1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1994, Sean Eric Fagan
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Sean Eric Fagan.
18 * 4. The name of the author may not be used to endorse or promote products
19 * derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/ktr.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/mman.h>
40 #include <sys/mutex.h>
41 #include <sys/reg.h>
42 #include <sys/syscallsubr.h>
43 #include <sys/sysent.h>
44 #include <sys/sysproto.h>
45 #include <sys/priv.h>
46 #include <sys/proc.h>
47 #include <sys/vnode.h>
48 #include <sys/ptrace.h>
49 #include <sys/rwlock.h>
50 #include <sys/sx.h>
51 #include <sys/malloc.h>
52 #include <sys/signalvar.h>
53 #include <sys/caprights.h>
54 #include <sys/filedesc.h>
55
56 #include <security/audit/audit.h>
57
58 #include <vm/vm.h>
59 #include <vm/pmap.h>
60 #include <vm/vm_extern.h>
61 #include <vm/vm_map.h>
62 #include <vm/vm_kern.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_param.h>
66
67 #ifdef COMPAT_FREEBSD32
68 #include <sys/procfs.h>
69 #endif
70
71 /* Assert it's safe to unlock a process, e.g. to allocate working memory */
72 #define PROC_ASSERT_TRACEREQ(p) MPASS(((p)->p_flag2 & P2_PTRACEREQ) != 0)
73
74 /*
75 * Functions implemented below:
76 *
77 * proc_read_regs(proc, regs)
78 * Get the current user-visible register set from the process
79 * and copy it into the regs structure (<machine/reg.h>).
80 * The process is stopped at the time read_regs is called.
81 *
82 * proc_write_regs(proc, regs)
83 * Update the current register set from the passed in regs
84 * structure. Take care to avoid clobbering special CPU
85 * registers or privileged bits in the PSL.
86 * Depending on the architecture this may have fix-up work to do,
87 * especially if the IAR or PCW are modified.
88 * The process is stopped at the time write_regs is called.
89 *
90 * proc_read_fpregs, proc_write_fpregs
91 * deal with the floating point register set, otherwise as above.
92 *
93 * proc_read_dbregs, proc_write_dbregs
94 * deal with the processor debug register set, otherwise as above.
95 *
96 * proc_sstep(proc)
97 * Arrange for the process to trap after executing a single instruction.
98 */
99
100 int
proc_read_regs(struct thread * td,struct reg * regs)101 proc_read_regs(struct thread *td, struct reg *regs)
102 {
103 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
104 return (fill_regs(td, regs));
105 }
106
107 int
proc_write_regs(struct thread * td,struct reg * regs)108 proc_write_regs(struct thread *td, struct reg *regs)
109 {
110 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
111 return (set_regs(td, regs));
112 }
113
114 int
proc_read_dbregs(struct thread * td,struct dbreg * dbregs)115 proc_read_dbregs(struct thread *td, struct dbreg *dbregs)
116 {
117 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
118 return (fill_dbregs(td, dbregs));
119 }
120
121 int
proc_write_dbregs(struct thread * td,struct dbreg * dbregs)122 proc_write_dbregs(struct thread *td, struct dbreg *dbregs)
123 {
124 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
125 return (set_dbregs(td, dbregs));
126 }
127
128 /*
129 * Ptrace doesn't support fpregs at all, and there are no security holes
130 * or translations for fpregs, so we can just copy them.
131 */
132 int
proc_read_fpregs(struct thread * td,struct fpreg * fpregs)133 proc_read_fpregs(struct thread *td, struct fpreg *fpregs)
134 {
135 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
136 return (fill_fpregs(td, fpregs));
137 }
138
139 int
proc_write_fpregs(struct thread * td,struct fpreg * fpregs)140 proc_write_fpregs(struct thread *td, struct fpreg *fpregs)
141 {
142 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
143 return (set_fpregs(td, fpregs));
144 }
145
146 static struct regset *
proc_find_regset(struct thread * td,int note)147 proc_find_regset(struct thread *td, int note)
148 {
149 struct regset **regsetp, **regset_end, *regset;
150 struct sysentvec *sv;
151
152 sv = td->td_proc->p_sysent;
153 regsetp = sv->sv_regset_begin;
154 if (regsetp == NULL)
155 return (NULL);
156 regset_end = sv->sv_regset_end;
157 MPASS(regset_end != NULL);
158 for (; regsetp < regset_end; regsetp++) {
159 regset = *regsetp;
160 if (regset->note != note)
161 continue;
162
163 return (regset);
164 }
165
166 return (NULL);
167 }
168
169 static int
proc_read_regset(struct thread * td,int note,struct iovec * iov)170 proc_read_regset(struct thread *td, int note, struct iovec *iov)
171 {
172 struct regset *regset;
173 struct proc *p;
174 void *buf;
175 size_t size;
176 int error;
177
178 regset = proc_find_regset(td, note);
179 if (regset == NULL)
180 return (EINVAL);
181
182 if (regset->get == NULL)
183 return (EINVAL);
184
185 size = regset->size;
186 /*
187 * The regset is dynamically sized, e.g. the size could change
188 * depending on the hardware, or may have a per-thread size.
189 */
190 if (size == 0) {
191 if (!regset->get(regset, td, NULL, &size))
192 return (EINVAL);
193 }
194
195 if (iov->iov_base == NULL) {
196 iov->iov_len = size;
197 if (iov->iov_len == 0)
198 return (EINVAL);
199
200 return (0);
201 }
202
203 /* The length is wrong, return an error */
204 if (iov->iov_len != size)
205 return (EINVAL);
206
207 error = 0;
208 p = td->td_proc;
209
210 /* Drop the proc lock while allocating the temp buffer */
211 PROC_ASSERT_TRACEREQ(p);
212 PROC_UNLOCK(p);
213 buf = malloc(size, M_TEMP, M_WAITOK);
214 PROC_LOCK(p);
215
216 if (!regset->get(regset, td, buf, &size)) {
217 error = EINVAL;
218 } else {
219 KASSERT(size == regset->size || regset->size == 0,
220 ("%s: Getter function changed the size", __func__));
221
222 iov->iov_len = size;
223 PROC_UNLOCK(p);
224 error = copyout(buf, iov->iov_base, size);
225 PROC_LOCK(p);
226 }
227
228 free(buf, M_TEMP);
229
230 return (error);
231 }
232
233 static int
proc_write_regset(struct thread * td,int note,struct iovec * iov)234 proc_write_regset(struct thread *td, int note, struct iovec *iov)
235 {
236 struct regset *regset;
237 struct proc *p;
238 void *buf;
239 size_t size;
240 int error;
241
242 regset = proc_find_regset(td, note);
243 if (regset == NULL)
244 return (EINVAL);
245
246 size = regset->size;
247 /*
248 * The regset is dynamically sized, e.g. the size could change
249 * depending on the hardware, or may have a per-thread size.
250 */
251 if (size == 0) {
252 if (!regset->get(regset, td, NULL, &size))
253 return (EINVAL);
254 }
255
256 /* The length is wrong, return an error */
257 if (iov->iov_len != size)
258 return (EINVAL);
259
260 if (regset->set == NULL)
261 return (EINVAL);
262
263 p = td->td_proc;
264
265 /* Drop the proc lock while allocating the temp buffer */
266 PROC_ASSERT_TRACEREQ(p);
267 PROC_UNLOCK(p);
268 buf = malloc(size, M_TEMP, M_WAITOK);
269 error = copyin(iov->iov_base, buf, size);
270 PROC_LOCK(p);
271
272 if (error == 0) {
273 if (!regset->set(regset, td, buf, size)) {
274 error = EINVAL;
275 }
276 }
277
278 free(buf, M_TEMP);
279
280 return (error);
281 }
282
283 #ifdef COMPAT_FREEBSD32
284 /* For 32 bit binaries, we need to expose the 32 bit regs layouts. */
285 int
proc_read_regs32(struct thread * td,struct reg32 * regs32)286 proc_read_regs32(struct thread *td, struct reg32 *regs32)
287 {
288 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
289 return (fill_regs32(td, regs32));
290 }
291
292 int
proc_write_regs32(struct thread * td,struct reg32 * regs32)293 proc_write_regs32(struct thread *td, struct reg32 *regs32)
294 {
295 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
296 return (set_regs32(td, regs32));
297 }
298
299 int
proc_read_dbregs32(struct thread * td,struct dbreg32 * dbregs32)300 proc_read_dbregs32(struct thread *td, struct dbreg32 *dbregs32)
301 {
302 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
303 return (fill_dbregs32(td, dbregs32));
304 }
305
306 int
proc_write_dbregs32(struct thread * td,struct dbreg32 * dbregs32)307 proc_write_dbregs32(struct thread *td, struct dbreg32 *dbregs32)
308 {
309 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
310 return (set_dbregs32(td, dbregs32));
311 }
312
313 int
proc_read_fpregs32(struct thread * td,struct fpreg32 * fpregs32)314 proc_read_fpregs32(struct thread *td, struct fpreg32 *fpregs32)
315 {
316 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
317 return (fill_fpregs32(td, fpregs32));
318 }
319
320 int
proc_write_fpregs32(struct thread * td,struct fpreg32 * fpregs32)321 proc_write_fpregs32(struct thread *td, struct fpreg32 *fpregs32)
322 {
323 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
324 return (set_fpregs32(td, fpregs32));
325 }
326 #endif
327
328 int
proc_sstep(struct thread * td)329 proc_sstep(struct thread *td)
330 {
331 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
332 return (ptrace_single_step(td));
333 }
334
335 int
proc_rwmem(struct proc * p,struct uio * uio)336 proc_rwmem(struct proc *p, struct uio *uio)
337 {
338 vm_map_t map;
339 vm_offset_t pageno; /* page number */
340 vm_prot_t reqprot;
341 int error, fault_flags, page_offset, writing;
342
343 /*
344 * Make sure that the process' vmspace remains live.
345 */
346 if (p != curproc)
347 PROC_ASSERT_HELD(p);
348 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
349
350 /*
351 * The map we want...
352 */
353 map = &p->p_vmspace->vm_map;
354
355 /*
356 * If we are writing, then we request vm_fault() to create a private
357 * copy of each page. Since these copies will not be writeable by the
358 * process, we must explicity request that they be dirtied.
359 */
360 writing = uio->uio_rw == UIO_WRITE;
361 reqprot = writing ? VM_PROT_COPY | VM_PROT_READ : VM_PROT_READ;
362 fault_flags = writing ? VM_FAULT_DIRTY : VM_FAULT_NORMAL;
363
364 if (writing) {
365 error = priv_check_cred(p->p_ucred, PRIV_PROC_MEM_WRITE);
366 if (error)
367 return (error);
368 }
369
370 /*
371 * Only map in one page at a time. We don't have to, but it
372 * makes things easier. This way is trivial - right?
373 */
374 do {
375 vm_offset_t uva;
376 u_int len;
377 vm_page_t m;
378
379 uva = (vm_offset_t)uio->uio_offset;
380
381 /*
382 * Get the page number of this segment.
383 */
384 pageno = trunc_page(uva);
385 page_offset = uva - pageno;
386
387 /*
388 * How many bytes to copy
389 */
390 len = min(PAGE_SIZE - page_offset, uio->uio_resid);
391
392 /*
393 * Fault and hold the page on behalf of the process.
394 */
395 error = vm_fault(map, pageno, reqprot, fault_flags, &m);
396 if (error != KERN_SUCCESS) {
397 if (error == KERN_RESOURCE_SHORTAGE)
398 error = ENOMEM;
399 else
400 error = EFAULT;
401 break;
402 }
403
404 /*
405 * Now do the i/o move.
406 */
407 error = uiomove_fromphys(&m, page_offset, len, uio);
408
409 /* Make the I-cache coherent for breakpoints. */
410 if (writing && error == 0) {
411 vm_map_lock_read(map);
412 if (vm_map_check_protection(map, pageno, pageno +
413 PAGE_SIZE, VM_PROT_EXECUTE))
414 vm_sync_icache(map, uva, len);
415 vm_map_unlock_read(map);
416 }
417
418 /*
419 * Release the page.
420 */
421 vm_page_unwire(m, PQ_ACTIVE);
422
423 } while (error == 0 && uio->uio_resid > 0);
424
425 return (error);
426 }
427
428 static ssize_t
proc_iop(struct thread * td,struct proc * p,vm_offset_t va,void * buf,size_t len,enum uio_rw rw)429 proc_iop(struct thread *td, struct proc *p, vm_offset_t va, void *buf,
430 size_t len, enum uio_rw rw)
431 {
432 struct iovec iov;
433 struct uio uio;
434 ssize_t slen;
435
436 MPASS(len < SSIZE_MAX);
437 slen = (ssize_t)len;
438
439 iov.iov_base = (caddr_t)buf;
440 iov.iov_len = len;
441 uio.uio_iov = &iov;
442 uio.uio_iovcnt = 1;
443 uio.uio_offset = va;
444 uio.uio_resid = slen;
445 uio.uio_segflg = UIO_SYSSPACE;
446 uio.uio_rw = rw;
447 uio.uio_td = td;
448 proc_rwmem(p, &uio);
449 if (uio.uio_resid == slen)
450 return (-1);
451 return (slen - uio.uio_resid);
452 }
453
454 ssize_t
proc_readmem(struct thread * td,struct proc * p,vm_offset_t va,void * buf,size_t len)455 proc_readmem(struct thread *td, struct proc *p, vm_offset_t va, void *buf,
456 size_t len)
457 {
458
459 return (proc_iop(td, p, va, buf, len, UIO_READ));
460 }
461
462 ssize_t
proc_writemem(struct thread * td,struct proc * p,vm_offset_t va,void * buf,size_t len)463 proc_writemem(struct thread *td, struct proc *p, vm_offset_t va, void *buf,
464 size_t len)
465 {
466
467 return (proc_iop(td, p, va, buf, len, UIO_WRITE));
468 }
469
470 static int
ptrace_vm_entry(struct thread * td,struct proc * p,struct ptrace_vm_entry * pve)471 ptrace_vm_entry(struct thread *td, struct proc *p, struct ptrace_vm_entry *pve)
472 {
473 struct vattr vattr;
474 vm_map_t map;
475 vm_map_entry_t entry;
476 vm_object_t obj, tobj, lobj;
477 struct vmspace *vm;
478 struct vnode *vp;
479 char *freepath, *fullpath;
480 u_int pathlen;
481 int error, index;
482
483 error = 0;
484 obj = NULL;
485
486 vm = vmspace_acquire_ref(p);
487 map = &vm->vm_map;
488 vm_map_lock_read(map);
489
490 do {
491 KASSERT((map->header.eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
492 ("Submap in map header"));
493 index = 0;
494 VM_MAP_ENTRY_FOREACH(entry, map) {
495 if (index >= pve->pve_entry &&
496 (entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
497 break;
498 index++;
499 }
500 if (index < pve->pve_entry) {
501 error = EINVAL;
502 break;
503 }
504 if (entry == &map->header) {
505 error = ENOENT;
506 break;
507 }
508
509 /* We got an entry. */
510 pve->pve_entry = index + 1;
511 pve->pve_timestamp = map->timestamp;
512 pve->pve_start = entry->start;
513 pve->pve_end = entry->end - 1;
514 pve->pve_offset = entry->offset;
515 pve->pve_prot = entry->protection |
516 PROT_MAX(entry->max_protection);
517
518 /* Backing object's path needed? */
519 if (pve->pve_pathlen == 0)
520 break;
521
522 pathlen = pve->pve_pathlen;
523 pve->pve_pathlen = 0;
524
525 obj = entry->object.vm_object;
526 if (obj != NULL)
527 VM_OBJECT_RLOCK(obj);
528 } while (0);
529
530 vm_map_unlock_read(map);
531
532 pve->pve_fsid = VNOVAL;
533 pve->pve_fileid = VNOVAL;
534
535 if (error == 0 && obj != NULL) {
536 lobj = obj;
537 for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
538 if (tobj != obj)
539 VM_OBJECT_RLOCK(tobj);
540 if (lobj != obj)
541 VM_OBJECT_RUNLOCK(lobj);
542 lobj = tobj;
543 pve->pve_offset += tobj->backing_object_offset;
544 }
545 vp = vm_object_vnode(lobj);
546 if (vp != NULL)
547 vref(vp);
548 if (lobj != obj)
549 VM_OBJECT_RUNLOCK(lobj);
550 VM_OBJECT_RUNLOCK(obj);
551
552 if (vp != NULL) {
553 freepath = NULL;
554 fullpath = NULL;
555 vn_fullpath(vp, &fullpath, &freepath);
556 vn_lock(vp, LK_SHARED | LK_RETRY);
557 if (VOP_GETATTR(vp, &vattr, td->td_ucred) == 0) {
558 pve->pve_fileid = vattr.va_fileid;
559 pve->pve_fsid = vattr.va_fsid;
560 }
561 vput(vp);
562
563 if (fullpath != NULL) {
564 pve->pve_pathlen = strlen(fullpath) + 1;
565 if (pve->pve_pathlen <= pathlen) {
566 error = copyout(fullpath, pve->pve_path,
567 pve->pve_pathlen);
568 } else
569 error = ENAMETOOLONG;
570 }
571 if (freepath != NULL)
572 free(freepath, M_TEMP);
573 }
574 }
575 vmspace_free(vm);
576 if (error == 0)
577 CTR3(KTR_PTRACE, "PT_VM_ENTRY: pid %d, entry %d, start %p",
578 p->p_pid, pve->pve_entry, pve->pve_start);
579
580 return (error);
581 }
582
583 /*
584 * Process debugging system call.
585 */
586 #ifndef _SYS_SYSPROTO_H_
587 struct ptrace_args {
588 int req;
589 pid_t pid;
590 caddr_t addr;
591 int data;
592 };
593 #endif
594
595 int
sys_ptrace(struct thread * td,struct ptrace_args * uap)596 sys_ptrace(struct thread *td, struct ptrace_args *uap)
597 {
598 /*
599 * XXX this obfuscation is to reduce stack usage, but the register
600 * structs may be too large to put on the stack anyway.
601 */
602 union {
603 struct ptrace_io_desc piod;
604 struct ptrace_lwpinfo pl;
605 struct ptrace_vm_entry pve;
606 struct ptrace_coredump pc;
607 struct ptrace_sc_remote sr;
608 struct dbreg dbreg;
609 struct fpreg fpreg;
610 struct reg reg;
611 struct iovec vec;
612 syscallarg_t args[nitems(td->td_sa.args)];
613 struct ptrace_sc_ret psr;
614 int ptevents;
615 } r;
616 syscallarg_t pscr_args[nitems(td->td_sa.args)];
617 void *addr;
618 int error;
619
620 if (!allow_ptrace)
621 return (ENOSYS);
622 error = 0;
623
624 AUDIT_ARG_PID(uap->pid);
625 AUDIT_ARG_CMD(uap->req);
626 AUDIT_ARG_VALUE(uap->data);
627 addr = &r;
628 switch (uap->req) {
629 case PT_GET_EVENT_MASK:
630 case PT_LWPINFO:
631 case PT_GET_SC_ARGS:
632 case PT_GET_SC_RET:
633 break;
634 case PT_GETREGS:
635 bzero(&r.reg, sizeof(r.reg));
636 break;
637 case PT_GETFPREGS:
638 bzero(&r.fpreg, sizeof(r.fpreg));
639 break;
640 case PT_GETDBREGS:
641 bzero(&r.dbreg, sizeof(r.dbreg));
642 break;
643 case PT_GETREGSET:
644 case PT_SETREGSET:
645 error = copyin(uap->addr, &r.vec, sizeof(r.vec));
646 break;
647 case PT_SETREGS:
648 error = copyin(uap->addr, &r.reg, sizeof(r.reg));
649 break;
650 case PT_SETFPREGS:
651 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg));
652 break;
653 case PT_SETDBREGS:
654 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg));
655 break;
656 case PT_SET_EVENT_MASK:
657 if (uap->data != sizeof(r.ptevents))
658 error = EINVAL;
659 else
660 error = copyin(uap->addr, &r.ptevents, uap->data);
661 break;
662 case PT_IO:
663 error = copyin(uap->addr, &r.piod, sizeof(r.piod));
664 break;
665 case PT_VM_ENTRY:
666 error = copyin(uap->addr, &r.pve, sizeof(r.pve));
667 break;
668 case PT_COREDUMP:
669 if (uap->data != sizeof(r.pc))
670 error = EINVAL;
671 else
672 error = copyin(uap->addr, &r.pc, uap->data);
673 break;
674 case PT_SC_REMOTE:
675 if (uap->data != sizeof(r.sr)) {
676 error = EINVAL;
677 break;
678 }
679 error = copyin(uap->addr, &r.sr, uap->data);
680 if (error != 0)
681 break;
682 if (r.sr.pscr_nargs > nitems(td->td_sa.args)) {
683 error = EINVAL;
684 break;
685 }
686 error = copyin(r.sr.pscr_args, pscr_args,
687 sizeof(u_long) * r.sr.pscr_nargs);
688 if (error != 0)
689 break;
690 r.sr.pscr_args = pscr_args;
691 break;
692 default:
693 addr = uap->addr;
694 break;
695 }
696 if (error)
697 return (error);
698
699 error = kern_ptrace(td, uap->req, uap->pid, addr, uap->data);
700 if (error)
701 return (error);
702
703 switch (uap->req) {
704 case PT_VM_ENTRY:
705 error = copyout(&r.pve, uap->addr, sizeof(r.pve));
706 break;
707 case PT_IO:
708 error = copyout(&r.piod, uap->addr, sizeof(r.piod));
709 break;
710 case PT_GETREGS:
711 error = copyout(&r.reg, uap->addr, sizeof(r.reg));
712 break;
713 case PT_GETFPREGS:
714 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg));
715 break;
716 case PT_GETDBREGS:
717 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg));
718 break;
719 case PT_GETREGSET:
720 error = copyout(&r.vec, uap->addr, sizeof(r.vec));
721 break;
722 case PT_GET_EVENT_MASK:
723 /* NB: The size in uap->data is validated in kern_ptrace(). */
724 error = copyout(&r.ptevents, uap->addr, uap->data);
725 break;
726 case PT_LWPINFO:
727 /* NB: The size in uap->data is validated in kern_ptrace(). */
728 error = copyout(&r.pl, uap->addr, uap->data);
729 break;
730 case PT_GET_SC_ARGS:
731 error = copyout(r.args, uap->addr, MIN(uap->data,
732 sizeof(r.args)));
733 break;
734 case PT_GET_SC_RET:
735 error = copyout(&r.psr, uap->addr, MIN(uap->data,
736 sizeof(r.psr)));
737 break;
738 case PT_SC_REMOTE:
739 error = copyout(&r.sr.pscr_ret, uap->addr +
740 offsetof(struct ptrace_sc_remote, pscr_ret),
741 sizeof(r.sr.pscr_ret));
742 break;
743 }
744
745 return (error);
746 }
747
748 #ifdef COMPAT_FREEBSD32
749 /*
750 * PROC_READ(regs, td2, addr);
751 * becomes either:
752 * proc_read_regs(td2, addr);
753 * or
754 * proc_read_regs32(td2, addr);
755 * .. except this is done at runtime. There is an additional
756 * complication in that PROC_WRITE disallows 32 bit consumers
757 * from writing to 64 bit address space targets.
758 */
759 #define PROC_READ(w, t, a) wrap32 ? \
760 proc_read_ ## w ## 32(t, a) : \
761 proc_read_ ## w (t, a)
762 #define PROC_WRITE(w, t, a) wrap32 ? \
763 (safe ? proc_write_ ## w ## 32(t, a) : EINVAL ) : \
764 proc_write_ ## w (t, a)
765 #else
766 #define PROC_READ(w, t, a) proc_read_ ## w (t, a)
767 #define PROC_WRITE(w, t, a) proc_write_ ## w (t, a)
768 #endif
769
770 void
proc_set_traced(struct proc * p,bool stop)771 proc_set_traced(struct proc *p, bool stop)
772 {
773
774 sx_assert(&proctree_lock, SX_XLOCKED);
775 PROC_LOCK_ASSERT(p, MA_OWNED);
776 p->p_flag |= P_TRACED;
777 if (stop)
778 p->p_flag2 |= P2_PTRACE_FSTP;
779 p->p_ptevents = PTRACE_DEFAULT;
780 }
781
782 void
ptrace_unsuspend(struct proc * p)783 ptrace_unsuspend(struct proc *p)
784 {
785 PROC_LOCK_ASSERT(p, MA_OWNED);
786
787 PROC_SLOCK(p);
788 p->p_flag &= ~(P_STOPPED_TRACE | P_STOPPED_SIG | P_WAITED);
789 thread_unsuspend(p);
790 PROC_SUNLOCK(p);
791 itimer_proc_continue(p);
792 kqtimer_proc_continue(p);
793 }
794
795 static int
proc_can_ptrace(struct thread * td,struct proc * p)796 proc_can_ptrace(struct thread *td, struct proc *p)
797 {
798 int error;
799
800 PROC_LOCK_ASSERT(p, MA_OWNED);
801
802 if ((p->p_flag & P_WEXIT) != 0)
803 return (ESRCH);
804
805 if ((error = p_cansee(td, p)) != 0)
806 return (error);
807 if ((error = p_candebug(td, p)) != 0)
808 return (error);
809
810 /* not being traced... */
811 if ((p->p_flag & P_TRACED) == 0)
812 return (EPERM);
813
814 /* not being traced by YOU */
815 if (p->p_pptr != td->td_proc)
816 return (EBUSY);
817
818 /* not currently stopped */
819 if ((p->p_flag & P_STOPPED_TRACE) == 0 ||
820 p->p_suspcount != p->p_numthreads ||
821 (p->p_flag & P_WAITED) == 0)
822 return (EBUSY);
823
824 return (0);
825 }
826
827 static struct thread *
ptrace_sel_coredump_thread(struct proc * p)828 ptrace_sel_coredump_thread(struct proc *p)
829 {
830 struct thread *td2;
831
832 PROC_LOCK_ASSERT(p, MA_OWNED);
833 MPASS((p->p_flag & P_STOPPED_TRACE) != 0);
834
835 FOREACH_THREAD_IN_PROC(p, td2) {
836 if ((td2->td_dbgflags & TDB_SSWITCH) != 0)
837 return (td2);
838 }
839 return (NULL);
840 }
841
842 int
kern_ptrace(struct thread * td,int req,pid_t pid,void * addr,int data)843 kern_ptrace(struct thread *td, int req, pid_t pid, void *addr, int data)
844 {
845 struct iovec iov;
846 struct uio uio;
847 struct proc *curp, *p, *pp;
848 struct thread *td2 = NULL, *td3;
849 struct ptrace_io_desc *piod = NULL;
850 struct ptrace_lwpinfo *pl;
851 struct ptrace_sc_ret *psr;
852 struct ptrace_sc_remote *pscr;
853 struct file *fp;
854 struct ptrace_coredump *pc;
855 struct thr_coredump_req *tcq;
856 struct thr_syscall_req *tsr;
857 int error, num, tmp;
858 lwpid_t tid = 0, *buf;
859 #ifdef COMPAT_FREEBSD32
860 int wrap32 = 0, safe = 0;
861 #endif
862 bool proctree_locked, p2_req_set;
863
864 curp = td->td_proc;
865 proctree_locked = false;
866 p2_req_set = false;
867
868 /* Lock proctree before locking the process. */
869 switch (req) {
870 case PT_TRACE_ME:
871 case PT_ATTACH:
872 case PT_STEP:
873 case PT_CONTINUE:
874 case PT_TO_SCE:
875 case PT_TO_SCX:
876 case PT_SYSCALL:
877 case PT_FOLLOW_FORK:
878 case PT_LWP_EVENTS:
879 case PT_GET_EVENT_MASK:
880 case PT_SET_EVENT_MASK:
881 case PT_DETACH:
882 case PT_GET_SC_ARGS:
883 sx_xlock(&proctree_lock);
884 proctree_locked = true;
885 break;
886 default:
887 break;
888 }
889
890 if (req == PT_TRACE_ME) {
891 p = td->td_proc;
892 PROC_LOCK(p);
893 } else {
894 if (pid <= PID_MAX) {
895 if ((p = pfind(pid)) == NULL) {
896 if (proctree_locked)
897 sx_xunlock(&proctree_lock);
898 return (ESRCH);
899 }
900 } else {
901 td2 = tdfind(pid, -1);
902 if (td2 == NULL) {
903 if (proctree_locked)
904 sx_xunlock(&proctree_lock);
905 return (ESRCH);
906 }
907 p = td2->td_proc;
908 tid = pid;
909 pid = p->p_pid;
910 }
911 }
912 AUDIT_ARG_PROCESS(p);
913
914 if ((p->p_flag & P_WEXIT) != 0) {
915 error = ESRCH;
916 goto fail;
917 }
918 if ((error = p_cansee(td, p)) != 0)
919 goto fail;
920
921 if ((error = p_candebug(td, p)) != 0)
922 goto fail;
923
924 /*
925 * System processes can't be debugged.
926 */
927 if ((p->p_flag & P_SYSTEM) != 0) {
928 error = EINVAL;
929 goto fail;
930 }
931
932 if (tid == 0) {
933 if ((p->p_flag & P_STOPPED_TRACE) != 0) {
934 KASSERT(p->p_xthread != NULL, ("NULL p_xthread"));
935 td2 = p->p_xthread;
936 } else {
937 td2 = FIRST_THREAD_IN_PROC(p);
938 }
939 tid = td2->td_tid;
940 }
941
942 #ifdef COMPAT_FREEBSD32
943 /*
944 * Test if we're a 32 bit client and what the target is.
945 * Set the wrap controls accordingly.
946 */
947 if (SV_CURPROC_FLAG(SV_ILP32)) {
948 if (SV_PROC_FLAG(td2->td_proc, SV_ILP32))
949 safe = 1;
950 wrap32 = 1;
951 }
952 #endif
953 /*
954 * Permissions check
955 */
956 switch (req) {
957 case PT_TRACE_ME:
958 /*
959 * Always legal, when there is a parent process which
960 * could trace us. Otherwise, reject.
961 */
962 if ((p->p_flag & P_TRACED) != 0) {
963 error = EBUSY;
964 goto fail;
965 }
966 if (p->p_pptr == initproc) {
967 error = EPERM;
968 goto fail;
969 }
970 break;
971
972 case PT_ATTACH:
973 /* Self */
974 if (p == td->td_proc) {
975 error = EINVAL;
976 goto fail;
977 }
978
979 /* Already traced */
980 if (p->p_flag & P_TRACED) {
981 error = EBUSY;
982 goto fail;
983 }
984
985 /* Can't trace an ancestor if you're being traced. */
986 if (curp->p_flag & P_TRACED) {
987 for (pp = curp->p_pptr; pp != NULL; pp = pp->p_pptr) {
988 if (pp == p) {
989 error = EINVAL;
990 goto fail;
991 }
992 }
993 }
994
995 /* OK */
996 break;
997
998 case PT_CLEARSTEP:
999 /* Allow thread to clear single step for itself */
1000 if (td->td_tid == tid)
1001 break;
1002
1003 /* FALLTHROUGH */
1004 default:
1005 /*
1006 * Check for ptrace eligibility before waiting for
1007 * holds to drain.
1008 */
1009 error = proc_can_ptrace(td, p);
1010 if (error != 0)
1011 goto fail;
1012
1013 /*
1014 * Block parallel ptrace requests. Most important, do
1015 * not allow other thread in debugger to continue the
1016 * debuggee until coredump finished.
1017 */
1018 while ((p->p_flag2 & P2_PTRACEREQ) != 0) {
1019 if (proctree_locked)
1020 sx_xunlock(&proctree_lock);
1021 error = msleep(&p->p_flag2, &p->p_mtx, PPAUSE | PCATCH |
1022 (proctree_locked ? PDROP : 0), "pptrace", 0);
1023 if (proctree_locked) {
1024 sx_xlock(&proctree_lock);
1025 PROC_LOCK(p);
1026 }
1027 if (error == 0 && td2->td_proc != p)
1028 error = ESRCH;
1029 if (error == 0)
1030 error = proc_can_ptrace(td, p);
1031 if (error != 0)
1032 goto fail;
1033 }
1034
1035 /* Ok */
1036 break;
1037 }
1038
1039 /*
1040 * Keep this process around and request parallel ptrace()
1041 * request to wait until we finish this request.
1042 */
1043 MPASS((p->p_flag2 & P2_PTRACEREQ) == 0);
1044 p->p_flag2 |= P2_PTRACEREQ;
1045 p2_req_set = true;
1046 _PHOLD(p);
1047
1048 /*
1049 * Actually do the requests
1050 */
1051
1052 td->td_retval[0] = 0;
1053
1054 switch (req) {
1055 case PT_TRACE_ME:
1056 /* set my trace flag and "owner" so it can read/write me */
1057 proc_set_traced(p, false);
1058 if (p->p_flag & P_PPWAIT)
1059 p->p_flag |= P_PPTRACE;
1060 CTR1(KTR_PTRACE, "PT_TRACE_ME: pid %d", p->p_pid);
1061 break;
1062
1063 case PT_ATTACH:
1064 /* security check done above */
1065 /*
1066 * It would be nice if the tracing relationship was separate
1067 * from the parent relationship but that would require
1068 * another set of links in the proc struct or for "wait"
1069 * to scan the entire proc table. To make life easier,
1070 * we just re-parent the process we're trying to trace.
1071 * The old parent is remembered so we can put things back
1072 * on a "detach".
1073 */
1074 proc_set_traced(p, true);
1075 proc_reparent(p, td->td_proc, false);
1076 CTR2(KTR_PTRACE, "PT_ATTACH: pid %d, oppid %d", p->p_pid,
1077 p->p_oppid);
1078
1079 sx_xunlock(&proctree_lock);
1080 proctree_locked = false;
1081 MPASS(p->p_xthread == NULL);
1082 MPASS((p->p_flag & P_STOPPED_TRACE) == 0);
1083
1084 /*
1085 * If already stopped due to a stop signal, clear the
1086 * existing stop before triggering a traced SIGSTOP.
1087 */
1088 if ((p->p_flag & P_STOPPED_SIG) != 0) {
1089 PROC_SLOCK(p);
1090 p->p_flag &= ~(P_STOPPED_SIG | P_WAITED);
1091 thread_unsuspend(p);
1092 PROC_SUNLOCK(p);
1093 }
1094
1095 kern_psignal(p, SIGSTOP);
1096 break;
1097
1098 case PT_CLEARSTEP:
1099 CTR2(KTR_PTRACE, "PT_CLEARSTEP: tid %d (pid %d)", td2->td_tid,
1100 p->p_pid);
1101 error = ptrace_clear_single_step(td2);
1102 break;
1103
1104 case PT_SETSTEP:
1105 CTR2(KTR_PTRACE, "PT_SETSTEP: tid %d (pid %d)", td2->td_tid,
1106 p->p_pid);
1107 error = ptrace_single_step(td2);
1108 break;
1109
1110 case PT_SUSPEND:
1111 CTR2(KTR_PTRACE, "PT_SUSPEND: tid %d (pid %d)", td2->td_tid,
1112 p->p_pid);
1113 td2->td_dbgflags |= TDB_SUSPEND;
1114 ast_sched(td2, TDA_SUSPEND);
1115 break;
1116
1117 case PT_RESUME:
1118 CTR2(KTR_PTRACE, "PT_RESUME: tid %d (pid %d)", td2->td_tid,
1119 p->p_pid);
1120 td2->td_dbgflags &= ~TDB_SUSPEND;
1121 break;
1122
1123 case PT_FOLLOW_FORK:
1124 CTR3(KTR_PTRACE, "PT_FOLLOW_FORK: pid %d %s -> %s", p->p_pid,
1125 p->p_ptevents & PTRACE_FORK ? "enabled" : "disabled",
1126 data ? "enabled" : "disabled");
1127 if (data)
1128 p->p_ptevents |= PTRACE_FORK;
1129 else
1130 p->p_ptevents &= ~PTRACE_FORK;
1131 break;
1132
1133 case PT_LWP_EVENTS:
1134 CTR3(KTR_PTRACE, "PT_LWP_EVENTS: pid %d %s -> %s", p->p_pid,
1135 p->p_ptevents & PTRACE_LWP ? "enabled" : "disabled",
1136 data ? "enabled" : "disabled");
1137 if (data)
1138 p->p_ptevents |= PTRACE_LWP;
1139 else
1140 p->p_ptevents &= ~PTRACE_LWP;
1141 break;
1142
1143 case PT_GET_EVENT_MASK:
1144 if (data != sizeof(p->p_ptevents)) {
1145 error = EINVAL;
1146 break;
1147 }
1148 CTR2(KTR_PTRACE, "PT_GET_EVENT_MASK: pid %d mask %#x", p->p_pid,
1149 p->p_ptevents);
1150 *(int *)addr = p->p_ptevents;
1151 break;
1152
1153 case PT_SET_EVENT_MASK:
1154 if (data != sizeof(p->p_ptevents)) {
1155 error = EINVAL;
1156 break;
1157 }
1158 tmp = *(int *)addr;
1159 if ((tmp & ~(PTRACE_EXEC | PTRACE_SCE | PTRACE_SCX |
1160 PTRACE_FORK | PTRACE_LWP | PTRACE_VFORK)) != 0) {
1161 error = EINVAL;
1162 break;
1163 }
1164 CTR3(KTR_PTRACE, "PT_SET_EVENT_MASK: pid %d mask %#x -> %#x",
1165 p->p_pid, p->p_ptevents, tmp);
1166 p->p_ptevents = tmp;
1167 break;
1168
1169 case PT_GET_SC_ARGS:
1170 CTR1(KTR_PTRACE, "PT_GET_SC_ARGS: pid %d", p->p_pid);
1171 if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) == 0
1172 #ifdef COMPAT_FREEBSD32
1173 || (wrap32 && !safe)
1174 #endif
1175 ) {
1176 error = EINVAL;
1177 break;
1178 }
1179 bzero(addr, sizeof(td2->td_sa.args));
1180 /* See the explanation in linux_ptrace_get_syscall_info(). */
1181 bcopy(td2->td_sa.args, addr, SV_PROC_ABI(td->td_proc) ==
1182 SV_ABI_LINUX ? sizeof(td2->td_sa.args) :
1183 td2->td_sa.callp->sy_narg * sizeof(syscallarg_t));
1184 break;
1185
1186 case PT_GET_SC_RET:
1187 if ((td2->td_dbgflags & (TDB_SCX)) == 0
1188 #ifdef COMPAT_FREEBSD32
1189 || (wrap32 && !safe)
1190 #endif
1191 ) {
1192 error = EINVAL;
1193 break;
1194 }
1195 psr = addr;
1196 bzero(psr, sizeof(*psr));
1197 psr->sr_error = td2->td_errno;
1198 if (psr->sr_error == 0) {
1199 psr->sr_retval[0] = td2->td_retval[0];
1200 psr->sr_retval[1] = td2->td_retval[1];
1201 }
1202 CTR4(KTR_PTRACE,
1203 "PT_GET_SC_RET: pid %d error %d retval %#lx,%#lx",
1204 p->p_pid, psr->sr_error, psr->sr_retval[0],
1205 psr->sr_retval[1]);
1206 break;
1207
1208 case PT_STEP:
1209 case PT_CONTINUE:
1210 case PT_TO_SCE:
1211 case PT_TO_SCX:
1212 case PT_SYSCALL:
1213 case PT_DETACH:
1214 /* Zero means do not send any signal */
1215 if (data < 0 || data > _SIG_MAXSIG) {
1216 error = EINVAL;
1217 break;
1218 }
1219
1220 switch (req) {
1221 case PT_STEP:
1222 CTR3(KTR_PTRACE, "PT_STEP: tid %d (pid %d), sig = %d",
1223 td2->td_tid, p->p_pid, data);
1224 error = ptrace_single_step(td2);
1225 if (error)
1226 goto out;
1227 break;
1228 case PT_CONTINUE:
1229 case PT_TO_SCE:
1230 case PT_TO_SCX:
1231 case PT_SYSCALL:
1232 if (addr != (void *)1) {
1233 error = ptrace_set_pc(td2,
1234 (u_long)(uintfptr_t)addr);
1235 if (error)
1236 goto out;
1237 }
1238 switch (req) {
1239 case PT_TO_SCE:
1240 p->p_ptevents |= PTRACE_SCE;
1241 CTR4(KTR_PTRACE,
1242 "PT_TO_SCE: pid %d, events = %#x, PC = %#lx, sig = %d",
1243 p->p_pid, p->p_ptevents,
1244 (u_long)(uintfptr_t)addr, data);
1245 break;
1246 case PT_TO_SCX:
1247 p->p_ptevents |= PTRACE_SCX;
1248 CTR4(KTR_PTRACE,
1249 "PT_TO_SCX: pid %d, events = %#x, PC = %#lx, sig = %d",
1250 p->p_pid, p->p_ptevents,
1251 (u_long)(uintfptr_t)addr, data);
1252 break;
1253 case PT_SYSCALL:
1254 p->p_ptevents |= PTRACE_SYSCALL;
1255 CTR4(KTR_PTRACE,
1256 "PT_SYSCALL: pid %d, events = %#x, PC = %#lx, sig = %d",
1257 p->p_pid, p->p_ptevents,
1258 (u_long)(uintfptr_t)addr, data);
1259 break;
1260 case PT_CONTINUE:
1261 CTR3(KTR_PTRACE,
1262 "PT_CONTINUE: pid %d, PC = %#lx, sig = %d",
1263 p->p_pid, (u_long)(uintfptr_t)addr, data);
1264 break;
1265 }
1266 break;
1267 case PT_DETACH:
1268 /*
1269 * Clear P_TRACED before reparenting
1270 * a detached process back to its original
1271 * parent. Otherwise the debugee will be set
1272 * as an orphan of the debugger.
1273 */
1274 p->p_flag &= ~(P_TRACED | P_WAITED);
1275
1276 /*
1277 * Reset the process parent.
1278 */
1279 if (p->p_oppid != p->p_pptr->p_pid) {
1280 PROC_LOCK(p->p_pptr);
1281 sigqueue_take(p->p_ksi);
1282 PROC_UNLOCK(p->p_pptr);
1283
1284 pp = proc_realparent(p);
1285 proc_reparent(p, pp, false);
1286 if (pp == initproc)
1287 p->p_sigparent = SIGCHLD;
1288 CTR3(KTR_PTRACE,
1289 "PT_DETACH: pid %d reparented to pid %d, sig %d",
1290 p->p_pid, pp->p_pid, data);
1291 } else {
1292 CTR2(KTR_PTRACE, "PT_DETACH: pid %d, sig %d",
1293 p->p_pid, data);
1294 }
1295
1296 p->p_ptevents = 0;
1297 FOREACH_THREAD_IN_PROC(p, td3) {
1298 if ((td3->td_dbgflags & TDB_FSTP) != 0) {
1299 sigqueue_delete(&td3->td_sigqueue,
1300 SIGSTOP);
1301 }
1302 td3->td_dbgflags &= ~(TDB_XSIG | TDB_FSTP |
1303 TDB_SUSPEND | TDB_BORN);
1304 }
1305
1306 if ((p->p_flag2 & P2_PTRACE_FSTP) != 0) {
1307 sigqueue_delete(&p->p_sigqueue, SIGSTOP);
1308 p->p_flag2 &= ~P2_PTRACE_FSTP;
1309 }
1310
1311 /* should we send SIGCHLD? */
1312 /* childproc_continued(p); */
1313 break;
1314 }
1315
1316 sx_xunlock(&proctree_lock);
1317 proctree_locked = false;
1318
1319 sendsig:
1320 MPASS(!proctree_locked);
1321
1322 /*
1323 * Clear the pending event for the thread that just
1324 * reported its event (p_xthread). This may not be
1325 * the thread passed to PT_CONTINUE, PT_STEP, etc. if
1326 * the debugger is resuming a different thread.
1327 *
1328 * Deliver any pending signal via the reporting thread.
1329 */
1330 MPASS(p->p_xthread != NULL);
1331 p->p_xthread->td_dbgflags &= ~TDB_XSIG;
1332 p->p_xthread->td_xsig = data;
1333 p->p_xthread = NULL;
1334 p->p_xsig = data;
1335
1336 /*
1337 * P_WKILLED is insurance that a PT_KILL/SIGKILL
1338 * always works immediately, even if another thread is
1339 * unsuspended first and attempts to handle a
1340 * different signal or if the POSIX.1b style signal
1341 * queue cannot accommodate any new signals.
1342 */
1343 if (data == SIGKILL)
1344 proc_wkilled(p);
1345
1346 /*
1347 * Unsuspend all threads. To leave a thread
1348 * suspended, use PT_SUSPEND to suspend it before
1349 * continuing the process.
1350 */
1351 ptrace_unsuspend(p);
1352 break;
1353
1354 case PT_WRITE_I:
1355 case PT_WRITE_D:
1356 td2->td_dbgflags |= TDB_USERWR;
1357 PROC_UNLOCK(p);
1358 error = 0;
1359 if (proc_writemem(td, p, (off_t)(uintptr_t)addr, &data,
1360 sizeof(int)) != sizeof(int))
1361 error = ENOMEM;
1362 else
1363 CTR3(KTR_PTRACE, "PT_WRITE: pid %d: %p <= %#x",
1364 p->p_pid, addr, data);
1365 PROC_LOCK(p);
1366 break;
1367
1368 case PT_READ_I:
1369 case PT_READ_D:
1370 PROC_UNLOCK(p);
1371 error = tmp = 0;
1372 if (proc_readmem(td, p, (off_t)(uintptr_t)addr, &tmp,
1373 sizeof(int)) != sizeof(int))
1374 error = ENOMEM;
1375 else
1376 CTR3(KTR_PTRACE, "PT_READ: pid %d: %p >= %#x",
1377 p->p_pid, addr, tmp);
1378 td->td_retval[0] = tmp;
1379 PROC_LOCK(p);
1380 break;
1381
1382 case PT_IO:
1383 piod = addr;
1384 iov.iov_base = piod->piod_addr;
1385 iov.iov_len = piod->piod_len;
1386 uio.uio_offset = (off_t)(uintptr_t)piod->piod_offs;
1387 uio.uio_resid = piod->piod_len;
1388 uio.uio_iov = &iov;
1389 uio.uio_iovcnt = 1;
1390 uio.uio_segflg = UIO_USERSPACE;
1391 uio.uio_td = td;
1392 switch (piod->piod_op) {
1393 case PIOD_READ_D:
1394 case PIOD_READ_I:
1395 CTR3(KTR_PTRACE, "PT_IO: pid %d: READ (%p, %#x)",
1396 p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid);
1397 uio.uio_rw = UIO_READ;
1398 break;
1399 case PIOD_WRITE_D:
1400 case PIOD_WRITE_I:
1401 CTR3(KTR_PTRACE, "PT_IO: pid %d: WRITE (%p, %#x)",
1402 p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid);
1403 td2->td_dbgflags |= TDB_USERWR;
1404 uio.uio_rw = UIO_WRITE;
1405 break;
1406 default:
1407 error = EINVAL;
1408 goto out;
1409 }
1410 PROC_UNLOCK(p);
1411 error = proc_rwmem(p, &uio);
1412 piod->piod_len -= uio.uio_resid;
1413 PROC_LOCK(p);
1414 break;
1415
1416 case PT_KILL:
1417 CTR1(KTR_PTRACE, "PT_KILL: pid %d", p->p_pid);
1418 data = SIGKILL;
1419 goto sendsig; /* in PT_CONTINUE above */
1420
1421 case PT_SETREGS:
1422 CTR2(KTR_PTRACE, "PT_SETREGS: tid %d (pid %d)", td2->td_tid,
1423 p->p_pid);
1424 td2->td_dbgflags |= TDB_USERWR;
1425 error = PROC_WRITE(regs, td2, addr);
1426 break;
1427
1428 case PT_GETREGS:
1429 CTR2(KTR_PTRACE, "PT_GETREGS: tid %d (pid %d)", td2->td_tid,
1430 p->p_pid);
1431 error = PROC_READ(regs, td2, addr);
1432 break;
1433
1434 case PT_SETFPREGS:
1435 CTR2(KTR_PTRACE, "PT_SETFPREGS: tid %d (pid %d)", td2->td_tid,
1436 p->p_pid);
1437 td2->td_dbgflags |= TDB_USERWR;
1438 error = PROC_WRITE(fpregs, td2, addr);
1439 break;
1440
1441 case PT_GETFPREGS:
1442 CTR2(KTR_PTRACE, "PT_GETFPREGS: tid %d (pid %d)", td2->td_tid,
1443 p->p_pid);
1444 error = PROC_READ(fpregs, td2, addr);
1445 break;
1446
1447 case PT_SETDBREGS:
1448 CTR2(KTR_PTRACE, "PT_SETDBREGS: tid %d (pid %d)", td2->td_tid,
1449 p->p_pid);
1450 td2->td_dbgflags |= TDB_USERWR;
1451 error = PROC_WRITE(dbregs, td2, addr);
1452 break;
1453
1454 case PT_GETDBREGS:
1455 CTR2(KTR_PTRACE, "PT_GETDBREGS: tid %d (pid %d)", td2->td_tid,
1456 p->p_pid);
1457 error = PROC_READ(dbregs, td2, addr);
1458 break;
1459
1460 case PT_SETREGSET:
1461 CTR2(KTR_PTRACE, "PT_SETREGSET: tid %d (pid %d)", td2->td_tid,
1462 p->p_pid);
1463 error = proc_write_regset(td2, data, addr);
1464 break;
1465
1466 case PT_GETREGSET:
1467 CTR2(KTR_PTRACE, "PT_GETREGSET: tid %d (pid %d)", td2->td_tid,
1468 p->p_pid);
1469 error = proc_read_regset(td2, data, addr);
1470 break;
1471
1472 case PT_LWPINFO:
1473 if (data <= 0 || data > sizeof(*pl)) {
1474 error = EINVAL;
1475 break;
1476 }
1477 pl = addr;
1478 bzero(pl, sizeof(*pl));
1479 pl->pl_lwpid = td2->td_tid;
1480 pl->pl_event = PL_EVENT_NONE;
1481 pl->pl_flags = 0;
1482 if (td2->td_dbgflags & TDB_XSIG) {
1483 pl->pl_event = PL_EVENT_SIGNAL;
1484 if (td2->td_si.si_signo != 0 &&
1485 data >= offsetof(struct ptrace_lwpinfo, pl_siginfo)
1486 + sizeof(pl->pl_siginfo)){
1487 pl->pl_flags |= PL_FLAG_SI;
1488 pl->pl_siginfo = td2->td_si;
1489 }
1490 }
1491 if (td2->td_dbgflags & TDB_SCE)
1492 pl->pl_flags |= PL_FLAG_SCE;
1493 else if (td2->td_dbgflags & TDB_SCX)
1494 pl->pl_flags |= PL_FLAG_SCX;
1495 if (td2->td_dbgflags & TDB_EXEC)
1496 pl->pl_flags |= PL_FLAG_EXEC;
1497 if (td2->td_dbgflags & TDB_FORK) {
1498 pl->pl_flags |= PL_FLAG_FORKED;
1499 pl->pl_child_pid = td2->td_dbg_forked;
1500 if (td2->td_dbgflags & TDB_VFORK)
1501 pl->pl_flags |= PL_FLAG_VFORKED;
1502 } else if ((td2->td_dbgflags & (TDB_SCX | TDB_VFORK)) ==
1503 TDB_VFORK)
1504 pl->pl_flags |= PL_FLAG_VFORK_DONE;
1505 if (td2->td_dbgflags & TDB_CHILD)
1506 pl->pl_flags |= PL_FLAG_CHILD;
1507 if (td2->td_dbgflags & TDB_BORN)
1508 pl->pl_flags |= PL_FLAG_BORN;
1509 if (td2->td_dbgflags & TDB_EXIT)
1510 pl->pl_flags |= PL_FLAG_EXITED;
1511 pl->pl_sigmask = td2->td_sigmask;
1512 pl->pl_siglist = td2->td_siglist;
1513 strcpy(pl->pl_tdname, td2->td_name);
1514 if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) != 0) {
1515 pl->pl_syscall_code = td2->td_sa.code;
1516 pl->pl_syscall_narg = td2->td_sa.callp->sy_narg;
1517 } else {
1518 pl->pl_syscall_code = 0;
1519 pl->pl_syscall_narg = 0;
1520 }
1521 CTR6(KTR_PTRACE,
1522 "PT_LWPINFO: tid %d (pid %d) event %d flags %#x child pid %d syscall %d",
1523 td2->td_tid, p->p_pid, pl->pl_event, pl->pl_flags,
1524 pl->pl_child_pid, pl->pl_syscall_code);
1525 break;
1526
1527 case PT_GETNUMLWPS:
1528 CTR2(KTR_PTRACE, "PT_GETNUMLWPS: pid %d: %d threads", p->p_pid,
1529 p->p_numthreads);
1530 td->td_retval[0] = p->p_numthreads;
1531 break;
1532
1533 case PT_GETLWPLIST:
1534 CTR3(KTR_PTRACE, "PT_GETLWPLIST: pid %d: data %d, actual %d",
1535 p->p_pid, data, p->p_numthreads);
1536 if (data <= 0) {
1537 error = EINVAL;
1538 break;
1539 }
1540 num = imin(p->p_numthreads, data);
1541 PROC_UNLOCK(p);
1542 buf = malloc(num * sizeof(lwpid_t), M_TEMP, M_WAITOK);
1543 tmp = 0;
1544 PROC_LOCK(p);
1545 FOREACH_THREAD_IN_PROC(p, td2) {
1546 if (tmp >= num)
1547 break;
1548 buf[tmp++] = td2->td_tid;
1549 }
1550 PROC_UNLOCK(p);
1551 error = copyout(buf, addr, tmp * sizeof(lwpid_t));
1552 free(buf, M_TEMP);
1553 if (!error)
1554 td->td_retval[0] = tmp;
1555 PROC_LOCK(p);
1556 break;
1557
1558 case PT_VM_TIMESTAMP:
1559 CTR2(KTR_PTRACE, "PT_VM_TIMESTAMP: pid %d: timestamp %d",
1560 p->p_pid, p->p_vmspace->vm_map.timestamp);
1561 td->td_retval[0] = p->p_vmspace->vm_map.timestamp;
1562 break;
1563
1564 case PT_VM_ENTRY:
1565 PROC_UNLOCK(p);
1566 error = ptrace_vm_entry(td, p, addr);
1567 PROC_LOCK(p);
1568 break;
1569
1570 case PT_COREDUMP:
1571 pc = addr;
1572 CTR2(KTR_PTRACE, "PT_COREDUMP: pid %d, fd %d",
1573 p->p_pid, pc->pc_fd);
1574
1575 if ((pc->pc_flags & ~(PC_COMPRESS | PC_ALL)) != 0) {
1576 error = EINVAL;
1577 break;
1578 }
1579 PROC_UNLOCK(p);
1580
1581 tcq = malloc(sizeof(*tcq), M_TEMP, M_WAITOK | M_ZERO);
1582 fp = NULL;
1583 error = fget_write(td, pc->pc_fd, &cap_write_rights, &fp);
1584 if (error != 0)
1585 goto coredump_cleanup_nofp;
1586 if (fp->f_type != DTYPE_VNODE || fp->f_vnode->v_type != VREG) {
1587 error = EPIPE;
1588 goto coredump_cleanup;
1589 }
1590
1591 PROC_LOCK(p);
1592 error = proc_can_ptrace(td, p);
1593 if (error != 0)
1594 goto coredump_cleanup_locked;
1595
1596 td2 = ptrace_sel_coredump_thread(p);
1597 if (td2 == NULL) {
1598 error = EBUSY;
1599 goto coredump_cleanup_locked;
1600 }
1601 KASSERT((td2->td_dbgflags & (TDB_COREDUMPREQ |
1602 TDB_SCREMOTEREQ)) == 0,
1603 ("proc %d tid %d req coredump", p->p_pid, td2->td_tid));
1604
1605 tcq->tc_vp = fp->f_vnode;
1606 tcq->tc_limit = pc->pc_limit == 0 ? OFF_MAX : pc->pc_limit;
1607 tcq->tc_flags = SVC_PT_COREDUMP;
1608 if ((pc->pc_flags & PC_COMPRESS) == 0)
1609 tcq->tc_flags |= SVC_NOCOMPRESS;
1610 if ((pc->pc_flags & PC_ALL) != 0)
1611 tcq->tc_flags |= SVC_ALL;
1612 td2->td_remotereq = tcq;
1613 td2->td_dbgflags |= TDB_COREDUMPREQ;
1614 thread_run_flash(td2);
1615 while ((td2->td_dbgflags & TDB_COREDUMPREQ) != 0)
1616 msleep(p, &p->p_mtx, PPAUSE, "crdmp", 0);
1617 error = tcq->tc_error;
1618 coredump_cleanup_locked:
1619 PROC_UNLOCK(p);
1620 coredump_cleanup:
1621 fdrop(fp, td);
1622 coredump_cleanup_nofp:
1623 free(tcq, M_TEMP);
1624 PROC_LOCK(p);
1625 break;
1626
1627 case PT_SC_REMOTE:
1628 pscr = addr;
1629 CTR2(KTR_PTRACE, "PT_SC_REMOTE: pid %d, syscall %d",
1630 p->p_pid, pscr->pscr_syscall);
1631 if ((td2->td_dbgflags & TDB_BOUNDARY) == 0) {
1632 error = EBUSY;
1633 break;
1634 }
1635 PROC_UNLOCK(p);
1636 MPASS(pscr->pscr_nargs <= nitems(td->td_sa.args));
1637
1638 tsr = malloc(sizeof(struct thr_syscall_req), M_TEMP,
1639 M_WAITOK | M_ZERO);
1640
1641 tsr->ts_sa.code = pscr->pscr_syscall;
1642 tsr->ts_nargs = pscr->pscr_nargs;
1643 memcpy(&tsr->ts_sa.args, pscr->pscr_args,
1644 sizeof(syscallarg_t) * tsr->ts_nargs);
1645
1646 PROC_LOCK(p);
1647 error = proc_can_ptrace(td, p);
1648 if (error != 0) {
1649 free(tsr, M_TEMP);
1650 break;
1651 }
1652 if (td2->td_proc != p) {
1653 free(tsr, M_TEMP);
1654 error = ESRCH;
1655 break;
1656 }
1657 KASSERT((td2->td_dbgflags & (TDB_COREDUMPREQ |
1658 TDB_SCREMOTEREQ)) == 0,
1659 ("proc %d tid %d req coredump", p->p_pid, td2->td_tid));
1660
1661 td2->td_remotereq = tsr;
1662 td2->td_dbgflags |= TDB_SCREMOTEREQ;
1663 thread_run_flash(td2);
1664 while ((td2->td_dbgflags & TDB_SCREMOTEREQ) != 0)
1665 msleep(p, &p->p_mtx, PPAUSE, "pscrx", 0);
1666 error = 0;
1667 memcpy(&pscr->pscr_ret, &tsr->ts_ret, sizeof(tsr->ts_ret));
1668 free(tsr, M_TEMP);
1669 break;
1670
1671 default:
1672 #ifdef __HAVE_PTRACE_MACHDEP
1673 if (req >= PT_FIRSTMACH) {
1674 PROC_UNLOCK(p);
1675 error = cpu_ptrace(td2, req, addr, data);
1676 PROC_LOCK(p);
1677 } else
1678 #endif
1679 /* Unknown request. */
1680 error = EINVAL;
1681 break;
1682 }
1683 out:
1684 /* Drop our hold on this process now that the request has completed. */
1685 _PRELE(p);
1686 fail:
1687 if (p2_req_set) {
1688 if ((p->p_flag2 & P2_PTRACEREQ) != 0)
1689 wakeup(&p->p_flag2);
1690 p->p_flag2 &= ~P2_PTRACEREQ;
1691 }
1692 PROC_UNLOCK(p);
1693 if (proctree_locked)
1694 sx_xunlock(&proctree_lock);
1695 return (error);
1696 }
1697 #undef PROC_READ
1698 #undef PROC_WRITE
1699