xref: /linux/drivers/gpu/drm/amd/display/dc/optc/dcn10/dcn10_optc.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 #include "reg_helper.h"
28 #include "dcn10_optc.h"
29 #include "dc.h"
30 #include "dc_trace.h"
31 
32 #define REG(reg)\
33 	optc1->tg_regs->reg
34 
35 #define CTX \
36 	optc1->base.ctx
37 
38 #undef FN
39 #define FN(reg_name, field_name) \
40 	optc1->tg_shift->field_name, optc1->tg_mask->field_name
41 
42 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
43 
44 /**
45  * apply_front_porch_workaround() - This is a workaround for a bug that has
46  *                                  existed since R5xx and has not been fixed
47  *                                  keep Front porch at minimum 2 for Interlaced
48  *                                  mode or 1 for progressive.
49  *
50  * @timing: Timing parameters used to configure DCN blocks.
51  */
apply_front_porch_workaround(struct dc_crtc_timing * timing)52 static void apply_front_porch_workaround(struct dc_crtc_timing *timing)
53 {
54 	if (timing->flags.INTERLACE == 1) {
55 		if (timing->v_front_porch < 2)
56 			timing->v_front_porch = 2;
57 	} else {
58 		if (timing->v_front_porch < 1)
59 			timing->v_front_porch = 1;
60 	}
61 }
62 
optc1_program_global_sync(struct timing_generator * optc,int vready_offset,int vstartup_start,int vupdate_offset,int vupdate_width,int pstate_keepout)63 void optc1_program_global_sync(
64 		struct timing_generator *optc,
65 		int vready_offset,
66 		int vstartup_start,
67 		int vupdate_offset,
68 		int vupdate_width,
69 		int pstate_keepout)
70 {
71 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
72 
73 	optc1->vready_offset = vready_offset;
74 	optc1->vstartup_start = vstartup_start;
75 	optc1->vupdate_offset = vupdate_offset;
76 	optc1->vupdate_width = vupdate_width;
77 	optc1->pstate_keepout = pstate_keepout;
78 
79 	if (optc1->vstartup_start == 0) {
80 		BREAK_TO_DEBUGGER();
81 		return;
82 	}
83 
84 	REG_SET(OTG_VSTARTUP_PARAM, 0,
85 		VSTARTUP_START, optc1->vstartup_start);
86 
87 	REG_SET_2(OTG_VUPDATE_PARAM, 0,
88 			VUPDATE_OFFSET, optc1->vupdate_offset,
89 			VUPDATE_WIDTH, optc1->vupdate_width);
90 
91 	REG_SET(OTG_VREADY_PARAM, 0,
92 			VREADY_OFFSET, optc1->vready_offset);
93 }
94 
optc1_disable_stereo(struct timing_generator * optc)95 static void optc1_disable_stereo(struct timing_generator *optc)
96 {
97 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
98 
99 	REG_SET(OTG_STEREO_CONTROL, 0,
100 		OTG_STEREO_EN, 0);
101 
102 	REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0,
103 		OTG_3D_STRUCTURE_EN, 0,
104 		OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
105 }
106 
optc1_setup_vertical_interrupt0(struct timing_generator * optc,uint32_t start_line,uint32_t end_line)107 void optc1_setup_vertical_interrupt0(
108 		struct timing_generator *optc,
109 		uint32_t start_line,
110 		uint32_t end_line)
111 {
112 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
113 
114 	REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
115 			OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
116 			OTG_VERTICAL_INTERRUPT0_LINE_END, end_line);
117 }
118 
optc1_setup_vertical_interrupt1(struct timing_generator * optc,uint32_t start_line)119 void optc1_setup_vertical_interrupt1(
120 		struct timing_generator *optc,
121 		uint32_t start_line)
122 {
123 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
124 
125 	REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0,
126 				OTG_VERTICAL_INTERRUPT1_LINE_START, start_line);
127 }
128 
optc1_setup_vertical_interrupt2(struct timing_generator * optc,uint32_t start_line)129 void optc1_setup_vertical_interrupt2(
130 		struct timing_generator *optc,
131 		uint32_t start_line)
132 {
133 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
134 
135 	REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
136 			OTG_VERTICAL_INTERRUPT2_LINE_START, start_line);
137 }
138 
139 /**
140  * optc1_program_timing() - used by mode timing set Program
141  *                          CRTC Timing Registers - OTG_H_*,
142  *                          OTG_V_*, Pixel repetition.
143  *                          Including SYNC. Call BIOS command table to program Timings.
144  *
145  * @optc: timing_generator instance.
146  * @dc_crtc_timing: Timing parameters used to configure DCN blocks.
147  * @vready_offset: Vready's starting position.
148  * @vstartup_start: Vstartup period.
149  * @vupdate_offset: Vupdate starting position.
150  * @vupdate_width: Vupdate duration.
151  * @pstate_keepout: determines low power mode timing during refresh
152  * @signal: DC signal types.
153  * @use_vbios: to program timings from BIOS command table.
154  *
155  */
optc1_program_timing(struct timing_generator * optc,const struct dc_crtc_timing * dc_crtc_timing,int vready_offset,int vstartup_start,int vupdate_offset,int vupdate_width,int pstate_keepout,const enum signal_type signal,bool use_vbios)156 void optc1_program_timing(
157 	struct timing_generator *optc,
158 	const struct dc_crtc_timing *dc_crtc_timing,
159 	int vready_offset,
160 	int vstartup_start,
161 	int vupdate_offset,
162 	int vupdate_width,
163 	int pstate_keepout,
164 	const enum signal_type signal,
165 	bool use_vbios)
166 {
167 	struct dc_crtc_timing patched_crtc_timing;
168 	uint32_t asic_blank_end;
169 	uint32_t asic_blank_start;
170 	uint32_t v_total;
171 	uint32_t v_sync_end;
172 	uint32_t h_sync_polarity, v_sync_polarity;
173 	uint32_t start_point = 0;
174 	uint32_t field_num = 0;
175 	enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
176 
177 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
178 
179 	optc1->signal = signal;
180 	optc1->vready_offset = vready_offset;
181 	optc1->vstartup_start = vstartup_start;
182 	optc1->vupdate_offset = vupdate_offset;
183 	optc1->vupdate_width = vupdate_width;
184 	optc1->pstate_keepout = pstate_keepout;
185 	patched_crtc_timing = *dc_crtc_timing;
186 	apply_front_porch_workaround(&patched_crtc_timing);
187 	optc1->orginal_patched_timing = patched_crtc_timing;
188 
189 	/* Load horizontal timing */
190 
191 	/* CRTC_H_TOTAL = vesa.h_total - 1 */
192 	REG_SET(OTG_H_TOTAL, 0,
193 			OTG_H_TOTAL,  patched_crtc_timing.h_total - 1);
194 
195 	/* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
196 	REG_UPDATE_2(OTG_H_SYNC_A,
197 			OTG_H_SYNC_A_START, 0,
198 			OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
199 
200 	/* blank_start = line end - front porch */
201 	asic_blank_start = patched_crtc_timing.h_total -
202 			patched_crtc_timing.h_front_porch;
203 
204 	/* blank_end = blank_start - active */
205 	asic_blank_end = asic_blank_start -
206 			patched_crtc_timing.h_border_right -
207 			patched_crtc_timing.h_addressable -
208 			patched_crtc_timing.h_border_left;
209 
210 	REG_UPDATE_2(OTG_H_BLANK_START_END,
211 			OTG_H_BLANK_START, asic_blank_start,
212 			OTG_H_BLANK_END, asic_blank_end);
213 
214 	/* h_sync polarity */
215 	h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
216 			0 : 1;
217 
218 	REG_UPDATE(OTG_H_SYNC_A_CNTL,
219 			OTG_H_SYNC_A_POL, h_sync_polarity);
220 
221 	v_total = patched_crtc_timing.v_total - 1;
222 
223 	REG_SET(OTG_V_TOTAL, 0,
224 			OTG_V_TOTAL, v_total);
225 
226 	/* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
227 	 * OTG_V_TOTAL_MIN are equal to V_TOTAL.
228 	 */
229 	optc->funcs->set_vtotal_min_max(optc, v_total, v_total);
230 
231 	/* v_sync_start = 0, v_sync_end = v_sync_width */
232 	v_sync_end = patched_crtc_timing.v_sync_width;
233 
234 	REG_UPDATE_2(OTG_V_SYNC_A,
235 			OTG_V_SYNC_A_START, 0,
236 			OTG_V_SYNC_A_END, v_sync_end);
237 
238 	/* blank_start = frame end - front porch */
239 	asic_blank_start = patched_crtc_timing.v_total -
240 			patched_crtc_timing.v_front_porch;
241 
242 	/* blank_end = blank_start - active */
243 	asic_blank_end = asic_blank_start -
244 			patched_crtc_timing.v_border_bottom -
245 			patched_crtc_timing.v_addressable -
246 			patched_crtc_timing.v_border_top;
247 
248 	REG_UPDATE_2(OTG_V_BLANK_START_END,
249 			OTG_V_BLANK_START, asic_blank_start,
250 			OTG_V_BLANK_END, asic_blank_end);
251 
252 	/* v_sync polarity */
253 	v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
254 			0 : 1;
255 
256 	REG_UPDATE(OTG_V_SYNC_A_CNTL,
257 		OTG_V_SYNC_A_POL, v_sync_polarity);
258 
259 	if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT ||
260 			optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
261 			optc1->signal == SIGNAL_TYPE_EDP) {
262 		start_point = 1;
263 		if (patched_crtc_timing.flags.INTERLACE == 1)
264 			field_num = 1;
265 	}
266 
267 	/* Interlace */
268 	if (REG(OTG_INTERLACE_CONTROL)) {
269 		if (patched_crtc_timing.flags.INTERLACE == 1)
270 			REG_UPDATE(OTG_INTERLACE_CONTROL,
271 					OTG_INTERLACE_ENABLE, 1);
272 		else
273 			REG_UPDATE(OTG_INTERLACE_CONTROL,
274 					OTG_INTERLACE_ENABLE, 0);
275 	}
276 
277 	/* VTG enable set to 0 first VInit */
278 	REG_UPDATE(CONTROL,
279 			VTG0_ENABLE, 0);
280 
281 	/* original code is using VTG offset to address OTG reg, seems wrong */
282 	REG_UPDATE_2(OTG_CONTROL,
283 			OTG_START_POINT_CNTL, start_point,
284 			OTG_FIELD_NUMBER_CNTL, field_num);
285 
286 	optc->funcs->program_global_sync(optc,
287 			vready_offset,
288 			vstartup_start,
289 			vupdate_offset,
290 			vupdate_width,
291 			pstate_keepout);
292 
293 	optc->funcs->set_vtg_params(optc, dc_crtc_timing, true);
294 
295 	/* TODO
296 	 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
297 	 * program_horz_count_by_2
298 	 * for DVI 30bpp mode, 0 otherwise
299 	 * program_horz_count_by_2(optc, &patched_crtc_timing);
300 	 */
301 
302 	/* Enable stereo - only when we need to pack 3D frame. Other types
303 	 * of stereo handled in explicit call
304 	 */
305 
306 	if (optc->funcs->is_two_pixels_per_container(&patched_crtc_timing) || optc1->opp_count == 2)
307 		h_div = H_TIMING_DIV_BY2;
308 
309 	if (REG(OPTC_DATA_FORMAT_CONTROL) && optc1->tg_mask->OPTC_DATA_FORMAT != 0) {
310 		uint32_t data_fmt = 0;
311 
312 		if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
313 			data_fmt = 1;
314 		else if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
315 			data_fmt = 2;
316 
317 		REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, OPTC_DATA_FORMAT, data_fmt);
318 	}
319 
320 	if (optc1->tg_mask->OTG_H_TIMING_DIV_MODE != 0) {
321 		if (optc1->opp_count == 4)
322 			h_div = H_TIMING_DIV_BY4;
323 
324 		REG_UPDATE(OTG_H_TIMING_CNTL,
325 		OTG_H_TIMING_DIV_MODE, h_div);
326 	} else {
327 		REG_UPDATE(OTG_H_TIMING_CNTL,
328 		OTG_H_TIMING_DIV_BY2, h_div);
329 	}
330 }
331 
332 /**
333  * optc1_set_vtg_params - Set Vertical Timing Generator (VTG) parameters
334  *
335  * @optc: timing_generator struct used to extract the optc parameters
336  * @dc_crtc_timing: Timing parameters configured
337  * @program_fp2: Boolean value indicating if FP2 will be programmed or not
338  *
339  * OTG is responsible for generating the global sync signals, including
340  * vertical timing information for each HUBP in the dcfclk domain. Each VTG is
341  * associated with one OTG that provides HUBP with vertical timing information
342  * (i.e., there is 1:1 correspondence between OTG and VTG). This function is
343  * responsible for setting the OTG parameters to the VTG during the pipe
344  * programming.
345  */
optc1_set_vtg_params(struct timing_generator * optc,const struct dc_crtc_timing * dc_crtc_timing,bool program_fp2)346 void optc1_set_vtg_params(struct timing_generator *optc,
347 		const struct dc_crtc_timing *dc_crtc_timing, bool program_fp2)
348 {
349 	struct dc_crtc_timing patched_crtc_timing;
350 	uint32_t asic_blank_end;
351 	uint32_t v_init;
352 	uint32_t v_fp2 = 0;
353 	int32_t vertical_line_start;
354 
355 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
356 
357 	patched_crtc_timing = *dc_crtc_timing;
358 	apply_front_porch_workaround(&patched_crtc_timing);
359 
360 	/* VCOUNT_INIT is the start of blank */
361 	v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch;
362 
363 	/* end of blank = v_init - active */
364 	asic_blank_end = v_init -
365 			patched_crtc_timing.v_border_bottom -
366 			patched_crtc_timing.v_addressable -
367 			patched_crtc_timing.v_border_top;
368 
369 	/* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */
370 	vertical_line_start = asic_blank_end - optc1->vstartup_start + 1;
371 	if (vertical_line_start < 0)
372 		v_fp2 = -vertical_line_start;
373 
374 	/* Interlace */
375 	if (REG(OTG_INTERLACE_CONTROL)) {
376 		if (patched_crtc_timing.flags.INTERLACE == 1) {
377 			v_init = v_init / 2;
378 			if ((optc1->vstartup_start/2)*2 > asic_blank_end)
379 				v_fp2 = v_fp2 / 2;
380 		}
381 	}
382 
383 	if (program_fp2)
384 		REG_UPDATE_2(CONTROL,
385 				VTG0_FP2, v_fp2,
386 				VTG0_VCOUNT_INIT, v_init);
387 	else
388 		REG_UPDATE(CONTROL, VTG0_VCOUNT_INIT, v_init);
389 }
390 
optc1_set_blank_data_double_buffer(struct timing_generator * optc,bool enable)391 void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
392 {
393 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
394 
395 	uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
396 
397 	REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
398 			OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
399 }
400 
401 /**
402  * optc1_set_timing_double_buffer() - DRR double buffering control
403  *
404  * Sets double buffer point for V_TOTAL, H_TOTAL, VTOTAL_MIN,
405  * VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers.
406  *
407  * @optc: timing_generator instance.
408  * @enable: Enable DRR double buffering control if true, disable otherwise.
409  *
410  * Options: any time,  start of frame, dp start of frame (range timing)
411  */
optc1_set_timing_double_buffer(struct timing_generator * optc,bool enable)412 void optc1_set_timing_double_buffer(struct timing_generator *optc, bool enable)
413 {
414 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
415 	uint32_t mode = enable ? 2 : 0;
416 
417 	REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
418 		   OTG_RANGE_TIMING_DBUF_UPDATE_MODE, mode);
419 }
420 
421 /**
422  * optc1_unblank_crtc() - Call ASIC Control Object to UnBlank CRTC.
423  *
424  * @optc: timing_generator instance.
425  */
optc1_unblank_crtc(struct timing_generator * optc)426 static void optc1_unblank_crtc(struct timing_generator *optc)
427 {
428 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
429 
430 	REG_UPDATE_2(OTG_BLANK_CONTROL,
431 			OTG_BLANK_DATA_EN, 0,
432 			OTG_BLANK_DE_MODE, 0);
433 
434 	/* W/A for automated testing
435 	 * Automated testing will fail underflow test as there
436 	 * sporadic underflows which occur during the optc blank
437 	 * sequence.  As a w/a, clear underflow on unblank.
438 	 * This prevents the failure, but will not mask actual
439 	 * underflow that affect real use cases.
440 	 */
441 	optc1_clear_optc_underflow(optc);
442 }
443 
444 /**
445  * optc1_blank_crtc() - Call ASIC Control Object to Blank CRTC.
446  *
447  * @optc: timing_generator instance.
448  */
449 
optc1_blank_crtc(struct timing_generator * optc)450 static void optc1_blank_crtc(struct timing_generator *optc)
451 {
452 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
453 
454 	REG_UPDATE_2(OTG_BLANK_CONTROL,
455 			OTG_BLANK_DATA_EN, 1,
456 			OTG_BLANK_DE_MODE, 0);
457 
458 	optc1_set_blank_data_double_buffer(optc, false);
459 }
460 
optc1_set_blank(struct timing_generator * optc,bool enable_blanking)461 void optc1_set_blank(struct timing_generator *optc,
462 		bool enable_blanking)
463 {
464 	if (enable_blanking)
465 		optc1_blank_crtc(optc);
466 	else
467 		optc1_unblank_crtc(optc);
468 }
469 
optc1_is_blanked(struct timing_generator * optc)470 bool optc1_is_blanked(struct timing_generator *optc)
471 {
472 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
473 	uint32_t blank_en;
474 	uint32_t blank_state;
475 
476 	REG_GET_2(OTG_BLANK_CONTROL,
477 			OTG_BLANK_DATA_EN, &blank_en,
478 			OTG_CURRENT_BLANK_STATE, &blank_state);
479 
480 	return blank_en && blank_state;
481 }
482 
optc1_enable_optc_clock(struct timing_generator * optc,bool enable)483 void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
484 {
485 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
486 
487 	if (enable) {
488 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
489 				OPTC_INPUT_CLK_EN, 1,
490 				OPTC_INPUT_CLK_GATE_DIS, 1);
491 
492 		REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
493 				OPTC_INPUT_CLK_ON, 1,
494 				1, 1000);
495 
496 		/* Enable clock */
497 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
498 				OTG_CLOCK_EN, 1,
499 				OTG_CLOCK_GATE_DIS, 1);
500 		REG_WAIT(OTG_CLOCK_CONTROL,
501 				OTG_CLOCK_ON, 1,
502 				1, 1000);
503 	} else  {
504 
505 		//last chance to clear underflow, otherwise, it will always there due to clock is off.
506 		if (optc->funcs->is_optc_underflow_occurred(optc) == true)
507 			optc->funcs->clear_optc_underflow(optc);
508 
509 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
510 				OTG_CLOCK_GATE_DIS, 0,
511 				OTG_CLOCK_EN, 0);
512 
513 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
514 				OPTC_INPUT_CLK_GATE_DIS, 0,
515 				OPTC_INPUT_CLK_EN, 0);
516 	}
517 }
518 
519 /**
520  * optc1_enable_crtc() - Enable CRTC - call ASIC Control Object to enable Timing generator.
521  *
522  * @optc: timing_generator instance.
523  */
optc1_enable_crtc(struct timing_generator * optc)524 static bool optc1_enable_crtc(struct timing_generator *optc)
525 {
526 	/* TODO FPGA wait for answer
527 	 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
528 	 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
529 	 */
530 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
531 
532 	/* opp instance for OTG. For DCN1.0, ODM is remoed.
533 	 * OPP and OPTC should 1:1 mapping
534 	 */
535 	REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
536 			OPTC_SRC_SEL, optc->inst);
537 
538 	/* VTG enable first is for HW workaround */
539 	REG_UPDATE(CONTROL,
540 			VTG0_ENABLE, 1);
541 
542 	REG_SEQ_START();
543 
544 	/* Enable CRTC */
545 	REG_UPDATE_2(OTG_CONTROL,
546 			OTG_DISABLE_POINT_CNTL, 3,
547 			OTG_MASTER_EN, 1);
548 
549 	REG_SEQ_SUBMIT();
550 	REG_SEQ_WAIT_DONE();
551 
552 	return true;
553 }
554 
555 /* disable_crtc - call ASIC Control Object to disable Timing generator. */
optc1_disable_crtc(struct timing_generator * optc)556 bool optc1_disable_crtc(struct timing_generator *optc)
557 {
558 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
559 
560 	/* disable otg request until end of the first line
561 	 * in the vertical blank region
562 	 */
563 	REG_UPDATE_2(OTG_CONTROL,
564 			OTG_DISABLE_POINT_CNTL, 3,
565 			OTG_MASTER_EN, 0);
566 
567 	REG_UPDATE(CONTROL,
568 			VTG0_ENABLE, 0);
569 
570 	/* CRTC disabled, so disable  clock. */
571 	REG_WAIT(OTG_CLOCK_CONTROL,
572 			OTG_BUSY, 0,
573 			1, 100000);
574 
575 	return true;
576 }
577 
578 
optc1_program_blank_color(struct timing_generator * optc,const struct tg_color * black_color)579 void optc1_program_blank_color(
580 		struct timing_generator *optc,
581 		const struct tg_color *black_color)
582 {
583 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
584 
585 	REG_SET_3(OTG_BLACK_COLOR, 0,
586 			OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
587 			OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
588 			OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
589 }
590 
optc1_validate_timing(struct timing_generator * optc,const struct dc_crtc_timing * timing)591 bool optc1_validate_timing(
592 	struct timing_generator *optc,
593 	const struct dc_crtc_timing *timing)
594 {
595 	uint32_t v_blank;
596 	uint32_t h_blank;
597 	uint32_t min_v_blank;
598 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
599 
600 	ASSERT(timing != NULL);
601 
602 	v_blank = (timing->v_total - timing->v_addressable -
603 					timing->v_border_top - timing->v_border_bottom);
604 
605 	h_blank = (timing->h_total - timing->h_addressable -
606 		timing->h_border_right -
607 		timing->h_border_left);
608 
609 	if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
610 		timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
611 		timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
612 		timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
613 		timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
614 		timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
615 		return false;
616 
617 	/* Temporarily blocking interlacing mode until it's supported */
618 	if (timing->flags.INTERLACE == 1)
619 		return false;
620 
621 	/* Check maximum number of pixels supported by Timing Generator
622 	 * (Currently will never fail, in order to fail needs display which
623 	 * needs more than 8192 horizontal and
624 	 * more than 8192 vertical total pixels)
625 	 */
626 	if (timing->h_total > optc1->max_h_total ||
627 		timing->v_total > optc1->max_v_total)
628 		return false;
629 
630 
631 	if (h_blank < optc1->min_h_blank)
632 		return false;
633 
634 	if (timing->h_sync_width  < optc1->min_h_sync_width ||
635 		 timing->v_sync_width  < optc1->min_v_sync_width)
636 		return false;
637 
638 	min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
639 
640 	if (v_blank < min_v_blank)
641 		return false;
642 
643 	return true;
644 
645 }
646 
647 /*
648  * get_vblank_counter
649  *
650  * @brief
651  * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
652  * holds the counter of frames.
653  *
654  * @param
655  * struct timing_generator *optc - [in] timing generator which controls the
656  * desired CRTC
657  *
658  * @return
659  * Counter of frames, which should equal to number of vblanks.
660  */
optc1_get_vblank_counter(struct timing_generator * optc)661 uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
662 {
663 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
664 	uint32_t frame_count;
665 
666 	REG_GET(OTG_STATUS_FRAME_COUNT,
667 		OTG_FRAME_COUNT, &frame_count);
668 
669 	return frame_count;
670 }
671 
optc1_lock(struct timing_generator * optc)672 void optc1_lock(struct timing_generator *optc)
673 {
674 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
675 
676 	REG_SET(OTG_GLOBAL_CONTROL0, 0,
677 			OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
678 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
679 			OTG_MASTER_UPDATE_LOCK, 1);
680 
681 	REG_WAIT(OTG_MASTER_UPDATE_LOCK,
682 			UPDATE_LOCK_STATUS, 1,
683 			1, 10);
684 
685 	TRACE_OPTC_LOCK_UNLOCK_STATE(optc1, optc->inst, true);
686 }
687 
optc1_unlock(struct timing_generator * optc)688 void optc1_unlock(struct timing_generator *optc)
689 {
690 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
691 
692 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
693 			OTG_MASTER_UPDATE_LOCK, 0);
694 
695 	TRACE_OPTC_LOCK_UNLOCK_STATE(optc1, optc->inst, false);
696 }
697 
optc1_get_position(struct timing_generator * optc,struct crtc_position * position)698 void optc1_get_position(struct timing_generator *optc,
699 		struct crtc_position *position)
700 {
701 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
702 
703 	REG_GET_2(OTG_STATUS_POSITION,
704 			OTG_HORZ_COUNT, &position->horizontal_count,
705 			OTG_VERT_COUNT, &position->vertical_count);
706 
707 	REG_GET(OTG_NOM_VERT_POSITION,
708 			OTG_VERT_COUNT_NOM, &position->nominal_vcount);
709 }
710 
optc1_is_counter_moving(struct timing_generator * optc)711 bool optc1_is_counter_moving(struct timing_generator *optc)
712 {
713 	struct crtc_position position1, position2;
714 
715 	optc->funcs->get_position(optc, &position1);
716 	optc->funcs->get_position(optc, &position2);
717 
718 	if (position1.horizontal_count == position2.horizontal_count &&
719 		position1.vertical_count == position2.vertical_count)
720 		return false;
721 	else
722 		return true;
723 }
724 
optc1_did_triggered_reset_occur(struct timing_generator * optc)725 bool optc1_did_triggered_reset_occur(
726 	struct timing_generator *optc)
727 {
728 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
729 	uint32_t occurred_force, occurred_vsync;
730 
731 	REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
732 		OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
733 
734 	REG_GET(OTG_VERT_SYNC_CONTROL,
735 		OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
736 
737 	return occurred_vsync != 0 || occurred_force != 0;
738 }
739 
optc1_disable_reset_trigger(struct timing_generator * optc)740 void optc1_disable_reset_trigger(struct timing_generator *optc)
741 {
742 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
743 
744 	REG_WRITE(OTG_TRIGA_CNTL, 0);
745 
746 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
747 		OTG_FORCE_COUNT_NOW_CLEAR, 1);
748 
749 	REG_SET(OTG_VERT_SYNC_CONTROL, 0,
750 		OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
751 }
752 
optc1_enable_reset_trigger(struct timing_generator * optc,int source_tg_inst)753 void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
754 {
755 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
756 	uint32_t falling_edge;
757 
758 	REG_GET(OTG_V_SYNC_A_CNTL,
759 			OTG_V_SYNC_A_POL, &falling_edge);
760 
761 	if (falling_edge)
762 		REG_SET_3(OTG_TRIGA_CNTL, 0,
763 				/* vsync signal from selected OTG pipe based
764 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
765 				 */
766 				OTG_TRIGA_SOURCE_SELECT, 20,
767 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
768 				/* always detect falling edge */
769 				OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
770 	else
771 		REG_SET_3(OTG_TRIGA_CNTL, 0,
772 				/* vsync signal from selected OTG pipe based
773 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
774 				 */
775 				OTG_TRIGA_SOURCE_SELECT, 20,
776 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
777 				/* always detect rising edge */
778 				OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
779 
780 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
781 			/* force H count to H_TOTAL and V count to V_TOTAL in
782 			 * progressive mode and V_TOTAL-1 in interlaced mode
783 			 */
784 			OTG_FORCE_COUNT_NOW_MODE, 2);
785 }
786 
optc1_enable_crtc_reset(struct timing_generator * optc,int source_tg_inst,struct crtc_trigger_info * crtc_tp)787 void optc1_enable_crtc_reset(
788 		struct timing_generator *optc,
789 		int source_tg_inst,
790 		struct crtc_trigger_info *crtc_tp)
791 {
792 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
793 	uint32_t falling_edge = 0;
794 	uint32_t rising_edge = 0;
795 
796 	switch (crtc_tp->event) {
797 
798 	case CRTC_EVENT_VSYNC_RISING:
799 		rising_edge = 1;
800 		break;
801 
802 	case CRTC_EVENT_VSYNC_FALLING:
803 		falling_edge = 1;
804 		break;
805 	}
806 
807 	REG_SET_4(OTG_TRIGA_CNTL, 0,
808 		 /* vsync signal from selected OTG pipe based
809 		  * on OTG_TRIG_SOURCE_PIPE_SELECT setting
810 		  */
811 		  OTG_TRIGA_SOURCE_SELECT, 20,
812 		  OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
813 		  /* always detect falling edge */
814 		  OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
815 		  OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
816 
817 	switch (crtc_tp->delay) {
818 	case TRIGGER_DELAY_NEXT_LINE:
819 		REG_SET(OTG_VERT_SYNC_CONTROL, 0,
820 				OTG_AUTO_FORCE_VSYNC_MODE, 1);
821 		break;
822 	case TRIGGER_DELAY_NEXT_PIXEL:
823 		REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
824 			/* force H count to H_TOTAL and V count to V_TOTAL in
825 			 * progressive mode and V_TOTAL-1 in interlaced mode
826 			 */
827 			OTG_FORCE_COUNT_NOW_MODE, 2);
828 		break;
829 	}
830 }
831 
optc1_wait_for_state(struct timing_generator * optc,enum crtc_state state)832 void optc1_wait_for_state(struct timing_generator *optc,
833 		enum crtc_state state)
834 {
835 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
836 
837 	switch (state) {
838 	case CRTC_STATE_VBLANK:
839 		REG_WAIT(OTG_STATUS,
840 				OTG_V_BLANK, 1,
841 				1, 100000); /* 1 vupdate at 10hz */
842 		break;
843 
844 	case CRTC_STATE_VACTIVE:
845 		REG_WAIT(OTG_STATUS,
846 				OTG_V_ACTIVE_DISP, 1,
847 				1, 100000); /* 1 vupdate at 10hz */
848 		break;
849 
850 	default:
851 		break;
852 	}
853 }
854 
optc1_set_early_control(struct timing_generator * optc,uint32_t early_cntl)855 void optc1_set_early_control(
856 	struct timing_generator *optc,
857 	uint32_t early_cntl)
858 {
859 	/* asic design change, do not need this control
860 	 * empty for share caller logic
861 	 */
862 }
863 
864 
optc1_set_static_screen_control(struct timing_generator * optc,uint32_t event_triggers,uint32_t num_frames)865 void optc1_set_static_screen_control(
866 	struct timing_generator *optc,
867 	uint32_t event_triggers,
868 	uint32_t num_frames)
869 {
870 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
871 
872 	// By register spec, it only takes 8 bit value
873 	if (num_frames > 0xFF)
874 		num_frames = 0xFF;
875 
876 	/* Bit 8 is no longer applicable in RV for PSR case,
877 	 * set bit 8 to 0 if given
878 	 */
879 	if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
880 			!= 0)
881 		event_triggers = event_triggers &
882 		~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
883 
884 	REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
885 			OTG_STATIC_SCREEN_EVENT_MASK, event_triggers,
886 			OTG_STATIC_SCREEN_FRAME_COUNT, num_frames);
887 }
888 
optc1_setup_manual_trigger(struct timing_generator * optc)889 static void optc1_setup_manual_trigger(struct timing_generator *optc)
890 {
891 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
892 
893 	REG_SET(OTG_GLOBAL_CONTROL2, 0,
894 			MANUAL_FLOW_CONTROL_SEL, optc->inst);
895 
896 	REG_SET_8(OTG_TRIGA_CNTL, 0,
897 			OTG_TRIGA_SOURCE_SELECT, 22,
898 			OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
899 			OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
900 			OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
901 			OTG_TRIGA_POLARITY_SELECT, 0,
902 			OTG_TRIGA_FREQUENCY_SELECT, 0,
903 			OTG_TRIGA_DELAY, 0,
904 			OTG_TRIGA_CLEAR, 1);
905 }
906 
optc1_program_manual_trigger(struct timing_generator * optc)907 static void optc1_program_manual_trigger(struct timing_generator *optc)
908 {
909 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
910 
911 	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
912 			MANUAL_FLOW_CONTROL, 1);
913 
914 	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
915 			MANUAL_FLOW_CONTROL, 0);
916 }
917 
918 /**
919  * optc1_set_drr() - Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
920  *
921  * @optc: timing_generator instance.
922  * @params: parameters used for Dynamic Refresh Rate.
923  */
optc1_set_drr(struct timing_generator * optc,const struct drr_params * params)924 void optc1_set_drr(
925 	struct timing_generator *optc,
926 	const struct drr_params *params)
927 {
928 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
929 
930 	if (params != NULL &&
931 		params->vertical_total_max > 0 &&
932 		params->vertical_total_min > 0) {
933 
934 		if (params->vertical_total_mid != 0) {
935 
936 			REG_SET(OTG_V_TOTAL_MID, 0,
937 				OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
938 
939 			REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
940 					OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
941 					OTG_VTOTAL_MID_FRAME_NUM,
942 					(uint8_t)params->vertical_total_mid_frame_num);
943 
944 		}
945 
946 		optc->funcs->set_vtotal_min_max(optc, params->vertical_total_min - 1, params->vertical_total_max - 1);
947 
948 		REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
949 				OTG_V_TOTAL_MIN_SEL, 1,
950 				OTG_V_TOTAL_MAX_SEL, 1,
951 				OTG_FORCE_LOCK_ON_EVENT, 0,
952 				OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
953 				OTG_SET_V_TOTAL_MIN_MASK, 0);
954 	}
955 
956 	// Setup manual flow control for EOF via TRIG_A
957 	optc->funcs->setup_manual_trigger(optc);
958 }
959 
optc1_set_vtotal_min_max(struct timing_generator * optc,int vtotal_min,int vtotal_max)960 void optc1_set_vtotal_min_max(struct timing_generator *optc, int vtotal_min, int vtotal_max)
961 {
962 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
963 
964 	REG_SET(OTG_V_TOTAL_MAX, 0,
965 		OTG_V_TOTAL_MAX, vtotal_max);
966 
967 	REG_SET(OTG_V_TOTAL_MIN, 0,
968 		OTG_V_TOTAL_MIN, vtotal_min);
969 }
970 
optc1_set_test_pattern(struct timing_generator * optc,enum controller_dp_test_pattern test_pattern,enum dc_color_depth color_depth)971 static void optc1_set_test_pattern(
972 	struct timing_generator *optc,
973 	/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
974 	 * because this is not DP-specific (which is probably somewhere in DP
975 	 * encoder) */
976 	enum controller_dp_test_pattern test_pattern,
977 	enum dc_color_depth color_depth)
978 {
979 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
980 	enum test_pattern_color_format bit_depth;
981 	enum test_pattern_dyn_range dyn_range;
982 	enum test_pattern_mode mode;
983 	uint32_t pattern_mask;
984 	uint32_t pattern_data;
985 	/* color ramp generator mixes 16-bits color */
986 	uint32_t src_bpc = 16;
987 	/* requested bpc */
988 	uint32_t dst_bpc;
989 	uint32_t index;
990 	/* RGB values of the color bars.
991 	 * Produce two RGB colors: RGB0 - white (all Fs)
992 	 * and RGB1 - black (all 0s)
993 	 * (three RGB components for two colors)
994 	 */
995 	uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
996 						0x0000, 0x0000};
997 	/* dest color (converted to the specified color format) */
998 	uint16_t dst_color[6];
999 	uint32_t inc_base;
1000 
1001 	/* translate to bit depth */
1002 	switch (color_depth) {
1003 	case COLOR_DEPTH_666:
1004 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
1005 	break;
1006 	case COLOR_DEPTH_888:
1007 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
1008 	break;
1009 	case COLOR_DEPTH_101010:
1010 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
1011 	break;
1012 	case COLOR_DEPTH_121212:
1013 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
1014 	break;
1015 	default:
1016 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
1017 	break;
1018 	}
1019 
1020 	switch (test_pattern) {
1021 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
1022 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
1023 	{
1024 		dyn_range = (test_pattern ==
1025 				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
1026 				TEST_PATTERN_DYN_RANGE_CEA :
1027 				TEST_PATTERN_DYN_RANGE_VESA);
1028 		mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
1029 
1030 		REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
1031 				OTG_TEST_PATTERN_VRES, 6,
1032 				OTG_TEST_PATTERN_HRES, 6);
1033 
1034 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1035 				OTG_TEST_PATTERN_EN, 1,
1036 				OTG_TEST_PATTERN_MODE, mode,
1037 				OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
1038 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1039 	}
1040 	break;
1041 
1042 	case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
1043 	case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
1044 	{
1045 		mode = (test_pattern ==
1046 			CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
1047 			TEST_PATTERN_MODE_VERTICALBARS :
1048 			TEST_PATTERN_MODE_HORIZONTALBARS);
1049 
1050 		switch (bit_depth) {
1051 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1052 			dst_bpc = 6;
1053 		break;
1054 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1055 			dst_bpc = 8;
1056 		break;
1057 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1058 			dst_bpc = 10;
1059 		break;
1060 		default:
1061 			dst_bpc = 8;
1062 		break;
1063 		}
1064 
1065 		/* adjust color to the required colorFormat */
1066 		for (index = 0; index < 6; index++) {
1067 			/* dst = 2^dstBpc * src / 2^srcBpc = src >>
1068 			 * (srcBpc - dstBpc);
1069 			 */
1070 			dst_color[index] =
1071 				src_color[index] >> (src_bpc - dst_bpc);
1072 		/* CRTC_TEST_PATTERN_DATA has 16 bits,
1073 		 * lowest 6 are hardwired to ZERO
1074 		 * color bits should be left aligned to MSB
1075 		 * XXXXXXXXXX000000 for 10 bit,
1076 		 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
1077 		 */
1078 			dst_color[index] <<= (16 - dst_bpc);
1079 		}
1080 
1081 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1082 
1083 		/* We have to write the mask before data, similar to pipeline.
1084 		 * For example, for 8 bpc, if we want RGB0 to be magenta,
1085 		 * and RGB1 to be cyan,
1086 		 * we need to make 7 writes:
1087 		 * MASK   DATA
1088 		 * 000001 00000000 00000000                     set mask to R0
1089 		 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
1090 		 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
1091 		 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
1092 		 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
1093 		 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
1094 		 * 100000 11111111 00000000     B1 255, 0xFF00
1095 		 *
1096 		 * we will make a loop of 6 in which we prepare the mask,
1097 		 * then write, then prepare the color for next write.
1098 		 * first iteration will write mask only,
1099 		 * but each next iteration color prepared in
1100 		 * previous iteration will be written within new mask,
1101 		 * the last component will written separately,
1102 		 * mask is not changing between 6th and 7th write
1103 		 * and color will be prepared by last iteration
1104 		 */
1105 
1106 		/* write color, color values mask in CRTC_TEST_PATTERN_MASK
1107 		 * is B1, G1, R1, B0, G0, R0
1108 		 */
1109 		pattern_data = 0;
1110 		for (index = 0; index < 6; index++) {
1111 			/* prepare color mask, first write PATTERN_DATA
1112 			 * will have all zeros
1113 			 */
1114 			pattern_mask = (1 << index);
1115 
1116 			/* write color component */
1117 			REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1118 					OTG_TEST_PATTERN_MASK, pattern_mask,
1119 					OTG_TEST_PATTERN_DATA, pattern_data);
1120 
1121 			/* prepare next color component,
1122 			 * will be written in the next iteration
1123 			 */
1124 			pattern_data = dst_color[index];
1125 		}
1126 		/* write last color component,
1127 		 * it's been already prepared in the loop
1128 		 */
1129 		REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1130 				OTG_TEST_PATTERN_MASK, pattern_mask,
1131 				OTG_TEST_PATTERN_DATA, pattern_data);
1132 
1133 		/* enable test pattern */
1134 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1135 				OTG_TEST_PATTERN_EN, 1,
1136 				OTG_TEST_PATTERN_MODE, mode,
1137 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1138 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1139 	}
1140 	break;
1141 
1142 	case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1143 	{
1144 		mode = (bit_depth ==
1145 			TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1146 			TEST_PATTERN_MODE_DUALRAMP_RGB :
1147 			TEST_PATTERN_MODE_SINGLERAMP_RGB);
1148 
1149 		switch (bit_depth) {
1150 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1151 			dst_bpc = 6;
1152 		break;
1153 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1154 			dst_bpc = 8;
1155 		break;
1156 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1157 			dst_bpc = 10;
1158 		break;
1159 		default:
1160 			dst_bpc = 8;
1161 		break;
1162 		}
1163 
1164 		/* increment for the first ramp for one color gradation
1165 		 * 1 gradation for 6-bit color is 2^10
1166 		 * gradations in 16-bit color
1167 		 */
1168 		inc_base = (src_bpc - dst_bpc);
1169 
1170 		switch (bit_depth) {
1171 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1172 		{
1173 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1174 					OTG_TEST_PATTERN_INC0, inc_base,
1175 					OTG_TEST_PATTERN_INC1, 0,
1176 					OTG_TEST_PATTERN_HRES, 6,
1177 					OTG_TEST_PATTERN_VRES, 6,
1178 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1179 		}
1180 		break;
1181 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1182 		{
1183 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1184 					OTG_TEST_PATTERN_INC0, inc_base,
1185 					OTG_TEST_PATTERN_INC1, 0,
1186 					OTG_TEST_PATTERN_HRES, 8,
1187 					OTG_TEST_PATTERN_VRES, 6,
1188 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1189 		}
1190 		break;
1191 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1192 		{
1193 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1194 					OTG_TEST_PATTERN_INC0, inc_base,
1195 					OTG_TEST_PATTERN_INC1, inc_base + 2,
1196 					OTG_TEST_PATTERN_HRES, 8,
1197 					OTG_TEST_PATTERN_VRES, 5,
1198 					OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1199 		}
1200 		break;
1201 		default:
1202 		break;
1203 		}
1204 
1205 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1206 
1207 		/* enable test pattern */
1208 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1209 
1210 		REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1211 				OTG_TEST_PATTERN_EN, 1,
1212 				OTG_TEST_PATTERN_MODE, mode,
1213 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1214 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1215 	}
1216 	break;
1217 	case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1218 	{
1219 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1220 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1221 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1222 	}
1223 	break;
1224 	default:
1225 		break;
1226 
1227 	}
1228 }
1229 
optc1_get_crtc_scanoutpos(struct timing_generator * optc,uint32_t * v_blank_start,uint32_t * v_blank_end,uint32_t * h_position,uint32_t * v_position)1230 void optc1_get_crtc_scanoutpos(
1231 	struct timing_generator *optc,
1232 	uint32_t *v_blank_start,
1233 	uint32_t *v_blank_end,
1234 	uint32_t *h_position,
1235 	uint32_t *v_position)
1236 {
1237 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1238 	struct crtc_position position;
1239 
1240 	REG_GET_2(OTG_V_BLANK_START_END,
1241 			OTG_V_BLANK_START, v_blank_start,
1242 			OTG_V_BLANK_END, v_blank_end);
1243 
1244 	optc1_get_position(optc, &position);
1245 
1246 	*h_position = position.horizontal_count;
1247 	*v_position = position.vertical_count;
1248 }
1249 
optc1_enable_stereo(struct timing_generator * optc,const struct dc_crtc_timing * timing,struct crtc_stereo_flags * flags)1250 static void optc1_enable_stereo(struct timing_generator *optc,
1251 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1252 {
1253 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1254 
1255 	if (flags) {
1256 		uint32_t stereo_en;
1257 		stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1258 
1259 		if (flags->PROGRAM_STEREO)
1260 			REG_UPDATE_3(OTG_STEREO_CONTROL,
1261 				OTG_STEREO_EN, stereo_en,
1262 				OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1263 				OTG_STEREO_SYNC_OUTPUT_POLARITY, flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1264 
1265 		if (flags->PROGRAM_POLARITY)
1266 			REG_UPDATE(OTG_STEREO_CONTROL,
1267 				OTG_STEREO_EYE_FLAG_POLARITY,
1268 				flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1269 
1270 		if (flags->DISABLE_STEREO_DP_SYNC)
1271 			REG_UPDATE(OTG_STEREO_CONTROL,
1272 				OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1273 
1274 		if (flags->PROGRAM_STEREO)
1275 			REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL,
1276 				OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1277 				OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1278 
1279 	}
1280 }
1281 
optc1_program_stereo(struct timing_generator * optc,const struct dc_crtc_timing * timing,struct crtc_stereo_flags * flags)1282 void optc1_program_stereo(struct timing_generator *optc,
1283 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1284 {
1285 	if (flags->PROGRAM_STEREO)
1286 		optc1_enable_stereo(optc, timing, flags);
1287 	else
1288 		optc1_disable_stereo(optc);
1289 }
1290 
1291 
optc1_is_stereo_left_eye(struct timing_generator * optc)1292 bool optc1_is_stereo_left_eye(struct timing_generator *optc)
1293 {
1294 	bool ret = false;
1295 	uint32_t left_eye = 0;
1296 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1297 
1298 	REG_GET(OTG_STEREO_STATUS,
1299 		OTG_STEREO_CURRENT_EYE, &left_eye);
1300 	if (left_eye == 1)
1301 		ret = true;
1302 	else
1303 		ret = false;
1304 
1305 	return ret;
1306 }
1307 
optc1_get_hw_timing(struct timing_generator * tg,struct dc_crtc_timing * hw_crtc_timing)1308 bool optc1_get_hw_timing(struct timing_generator *tg,
1309 		struct dc_crtc_timing *hw_crtc_timing)
1310 {
1311 	struct dcn_otg_state s = {0};
1312 
1313 	if (tg == NULL || hw_crtc_timing == NULL)
1314 		return false;
1315 
1316 	optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
1317 
1318 	hw_crtc_timing->h_total = s.h_total + 1;
1319 	hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end);
1320 	hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start;
1321 	hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start;
1322 
1323 	hw_crtc_timing->v_total = s.v_total + 1;
1324 	hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end);
1325 	hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start;
1326 	hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start;
1327 
1328 	return true;
1329 }
1330 
1331 
optc1_read_otg_state(struct optc * optc1,struct dcn_otg_state * s)1332 void optc1_read_otg_state(struct optc *optc1,
1333 		struct dcn_otg_state *s)
1334 {
1335 	REG_GET(OTG_CONTROL,
1336 			OTG_MASTER_EN, &s->otg_enabled);
1337 
1338 	REG_GET_2(OTG_V_BLANK_START_END,
1339 			OTG_V_BLANK_START, &s->v_blank_start,
1340 			OTG_V_BLANK_END, &s->v_blank_end);
1341 
1342 	REG_GET(OTG_V_SYNC_A_CNTL,
1343 			OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1344 
1345 	REG_GET(OTG_V_TOTAL,
1346 			OTG_V_TOTAL, &s->v_total);
1347 
1348 	REG_GET(OTG_V_TOTAL_MAX,
1349 			OTG_V_TOTAL_MAX, &s->v_total_max);
1350 
1351 	REG_GET(OTG_V_TOTAL_MIN,
1352 			OTG_V_TOTAL_MIN, &s->v_total_min);
1353 
1354 	REG_GET(OTG_V_TOTAL_CONTROL,
1355 			OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
1356 
1357 	REG_GET(OTG_V_TOTAL_CONTROL,
1358 			OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
1359 
1360 	REG_GET_2(OTG_V_SYNC_A,
1361 			OTG_V_SYNC_A_START, &s->v_sync_a_start,
1362 			OTG_V_SYNC_A_END, &s->v_sync_a_end);
1363 
1364 	REG_GET_2(OTG_H_BLANK_START_END,
1365 			OTG_H_BLANK_START, &s->h_blank_start,
1366 			OTG_H_BLANK_END, &s->h_blank_end);
1367 
1368 	REG_GET_2(OTG_H_SYNC_A,
1369 			OTG_H_SYNC_A_START, &s->h_sync_a_start,
1370 			OTG_H_SYNC_A_END, &s->h_sync_a_end);
1371 
1372 	REG_GET(OTG_H_SYNC_A_CNTL,
1373 			OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1374 
1375 	REG_GET(OTG_H_TOTAL,
1376 			OTG_H_TOTAL, &s->h_total);
1377 
1378 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1379 			OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1380 
1381 	REG_GET(OTG_VERTICAL_INTERRUPT1_CONTROL,
1382 			OTG_VERTICAL_INTERRUPT1_INT_ENABLE, &s->vertical_interrupt1_en);
1383 
1384 	REG_GET(OTG_VERTICAL_INTERRUPT1_POSITION,
1385 				OTG_VERTICAL_INTERRUPT1_LINE_START, &s->vertical_interrupt1_line);
1386 
1387 	REG_GET(OTG_VERTICAL_INTERRUPT2_CONTROL,
1388 			OTG_VERTICAL_INTERRUPT2_INT_ENABLE, &s->vertical_interrupt2_en);
1389 
1390 	REG_GET(OTG_VERTICAL_INTERRUPT2_POSITION,
1391 			OTG_VERTICAL_INTERRUPT2_LINE_START, &s->vertical_interrupt2_line);
1392 
1393 	s->otg_master_update_lock = REG_READ(OTG_MASTER_UPDATE_LOCK);
1394 	s->otg_double_buffer_control = REG_READ(OTG_DOUBLE_BUFFER_CONTROL);
1395 }
1396 
optc1_get_otg_active_size(struct timing_generator * optc,uint32_t * otg_active_width,uint32_t * otg_active_height)1397 bool optc1_get_otg_active_size(struct timing_generator *optc,
1398 		uint32_t *otg_active_width,
1399 		uint32_t *otg_active_height)
1400 {
1401 	uint32_t otg_enabled;
1402 	uint32_t v_blank_start;
1403 	uint32_t v_blank_end;
1404 	uint32_t h_blank_start;
1405 	uint32_t h_blank_end;
1406 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1407 
1408 
1409 	REG_GET(OTG_CONTROL,
1410 			OTG_MASTER_EN, &otg_enabled);
1411 
1412 	if (otg_enabled == 0)
1413 		return false;
1414 
1415 	REG_GET_2(OTG_V_BLANK_START_END,
1416 			OTG_V_BLANK_START, &v_blank_start,
1417 			OTG_V_BLANK_END, &v_blank_end);
1418 
1419 	REG_GET_2(OTG_H_BLANK_START_END,
1420 			OTG_H_BLANK_START, &h_blank_start,
1421 			OTG_H_BLANK_END, &h_blank_end);
1422 
1423 	*otg_active_width = h_blank_start - h_blank_end;
1424 	*otg_active_height = v_blank_start - v_blank_end;
1425 	return true;
1426 }
1427 
optc1_clear_optc_underflow(struct timing_generator * optc)1428 void optc1_clear_optc_underflow(struct timing_generator *optc)
1429 {
1430 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1431 
1432 	REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
1433 }
1434 
optc1_tg_init(struct timing_generator * optc)1435 void optc1_tg_init(struct timing_generator *optc)
1436 {
1437 	optc1_set_blank_data_double_buffer(optc, true);
1438 	optc1_set_timing_double_buffer(optc, true);
1439 	optc1_clear_optc_underflow(optc);
1440 }
1441 
optc1_is_tg_enabled(struct timing_generator * optc)1442 bool optc1_is_tg_enabled(struct timing_generator *optc)
1443 {
1444 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1445 	uint32_t otg_enabled = 0;
1446 
1447 	REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
1448 
1449 	return (otg_enabled != 0);
1450 
1451 }
1452 
optc1_is_optc_underflow_occurred(struct timing_generator * optc)1453 bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
1454 {
1455 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1456 	uint32_t underflow_occurred = 0;
1457 
1458 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1459 			OPTC_UNDERFLOW_OCCURRED_STATUS,
1460 			&underflow_occurred);
1461 
1462 	return (underflow_occurred == 1);
1463 }
1464 
optc1_configure_crc(struct timing_generator * optc,const struct crc_params * params)1465 bool optc1_configure_crc(struct timing_generator *optc,
1466 			  const struct crc_params *params)
1467 {
1468 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1469 
1470 	/* Cannot configure crc on a CRTC that is disabled */
1471 	if (!optc1_is_tg_enabled(optc))
1472 		return false;
1473 
1474 	REG_WRITE(OTG_CRC_CNTL, 0);
1475 
1476 	if (!params->enable)
1477 		return true;
1478 
1479 	/* Program frame boundaries */
1480 	/* Window A x axis start and end. */
1481 	REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
1482 			OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
1483 			OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
1484 
1485 	/* Window A y axis start and end. */
1486 	REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
1487 			OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1488 			OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1489 
1490 	/* Window B x axis start and end. */
1491 	REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
1492 			OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
1493 			OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
1494 
1495 	/* Window B y axis start and end. */
1496 	REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
1497 			OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1498 			OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1499 
1500 	/* Set crc mode and selection, and enable. Only using CRC0*/
1501 	REG_UPDATE_3(OTG_CRC_CNTL,
1502 			OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
1503 			OTG_CRC0_SELECT, params->selection,
1504 			OTG_CRC_EN, 1);
1505 
1506 	return true;
1507 }
1508 
1509 /**
1510  * optc1_get_crc - Capture CRC result per component
1511  *
1512  * @optc: timing_generator instance.
1513  * @r_cr: 16-bit primary CRC signature for red data.
1514  * @g_y: 16-bit primary CRC signature for green data.
1515  * @b_cb: 16-bit primary CRC signature for blue data.
1516  *
1517  * This function reads the CRC signature from the OPTC registers. Notice that
1518  * we have three registers to keep the CRC result per color component (RGB).
1519  *
1520  * Returns:
1521  * If CRC is disabled, return false; otherwise, return true, and the CRC
1522  * results in the parameters.
1523  */
optc1_get_crc(struct timing_generator * optc,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)1524 bool optc1_get_crc(struct timing_generator *optc,
1525 		   uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
1526 {
1527 	uint32_t field = 0;
1528 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1529 
1530 	REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
1531 
1532 	/* Early return if CRC is not enabled for this CRTC */
1533 	if (!field)
1534 		return false;
1535 
1536 	/* OTG_CRC0_DATA_RG has the CRC16 results for the red and green component */
1537 	REG_GET_2(OTG_CRC0_DATA_RG,
1538 		  CRC0_R_CR, r_cr,
1539 		  CRC0_G_Y, g_y);
1540 
1541 	/* OTG_CRC0_DATA_B has the CRC16 results for the blue component */
1542 	REG_GET(OTG_CRC0_DATA_B,
1543 		CRC0_B_CB, b_cb);
1544 
1545 	return true;
1546 }
1547 
1548 /* "Container" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
1549  *
1550  * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
1551  *   container rate.
1552  *
1553  * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
1554  *   halved to maintain the correct pixel rate.
1555  *
1556  * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
1557  *   to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
1558  *
1559  */
optc1_is_two_pixels_per_container(const struct dc_crtc_timing * timing)1560 bool optc1_is_two_pixels_per_container(const struct dc_crtc_timing *timing)
1561 {
1562 	bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
1563 
1564 	two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
1565 			&& !timing->dsc_cfg.ycbcr422_simple);
1566 	return two_pix;
1567 }
1568 
1569 static const struct timing_generator_funcs dcn10_tg_funcs = {
1570 		.validate_timing = optc1_validate_timing,
1571 		.program_timing = optc1_program_timing,
1572 		.setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
1573 		.setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
1574 		.setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
1575 		.program_global_sync = optc1_program_global_sync,
1576 		.enable_crtc = optc1_enable_crtc,
1577 		.disable_crtc = optc1_disable_crtc,
1578 		/* used by enable_timing_synchronization. Not need for FPGA */
1579 		.is_counter_moving = optc1_is_counter_moving,
1580 		.get_position = optc1_get_position,
1581 		.get_frame_count = optc1_get_vblank_counter,
1582 		.get_scanoutpos = optc1_get_crtc_scanoutpos,
1583 		.get_otg_active_size = optc1_get_otg_active_size,
1584 		.set_early_control = optc1_set_early_control,
1585 		/* used by enable_timing_synchronization. Not need for FPGA */
1586 		.wait_for_state = optc1_wait_for_state,
1587 		.set_blank = optc1_set_blank,
1588 		.is_blanked = optc1_is_blanked,
1589 		.set_blank_color = optc1_program_blank_color,
1590 		.did_triggered_reset_occur = optc1_did_triggered_reset_occur,
1591 		.enable_reset_trigger = optc1_enable_reset_trigger,
1592 		.enable_crtc_reset = optc1_enable_crtc_reset,
1593 		.disable_reset_trigger = optc1_disable_reset_trigger,
1594 		.lock = optc1_lock,
1595 		.unlock = optc1_unlock,
1596 		.enable_optc_clock = optc1_enable_optc_clock,
1597 		.set_drr = optc1_set_drr,
1598 		.get_last_used_drr_vtotal = NULL,
1599 		.set_vtotal_min_max = optc1_set_vtotal_min_max,
1600 		.set_static_screen_control = optc1_set_static_screen_control,
1601 		.set_test_pattern = optc1_set_test_pattern,
1602 		.program_stereo = optc1_program_stereo,
1603 		.is_stereo_left_eye = optc1_is_stereo_left_eye,
1604 		.set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
1605 		.tg_init = optc1_tg_init,
1606 		.is_tg_enabled = optc1_is_tg_enabled,
1607 		.is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
1608 		.clear_optc_underflow = optc1_clear_optc_underflow,
1609 		.get_crc = optc1_get_crc,
1610 		.configure_crc = optc1_configure_crc,
1611 		.set_vtg_params = optc1_set_vtg_params,
1612 		.program_manual_trigger = optc1_program_manual_trigger,
1613 		.setup_manual_trigger = optc1_setup_manual_trigger,
1614 		.get_hw_timing = optc1_get_hw_timing,
1615 		.is_two_pixels_per_container = optc1_is_two_pixels_per_container,
1616 };
1617 
dcn10_timing_generator_init(struct optc * optc1)1618 void dcn10_timing_generator_init(struct optc *optc1)
1619 {
1620 	optc1->base.funcs = &dcn10_tg_funcs;
1621 
1622 	optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
1623 	optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
1624 
1625 	optc1->min_h_blank = 32;
1626 	optc1->min_v_blank = 3;
1627 	optc1->min_v_blank_interlace = 5;
1628 	optc1->min_h_sync_width = 4;
1629 	optc1->min_v_sync_width = 1;
1630 }
1631