {
1887 int error;
1888
1889 error = dotoprocs(psp, sigsendproc, (char *)pv);
1890 if (error == 0 && pv->perm == 0)
1891 return (EPERM);
1892
1893 return (error);
1894 }
1895
1896 /*
1897 * Dequeue a queued siginfo structure.
1898 * If a non-null thread pointer is passed then dequeue from
1899 * the thread queue, otherwise dequeue from the process queue.
1900 */
1901 void
sigdeq(proc_t * p,kthread_t * t,int sig,sigqueue_t ** qpp)1902 sigdeq(proc_t *p, kthread_t *t, int sig, sigqueue_t **qpp)
1903 {
1904 sigqueue_t **psqp, *sqp;
1905
1906 ASSERT(MUTEX_HELD(&p->p_lock));
1907
1908 *qpp = NULL;
1909
1910 if (t != NULL) {
1911 sigdelset(&t->t_sig, sig);
1912 sigdelset(&t->t_extsig, sig);
1913 psqp = &t->t_sigqueue;
1914 } else {
1915 sigdelset(&p->p_sig, sig);
1916 sigdelset(&p->p_extsig, sig);
1917 psqp = &p->p_sigqueue;
1918 }
1919
1920 for (;;) {
1921 if ((sqp = *psqp) == NULL)
1922 return;
1923 if (sqp->sq_info.si_signo == sig)
1924 break;
1925 else
1926 psqp = &sqp->sq_next;
1927 }
1928 *qpp = sqp;
1929 *psqp = sqp->sq_next;
1930 for (sqp = *psqp; sqp; sqp = sqp->sq_next) {
1931 if (sqp->sq_info.si_signo == sig) {
1932 if (t != (kthread_t *)NULL) {
1933 sigaddset(&t->t_sig, sig);
1934 t->t_sig_check = 1;
1935 } else {
1936 sigaddset(&p->p_sig, sig);
1937 set_proc_ast(p);
1938 }
1939 break;
1940 }
1941 }
1942 }
1943
1944 /*
1945 * Delete a queued SIGCLD siginfo structure matching the k_siginfo_t argument.
1946 */
1947 void
sigcld_delete(k_siginfo_t * ip)1948 sigcld_delete(k_siginfo_t *ip)
1949 {
1950 proc_t *p = curproc;
1951 int another_sigcld = 0;
1952 sigqueue_t **psqp, *sqp;
1953
1954 ASSERT(ip->si_signo == SIGCLD);
1955
1956 mutex_enter(&p->p_lock);
1957
1958 if (!sigismember(&p->p_sig, SIGCLD)) {
1959 mutex_exit(&p->p_lock);
1960 return;
1961 }
1962
1963 psqp = &p->p_sigqueue;
1964 for (;;) {
1965 if ((sqp = *psqp) == NULL) {
1966 mutex_exit(&p->p_lock);
1967 return;
1968 }
1969 if (sqp->sq_info.si_signo == SIGCLD) {
1970 if (sqp->sq_info.si_pid == ip->si_pid &&
1971 sqp->sq_info.si_code == ip->si_code &&
1972 sqp->sq_info.si_status == ip->si_status)
1973 break;
1974 another_sigcld = 1;
1975 }
1976 psqp = &sqp->sq_next;
1977 }
1978 *psqp = sqp->sq_next;
1979
1980 siginfofree(sqp);
1981
1982 for (sqp = *psqp; !another_sigcld && sqp; sqp = sqp->sq_next) {
1983 if (sqp->sq_info.si_signo == SIGCLD)
1984 another_sigcld = 1;
1985 }
1986
1987 if (!another_sigcld) {
1988 sigdelset(&p->p_sig, SIGCLD);
1989 sigdelset(&p->p_extsig, SIGCLD);
1990 }
1991
1992 mutex_exit(&p->p_lock);
1993 }
1994
1995 /*
1996 * Delete queued siginfo structures.
1997 * If a non-null thread pointer is passed then delete from
1998 * the thread queue, otherwise delete from the process queue.
1999 */
2000 void
sigdelq(proc_t * p,kthread_t * t,int sig)2001 sigdelq(proc_t *p, kthread_t *t, int sig)
2002 {
2003 sigqueue_t **psqp, *sqp;
2004
2005 /*
2006 * We must be holding p->p_lock unless the process is
2007 * being reaped or has failed to get started on fork.
2008 */
2009 ASSERT(MUTEX_HELD(&p->p_lock) ||
2010 p->p_stat == SIDL || p->p_stat == SZOMB);
2011
2012 if (t != (kthread_t *)NULL)
2013 psqp = &t->t_sigqueue;
2014 else
2015 psqp = &p->p_sigqueue;
2016
2017 while (*psqp) {
2018 sqp = *psqp;
2019 if (sig == 0 || sqp->sq_info.si_signo == sig) {
2020 *psqp = sqp->sq_next;
2021 siginfofree(sqp);
2022 } else
2023 psqp = &sqp->sq_next;
2024 }
2025 }
2026
2027 /*
2028 * Insert a siginfo structure into a queue.
2029 * If a non-null thread pointer is passed then add to the thread queue,
2030 * otherwise add to the process queue.
2031 *
2032 * The function sigaddqins() is called with sigqueue already allocated.
2033 * It is called from sigaddqa() and sigaddq() below.
2034 *
2035 * The value of si_code implicitly indicates whether sigp is to be
2036 * explicitly queued, or to be queued to depth one.
2037 */
2038 static void
sigaddqins(proc_t * p,kthread_t * t,sigqueue_t * sigqp)2039 sigaddqins(proc_t *p, kthread_t *t, sigqueue_t *sigqp)
2040 {
2041 sigqueue_t **psqp;
2042 int sig = sigqp->sq_info.si_signo;
2043
2044 sigqp->sq_external = (curproc != &p0) &&
2045 (curproc->p_ct_process != p->p_ct_process);
2046
2047 /*
2048 * issig_forreal() doesn't bother dequeueing signals if SKILLED
2049 * is set, and even if it did, we would want to avoid situation
2050 * (which would be unique to SIGKILL) where one thread dequeued
2051 * the sigqueue_t and another executed psig(). So we create a
2052 * separate stash for SIGKILL's sigqueue_t. Because a second
2053 * SIGKILL can set SEXTKILLED, we overwrite the existing entry
2054 * if (and only if) it was non-extracontractual.
2055 */
2056 if (sig == SIGKILL) {
2057 if (p->p_killsqp == NULL || !p->p_killsqp->sq_external) {
2058 if (p->p_killsqp != NULL)
2059 siginfofree(p->p_killsqp);
2060 p->p_killsqp = sigqp;
2061 sigqp->sq_next = NULL;
2062 } else {
2063 siginfofree(sigqp);
2064 }
2065 return;
2066 }
2067
2068 ASSERT(sig >= 1 && sig < NSIG);
2069 if (t != NULL) /* directed to a thread */
2070 psqp = &t->t_sigqueue;
2071 else /* directed to a process */
2072 psqp = &p->p_sigqueue;
2073 if (SI_CANQUEUE(sigqp->sq_info.si_code) &&
2074 sigismember(&p->p_siginfo, sig)) {
2075 for (; *psqp != NULL; psqp = &(*psqp)->sq_next)
2076 ;
2077 } else {
2078 for (; *psqp != NULL; psqp = &(*psqp)->sq_next) {
2079 if ((*psqp)->sq_info.si_signo == sig) {
2080 siginfofree(sigqp);
2081 return;
2082 }
2083 }
2084 }
2085 *psqp = sigqp;
2086 sigqp->sq_next = NULL;
2087 }
2088
2089 /*
2090 * The function sigaddqa() is called with sigqueue already allocated.
2091 * If signal is ignored, discard but guarantee KILL and generation semantics.
2092 * It is called from sigqueue() and other places.
2093 */
2094 void
sigaddqa(proc_t * p,kthread_t * t,sigqueue_t * sigqp)2095 sigaddqa(proc_t *p, kthread_t *t, sigqueue_t *sigqp)
2096 {
2097 int sig = sigqp->sq_info.si_signo;
2098
2099 ASSERT(MUTEX_HELD(&p->p_lock));
2100 ASSERT(sig >= 1 && sig < NSIG);
2101
2102 if (sig_discardable(p, sig))
2103 siginfofree(sigqp);
2104 else
2105 sigaddqins(p, t, sigqp);
2106
2107 sigtoproc(p, t, sig);
2108 }
2109
2110 /*
2111 * Allocate the sigqueue_t structure and call sigaddqins().
2112 */
2113 void
sigaddq(proc_t * p,kthread_t * t,k_siginfo_t * infop,int km_flags)2114 sigaddq(proc_t *p, kthread_t *t, k_siginfo_t *infop, int km_flags)
2115 {
2116 sigqueue_t *sqp;
2117 int sig = infop->si_signo;
2118
2119 ASSERT(MUTEX_HELD(&p->p_lock));
2120 ASSERT(sig >= 1 && sig < NSIG);
2121
2122 /*
2123 * If the signal will be discarded by sigtoproc() or
2124 * if the process isn't requesting siginfo and it isn't
2125 * blocking the signal (it *could* change it's mind while
2126 * the signal is pending) then don't bother creating one.
2127 */
2128 if (!sig_discardable(p, sig) &&
2129 (sigismember(&p->p_siginfo, sig) ||
2130 (curproc->p_ct_process != p->p_ct_process) ||
2131 (sig == SIGCLD && SI_FROMKERNEL(infop))) &&
2132 ((sqp = kmem_alloc(sizeof (sigqueue_t), km_flags)) != NULL)) {
2133 bcopy(infop, &sqp->sq_info, sizeof (k_siginfo_t));
2134 sqp->sq_func = NULL;
2135 sqp->sq_next = NULL;
2136 sigaddqins(p, t, sqp);
2137 }
2138 sigtoproc(p, t, sig);
2139 }
2140
2141 /*
2142 * Handle stop-on-fault processing for the debugger. Returns 0
2143 * if the fault is cleared during the stop, nonzero if it isn't.
2144 */
2145 int
stop_on_fault(uint_t fault,k_siginfo_t * sip)2146 stop_on_fault(uint_t fault, k_siginfo_t *sip)
2147 {
2148 proc_t *p = ttoproc(curthread);
2149 klwp_t *lwp = ttolwp(curthread);
2150
2151 ASSERT(prismember(&p->p_fltmask, fault));
2152
2153 /*
2154 * Record current fault and siginfo structure so debugger can
2155 * find it.
2156 */
2157 mutex_enter(&p->p_lock);
2158 lwp->lwp_curflt = (uchar_t)fault;
2159 lwp->lwp_siginfo = *sip;
2160
2161 stop(PR_FAULTED, fault);
2162
2163 fault = lwp->lwp_curflt;
2164 lwp->lwp_curflt = 0;
2165 mutex_exit(&p->p_lock);
2166 return (fault);
2167 }
2168
2169 void
sigorset(k_sigset_t * s1,const k_sigset_t * s2)2170 sigorset(k_sigset_t *s1, const k_sigset_t *s2)
2171 {
2172 s1->__sigbits[0] |= s2->__sigbits[0];
2173 s1->__sigbits[1] |= s2->__sigbits[1];
2174 s1->__sigbits[2] |= s2->__sigbits[2];
2175 }
2176
2177 void
sigandset(k_sigset_t * s1,const k_sigset_t * s2)2178 sigandset(k_sigset_t *s1, const k_sigset_t *s2)
2179 {
2180 s1->__sigbits[0] &= s2->__sigbits[0];
2181 s1->__sigbits[1] &= s2->__sigbits[1];
2182 s1->__sigbits[2] &= s2->__sigbits[2];
2183 }
2184
2185 void
sigdiffset(k_sigset_t * s1,const k_sigset_t * s2)2186 sigdiffset(k_sigset_t *s1, const k_sigset_t *s2)
2187 {
2188 s1->__sigbits[0] &= ~(s2->__sigbits[0]);
2189 s1->__sigbits[1] &= ~(s2->__sigbits[1]);
2190 s1->__sigbits[2] &= ~(s2->__sigbits[2]);
2191 }
2192
2193 /*
2194 * Return non-zero if curthread->t_sig_check should be set to 1, that is,
2195 * if there are any signals the thread might take on return from the kernel.
2196 * If ksigset_t's were a single word, we would do:
2197 * return (((p->p_sig | t->t_sig) & ~t->t_hold) & fillset);
2198 */
2199 int
sigcheck(proc_t * p,kthread_t * t)2200 sigcheck(proc_t *p, kthread_t *t)
2201 {
2202 sc_shared_t *tdp = t->t_schedctl;
2203
2204 /*
2205 * If signals are blocked via the schedctl interface
2206 * then we only check for the unmaskable signals.
2207 * The unmaskable signal numbers should all be contained
2208 * in __sigbits[0] and we assume this for speed.
2209 */
2210 #if (CANTMASK1 == 0 && CANTMASK2 == 0)
2211 if (tdp != NULL && tdp->sc_sigblock)
2212 return ((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) &
2213 CANTMASK0);
2214 #else
2215 #error "fix me: CANTMASK1 and CANTMASK2 are not zero"
2216 #endif
2217
2218 /* see uts/common/sys/signal.h for why this must be true */
2219 #if ((MAXSIG > (2 * 32)) && (MAXSIG <= (3 * 32)))
2220 return (((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) &
2221 ~t->t_hold.__sigbits[0]) |
2222 ((p->p_sig.__sigbits[1] | t->t_sig.__sigbits[1]) &
2223 ~t->t_hold.__sigbits[1]) |
2224 (((p->p_sig.__sigbits[2] | t->t_sig.__sigbits[2]) &
2225 ~t->t_hold.__sigbits[2]) & FILLSET2));
2226 #else
2227 #error "fix me: MAXSIG out of bounds"
2228 #endif
2229 }
2230
2231 void
sigintr(k_sigset_t * smask,int intable)2232 sigintr(k_sigset_t *smask, int intable)
2233 {
2234 proc_t *p;
2235 int owned;
2236 k_sigset_t lmask; /* local copy of cantmask */
2237 klwp_t *lwp = ttolwp(curthread);
2238
2239 /*
2240 * Mask out all signals except SIGHUP, SIGINT, SIGQUIT
2241 * and SIGTERM. (Preserving the existing masks).
2242 * This function supports the -intr nfs and ufs mount option.
2243 */
2244
2245 /*
2246 * don't do kernel threads
2247 */
2248 if (lwp == NULL)
2249 return;
2250
2251 /*
2252 * get access to signal mask
2253 */
2254 p = ttoproc(curthread);
2255 owned = mutex_owned(&p->p_lock); /* this is filthy */
2256 if (!owned)
2257 mutex_enter(&p->p_lock);
2258
2259 /*
2260 * remember the current mask
2261 */
2262 schedctl_finish_sigblock(curthread);
2263 *smask = curthread->t_hold;
2264
2265 /*
2266 * mask out all signals
2267 */
2268 sigfillset(&curthread->t_hold);
2269
2270 /*
2271 * Unmask the non-maskable signals (e.g., KILL), as long as
2272 * they aren't already masked (which could happen at exit).
2273 * The first sigdiffset sets lmask to (cantmask & ~curhold). The
2274 * second sets the current hold mask to (~0 & ~lmask), which reduces
2275 * to (~cantmask | curhold).
2276 */
2277 lmask = cantmask;
2278 sigdiffset(&lmask, smask);
2279 sigdiffset(&curthread->t_hold, &lmask);
2280
2281 /*
2282 * Re-enable HUP, QUIT, and TERM iff they were originally enabled
2283 * Re-enable INT if it's originally enabled and the NFS mount option
2284 * nointr is not set.
2285 */
2286 if (!sigismember(smask, SIGHUP))
2287 sigdelset(&curthread->t_hold, SIGHUP);
2288 if (!sigismember(smask, SIGINT) && intable)
2289 sigdelset(&curthread->t_hold, SIGINT);
2290 if (!sigismember(smask, SIGQUIT))
2291 sigdelset(&curthread->t_hold, SIGQUIT);
2292 if (!sigismember(smask, SIGTERM))
2293 sigdelset(&curthread->t_hold, SIGTERM);
2294
2295 /*
2296 * release access to signal mask
2297 */
2298 if (!owned)
2299 mutex_exit(&p->p_lock);
2300
2301 /*
2302 * Indicate that this lwp is not to be stopped.
2303 */
2304 lwp->lwp_nostop++;
2305
2306 }
2307
2308 void
sigunintr(k_sigset_t * smask)2309 sigunintr(k_sigset_t *smask)
2310 {
2311 proc_t *p;
2312 int owned;
2313 klwp_t *lwp = ttolwp(curthread);
2314
2315 /*
2316 * Reset previous mask (See sigintr() above)
2317 */
2318 if (lwp != NULL) {
2319 lwp->lwp_nostop--; /* restore lwp stoppability */
2320 p = ttoproc(curthread);
2321 owned = mutex_owned(&p->p_lock); /* this is filthy */
2322 if (!owned)
2323 mutex_enter(&p->p_lock);
2324 curthread->t_hold = *smask;
2325 /* so unmasked signals will be seen */
2326 curthread->t_sig_check = 1;
2327 if (!owned)
2328 mutex_exit(&p->p_lock);
2329 }
2330 }
2331
2332 void
sigreplace(k_sigset_t * newmask,k_sigset_t * oldmask)2333 sigreplace(k_sigset_t *newmask, k_sigset_t *oldmask)
2334 {
2335 proc_t *p;
2336 int owned;
2337 /*
2338 * Save current signal mask in oldmask, then
2339 * set it to newmask.
2340 */
2341 if (ttolwp(curthread) != NULL) {
2342 p = ttoproc(curthread);
2343 owned = mutex_owned(&p->p_lock); /* this is filthy */
2344 if (!owned)
2345 mutex_enter(&p->p_lock);
2346 schedctl_finish_sigblock(curthread);
2347 if (oldmask != NULL)
2348 *oldmask = curthread->t_hold;
2349 curthread->t_hold = *newmask;
2350 curthread->t_sig_check = 1;
2351 if (!owned)
2352 mutex_exit(&p->p_lock);
2353 }
2354 }
2355
2356 /*
2357 * Return true if the signal number is in range
2358 * and the signal code specifies signal queueing.
2359 */
2360 int
sigwillqueue(int sig,int code)2361 sigwillqueue(int sig, int code)
2362 {
2363 if (sig >= 0 && sig < NSIG) {
2364 switch (code) {
2365 case SI_QUEUE:
2366 case SI_TIMER:
2367 case SI_ASYNCIO:
2368 case SI_MESGQ:
2369 return (1);
2370 }
2371 }
2372 return (0);
2373 }
2374
2375 /*
2376 * The pre-allocated pool (with _SIGQUEUE_PREALLOC entries) is
2377 * allocated at the first sigqueue/signotify call.
2378 */
2379 sigqhdr_t *
sigqhdralloc(size_t size,uint_t maxcount)2380 sigqhdralloc(size_t size, uint_t maxcount)
2381 {
2382 size_t i;
2383 sigqueue_t *sq, *next;
2384 sigqhdr_t *sqh;
2385
2386 /*
2387 * Before the introduction of process.max-sigqueue-size
2388 * _SC_SIGQUEUE_MAX had this static value.
2389 */
2390 #define _SIGQUEUE_PREALLOC 32
2391
2392 i = (_SIGQUEUE_PREALLOC * size) + sizeof (sigqhdr_t);
2393 ASSERT(maxcount <= INT_MAX);
2394 sqh = kmem_alloc(i, KM_SLEEP);
2395 sqh->sqb_count = maxcount;
2396 sqh->sqb_maxcount = maxcount;
2397 sqh->sqb_size = i;
2398 sqh->sqb_pexited = 0;
2399 sqh->sqb_sent = 0;
2400 sqh->sqb_free = sq = (sigqueue_t *)(sqh + 1);
2401 for (i = _SIGQUEUE_PREALLOC - 1; i != 0; i--) {
2402 next = (sigqueue_t *)((uintptr_t)sq + size);
2403 sq->sq_next = next;
2404 sq = next;
2405 }
2406 sq->sq_next = NULL;
2407 cv_init(&sqh->sqb_cv, NULL, CV_DEFAULT, NULL);
2408 mutex_init(&sqh->sqb_lock, NULL, MUTEX_DEFAULT, NULL);
2409 return (sqh);
2410 }
2411
2412 static void sigqrel(sigqueue_t *);
2413
2414 /*
2415 * Allocate a sigqueue/signotify structure from the per process
2416 * pre-allocated pool or allocate a new sigqueue/signotify structure
2417 * if the pre-allocated pool is exhausted.
2418 */
2419 sigqueue_t *
sigqalloc(sigqhdr_t * sqh)2420 sigqalloc(sigqhdr_t *sqh)
2421 {
2422 sigqueue_t *sq = NULL;
2423
2424 ASSERT(MUTEX_HELD(&curproc->p_lock));
2425
2426 if (sqh != NULL) {
2427 mutex_enter(&sqh->sqb_lock);
2428 if (sqh->sqb_count > 0) {
2429 sqh->sqb_count--;
2430 if (sqh->sqb_free == NULL) {
2431 /*
2432 * The pre-allocated pool is exhausted.
2433 */
2434 sq = kmem_alloc(sizeof (sigqueue_t), KM_SLEEP);
2435 sq->sq_func = NULL;
2436 } else {
2437 sq = sqh->sqb_free;
2438 sq->sq_func = sigqrel;
2439 sqh->sqb_free = sq->sq_next;
2440 }
2441 mutex_exit(&sqh->sqb_lock);
2442 bzero(&sq->sq_info, sizeof (k_siginfo_t));
2443 sq->sq_backptr = sqh;
2444 sq->sq_next = NULL;
2445 sq->sq_external = 0;
2446 } else {
2447 mutex_exit(&sqh->sqb_lock);
2448 }
2449 }
2450 return (sq);
2451 }
2452
2453 /*
2454 * Return a sigqueue structure back to the pre-allocated pool.
2455 */
2456 static void
sigqrel(sigqueue_t * sq)2457 sigqrel(sigqueue_t *sq)
2458 {
2459 sigqhdr_t *sqh;
2460
2461 /* make sure that p_lock of the affected process is held */
2462
2463 sqh = (sigqhdr_t *)sq->sq_backptr;
2464 mutex_enter(&sqh->sqb_lock);
2465 if (sqh->sqb_pexited && sqh->sqb_sent == 1) {
2466 mutex_exit(&sqh->sqb_lock);
2467 cv_destroy(&sqh->sqb_cv);
2468 mutex_destroy(&sqh->sqb_lock);
2469 kmem_free(sqh, sqh->sqb_size);
2470 } else {
2471 sqh->sqb_count++;
2472 sqh->sqb_sent--;
2473 sq->sq_next = sqh->sqb_free;
2474 sq->sq_backptr = NULL;
2475 sqh->sqb_free = sq;
2476 cv_signal(&sqh->sqb_cv);
2477 mutex_exit(&sqh->sqb_lock);
2478 }
2479 }
2480
2481 /*
2482 * Free up the pre-allocated sigqueue headers of sigqueue pool
2483 * and signotify pool, if possible.
2484 * Called only by the owning process during exec() and exit().
2485 */
2486 void
sigqfree(proc_t * p)2487 sigqfree(proc_t *p)
2488 {
2489 ASSERT(MUTEX_HELD(&p->p_lock));
2490
2491 if (p->p_sigqhdr != NULL) { /* sigqueue pool */
2492 sigqhdrfree(p->p_sigqhdr);
2493 p->p_sigqhdr = NULL;
2494 }
2495 if (p->p_signhdr != NULL) { /* signotify pool */
2496 sigqhdrfree(p->p_signhdr);
2497 p->p_signhdr = NULL;
2498 }
2499 }
2500
2501 /*
2502 * Free up the pre-allocated header and sigq pool if possible.
2503 */
2504 void
sigqhdrfree(sigqhdr_t * sqh)2505 sigqhdrfree(sigqhdr_t *sqh)
2506 {
2507 mutex_enter(&sqh->sqb_lock);
2508 if (sqh->sqb_sent == 0) {
2509 mutex_exit(&sqh->sqb_lock);
2510 cv_destroy(&sqh->sqb_cv);
2511 mutex_destroy(&sqh->sqb_lock);
2512 kmem_free(sqh, sqh->sqb_size);
2513 } else {
2514 sqh->sqb_pexited = 1;
2515 mutex_exit(&sqh->sqb_lock);
2516 }
2517 }
2518
2519 /*
2520 * Free up a single sigqueue structure.
2521 * No other code should free a sigqueue directly.
2522 */
2523 void
siginfofree(sigqueue_t * sqp)2524 siginfofree(sigqueue_t *sqp)
2525 {
2526 if (sqp != NULL) {
2527 if (sqp->sq_func != NULL)
2528 (sqp->sq_func)(sqp);
2529 else
2530 kmem_free(sqp, sizeof (sigqueue_t));
2531 }
2532 }
2533
2534 /*
2535 * Generate a synchronous signal caused by a hardware
2536 * condition encountered by an lwp. Called from trap().
2537 */
2538 void
trapsig(k_siginfo_t * ip,int restartable)2539 trapsig(k_siginfo_t *ip, int restartable)
2540 {
2541 proc_t *p = ttoproc(curthread);
2542 int sig = ip->si_signo;
2543 sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
2544
2545 ASSERT(sig > 0 && sig < NSIG);
2546
2547 if (curthread->t_dtrace_on)
2548 dtrace_safe_synchronous_signal();
2549
2550 mutex_enter(&p->p_lock);
2551 schedctl_finish_sigblock(curthread);
2552 /*
2553 * Avoid a possible infinite loop if the lwp is holding the
2554 * signal generated by a trap of a restartable instruction or
2555 * if the signal so generated is being ignored by the process.
2556 */
2557 if (restartable &&
2558 (sigismember(&curthread->t_hold, sig) ||
2559 p->p_user.u_signal[sig-1] == SIG_IGN)) {
2560 sigdelset(&curthread->t_hold, sig);
2561 p->p_user.u_signal[sig-1] = SIG_DFL;
2562 sigdelset(&p->p_ignore, sig);
2563 }
2564 bcopy(ip, &sqp->sq_info, sizeof (k_siginfo_t));
2565 sigaddqa(p, curthread, sqp);
2566 mutex_exit(&p->p_lock);
2567 }
2568
2569 /*
2570 * Dispatch the real time profiling signal in the traditional way,
2571 * honoring all of the /proc tracing mechanism built into issig().
2572 */
2573 static void
realsigprof_slow(int sysnum,int nsysarg,int error)2574 realsigprof_slow(int sysnum, int nsysarg, int error)
2575 {
2576 kthread_t *t = curthread;
2577 proc_t *p = ttoproc(t);
2578 klwp_t *lwp = ttolwp(t);
2579 k_siginfo_t *sip = &lwp->lwp_siginfo;
2580 void (*func)();
2581
2582 mutex_enter(&p->p_lock);
2583 func = PTOU(p)->u_signal[SIGPROF - 1];
2584 if (p->p_rprof_cyclic == CYCLIC_NONE ||
2585 func == SIG_DFL || func == SIG_IGN) {
2586 bzero(t->t_rprof, sizeof (*t->t_rprof));
2587 mutex_exit(&p->p_lock);
2588 return;
2589 }
2590 if (sigismember(&t->t_hold, SIGPROF)) {
2591 mutex_exit(&p->p_lock);
2592 return;
2593 }
2594 sip->si_signo = SIGPROF;
2595 sip->si_code = PROF_SIG;
2596 sip->si_errno = error;
2597 hrt2ts(gethrtime(), &sip->si_tstamp);
2598 sip->si_syscall = sysnum;
2599 sip->si_nsysarg = nsysarg;
2600 sip->si_fault = lwp->lwp_lastfault;
2601 sip->si_faddr = lwp->lwp_lastfaddr;
2602 lwp->lwp_lastfault = 0;
2603 lwp->lwp_lastfaddr = NULL;
2604 sigtoproc(p, t, SIGPROF);
2605 mutex_exit(&p->p_lock);
2606 ASSERT(lwp->lwp_cursig == 0);
2607 if (issig(FORREAL))
2608 psig();
2609 sip->si_signo = 0;
2610 bzero(t->t_rprof, sizeof (*t->t_rprof));
2611 }
2612
2613 /*
2614 * We are not tracing the SIGPROF signal, or doing any other unnatural
2615 * acts, like watchpoints, so dispatch the real time profiling signal
2616 * directly, bypassing all of the overhead built into issig().
2617 */
2618 static void
realsigprof_fast(int sysnum,int nsysarg,int error)2619 realsigprof_fast(int sysnum, int nsysarg, int error)
2620 {
2621 kthread_t *t = curthread;
2622 proc_t *p = ttoproc(t);
2623 klwp_t *lwp = ttolwp(t);
2624 k_siginfo_t *sip = &lwp->lwp_siginfo;
2625 void (*func)();
2626 int rc;
2627 int code;
2628
2629 /*
2630 * We don't need to acquire p->p_lock here;
2631 * we are manipulating thread-private data.
2632 */
2633 func = PTOU(p)->u_signal[SIGPROF - 1];
2634 if (p->p_rprof_cyclic == CYCLIC_NONE ||
2635 func == SIG_DFL || func == SIG_IGN) {
2636 bzero(t->t_rprof, sizeof (*t->t_rprof));
2637 return;
2638 }
2639 if (lwp->lwp_cursig != 0 ||
2640 lwp->lwp_curinfo != NULL ||
2641 sigismember(&t->t_hold, SIGPROF)) {
2642 return;
2643 }
2644 sip->si_signo = SIGPROF;
2645 sip->si_code = PROF_SIG;
2646 sip->si_errno = error;
2647 hrt2ts(gethrtime(), &sip->si_tstamp);
2648 sip->si_syscall = sysnum;
2649 sip->si_nsysarg = nsysarg;
2650 sip->si_fault = lwp->lwp_lastfault;
2651 sip->si_faddr = lwp->lwp_lastfaddr;
2652 lwp->lwp_lastfault = 0;
2653 lwp->lwp_lastfaddr = NULL;
2654 if (t->t_flag & T_TOMASK)
2655 t->t_flag &= ~T_TOMASK;
2656 else
2657 lwp->lwp_sigoldmask = t->t_hold;
2658 sigorset(&t->t_hold, &PTOU(p)->u_sigmask[SIGPROF - 1]);
2659 if (!sigismember(&PTOU(p)->u_signodefer, SIGPROF))
2660 sigaddset(&t->t_hold, SIGPROF);
2661 lwp->lwp_extsig = 0;
2662 lwp->lwp_ru.nsignals++;
2663 if (p->p_model == DATAMODEL_NATIVE)
2664 rc = sendsig(SIGPROF, sip, func);
2665 #ifdef _SYSCALL32_IMPL
2666 else
2667 rc = sendsig32(SIGPROF, sip, func);
2668 #endif /* _SYSCALL32_IMPL */
2669 sip->si_signo = 0;
2670 bzero(t->t_rprof, sizeof (*t->t_rprof));
2671 if (rc == 0) {
2672 /*
2673 * sendsig() failed; we must dump core with a SIGSEGV.
2674 * See psig(). This code is copied from there.
2675 */
2676 lwp->lwp_cursig = SIGSEGV;
2677 code = CLD_KILLED;
2678 proc_is_exiting(p);
2679 if (exitlwps(1) != 0) {
2680 mutex_enter(&p->p_lock);
2681 lwp_exit();
2682 }
2683 if (audit_active == C2AUDIT_LOADED)
2684 audit_core_start(SIGSEGV);
2685 if (core(SIGSEGV, 0) == 0)
2686 code = CLD_DUMPED;
2687 if (audit_active == C2AUDIT_LOADED)
2688 audit_core_finish(code);
2689 exit(code, SIGSEGV);
2690 }
2691 }
2692
2693 /*
2694 * Arrange for the real time profiling signal to be dispatched.
2695 */
2696 void
realsigprof(int sysnum,int nsysarg,int error)2697 realsigprof(int sysnum, int nsysarg, int error)
2698 {
2699 kthread_t *t = curthread;
2700 proc_t *p = ttoproc(t);
2701
2702 if (t->t_rprof->rp_anystate == 0)
2703 return;
2704
2705 schedctl_finish_sigblock(t);
2706
2707 /* test for any activity that requires p->p_lock */
2708 if (tracing(p, SIGPROF) || pr_watch_active(p) ||
2709 sigismember(&PTOU(p)->u_sigresethand, SIGPROF)) {
2710 /* do it the classic slow way */
2711 realsigprof_slow(sysnum, nsysarg, error);
2712 } else {
2713 /* do it the cheating-a-little fast way */
2714 realsigprof_fast(sysnum, nsysarg, error);
2715 }
2716 }
2717
2718 #ifdef _SYSCALL32_IMPL
2719
2720 /*
2721 * It's tricky to transmit a sigval between 32-bit and 64-bit
2722 * process, since in the 64-bit world, a pointer and an integer
2723 * are different sizes. Since we're constrained by the standards
2724 * world not to change the types, and it's unclear how useful it is
2725 * to send pointers between address spaces this way, we preserve
2726 * the 'int' interpretation for 32-bit processes interoperating
2727 * with 64-bit processes. The full semantics (pointers or integers)
2728 * are available for N-bit processes interoperating with N-bit
2729 * processes.
2730 */
2731 void
siginfo_kto32(const k_siginfo_t * src,siginfo32_t * dest)2732 siginfo_kto32(const k_siginfo_t *src, siginfo32_t *dest)
2733 {
2734 bzero(dest, sizeof (*dest));
2735
2736 /*
2737 * The absolute minimum content is si_signo and si_code.
2738 */
2739 dest->si_signo = src->si_signo;
2740 if ((dest->si_code = src->si_code) == SI_NOINFO)
2741 return;
2742
2743 /*
2744 * A siginfo generated by user level is structured
2745 * differently from one generated by the kernel.
2746 */
2747 if (SI_FROMUSER(src)) {
2748 dest->si_pid = src->si_pid;
2749 dest->si_ctid = src->si_ctid;
2750 dest->si_zoneid = src->si_zoneid;
2751 dest->si_uid = src->si_uid;
2752 if (SI_CANQUEUE(src->si_code))
2753 dest->si_value.sival_int =
2754 (int32_t)src->si_value.sival_int;
2755 return;
2756 }
2757
2758 dest->si_errno = src->si_errno;
2759
2760 switch (src->si_signo) {
2761 default:
2762 dest->si_pid = src->si_pid;
2763 dest->si_ctid = src->si_ctid;
2764 dest->si_zoneid = src->si_zoneid;
2765 dest->si_uid = src->si_uid;
2766 dest->si_value.sival_int = (int32_t)src->si_value.sival_int;
2767 break;
2768 case SIGCLD:
2769 dest->si_pid = src->si_pid;
2770 dest->si_ctid = src->si_ctid;
2771 dest->si_zoneid = src->si_zoneid;
2772 dest->si_status = src->si_status;
2773 dest->si_stime = src->si_stime;
2774 dest->si_utime = src->si_utime;
2775 break;
2776 case SIGSEGV:
2777 case SIGBUS:
2778 case SIGILL:
2779 case SIGTRAP:
2780 case SIGFPE:
2781 case SIGEMT:
2782 dest->si_addr = (caddr32_t)(uintptr_t)src->si_addr;
2783 dest->si_trapno = src->si_trapno;
2784 dest->si_pc = (caddr32_t)(uintptr_t)src->si_pc;
2785 break;
2786 case SIGPOLL:
2787 case SIGXFSZ:
2788 dest->si_fd = src->si_fd;
2789 dest->si_band = src->si_band;
2790 break;
2791 case SIGPROF:
2792 dest->si_faddr = (caddr32_t)(uintptr_t)src->si_faddr;
2793 dest->si_tstamp.tv_sec = src->si_tstamp.tv_sec;
2794 dest->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec;
2795 dest->si_syscall = src->si_syscall;
2796 dest->si_nsysarg = src->si_nsysarg;
2797 dest->si_fault = src->si_fault;
2798 break;
2799 }
2800 }
2801
2802 void
siginfo_32tok(const siginfo32_t * src,k_siginfo_t * dest)2803 siginfo_32tok(const siginfo32_t *src, k_siginfo_t *dest)
2804 {
2805 bzero(dest, sizeof (*dest));
2806
2807 /*
2808 * The absolute minimum content is si_signo and si_code.
2809 */
2810 dest->si_signo = src->si_signo;
2811 if ((dest->si_code = src->si_code) == SI_NOINFO)
2812 return;
2813
2814 /*
2815 * A siginfo generated by user level is structured
2816 * differently from one generated by the kernel.
2817 */
2818 if (SI_FROMUSER(src)) {
2819 dest->si_pid = src->si_pid;
2820 dest->si_ctid = src->si_ctid;
2821 dest->si_zoneid = src->si_zoneid;
2822 dest->si_uid = src->si_uid;
2823 if (SI_CANQUEUE(src->si_code))
2824 dest->si_value.sival_int =
2825 (int)src->si_value.sival_int;
2826 return;
2827 }
2828
2829 dest->si_errno = src->si_errno;
2830
2831 switch (src->si_signo) {
2832 default:
2833 dest->si_pid = src->si_pid;
2834 dest->si_ctid = src->si_ctid;
2835 dest->si_zoneid = src->si_zoneid;
2836 dest->si_uid = src->si_uid;
2837 dest->si_value.sival_int = (int)src->si_value.sival_int;
2838 break;
2839 case SIGCLD:
2840 dest->si_pid = src->si_pid;
2841 dest->si_ctid = src->si_ctid;
2842 dest->si_zoneid = src->si_zoneid;
2843 dest->si_status = src->si_status;
2844 dest->si_stime = src->si_stime;
2845 dest->si_utime = src->si_utime;
2846 break;
2847 case SIGSEGV:
2848 case SIGBUS:
2849 case SIGILL:
2850 case SIGTRAP:
2851 case SIGFPE:
2852 case SIGEMT:
2853 dest->si_addr = (void *)(uintptr_t)src->si_addr;
2854 dest->si_trapno = src->si_trapno;
2855 dest->si_pc = (void *)(uintptr_t)src->si_pc;
2856 break;
2857 case SIGPOLL:
2858 case SIGXFSZ:
2859 dest->si_fd = src->si_fd;
2860 dest->si_band = src->si_band;
2861 break;
2862 case SIGPROF:
2863 dest->si_faddr = (void *)(uintptr_t)src->si_faddr;
2864 dest->si_tstamp.tv_sec = src->si_tstamp.tv_sec;
2865 dest->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec;
2866 dest->si_syscall = src->si_syscall;
2867 dest->si_nsysarg = src->si_nsysarg;
2868 dest->si_fault = src->si_fault;
2869 break;
2870 }
2871 }
2872
2873 #endif /* _SYSCALL32_IMPL */
2874