1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dm_services.h"
27 #include "dc.h"
28 #include "dc_bios_types.h"
29 #include "core_types.h"
30 #include "core_status.h"
31 #include "resource.h"
32 #include "dm_helpers.h"
33 #include "dce110_hwseq.h"
34 #include "dce110/dce110_timing_generator.h"
35 #include "dce/dce_hwseq.h"
36 #include "dce100/dce100_hwseq.h"
37 #include "gpio_service_interface.h"
38
39 #include "dce110/dce110_compressor.h"
40
41 #include "bios/bios_parser_helper.h"
42 #include "timing_generator.h"
43 #include "mem_input.h"
44 #include "opp.h"
45 #include "ipp.h"
46 #include "transform.h"
47 #include "stream_encoder.h"
48 #include "link_encoder.h"
49 #include "link_enc_cfg.h"
50 #include "link_hwss.h"
51 #include "link.h"
52 #include "dccg.h"
53 #include "clock_source.h"
54 #include "clk_mgr.h"
55 #include "abm.h"
56 #include "audio.h"
57 #include "reg_helper.h"
58 #include "panel_cntl.h"
59 #include "dc_state_priv.h"
60 #include "dpcd_defs.h"
61 #include "dsc.h"
62 /* include DCE11 register header files */
63 #include "dce/dce_11_0_d.h"
64 #include "dce/dce_11_0_sh_mask.h"
65 #include "custom_float.h"
66
67 #include "atomfirmware.h"
68
69 #include "dcn10/dcn10_hwseq.h"
70
71 #define GAMMA_HW_POINTS_NUM 256
72
73 /*
74 * All values are in milliseconds;
75 * For eDP, after power-up/power/down,
76 * 300/500 msec max. delay from LCDVCC to black video generation
77 */
78 #define PANEL_POWER_UP_TIMEOUT 300
79 #define PANEL_POWER_DOWN_TIMEOUT 500
80 #define HPD_CHECK_INTERVAL 10
81 #define OLED_POST_T7_DELAY 100
82 #define OLED_PRE_T11_DELAY 150
83
84 #define CTX \
85 hws->ctx
86
87 #define DC_LOGGER \
88 ctx->logger
89 #define DC_LOGGER_INIT() \
90 struct dc_context *ctx = dc->ctx
91
92 #define REG(reg)\
93 hws->regs->reg
94
95 #undef FN
96 #define FN(reg_name, field_name) \
97 hws->shifts->field_name, hws->masks->field_name
98
99 struct dce110_hw_seq_reg_offsets {
100 uint32_t crtc;
101 };
102
103 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
104 {
105 .crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
106 },
107 {
108 .crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
109 },
110 {
111 .crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
112 },
113 {
114 .crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
115 }
116 };
117
118 #define HW_REG_BLND(reg, id)\
119 (reg + reg_offsets[id].blnd)
120
121 #define HW_REG_CRTC(reg, id)\
122 (reg + reg_offsets[id].crtc)
123
124 #define MAX_WATERMARK 0xFFFF
125 #define SAFE_NBP_MARK 0x7FFF
126
127 /*******************************************************************************
128 * Private definitions
129 ******************************************************************************/
130 /***************************PIPE_CONTROL***********************************/
dce110_init_pte(struct dc_context * ctx)131 static void dce110_init_pte(struct dc_context *ctx)
132 {
133 uint32_t addr;
134 uint32_t value = 0;
135 uint32_t chunk_int = 0;
136 uint32_t chunk_mul = 0;
137
138 addr = mmUNP_DVMM_PTE_CONTROL;
139 value = dm_read_reg(ctx, addr);
140
141 set_reg_field_value(
142 value,
143 0,
144 DVMM_PTE_CONTROL,
145 DVMM_USE_SINGLE_PTE);
146
147 set_reg_field_value(
148 value,
149 1,
150 DVMM_PTE_CONTROL,
151 DVMM_PTE_BUFFER_MODE0);
152
153 set_reg_field_value(
154 value,
155 1,
156 DVMM_PTE_CONTROL,
157 DVMM_PTE_BUFFER_MODE1);
158
159 dm_write_reg(ctx, addr, value);
160
161 addr = mmDVMM_PTE_REQ;
162 value = dm_read_reg(ctx, addr);
163
164 chunk_int = get_reg_field_value(
165 value,
166 DVMM_PTE_REQ,
167 HFLIP_PTEREQ_PER_CHUNK_INT);
168
169 chunk_mul = get_reg_field_value(
170 value,
171 DVMM_PTE_REQ,
172 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
173
174 if (chunk_int != 0x4 || chunk_mul != 0x4) {
175
176 set_reg_field_value(
177 value,
178 255,
179 DVMM_PTE_REQ,
180 MAX_PTEREQ_TO_ISSUE);
181
182 set_reg_field_value(
183 value,
184 4,
185 DVMM_PTE_REQ,
186 HFLIP_PTEREQ_PER_CHUNK_INT);
187
188 set_reg_field_value(
189 value,
190 4,
191 DVMM_PTE_REQ,
192 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
193
194 dm_write_reg(ctx, addr, value);
195 }
196 }
197 /**************************************************************************/
198
enable_display_pipe_clock_gating(struct dc_context * ctx,bool clock_gating)199 static void enable_display_pipe_clock_gating(
200 struct dc_context *ctx,
201 bool clock_gating)
202 {
203 /*TODO*/
204 }
205
dce110_enable_display_power_gating(struct dc * dc,uint8_t controller_id,struct dc_bios * dcb,enum pipe_gating_control power_gating)206 static bool dce110_enable_display_power_gating(
207 struct dc *dc,
208 uint8_t controller_id,
209 struct dc_bios *dcb,
210 enum pipe_gating_control power_gating)
211 {
212 enum bp_result bp_result = BP_RESULT_OK;
213 enum bp_pipe_control_action cntl;
214 struct dc_context *ctx = dc->ctx;
215 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
216
217 if (power_gating == PIPE_GATING_CONTROL_INIT)
218 cntl = ASIC_PIPE_INIT;
219 else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
220 cntl = ASIC_PIPE_ENABLE;
221 else
222 cntl = ASIC_PIPE_DISABLE;
223
224 if (controller_id == underlay_idx)
225 controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
226
227 if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0) {
228
229 bp_result = dcb->funcs->enable_disp_power_gating(
230 dcb, controller_id + 1, cntl);
231
232 /* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
233 * by default when command table is called
234 *
235 * Bios parser accepts controller_id = 6 as indicative of
236 * underlay pipe in dce110. But we do not support more
237 * than 3.
238 */
239 if (controller_id < CONTROLLER_ID_MAX - 1)
240 dm_write_reg(ctx,
241 HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
242 0);
243 }
244
245 if (power_gating != PIPE_GATING_CONTROL_ENABLE)
246 dce110_init_pte(ctx);
247
248 if (bp_result == BP_RESULT_OK)
249 return true;
250 else
251 return false;
252 }
253
dce110_prescale_params(struct ipp_prescale_params * prescale_params,const struct dc_plane_state * plane_state)254 static void dce110_prescale_params(struct ipp_prescale_params *prescale_params,
255 const struct dc_plane_state *plane_state)
256 {
257 prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
258
259 switch (plane_state->format) {
260 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
261 prescale_params->scale = 0x2082;
262 break;
263 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
264 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
265 prescale_params->scale = 0x2020;
266 break;
267 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
268 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
269 prescale_params->scale = 0x2008;
270 break;
271 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
272 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
273 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
274 prescale_params->scale = 0x2000;
275 break;
276 default:
277 ASSERT(false);
278 break;
279 }
280 }
281
282 static bool
dce110_set_input_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_plane_state * plane_state)283 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
284 const struct dc_plane_state *plane_state)
285 {
286 struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
287 const struct dc_transfer_func *tf = NULL;
288 struct ipp_prescale_params prescale_params = { 0 };
289 bool result = true;
290
291 if (ipp == NULL)
292 return false;
293
294 tf = &plane_state->in_transfer_func;
295
296 dce110_prescale_params(&prescale_params, plane_state);
297 ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
298
299 if (!plane_state->gamma_correction.is_identity &&
300 dce_use_lut(plane_state->format))
301 ipp->funcs->ipp_program_input_lut(ipp, &plane_state->gamma_correction);
302
303 if (tf->type == TF_TYPE_PREDEFINED) {
304 switch (tf->tf) {
305 case TRANSFER_FUNCTION_SRGB:
306 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
307 break;
308 case TRANSFER_FUNCTION_BT709:
309 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
310 break;
311 case TRANSFER_FUNCTION_LINEAR:
312 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
313 break;
314 case TRANSFER_FUNCTION_PQ:
315 default:
316 result = false;
317 break;
318 }
319 } else if (tf->type == TF_TYPE_BYPASS) {
320 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
321 } else {
322 /*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
323 result = false;
324 }
325
326 return result;
327 }
328
convert_to_custom_float(struct pwl_result_data * rgb_resulted,struct curve_points * arr_points,uint32_t hw_points_num)329 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
330 struct curve_points *arr_points,
331 uint32_t hw_points_num)
332 {
333 struct custom_float_format fmt;
334
335 struct pwl_result_data *rgb = rgb_resulted;
336
337 uint32_t i = 0;
338
339 fmt.exponenta_bits = 6;
340 fmt.mantissa_bits = 12;
341 fmt.sign = true;
342
343 if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
344 &arr_points[0].custom_float_x)) {
345 BREAK_TO_DEBUGGER();
346 return false;
347 }
348
349 if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
350 &arr_points[0].custom_float_offset)) {
351 BREAK_TO_DEBUGGER();
352 return false;
353 }
354
355 if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
356 &arr_points[0].custom_float_slope)) {
357 BREAK_TO_DEBUGGER();
358 return false;
359 }
360
361 fmt.mantissa_bits = 10;
362 fmt.sign = false;
363
364 if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
365 &arr_points[1].custom_float_x)) {
366 BREAK_TO_DEBUGGER();
367 return false;
368 }
369
370 if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
371 &arr_points[1].custom_float_y)) {
372 BREAK_TO_DEBUGGER();
373 return false;
374 }
375
376 if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
377 &arr_points[1].custom_float_slope)) {
378 BREAK_TO_DEBUGGER();
379 return false;
380 }
381
382 fmt.mantissa_bits = 12;
383 fmt.sign = true;
384
385 while (i != hw_points_num) {
386 if (!convert_to_custom_float_format(rgb->red, &fmt,
387 &rgb->red_reg)) {
388 BREAK_TO_DEBUGGER();
389 return false;
390 }
391
392 if (!convert_to_custom_float_format(rgb->green, &fmt,
393 &rgb->green_reg)) {
394 BREAK_TO_DEBUGGER();
395 return false;
396 }
397
398 if (!convert_to_custom_float_format(rgb->blue, &fmt,
399 &rgb->blue_reg)) {
400 BREAK_TO_DEBUGGER();
401 return false;
402 }
403
404 if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
405 &rgb->delta_red_reg)) {
406 BREAK_TO_DEBUGGER();
407 return false;
408 }
409
410 if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
411 &rgb->delta_green_reg)) {
412 BREAK_TO_DEBUGGER();
413 return false;
414 }
415
416 if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
417 &rgb->delta_blue_reg)) {
418 BREAK_TO_DEBUGGER();
419 return false;
420 }
421
422 ++rgb;
423 ++i;
424 }
425
426 return true;
427 }
428
429 #define MAX_LOW_POINT 25
430 #define NUMBER_REGIONS 16
431 #define NUMBER_SW_SEGMENTS 16
432
433 static bool
dce110_translate_regamma_to_hw_format(const struct dc_transfer_func * output_tf,struct pwl_params * regamma_params)434 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
435 struct pwl_params *regamma_params)
436 {
437 struct curve_points *arr_points;
438 struct pwl_result_data *rgb_resulted;
439 struct pwl_result_data *rgb;
440 struct pwl_result_data *rgb_plus_1;
441 struct fixed31_32 y_r;
442 struct fixed31_32 y_g;
443 struct fixed31_32 y_b;
444 struct fixed31_32 y1_min;
445 struct fixed31_32 y3_max;
446
447 int32_t region_start, region_end;
448 uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
449
450 if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
451 return false;
452
453 arr_points = regamma_params->arr_points;
454 rgb_resulted = regamma_params->rgb_resulted;
455 hw_points = 0;
456
457 memset(regamma_params, 0, sizeof(struct pwl_params));
458
459 if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
460 /* 16 segments
461 * segments are from 2^-11 to 2^5
462 */
463 region_start = -11;
464 region_end = region_start + NUMBER_REGIONS;
465
466 for (i = 0; i < NUMBER_REGIONS; i++)
467 seg_distr[i] = 4;
468
469 } else {
470 /* 10 segments
471 * segment is from 2^-10 to 2^1
472 * We include an extra segment for range [2^0, 2^1). This is to
473 * ensure that colors with normalized values of 1 don't miss the
474 * LUT.
475 */
476 region_start = -10;
477 region_end = 1;
478
479 seg_distr[0] = 4;
480 seg_distr[1] = 4;
481 seg_distr[2] = 4;
482 seg_distr[3] = 4;
483 seg_distr[4] = 4;
484 seg_distr[5] = 4;
485 seg_distr[6] = 4;
486 seg_distr[7] = 4;
487 seg_distr[8] = 4;
488 seg_distr[9] = 4;
489 seg_distr[10] = 0;
490 seg_distr[11] = -1;
491 seg_distr[12] = -1;
492 seg_distr[13] = -1;
493 seg_distr[14] = -1;
494 seg_distr[15] = -1;
495 }
496
497 for (k = 0; k < 16; k++) {
498 if (seg_distr[k] != -1)
499 hw_points += (1 << seg_distr[k]);
500 }
501
502 j = 0;
503 for (k = 0; k < (region_end - region_start); k++) {
504 increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
505 start_index = (region_start + k + MAX_LOW_POINT) *
506 NUMBER_SW_SEGMENTS;
507 for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
508 i += increment) {
509 if (j == hw_points - 1)
510 break;
511 rgb_resulted[j].red = output_tf->tf_pts.red[i];
512 rgb_resulted[j].green = output_tf->tf_pts.green[i];
513 rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
514 j++;
515 }
516 }
517
518 /* last point */
519 start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
520 rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
521 rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
522 rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
523
524 arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
525 dc_fixpt_from_int(region_start));
526 arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
527 dc_fixpt_from_int(region_end));
528
529 y_r = rgb_resulted[0].red;
530 y_g = rgb_resulted[0].green;
531 y_b = rgb_resulted[0].blue;
532
533 y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
534
535 arr_points[0].y = y1_min;
536 arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
537 arr_points[0].x);
538
539 y_r = rgb_resulted[hw_points - 1].red;
540 y_g = rgb_resulted[hw_points - 1].green;
541 y_b = rgb_resulted[hw_points - 1].blue;
542
543 /* see comment above, m_arrPoints[1].y should be the Y value for the
544 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
545 */
546 y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
547
548 arr_points[1].y = y3_max;
549
550 arr_points[1].slope = dc_fixpt_zero;
551
552 if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
553 /* for PQ, we want to have a straight line from last HW X point,
554 * and the slope to be such that we hit 1.0 at 10000 nits.
555 */
556 const struct fixed31_32 end_value = dc_fixpt_from_int(125);
557
558 arr_points[1].slope = dc_fixpt_div(
559 dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
560 dc_fixpt_sub(end_value, arr_points[1].x));
561 }
562
563 regamma_params->hw_points_num = hw_points;
564
565 k = 0;
566 for (i = 1; i < 16; i++) {
567 if (seg_distr[k] != -1) {
568 regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
569 regamma_params->arr_curve_points[i].offset =
570 regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
571 }
572 k++;
573 }
574
575 if (seg_distr[k] != -1)
576 regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
577
578 rgb = rgb_resulted;
579 rgb_plus_1 = rgb_resulted + 1;
580
581 i = 1;
582
583 while (i != hw_points + 1) {
584 if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
585 rgb_plus_1->red = rgb->red;
586 if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
587 rgb_plus_1->green = rgb->green;
588 if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
589 rgb_plus_1->blue = rgb->blue;
590
591 rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
592 rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
593 rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
594
595 ++rgb_plus_1;
596 ++rgb;
597 ++i;
598 }
599
600 convert_to_custom_float(rgb_resulted, arr_points, hw_points);
601
602 return true;
603 }
604
605 static bool
dce110_set_output_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_stream_state * stream)606 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
607 const struct dc_stream_state *stream)
608 {
609 struct transform *xfm = pipe_ctx->plane_res.xfm;
610
611 xfm->funcs->opp_power_on_regamma_lut(xfm, true);
612 xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
613
614 if (stream->out_transfer_func.type == TF_TYPE_PREDEFINED &&
615 stream->out_transfer_func.tf == TRANSFER_FUNCTION_SRGB) {
616 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
617 } else if (dce110_translate_regamma_to_hw_format(&stream->out_transfer_func,
618 &xfm->regamma_params)) {
619 xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
620 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
621 } else {
622 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
623 }
624
625 xfm->funcs->opp_power_on_regamma_lut(xfm, false);
626
627 return true;
628 }
629
dce110_update_info_frame(struct pipe_ctx * pipe_ctx)630 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
631 {
632 bool is_hdmi_tmds;
633 bool is_dp;
634
635 ASSERT(pipe_ctx->stream);
636
637 if (pipe_ctx->stream_res.stream_enc == NULL)
638 return; /* this is not root pipe */
639
640 is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
641 is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
642
643 if (!is_hdmi_tmds && !is_dp)
644 return;
645
646 if (is_hdmi_tmds)
647 pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
648 pipe_ctx->stream_res.stream_enc,
649 &pipe_ctx->stream_res.encoder_info_frame);
650 else {
651 if (pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num)
652 pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num(
653 pipe_ctx->stream_res.stream_enc,
654 &pipe_ctx->stream_res.encoder_info_frame);
655
656 pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
657 pipe_ctx->stream_res.stream_enc,
658 &pipe_ctx->stream_res.encoder_info_frame);
659 }
660 }
661
dce110_enable_stream(struct pipe_ctx * pipe_ctx)662 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
663 {
664 enum dc_lane_count lane_count =
665 pipe_ctx->stream->link->cur_link_settings.lane_count;
666 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
667 struct dc_link *link = pipe_ctx->stream->link;
668 const struct dc *dc = link->dc;
669 const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
670 uint32_t active_total_with_borders;
671 uint32_t early_control = 0;
672 struct timing_generator *tg = pipe_ctx->stream_res.tg;
673
674 link_hwss->setup_stream_encoder(pipe_ctx);
675
676 dc->hwss.update_info_frame(pipe_ctx);
677
678 /* enable early control to avoid corruption on DP monitor*/
679 active_total_with_borders =
680 timing->h_addressable
681 + timing->h_border_left
682 + timing->h_border_right;
683
684 if (lane_count != 0)
685 early_control = active_total_with_borders % lane_count;
686
687 if (early_control == 0)
688 early_control = lane_count;
689
690 tg->funcs->set_early_control(tg, early_control);
691 }
692
link_transmitter_control(struct dc_bios * bios,struct bp_transmitter_control * cntl)693 static enum bp_result link_transmitter_control(
694 struct dc_bios *bios,
695 struct bp_transmitter_control *cntl)
696 {
697 enum bp_result result;
698
699 result = bios->funcs->transmitter_control(bios, cntl);
700
701 return result;
702 }
703
704 /*
705 * @brief
706 * eDP only.
707 */
dce110_edp_wait_for_hpd_ready(struct dc_link * link,bool power_up)708 void dce110_edp_wait_for_hpd_ready(
709 struct dc_link *link,
710 bool power_up)
711 {
712 struct dc_context *ctx = link->ctx;
713 struct graphics_object_id connector = link->link_enc->connector;
714 struct gpio *hpd;
715 bool edp_hpd_high = false;
716 uint32_t time_elapsed = 0;
717 uint32_t timeout = power_up ?
718 PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
719
720 if (dal_graphics_object_id_get_connector_id(connector)
721 != CONNECTOR_ID_EDP) {
722 BREAK_TO_DEBUGGER();
723 return;
724 }
725
726 if (!power_up)
727 /*
728 * From KV, we will not HPD low after turning off VCC -
729 * instead, we will check the SW timer in power_up().
730 */
731 return;
732
733 /*
734 * When we power on/off the eDP panel,
735 * we need to wait until SENSE bit is high/low.
736 */
737
738 /* obtain HPD */
739 /* TODO what to do with this? */
740 hpd = ctx->dc->link_srv->get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
741
742 if (!hpd) {
743 BREAK_TO_DEBUGGER();
744 return;
745 }
746
747 if (link->panel_config.pps.extra_t3_ms > 0) {
748 int extra_t3_in_ms = link->panel_config.pps.extra_t3_ms;
749
750 msleep(extra_t3_in_ms);
751 }
752
753 dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
754
755 /* wait until timeout or panel detected */
756
757 do {
758 uint32_t detected = 0;
759
760 dal_gpio_get_value(hpd, &detected);
761
762 if (!(detected ^ power_up)) {
763 edp_hpd_high = true;
764 break;
765 }
766
767 msleep(HPD_CHECK_INTERVAL);
768
769 time_elapsed += HPD_CHECK_INTERVAL;
770 } while (time_elapsed < timeout);
771
772 dal_gpio_close(hpd);
773
774 dal_gpio_destroy_irq(&hpd);
775
776 /* ensure that the panel is detected */
777 if (!edp_hpd_high)
778 DC_LOG_DC("%s: wait timed out!\n", __func__);
779 }
780
dce110_edp_power_control(struct dc_link * link,bool power_up)781 void dce110_edp_power_control(
782 struct dc_link *link,
783 bool power_up)
784 {
785 struct dc_context *ctx = link->ctx;
786 struct bp_transmitter_control cntl = { 0 };
787 enum bp_result bp_result;
788 uint8_t pwrseq_instance;
789
790
791 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
792 != CONNECTOR_ID_EDP) {
793 BREAK_TO_DEBUGGER();
794 return;
795 }
796
797 if (!link->panel_cntl)
798 return;
799 if (power_up !=
800 link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
801
802 unsigned long long current_ts = dm_get_timestamp(ctx);
803 unsigned long long time_since_edp_poweroff_ms =
804 div64_u64(dm_get_elapse_time_in_ns(
805 ctx,
806 current_ts,
807 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
808 unsigned long long time_since_edp_poweron_ms =
809 div64_u64(dm_get_elapse_time_in_ns(
810 ctx,
811 current_ts,
812 ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link)), 1000000);
813 DC_LOG_HW_RESUME_S3(
814 "%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
815 __func__,
816 power_up,
817 current_ts,
818 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
819 ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link),
820 time_since_edp_poweroff_ms,
821 time_since_edp_poweron_ms);
822
823 /* Send VBIOS command to prompt eDP panel power */
824 if (power_up) {
825 /* edp requires a min of 500ms from LCDVDD off to on */
826 unsigned long long remaining_min_edp_poweroff_time_ms = 500;
827
828 /* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
829 if (link->local_sink != NULL)
830 remaining_min_edp_poweroff_time_ms +=
831 link->panel_config.pps.extra_t12_ms;
832
833 /* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
834 if (ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
835 if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
836 remaining_min_edp_poweroff_time_ms =
837 remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
838 else
839 remaining_min_edp_poweroff_time_ms = 0;
840 }
841
842 if (remaining_min_edp_poweroff_time_ms) {
843 DC_LOG_HW_RESUME_S3(
844 "%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
845 __func__, remaining_min_edp_poweroff_time_ms);
846 msleep(remaining_min_edp_poweroff_time_ms);
847 DC_LOG_HW_RESUME_S3(
848 "%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
849 __func__, remaining_min_edp_poweroff_time_ms);
850 dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
851 __func__, remaining_min_edp_poweroff_time_ms);
852 } else {
853 DC_LOG_HW_RESUME_S3(
854 "%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
855 __func__, remaining_min_edp_poweroff_time_ms);
856 }
857 }
858
859 DC_LOG_HW_RESUME_S3(
860 "%s: BEGIN: Panel Power action: %s\n",
861 __func__, (power_up ? "On":"Off"));
862
863 cntl.action = power_up ?
864 TRANSMITTER_CONTROL_POWER_ON :
865 TRANSMITTER_CONTROL_POWER_OFF;
866 cntl.transmitter = link->link_enc->transmitter;
867 cntl.connector_obj_id = link->link_enc->connector;
868 cntl.coherent = false;
869 cntl.lanes_number = LANE_COUNT_FOUR;
870 cntl.hpd_sel = link->link_enc->hpd_source;
871 pwrseq_instance = link->panel_cntl->pwrseq_inst;
872
873 if (ctx->dc->ctx->dmub_srv &&
874 ctx->dc->debug.dmub_command_table) {
875
876 if (cntl.action == TRANSMITTER_CONTROL_POWER_ON) {
877 bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
878 LVTMA_CONTROL_POWER_ON,
879 pwrseq_instance, link->link_powered_externally);
880 } else {
881 bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
882 LVTMA_CONTROL_POWER_OFF,
883 pwrseq_instance, link->link_powered_externally);
884 }
885 }
886
887 bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
888
889 DC_LOG_HW_RESUME_S3(
890 "%s: END: Panel Power action: %s bp_result=%u\n",
891 __func__, (power_up ? "On":"Off"),
892 bp_result);
893
894 ctx->dc->link_srv->dp_trace_set_edp_power_timestamp(link, power_up);
895
896 DC_LOG_HW_RESUME_S3(
897 "%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
898 __func__,
899 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
900 ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link));
901
902 if (bp_result != BP_RESULT_OK)
903 DC_LOG_ERROR(
904 "%s: Panel Power bp_result: %d\n",
905 __func__, bp_result);
906 } else {
907 DC_LOG_HW_RESUME_S3(
908 "%s: Skipping Panel Power action: %s\n",
909 __func__, (power_up ? "On":"Off"));
910 }
911 }
912
dce110_edp_wait_for_T12(struct dc_link * link)913 void dce110_edp_wait_for_T12(
914 struct dc_link *link)
915 {
916 struct dc_context *ctx = link->ctx;
917
918 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
919 != CONNECTOR_ID_EDP) {
920 BREAK_TO_DEBUGGER();
921 return;
922 }
923
924 if (!link->panel_cntl)
925 return;
926
927 if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
928 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
929 unsigned int t12_duration = 500; // Default T12 as per spec
930 unsigned long long current_ts = dm_get_timestamp(ctx);
931 unsigned long long time_since_edp_poweroff_ms =
932 div64_u64(dm_get_elapse_time_in_ns(
933 ctx,
934 current_ts,
935 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
936
937 t12_duration += link->panel_config.pps.extra_t12_ms; // Add extra T12
938
939 if (time_since_edp_poweroff_ms < t12_duration)
940 msleep(t12_duration - time_since_edp_poweroff_ms);
941 }
942 }
943 /*todo: cloned in stream enc, fix*/
944 /*
945 * @brief
946 * eDP only. Control the backlight of the eDP panel
947 */
dce110_edp_backlight_control(struct dc_link * link,bool enable)948 void dce110_edp_backlight_control(
949 struct dc_link *link,
950 bool enable)
951 {
952 struct dc_context *ctx = link->ctx;
953 struct bp_transmitter_control cntl = { 0 };
954 uint8_t pwrseq_instance = 0;
955 unsigned int pre_T11_delay = (link->dpcd_sink_ext_caps.bits.oled ? OLED_PRE_T11_DELAY : 0);
956 unsigned int post_T7_delay = (link->dpcd_sink_ext_caps.bits.oled ? OLED_POST_T7_DELAY : 0);
957
958 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
959 != CONNECTOR_ID_EDP) {
960 BREAK_TO_DEBUGGER();
961 return;
962 }
963
964 if (link->panel_cntl && !(link->dpcd_sink_ext_caps.bits.oled ||
965 link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
966 link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)) {
967 bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
968
969 if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
970 DC_LOG_HW_RESUME_S3(
971 "%s: panel already powered up/off. Do nothing.\n",
972 __func__);
973 return;
974 }
975 }
976
977 /* Send VBIOS command to control eDP panel backlight */
978
979 DC_LOG_HW_RESUME_S3(
980 "%s: backlight action: %s\n",
981 __func__, (enable ? "On":"Off"));
982
983 cntl.action = enable ?
984 TRANSMITTER_CONTROL_BACKLIGHT_ON :
985 TRANSMITTER_CONTROL_BACKLIGHT_OFF;
986
987 /*cntl.engine_id = ctx->engine;*/
988 cntl.transmitter = link->link_enc->transmitter;
989 cntl.connector_obj_id = link->link_enc->connector;
990 /*todo: unhardcode*/
991 cntl.lanes_number = LANE_COUNT_FOUR;
992 cntl.hpd_sel = link->link_enc->hpd_source;
993 cntl.signal = SIGNAL_TYPE_EDP;
994
995 /* For eDP, the following delays might need to be considered
996 * after link training completed:
997 * idle period - min. accounts for required BS-Idle pattern,
998 * max. allows for source frame synchronization);
999 * 50 msec max. delay from valid video data from source
1000 * to video on dislpay or backlight enable.
1001 *
1002 * Disable the delay for now.
1003 * Enable it in the future if necessary.
1004 */
1005 /* dc_service_sleep_in_milliseconds(50); */
1006 /*edp 1.2*/
1007 if (link->panel_cntl)
1008 pwrseq_instance = link->panel_cntl->pwrseq_inst;
1009
1010 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
1011 if (!link->dc->config.edp_no_power_sequencing)
1012 /*
1013 * Sometimes, DP receiver chip power-controlled externally by an
1014 * Embedded Controller could be treated and used as eDP,
1015 * if it drives mobile display. In this case,
1016 * we shouldn't be doing power-sequencing, hence we can skip
1017 * waiting for T7-ready.
1018 */
1019 ctx->dc->link_srv->edp_receiver_ready_T7(link);
1020 else
1021 DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
1022 }
1023
1024 /* Setting link_powered_externally will bypass delays in the backlight
1025 * as they are not required if the link is being powered by a different
1026 * source.
1027 */
1028 if (ctx->dc->ctx->dmub_srv &&
1029 ctx->dc->debug.dmub_command_table) {
1030 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1031 ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1032 LVTMA_CONTROL_LCD_BLON,
1033 pwrseq_instance, link->link_powered_externally);
1034 else
1035 ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1036 LVTMA_CONTROL_LCD_BLOFF,
1037 pwrseq_instance, link->link_powered_externally);
1038 }
1039
1040 link_transmitter_control(ctx->dc_bios, &cntl);
1041
1042 if (enable && link->dpcd_sink_ext_caps.bits.oled &&
1043 !link->dc->config.edp_no_power_sequencing &&
1044 !link->local_sink->edid_caps.panel_patch.oled_optimize_display_on) {
1045 post_T7_delay += link->panel_config.pps.extra_post_t7_ms;
1046 msleep(post_T7_delay);
1047 }
1048
1049 if (link->dpcd_sink_ext_caps.bits.oled ||
1050 link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1051 link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1052 ctx->dc->link_srv->edp_backlight_enable_aux(link, enable);
1053
1054 /*edp 1.2*/
1055 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
1056 if (!link->dc->config.edp_no_power_sequencing)
1057 /*
1058 * Sometimes, DP receiver chip power-controlled externally by an
1059 * Embedded Controller could be treated and used as eDP,
1060 * if it drives mobile display. In this case,
1061 * we shouldn't be doing power-sequencing, hence we can skip
1062 * waiting for T9-ready.
1063 */
1064 ctx->dc->link_srv->edp_add_delay_for_T9(link);
1065 else
1066 DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
1067 }
1068
1069 if (!enable) {
1070 /*follow oem panel config's requirement*/
1071 pre_T11_delay += link->panel_config.pps.extra_pre_t11_ms;
1072 if (pre_T11_delay)
1073 msleep(pre_T11_delay);
1074 }
1075 }
1076
dce110_enable_audio_stream(struct pipe_ctx * pipe_ctx)1077 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1078 {
1079 /* notify audio driver for audio modes of monitor */
1080 struct dc *dc;
1081 struct clk_mgr *clk_mgr;
1082 unsigned int i, num_audio = 1;
1083 const struct link_hwss *link_hwss;
1084
1085 if (!pipe_ctx->stream)
1086 return;
1087
1088 dc = pipe_ctx->stream->ctx->dc;
1089 clk_mgr = dc->clk_mgr;
1090 link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1091
1092 if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1093 return;
1094
1095 if (pipe_ctx->stream_res.audio) {
1096 for (i = 0; i < MAX_PIPES; i++) {
1097 /*current_state not updated yet*/
1098 if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1099 num_audio++;
1100 }
1101
1102 pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1103
1104 if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1105 /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1106 clk_mgr->funcs->enable_pme_wa(clk_mgr);
1107
1108 link_hwss->enable_audio_packet(pipe_ctx);
1109
1110 if (pipe_ctx->stream_res.audio)
1111 pipe_ctx->stream_res.audio->enabled = true;
1112 }
1113 }
1114
dce110_disable_audio_stream(struct pipe_ctx * pipe_ctx)1115 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1116 {
1117 struct dc *dc;
1118 struct clk_mgr *clk_mgr;
1119 const struct link_hwss *link_hwss;
1120
1121 if (!pipe_ctx || !pipe_ctx->stream)
1122 return;
1123
1124 dc = pipe_ctx->stream->ctx->dc;
1125 clk_mgr = dc->clk_mgr;
1126 link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1127
1128 if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1129 return;
1130
1131 link_hwss->disable_audio_packet(pipe_ctx);
1132
1133 if (pipe_ctx->stream_res.audio) {
1134 pipe_ctx->stream_res.audio->enabled = false;
1135
1136 if (clk_mgr->funcs->enable_pme_wa)
1137 /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1138 clk_mgr->funcs->enable_pme_wa(clk_mgr);
1139
1140 /* TODO: notify audio driver for if audio modes list changed
1141 * add audio mode list change flag */
1142 /* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1143 * stream->stream_engine_id);
1144 */
1145 }
1146 }
1147
dce110_disable_stream(struct pipe_ctx * pipe_ctx)1148 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1149 {
1150 struct dc_stream_state *stream = pipe_ctx->stream;
1151 struct dc_link *link = stream->link;
1152 struct dc *dc = pipe_ctx->stream->ctx->dc;
1153 const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
1154 struct dccg *dccg = dc->res_pool->dccg;
1155 struct timing_generator *tg = pipe_ctx->stream_res.tg;
1156 struct dtbclk_dto_params dto_params = {0};
1157 int dp_hpo_inst;
1158 struct link_encoder *link_enc = pipe_ctx->link_res.dio_link_enc;
1159 struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
1160
1161 if (!dc->config.unify_link_enc_assignment)
1162 link_enc = link_enc_cfg_get_link_enc(link);
1163
1164 if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1165 pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1166 pipe_ctx->stream_res.stream_enc);
1167 pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1168 pipe_ctx->stream_res.stream_enc);
1169 }
1170
1171 if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1172 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->stop_dp_info_packets(
1173 pipe_ctx->stream_res.hpo_dp_stream_enc);
1174 } else if (dc_is_dp_signal(pipe_ctx->stream->signal))
1175 pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1176 pipe_ctx->stream_res.stream_enc);
1177
1178 dc->hwss.disable_audio_stream(pipe_ctx);
1179
1180 link_hwss->reset_stream_encoder(pipe_ctx);
1181
1182 if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx) && dccg) {
1183 dto_params.otg_inst = tg->inst;
1184 dto_params.timing = &pipe_ctx->stream->timing;
1185 dp_hpo_inst = pipe_ctx->stream_res.hpo_dp_stream_enc->inst;
1186 if (dccg) {
1187 dccg->funcs->disable_symclk32_se(dccg, dp_hpo_inst);
1188 dccg->funcs->set_dpstreamclk(dccg, REFCLK, tg->inst, dp_hpo_inst);
1189 if (dccg && dccg->funcs->set_dtbclk_dto)
1190 dccg->funcs->set_dtbclk_dto(dccg, &dto_params);
1191 }
1192 } else if (dccg && dccg->funcs->disable_symclk_se) {
1193 dccg->funcs->disable_symclk_se(dccg, stream_enc->stream_enc_inst,
1194 link_enc->transmitter - TRANSMITTER_UNIPHY_A);
1195 }
1196 }
1197
dce110_unblank_stream(struct pipe_ctx * pipe_ctx,struct dc_link_settings * link_settings)1198 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1199 struct dc_link_settings *link_settings)
1200 {
1201 struct encoder_unblank_param params = { { 0 } };
1202 struct dc_stream_state *stream = pipe_ctx->stream;
1203 struct dc_link *link = stream->link;
1204 struct dce_hwseq *hws = link->dc->hwseq;
1205
1206 /* only 3 items below are used by unblank */
1207 params.timing = pipe_ctx->stream->timing;
1208 params.link_settings.link_rate = link_settings->link_rate;
1209
1210 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1211 pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, ¶ms);
1212
1213 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1214 hws->funcs.edp_backlight_control(link, true);
1215 }
1216 }
1217
dce110_blank_stream(struct pipe_ctx * pipe_ctx)1218 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1219 {
1220 struct dc_stream_state *stream = pipe_ctx->stream;
1221 struct dc_link *link = stream->link;
1222 struct dce_hwseq *hws = link->dc->hwseq;
1223
1224 if (hws && hws->wa_state.skip_blank_stream)
1225 return;
1226
1227 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1228 if (!link->skip_implict_edp_power_control && hws)
1229 hws->funcs.edp_backlight_control(link, false);
1230 link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1231 }
1232
1233 if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1234 /* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1235 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_blank(
1236 pipe_ctx->stream_res.hpo_dp_stream_enc);
1237 } else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1238 pipe_ctx->stream_res.stream_enc->funcs->dp_blank(link, pipe_ctx->stream_res.stream_enc);
1239
1240 if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1241 /*
1242 * After output is idle pattern some sinks need time to recognize the stream
1243 * has changed or they enter protection state and hang.
1244 */
1245 msleep(60);
1246 }
1247 }
1248
1249 if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP &&
1250 !link->dc->config.edp_no_power_sequencing) {
1251 /*
1252 * Sometimes, DP receiver chip power-controlled externally by an
1253 * Embedded Controller could be treated and used as eDP,
1254 * if it drives mobile display. In this case,
1255 * we shouldn't be doing power-sequencing, hence we can skip
1256 * waiting for T9-ready.
1257 */
1258 link->dc->link_srv->edp_receiver_ready_T9(link);
1259 }
1260
1261 }
1262
1263
dce110_set_avmute(struct pipe_ctx * pipe_ctx,bool enable)1264 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1265 {
1266 if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1267 pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1268 }
1269
translate_to_dto_source(enum controller_id crtc_id)1270 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1271 {
1272 switch (crtc_id) {
1273 case CONTROLLER_ID_D0:
1274 return DTO_SOURCE_ID0;
1275 case CONTROLLER_ID_D1:
1276 return DTO_SOURCE_ID1;
1277 case CONTROLLER_ID_D2:
1278 return DTO_SOURCE_ID2;
1279 case CONTROLLER_ID_D3:
1280 return DTO_SOURCE_ID3;
1281 case CONTROLLER_ID_D4:
1282 return DTO_SOURCE_ID4;
1283 case CONTROLLER_ID_D5:
1284 return DTO_SOURCE_ID5;
1285 default:
1286 return DTO_SOURCE_UNKNOWN;
1287 }
1288 }
1289
populate_audio_dp_link_info(const struct pipe_ctx * pipe_ctx,struct audio_dp_link_info * dp_link_info)1290 static void populate_audio_dp_link_info(
1291 const struct pipe_ctx *pipe_ctx,
1292 struct audio_dp_link_info *dp_link_info)
1293 {
1294 const struct dc_stream_state *stream = pipe_ctx->stream;
1295 const struct dc_link *link = stream->link;
1296 struct fixed31_32 link_bw_kbps;
1297
1298 dp_link_info->encoding = link->dc->link_srv->dp_get_encoding_format(
1299 &pipe_ctx->link_config.dp_link_settings);
1300 dp_link_info->is_mst = (stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST);
1301 dp_link_info->lane_count = pipe_ctx->link_config.dp_link_settings.lane_count;
1302 dp_link_info->link_rate = pipe_ctx->link_config.dp_link_settings.link_rate;
1303
1304 link_bw_kbps = dc_fixpt_from_int(dc_link_bandwidth_kbps(link,
1305 &pipe_ctx->link_config.dp_link_settings));
1306
1307 /* For audio stream calculations, the video stream should not include FEC or SSC
1308 * in order to get the most pessimistic values.
1309 */
1310 if (dp_link_info->encoding == DP_8b_10b_ENCODING &&
1311 link->dc->link_srv->dp_is_fec_supported(link)) {
1312 link_bw_kbps = dc_fixpt_mul(link_bw_kbps,
1313 dc_fixpt_from_fraction(100, DATA_EFFICIENCY_8b_10b_FEC_EFFICIENCY_x100));
1314 } else if (dp_link_info->encoding == DP_128b_132b_ENCODING) {
1315 link_bw_kbps = dc_fixpt_mul(link_bw_kbps,
1316 dc_fixpt_from_fraction(10000, 9975)); /* 99.75% SSC overhead*/
1317 }
1318
1319 dp_link_info->link_bandwidth_kbps = dc_fixpt_floor(link_bw_kbps);
1320
1321 /* Calculates hblank_min_symbol_width for 128b/132b
1322 * Corresponding HBLANK_MIN_SYMBOL_WIDTH register is calculated as:
1323 * floor(h_blank * bits_per_pixel / 128)
1324 */
1325 if (dp_link_info->encoding == DP_128b_132b_ENCODING) {
1326 struct dc_crtc_timing *crtc_timing = &pipe_ctx->stream->timing;
1327
1328 uint32_t h_active = crtc_timing->h_addressable + crtc_timing->h_border_left
1329 + crtc_timing->h_border_right;
1330 uint32_t h_blank = crtc_timing->h_total - h_active;
1331
1332 uint32_t bpp;
1333
1334 if (crtc_timing->flags.DSC) {
1335 bpp = crtc_timing->dsc_cfg.bits_per_pixel;
1336 } else {
1337 /* When the timing is using DSC, dsc_cfg.bits_per_pixel is in 16th bits.
1338 * The bpp in this path is scaled to 16th bits so the final calculation
1339 * is correct for both cases.
1340 */
1341 bpp = 16;
1342 switch (crtc_timing->display_color_depth) {
1343 case COLOR_DEPTH_666:
1344 bpp *= 18;
1345 break;
1346 case COLOR_DEPTH_888:
1347 bpp *= 24;
1348 break;
1349 case COLOR_DEPTH_101010:
1350 bpp *= 30;
1351 break;
1352 case COLOR_DEPTH_121212:
1353 bpp *= 36;
1354 break;
1355 default:
1356 bpp = 0;
1357 break;
1358 }
1359
1360 switch (crtc_timing->pixel_encoding) {
1361 case PIXEL_ENCODING_YCBCR422:
1362 bpp = bpp * 2 / 3;
1363 break;
1364 case PIXEL_ENCODING_YCBCR420:
1365 bpp /= 2;
1366 break;
1367 default:
1368 break;
1369 }
1370 }
1371
1372 /* Min symbol width = floor(h_blank * (bpp/16) / 128) */
1373 dp_link_info->hblank_min_symbol_width = dc_fixpt_floor(
1374 dc_fixpt_div(dc_fixpt_from_int(h_blank * bpp),
1375 dc_fixpt_from_int(128 / 16)));
1376
1377 } else {
1378 dp_link_info->hblank_min_symbol_width = 0;
1379 }
1380 }
1381
build_audio_output(struct dc_state * state,const struct pipe_ctx * pipe_ctx,struct audio_output * audio_output)1382 static void build_audio_output(
1383 struct dc_state *state,
1384 const struct pipe_ctx *pipe_ctx,
1385 struct audio_output *audio_output)
1386 {
1387 const struct dc_stream_state *stream = pipe_ctx->stream;
1388 audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1389
1390 audio_output->signal = pipe_ctx->stream->signal;
1391
1392 /* audio_crtc_info */
1393
1394 audio_output->crtc_info.h_total =
1395 stream->timing.h_total;
1396
1397 /*
1398 * Audio packets are sent during actual CRTC blank physical signal, we
1399 * need to specify actual active signal portion
1400 */
1401 audio_output->crtc_info.h_active =
1402 stream->timing.h_addressable
1403 + stream->timing.h_border_left
1404 + stream->timing.h_border_right;
1405
1406 audio_output->crtc_info.v_active =
1407 stream->timing.v_addressable
1408 + stream->timing.v_border_top
1409 + stream->timing.v_border_bottom;
1410
1411 audio_output->crtc_info.pixel_repetition = 1;
1412
1413 audio_output->crtc_info.interlaced =
1414 stream->timing.flags.INTERLACE;
1415
1416 audio_output->crtc_info.refresh_rate =
1417 (stream->timing.pix_clk_100hz*100)/
1418 (stream->timing.h_total*stream->timing.v_total);
1419
1420 audio_output->crtc_info.color_depth =
1421 stream->timing.display_color_depth;
1422
1423 audio_output->crtc_info.requested_pixel_clock_100Hz =
1424 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1425
1426 audio_output->crtc_info.calculated_pixel_clock_100Hz =
1427 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1428
1429 audio_output->crtc_info.pixel_encoding =
1430 stream->timing.pixel_encoding;
1431
1432 audio_output->crtc_info.dsc_bits_per_pixel =
1433 stream->timing.dsc_cfg.bits_per_pixel;
1434
1435 audio_output->crtc_info.dsc_num_slices =
1436 stream->timing.dsc_cfg.num_slices_h;
1437
1438 /*for HDMI, audio ACR is with deep color ratio factor*/
1439 if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1440 audio_output->crtc_info.requested_pixel_clock_100Hz ==
1441 (stream->timing.pix_clk_100hz)) {
1442 if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1443 audio_output->crtc_info.requested_pixel_clock_100Hz =
1444 audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1445 audio_output->crtc_info.calculated_pixel_clock_100Hz =
1446 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1447
1448 }
1449 }
1450
1451 if (state->clk_mgr &&
1452 (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1453 pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1454 audio_output->pll_info.audio_dto_source_clock_in_khz =
1455 state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1456 state->clk_mgr);
1457 }
1458
1459 audio_output->pll_info.feed_back_divider =
1460 pipe_ctx->pll_settings.feedback_divider;
1461
1462 audio_output->pll_info.dto_source =
1463 translate_to_dto_source(
1464 pipe_ctx->stream_res.tg->inst + 1);
1465
1466 /* TODO hard code to enable for now. Need get from stream */
1467 audio_output->pll_info.ss_enabled = true;
1468
1469 audio_output->pll_info.ss_percentage =
1470 pipe_ctx->pll_settings.ss_percentage;
1471
1472 if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1473 populate_audio_dp_link_info(pipe_ctx, &audio_output->dp_link_info);
1474 }
1475 }
1476
program_scaler(const struct dc * dc,const struct pipe_ctx * pipe_ctx)1477 static void program_scaler(const struct dc *dc,
1478 const struct pipe_ctx *pipe_ctx)
1479 {
1480 struct tg_color color = {0};
1481
1482 /* TOFPGA */
1483 if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1484 return;
1485
1486 if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1487 get_surface_visual_confirm_color(pipe_ctx, &color);
1488 else
1489 color_space_to_black_color(dc,
1490 pipe_ctx->stream->output_color_space,
1491 &color);
1492
1493 pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1494 pipe_ctx->plane_res.xfm,
1495 pipe_ctx->plane_res.scl_data.lb_params.depth,
1496 &pipe_ctx->stream->bit_depth_params);
1497
1498 if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1499 /*
1500 * The way 420 is packed, 2 channels carry Y component, 1 channel
1501 * alternate between Cb and Cr, so both channels need the pixel
1502 * value for Y
1503 */
1504 if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1505 color.color_r_cr = color.color_g_y;
1506
1507 pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1508 pipe_ctx->stream_res.tg,
1509 &color);
1510 }
1511
1512 pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1513 &pipe_ctx->plane_res.scl_data);
1514 }
1515
dce110_enable_stream_timing(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1516 static enum dc_status dce110_enable_stream_timing(
1517 struct pipe_ctx *pipe_ctx,
1518 struct dc_state *context,
1519 struct dc *dc)
1520 {
1521 struct dc_stream_state *stream = pipe_ctx->stream;
1522 struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1523 pipe_ctx[pipe_ctx->pipe_idx];
1524 struct tg_color black_color = {0};
1525
1526 if (!pipe_ctx_old->stream) {
1527
1528 /* program blank color */
1529 color_space_to_black_color(dc,
1530 stream->output_color_space, &black_color);
1531 pipe_ctx->stream_res.tg->funcs->set_blank_color(
1532 pipe_ctx->stream_res.tg,
1533 &black_color);
1534
1535 /*
1536 * Must blank CRTC after disabling power gating and before any
1537 * programming, otherwise CRTC will be hung in bad state
1538 */
1539 pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1540
1541 if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1542 pipe_ctx->clock_source,
1543 &pipe_ctx->stream_res.pix_clk_params,
1544 dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
1545 &pipe_ctx->pll_settings)) {
1546 BREAK_TO_DEBUGGER();
1547 return DC_ERROR_UNEXPECTED;
1548 }
1549
1550 if (dc_is_hdmi_tmds_signal(stream->signal)) {
1551 stream->link->phy_state.symclk_ref_cnts.otg = 1;
1552 if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
1553 stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
1554 else
1555 stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
1556 }
1557
1558 pipe_ctx->stream_res.tg->funcs->program_timing(
1559 pipe_ctx->stream_res.tg,
1560 &stream->timing,
1561 0,
1562 0,
1563 0,
1564 0,
1565 0,
1566 pipe_ctx->stream->signal,
1567 true);
1568 }
1569
1570 if (!pipe_ctx_old->stream) {
1571 if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1572 pipe_ctx->stream_res.tg)) {
1573 BREAK_TO_DEBUGGER();
1574 return DC_ERROR_UNEXPECTED;
1575 }
1576 }
1577
1578 return DC_OK;
1579 }
1580
dce110_apply_single_controller_ctx_to_hw(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1581 enum dc_status dce110_apply_single_controller_ctx_to_hw(
1582 struct pipe_ctx *pipe_ctx,
1583 struct dc_state *context,
1584 struct dc *dc)
1585 {
1586 struct dc_stream_state *stream = pipe_ctx->stream;
1587 struct dc_link *link = stream->link;
1588 struct drr_params params = {0};
1589 unsigned int event_triggers = 0;
1590 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1591 struct dce_hwseq *hws = dc->hwseq;
1592 const struct link_hwss *link_hwss = get_link_hwss(
1593 link, &pipe_ctx->link_res);
1594
1595
1596 if (hws->funcs.disable_stream_gating) {
1597 hws->funcs.disable_stream_gating(dc, pipe_ctx);
1598 }
1599
1600 if (pipe_ctx->stream_res.audio != NULL) {
1601 struct audio_output audio_output = {0};
1602
1603 build_audio_output(context, pipe_ctx, &audio_output);
1604
1605 link_hwss->setup_audio_output(pipe_ctx, &audio_output,
1606 pipe_ctx->stream_res.audio->inst);
1607
1608 pipe_ctx->stream_res.audio->funcs->az_configure(
1609 pipe_ctx->stream_res.audio,
1610 pipe_ctx->stream->signal,
1611 &audio_output.crtc_info,
1612 &pipe_ctx->stream->audio_info,
1613 &audio_output.dp_link_info);
1614
1615 if (dc->config.disable_hbr_audio_dp2)
1616 if (pipe_ctx->stream_res.audio->funcs->az_disable_hbr_audio &&
1617 dc->link_srv->dp_is_128b_132b_signal(pipe_ctx))
1618 pipe_ctx->stream_res.audio->funcs->az_disable_hbr_audio(pipe_ctx->stream_res.audio);
1619 }
1620
1621 /* make sure no pipes syncd to the pipe being enabled */
1622 if (!pipe_ctx->stream->apply_seamless_boot_optimization && dc->config.use_pipe_ctx_sync_logic)
1623 check_syncd_pipes_for_disabled_master_pipe(dc, context, pipe_ctx->pipe_idx);
1624
1625 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1626 pipe_ctx->stream_res.opp,
1627 &stream->bit_depth_params,
1628 &stream->clamping);
1629
1630 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1631 pipe_ctx->stream_res.opp,
1632 COLOR_SPACE_YCBCR601,
1633 stream->timing.display_color_depth,
1634 stream->signal);
1635
1636 while (odm_pipe) {
1637 odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1638 odm_pipe->stream_res.opp,
1639 COLOR_SPACE_YCBCR601,
1640 stream->timing.display_color_depth,
1641 stream->signal);
1642
1643 odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1644 odm_pipe->stream_res.opp,
1645 &stream->bit_depth_params,
1646 &stream->clamping);
1647 odm_pipe = odm_pipe->next_odm_pipe;
1648 }
1649
1650 /* DCN3.1 FPGA Workaround
1651 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1652 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1653 * function core_link_enable_stream
1654 */
1655 if (!(hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)))
1656 /* */
1657 /* Do not touch stream timing on seamless boot optimization. */
1658 if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1659 hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1660
1661 if (hws->funcs.setup_vupdate_interrupt)
1662 hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1663
1664 params.vertical_total_min = stream->adjust.v_total_min;
1665 params.vertical_total_max = stream->adjust.v_total_max;
1666 set_drr_and_clear_adjust_pending(pipe_ctx, stream, ¶ms);
1667
1668 // DRR should set trigger event to monitor surface update event
1669 if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1670 event_triggers = 0x80;
1671 /* Event triggers and num frames initialized for DRR, but can be
1672 * later updated for PSR use. Note DRR trigger events are generated
1673 * regardless of whether num frames met.
1674 */
1675 if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1676 pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1677 pipe_ctx->stream_res.tg, event_triggers, 2);
1678
1679 if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1680 pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1681 pipe_ctx->stream_res.stream_enc,
1682 pipe_ctx->stream_res.tg->inst);
1683
1684 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1685 dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_CONNECT_DIG_FE_OTG);
1686
1687 if (!stream->dpms_off)
1688 dc->link_srv->set_dpms_on(context, pipe_ctx);
1689
1690 /* DCN3.1 FPGA Workaround
1691 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1692 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1693 * function core_link_enable_stream
1694 */
1695 if (hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1696 if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1697 hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1698 }
1699
1700 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
1701
1702 /* Phantom and main stream share the same link (because the stream
1703 * is constructed with the same sink). Make sure not to override
1704 * and link programming on the main.
1705 */
1706 if (dc_state_get_pipe_subvp_type(context, pipe_ctx) != SUBVP_PHANTOM) {
1707 pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1708 pipe_ctx->stream->link->replay_settings.replay_feature_enabled = false;
1709 }
1710 return DC_OK;
1711 }
1712
1713 /******************************************************************************/
1714
power_down_encoders(struct dc * dc)1715 static void power_down_encoders(struct dc *dc)
1716 {
1717 int i;
1718
1719 for (i = 0; i < dc->link_count; i++) {
1720 enum signal_type signal = dc->links[i]->connector_signal;
1721
1722 dc->link_srv->blank_dp_stream(dc->links[i], false);
1723
1724 if (signal != SIGNAL_TYPE_EDP)
1725 signal = SIGNAL_TYPE_NONE;
1726
1727 if (dc->links[i]->ep_type == DISPLAY_ENDPOINT_PHY)
1728 dc->links[i]->link_enc->funcs->disable_output(
1729 dc->links[i]->link_enc, signal);
1730
1731 dc->links[i]->link_status.link_active = false;
1732 memset(&dc->links[i]->cur_link_settings, 0,
1733 sizeof(dc->links[i]->cur_link_settings));
1734 }
1735 }
1736
power_down_controllers(struct dc * dc)1737 static void power_down_controllers(struct dc *dc)
1738 {
1739 int i;
1740
1741 for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1742 dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1743 dc->res_pool->timing_generators[i]);
1744 }
1745 }
1746
power_down_clock_sources(struct dc * dc)1747 static void power_down_clock_sources(struct dc *dc)
1748 {
1749 int i;
1750
1751 if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1752 dc->res_pool->dp_clock_source) == false)
1753 dm_error("Failed to power down pll! (dp clk src)\n");
1754
1755 for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1756 if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1757 dc->res_pool->clock_sources[i]) == false)
1758 dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1759 }
1760 }
1761
power_down_all_hw_blocks(struct dc * dc)1762 static void power_down_all_hw_blocks(struct dc *dc)
1763 {
1764 power_down_encoders(dc);
1765
1766 power_down_controllers(dc);
1767
1768 power_down_clock_sources(dc);
1769
1770 if (dc->fbc_compressor)
1771 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1772 }
1773
disable_vga_and_power_gate_all_controllers(struct dc * dc)1774 static void disable_vga_and_power_gate_all_controllers(
1775 struct dc *dc)
1776 {
1777 int i;
1778 struct timing_generator *tg;
1779 struct dc_context *ctx = dc->ctx;
1780
1781 for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1782 tg = dc->res_pool->timing_generators[i];
1783
1784 if (tg->funcs->disable_vga)
1785 tg->funcs->disable_vga(tg);
1786 }
1787 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1788 /* Enable CLOCK gating for each pipe BEFORE controller
1789 * powergating. */
1790 enable_display_pipe_clock_gating(ctx,
1791 true);
1792
1793 dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1794 dc->hwss.disable_plane(dc, dc->current_state,
1795 &dc->current_state->res_ctx.pipe_ctx[i]);
1796 }
1797 }
1798
1799
get_edp_streams(struct dc_state * context,struct dc_stream_state ** edp_streams,int * edp_stream_num)1800 static void get_edp_streams(struct dc_state *context,
1801 struct dc_stream_state **edp_streams,
1802 int *edp_stream_num)
1803 {
1804 int i;
1805
1806 *edp_stream_num = 0;
1807 for (i = 0; i < context->stream_count; i++) {
1808 if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1809 edp_streams[*edp_stream_num] = context->streams[i];
1810 if (++(*edp_stream_num) == MAX_NUM_EDP)
1811 return;
1812 }
1813 }
1814 }
1815
get_edp_links_with_sink(struct dc * dc,struct dc_link ** edp_links_with_sink,int * edp_with_sink_num)1816 static void get_edp_links_with_sink(
1817 struct dc *dc,
1818 struct dc_link **edp_links_with_sink,
1819 int *edp_with_sink_num)
1820 {
1821 int i;
1822
1823 /* check if there is an eDP panel not in use */
1824 *edp_with_sink_num = 0;
1825 for (i = 0; i < dc->link_count; i++) {
1826 if (dc->links[i]->local_sink &&
1827 dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1828 edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
1829 if (++(*edp_with_sink_num) == MAX_NUM_EDP)
1830 return;
1831 }
1832 }
1833 }
1834
clean_up_dsc_blocks(struct dc * dc)1835 static void clean_up_dsc_blocks(struct dc *dc)
1836 {
1837 struct display_stream_compressor *dsc = NULL;
1838 struct timing_generator *tg = NULL;
1839 struct stream_encoder *se = NULL;
1840 struct dccg *dccg = dc->res_pool->dccg;
1841 struct pg_cntl *pg_cntl = dc->res_pool->pg_cntl;
1842 int i;
1843
1844 if (!dc->caps.is_apu ||
1845 dc->ctx->dce_version < DCN_VERSION_3_15)
1846 return;
1847 /*VBIOS supports dsc starts from dcn315*/
1848 for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) {
1849 struct dcn_dsc_state s = {0};
1850
1851 dsc = dc->res_pool->dscs[i];
1852 dsc->funcs->dsc_read_state(dsc, &s);
1853 if (s.dsc_fw_en) {
1854 /* disable DSC in OPTC */
1855 if (i < dc->res_pool->timing_generator_count) {
1856 tg = dc->res_pool->timing_generators[i];
1857 tg->funcs->set_dsc_config(tg, OPTC_DSC_DISABLED, 0, 0);
1858 }
1859 /* disable DSC in stream encoder */
1860 if (i < dc->res_pool->stream_enc_count) {
1861 se = dc->res_pool->stream_enc[i];
1862 se->funcs->dp_set_dsc_config(se, OPTC_DSC_DISABLED, 0, 0);
1863 se->funcs->dp_set_dsc_pps_info_packet(se, false, NULL, true);
1864 }
1865 /* disable DSC block */
1866 if (dccg->funcs->set_ref_dscclk)
1867 dccg->funcs->set_ref_dscclk(dccg, dsc->inst);
1868 dsc->funcs->dsc_disable(dsc);
1869
1870 /* power down DSC */
1871 if (pg_cntl != NULL)
1872 pg_cntl->funcs->dsc_pg_control(pg_cntl, dsc->inst, false);
1873 }
1874 }
1875 }
1876
1877 /*
1878 * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1879 * 1. Power down all DC HW blocks
1880 * 2. Disable VGA engine on all controllers
1881 * 3. Enable power gating for controller
1882 * 4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1883 */
dce110_enable_accelerated_mode(struct dc * dc,struct dc_state * context)1884 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1885 {
1886 struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
1887 struct dc_link *edp_links[MAX_NUM_EDP];
1888 struct dc_stream_state *edp_streams[MAX_NUM_EDP];
1889 struct dc_link *edp_link_with_sink = NULL;
1890 struct dc_link *edp_link = NULL;
1891 struct pipe_ctx *pipe_ctx = NULL;
1892 struct dce_hwseq *hws = dc->hwseq;
1893 int edp_with_sink_num;
1894 int edp_num;
1895 int edp_stream_num;
1896 int i;
1897 bool can_apply_edp_fast_boot = false;
1898 bool can_apply_seamless_boot = false;
1899 bool keep_edp_vdd_on = false;
1900 struct dc_bios *dcb = dc->ctx->dc_bios;
1901 DC_LOGGER_INIT();
1902
1903
1904 get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
1905 dc_get_edp_links(dc, edp_links, &edp_num);
1906
1907 if (hws->funcs.init_pipes)
1908 hws->funcs.init_pipes(dc, context);
1909
1910 get_edp_streams(context, edp_streams, &edp_stream_num);
1911
1912 // Check fastboot support, disable on DCE8 because of blank screens
1913 if (edp_num && edp_stream_num && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1914 dc->ctx->dce_version != DCE_VERSION_8_1 &&
1915 dc->ctx->dce_version != DCE_VERSION_8_3) {
1916 for (i = 0; i < edp_num; i++) {
1917 edp_link = edp_links[i];
1918 if (edp_link != edp_streams[0]->link)
1919 continue;
1920 // enable fastboot if backend is enabled on eDP
1921 if (edp_link->link_enc->funcs->is_dig_enabled &&
1922 edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
1923 edp_link->link_status.link_active) {
1924 struct dc_stream_state *edp_stream = edp_streams[0];
1925
1926 can_apply_edp_fast_boot = dc_validate_boot_timing(dc,
1927 edp_stream->sink, &edp_stream->timing);
1928 edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
1929 if (can_apply_edp_fast_boot) {
1930 DC_LOG_EVENT_LINK_TRAINING("eDP fast boot Enable\n");
1931
1932 // Vbios & Driver support different pixel rate div policy.
1933 pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, edp_stream);
1934 if (pipe_ctx &&
1935 hws->funcs.is_dp_dig_pixel_rate_div_policy &&
1936 hws->funcs.is_dp_dig_pixel_rate_div_policy(pipe_ctx)) {
1937 // Get Vbios div factor from register
1938 dc->res_pool->dccg->funcs->get_pixel_rate_div(
1939 dc->res_pool->dccg,
1940 pipe_ctx->stream_res.tg->inst,
1941 &pipe_ctx->pixel_rate_divider.div_factor1,
1942 &pipe_ctx->pixel_rate_divider.div_factor2);
1943
1944 // VBios doesn't support pixel rate div, so force it.
1945 // If VBios supports it, we check it from reigster or other flags.
1946 pipe_ctx->stream_res.pix_clk_params.dio_se_pix_per_cycle = 1;
1947 }
1948 }
1949 break;
1950 }
1951 }
1952 // We are trying to enable eDP, don't power down VDD
1953 if (can_apply_edp_fast_boot)
1954 keep_edp_vdd_on = true;
1955 }
1956
1957 // Check seamless boot support
1958 for (i = 0; i < context->stream_count; i++) {
1959 if (context->streams[i]->apply_seamless_boot_optimization) {
1960 can_apply_seamless_boot = true;
1961 break;
1962 }
1963 }
1964
1965 /* eDP should not have stream in resume from S4 and so even with VBios post
1966 * it should get turned off
1967 */
1968 if (edp_with_sink_num)
1969 edp_link_with_sink = edp_links_with_sink[0];
1970
1971 if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1972 if (edp_link_with_sink && !keep_edp_vdd_on) {
1973 /*turn off backlight before DP_blank and encoder powered down*/
1974 hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1975 }
1976 /*resume from S3, no vbios posting, no need to power down again*/
1977 if (dcb && dcb->funcs && !dcb->funcs->is_accelerated_mode(dcb))
1978 clk_mgr_exit_optimized_pwr_state(dc, dc->clk_mgr);
1979
1980 power_down_all_hw_blocks(dc);
1981
1982 /* DSC could be enabled on eDP during VBIOS post.
1983 * To clean up dsc blocks if eDP is in link but not active.
1984 */
1985 if (edp_link_with_sink && (edp_stream_num == 0))
1986 clean_up_dsc_blocks(dc);
1987
1988 disable_vga_and_power_gate_all_controllers(dc);
1989 if (edp_link_with_sink && !keep_edp_vdd_on)
1990 dc->hwss.edp_power_control(edp_link_with_sink, false);
1991 if (dcb && dcb->funcs && !dcb->funcs->is_accelerated_mode(dcb))
1992 clk_mgr_optimize_pwr_state(dc, dc->clk_mgr);
1993 }
1994 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
1995 }
1996
compute_pstate_blackout_duration(struct bw_fixed blackout_duration,const struct dc_stream_state * stream)1997 static uint32_t compute_pstate_blackout_duration(
1998 struct bw_fixed blackout_duration,
1999 const struct dc_stream_state *stream)
2000 {
2001 uint32_t total_dest_line_time_ns;
2002 uint32_t pstate_blackout_duration_ns;
2003
2004 pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
2005
2006 total_dest_line_time_ns = 1000000UL *
2007 (stream->timing.h_total * 10) /
2008 stream->timing.pix_clk_100hz +
2009 pstate_blackout_duration_ns;
2010
2011 return total_dest_line_time_ns;
2012 }
2013
dce110_set_displaymarks(const struct dc * dc,struct dc_state * context)2014 static void dce110_set_displaymarks(
2015 const struct dc *dc,
2016 struct dc_state *context)
2017 {
2018 uint8_t i, num_pipes;
2019 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
2020
2021 for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
2022 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2023 uint32_t total_dest_line_time_ns;
2024
2025 if (pipe_ctx->stream == NULL)
2026 continue;
2027
2028 total_dest_line_time_ns = compute_pstate_blackout_duration(
2029 dc->bw_vbios->blackout_duration, pipe_ctx->stream);
2030 pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
2031 pipe_ctx->plane_res.mi,
2032 context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
2033 context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
2034 context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
2035 context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
2036 total_dest_line_time_ns);
2037 if (i == underlay_idx) {
2038 num_pipes++;
2039 pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
2040 pipe_ctx->plane_res.mi,
2041 context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
2042 context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
2043 context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
2044 total_dest_line_time_ns);
2045 }
2046 num_pipes++;
2047 }
2048 }
2049
dce110_set_safe_displaymarks(struct resource_context * res_ctx,const struct resource_pool * pool)2050 void dce110_set_safe_displaymarks(
2051 struct resource_context *res_ctx,
2052 const struct resource_pool *pool)
2053 {
2054 int i;
2055 int underlay_idx = pool->underlay_pipe_index;
2056 struct dce_watermarks max_marks = {
2057 MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
2058 struct dce_watermarks nbp_marks = {
2059 SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
2060 struct dce_watermarks min_marks = { 0, 0, 0, 0};
2061
2062 for (i = 0; i < MAX_PIPES; i++) {
2063 if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
2064 continue;
2065
2066 res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
2067 res_ctx->pipe_ctx[i].plane_res.mi,
2068 nbp_marks,
2069 max_marks,
2070 min_marks,
2071 max_marks,
2072 MAX_WATERMARK);
2073
2074 if (i == underlay_idx)
2075 res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
2076 res_ctx->pipe_ctx[i].plane_res.mi,
2077 nbp_marks,
2078 max_marks,
2079 max_marks,
2080 MAX_WATERMARK);
2081
2082 }
2083 }
2084
2085 /*******************************************************************************
2086 * Public functions
2087 ******************************************************************************/
2088
set_drr(struct pipe_ctx ** pipe_ctx,int num_pipes,struct dc_crtc_timing_adjust adjust)2089 static void set_drr(struct pipe_ctx **pipe_ctx,
2090 int num_pipes, struct dc_crtc_timing_adjust adjust)
2091 {
2092 int i = 0;
2093 struct drr_params params = {0};
2094 // DRR should set trigger event to monitor surface update event
2095 unsigned int event_triggers = 0x80;
2096 // Note DRR trigger events are generated regardless of whether num frames met.
2097 unsigned int num_frames = 2;
2098
2099 params.vertical_total_max = adjust.v_total_max;
2100 params.vertical_total_min = adjust.v_total_min;
2101
2102 /* TODO: If multiple pipes are to be supported, you need
2103 * some GSL stuff. Static screen triggers may be programmed differently
2104 * as well.
2105 */
2106 for (i = 0; i < num_pipes; i++) {
2107 /* dc_state_destruct() might null the stream resources, so fetch tg
2108 * here first to avoid a race condition. The lifetime of the pointee
2109 * itself (the timing_generator object) is not a problem here.
2110 */
2111 struct timing_generator *tg = pipe_ctx[i]->stream_res.tg;
2112
2113 if ((tg != NULL) && tg->funcs) {
2114 set_drr_and_clear_adjust_pending(pipe_ctx[i], pipe_ctx[i]->stream, ¶ms);
2115 if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
2116 if (tg->funcs->set_static_screen_control)
2117 tg->funcs->set_static_screen_control(
2118 tg, event_triggers, num_frames);
2119 }
2120 }
2121 }
2122
get_position(struct pipe_ctx ** pipe_ctx,int num_pipes,struct crtc_position * position)2123 static void get_position(struct pipe_ctx **pipe_ctx,
2124 int num_pipes,
2125 struct crtc_position *position)
2126 {
2127 int i = 0;
2128
2129 /* TODO: handle pipes > 1
2130 */
2131 for (i = 0; i < num_pipes; i++)
2132 pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
2133 }
2134
set_static_screen_control(struct pipe_ctx ** pipe_ctx,int num_pipes,const struct dc_static_screen_params * params)2135 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
2136 int num_pipes, const struct dc_static_screen_params *params)
2137 {
2138 unsigned int i;
2139 unsigned int triggers = 0;
2140
2141 if (params->triggers.overlay_update)
2142 triggers |= 0x100;
2143 if (params->triggers.surface_update)
2144 triggers |= 0x80;
2145 if (params->triggers.cursor_update)
2146 triggers |= 0x2;
2147 if (params->triggers.force_trigger)
2148 triggers |= 0x1;
2149
2150 if (num_pipes) {
2151 struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
2152
2153 if (dc->fbc_compressor)
2154 triggers |= 0x84;
2155 }
2156
2157 for (i = 0; i < num_pipes; i++)
2158 pipe_ctx[i]->stream_res.tg->funcs->
2159 set_static_screen_control(pipe_ctx[i]->stream_res.tg,
2160 triggers, params->num_frames);
2161 }
2162
2163 /*
2164 * Check if FBC can be enabled
2165 */
should_enable_fbc(struct dc * dc,struct dc_state * context,uint32_t * pipe_idx)2166 static bool should_enable_fbc(struct dc *dc,
2167 struct dc_state *context,
2168 uint32_t *pipe_idx)
2169 {
2170 uint32_t i;
2171 struct pipe_ctx *pipe_ctx = NULL;
2172 struct resource_context *res_ctx = &context->res_ctx;
2173 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
2174
2175
2176 ASSERT(dc->fbc_compressor);
2177
2178 /* FBC memory should be allocated */
2179 if (!dc->ctx->fbc_gpu_addr)
2180 return false;
2181
2182 /* Only supports single display */
2183 if (context->stream_count != 1)
2184 return false;
2185
2186 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2187 if (res_ctx->pipe_ctx[i].stream) {
2188
2189 pipe_ctx = &res_ctx->pipe_ctx[i];
2190
2191 /* fbc not applicable on underlay pipe */
2192 if (pipe_ctx->pipe_idx != underlay_idx) {
2193 *pipe_idx = i;
2194 break;
2195 }
2196 }
2197 }
2198
2199 if (i == dc->res_pool->pipe_count)
2200 return false;
2201
2202 if (!pipe_ctx->stream->link)
2203 return false;
2204
2205 /* Only supports eDP */
2206 if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
2207 return false;
2208
2209 /* PSR should not be enabled */
2210 if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
2211 return false;
2212
2213 /* Replay should not be enabled */
2214 if (pipe_ctx->stream->link->replay_settings.replay_feature_enabled)
2215 return false;
2216
2217 /* Nothing to compress */
2218 if (!pipe_ctx->plane_state)
2219 return false;
2220
2221 /* Only for non-linear tiling */
2222 if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
2223 return false;
2224
2225 return true;
2226 }
2227
2228 /*
2229 * Enable FBC
2230 */
enable_fbc(struct dc * dc,struct dc_state * context)2231 static void enable_fbc(
2232 struct dc *dc,
2233 struct dc_state *context)
2234 {
2235 uint32_t pipe_idx = 0;
2236
2237 if (should_enable_fbc(dc, context, &pipe_idx)) {
2238 /* Program GRPH COMPRESSED ADDRESS and PITCH */
2239 struct compr_addr_and_pitch_params params = {0, 0, 0};
2240 struct compressor *compr = dc->fbc_compressor;
2241 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2242
2243 params.source_view_width = pipe_ctx->stream->timing.h_addressable;
2244 params.source_view_height = pipe_ctx->stream->timing.v_addressable;
2245 params.inst = pipe_ctx->stream_res.tg->inst;
2246 compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
2247
2248 compr->funcs->surface_address_and_pitch(compr, ¶ms);
2249 compr->funcs->set_fbc_invalidation_triggers(compr, 1);
2250
2251 compr->funcs->enable_fbc(compr, ¶ms);
2252 }
2253 }
2254
dce110_reset_hw_ctx_wrap(struct dc * dc,struct dc_state * context)2255 static void dce110_reset_hw_ctx_wrap(
2256 struct dc *dc,
2257 struct dc_state *context)
2258 {
2259 int i;
2260
2261 /* Reset old context */
2262 /* look up the targets that have been removed since last commit */
2263 for (i = 0; i < MAX_PIPES; i++) {
2264 struct pipe_ctx *pipe_ctx_old =
2265 &dc->current_state->res_ctx.pipe_ctx[i];
2266 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2267
2268 /* Note: We need to disable output if clock sources change,
2269 * since bios does optimization and doesn't apply if changing
2270 * PHY when not already disabled.
2271 */
2272
2273 /* Skip underlay pipe since it will be handled in commit surface*/
2274 if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2275 continue;
2276
2277 if (!pipe_ctx->stream ||
2278 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2279 struct clock_source *old_clk = pipe_ctx_old->clock_source;
2280
2281 /* Disable if new stream is null. O/w, if stream is
2282 * disabled already, no need to disable again.
2283 */
2284 if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2285 dc->link_srv->set_dpms_off(pipe_ctx_old);
2286
2287 /* free acquired resources*/
2288 if (pipe_ctx_old->stream_res.audio) {
2289 /*disable az_endpoint*/
2290 pipe_ctx_old->stream_res.audio->funcs->
2291 az_disable(pipe_ctx_old->stream_res.audio);
2292
2293 /*free audio*/
2294 if (dc->caps.dynamic_audio == true) {
2295 /*we have to dynamic arbitrate the audio endpoints*/
2296 /*we free the resource, need reset is_audio_acquired*/
2297 update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2298 pipe_ctx_old->stream_res.audio, false);
2299 pipe_ctx_old->stream_res.audio = NULL;
2300 }
2301 }
2302 }
2303
2304 pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2305 if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2306 dm_error("DC: failed to blank crtc!\n");
2307 BREAK_TO_DEBUGGER();
2308 }
2309 pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2310 if (dc_is_hdmi_tmds_signal(pipe_ctx_old->stream->signal))
2311 pipe_ctx_old->stream->link->phy_state.symclk_ref_cnts.otg = 0;
2312 pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2313 pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2314
2315 if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2316 dc->res_pool,
2317 old_clk))
2318 old_clk->funcs->cs_power_down(old_clk);
2319
2320 dc->hwss.disable_plane(dc, dc->current_state, pipe_ctx_old);
2321
2322 pipe_ctx_old->stream = NULL;
2323 }
2324 }
2325 }
2326
dce110_setup_audio_dto(struct dc * dc,struct dc_state * context)2327 static void dce110_setup_audio_dto(
2328 struct dc *dc,
2329 struct dc_state *context)
2330 {
2331 unsigned int i;
2332
2333 /* program audio wall clock. use HDMI as clock source if HDMI
2334 * audio active. Otherwise, use DP as clock source
2335 * first, loop to find any HDMI audio, if not, loop find DP audio
2336 */
2337 /* Setup audio rate clock source */
2338 /* Issue:
2339 * Audio lag happened on DP monitor when unplug a HDMI monitor
2340 *
2341 * Cause:
2342 * In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2343 * is set to either dto0 or dto1, audio should work fine.
2344 * In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2345 * set to dto0 will cause audio lag.
2346 *
2347 * Solution:
2348 * Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2349 * find first available pipe with audio, setup audio wall DTO per topology
2350 * instead of per pipe.
2351 */
2352 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2353 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2354
2355 if (pipe_ctx->stream == NULL)
2356 continue;
2357
2358 if (pipe_ctx->top_pipe)
2359 continue;
2360 if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2361 continue;
2362 if (pipe_ctx->stream_res.audio != NULL) {
2363 struct audio_output audio_output;
2364
2365 build_audio_output(context, pipe_ctx, &audio_output);
2366
2367 if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
2368 struct dtbclk_dto_params dto_params = {0};
2369
2370 dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
2371 dc->res_pool->dccg, &dto_params);
2372
2373 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2374 pipe_ctx->stream_res.audio,
2375 pipe_ctx->stream->signal,
2376 &audio_output.crtc_info,
2377 &audio_output.pll_info);
2378 } else
2379 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2380 pipe_ctx->stream_res.audio,
2381 pipe_ctx->stream->signal,
2382 &audio_output.crtc_info,
2383 &audio_output.pll_info);
2384 break;
2385 }
2386 }
2387
2388 /* no HDMI audio is found, try DP audio */
2389 if (i == dc->res_pool->pipe_count) {
2390 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2391 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2392
2393 if (pipe_ctx->stream == NULL)
2394 continue;
2395
2396 if (pipe_ctx->top_pipe)
2397 continue;
2398
2399 if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2400 continue;
2401
2402 if (pipe_ctx->stream_res.audio != NULL) {
2403 struct audio_output audio_output = {0};
2404
2405 build_audio_output(context, pipe_ctx, &audio_output);
2406
2407 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2408 pipe_ctx->stream_res.audio,
2409 pipe_ctx->stream->signal,
2410 &audio_output.crtc_info,
2411 &audio_output.pll_info);
2412 break;
2413 }
2414 }
2415 }
2416 }
2417
dce110_apply_ctx_to_hw(struct dc * dc,struct dc_state * context)2418 enum dc_status dce110_apply_ctx_to_hw(
2419 struct dc *dc,
2420 struct dc_state *context)
2421 {
2422 struct dce_hwseq *hws = dc->hwseq;
2423 struct dc_bios *dcb = dc->ctx->dc_bios;
2424 enum dc_status status;
2425 int i;
2426 bool was_hpo_acquired = resource_is_hpo_acquired(dc->current_state);
2427 bool is_hpo_acquired = resource_is_hpo_acquired(context);
2428
2429 /* reset syncd pipes from disabled pipes */
2430 if (dc->config.use_pipe_ctx_sync_logic)
2431 reset_syncd_pipes_from_disabled_pipes(dc, context);
2432
2433 /* Reset old context */
2434 /* look up the targets that have been removed since last commit */
2435 hws->funcs.reset_hw_ctx_wrap(dc, context);
2436
2437 /* Skip applying if no targets */
2438 if (context->stream_count <= 0)
2439 return DC_OK;
2440
2441 /* Apply new context */
2442 dcb->funcs->set_scratch_critical_state(dcb, true);
2443
2444 /* below is for real asic only */
2445 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2446 struct pipe_ctx *pipe_ctx_old =
2447 &dc->current_state->res_ctx.pipe_ctx[i];
2448 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2449
2450 if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2451 continue;
2452
2453 if (pipe_ctx->stream == pipe_ctx_old->stream) {
2454 if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2455 dce_crtc_switch_to_clk_src(dc->hwseq,
2456 pipe_ctx->clock_source, i);
2457 continue;
2458 }
2459
2460 hws->funcs.enable_display_power_gating(
2461 dc, i, dc->ctx->dc_bios,
2462 PIPE_GATING_CONTROL_DISABLE);
2463 }
2464
2465 if (dc->fbc_compressor)
2466 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2467
2468 dce110_setup_audio_dto(dc, context);
2469
2470 if (dc->hwseq->funcs.setup_hpo_hw_control && was_hpo_acquired != is_hpo_acquired) {
2471 dc->hwseq->funcs.setup_hpo_hw_control(dc->hwseq, is_hpo_acquired);
2472 }
2473
2474 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2475 struct pipe_ctx *pipe_ctx_old =
2476 &dc->current_state->res_ctx.pipe_ctx[i];
2477 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2478
2479 if (pipe_ctx->stream == NULL)
2480 continue;
2481
2482 if (pipe_ctx->stream == pipe_ctx_old->stream &&
2483 pipe_ctx->stream->link->link_state_valid) {
2484 continue;
2485 }
2486
2487 if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2488 continue;
2489
2490 if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2491 continue;
2492
2493 status = dce110_apply_single_controller_ctx_to_hw(
2494 pipe_ctx,
2495 context,
2496 dc);
2497
2498 if (DC_OK != status)
2499 return status;
2500
2501 #ifdef CONFIG_DRM_AMD_DC_FP
2502 if (hws->funcs.resync_fifo_dccg_dio)
2503 hws->funcs.resync_fifo_dccg_dio(hws, dc, context, i);
2504 #endif
2505 }
2506
2507 if (dc->fbc_compressor)
2508 enable_fbc(dc, dc->current_state);
2509
2510 dcb->funcs->set_scratch_critical_state(dcb, false);
2511
2512 return DC_OK;
2513 }
2514
2515 /*******************************************************************************
2516 * Front End programming
2517 ******************************************************************************/
set_default_colors(struct pipe_ctx * pipe_ctx)2518 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2519 {
2520 struct default_adjustment default_adjust = { 0 };
2521
2522 default_adjust.force_hw_default = false;
2523 default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2524 default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2525 default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2526 default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2527
2528 /* display color depth */
2529 default_adjust.color_depth =
2530 pipe_ctx->stream->timing.display_color_depth;
2531
2532 /* Lb color depth */
2533 default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2534
2535 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2536 pipe_ctx->plane_res.xfm, &default_adjust);
2537 }
2538
2539
2540 /*******************************************************************************
2541 * In order to turn on/off specific surface we will program
2542 * Blender + CRTC
2543 *
2544 * In case that we have two surfaces and they have a different visibility
2545 * we can't turn off the CRTC since it will turn off the entire display
2546 *
2547 * |----------------------------------------------- |
2548 * |bottom pipe|curr pipe | | |
2549 * |Surface |Surface | Blender | CRCT |
2550 * |visibility |visibility | Configuration| |
2551 * |------------------------------------------------|
2552 * | off | off | CURRENT_PIPE | blank |
2553 * | off | on | CURRENT_PIPE | unblank |
2554 * | on | off | OTHER_PIPE | unblank |
2555 * | on | on | BLENDING | unblank |
2556 * -------------------------------------------------|
2557 *
2558 ******************************************************************************/
program_surface_visibility(const struct dc * dc,struct pipe_ctx * pipe_ctx)2559 static void program_surface_visibility(const struct dc *dc,
2560 struct pipe_ctx *pipe_ctx)
2561 {
2562 enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2563 bool blank_target = false;
2564
2565 if (pipe_ctx->bottom_pipe) {
2566
2567 /* For now we are supporting only two pipes */
2568 ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2569
2570 if (pipe_ctx->bottom_pipe->plane_state->visible) {
2571 if (pipe_ctx->plane_state->visible)
2572 blender_mode = BLND_MODE_BLENDING;
2573 else
2574 blender_mode = BLND_MODE_OTHER_PIPE;
2575
2576 } else if (!pipe_ctx->plane_state->visible)
2577 blank_target = true;
2578
2579 } else if (!pipe_ctx->plane_state->visible)
2580 blank_target = true;
2581
2582 dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2583 pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2584
2585 }
2586
program_gamut_remap(struct pipe_ctx * pipe_ctx)2587 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2588 {
2589 int i = 0;
2590 struct xfm_grph_csc_adjustment adjust;
2591 memset(&adjust, 0, sizeof(adjust));
2592 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2593
2594
2595 if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2596 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2597
2598 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2599 adjust.temperature_matrix[i] =
2600 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2601 }
2602
2603 pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2604 }
update_plane_addr(const struct dc * dc,struct pipe_ctx * pipe_ctx)2605 static void update_plane_addr(const struct dc *dc,
2606 struct pipe_ctx *pipe_ctx)
2607 {
2608 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2609
2610 if (plane_state == NULL)
2611 return;
2612
2613 pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2614 pipe_ctx->plane_res.mi,
2615 &plane_state->address,
2616 plane_state->flip_immediate);
2617
2618 plane_state->status.requested_address = plane_state->address;
2619 }
2620
dce110_update_pending_status(struct pipe_ctx * pipe_ctx)2621 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2622 {
2623 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2624
2625 if (plane_state == NULL)
2626 return;
2627
2628 plane_state->status.is_flip_pending =
2629 pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2630 pipe_ctx->plane_res.mi);
2631
2632 if (plane_state->status.is_flip_pending && !plane_state->visible)
2633 pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2634
2635 plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2636 if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2637 pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2638 plane_state->status.is_right_eye =\
2639 !pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2640 }
2641 }
2642
dce110_power_down(struct dc * dc)2643 void dce110_power_down(struct dc *dc)
2644 {
2645 power_down_all_hw_blocks(dc);
2646 disable_vga_and_power_gate_all_controllers(dc);
2647 }
2648
wait_for_reset_trigger_to_occur(struct dc_context * dc_ctx,struct timing_generator * tg)2649 static bool wait_for_reset_trigger_to_occur(
2650 struct dc_context *dc_ctx,
2651 struct timing_generator *tg)
2652 {
2653 struct dc_context *ctx = dc_ctx;
2654 bool rc = false;
2655
2656 /* To avoid endless loop we wait at most
2657 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2658 const uint32_t frames_to_wait_on_triggered_reset = 10;
2659 uint32_t i;
2660
2661 for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2662
2663 if (!tg->funcs->is_counter_moving(tg)) {
2664 DC_ERROR("TG counter is not moving!\n");
2665 break;
2666 }
2667
2668 if (tg->funcs->did_triggered_reset_occur(tg)) {
2669 rc = true;
2670 /* usually occurs at i=1 */
2671 DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2672 i);
2673 break;
2674 }
2675
2676 /* Wait for one frame. */
2677 tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2678 tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2679 }
2680
2681 if (false == rc)
2682 DC_ERROR("GSL: Timeout on reset trigger!\n");
2683
2684 return rc;
2685 }
2686
2687 /* Enable timing synchronization for a group of Timing Generators. */
dce110_enable_timing_synchronization(struct dc * dc,struct dc_state * state,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2688 static void dce110_enable_timing_synchronization(
2689 struct dc *dc,
2690 struct dc_state *state,
2691 int group_index,
2692 int group_size,
2693 struct pipe_ctx *grouped_pipes[])
2694 {
2695 struct dc_context *dc_ctx = dc->ctx;
2696 struct dcp_gsl_params gsl_params = { 0 };
2697 int i;
2698 DC_LOGGER_INIT();
2699
2700 DC_SYNC_INFO("GSL: Setting-up...\n");
2701
2702 /* Designate a single TG in the group as a master.
2703 * Since HW doesn't care which one, we always assign
2704 * the 1st one in the group. */
2705 gsl_params.gsl_group = 0;
2706 gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2707
2708 for (i = 0; i < group_size; i++)
2709 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2710 grouped_pipes[i]->stream_res.tg, &gsl_params);
2711
2712 /* Reset slave controllers on master VSync */
2713 DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2714
2715 for (i = 1 /* skip the master */; i < group_size; i++)
2716 grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2717 grouped_pipes[i]->stream_res.tg,
2718 gsl_params.gsl_group);
2719
2720 for (i = 1 /* skip the master */; i < group_size; i++) {
2721 DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2722 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2723 grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2724 grouped_pipes[i]->stream_res.tg);
2725 }
2726
2727 /* GSL Vblank synchronization is a one time sync mechanism, assumption
2728 * is that the sync'ed displays will not drift out of sync over time*/
2729 DC_SYNC_INFO("GSL: Restoring register states.\n");
2730 for (i = 0; i < group_size; i++)
2731 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2732
2733 DC_SYNC_INFO("GSL: Set-up complete.\n");
2734 }
2735
dce110_enable_per_frame_crtc_position_reset(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2736 static void dce110_enable_per_frame_crtc_position_reset(
2737 struct dc *dc,
2738 int group_size,
2739 struct pipe_ctx *grouped_pipes[])
2740 {
2741 struct dc_context *dc_ctx = dc->ctx;
2742 struct dcp_gsl_params gsl_params = { 0 };
2743 int i;
2744 DC_LOGGER_INIT();
2745
2746 gsl_params.gsl_group = 0;
2747 gsl_params.gsl_master = 0;
2748
2749 for (i = 0; i < group_size; i++)
2750 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2751 grouped_pipes[i]->stream_res.tg, &gsl_params);
2752
2753 DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2754
2755 for (i = 1; i < group_size; i++)
2756 grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2757 grouped_pipes[i]->stream_res.tg,
2758 gsl_params.gsl_master,
2759 &grouped_pipes[i]->stream->triggered_crtc_reset);
2760
2761 DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2762 for (i = 1; i < group_size; i++)
2763 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2764
2765 for (i = 0; i < group_size; i++)
2766 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2767
2768 }
2769
dce110_init_pipes(struct dc * dc,struct dc_state * context)2770 static void dce110_init_pipes(struct dc *dc, struct dc_state *context)
2771 {
2772 // Do nothing
2773 }
2774
dce110_init_hw(struct dc * dc)2775 static void dce110_init_hw(struct dc *dc)
2776 {
2777 int i;
2778 struct dc_bios *bp;
2779 struct transform *xfm;
2780 struct abm *abm;
2781 struct dmcu *dmcu;
2782 struct dce_hwseq *hws = dc->hwseq;
2783 uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2784 uint32_t user_level = MAX_BACKLIGHT_LEVEL;
2785
2786 bp = dc->ctx->dc_bios;
2787 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2788 xfm = dc->res_pool->transforms[i];
2789 xfm->funcs->transform_reset(xfm);
2790
2791 hws->funcs.enable_display_power_gating(
2792 dc, i, bp,
2793 PIPE_GATING_CONTROL_INIT);
2794 hws->funcs.enable_display_power_gating(
2795 dc, i, bp,
2796 PIPE_GATING_CONTROL_DISABLE);
2797 hws->funcs.enable_display_pipe_clock_gating(
2798 dc->ctx,
2799 true);
2800 }
2801
2802 dce_clock_gating_power_up(dc->hwseq, false);
2803 /***************************************/
2804
2805 for (i = 0; i < dc->link_count; i++) {
2806 /****************************************/
2807 /* Power up AND update implementation according to the
2808 * required signal (which may be different from the
2809 * default signal on connector). */
2810 struct dc_link *link = dc->links[i];
2811
2812 link->link_enc->funcs->hw_init(link->link_enc);
2813 }
2814
2815 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2816 struct timing_generator *tg = dc->res_pool->timing_generators[i];
2817
2818 tg->funcs->disable_vga(tg);
2819
2820 /* Blank controller using driver code instead of
2821 * command table. */
2822 tg->funcs->set_blank(tg, true);
2823 hwss_wait_for_blank_complete(tg);
2824 }
2825
2826 for (i = 0; i < dc->res_pool->audio_count; i++) {
2827 struct audio *audio = dc->res_pool->audios[i];
2828 audio->funcs->hw_init(audio);
2829 }
2830
2831 for (i = 0; i < dc->link_count; i++) {
2832 struct dc_link *link = dc->links[i];
2833
2834 if (link->panel_cntl) {
2835 backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2836 user_level = link->panel_cntl->stored_backlight_registers.USER_LEVEL;
2837 }
2838 }
2839
2840 abm = dc->res_pool->abm;
2841 if (abm != NULL)
2842 abm->funcs->abm_init(abm, backlight, user_level);
2843
2844 dmcu = dc->res_pool->dmcu;
2845 if (dmcu != NULL && abm != NULL)
2846 abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2847
2848 if (dc->fbc_compressor)
2849 dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2850
2851 }
2852
2853
dce110_prepare_bandwidth(struct dc * dc,struct dc_state * context)2854 void dce110_prepare_bandwidth(
2855 struct dc *dc,
2856 struct dc_state *context)
2857 {
2858 struct clk_mgr *dccg = dc->clk_mgr;
2859
2860 dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2861 if (dccg)
2862 dccg->funcs->update_clocks(
2863 dccg,
2864 context,
2865 false);
2866 }
2867
dce110_optimize_bandwidth(struct dc * dc,struct dc_state * context)2868 void dce110_optimize_bandwidth(
2869 struct dc *dc,
2870 struct dc_state *context)
2871 {
2872 struct clk_mgr *dccg = dc->clk_mgr;
2873
2874 dce110_set_displaymarks(dc, context);
2875
2876 if (dccg)
2877 dccg->funcs->update_clocks(
2878 dccg,
2879 context,
2880 true);
2881 }
2882
dce110_program_front_end_for_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx)2883 static void dce110_program_front_end_for_pipe(
2884 struct dc *dc, struct pipe_ctx *pipe_ctx)
2885 {
2886 struct mem_input *mi = pipe_ctx->plane_res.mi;
2887 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2888 struct xfm_grph_csc_adjustment adjust;
2889 struct out_csc_color_matrix tbl_entry;
2890 unsigned int i;
2891 struct dce_hwseq *hws = dc->hwseq;
2892
2893 memset(&tbl_entry, 0, sizeof(tbl_entry));
2894
2895 memset(&adjust, 0, sizeof(adjust));
2896 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2897
2898 dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2899
2900 set_default_colors(pipe_ctx);
2901 if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2902 == true) {
2903 tbl_entry.color_space =
2904 pipe_ctx->stream->output_color_space;
2905
2906 for (i = 0; i < 12; i++)
2907 tbl_entry.regval[i] =
2908 pipe_ctx->stream->csc_color_matrix.matrix[i];
2909
2910 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2911 (pipe_ctx->plane_res.xfm, &tbl_entry);
2912 }
2913
2914 if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2915 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2916
2917 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2918 adjust.temperature_matrix[i] =
2919 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2920 }
2921
2922 pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2923
2924 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
2925
2926 program_scaler(dc, pipe_ctx);
2927
2928 mi->funcs->mem_input_program_surface_config(
2929 mi,
2930 plane_state->format,
2931 &plane_state->tiling_info,
2932 &plane_state->plane_size,
2933 plane_state->rotation,
2934 NULL,
2935 false);
2936 if (mi->funcs->set_blank)
2937 mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2938
2939 if (dc->config.gpu_vm_support)
2940 mi->funcs->mem_input_program_pte_vm(
2941 pipe_ctx->plane_res.mi,
2942 plane_state->format,
2943 &plane_state->tiling_info,
2944 plane_state->rotation);
2945
2946 /* Moved programming gamma from dc to hwss */
2947 if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2948 pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2949 pipe_ctx->plane_state->update_flags.bits.gamma_change)
2950 hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2951
2952 if (pipe_ctx->plane_state->update_flags.bits.full_update)
2953 hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2954
2955 DC_LOG_SURFACE(
2956 "Pipe:%d %p: addr hi:0x%x, "
2957 "addr low:0x%x, "
2958 "src: %d, %d, %d,"
2959 " %d; dst: %d, %d, %d, %d;"
2960 "clip: %d, %d, %d, %d\n",
2961 pipe_ctx->pipe_idx,
2962 (void *) pipe_ctx->plane_state,
2963 pipe_ctx->plane_state->address.grph.addr.high_part,
2964 pipe_ctx->plane_state->address.grph.addr.low_part,
2965 pipe_ctx->plane_state->src_rect.x,
2966 pipe_ctx->plane_state->src_rect.y,
2967 pipe_ctx->plane_state->src_rect.width,
2968 pipe_ctx->plane_state->src_rect.height,
2969 pipe_ctx->plane_state->dst_rect.x,
2970 pipe_ctx->plane_state->dst_rect.y,
2971 pipe_ctx->plane_state->dst_rect.width,
2972 pipe_ctx->plane_state->dst_rect.height,
2973 pipe_ctx->plane_state->clip_rect.x,
2974 pipe_ctx->plane_state->clip_rect.y,
2975 pipe_ctx->plane_state->clip_rect.width,
2976 pipe_ctx->plane_state->clip_rect.height);
2977
2978 DC_LOG_SURFACE(
2979 "Pipe %d: width, height, x, y\n"
2980 "viewport:%d, %d, %d, %d\n"
2981 "recout: %d, %d, %d, %d\n",
2982 pipe_ctx->pipe_idx,
2983 pipe_ctx->plane_res.scl_data.viewport.width,
2984 pipe_ctx->plane_res.scl_data.viewport.height,
2985 pipe_ctx->plane_res.scl_data.viewport.x,
2986 pipe_ctx->plane_res.scl_data.viewport.y,
2987 pipe_ctx->plane_res.scl_data.recout.width,
2988 pipe_ctx->plane_res.scl_data.recout.height,
2989 pipe_ctx->plane_res.scl_data.recout.x,
2990 pipe_ctx->plane_res.scl_data.recout.y);
2991 }
2992
dce110_apply_ctx_for_surface(struct dc * dc,const struct dc_stream_state * stream,int num_planes,struct dc_state * context)2993 static void dce110_apply_ctx_for_surface(
2994 struct dc *dc,
2995 const struct dc_stream_state *stream,
2996 int num_planes,
2997 struct dc_state *context)
2998 {
2999 int i;
3000
3001 if (num_planes == 0)
3002 return;
3003
3004 if (dc->fbc_compressor)
3005 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
3006
3007 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3008 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3009
3010 if (pipe_ctx->stream != stream)
3011 continue;
3012
3013 /* Need to allocate mem before program front end for Fiji */
3014 pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
3015 pipe_ctx->plane_res.mi,
3016 pipe_ctx->stream->timing.h_total,
3017 pipe_ctx->stream->timing.v_total,
3018 pipe_ctx->stream->timing.pix_clk_100hz / 10,
3019 context->stream_count);
3020
3021 dce110_program_front_end_for_pipe(dc, pipe_ctx);
3022
3023 dc->hwss.update_plane_addr(dc, pipe_ctx);
3024
3025 program_surface_visibility(dc, pipe_ctx);
3026
3027 }
3028
3029 if (dc->fbc_compressor)
3030 enable_fbc(dc, context);
3031 }
3032
dce110_post_unlock_program_front_end(struct dc * dc,struct dc_state * context)3033 static void dce110_post_unlock_program_front_end(
3034 struct dc *dc,
3035 struct dc_state *context)
3036 {
3037 }
3038
dce110_power_down_fe(struct dc * dc,struct dc_state * state,struct pipe_ctx * pipe_ctx)3039 static void dce110_power_down_fe(struct dc *dc, struct dc_state *state, struct pipe_ctx *pipe_ctx)
3040 {
3041 struct dce_hwseq *hws = dc->hwseq;
3042 int fe_idx = pipe_ctx->plane_res.mi ?
3043 pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
3044
3045 /* Do not power down fe when stream is active on dce*/
3046 if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
3047 return;
3048
3049 hws->funcs.enable_display_power_gating(
3050 dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
3051
3052 dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
3053 dc->res_pool->transforms[fe_idx]);
3054 }
3055
dce110_wait_for_mpcc_disconnect(struct dc * dc,struct resource_pool * res_pool,struct pipe_ctx * pipe_ctx)3056 static void dce110_wait_for_mpcc_disconnect(
3057 struct dc *dc,
3058 struct resource_pool *res_pool,
3059 struct pipe_ctx *pipe_ctx)
3060 {
3061 /* do nothing*/
3062 }
3063
program_output_csc(struct dc * dc,struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace,uint16_t * matrix,int opp_id)3064 static void program_output_csc(struct dc *dc,
3065 struct pipe_ctx *pipe_ctx,
3066 enum dc_color_space colorspace,
3067 uint16_t *matrix,
3068 int opp_id)
3069 {
3070 int i;
3071 struct out_csc_color_matrix tbl_entry;
3072
3073 if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
3074 enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
3075
3076 for (i = 0; i < 12; i++)
3077 tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
3078
3079 tbl_entry.color_space = color_space;
3080
3081 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
3082 pipe_ctx->plane_res.xfm, &tbl_entry);
3083 }
3084 }
3085
dce110_set_cursor_position(struct pipe_ctx * pipe_ctx)3086 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
3087 {
3088 struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
3089 struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
3090 struct mem_input *mi = pipe_ctx->plane_res.mi;
3091 struct dc_cursor_mi_param param = {
3092 .pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
3093 .ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
3094 .viewport = pipe_ctx->plane_res.scl_data.viewport,
3095 .h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
3096 .v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
3097 .rotation = pipe_ctx->plane_state->rotation,
3098 .mirror = pipe_ctx->plane_state->horizontal_mirror
3099 };
3100
3101 /**
3102 * If the cursor's source viewport is clipped then we need to
3103 * translate the cursor to appear in the correct position on
3104 * the screen.
3105 *
3106 * This translation isn't affected by scaling so it needs to be
3107 * done *after* we adjust the position for the scale factor.
3108 *
3109 * This is only done by opt-in for now since there are still
3110 * some usecases like tiled display that might enable the
3111 * cursor on both streams while expecting dc to clip it.
3112 */
3113 if (pos_cpy.translate_by_source) {
3114 pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
3115 pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
3116 }
3117
3118 if (pipe_ctx->plane_state->address.type
3119 == PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
3120 pos_cpy.enable = false;
3121
3122 if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
3123 pos_cpy.enable = false;
3124
3125 if (ipp->funcs->ipp_cursor_set_position)
3126 ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, ¶m);
3127 if (mi->funcs->set_cursor_position)
3128 mi->funcs->set_cursor_position(mi, &pos_cpy, ¶m);
3129 }
3130
dce110_set_cursor_attribute(struct pipe_ctx * pipe_ctx)3131 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
3132 {
3133 struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
3134
3135 if (pipe_ctx->plane_res.ipp &&
3136 pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
3137 pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
3138 pipe_ctx->plane_res.ipp, attributes);
3139
3140 if (pipe_ctx->plane_res.mi &&
3141 pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
3142 pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
3143 pipe_ctx->plane_res.mi, attributes);
3144
3145 if (pipe_ctx->plane_res.xfm &&
3146 pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
3147 pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
3148 pipe_ctx->plane_res.xfm, attributes);
3149 }
3150
dce110_set_backlight_level(struct pipe_ctx * pipe_ctx,struct set_backlight_level_params * backlight_level_params)3151 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
3152 struct set_backlight_level_params *backlight_level_params)
3153 {
3154 uint32_t backlight_pwm_u16_16 = backlight_level_params->backlight_pwm_u16_16;
3155 uint32_t frame_ramp = backlight_level_params->frame_ramp;
3156 struct dc_link *link = pipe_ctx->stream->link;
3157 struct dc *dc = link->ctx->dc;
3158 struct abm *abm = pipe_ctx->stream_res.abm;
3159 struct panel_cntl *panel_cntl = link->panel_cntl;
3160 struct dmcu *dmcu = dc->res_pool->dmcu;
3161 bool fw_set_brightness = true;
3162 /* DMCU -1 for all controller id values,
3163 * therefore +1 here
3164 */
3165 uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
3166
3167 if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
3168 return false;
3169
3170 if (dmcu)
3171 fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
3172
3173 if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
3174 panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
3175 else
3176 abm->funcs->set_backlight_level_pwm(
3177 abm,
3178 backlight_pwm_u16_16,
3179 frame_ramp,
3180 controller_id,
3181 link->panel_cntl->inst);
3182
3183 return true;
3184 }
3185
dce110_set_abm_immediate_disable(struct pipe_ctx * pipe_ctx)3186 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
3187 {
3188 struct abm *abm = pipe_ctx->stream_res.abm;
3189 struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3190
3191 if (abm)
3192 abm->funcs->set_abm_immediate_disable(abm,
3193 pipe_ctx->stream->link->panel_cntl->inst);
3194
3195 if (panel_cntl)
3196 panel_cntl->funcs->store_backlight_level(panel_cntl);
3197 }
3198
dce110_set_pipe(struct pipe_ctx * pipe_ctx)3199 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
3200 {
3201 struct abm *abm = pipe_ctx->stream_res.abm;
3202 struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3203 uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
3204
3205 if (abm && panel_cntl)
3206 abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
3207 }
3208
dce110_enable_lvds_link_output(struct dc_link * link,const struct link_resource * link_res,enum clock_source_id clock_source,uint32_t pixel_clock)3209 void dce110_enable_lvds_link_output(struct dc_link *link,
3210 const struct link_resource *link_res,
3211 enum clock_source_id clock_source,
3212 uint32_t pixel_clock)
3213 {
3214 link->link_enc->funcs->enable_lvds_output(
3215 link->link_enc,
3216 clock_source,
3217 pixel_clock);
3218 link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3219 }
3220
dce110_enable_tmds_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,enum dc_color_depth color_depth,uint32_t pixel_clock)3221 void dce110_enable_tmds_link_output(struct dc_link *link,
3222 const struct link_resource *link_res,
3223 enum signal_type signal,
3224 enum clock_source_id clock_source,
3225 enum dc_color_depth color_depth,
3226 uint32_t pixel_clock)
3227 {
3228 link->link_enc->funcs->enable_tmds_output(
3229 link->link_enc,
3230 clock_source,
3231 color_depth,
3232 signal,
3233 pixel_clock);
3234 link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3235 }
3236
dce110_enable_dp_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,const struct dc_link_settings * link_settings)3237 void dce110_enable_dp_link_output(
3238 struct dc_link *link,
3239 const struct link_resource *link_res,
3240 enum signal_type signal,
3241 enum clock_source_id clock_source,
3242 const struct dc_link_settings *link_settings)
3243 {
3244 struct dc *dc = link->ctx->dc;
3245 struct dmcu *dmcu = dc->res_pool->dmcu;
3246 struct pipe_ctx *pipes =
3247 link->dc->current_state->res_ctx.pipe_ctx;
3248 struct clock_source *dp_cs =
3249 link->dc->res_pool->dp_clock_source;
3250 const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3251 unsigned int i;
3252
3253 /*
3254 * Add the logic to extract BOTH power up and power down sequences
3255 * from enable/disable link output and only call edp panel control
3256 * in enable_link_dp and disable_link_dp once.
3257 */
3258 if (link->connector_signal == SIGNAL_TYPE_EDP) {
3259 link->dc->hwss.edp_wait_for_hpd_ready(link, true);
3260 }
3261
3262 /* If the current pixel clock source is not DTO(happens after
3263 * switching from HDMI passive dongle to DP on the same connector),
3264 * switch the pixel clock source to DTO.
3265 */
3266
3267 for (i = 0; i < MAX_PIPES; i++) {
3268 if (pipes[i].stream != NULL &&
3269 pipes[i].stream->link == link) {
3270 if (pipes[i].clock_source != NULL &&
3271 pipes[i].clock_source->id != CLOCK_SOURCE_ID_DP_DTO) {
3272 pipes[i].clock_source = dp_cs;
3273 pipes[i].stream_res.pix_clk_params.requested_pix_clk_100hz =
3274 pipes[i].stream->timing.pix_clk_100hz;
3275 pipes[i].clock_source->funcs->program_pix_clk(
3276 pipes[i].clock_source,
3277 &pipes[i].stream_res.pix_clk_params,
3278 dc->link_srv->dp_get_encoding_format(link_settings),
3279 &pipes[i].pll_settings);
3280 }
3281 }
3282 }
3283
3284 if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_8b_10b_ENCODING) {
3285 if (dc->clk_mgr->funcs->notify_link_rate_change)
3286 dc->clk_mgr->funcs->notify_link_rate_change(dc->clk_mgr, link);
3287 }
3288
3289 if (dmcu != NULL && dmcu->funcs->lock_phy)
3290 dmcu->funcs->lock_phy(dmcu);
3291
3292 if (link_hwss->ext.enable_dp_link_output)
3293 link_hwss->ext.enable_dp_link_output(link, link_res, signal,
3294 clock_source, link_settings);
3295
3296 link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3297
3298 if (dmcu != NULL && dmcu->funcs->unlock_phy)
3299 dmcu->funcs->unlock_phy(dmcu);
3300
3301 dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_ENABLE_LINK_PHY);
3302 }
3303
dce110_disable_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal)3304 void dce110_disable_link_output(struct dc_link *link,
3305 const struct link_resource *link_res,
3306 enum signal_type signal)
3307 {
3308 struct dc *dc = link->ctx->dc;
3309 const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3310 struct dmcu *dmcu = dc->res_pool->dmcu;
3311
3312 if (signal == SIGNAL_TYPE_EDP &&
3313 link->dc->hwss.edp_backlight_control &&
3314 !link->skip_implict_edp_power_control)
3315 link->dc->hwss.edp_backlight_control(link, false);
3316 else if (dmcu != NULL && dmcu->funcs->lock_phy)
3317 dmcu->funcs->lock_phy(dmcu);
3318
3319 link_hwss->disable_link_output(link, link_res, signal);
3320 link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
3321 /*
3322 * Add the logic to extract BOTH power up and power down sequences
3323 * from enable/disable link output and only call edp panel control
3324 * in enable_link_dp and disable_link_dp once.
3325 */
3326 if (dmcu != NULL && dmcu->funcs->unlock_phy)
3327 dmcu->funcs->unlock_phy(dmcu);
3328 dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY);
3329 }
3330
3331 static const struct hw_sequencer_funcs dce110_funcs = {
3332 .program_gamut_remap = program_gamut_remap,
3333 .program_output_csc = program_output_csc,
3334 .init_hw = dce110_init_hw,
3335 .apply_ctx_to_hw = dce110_apply_ctx_to_hw,
3336 .apply_ctx_for_surface = dce110_apply_ctx_for_surface,
3337 .post_unlock_program_front_end = dce110_post_unlock_program_front_end,
3338 .update_plane_addr = update_plane_addr,
3339 .update_pending_status = dce110_update_pending_status,
3340 .clear_surface_dcc_and_tiling = dce100_reset_surface_dcc_and_tiling,
3341 .enable_accelerated_mode = dce110_enable_accelerated_mode,
3342 .enable_timing_synchronization = dce110_enable_timing_synchronization,
3343 .enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
3344 .update_info_frame = dce110_update_info_frame,
3345 .enable_stream = dce110_enable_stream,
3346 .disable_stream = dce110_disable_stream,
3347 .unblank_stream = dce110_unblank_stream,
3348 .blank_stream = dce110_blank_stream,
3349 .enable_audio_stream = dce110_enable_audio_stream,
3350 .disable_audio_stream = dce110_disable_audio_stream,
3351 .disable_plane = dce110_power_down_fe,
3352 .pipe_control_lock = dce_pipe_control_lock,
3353 .interdependent_update_lock = NULL,
3354 .cursor_lock = dce_pipe_control_lock,
3355 .prepare_bandwidth = dce110_prepare_bandwidth,
3356 .optimize_bandwidth = dce110_optimize_bandwidth,
3357 .set_drr = set_drr,
3358 .get_position = get_position,
3359 .set_static_screen_control = set_static_screen_control,
3360 .setup_stereo = NULL,
3361 .set_avmute = dce110_set_avmute,
3362 .wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
3363 .edp_backlight_control = dce110_edp_backlight_control,
3364 .edp_power_control = dce110_edp_power_control,
3365 .edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
3366 .set_cursor_position = dce110_set_cursor_position,
3367 .set_cursor_attribute = dce110_set_cursor_attribute,
3368 .set_backlight_level = dce110_set_backlight_level,
3369 .set_abm_immediate_disable = dce110_set_abm_immediate_disable,
3370 .set_pipe = dce110_set_pipe,
3371 .enable_lvds_link_output = dce110_enable_lvds_link_output,
3372 .enable_tmds_link_output = dce110_enable_tmds_link_output,
3373 .enable_dp_link_output = dce110_enable_dp_link_output,
3374 .disable_link_output = dce110_disable_link_output,
3375 };
3376
3377 static const struct hwseq_private_funcs dce110_private_funcs = {
3378 .init_pipes = dce110_init_pipes,
3379 .set_input_transfer_func = dce110_set_input_transfer_func,
3380 .set_output_transfer_func = dce110_set_output_transfer_func,
3381 .power_down = dce110_power_down,
3382 .enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
3383 .enable_display_power_gating = dce110_enable_display_power_gating,
3384 .reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
3385 .enable_stream_timing = dce110_enable_stream_timing,
3386 .disable_stream_gating = NULL,
3387 .enable_stream_gating = NULL,
3388 .edp_backlight_control = dce110_edp_backlight_control,
3389 };
3390
dce110_hw_sequencer_construct(struct dc * dc)3391 void dce110_hw_sequencer_construct(struct dc *dc)
3392 {
3393 dc->hwss = dce110_funcs;
3394 dc->hwseq->funcs = dce110_private_funcs;
3395 }
3396
3397