1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * rtmutex API
4 */
5 #include <linux/spinlock.h>
6 #include <linux/export.h>
7
8 #define RT_MUTEX_BUILD_MUTEX
9 #include "rtmutex.c"
10
11 /*
12 * Max number of times we'll walk the boosting chain:
13 */
14 int max_lock_depth = 1024;
15
16 /*
17 * Debug aware fast / slowpath lock,trylock,unlock
18 *
19 * The atomic acquire/release ops are compiled away, when either the
20 * architecture does not support cmpxchg or when debugging is enabled.
21 */
__rt_mutex_lock_common(struct rt_mutex * lock,unsigned int state,struct lockdep_map * nest_lock,unsigned int subclass)22 static __always_inline int __rt_mutex_lock_common(struct rt_mutex *lock,
23 unsigned int state,
24 struct lockdep_map *nest_lock,
25 unsigned int subclass)
26 {
27 int ret;
28
29 might_sleep();
30 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, _RET_IP_);
31 ret = __rt_mutex_lock(&lock->rtmutex, state);
32 if (ret)
33 mutex_release(&lock->dep_map, _RET_IP_);
34 return ret;
35 }
36
rt_mutex_base_init(struct rt_mutex_base * rtb)37 void rt_mutex_base_init(struct rt_mutex_base *rtb)
38 {
39 __rt_mutex_base_init(rtb);
40 }
41 EXPORT_SYMBOL(rt_mutex_base_init);
42
43 #ifdef CONFIG_DEBUG_LOCK_ALLOC
44 /**
45 * rt_mutex_lock_nested - lock a rt_mutex
46 *
47 * @lock: the rt_mutex to be locked
48 * @subclass: the lockdep subclass
49 */
rt_mutex_lock_nested(struct rt_mutex * lock,unsigned int subclass)50 void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
51 {
52 __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, subclass);
53 }
54 EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
55
_rt_mutex_lock_nest_lock(struct rt_mutex * lock,struct lockdep_map * nest_lock)56 void __sched _rt_mutex_lock_nest_lock(struct rt_mutex *lock, struct lockdep_map *nest_lock)
57 {
58 __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, nest_lock, 0);
59 }
60 EXPORT_SYMBOL_GPL(_rt_mutex_lock_nest_lock);
61
62 #else /* !CONFIG_DEBUG_LOCK_ALLOC */
63
64 /**
65 * rt_mutex_lock - lock a rt_mutex
66 *
67 * @lock: the rt_mutex to be locked
68 */
rt_mutex_lock(struct rt_mutex * lock)69 void __sched rt_mutex_lock(struct rt_mutex *lock)
70 {
71 __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, 0);
72 }
73 EXPORT_SYMBOL_GPL(rt_mutex_lock);
74 #endif
75
76 /**
77 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
78 *
79 * @lock: the rt_mutex to be locked
80 *
81 * Returns:
82 * 0 on success
83 * -EINTR when interrupted by a signal
84 */
rt_mutex_lock_interruptible(struct rt_mutex * lock)85 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
86 {
87 return __rt_mutex_lock_common(lock, TASK_INTERRUPTIBLE, NULL, 0);
88 }
89 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
90
91 /**
92 * rt_mutex_lock_killable - lock a rt_mutex killable
93 *
94 * @lock: the rt_mutex to be locked
95 *
96 * Returns:
97 * 0 on success
98 * -EINTR when interrupted by a signal
99 */
rt_mutex_lock_killable(struct rt_mutex * lock)100 int __sched rt_mutex_lock_killable(struct rt_mutex *lock)
101 {
102 return __rt_mutex_lock_common(lock, TASK_KILLABLE, NULL, 0);
103 }
104 EXPORT_SYMBOL_GPL(rt_mutex_lock_killable);
105
106 /**
107 * rt_mutex_trylock - try to lock a rt_mutex
108 *
109 * @lock: the rt_mutex to be locked
110 *
111 * This function can only be called in thread context. It's safe to call it
112 * from atomic regions, but not from hard or soft interrupt context.
113 *
114 * Returns:
115 * 1 on success
116 * 0 on contention
117 */
rt_mutex_trylock(struct rt_mutex * lock)118 int __sched rt_mutex_trylock(struct rt_mutex *lock)
119 {
120 int ret;
121
122 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
123 return 0;
124
125 ret = __rt_mutex_trylock(&lock->rtmutex);
126 if (ret)
127 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
128
129 return ret;
130 }
131 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
132
133 /**
134 * rt_mutex_unlock - unlock a rt_mutex
135 *
136 * @lock: the rt_mutex to be unlocked
137 */
rt_mutex_unlock(struct rt_mutex * lock)138 void __sched rt_mutex_unlock(struct rt_mutex *lock)
139 {
140 mutex_release(&lock->dep_map, _RET_IP_);
141 __rt_mutex_unlock(&lock->rtmutex);
142 }
143 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
144
145 /*
146 * Futex variants, must not use fastpath.
147 */
rt_mutex_futex_trylock(struct rt_mutex_base * lock)148 int __sched rt_mutex_futex_trylock(struct rt_mutex_base *lock)
149 {
150 return rt_mutex_slowtrylock(lock);
151 }
152
__rt_mutex_futex_trylock(struct rt_mutex_base * lock)153 int __sched __rt_mutex_futex_trylock(struct rt_mutex_base *lock)
154 {
155 return __rt_mutex_slowtrylock(lock);
156 }
157
158 /**
159 * __rt_mutex_futex_unlock - Futex variant, that since futex variants
160 * do not use the fast-path, can be simple and will not need to retry.
161 *
162 * @lock: The rt_mutex to be unlocked
163 * @wqh: The wake queue head from which to get the next lock waiter
164 */
__rt_mutex_futex_unlock(struct rt_mutex_base * lock,struct rt_wake_q_head * wqh)165 bool __sched __rt_mutex_futex_unlock(struct rt_mutex_base *lock,
166 struct rt_wake_q_head *wqh)
167 {
168 lockdep_assert_held(&lock->wait_lock);
169
170 debug_rt_mutex_unlock(lock);
171
172 if (!rt_mutex_has_waiters(lock)) {
173 lock->owner = NULL;
174 return false; /* done */
175 }
176
177 /*
178 * mark_wakeup_next_waiter() deboosts and retains preemption
179 * disabled when dropping the wait_lock, to avoid inversion prior
180 * to the wakeup. preempt_disable() therein pairs with the
181 * preempt_enable() in rt_mutex_postunlock().
182 */
183 mark_wakeup_next_waiter(wqh, lock);
184
185 return true; /* call postunlock() */
186 }
187
rt_mutex_futex_unlock(struct rt_mutex_base * lock)188 void __sched rt_mutex_futex_unlock(struct rt_mutex_base *lock)
189 {
190 DEFINE_RT_WAKE_Q(wqh);
191 unsigned long flags;
192 bool postunlock;
193
194 raw_spin_lock_irqsave(&lock->wait_lock, flags);
195 postunlock = __rt_mutex_futex_unlock(lock, &wqh);
196 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
197
198 if (postunlock)
199 rt_mutex_postunlock(&wqh);
200 }
201
202 /**
203 * __rt_mutex_init - initialize the rt_mutex
204 *
205 * @lock: The rt_mutex to be initialized
206 * @name: The lock name used for debugging
207 * @key: The lock class key used for debugging
208 *
209 * Initialize the rt_mutex to unlocked state.
210 *
211 * Initializing of a locked rt_mutex is not allowed
212 */
__rt_mutex_init(struct rt_mutex * lock,const char * name,struct lock_class_key * key)213 void __sched __rt_mutex_init(struct rt_mutex *lock, const char *name,
214 struct lock_class_key *key)
215 {
216 debug_check_no_locks_freed((void *)lock, sizeof(*lock));
217 __rt_mutex_base_init(&lock->rtmutex);
218 lockdep_init_map_wait(&lock->dep_map, name, key, 0, LD_WAIT_SLEEP);
219 }
220 EXPORT_SYMBOL_GPL(__rt_mutex_init);
221
222 /**
223 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
224 * proxy owner
225 *
226 * @lock: the rt_mutex to be locked
227 * @proxy_owner:the task to set as owner
228 *
229 * No locking. Caller has to do serializing itself
230 *
231 * Special API call for PI-futex support. This initializes the rtmutex and
232 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
233 * possible at this point because the pi_state which contains the rtmutex
234 * is not yet visible to other tasks.
235 */
rt_mutex_init_proxy_locked(struct rt_mutex_base * lock,struct task_struct * proxy_owner)236 void __sched rt_mutex_init_proxy_locked(struct rt_mutex_base *lock,
237 struct task_struct *proxy_owner)
238 {
239 static struct lock_class_key pi_futex_key;
240
241 __rt_mutex_base_init(lock);
242 /*
243 * On PREEMPT_RT the futex hashbucket spinlock becomes 'sleeping'
244 * and rtmutex based. That causes a lockdep false positive, because
245 * some of the futex functions invoke spin_unlock(&hb->lock) with
246 * the wait_lock of the rtmutex associated to the pi_futex held.
247 * spin_unlock() in turn takes wait_lock of the rtmutex on which
248 * the spinlock is based, which makes lockdep notice a lock
249 * recursion. Give the futex/rtmutex wait_lock a separate key.
250 */
251 lockdep_set_class(&lock->wait_lock, &pi_futex_key);
252 rt_mutex_set_owner(lock, proxy_owner);
253 }
254
255 /**
256 * rt_mutex_proxy_unlock - release a lock on behalf of owner
257 *
258 * @lock: the rt_mutex to be locked
259 *
260 * No locking. Caller has to do serializing itself
261 *
262 * Special API call for PI-futex support. This just cleans up the rtmutex
263 * (debugging) state. Concurrent operations on this rt_mutex are not
264 * possible because it belongs to the pi_state which is about to be freed
265 * and it is not longer visible to other tasks.
266 */
rt_mutex_proxy_unlock(struct rt_mutex_base * lock)267 void __sched rt_mutex_proxy_unlock(struct rt_mutex_base *lock)
268 {
269 debug_rt_mutex_proxy_unlock(lock);
270 rt_mutex_clear_owner(lock);
271 }
272
273 /**
274 * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
275 * @lock: the rt_mutex to take
276 * @waiter: the pre-initialized rt_mutex_waiter
277 * @task: the task to prepare
278 * @wake_q: the wake_q to wake tasks after we release the wait_lock
279 *
280 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
281 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
282 *
283 * NOTE: does _NOT_ remove the @waiter on failure; must either call
284 * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
285 *
286 * Returns:
287 * 0 - task blocked on lock
288 * 1 - acquired the lock for task, caller should wake it up
289 * <0 - error
290 *
291 * Special API call for PI-futex support.
292 */
__rt_mutex_start_proxy_lock(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter,struct task_struct * task,struct wake_q_head * wake_q)293 int __sched __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
294 struct rt_mutex_waiter *waiter,
295 struct task_struct *task,
296 struct wake_q_head *wake_q)
297 {
298 int ret;
299
300 lockdep_assert_held(&lock->wait_lock);
301
302 if (try_to_take_rt_mutex(lock, task, NULL))
303 return 1;
304
305 /* We enforce deadlock detection for futexes */
306 ret = task_blocks_on_rt_mutex(lock, waiter, task, NULL,
307 RT_MUTEX_FULL_CHAINWALK, wake_q);
308
309 if (ret && !rt_mutex_owner(lock)) {
310 /*
311 * Reset the return value. We might have
312 * returned with -EDEADLK and the owner
313 * released the lock while we were walking the
314 * pi chain. Let the waiter sort it out.
315 */
316 ret = 0;
317 }
318
319 return ret;
320 }
321
322 /**
323 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
324 * @lock: the rt_mutex to take
325 * @waiter: the pre-initialized rt_mutex_waiter
326 * @task: the task to prepare
327 *
328 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
329 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
330 *
331 * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
332 * on failure.
333 *
334 * Returns:
335 * 0 - task blocked on lock
336 * 1 - acquired the lock for task, caller should wake it up
337 * <0 - error
338 *
339 * Special API call for PI-futex support.
340 */
rt_mutex_start_proxy_lock(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter,struct task_struct * task)341 int __sched rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
342 struct rt_mutex_waiter *waiter,
343 struct task_struct *task)
344 {
345 int ret;
346 DEFINE_WAKE_Q(wake_q);
347
348 raw_spin_lock_irq(&lock->wait_lock);
349 ret = __rt_mutex_start_proxy_lock(lock, waiter, task, &wake_q);
350 if (unlikely(ret))
351 remove_waiter(lock, waiter);
352 preempt_disable();
353 raw_spin_unlock_irq(&lock->wait_lock);
354 wake_up_q(&wake_q);
355 preempt_enable();
356
357 return ret;
358 }
359
360 /**
361 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
362 * @lock: the rt_mutex we were woken on
363 * @to: the timeout, null if none. hrtimer should already have
364 * been started.
365 * @waiter: the pre-initialized rt_mutex_waiter
366 *
367 * Wait for the lock acquisition started on our behalf by
368 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
369 * rt_mutex_cleanup_proxy_lock().
370 *
371 * Returns:
372 * 0 - success
373 * <0 - error, one of -EINTR, -ETIMEDOUT
374 *
375 * Special API call for PI-futex support
376 */
rt_mutex_wait_proxy_lock(struct rt_mutex_base * lock,struct hrtimer_sleeper * to,struct rt_mutex_waiter * waiter)377 int __sched rt_mutex_wait_proxy_lock(struct rt_mutex_base *lock,
378 struct hrtimer_sleeper *to,
379 struct rt_mutex_waiter *waiter)
380 {
381 int ret;
382
383 raw_spin_lock_irq(&lock->wait_lock);
384 /* sleep on the mutex */
385 set_current_state(TASK_INTERRUPTIBLE);
386 ret = rt_mutex_slowlock_block(lock, NULL, TASK_INTERRUPTIBLE, to, waiter, NULL);
387 /*
388 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
389 * have to fix that up.
390 */
391 fixup_rt_mutex_waiters(lock, true);
392 raw_spin_unlock_irq(&lock->wait_lock);
393
394 return ret;
395 }
396
397 /**
398 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
399 * @lock: the rt_mutex we were woken on
400 * @waiter: the pre-initialized rt_mutex_waiter
401 *
402 * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
403 * rt_mutex_wait_proxy_lock().
404 *
405 * Unless we acquired the lock; we're still enqueued on the wait-list and can
406 * in fact still be granted ownership until we're removed. Therefore we can
407 * find we are in fact the owner and must disregard the
408 * rt_mutex_wait_proxy_lock() failure.
409 *
410 * Returns:
411 * true - did the cleanup, we done.
412 * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
413 * caller should disregards its return value.
414 *
415 * Special API call for PI-futex support
416 */
rt_mutex_cleanup_proxy_lock(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter)417 bool __sched rt_mutex_cleanup_proxy_lock(struct rt_mutex_base *lock,
418 struct rt_mutex_waiter *waiter)
419 {
420 bool cleanup = false;
421
422 raw_spin_lock_irq(&lock->wait_lock);
423 /*
424 * Do an unconditional try-lock, this deals with the lock stealing
425 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
426 * sets a NULL owner.
427 *
428 * We're not interested in the return value, because the subsequent
429 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
430 * we will own the lock and it will have removed the waiter. If we
431 * failed the trylock, we're still not owner and we need to remove
432 * ourselves.
433 */
434 try_to_take_rt_mutex(lock, current, waiter);
435 /*
436 * Unless we're the owner; we're still enqueued on the wait_list.
437 * So check if we became owner, if not, take us off the wait_list.
438 */
439 if (rt_mutex_owner(lock) != current) {
440 remove_waiter(lock, waiter);
441 cleanup = true;
442 }
443 /*
444 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
445 * have to fix that up.
446 */
447 fixup_rt_mutex_waiters(lock, false);
448
449 raw_spin_unlock_irq(&lock->wait_lock);
450
451 return cleanup;
452 }
453
454 /*
455 * Recheck the pi chain, in case we got a priority setting
456 *
457 * Called from sched_setscheduler
458 */
rt_mutex_adjust_pi(struct task_struct * task)459 void __sched rt_mutex_adjust_pi(struct task_struct *task)
460 {
461 struct rt_mutex_waiter *waiter;
462 struct rt_mutex_base *next_lock;
463 unsigned long flags;
464
465 raw_spin_lock_irqsave(&task->pi_lock, flags);
466
467 waiter = task->pi_blocked_on;
468 if (!waiter || rt_waiter_node_equal(&waiter->tree, task_to_waiter_node(task))) {
469 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
470 return;
471 }
472 next_lock = waiter->lock;
473 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
474
475 /* gets dropped in rt_mutex_adjust_prio_chain()! */
476 get_task_struct(task);
477
478 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
479 next_lock, NULL, task);
480 }
481
482 /*
483 * Performs the wakeup of the top-waiter and re-enables preemption.
484 */
rt_mutex_postunlock(struct rt_wake_q_head * wqh)485 void __sched rt_mutex_postunlock(struct rt_wake_q_head *wqh)
486 {
487 rt_mutex_wake_up_q(wqh);
488 }
489
490 #ifdef CONFIG_DEBUG_RT_MUTEXES
rt_mutex_debug_task_free(struct task_struct * task)491 void rt_mutex_debug_task_free(struct task_struct *task)
492 {
493 DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root));
494 DEBUG_LOCKS_WARN_ON(task->pi_blocked_on);
495 }
496 #endif
497
498 #ifdef CONFIG_PREEMPT_RT
499 /* Mutexes */
__mutex_rt_init(struct mutex * mutex,const char * name,struct lock_class_key * key)500 void __mutex_rt_init(struct mutex *mutex, const char *name,
501 struct lock_class_key *key)
502 {
503 debug_check_no_locks_freed((void *)mutex, sizeof(*mutex));
504 lockdep_init_map_wait(&mutex->dep_map, name, key, 0, LD_WAIT_SLEEP);
505 }
506 EXPORT_SYMBOL(__mutex_rt_init);
507
__mutex_lock_common(struct mutex * lock,unsigned int state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip)508 static __always_inline int __mutex_lock_common(struct mutex *lock,
509 unsigned int state,
510 unsigned int subclass,
511 struct lockdep_map *nest_lock,
512 unsigned long ip)
513 {
514 int ret;
515
516 might_sleep();
517 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
518 ret = __rt_mutex_lock(&lock->rtmutex, state);
519 if (ret)
520 mutex_release(&lock->dep_map, ip);
521 else
522 lock_acquired(&lock->dep_map, ip);
523 return ret;
524 }
525
526 #ifdef CONFIG_DEBUG_LOCK_ALLOC
mutex_lock_nested(struct mutex * lock,unsigned int subclass)527 void __sched mutex_lock_nested(struct mutex *lock, unsigned int subclass)
528 {
529 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
530 }
531 EXPORT_SYMBOL_GPL(mutex_lock_nested);
532
_mutex_lock_nest_lock(struct mutex * lock,struct lockdep_map * nest_lock)533 void __sched _mutex_lock_nest_lock(struct mutex *lock,
534 struct lockdep_map *nest_lock)
535 {
536 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest_lock, _RET_IP_);
537 }
538 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
539
mutex_lock_interruptible_nested(struct mutex * lock,unsigned int subclass)540 int __sched mutex_lock_interruptible_nested(struct mutex *lock,
541 unsigned int subclass)
542 {
543 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
544 }
545 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
546
mutex_lock_killable_nested(struct mutex * lock,unsigned int subclass)547 int __sched mutex_lock_killable_nested(struct mutex *lock,
548 unsigned int subclass)
549 {
550 return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
551 }
552 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
553
mutex_lock_io_nested(struct mutex * lock,unsigned int subclass)554 void __sched mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
555 {
556 int token;
557
558 might_sleep();
559
560 token = io_schedule_prepare();
561 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
562 io_schedule_finish(token);
563 }
564 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
565
566 #else /* CONFIG_DEBUG_LOCK_ALLOC */
567
mutex_lock(struct mutex * lock)568 void __sched mutex_lock(struct mutex *lock)
569 {
570 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
571 }
572 EXPORT_SYMBOL(mutex_lock);
573
mutex_lock_interruptible(struct mutex * lock)574 int __sched mutex_lock_interruptible(struct mutex *lock)
575 {
576 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
577 }
578 EXPORT_SYMBOL(mutex_lock_interruptible);
579
mutex_lock_killable(struct mutex * lock)580 int __sched mutex_lock_killable(struct mutex *lock)
581 {
582 return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
583 }
584 EXPORT_SYMBOL(mutex_lock_killable);
585
mutex_lock_io(struct mutex * lock)586 void __sched mutex_lock_io(struct mutex *lock)
587 {
588 int token = io_schedule_prepare();
589
590 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
591 io_schedule_finish(token);
592 }
593 EXPORT_SYMBOL(mutex_lock_io);
594 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */
595
mutex_trylock(struct mutex * lock)596 int __sched mutex_trylock(struct mutex *lock)
597 {
598 int ret;
599
600 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
601 return 0;
602
603 ret = __rt_mutex_trylock(&lock->rtmutex);
604 if (ret)
605 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
606
607 return ret;
608 }
609 EXPORT_SYMBOL(mutex_trylock);
610
mutex_unlock(struct mutex * lock)611 void __sched mutex_unlock(struct mutex *lock)
612 {
613 mutex_release(&lock->dep_map, _RET_IP_);
614 __rt_mutex_unlock(&lock->rtmutex);
615 }
616 EXPORT_SYMBOL(mutex_unlock);
617
618 #endif /* CONFIG_PREEMPT_RT */
619