xref: /freebsd/sys/kern/kern_proc.c (revision faf7e99375910fadb1b409a756be5477b561a517)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 #include "opt_ddb.h"
34 #include "opt_ktrace.h"
35 #include "opt_kstack_pages.h"
36 #include "opt_stack.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bitstring.h>
41 #include <sys/conf.h>
42 #include <sys/elf.h>
43 #include <sys/eventhandler.h>
44 #include <sys/exec.h>
45 #include <sys/fcntl.h>
46 #include <sys/ipc.h>
47 #include <sys/jail.h>
48 #include <sys/kernel.h>
49 #include <sys/limits.h>
50 #include <sys/lock.h>
51 #include <sys/loginclass.h>
52 #include <sys/malloc.h>
53 #include <sys/mman.h>
54 #include <sys/mount.h>
55 #include <sys/mutex.h>
56 #include <sys/namei.h>
57 #include <sys/proc.h>
58 #include <sys/ptrace.h>
59 #include <sys/refcount.h>
60 #include <sys/resourcevar.h>
61 #include <sys/rwlock.h>
62 #include <sys/sbuf.h>
63 #include <sys/sysent.h>
64 #include <sys/sched.h>
65 #include <sys/shm.h>
66 #include <sys/smp.h>
67 #include <sys/stack.h>
68 #include <sys/stat.h>
69 #include <sys/dtrace_bsd.h>
70 #include <sys/sysctl.h>
71 #include <sys/filedesc.h>
72 #include <sys/tty.h>
73 #include <sys/signalvar.h>
74 #include <sys/sdt.h>
75 #include <sys/sx.h>
76 #include <sys/user.h>
77 #include <sys/vnode.h>
78 #include <sys/wait.h>
79 #ifdef KTRACE
80 #include <sys/ktrace.h>
81 #endif
82 
83 #ifdef DDB
84 #include <ddb/ddb.h>
85 #endif
86 
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/vm_extern.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_radix.h>
96 #include <vm/uma.h>
97 
98 #include <fs/devfs/devfs.h>
99 
100 #ifdef COMPAT_FREEBSD32
101 #include <compat/freebsd32/freebsd32.h>
102 #include <compat/freebsd32/freebsd32_util.h>
103 #endif
104 
105 SDT_PROVIDER_DEFINE(proc);
106 
107 MALLOC_DEFINE(M_SESSION, "session", "session header");
108 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
109 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
110 
111 static void doenterpgrp(struct proc *, struct pgrp *);
112 static void orphanpg(struct pgrp *pg);
113 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
114 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
115 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
116     int preferthread);
117 static void pgdelete(struct pgrp *);
118 static int pgrp_init(void *mem, int size, int flags);
119 static int proc_ctor(void *mem, int size, void *arg, int flags);
120 static void proc_dtor(void *mem, int size, void *arg);
121 static int proc_init(void *mem, int size, int flags);
122 static void proc_fini(void *mem, int size);
123 static void pargs_free(struct pargs *pa);
124 
125 /*
126  * Other process lists
127  */
128 struct pidhashhead *pidhashtbl = NULL;
129 struct sx *pidhashtbl_lock;
130 u_long pidhash;
131 u_long pidhashlock;
132 struct pgrphashhead *pgrphashtbl;
133 u_long pgrphash;
134 struct proclist allproc = LIST_HEAD_INITIALIZER(allproc);
135 struct sx __exclusive_cache_line allproc_lock;
136 struct sx __exclusive_cache_line proctree_lock;
137 struct mtx __exclusive_cache_line ppeers_lock;
138 struct mtx __exclusive_cache_line procid_lock;
139 uma_zone_t proc_zone;
140 uma_zone_t pgrp_zone;
141 
142 /*
143  * The offset of various fields in struct proc and struct thread.
144  * These are used by kernel debuggers to enumerate kernel threads and
145  * processes.
146  */
147 const int proc_off_p_pid = offsetof(struct proc, p_pid);
148 const int proc_off_p_comm = offsetof(struct proc, p_comm);
149 const int proc_off_p_list = offsetof(struct proc, p_list);
150 const int proc_off_p_hash = offsetof(struct proc, p_hash);
151 const int proc_off_p_threads = offsetof(struct proc, p_threads);
152 const int thread_off_td_tid = offsetof(struct thread, td_tid);
153 const int thread_off_td_name = offsetof(struct thread, td_name);
154 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
155 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
156 const int thread_off_td_plist = offsetof(struct thread, td_plist);
157 
158 EVENTHANDLER_LIST_DEFINE(process_ctor);
159 EVENTHANDLER_LIST_DEFINE(process_dtor);
160 EVENTHANDLER_LIST_DEFINE(process_init);
161 EVENTHANDLER_LIST_DEFINE(process_fini);
162 EVENTHANDLER_LIST_DEFINE(process_exit);
163 EVENTHANDLER_LIST_DEFINE(process_fork);
164 EVENTHANDLER_LIST_DEFINE(process_exec);
165 
166 int kstack_pages = KSTACK_PAGES;
167 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
168     &kstack_pages, 0,
169     "Kernel stack size in pages");
170 static int vmmap_skip_res_cnt = 0;
171 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
172     &vmmap_skip_res_cnt, 0,
173     "Skip calculation of the pages resident count in kern.proc.vmmap");
174 
175 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
176 #ifdef COMPAT_FREEBSD32
177 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
178 #endif
179 
180 /*
181  * Initialize global process hashing structures.
182  */
183 void
procinit(void)184 procinit(void)
185 {
186 	u_long i;
187 
188 	sx_init(&allproc_lock, "allproc");
189 	sx_init(&proctree_lock, "proctree");
190 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
191 	mtx_init(&procid_lock, "procid", NULL, MTX_DEF);
192 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
193 	pidhashlock = (pidhash + 1) / 64;
194 	if (pidhashlock > 0)
195 		pidhashlock--;
196 	pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1),
197 	    M_PROC, M_WAITOK | M_ZERO);
198 	for (i = 0; i < pidhashlock + 1; i++)
199 		sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK);
200 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
201 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
202 	    proc_ctor, proc_dtor, proc_init, proc_fini,
203 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
204 	pgrp_zone = uma_zcreate("PGRP", sizeof(struct pgrp), NULL, NULL,
205 	    pgrp_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
206 	uihashinit();
207 }
208 
209 /*
210  * Prepare a proc for use.
211  */
212 static int
proc_ctor(void * mem,int size,void * arg,int flags)213 proc_ctor(void *mem, int size, void *arg, int flags)
214 {
215 	struct proc *p;
216 	struct thread *td;
217 
218 	p = (struct proc *)mem;
219 #ifdef KDTRACE_HOOKS
220 	kdtrace_proc_ctor(p);
221 #endif
222 	EVENTHANDLER_DIRECT_INVOKE(process_ctor, p);
223 	td = FIRST_THREAD_IN_PROC(p);
224 	if (td != NULL) {
225 		/* Make sure all thread constructors are executed */
226 		EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
227 	}
228 	return (0);
229 }
230 
231 /*
232  * Reclaim a proc after use.
233  */
234 static void
proc_dtor(void * mem,int size,void * arg)235 proc_dtor(void *mem, int size, void *arg)
236 {
237 	struct proc *p;
238 	struct thread *td;
239 
240 	/* INVARIANTS checks go here */
241 	p = (struct proc *)mem;
242 	td = FIRST_THREAD_IN_PROC(p);
243 	if (td != NULL) {
244 #ifdef INVARIANTS
245 		KASSERT((p->p_numthreads == 1),
246 		    ("bad number of threads in exiting process"));
247 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
248 #endif
249 		/* Free all OSD associated to this thread. */
250 		osd_thread_exit(td);
251 		ast_kclear(td);
252 
253 		/* Make sure all thread destructors are executed */
254 		EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
255 	}
256 	EVENTHANDLER_DIRECT_INVOKE(process_dtor, p);
257 #ifdef KDTRACE_HOOKS
258 	kdtrace_proc_dtor(p);
259 #endif
260 	if (p->p_ksi != NULL)
261 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
262 }
263 
264 /*
265  * Initialize type-stable parts of a proc (when newly created).
266  */
267 static int
proc_init(void * mem,int size,int flags)268 proc_init(void *mem, int size, int flags)
269 {
270 	struct proc *p;
271 
272 	p = (struct proc *)mem;
273 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
274 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
275 	mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
276 	mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
277 	mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
278 	cv_init(&p->p_pwait, "ppwait");
279 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
280 	EVENTHANDLER_DIRECT_INVOKE(process_init, p);
281 	p->p_stats = pstats_alloc();
282 	p->p_pgrp = NULL;
283 	TAILQ_INIT(&p->p_kqtim_stop);
284 	return (0);
285 }
286 
287 /*
288  * UMA should ensure that this function is never called.
289  * Freeing a proc structure would violate type stability.
290  */
291 static void
proc_fini(void * mem,int size)292 proc_fini(void *mem, int size)
293 {
294 #ifdef notnow
295 	struct proc *p;
296 
297 	p = (struct proc *)mem;
298 	EVENTHANDLER_DIRECT_INVOKE(process_fini, p);
299 	pstats_free(p->p_stats);
300 	thread_free(FIRST_THREAD_IN_PROC(p));
301 	mtx_destroy(&p->p_mtx);
302 	if (p->p_ksi != NULL)
303 		ksiginfo_free(p->p_ksi);
304 #else
305 	panic("proc reclaimed");
306 #endif
307 }
308 
309 static int
pgrp_init(void * mem,int size,int flags)310 pgrp_init(void *mem, int size, int flags)
311 {
312 	struct pgrp *pg;
313 
314 	pg = mem;
315 	mtx_init(&pg->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
316 	sx_init(&pg->pg_killsx, "killpg racer");
317 	return (0);
318 }
319 
320 /*
321  * PID space management.
322  *
323  * These bitmaps are used by fork_findpid.
324  */
325 bitstr_t bit_decl(proc_id_pidmap, PID_MAX);
326 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX);
327 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX);
328 bitstr_t bit_decl(proc_id_reapmap, PID_MAX);
329 
330 static bitstr_t *proc_id_array[] = {
331 	proc_id_pidmap,
332 	proc_id_grpidmap,
333 	proc_id_sessidmap,
334 	proc_id_reapmap,
335 };
336 
337 void
proc_id_set(int type,pid_t id)338 proc_id_set(int type, pid_t id)
339 {
340 
341 	KASSERT(type >= 0 && type < nitems(proc_id_array),
342 	    ("invalid type %d\n", type));
343 	mtx_lock(&procid_lock);
344 	KASSERT(bit_test(proc_id_array[type], id) == 0,
345 	    ("bit %d already set in %d\n", id, type));
346 	bit_set(proc_id_array[type], id);
347 	mtx_unlock(&procid_lock);
348 }
349 
350 void
proc_id_set_cond(int type,pid_t id)351 proc_id_set_cond(int type, pid_t id)
352 {
353 
354 	KASSERT(type >= 0 && type < nitems(proc_id_array),
355 	    ("invalid type %d\n", type));
356 	if (bit_test(proc_id_array[type], id))
357 		return;
358 	mtx_lock(&procid_lock);
359 	bit_set(proc_id_array[type], id);
360 	mtx_unlock(&procid_lock);
361 }
362 
363 void
proc_id_clear(int type,pid_t id)364 proc_id_clear(int type, pid_t id)
365 {
366 
367 	KASSERT(type >= 0 && type < nitems(proc_id_array),
368 	    ("invalid type %d\n", type));
369 	mtx_lock(&procid_lock);
370 	KASSERT(bit_test(proc_id_array[type], id) != 0,
371 	    ("bit %d not set in %d\n", id, type));
372 	bit_clear(proc_id_array[type], id);
373 	mtx_unlock(&procid_lock);
374 }
375 
376 /*
377  * Is p an inferior of the current process?
378  */
379 int
inferior(struct proc * p)380 inferior(struct proc *p)
381 {
382 
383 	sx_assert(&proctree_lock, SX_LOCKED);
384 	PROC_LOCK_ASSERT(p, MA_OWNED);
385 	for (; p != curproc; p = proc_realparent(p)) {
386 		if (p->p_pid == 0)
387 			return (0);
388 	}
389 	return (1);
390 }
391 
392 /*
393  * Shared lock all the pid hash lists.
394  */
395 void
pidhash_slockall(void)396 pidhash_slockall(void)
397 {
398 	u_long i;
399 
400 	for (i = 0; i < pidhashlock + 1; i++)
401 		sx_slock(&pidhashtbl_lock[i]);
402 }
403 
404 /*
405  * Shared unlock all the pid hash lists.
406  */
407 void
pidhash_sunlockall(void)408 pidhash_sunlockall(void)
409 {
410 	u_long i;
411 
412 	for (i = 0; i < pidhashlock + 1; i++)
413 		sx_sunlock(&pidhashtbl_lock[i]);
414 }
415 
416 /*
417  * Similar to pfind(), this function locate a process by number.
418  */
419 struct proc *
pfind_any_locked(pid_t pid)420 pfind_any_locked(pid_t pid)
421 {
422 	struct proc *p;
423 
424 	sx_assert(PIDHASHLOCK(pid), SX_LOCKED);
425 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
426 		if (p->p_pid == pid) {
427 			PROC_LOCK(p);
428 			if (p->p_state == PRS_NEW) {
429 				PROC_UNLOCK(p);
430 				p = NULL;
431 			}
432 			break;
433 		}
434 	}
435 	return (p);
436 }
437 
438 /*
439  * Locate a process by number.
440  *
441  * By not returning processes in the PRS_NEW state, we allow callers to avoid
442  * testing for that condition to avoid dereferencing p_ucred, et al.
443  */
444 static __always_inline struct proc *
_pfind(pid_t pid,bool zombie)445 _pfind(pid_t pid, bool zombie)
446 {
447 	struct proc *p;
448 
449 	p = curproc;
450 	if (p->p_pid == pid) {
451 		PROC_LOCK(p);
452 		return (p);
453 	}
454 	sx_slock(PIDHASHLOCK(pid));
455 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
456 		if (p->p_pid == pid) {
457 			PROC_LOCK(p);
458 			if (p->p_state == PRS_NEW ||
459 			    (!zombie && p->p_state == PRS_ZOMBIE)) {
460 				PROC_UNLOCK(p);
461 				p = NULL;
462 			}
463 			break;
464 		}
465 	}
466 	sx_sunlock(PIDHASHLOCK(pid));
467 	return (p);
468 }
469 
470 struct proc *
pfind(pid_t pid)471 pfind(pid_t pid)
472 {
473 
474 	return (_pfind(pid, false));
475 }
476 
477 /*
478  * Same as pfind but allow zombies.
479  */
480 struct proc *
pfind_any(pid_t pid)481 pfind_any(pid_t pid)
482 {
483 
484 	return (_pfind(pid, true));
485 }
486 
487 /*
488  * Locate a process group by number.
489  * The caller must hold proctree_lock.
490  */
491 struct pgrp *
pgfind(pid_t pgid)492 pgfind(pid_t pgid)
493 {
494 	struct pgrp *pgrp;
495 
496 	sx_assert(&proctree_lock, SX_LOCKED);
497 
498 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
499 		if (pgrp->pg_id == pgid) {
500 			PGRP_LOCK(pgrp);
501 			return (pgrp);
502 		}
503 	}
504 	return (NULL);
505 }
506 
507 /*
508  * Locate process and do additional manipulations, depending on flags.
509  */
510 int
pget(pid_t pid,int flags,struct proc ** pp)511 pget(pid_t pid, int flags, struct proc **pp)
512 {
513 	struct proc *p;
514 	struct thread *td1;
515 	int error;
516 
517 	p = curproc;
518 	if (p->p_pid == pid) {
519 		PROC_LOCK(p);
520 	} else {
521 		p = NULL;
522 		if (pid <= PID_MAX) {
523 			if ((flags & PGET_NOTWEXIT) == 0)
524 				p = pfind_any(pid);
525 			else
526 				p = pfind(pid);
527 		} else if ((flags & PGET_NOTID) == 0) {
528 			td1 = tdfind(pid, -1);
529 			if (td1 != NULL)
530 				p = td1->td_proc;
531 		}
532 		if (p == NULL)
533 			return (ESRCH);
534 		if ((flags & PGET_CANSEE) != 0) {
535 			error = p_cansee(curthread, p);
536 			if (error != 0)
537 				goto errout;
538 		}
539 	}
540 	if ((flags & PGET_CANDEBUG) != 0) {
541 		error = p_candebug(curthread, p);
542 		if (error != 0)
543 			goto errout;
544 	}
545 	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
546 		error = EPERM;
547 		goto errout;
548 	}
549 	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
550 		error = ESRCH;
551 		goto errout;
552 	}
553 	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
554 		/*
555 		 * XXXRW: Not clear ESRCH is the right error during proc
556 		 * execve().
557 		 */
558 		error = ESRCH;
559 		goto errout;
560 	}
561 	if ((flags & PGET_HOLD) != 0) {
562 		_PHOLD(p);
563 		PROC_UNLOCK(p);
564 	}
565 	*pp = p;
566 	return (0);
567 errout:
568 	PROC_UNLOCK(p);
569 	return (error);
570 }
571 
572 /*
573  * Create a new process group.
574  * pgid must be equal to the pid of p.
575  * Begin a new session if required.
576  */
577 int
enterpgrp(struct proc * p,pid_t pgid,struct pgrp * pgrp,struct session * sess)578 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
579 {
580 	struct pgrp *old_pgrp;
581 
582 	sx_assert(&proctree_lock, SX_XLOCKED);
583 
584 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
585 	KASSERT(p->p_pid == pgid,
586 	    ("enterpgrp: new pgrp and pid != pgid"));
587 	KASSERT(pgfind(pgid) == NULL,
588 	    ("enterpgrp: pgrp with pgid exists"));
589 	KASSERT(!SESS_LEADER(p),
590 	    ("enterpgrp: session leader attempted setpgrp"));
591 
592 	old_pgrp = p->p_pgrp;
593 	if (!sx_try_xlock(&old_pgrp->pg_killsx)) {
594 		sx_xunlock(&proctree_lock);
595 		sx_xlock(&old_pgrp->pg_killsx);
596 		sx_xunlock(&old_pgrp->pg_killsx);
597 		return (ERESTART);
598 	}
599 	MPASS(old_pgrp == p->p_pgrp);
600 
601 	if (sess != NULL) {
602 		/*
603 		 * new session
604 		 */
605 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
606 		PROC_LOCK(p);
607 		p->p_flag &= ~P_CONTROLT;
608 		PROC_UNLOCK(p);
609 		PGRP_LOCK(pgrp);
610 		sess->s_leader = p;
611 		sess->s_sid = p->p_pid;
612 		proc_id_set(PROC_ID_SESSION, p->p_pid);
613 		refcount_init(&sess->s_count, 1);
614 		sess->s_ttyvp = NULL;
615 		sess->s_ttydp = NULL;
616 		sess->s_ttyp = NULL;
617 		bcopy(p->p_session->s_login, sess->s_login,
618 			    sizeof(sess->s_login));
619 		pgrp->pg_session = sess;
620 		KASSERT(p == curproc,
621 		    ("enterpgrp: mksession and p != curproc"));
622 	} else {
623 		pgrp->pg_session = p->p_session;
624 		sess_hold(pgrp->pg_session);
625 		PGRP_LOCK(pgrp);
626 	}
627 	pgrp->pg_id = pgid;
628 	proc_id_set(PROC_ID_GROUP, p->p_pid);
629 	LIST_INIT(&pgrp->pg_members);
630 	pgrp->pg_flags = 0;
631 
632 	/*
633 	 * As we have an exclusive lock of proctree_lock,
634 	 * this should not deadlock.
635 	 */
636 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
637 	SLIST_INIT(&pgrp->pg_sigiolst);
638 	PGRP_UNLOCK(pgrp);
639 
640 	doenterpgrp(p, pgrp);
641 
642 	sx_xunlock(&old_pgrp->pg_killsx);
643 	return (0);
644 }
645 
646 /*
647  * Move p to an existing process group
648  */
649 int
enterthispgrp(struct proc * p,struct pgrp * pgrp)650 enterthispgrp(struct proc *p, struct pgrp *pgrp)
651 {
652 	struct pgrp *old_pgrp;
653 
654 	sx_assert(&proctree_lock, SX_XLOCKED);
655 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
656 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
657 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
658 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
659 	KASSERT(pgrp->pg_session == p->p_session,
660 	    ("%s: pgrp's session %p, p->p_session %p proc %p\n",
661 	    __func__, pgrp->pg_session, p->p_session, p));
662 	KASSERT(pgrp != p->p_pgrp,
663 	    ("%s: p %p belongs to pgrp %p", __func__, p, pgrp));
664 
665 	old_pgrp = p->p_pgrp;
666 	if (!sx_try_xlock(&old_pgrp->pg_killsx)) {
667 		sx_xunlock(&proctree_lock);
668 		sx_xlock(&old_pgrp->pg_killsx);
669 		sx_xunlock(&old_pgrp->pg_killsx);
670 		return (ERESTART);
671 	}
672 	MPASS(old_pgrp == p->p_pgrp);
673 	if (!sx_try_xlock(&pgrp->pg_killsx)) {
674 		sx_xunlock(&old_pgrp->pg_killsx);
675 		sx_xunlock(&proctree_lock);
676 		sx_xlock(&pgrp->pg_killsx);
677 		sx_xunlock(&pgrp->pg_killsx);
678 		return (ERESTART);
679 	}
680 
681 	doenterpgrp(p, pgrp);
682 
683 	sx_xunlock(&pgrp->pg_killsx);
684 	sx_xunlock(&old_pgrp->pg_killsx);
685 	return (0);
686 }
687 
688 /*
689  * If true, any child of q which belongs to group pgrp, qualifies the
690  * process group pgrp as not orphaned.
691  */
692 static bool
isjobproc(struct proc * q,struct pgrp * pgrp)693 isjobproc(struct proc *q, struct pgrp *pgrp)
694 {
695 	sx_assert(&proctree_lock, SX_LOCKED);
696 
697 	return (q->p_pgrp != pgrp &&
698 	    q->p_pgrp->pg_session == pgrp->pg_session);
699 }
700 
701 static struct proc *
jobc_reaper(struct proc * p)702 jobc_reaper(struct proc *p)
703 {
704 	struct proc *pp;
705 
706 	sx_assert(&proctree_lock, SA_LOCKED);
707 
708 	for (pp = p;;) {
709 		pp = pp->p_reaper;
710 		if (pp->p_reaper == pp ||
711 		    (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
712 			return (pp);
713 	}
714 }
715 
716 static struct proc *
jobc_parent(struct proc * p,struct proc * p_exiting)717 jobc_parent(struct proc *p, struct proc *p_exiting)
718 {
719 	struct proc *pp;
720 
721 	sx_assert(&proctree_lock, SA_LOCKED);
722 
723 	pp = proc_realparent(p);
724 	if (pp->p_pptr == NULL || pp == p_exiting ||
725 	    (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
726 		return (pp);
727 	return (jobc_reaper(pp));
728 }
729 
730 int
pgrp_calc_jobc(struct pgrp * pgrp)731 pgrp_calc_jobc(struct pgrp *pgrp)
732 {
733 	struct proc *q;
734 	int cnt;
735 
736 #ifdef INVARIANTS
737 	if (!mtx_owned(&pgrp->pg_mtx))
738 		sx_assert(&proctree_lock, SA_LOCKED);
739 #endif
740 
741 	cnt = 0;
742 	LIST_FOREACH(q, &pgrp->pg_members, p_pglist) {
743 		if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 ||
744 		    q->p_pptr == NULL)
745 			continue;
746 		if (isjobproc(jobc_parent(q, NULL), pgrp))
747 			cnt++;
748 	}
749 	return (cnt);
750 }
751 
752 /*
753  * Move p to a process group
754  */
755 static void
doenterpgrp(struct proc * p,struct pgrp * pgrp)756 doenterpgrp(struct proc *p, struct pgrp *pgrp)
757 {
758 	struct pgrp *savepgrp;
759 	struct proc *pp;
760 
761 	sx_assert(&proctree_lock, SX_XLOCKED);
762 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
763 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
764 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
765 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
766 
767 	savepgrp = p->p_pgrp;
768 	pp = jobc_parent(p, NULL);
769 
770 	PGRP_LOCK(pgrp);
771 	PGRP_LOCK(savepgrp);
772 	if (isjobproc(pp, savepgrp) && pgrp_calc_jobc(savepgrp) == 1)
773 		orphanpg(savepgrp);
774 	PROC_LOCK(p);
775 	LIST_REMOVE(p, p_pglist);
776 	p->p_pgrp = pgrp;
777 	PROC_UNLOCK(p);
778 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
779 	if (isjobproc(pp, pgrp))
780 		pgrp->pg_flags &= ~PGRP_ORPHANED;
781 	PGRP_UNLOCK(savepgrp);
782 	PGRP_UNLOCK(pgrp);
783 	if (LIST_EMPTY(&savepgrp->pg_members))
784 		pgdelete(savepgrp);
785 }
786 
787 /*
788  * remove process from process group
789  */
790 int
leavepgrp(struct proc * p)791 leavepgrp(struct proc *p)
792 {
793 	struct pgrp *savepgrp;
794 
795 	sx_assert(&proctree_lock, SX_XLOCKED);
796 	savepgrp = p->p_pgrp;
797 	PGRP_LOCK(savepgrp);
798 	PROC_LOCK(p);
799 	LIST_REMOVE(p, p_pglist);
800 	p->p_pgrp = NULL;
801 	PROC_UNLOCK(p);
802 	PGRP_UNLOCK(savepgrp);
803 	if (LIST_EMPTY(&savepgrp->pg_members))
804 		pgdelete(savepgrp);
805 	return (0);
806 }
807 
808 /*
809  * delete a process group
810  */
811 static void
pgdelete(struct pgrp * pgrp)812 pgdelete(struct pgrp *pgrp)
813 {
814 	struct session *savesess;
815 	struct tty *tp;
816 
817 	sx_assert(&proctree_lock, SX_XLOCKED);
818 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
819 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
820 
821 	/*
822 	 * Reset any sigio structures pointing to us as a result of
823 	 * F_SETOWN with our pgid.  The proctree lock ensures that
824 	 * new sigio structures will not be added after this point.
825 	 */
826 	funsetownlst(&pgrp->pg_sigiolst);
827 
828 	PGRP_LOCK(pgrp);
829 	tp = pgrp->pg_session->s_ttyp;
830 	LIST_REMOVE(pgrp, pg_hash);
831 	savesess = pgrp->pg_session;
832 	PGRP_UNLOCK(pgrp);
833 
834 	/* Remove the reference to the pgrp before deallocating it. */
835 	if (tp != NULL) {
836 		tty_lock(tp);
837 		tty_rel_pgrp(tp, pgrp);
838 	}
839 
840 	proc_id_clear(PROC_ID_GROUP, pgrp->pg_id);
841 	uma_zfree(pgrp_zone, pgrp);
842 	sess_release(savesess);
843 }
844 
845 
846 static void
fixjobc_kill(struct proc * p)847 fixjobc_kill(struct proc *p)
848 {
849 	struct proc *q;
850 	struct pgrp *pgrp;
851 
852 	sx_assert(&proctree_lock, SX_LOCKED);
853 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
854 	pgrp = p->p_pgrp;
855 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
856 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
857 
858 	/*
859 	 * p no longer affects process group orphanage for children.
860 	 * It is marked by the flag because p is only physically
861 	 * removed from its process group on wait(2).
862 	 */
863 	MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0);
864 	p->p_treeflag |= P_TREE_GRPEXITED;
865 
866 	/*
867 	 * Check if exiting p orphans its own group.
868 	 */
869 	pgrp = p->p_pgrp;
870 	if (isjobproc(jobc_parent(p, NULL), pgrp)) {
871 		PGRP_LOCK(pgrp);
872 		if (pgrp_calc_jobc(pgrp) == 0)
873 			orphanpg(pgrp);
874 		PGRP_UNLOCK(pgrp);
875 	}
876 
877 	/*
878 	 * Check this process' children to see whether they qualify
879 	 * their process groups after reparenting to reaper.
880 	 */
881 	LIST_FOREACH(q, &p->p_children, p_sibling) {
882 		pgrp = q->p_pgrp;
883 		PGRP_LOCK(pgrp);
884 		if (pgrp_calc_jobc(pgrp) == 0) {
885 			/*
886 			 * We want to handle exactly the children that
887 			 * has p as realparent.  Then, when calculating
888 			 * jobc_parent for children, we should ignore
889 			 * P_TREE_GRPEXITED flag already set on p.
890 			 */
891 			if (jobc_parent(q, p) == p && isjobproc(p, pgrp))
892 				orphanpg(pgrp);
893 		} else
894 			pgrp->pg_flags &= ~PGRP_ORPHANED;
895 		PGRP_UNLOCK(pgrp);
896 	}
897 	LIST_FOREACH(q, &p->p_orphans, p_orphan) {
898 		pgrp = q->p_pgrp;
899 		PGRP_LOCK(pgrp);
900 		if (pgrp_calc_jobc(pgrp) == 0) {
901 			if (isjobproc(p, pgrp))
902 				orphanpg(pgrp);
903 		} else
904 			pgrp->pg_flags &= ~PGRP_ORPHANED;
905 		PGRP_UNLOCK(pgrp);
906 	}
907 }
908 
909 void
killjobc(void)910 killjobc(void)
911 {
912 	struct session *sp;
913 	struct tty *tp;
914 	struct proc *p;
915 	struct vnode *ttyvp;
916 
917 	p = curproc;
918 	MPASS(p->p_flag & P_WEXIT);
919 	sx_assert(&proctree_lock, SX_LOCKED);
920 
921 	if (SESS_LEADER(p)) {
922 		sp = p->p_session;
923 
924 		/*
925 		 * s_ttyp is not zero'd; we use this to indicate that
926 		 * the session once had a controlling terminal. (for
927 		 * logging and informational purposes)
928 		 */
929 		SESS_LOCK(sp);
930 		ttyvp = sp->s_ttyvp;
931 		tp = sp->s_ttyp;
932 		sp->s_ttyvp = NULL;
933 		sp->s_ttydp = NULL;
934 		sp->s_leader = NULL;
935 		SESS_UNLOCK(sp);
936 
937 		/*
938 		 * Signal foreground pgrp and revoke access to
939 		 * controlling terminal if it has not been revoked
940 		 * already.
941 		 *
942 		 * Because the TTY may have been revoked in the mean
943 		 * time and could already have a new session associated
944 		 * with it, make sure we don't send a SIGHUP to a
945 		 * foreground process group that does not belong to this
946 		 * session.
947 		 */
948 
949 		if (tp != NULL) {
950 			tty_lock(tp);
951 			if (tp->t_session == sp)
952 				tty_signal_pgrp(tp, SIGHUP);
953 			tty_unlock(tp);
954 		}
955 
956 		if (ttyvp != NULL) {
957 			sx_xunlock(&proctree_lock);
958 			if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
959 				VOP_REVOKE(ttyvp, REVOKEALL);
960 				VOP_UNLOCK(ttyvp);
961 			}
962 			devfs_ctty_unref(ttyvp);
963 			sx_xlock(&proctree_lock);
964 		}
965 	}
966 	fixjobc_kill(p);
967 }
968 
969 /*
970  * A process group has become orphaned, mark it as such for signal
971  * delivery code.  If there are any stopped processes in the group,
972  * hang-up all process in that group.
973  */
974 static void
orphanpg(struct pgrp * pg)975 orphanpg(struct pgrp *pg)
976 {
977 	struct proc *p;
978 
979 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
980 
981 	pg->pg_flags |= PGRP_ORPHANED;
982 
983 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
984 		PROC_LOCK(p);
985 		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
986 			PROC_UNLOCK(p);
987 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
988 				PROC_LOCK(p);
989 				kern_psignal(p, SIGHUP);
990 				kern_psignal(p, SIGCONT);
991 				PROC_UNLOCK(p);
992 			}
993 			return;
994 		}
995 		PROC_UNLOCK(p);
996 	}
997 }
998 
999 void
sess_hold(struct session * s)1000 sess_hold(struct session *s)
1001 {
1002 
1003 	refcount_acquire(&s->s_count);
1004 }
1005 
1006 void
sess_release(struct session * s)1007 sess_release(struct session *s)
1008 {
1009 
1010 	if (refcount_release(&s->s_count)) {
1011 		if (s->s_ttyp != NULL) {
1012 			tty_lock(s->s_ttyp);
1013 			tty_rel_sess(s->s_ttyp, s);
1014 		}
1015 		proc_id_clear(PROC_ID_SESSION, s->s_sid);
1016 		mtx_destroy(&s->s_mtx);
1017 		free(s, M_SESSION);
1018 	}
1019 }
1020 
1021 #ifdef DDB
1022 
1023 static void
db_print_pgrp_one(struct pgrp * pgrp,struct proc * p)1024 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p)
1025 {
1026 	db_printf(
1027 	    "    pid %d at %p pr %d pgrp %p e %d jc %d\n",
1028 	    p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid,
1029 	    p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0,
1030 	    p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp));
1031 }
1032 
DB_SHOW_COMMAND_FLAGS(pgrpdump,pgrpdump,DB_CMD_MEMSAFE)1033 DB_SHOW_COMMAND_FLAGS(pgrpdump, pgrpdump, DB_CMD_MEMSAFE)
1034 {
1035 	struct pgrp *pgrp;
1036 	struct proc *p;
1037 	int i;
1038 
1039 	for (i = 0; i <= pgrphash; i++) {
1040 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
1041 			db_printf("indx %d\n", i);
1042 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
1043 				db_printf(
1044 			"  pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n",
1045 				    pgrp, (int)pgrp->pg_id, pgrp->pg_session,
1046 				    pgrp->pg_session->s_count,
1047 				    LIST_FIRST(&pgrp->pg_members));
1048 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
1049 					db_print_pgrp_one(pgrp, p);
1050 			}
1051 		}
1052 	}
1053 }
1054 #endif /* DDB */
1055 
1056 /*
1057  * Calculate the kinfo_proc members which contain process-wide
1058  * informations.
1059  * Must be called with the target process locked.
1060  */
1061 static void
fill_kinfo_aggregate(struct proc * p,struct kinfo_proc * kp)1062 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
1063 {
1064 	struct thread *td;
1065 
1066 	PROC_LOCK_ASSERT(p, MA_OWNED);
1067 
1068 	kp->ki_estcpu = 0;
1069 	kp->ki_pctcpu = 0;
1070 	FOREACH_THREAD_IN_PROC(p, td) {
1071 		thread_lock(td);
1072 		kp->ki_pctcpu += sched_pctcpu(td);
1073 		kp->ki_estcpu += sched_estcpu(td);
1074 		thread_unlock(td);
1075 	}
1076 }
1077 
1078 /*
1079  * Fill in any information that is common to all threads in the process.
1080  * Must be called with the target process locked.
1081  */
1082 static void
fill_kinfo_proc_only(struct proc * p,struct kinfo_proc * kp)1083 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
1084 {
1085 	struct thread *td0;
1086 	struct ucred *cred;
1087 	struct sigacts *ps;
1088 	struct timeval boottime;
1089 
1090 	PROC_LOCK_ASSERT(p, MA_OWNED);
1091 
1092 	kp->ki_structsize = sizeof(*kp);
1093 	kp->ki_paddr = p;
1094 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
1095 	kp->ki_args = p->p_args;
1096 	kp->ki_textvp = p->p_textvp;
1097 #ifdef KTRACE
1098 	kp->ki_tracep = ktr_get_tracevp(p, false);
1099 	kp->ki_traceflag = p->p_traceflag;
1100 #endif
1101 	kp->ki_fd = p->p_fd;
1102 	kp->ki_pd = p->p_pd;
1103 	kp->ki_vmspace = p->p_vmspace;
1104 	kp->ki_flag = p->p_flag;
1105 	kp->ki_flag2 = p->p_flag2;
1106 	cred = p->p_ucred;
1107 	if (cred) {
1108 		kp->ki_uid = cred->cr_uid;
1109 		kp->ki_ruid = cred->cr_ruid;
1110 		kp->ki_svuid = cred->cr_svuid;
1111 		kp->ki_cr_flags = 0;
1112 		if (cred->cr_flags & CRED_FLAG_CAPMODE)
1113 			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
1114 		/* XXX bde doesn't like KI_NGROUPS */
1115 		if (1 + cred->cr_ngroups > KI_NGROUPS) {
1116 			kp->ki_ngroups = KI_NGROUPS;
1117 			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
1118 		} else
1119 			kp->ki_ngroups = 1 + cred->cr_ngroups;
1120 		kp->ki_groups[0] = cred->cr_gid;
1121 		bcopy(cred->cr_groups, kp->ki_groups + 1,
1122 		    (kp->ki_ngroups - 1) * sizeof(gid_t));
1123 		kp->ki_rgid = cred->cr_rgid;
1124 		kp->ki_svgid = cred->cr_svgid;
1125 		/* If jailed(cred), emulate the old P_JAILED flag. */
1126 		if (jailed(cred)) {
1127 			kp->ki_flag |= P_JAILED;
1128 			/* If inside the jail, use 0 as a jail ID. */
1129 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
1130 				kp->ki_jid = cred->cr_prison->pr_id;
1131 		}
1132 		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
1133 		    sizeof(kp->ki_loginclass));
1134 	}
1135 	ps = p->p_sigacts;
1136 	if (ps) {
1137 		mtx_lock(&ps->ps_mtx);
1138 		kp->ki_sigignore = ps->ps_sigignore;
1139 		kp->ki_sigcatch = ps->ps_sigcatch;
1140 		mtx_unlock(&ps->ps_mtx);
1141 	}
1142 	if (p->p_state != PRS_NEW &&
1143 	    p->p_state != PRS_ZOMBIE &&
1144 	    p->p_vmspace != NULL) {
1145 		struct vmspace *vm = p->p_vmspace;
1146 
1147 		kp->ki_size = vm->vm_map.size;
1148 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
1149 		FOREACH_THREAD_IN_PROC(p, td0)
1150 			kp->ki_rssize += td0->td_kstack_pages;
1151 		kp->ki_swrss = vm->vm_swrss;
1152 		kp->ki_tsize = vm->vm_tsize;
1153 		kp->ki_dsize = vm->vm_dsize;
1154 		kp->ki_ssize = vm->vm_ssize;
1155 	} else if (p->p_state == PRS_ZOMBIE)
1156 		kp->ki_stat = SZOMB;
1157 	kp->ki_sflag = PS_INMEM;
1158 	/* Calculate legacy swtime as seconds since 'swtick'. */
1159 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
1160 	kp->ki_pid = p->p_pid;
1161 	kp->ki_nice = p->p_nice;
1162 	kp->ki_fibnum = p->p_fibnum;
1163 	kp->ki_start = p->p_stats->p_start;
1164 	getboottime(&boottime);
1165 	timevaladd(&kp->ki_start, &boottime);
1166 	PROC_STATLOCK(p);
1167 	rufetch(p, &kp->ki_rusage);
1168 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
1169 	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
1170 	PROC_STATUNLOCK(p);
1171 	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
1172 	/* Some callers want child times in a single value. */
1173 	kp->ki_childtime = kp->ki_childstime;
1174 	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
1175 
1176 	FOREACH_THREAD_IN_PROC(p, td0)
1177 		kp->ki_cow += td0->td_cow;
1178 
1179 	if (p->p_comm[0] != '\0')
1180 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
1181 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
1182 	    p->p_sysent->sv_name[0] != '\0')
1183 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
1184 	kp->ki_siglist = p->p_siglist;
1185 	kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
1186 	kp->ki_acflag = p->p_acflag;
1187 	kp->ki_lock = p->p_lock;
1188 	if (p->p_pptr) {
1189 		kp->ki_ppid = p->p_oppid;
1190 		if (p->p_flag & P_TRACED)
1191 			kp->ki_tracer = p->p_pptr->p_pid;
1192 	}
1193 }
1194 
1195 /*
1196  * Fill job-related process information.
1197  */
1198 static void
fill_kinfo_proc_pgrp(struct proc * p,struct kinfo_proc * kp)1199 fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp)
1200 {
1201 	struct tty *tp;
1202 	struct session *sp;
1203 	struct pgrp *pgrp;
1204 
1205 	sx_assert(&proctree_lock, SA_LOCKED);
1206 	PROC_LOCK_ASSERT(p, MA_OWNED);
1207 
1208 	pgrp = p->p_pgrp;
1209 	if (pgrp == NULL)
1210 		return;
1211 
1212 	kp->ki_pgid = pgrp->pg_id;
1213 	kp->ki_jobc = pgrp_calc_jobc(pgrp);
1214 
1215 	sp = pgrp->pg_session;
1216 	tp = NULL;
1217 
1218 	if (sp != NULL) {
1219 		kp->ki_sid = sp->s_sid;
1220 		SESS_LOCK(sp);
1221 		strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login));
1222 		if (sp->s_ttyvp)
1223 			kp->ki_kiflag |= KI_CTTY;
1224 		if (SESS_LEADER(p))
1225 			kp->ki_kiflag |= KI_SLEADER;
1226 		tp = sp->s_ttyp;
1227 		SESS_UNLOCK(sp);
1228 	}
1229 
1230 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
1231 		kp->ki_tdev = tty_udev(tp);
1232 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1233 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1234 		if (tp->t_session)
1235 			kp->ki_tsid = tp->t_session->s_sid;
1236 	} else {
1237 		kp->ki_tdev = NODEV;
1238 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1239 	}
1240 }
1241 
1242 /*
1243  * Fill in information that is thread specific.  Must be called with
1244  * target process locked.  If 'preferthread' is set, overwrite certain
1245  * process-related fields that are maintained for both threads and
1246  * processes.
1247  */
1248 static void
fill_kinfo_thread(struct thread * td,struct kinfo_proc * kp,int preferthread)1249 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
1250 {
1251 	struct proc *p;
1252 
1253 	p = td->td_proc;
1254 	kp->ki_tdaddr = td;
1255 	PROC_LOCK_ASSERT(p, MA_OWNED);
1256 
1257 	if (preferthread)
1258 		PROC_STATLOCK(p);
1259 	thread_lock(td);
1260 	if (td->td_wmesg != NULL)
1261 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
1262 	else
1263 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
1264 	if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
1265 	    sizeof(kp->ki_tdname)) {
1266 		strlcpy(kp->ki_moretdname,
1267 		    td->td_name + sizeof(kp->ki_tdname) - 1,
1268 		    sizeof(kp->ki_moretdname));
1269 	} else {
1270 		bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
1271 	}
1272 	if (TD_ON_LOCK(td)) {
1273 		kp->ki_kiflag |= KI_LOCKBLOCK;
1274 		strlcpy(kp->ki_lockname, td->td_lockname,
1275 		    sizeof(kp->ki_lockname));
1276 	} else {
1277 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
1278 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
1279 	}
1280 
1281 	if (p->p_state == PRS_NORMAL) { /* approximate. */
1282 		if (TD_ON_RUNQ(td) ||
1283 		    TD_CAN_RUN(td) ||
1284 		    TD_IS_RUNNING(td)) {
1285 			kp->ki_stat = SRUN;
1286 		} else if (P_SHOULDSTOP(p)) {
1287 			kp->ki_stat = SSTOP;
1288 		} else if (TD_IS_SLEEPING(td)) {
1289 			kp->ki_stat = SSLEEP;
1290 		} else if (TD_ON_LOCK(td)) {
1291 			kp->ki_stat = SLOCK;
1292 		} else {
1293 			kp->ki_stat = SWAIT;
1294 		}
1295 	} else if (p->p_state == PRS_ZOMBIE) {
1296 		kp->ki_stat = SZOMB;
1297 	} else {
1298 		kp->ki_stat = SIDL;
1299 	}
1300 
1301 	/* Things in the thread */
1302 	kp->ki_wchan = td->td_wchan;
1303 	kp->ki_pri.pri_level = td->td_priority;
1304 	kp->ki_pri.pri_native = td->td_base_pri;
1305 
1306 	/*
1307 	 * Note: legacy fields; clamp at the old NOCPU value and/or
1308 	 * the maximum u_char CPU value.
1309 	 */
1310 	if (td->td_lastcpu == NOCPU)
1311 		kp->ki_lastcpu_old = NOCPU_OLD;
1312 	else if (td->td_lastcpu > MAXCPU_OLD)
1313 		kp->ki_lastcpu_old = MAXCPU_OLD;
1314 	else
1315 		kp->ki_lastcpu_old = td->td_lastcpu;
1316 
1317 	if (td->td_oncpu == NOCPU)
1318 		kp->ki_oncpu_old = NOCPU_OLD;
1319 	else if (td->td_oncpu > MAXCPU_OLD)
1320 		kp->ki_oncpu_old = MAXCPU_OLD;
1321 	else
1322 		kp->ki_oncpu_old = td->td_oncpu;
1323 
1324 	kp->ki_lastcpu = td->td_lastcpu;
1325 	kp->ki_oncpu = td->td_oncpu;
1326 	kp->ki_tdflags = td->td_flags;
1327 	kp->ki_tid = td->td_tid;
1328 	kp->ki_numthreads = p->p_numthreads;
1329 	kp->ki_pcb = td->td_pcb;
1330 	kp->ki_kstack = (void *)td->td_kstack;
1331 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
1332 	kp->ki_pri.pri_class = td->td_pri_class;
1333 	kp->ki_pri.pri_user = td->td_user_pri;
1334 
1335 	if (preferthread) {
1336 		rufetchtd(td, &kp->ki_rusage);
1337 		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1338 		kp->ki_pctcpu = sched_pctcpu(td);
1339 		kp->ki_estcpu = sched_estcpu(td);
1340 		kp->ki_cow = td->td_cow;
1341 	}
1342 
1343 	/* We can't get this anymore but ps etc never used it anyway. */
1344 	kp->ki_rqindex = 0;
1345 
1346 	if (preferthread)
1347 		kp->ki_siglist = td->td_siglist;
1348 	kp->ki_sigmask = td->td_sigmask;
1349 	thread_unlock(td);
1350 	if (preferthread)
1351 		PROC_STATUNLOCK(p);
1352 
1353 	if ((td->td_pflags & TDP2_UEXTERR) != 0)
1354 		kp->ki_uerrmsg = td->td_exterr_ptr;
1355 }
1356 
1357 /*
1358  * Fill in a kinfo_proc structure for the specified process.
1359  * Must be called with the target process locked.
1360  */
1361 void
fill_kinfo_proc(struct proc * p,struct kinfo_proc * kp)1362 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1363 {
1364 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1365 
1366 	bzero(kp, sizeof(*kp));
1367 
1368 	fill_kinfo_proc_pgrp(p,kp);
1369 	fill_kinfo_proc_only(p, kp);
1370 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1371 	fill_kinfo_aggregate(p, kp);
1372 }
1373 
1374 struct pstats *
pstats_alloc(void)1375 pstats_alloc(void)
1376 {
1377 
1378 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1379 }
1380 
1381 /*
1382  * Copy parts of p_stats; zero the rest of p_stats (statistics).
1383  */
1384 void
pstats_fork(struct pstats * src,struct pstats * dst)1385 pstats_fork(struct pstats *src, struct pstats *dst)
1386 {
1387 
1388 	bzero(&dst->pstat_startzero,
1389 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1390 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1391 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1392 }
1393 
1394 void
pstats_free(struct pstats * ps)1395 pstats_free(struct pstats *ps)
1396 {
1397 
1398 	free(ps, M_SUBPROC);
1399 }
1400 
1401 #ifdef COMPAT_FREEBSD32
1402 
1403 /*
1404  * This function is typically used to copy out the kernel address, so
1405  * it can be replaced by assignment of zero.
1406  */
1407 static inline uint32_t
ptr32_trim(const void * ptr)1408 ptr32_trim(const void *ptr)
1409 {
1410 	uintptr_t uptr;
1411 
1412 	uptr = (uintptr_t)ptr;
1413 	return ((uptr > UINT_MAX) ? 0 : uptr);
1414 }
1415 
1416 #define PTRTRIM_CP(src,dst,fld) \
1417 	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1418 
1419 static void
freebsd32_kinfo_proc_out(const struct kinfo_proc * ki,struct kinfo_proc32 * ki32)1420 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1421 {
1422 	int i;
1423 
1424 	bzero(ki32, sizeof(struct kinfo_proc32));
1425 	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1426 	CP(*ki, *ki32, ki_layout);
1427 	PTRTRIM_CP(*ki, *ki32, ki_args);
1428 	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1429 	PTRTRIM_CP(*ki, *ki32, ki_addr);
1430 	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1431 	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1432 	PTRTRIM_CP(*ki, *ki32, ki_fd);
1433 	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1434 	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1435 	CP(*ki, *ki32, ki_pid);
1436 	CP(*ki, *ki32, ki_ppid);
1437 	CP(*ki, *ki32, ki_pgid);
1438 	CP(*ki, *ki32, ki_tpgid);
1439 	CP(*ki, *ki32, ki_sid);
1440 	CP(*ki, *ki32, ki_tsid);
1441 	CP(*ki, *ki32, ki_jobc);
1442 	CP(*ki, *ki32, ki_tdev);
1443 	CP(*ki, *ki32, ki_tdev_freebsd11);
1444 	CP(*ki, *ki32, ki_siglist);
1445 	CP(*ki, *ki32, ki_sigmask);
1446 	CP(*ki, *ki32, ki_sigignore);
1447 	CP(*ki, *ki32, ki_sigcatch);
1448 	CP(*ki, *ki32, ki_uid);
1449 	CP(*ki, *ki32, ki_ruid);
1450 	CP(*ki, *ki32, ki_svuid);
1451 	CP(*ki, *ki32, ki_rgid);
1452 	CP(*ki, *ki32, ki_svgid);
1453 	CP(*ki, *ki32, ki_ngroups);
1454 	for (i = 0; i < KI_NGROUPS; i++)
1455 		CP(*ki, *ki32, ki_groups[i]);
1456 	CP(*ki, *ki32, ki_size);
1457 	CP(*ki, *ki32, ki_rssize);
1458 	CP(*ki, *ki32, ki_swrss);
1459 	CP(*ki, *ki32, ki_tsize);
1460 	CP(*ki, *ki32, ki_dsize);
1461 	CP(*ki, *ki32, ki_ssize);
1462 	CP(*ki, *ki32, ki_xstat);
1463 	CP(*ki, *ki32, ki_acflag);
1464 	CP(*ki, *ki32, ki_pctcpu);
1465 	CP(*ki, *ki32, ki_estcpu);
1466 	CP(*ki, *ki32, ki_slptime);
1467 	CP(*ki, *ki32, ki_swtime);
1468 	CP(*ki, *ki32, ki_cow);
1469 	CP(*ki, *ki32, ki_runtime);
1470 	TV_CP(*ki, *ki32, ki_start);
1471 	TV_CP(*ki, *ki32, ki_childtime);
1472 	CP(*ki, *ki32, ki_flag);
1473 	CP(*ki, *ki32, ki_kiflag);
1474 	CP(*ki, *ki32, ki_traceflag);
1475 	CP(*ki, *ki32, ki_stat);
1476 	CP(*ki, *ki32, ki_nice);
1477 	CP(*ki, *ki32, ki_lock);
1478 	CP(*ki, *ki32, ki_rqindex);
1479 	CP(*ki, *ki32, ki_oncpu);
1480 	CP(*ki, *ki32, ki_lastcpu);
1481 
1482 	/* XXX TODO: wrap cpu value as appropriate */
1483 	CP(*ki, *ki32, ki_oncpu_old);
1484 	CP(*ki, *ki32, ki_lastcpu_old);
1485 
1486 	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1487 	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1488 	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1489 	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1490 	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1491 	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1492 	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1493 	bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
1494 	CP(*ki, *ki32, ki_tracer);
1495 	CP(*ki, *ki32, ki_flag2);
1496 	CP(*ki, *ki32, ki_fibnum);
1497 	CP(*ki, *ki32, ki_cr_flags);
1498 	CP(*ki, *ki32, ki_jid);
1499 	CP(*ki, *ki32, ki_numthreads);
1500 	CP(*ki, *ki32, ki_tid);
1501 	CP(*ki, *ki32, ki_pri);
1502 	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1503 	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1504 	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1505 	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1506 	PTRTRIM_CP(*ki, *ki32, ki_udata);
1507 	PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
1508 	CP(*ki, *ki32, ki_sflag);
1509 	CP(*ki, *ki32, ki_tdflags);
1510 	PTRTRIM_CP(*ki, *ki32, ki_uerrmsg);
1511 }
1512 #endif
1513 
1514 static ssize_t
kern_proc_out_size(struct proc * p,int flags)1515 kern_proc_out_size(struct proc *p, int flags)
1516 {
1517 	ssize_t size = 0;
1518 
1519 	PROC_LOCK_ASSERT(p, MA_OWNED);
1520 
1521 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1522 #ifdef COMPAT_FREEBSD32
1523 		if ((flags & KERN_PROC_MASK32) != 0) {
1524 			size += sizeof(struct kinfo_proc32);
1525 		} else
1526 #endif
1527 			size += sizeof(struct kinfo_proc);
1528 	} else {
1529 #ifdef COMPAT_FREEBSD32
1530 		if ((flags & KERN_PROC_MASK32) != 0)
1531 			size += sizeof(struct kinfo_proc32) * p->p_numthreads;
1532 		else
1533 #endif
1534 			size += sizeof(struct kinfo_proc) * p->p_numthreads;
1535 	}
1536 	PROC_UNLOCK(p);
1537 	return (size);
1538 }
1539 
1540 int
kern_proc_out(struct proc * p,struct sbuf * sb,int flags)1541 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1542 {
1543 	struct thread *td;
1544 	struct kinfo_proc ki;
1545 #ifdef COMPAT_FREEBSD32
1546 	struct kinfo_proc32 ki32;
1547 #endif
1548 	int error;
1549 
1550 	PROC_LOCK_ASSERT(p, MA_OWNED);
1551 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1552 
1553 	error = 0;
1554 	fill_kinfo_proc(p, &ki);
1555 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1556 #ifdef COMPAT_FREEBSD32
1557 		if ((flags & KERN_PROC_MASK32) != 0) {
1558 			freebsd32_kinfo_proc_out(&ki, &ki32);
1559 			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1560 				error = ENOMEM;
1561 		} else
1562 #endif
1563 			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1564 				error = ENOMEM;
1565 	} else {
1566 		FOREACH_THREAD_IN_PROC(p, td) {
1567 			fill_kinfo_thread(td, &ki, 1);
1568 #ifdef COMPAT_FREEBSD32
1569 			if ((flags & KERN_PROC_MASK32) != 0) {
1570 				freebsd32_kinfo_proc_out(&ki, &ki32);
1571 				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1572 					error = ENOMEM;
1573 			} else
1574 #endif
1575 				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1576 					error = ENOMEM;
1577 			if (error != 0)
1578 				break;
1579 		}
1580 	}
1581 	PROC_UNLOCK(p);
1582 	return (error);
1583 }
1584 
1585 static int
sysctl_out_proc(struct proc * p,struct sysctl_req * req,int flags)1586 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1587 {
1588 	struct sbuf sb;
1589 	struct kinfo_proc ki;
1590 	int error, error2;
1591 
1592 	if (req->oldptr == NULL)
1593 		return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags)));
1594 
1595 	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1596 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1597 	error = kern_proc_out(p, &sb, flags);
1598 	error2 = sbuf_finish(&sb);
1599 	sbuf_delete(&sb);
1600 	if (error != 0)
1601 		return (error);
1602 	else if (error2 != 0)
1603 		return (error2);
1604 	return (0);
1605 }
1606 
1607 int
proc_iterate(int (* cb)(struct proc *,void *),void * cbarg)1608 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg)
1609 {
1610 	struct proc *p;
1611 	int error, i, j;
1612 
1613 	for (i = 0; i < pidhashlock + 1; i++) {
1614 		sx_slock(&proctree_lock);
1615 		sx_slock(&pidhashtbl_lock[i]);
1616 		for (j = i; j <= pidhash; j += pidhashlock + 1) {
1617 			LIST_FOREACH(p, &pidhashtbl[j], p_hash) {
1618 				if (p->p_state == PRS_NEW)
1619 					continue;
1620 				error = cb(p, cbarg);
1621 				PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1622 				if (error != 0) {
1623 					sx_sunlock(&pidhashtbl_lock[i]);
1624 					sx_sunlock(&proctree_lock);
1625 					return (error);
1626 				}
1627 			}
1628 		}
1629 		sx_sunlock(&pidhashtbl_lock[i]);
1630 		sx_sunlock(&proctree_lock);
1631 	}
1632 	return (0);
1633 }
1634 
1635 struct kern_proc_out_args {
1636 	struct sysctl_req *req;
1637 	int flags;
1638 	int oid_number;
1639 	int *name;
1640 };
1641 
1642 static int
sysctl_kern_proc_iterate(struct proc * p,void * origarg)1643 sysctl_kern_proc_iterate(struct proc *p, void *origarg)
1644 {
1645 	struct kern_proc_out_args *arg = origarg;
1646 	int *name = arg->name;
1647 	int oid_number = arg->oid_number;
1648 	int flags = arg->flags;
1649 	struct sysctl_req *req = arg->req;
1650 	int error = 0;
1651 
1652 	PROC_LOCK(p);
1653 
1654 	KASSERT(p->p_ucred != NULL,
1655 	    ("process credential is NULL for non-NEW proc"));
1656 	/*
1657 	 * Show a user only appropriate processes.
1658 	 */
1659 	if (p_cansee(curthread, p))
1660 		goto skip;
1661 	/*
1662 	 * TODO - make more efficient (see notes below).
1663 	 * do by session.
1664 	 */
1665 	switch (oid_number) {
1666 	case KERN_PROC_GID:
1667 		if (p->p_ucred->cr_gid != (gid_t)name[0])
1668 			goto skip;
1669 		break;
1670 
1671 	case KERN_PROC_PGRP:
1672 		/* could do this by traversing pgrp */
1673 		if (p->p_pgrp == NULL ||
1674 		    p->p_pgrp->pg_id != (pid_t)name[0])
1675 			goto skip;
1676 		break;
1677 
1678 	case KERN_PROC_RGID:
1679 		if (p->p_ucred->cr_rgid != (gid_t)name[0])
1680 			goto skip;
1681 		break;
1682 
1683 	case KERN_PROC_SESSION:
1684 		if (p->p_session == NULL ||
1685 		    p->p_session->s_sid != (pid_t)name[0])
1686 			goto skip;
1687 		break;
1688 
1689 	case KERN_PROC_TTY:
1690 		if ((p->p_flag & P_CONTROLT) == 0 ||
1691 		    p->p_session == NULL)
1692 			goto skip;
1693 		/* XXX proctree_lock */
1694 		SESS_LOCK(p->p_session);
1695 		if (p->p_session->s_ttyp == NULL ||
1696 		    tty_udev(p->p_session->s_ttyp) !=
1697 		    (dev_t)name[0]) {
1698 			SESS_UNLOCK(p->p_session);
1699 			goto skip;
1700 		}
1701 		SESS_UNLOCK(p->p_session);
1702 		break;
1703 
1704 	case KERN_PROC_UID:
1705 		if (p->p_ucred->cr_uid != (uid_t)name[0])
1706 			goto skip;
1707 		break;
1708 
1709 	case KERN_PROC_RUID:
1710 		if (p->p_ucred->cr_ruid != (uid_t)name[0])
1711 			goto skip;
1712 		break;
1713 
1714 	case KERN_PROC_PROC:
1715 		break;
1716 
1717 	default:
1718 		break;
1719 	}
1720 	error = sysctl_out_proc(p, req, flags);
1721 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1722 	return (error);
1723 skip:
1724 	PROC_UNLOCK(p);
1725 	return (0);
1726 }
1727 
1728 static int
sysctl_kern_proc(SYSCTL_HANDLER_ARGS)1729 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1730 {
1731 	struct kern_proc_out_args iterarg;
1732 	int *name = (int *)arg1;
1733 	u_int namelen = arg2;
1734 	struct proc *p;
1735 	int flags, oid_number;
1736 	int error = 0;
1737 
1738 	oid_number = oidp->oid_number;
1739 	if (oid_number != KERN_PROC_ALL &&
1740 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1741 		flags = KERN_PROC_NOTHREADS;
1742 	else {
1743 		flags = 0;
1744 		oid_number &= ~KERN_PROC_INC_THREAD;
1745 	}
1746 #ifdef COMPAT_FREEBSD32
1747 	if (req->flags & SCTL_MASK32)
1748 		flags |= KERN_PROC_MASK32;
1749 #endif
1750 	if (oid_number == KERN_PROC_PID) {
1751 		if (namelen != 1)
1752 			return (EINVAL);
1753 		error = sysctl_wire_old_buffer(req, 0);
1754 		if (error)
1755 			return (error);
1756 		sx_slock(&proctree_lock);
1757 		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1758 		if (error == 0)
1759 			error = sysctl_out_proc(p, req, flags);
1760 		sx_sunlock(&proctree_lock);
1761 		return (error);
1762 	}
1763 
1764 	switch (oid_number) {
1765 	case KERN_PROC_ALL:
1766 		if (namelen != 0)
1767 			return (EINVAL);
1768 		break;
1769 	case KERN_PROC_PROC:
1770 		if (namelen != 0 && namelen != 1)
1771 			return (EINVAL);
1772 		break;
1773 	default:
1774 		if (namelen != 1)
1775 			return (EINVAL);
1776 		break;
1777 	}
1778 
1779 	if (req->oldptr == NULL) {
1780 		/* overestimate by 5 procs */
1781 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1782 		if (error)
1783 			return (error);
1784 	} else {
1785 		error = sysctl_wire_old_buffer(req, 0);
1786 		if (error != 0)
1787 			return (error);
1788 	}
1789 	iterarg.flags = flags;
1790 	iterarg.oid_number = oid_number;
1791 	iterarg.req = req;
1792 	iterarg.name = name;
1793 	error = proc_iterate(sysctl_kern_proc_iterate, &iterarg);
1794 	return (error);
1795 }
1796 
1797 struct pargs *
pargs_alloc(int len)1798 pargs_alloc(int len)
1799 {
1800 	struct pargs *pa;
1801 
1802 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1803 		M_WAITOK);
1804 	refcount_init(&pa->ar_ref, 1);
1805 	pa->ar_length = len;
1806 	return (pa);
1807 }
1808 
1809 static void
pargs_free(struct pargs * pa)1810 pargs_free(struct pargs *pa)
1811 {
1812 
1813 	free(pa, M_PARGS);
1814 }
1815 
1816 void
pargs_hold(struct pargs * pa)1817 pargs_hold(struct pargs *pa)
1818 {
1819 
1820 	if (pa == NULL)
1821 		return;
1822 	refcount_acquire(&pa->ar_ref);
1823 }
1824 
1825 void
pargs_drop(struct pargs * pa)1826 pargs_drop(struct pargs *pa)
1827 {
1828 
1829 	if (pa == NULL)
1830 		return;
1831 	if (refcount_release(&pa->ar_ref))
1832 		pargs_free(pa);
1833 }
1834 
1835 static int
proc_read_string(struct thread * td,struct proc * p,const char * sptr,char * buf,size_t len)1836 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1837     size_t len)
1838 {
1839 	ssize_t n;
1840 
1841 	/*
1842 	 * This may return a short read if the string is shorter than the chunk
1843 	 * and is aligned at the end of the page, and the following page is not
1844 	 * mapped.
1845 	 */
1846 	n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
1847 	if (n <= 0)
1848 		return (ENOMEM);
1849 	return (0);
1850 }
1851 
1852 #define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1853 
1854 enum proc_vector_type {
1855 	PROC_ARG,
1856 	PROC_ENV,
1857 	PROC_AUX,
1858 };
1859 
1860 #ifdef COMPAT_FREEBSD32
1861 static int
get_proc_vector32(struct thread * td,struct proc * p,char *** proc_vectorp,size_t * vsizep,enum proc_vector_type type)1862 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1863     size_t *vsizep, enum proc_vector_type type)
1864 {
1865 	struct freebsd32_ps_strings pss;
1866 	Elf32_Auxinfo aux;
1867 	vm_offset_t vptr, ptr;
1868 	uint32_t *proc_vector32;
1869 	char **proc_vector;
1870 	size_t vsize, size;
1871 	int i, error;
1872 
1873 	error = 0;
1874 	if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
1875 	    sizeof(pss))
1876 		return (ENOMEM);
1877 	switch (type) {
1878 	case PROC_ARG:
1879 		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1880 		vsize = pss.ps_nargvstr;
1881 		if (vsize > ARG_MAX)
1882 			return (ENOEXEC);
1883 		size = vsize * sizeof(int32_t);
1884 		break;
1885 	case PROC_ENV:
1886 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1887 		vsize = pss.ps_nenvstr;
1888 		if (vsize > ARG_MAX)
1889 			return (ENOEXEC);
1890 		size = vsize * sizeof(int32_t);
1891 		break;
1892 	case PROC_AUX:
1893 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1894 		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1895 		if (vptr % 4 != 0)
1896 			return (ENOEXEC);
1897 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1898 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1899 			    sizeof(aux))
1900 				return (ENOMEM);
1901 			if (aux.a_type == AT_NULL)
1902 				break;
1903 			ptr += sizeof(aux);
1904 		}
1905 		if (aux.a_type != AT_NULL)
1906 			return (ENOEXEC);
1907 		vsize = i + 1;
1908 		size = vsize * sizeof(aux);
1909 		break;
1910 	default:
1911 		KASSERT(0, ("Wrong proc vector type: %d", type));
1912 		return (EINVAL);
1913 	}
1914 	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1915 	if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
1916 		error = ENOMEM;
1917 		goto done;
1918 	}
1919 	if (type == PROC_AUX) {
1920 		*proc_vectorp = (char **)proc_vector32;
1921 		*vsizep = vsize;
1922 		return (0);
1923 	}
1924 	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1925 	for (i = 0; i < (int)vsize; i++)
1926 		proc_vector[i] = PTRIN(proc_vector32[i]);
1927 	*proc_vectorp = proc_vector;
1928 	*vsizep = vsize;
1929 done:
1930 	free(proc_vector32, M_TEMP);
1931 	return (error);
1932 }
1933 #endif
1934 
1935 static int
get_proc_vector(struct thread * td,struct proc * p,char *** proc_vectorp,size_t * vsizep,enum proc_vector_type type)1936 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1937     size_t *vsizep, enum proc_vector_type type)
1938 {
1939 	struct ps_strings pss;
1940 	Elf_Auxinfo aux;
1941 	vm_offset_t vptr, ptr;
1942 	char **proc_vector;
1943 	size_t vsize, size;
1944 	int i;
1945 
1946 #ifdef COMPAT_FREEBSD32
1947 	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1948 		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1949 #endif
1950 	if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
1951 	    sizeof(pss))
1952 		return (ENOMEM);
1953 	switch (type) {
1954 	case PROC_ARG:
1955 		vptr = (vm_offset_t)pss.ps_argvstr;
1956 		vsize = pss.ps_nargvstr;
1957 		if (vsize > ARG_MAX)
1958 			return (ENOEXEC);
1959 		size = vsize * sizeof(char *);
1960 		break;
1961 	case PROC_ENV:
1962 		vptr = (vm_offset_t)pss.ps_envstr;
1963 		vsize = pss.ps_nenvstr;
1964 		if (vsize > ARG_MAX)
1965 			return (ENOEXEC);
1966 		size = vsize * sizeof(char *);
1967 		break;
1968 	case PROC_AUX:
1969 		/*
1970 		 * The aux array is just above env array on the stack. Check
1971 		 * that the address is naturally aligned.
1972 		 */
1973 		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1974 		    * sizeof(char *);
1975 #if __ELF_WORD_SIZE == 64
1976 		if (vptr % sizeof(uint64_t) != 0)
1977 #else
1978 		if (vptr % sizeof(uint32_t) != 0)
1979 #endif
1980 			return (ENOEXEC);
1981 		/*
1982 		 * We count the array size reading the aux vectors from the
1983 		 * stack until AT_NULL vector is returned.  So (to keep the code
1984 		 * simple) we read the process stack twice: the first time here
1985 		 * to find the size and the second time when copying the vectors
1986 		 * to the allocated proc_vector.
1987 		 */
1988 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1989 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1990 			    sizeof(aux))
1991 				return (ENOMEM);
1992 			if (aux.a_type == AT_NULL)
1993 				break;
1994 			ptr += sizeof(aux);
1995 		}
1996 		/*
1997 		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1998 		 * not reached AT_NULL, it is most likely we are reading wrong
1999 		 * data: either the process doesn't have auxv array or data has
2000 		 * been modified. Return the error in this case.
2001 		 */
2002 		if (aux.a_type != AT_NULL)
2003 			return (ENOEXEC);
2004 		vsize = i + 1;
2005 		size = vsize * sizeof(aux);
2006 		break;
2007 	default:
2008 		KASSERT(0, ("Wrong proc vector type: %d", type));
2009 		return (EINVAL); /* In case we are built without INVARIANTS. */
2010 	}
2011 	proc_vector = malloc(size, M_TEMP, M_WAITOK);
2012 	if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
2013 		free(proc_vector, M_TEMP);
2014 		return (ENOMEM);
2015 	}
2016 	*proc_vectorp = proc_vector;
2017 	*vsizep = vsize;
2018 
2019 	return (0);
2020 }
2021 
2022 #define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
2023 
2024 static int
get_ps_strings(struct thread * td,struct proc * p,struct sbuf * sb,enum proc_vector_type type)2025 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
2026     enum proc_vector_type type)
2027 {
2028 	size_t done, len, nchr, vsize;
2029 	int error, i;
2030 	char **proc_vector, *sptr;
2031 	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
2032 
2033 	PROC_ASSERT_HELD(p);
2034 
2035 	/*
2036 	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
2037 	 */
2038 	nchr = 2 * (PATH_MAX + ARG_MAX);
2039 
2040 	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
2041 	if (error != 0)
2042 		return (error);
2043 	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
2044 		/*
2045 		 * The program may have scribbled into its argv array, e.g. to
2046 		 * remove some arguments.  If that has happened, break out
2047 		 * before trying to read from NULL.
2048 		 */
2049 		if (proc_vector[i] == NULL)
2050 			break;
2051 		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
2052 			error = proc_read_string(td, p, sptr, pss_string,
2053 			    sizeof(pss_string));
2054 			if (error != 0)
2055 				goto done;
2056 			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
2057 			if (done + len >= nchr)
2058 				len = nchr - done - 1;
2059 			sbuf_bcat(sb, pss_string, len);
2060 			if (len != GET_PS_STRINGS_CHUNK_SZ)
2061 				break;
2062 			done += GET_PS_STRINGS_CHUNK_SZ;
2063 		}
2064 		sbuf_bcat(sb, "", 1);
2065 		done += len + 1;
2066 	}
2067 done:
2068 	free(proc_vector, M_TEMP);
2069 	return (error);
2070 }
2071 
2072 int
proc_getargv(struct thread * td,struct proc * p,struct sbuf * sb)2073 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
2074 {
2075 
2076 	return (get_ps_strings(curthread, p, sb, PROC_ARG));
2077 }
2078 
2079 int
proc_getenvv(struct thread * td,struct proc * p,struct sbuf * sb)2080 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
2081 {
2082 
2083 	return (get_ps_strings(curthread, p, sb, PROC_ENV));
2084 }
2085 
2086 int
proc_getauxv(struct thread * td,struct proc * p,struct sbuf * sb)2087 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
2088 {
2089 	size_t vsize, size;
2090 	char **auxv;
2091 	int error;
2092 
2093 	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
2094 	if (error == 0) {
2095 #ifdef COMPAT_FREEBSD32
2096 		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
2097 			size = vsize * sizeof(Elf32_Auxinfo);
2098 		else
2099 #endif
2100 			size = vsize * sizeof(Elf_Auxinfo);
2101 		if (sbuf_bcat(sb, auxv, size) != 0)
2102 			error = ENOMEM;
2103 		free(auxv, M_TEMP);
2104 	}
2105 	return (error);
2106 }
2107 
2108 /*
2109  * This sysctl allows a process to retrieve the argument list or process
2110  * title for another process without groping around in the address space
2111  * of the other process.  It also allow a process to set its own "process
2112  * title to a string of its own choice.
2113  */
2114 static int
sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)2115 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
2116 {
2117 	int *name = (int *)arg1;
2118 	u_int namelen = arg2;
2119 	struct pargs *newpa, *pa;
2120 	struct proc *p;
2121 	struct sbuf sb;
2122 	int flags, error = 0, error2;
2123 	pid_t pid;
2124 
2125 	if (namelen != 1)
2126 		return (EINVAL);
2127 
2128 	p = curproc;
2129 	pid = (pid_t)name[0];
2130 	if (pid == -1) {
2131 		pid = p->p_pid;
2132 	}
2133 
2134 	/*
2135 	 * If the query is for this process and it is single-threaded, there
2136 	 * is nobody to modify pargs, thus we can just read.
2137 	 */
2138 	if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL &&
2139 	    (pa = p->p_args) != NULL)
2140 		return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length));
2141 
2142 	flags = PGET_CANSEE;
2143 	if (req->newptr != NULL)
2144 		flags |= PGET_ISCURRENT;
2145 	error = pget(pid, flags, &p);
2146 	if (error)
2147 		return (error);
2148 
2149 	pa = p->p_args;
2150 	if (pa != NULL) {
2151 		pargs_hold(pa);
2152 		PROC_UNLOCK(p);
2153 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
2154 		pargs_drop(pa);
2155 	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
2156 		_PHOLD(p);
2157 		PROC_UNLOCK(p);
2158 		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2159 		sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2160 		error = proc_getargv(curthread, p, &sb);
2161 		error2 = sbuf_finish(&sb);
2162 		PRELE(p);
2163 		sbuf_delete(&sb);
2164 		if (error == 0 && error2 != 0)
2165 			error = error2;
2166 	} else {
2167 		PROC_UNLOCK(p);
2168 	}
2169 	if (error != 0 || req->newptr == NULL)
2170 		return (error);
2171 
2172 	if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs))
2173 		return (ENOMEM);
2174 
2175 	if (req->newlen == 0) {
2176 		/*
2177 		 * Clear the argument pointer, so that we'll fetch arguments
2178 		 * with proc_getargv() until further notice.
2179 		 */
2180 		newpa = NULL;
2181 	} else {
2182 		newpa = pargs_alloc(req->newlen);
2183 		error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
2184 		if (error != 0) {
2185 			pargs_free(newpa);
2186 			return (error);
2187 		}
2188 	}
2189 	PROC_LOCK(p);
2190 	pa = p->p_args;
2191 	p->p_args = newpa;
2192 	PROC_UNLOCK(p);
2193 	pargs_drop(pa);
2194 	return (0);
2195 }
2196 
2197 /*
2198  * This sysctl allows a process to retrieve environment of another process.
2199  */
2200 static int
sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)2201 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
2202 {
2203 	int *name = (int *)arg1;
2204 	u_int namelen = arg2;
2205 	struct proc *p;
2206 	struct sbuf sb;
2207 	int error, error2;
2208 
2209 	if (namelen != 1)
2210 		return (EINVAL);
2211 
2212 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2213 	if (error != 0)
2214 		return (error);
2215 	if ((p->p_flag & P_SYSTEM) != 0) {
2216 		PRELE(p);
2217 		return (0);
2218 	}
2219 
2220 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2221 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2222 	error = proc_getenvv(curthread, p, &sb);
2223 	error2 = sbuf_finish(&sb);
2224 	PRELE(p);
2225 	sbuf_delete(&sb);
2226 	return (error != 0 ? error : error2);
2227 }
2228 
2229 /*
2230  * This sysctl allows a process to retrieve ELF auxiliary vector of
2231  * another process.
2232  */
2233 static int
sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)2234 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
2235 {
2236 	int *name = (int *)arg1;
2237 	u_int namelen = arg2;
2238 	struct proc *p;
2239 	struct sbuf sb;
2240 	int error, error2;
2241 
2242 	if (namelen != 1)
2243 		return (EINVAL);
2244 
2245 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2246 	if (error != 0)
2247 		return (error);
2248 	if ((p->p_flag & P_SYSTEM) != 0) {
2249 		PRELE(p);
2250 		return (0);
2251 	}
2252 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2253 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2254 	error = proc_getauxv(curthread, p, &sb);
2255 	error2 = sbuf_finish(&sb);
2256 	PRELE(p);
2257 	sbuf_delete(&sb);
2258 	return (error != 0 ? error : error2);
2259 }
2260 
2261 /*
2262  * Look up the canonical executable path running in the specified process.
2263  * It tries to return the same hardlink name as was used for execve(2).
2264  * This allows the programs that modify their behavior based on their progname,
2265  * to operate correctly.
2266  *
2267  * Result is returned in retbuf, it must not be freed, similar to vn_fullpath()
2268  *   calling conventions.
2269  * binname is a pointer to temporary string buffer of length MAXPATHLEN,
2270  *   allocated and freed by caller.
2271  * freebuf should be freed by caller, from the M_TEMP malloc type.
2272  */
2273 int
proc_get_binpath(struct proc * p,char * binname,char ** retbuf,char ** freebuf)2274 proc_get_binpath(struct proc *p, char *binname, char **retbuf,
2275     char **freebuf)
2276 {
2277 	struct nameidata nd;
2278 	struct vnode *vp, *dvp;
2279 	size_t freepath_size;
2280 	int error;
2281 	bool do_fullpath;
2282 
2283 	PROC_LOCK_ASSERT(p, MA_OWNED);
2284 
2285 	vp = p->p_textvp;
2286 	if (vp == NULL) {
2287 		PROC_UNLOCK(p);
2288 		*retbuf = "";
2289 		*freebuf = NULL;
2290 		return (0);
2291 	}
2292 	vref(vp);
2293 	dvp = p->p_textdvp;
2294 	if (dvp != NULL)
2295 		vref(dvp);
2296 	if (p->p_binname != NULL)
2297 		strlcpy(binname, p->p_binname, MAXPATHLEN);
2298 	PROC_UNLOCK(p);
2299 
2300 	do_fullpath = true;
2301 	*freebuf = NULL;
2302 	if (dvp != NULL && binname[0] != '\0') {
2303 		freepath_size = MAXPATHLEN;
2304 		if (vn_fullpath_hardlink(vp, dvp, binname, strlen(binname),
2305 		    retbuf, freebuf, &freepath_size) == 0) {
2306 			/*
2307 			 * Recheck the looked up path.  The binary
2308 			 * might have been renamed or replaced, in
2309 			 * which case we should not report old name.
2310 			 */
2311 			NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, *retbuf);
2312 			error = namei(&nd);
2313 			if (error == 0) {
2314 				if (nd.ni_vp == vp)
2315 					do_fullpath = false;
2316 				vrele(nd.ni_vp);
2317 				NDFREE_PNBUF(&nd);
2318 			}
2319 		}
2320 	}
2321 	if (do_fullpath) {
2322 		free(*freebuf, M_TEMP);
2323 		*freebuf = NULL;
2324 		error = vn_fullpath(vp, retbuf, freebuf);
2325 	}
2326 	vrele(vp);
2327 	if (dvp != NULL)
2328 		vrele(dvp);
2329 	return (error);
2330 }
2331 
2332 /*
2333  * This sysctl allows a process to retrieve the path of the executable for
2334  * itself or another process.
2335  */
2336 static int
sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)2337 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
2338 {
2339 	pid_t *pidp = (pid_t *)arg1;
2340 	unsigned int arglen = arg2;
2341 	struct proc *p;
2342 	char *retbuf, *freebuf, *binname;
2343 	int error;
2344 
2345 	if (arglen != 1)
2346 		return (EINVAL);
2347 	binname = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
2348 	binname[0] = '\0';
2349 	if (*pidp == -1) {	/* -1 means this process */
2350 		error = 0;
2351 		p = req->td->td_proc;
2352 		PROC_LOCK(p);
2353 	} else {
2354 		error = pget(*pidp, PGET_CANSEE, &p);
2355 	}
2356 
2357 	if (error == 0)
2358 		error = proc_get_binpath(p, binname, &retbuf, &freebuf);
2359 	free(binname, M_TEMP);
2360 	if (error != 0)
2361 		return (error);
2362 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
2363 	free(freebuf, M_TEMP);
2364 	return (error);
2365 }
2366 
2367 static int
sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)2368 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
2369 {
2370 	struct proc *p;
2371 	char *sv_name;
2372 	int *name;
2373 	int namelen;
2374 	int error;
2375 
2376 	namelen = arg2;
2377 	if (namelen != 1)
2378 		return (EINVAL);
2379 
2380 	name = (int *)arg1;
2381 	error = pget((pid_t)name[0], PGET_CANSEE, &p);
2382 	if (error != 0)
2383 		return (error);
2384 	sv_name = p->p_sysent->sv_name;
2385 	PROC_UNLOCK(p);
2386 	return (sysctl_handle_string(oidp, sv_name, 0, req));
2387 }
2388 
2389 #ifdef KINFO_OVMENTRY_SIZE
2390 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2391 #endif
2392 
2393 #ifdef COMPAT_FREEBSD7
2394 static int
sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)2395 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2396 {
2397 	vm_map_entry_t entry, tmp_entry;
2398 	unsigned int last_timestamp, namelen;
2399 	char *fullpath, *freepath;
2400 	struct kinfo_ovmentry *kve;
2401 	struct vattr va;
2402 	struct ucred *cred;
2403 	int error, *name;
2404 	struct vnode *vp;
2405 	struct proc *p;
2406 	vm_map_t map;
2407 	struct vmspace *vm;
2408 
2409 	namelen = arg2;
2410 	if (namelen != 1)
2411 		return (EINVAL);
2412 
2413 	name = (int *)arg1;
2414 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2415 	if (error != 0)
2416 		return (error);
2417 	vm = vmspace_acquire_ref(p);
2418 	if (vm == NULL) {
2419 		PRELE(p);
2420 		return (ESRCH);
2421 	}
2422 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2423 
2424 	map = &vm->vm_map;
2425 	vm_map_lock_read(map);
2426 	VM_MAP_ENTRY_FOREACH(entry, map) {
2427 		vm_object_t obj, tobj, lobj;
2428 		vm_offset_t addr;
2429 
2430 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2431 			continue;
2432 
2433 		bzero(kve, sizeof(*kve));
2434 		kve->kve_structsize = sizeof(*kve);
2435 
2436 		kve->kve_private_resident = 0;
2437 		obj = entry->object.vm_object;
2438 		if (obj != NULL) {
2439 			VM_OBJECT_RLOCK(obj);
2440 			if (obj->shadow_count == 1)
2441 				kve->kve_private_resident =
2442 				    obj->resident_page_count;
2443 		}
2444 		kve->kve_resident = 0;
2445 		addr = entry->start;
2446 		while (addr < entry->end) {
2447 			if (pmap_extract(map->pmap, addr))
2448 				kve->kve_resident++;
2449 			addr += PAGE_SIZE;
2450 		}
2451 
2452 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2453 			if (tobj != obj) {
2454 				VM_OBJECT_RLOCK(tobj);
2455 				kve->kve_offset += tobj->backing_object_offset;
2456 			}
2457 			if (lobj != obj)
2458 				VM_OBJECT_RUNLOCK(lobj);
2459 			lobj = tobj;
2460 		}
2461 
2462 		kve->kve_start = (void*)entry->start;
2463 		kve->kve_end = (void*)entry->end;
2464 		kve->kve_offset += (off_t)entry->offset;
2465 
2466 		if (entry->protection & VM_PROT_READ)
2467 			kve->kve_protection |= KVME_PROT_READ;
2468 		if (entry->protection & VM_PROT_WRITE)
2469 			kve->kve_protection |= KVME_PROT_WRITE;
2470 		if (entry->protection & VM_PROT_EXECUTE)
2471 			kve->kve_protection |= KVME_PROT_EXEC;
2472 
2473 		if (entry->eflags & MAP_ENTRY_COW)
2474 			kve->kve_flags |= KVME_FLAG_COW;
2475 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2476 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2477 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2478 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2479 
2480 		last_timestamp = map->timestamp;
2481 		vm_map_unlock_read(map);
2482 
2483 		kve->kve_fileid = 0;
2484 		kve->kve_fsid = 0;
2485 		freepath = NULL;
2486 		fullpath = "";
2487 		if (lobj) {
2488 			kve->kve_type = vm_object_kvme_type(lobj, &vp);
2489 			if (kve->kve_type == KVME_TYPE_MGTDEVICE)
2490 				kve->kve_type = KVME_TYPE_UNKNOWN;
2491 			if (vp != NULL)
2492 				vref(vp);
2493 			if (lobj != obj)
2494 				VM_OBJECT_RUNLOCK(lobj);
2495 
2496 			kve->kve_ref_count = obj->ref_count;
2497 			kve->kve_shadow_count = obj->shadow_count;
2498 			VM_OBJECT_RUNLOCK(obj);
2499 			if (vp != NULL) {
2500 				vn_fullpath(vp, &fullpath, &freepath);
2501 				cred = curthread->td_ucred;
2502 				vn_lock(vp, LK_SHARED | LK_RETRY);
2503 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2504 					kve->kve_fileid = va.va_fileid;
2505 					/* truncate */
2506 					kve->kve_fsid = va.va_fsid;
2507 				}
2508 				vput(vp);
2509 			}
2510 		} else {
2511 			kve->kve_type = KVME_TYPE_NONE;
2512 			kve->kve_ref_count = 0;
2513 			kve->kve_shadow_count = 0;
2514 		}
2515 
2516 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2517 		if (freepath != NULL)
2518 			free(freepath, M_TEMP);
2519 
2520 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2521 		vm_map_lock_read(map);
2522 		if (error)
2523 			break;
2524 		if (last_timestamp != map->timestamp) {
2525 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2526 			entry = tmp_entry;
2527 		}
2528 	}
2529 	vm_map_unlock_read(map);
2530 	vmspace_free(vm);
2531 	PRELE(p);
2532 	free(kve, M_TEMP);
2533 	return (error);
2534 }
2535 #endif	/* COMPAT_FREEBSD7 */
2536 
2537 #ifdef KINFO_VMENTRY_SIZE
2538 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2539 #endif
2540 
2541 void
kern_proc_vmmap_resident(vm_map_t map,vm_map_entry_t entry,int * resident_count,bool * super)2542 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2543     int *resident_count, bool *super)
2544 {
2545 	vm_object_t obj, tobj;
2546 	vm_page_t m, m_adv;
2547 	vm_offset_t addr;
2548 	vm_paddr_t pa;
2549 	vm_pindex_t pi, pi_adv, pindex;
2550 	int incore;
2551 
2552 	*super = false;
2553 	*resident_count = 0;
2554 	if (vmmap_skip_res_cnt)
2555 		return;
2556 
2557 	pa = 0;
2558 	obj = entry->object.vm_object;
2559 	addr = entry->start;
2560 	m_adv = NULL;
2561 	pi = OFF_TO_IDX(entry->offset);
2562 	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2563 		if (m_adv != NULL) {
2564 			m = m_adv;
2565 		} else {
2566 			pi_adv = atop(entry->end - addr);
2567 			pindex = pi;
2568 			for (tobj = obj;; tobj = tobj->backing_object) {
2569 				m = vm_radix_lookup_ge(&tobj->rtree, pindex);
2570 				if (m != NULL) {
2571 					if (m->pindex == pindex)
2572 						break;
2573 					if (pi_adv > m->pindex - pindex) {
2574 						pi_adv = m->pindex - pindex;
2575 						m_adv = m;
2576 					}
2577 				}
2578 				if (tobj->backing_object == NULL)
2579 					goto next;
2580 				pindex += OFF_TO_IDX(tobj->
2581 				    backing_object_offset);
2582 			}
2583 		}
2584 		m_adv = NULL;
2585 		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2586 		    (addr & (pagesizes[1] - 1)) == 0 && (incore =
2587 		    pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) {
2588 			*super = true;
2589 			/*
2590 			 * The virtual page might be smaller than the physical
2591 			 * page, so we use the page size reported by the pmap
2592 			 * rather than m->psind.
2593 			 */
2594 			pi_adv = atop(pagesizes[incore >> MINCORE_PSIND_SHIFT]);
2595 		} else {
2596 			/*
2597 			 * We do not test the found page on validity.
2598 			 * Either the page is busy and being paged in,
2599 			 * or it was invalidated.  The first case
2600 			 * should be counted as resident, the second
2601 			 * is not so clear; we do account both.
2602 			 */
2603 			pi_adv = 1;
2604 		}
2605 		*resident_count += pi_adv;
2606 next:;
2607 	}
2608 }
2609 
2610 /*
2611  * Must be called with the process locked and will return unlocked.
2612  */
2613 int
kern_proc_vmmap_out(struct proc * p,struct sbuf * sb,ssize_t maxlen,int flags)2614 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2615 {
2616 	vm_map_entry_t entry, tmp_entry;
2617 	struct vattr va;
2618 	vm_map_t map;
2619 	vm_object_t lobj, nobj, obj, tobj;
2620 	char *fullpath, *freepath;
2621 	struct kinfo_vmentry *kve;
2622 	struct ucred *cred;
2623 	struct vnode *vp;
2624 	struct vmspace *vm;
2625 	vm_offset_t addr;
2626 	unsigned int last_timestamp;
2627 	int error;
2628 	key_t key;
2629 	unsigned short seq;
2630 	bool guard, super;
2631 
2632 	PROC_LOCK_ASSERT(p, MA_OWNED);
2633 
2634 	_PHOLD(p);
2635 	PROC_UNLOCK(p);
2636 	vm = vmspace_acquire_ref(p);
2637 	if (vm == NULL) {
2638 		PRELE(p);
2639 		return (ESRCH);
2640 	}
2641 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2642 
2643 	error = 0;
2644 	map = &vm->vm_map;
2645 	vm_map_lock_read(map);
2646 	VM_MAP_ENTRY_FOREACH(entry, map) {
2647 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2648 			continue;
2649 
2650 		addr = entry->end;
2651 		bzero(kve, sizeof(*kve));
2652 		obj = entry->object.vm_object;
2653 		if (obj != NULL) {
2654 			if ((obj->flags & OBJ_ANON) != 0)
2655 				kve->kve_obj = (uintptr_t)obj;
2656 
2657 			for (tobj = obj; tobj != NULL;
2658 			    tobj = tobj->backing_object) {
2659 				VM_OBJECT_RLOCK(tobj);
2660 				kve->kve_offset += tobj->backing_object_offset;
2661 				lobj = tobj;
2662 			}
2663 			if (obj->backing_object == NULL)
2664 				kve->kve_private_resident =
2665 				    obj->resident_page_count;
2666 			kern_proc_vmmap_resident(map, entry,
2667 			    &kve->kve_resident, &super);
2668 			if (super)
2669 				kve->kve_flags |= KVME_FLAG_SUPER;
2670 			for (tobj = obj; tobj != NULL; tobj = nobj) {
2671 				nobj = tobj->backing_object;
2672 				if (tobj != obj && tobj != lobj)
2673 					VM_OBJECT_RUNLOCK(tobj);
2674 			}
2675 		} else {
2676 			lobj = NULL;
2677 		}
2678 
2679 		kve->kve_start = entry->start;
2680 		kve->kve_end = entry->end;
2681 		kve->kve_offset += entry->offset;
2682 
2683 		if (entry->protection & VM_PROT_READ)
2684 			kve->kve_protection |= KVME_PROT_READ;
2685 		if (entry->protection & VM_PROT_WRITE)
2686 			kve->kve_protection |= KVME_PROT_WRITE;
2687 		if (entry->protection & VM_PROT_EXECUTE)
2688 			kve->kve_protection |= KVME_PROT_EXEC;
2689 		if (entry->max_protection & VM_PROT_READ)
2690 			kve->kve_protection |= KVME_MAX_PROT_READ;
2691 		if (entry->max_protection & VM_PROT_WRITE)
2692 			kve->kve_protection |= KVME_MAX_PROT_WRITE;
2693 		if (entry->max_protection & VM_PROT_EXECUTE)
2694 			kve->kve_protection |= KVME_MAX_PROT_EXEC;
2695 
2696 		if (entry->eflags & MAP_ENTRY_COW)
2697 			kve->kve_flags |= KVME_FLAG_COW;
2698 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2699 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2700 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2701 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2702 		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2703 			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2704 		if (entry->eflags & MAP_ENTRY_USER_WIRED)
2705 			kve->kve_flags |= KVME_FLAG_USER_WIRED;
2706 
2707 		guard = (entry->eflags & MAP_ENTRY_GUARD) != 0;
2708 
2709 		last_timestamp = map->timestamp;
2710 		vm_map_unlock_read(map);
2711 
2712 		freepath = NULL;
2713 		fullpath = "";
2714 		if (lobj != NULL) {
2715 			kve->kve_type = vm_object_kvme_type(lobj, &vp);
2716 			if (vp != NULL)
2717 				vref(vp);
2718 			if (lobj != obj)
2719 				VM_OBJECT_RUNLOCK(lobj);
2720 
2721 			kve->kve_ref_count = obj->ref_count;
2722 			kve->kve_shadow_count = obj->shadow_count;
2723 			if (obj->type == OBJT_DEVICE ||
2724 			    obj->type == OBJT_MGTDEVICE) {
2725 				cdev_pager_get_path(obj, kve->kve_path,
2726 				    sizeof(kve->kve_path));
2727 			}
2728 			VM_OBJECT_RUNLOCK(obj);
2729 			if ((lobj->flags & OBJ_SYSVSHM) != 0) {
2730 				kve->kve_flags |= KVME_FLAG_SYSVSHM;
2731 				shmobjinfo(lobj, &key, &seq);
2732 				kve->kve_vn_fileid = key;
2733 				kve->kve_vn_fsid_freebsd11 = seq;
2734 			}
2735 			if ((lobj->flags & OBJ_POSIXSHM) != 0) {
2736 				kve->kve_flags |= KVME_FLAG_POSIXSHM;
2737 				shm_get_path(lobj, kve->kve_path,
2738 				    sizeof(kve->kve_path));
2739 			}
2740 			if (vp != NULL) {
2741 				vn_fullpath(vp, &fullpath, &freepath);
2742 				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2743 				cred = curthread->td_ucred;
2744 				vn_lock(vp, LK_SHARED | LK_RETRY);
2745 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2746 					kve->kve_vn_fileid = va.va_fileid;
2747 					kve->kve_vn_fsid = va.va_fsid;
2748 					kve->kve_vn_fsid_freebsd11 =
2749 					    kve->kve_vn_fsid; /* truncate */
2750 					kve->kve_vn_mode =
2751 					    MAKEIMODE(va.va_type, va.va_mode);
2752 					kve->kve_vn_size = va.va_size;
2753 					kve->kve_vn_rdev = va.va_rdev;
2754 					kve->kve_vn_rdev_freebsd11 =
2755 					    kve->kve_vn_rdev; /* truncate */
2756 					kve->kve_status = KF_ATTR_VALID;
2757 				}
2758 				vput(vp);
2759 				strlcpy(kve->kve_path, fullpath, sizeof(
2760 				    kve->kve_path));
2761 				free(freepath, M_TEMP);
2762 			}
2763 		} else {
2764 			kve->kve_type = guard ? KVME_TYPE_GUARD :
2765 			    KVME_TYPE_NONE;
2766 			kve->kve_ref_count = 0;
2767 			kve->kve_shadow_count = 0;
2768 		}
2769 
2770 		/* Pack record size down */
2771 		if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2772 			kve->kve_structsize =
2773 			    offsetof(struct kinfo_vmentry, kve_path) +
2774 			    strlen(kve->kve_path) + 1;
2775 		else
2776 			kve->kve_structsize = sizeof(*kve);
2777 		kve->kve_structsize = roundup(kve->kve_structsize,
2778 		    sizeof(uint64_t));
2779 
2780 		/* Halt filling and truncate rather than exceeding maxlen */
2781 		if (maxlen != -1 && maxlen < kve->kve_structsize) {
2782 			error = 0;
2783 			vm_map_lock_read(map);
2784 			break;
2785 		} else if (maxlen != -1)
2786 			maxlen -= kve->kve_structsize;
2787 
2788 		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2789 			error = ENOMEM;
2790 		vm_map_lock_read(map);
2791 		if (error != 0)
2792 			break;
2793 		if (last_timestamp != map->timestamp) {
2794 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2795 			entry = tmp_entry;
2796 		}
2797 	}
2798 	vm_map_unlock_read(map);
2799 	vmspace_free(vm);
2800 	PRELE(p);
2801 	free(kve, M_TEMP);
2802 	return (error);
2803 }
2804 
2805 static int
sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)2806 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2807 {
2808 	struct proc *p;
2809 	struct sbuf sb;
2810 	u_int namelen;
2811 	int error, error2, *name;
2812 
2813 	namelen = arg2;
2814 	if (namelen != 1)
2815 		return (EINVAL);
2816 
2817 	name = (int *)arg1;
2818 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2819 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2820 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2821 	if (error != 0) {
2822 		sbuf_delete(&sb);
2823 		return (error);
2824 	}
2825 	error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2826 	error2 = sbuf_finish(&sb);
2827 	sbuf_delete(&sb);
2828 	return (error != 0 ? error : error2);
2829 }
2830 
2831 #if defined(STACK) || defined(DDB)
2832 static int
sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)2833 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2834 {
2835 	struct kinfo_kstack *kkstp;
2836 	int error, i, *name, numthreads;
2837 	lwpid_t *lwpidarray;
2838 	struct thread *td;
2839 	struct stack *st;
2840 	struct sbuf sb;
2841 	struct proc *p;
2842 	u_int namelen;
2843 
2844 	namelen = arg2;
2845 	if (namelen != 1)
2846 		return (EINVAL);
2847 
2848 	name = (int *)arg1;
2849 	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2850 	if (error != 0)
2851 		return (error);
2852 
2853 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2854 	st = stack_create(M_WAITOK);
2855 
2856 	lwpidarray = NULL;
2857 	PROC_LOCK(p);
2858 	do {
2859 		if (lwpidarray != NULL) {
2860 			free(lwpidarray, M_TEMP);
2861 			lwpidarray = NULL;
2862 		}
2863 		numthreads = p->p_numthreads;
2864 		PROC_UNLOCK(p);
2865 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2866 		    M_WAITOK | M_ZERO);
2867 		PROC_LOCK(p);
2868 	} while (numthreads < p->p_numthreads);
2869 
2870 	/*
2871 	 * XXXRW: During the below loop, execve(2) and countless other sorts
2872 	 * of changes could have taken place.  Should we check to see if the
2873 	 * vmspace has been replaced, or the like, in order to prevent
2874 	 * giving a snapshot that spans, say, execve(2), with some threads
2875 	 * before and some after?  Among other things, the credentials could
2876 	 * have changed, in which case the right to extract debug info might
2877 	 * no longer be assured.
2878 	 */
2879 	i = 0;
2880 	FOREACH_THREAD_IN_PROC(p, td) {
2881 		KASSERT(i < numthreads,
2882 		    ("sysctl_kern_proc_kstack: numthreads"));
2883 		lwpidarray[i] = td->td_tid;
2884 		i++;
2885 	}
2886 	PROC_UNLOCK(p);
2887 	numthreads = i;
2888 	for (i = 0; i < numthreads; i++) {
2889 		td = tdfind(lwpidarray[i], p->p_pid);
2890 		if (td == NULL) {
2891 			continue;
2892 		}
2893 		bzero(kkstp, sizeof(*kkstp));
2894 		(void)sbuf_new(&sb, kkstp->kkst_trace,
2895 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2896 		thread_lock(td);
2897 		kkstp->kkst_tid = td->td_tid;
2898 		if (stack_save_td(st, td) == 0)
2899 			kkstp->kkst_state = KKST_STATE_STACKOK;
2900 		else
2901 			kkstp->kkst_state = KKST_STATE_RUNNING;
2902 		thread_unlock(td);
2903 		PROC_UNLOCK(p);
2904 		stack_sbuf_print(&sb, st);
2905 		sbuf_finish(&sb);
2906 		sbuf_delete(&sb);
2907 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2908 		if (error)
2909 			break;
2910 	}
2911 	PRELE(p);
2912 	if (lwpidarray != NULL)
2913 		free(lwpidarray, M_TEMP);
2914 	stack_destroy(st);
2915 	free(kkstp, M_TEMP);
2916 	return (error);
2917 }
2918 #endif
2919 
2920 /*
2921  * This sysctl allows a process to retrieve the full list of groups from
2922  * itself or another process.
2923  */
2924 static int
sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)2925 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2926 {
2927 	pid_t *pidp = (pid_t *)arg1;
2928 	unsigned int arglen = arg2;
2929 	struct proc *p;
2930 	struct ucred *cred;
2931 	int error;
2932 
2933 	if (arglen != 1)
2934 		return (EINVAL);
2935 	if (*pidp == -1) {	/* -1 means this process */
2936 		p = req->td->td_proc;
2937 		PROC_LOCK(p);
2938 	} else {
2939 		error = pget(*pidp, PGET_CANSEE, &p);
2940 		if (error != 0)
2941 			return (error);
2942 	}
2943 
2944 	cred = crhold(p->p_ucred);
2945 	PROC_UNLOCK(p);
2946 
2947 	error = SYSCTL_OUT(req, &cred->cr_gid, sizeof(gid_t));
2948 	if (error == 0)
2949 		error = SYSCTL_OUT(req, cred->cr_groups,
2950 		    cred->cr_ngroups * sizeof(gid_t));
2951 
2952 	crfree(cred);
2953 	return (error);
2954 }
2955 
2956 /*
2957  * This sysctl allows a process to retrieve or/and set the resource limit for
2958  * another process.
2959  */
2960 static int
sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)2961 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2962 {
2963 	int *name = (int *)arg1;
2964 	u_int namelen = arg2;
2965 	struct rlimit rlim;
2966 	struct proc *p;
2967 	u_int which;
2968 	int flags, error;
2969 
2970 	if (namelen != 2)
2971 		return (EINVAL);
2972 
2973 	which = (u_int)name[1];
2974 	if (which >= RLIM_NLIMITS)
2975 		return (EINVAL);
2976 
2977 	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2978 		return (EINVAL);
2979 
2980 	flags = PGET_HOLD | PGET_NOTWEXIT;
2981 	if (req->newptr != NULL)
2982 		flags |= PGET_CANDEBUG;
2983 	else
2984 		flags |= PGET_CANSEE;
2985 	error = pget((pid_t)name[0], flags, &p);
2986 	if (error != 0)
2987 		return (error);
2988 
2989 	/*
2990 	 * Retrieve limit.
2991 	 */
2992 	if (req->oldptr != NULL) {
2993 		PROC_LOCK(p);
2994 		lim_rlimit_proc(p, which, &rlim);
2995 		PROC_UNLOCK(p);
2996 	}
2997 	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2998 	if (error != 0)
2999 		goto errout;
3000 
3001 	/*
3002 	 * Set limit.
3003 	 */
3004 	if (req->newptr != NULL) {
3005 		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
3006 		if (error == 0)
3007 			error = kern_proc_setrlimit(curthread, p, which, &rlim);
3008 	}
3009 
3010 errout:
3011 	PRELE(p);
3012 	return (error);
3013 }
3014 
3015 /*
3016  * This sysctl allows a process to retrieve ps_strings structure location of
3017  * another process.
3018  */
3019 static int
sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)3020 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
3021 {
3022 	int *name = (int *)arg1;
3023 	u_int namelen = arg2;
3024 	struct proc *p;
3025 	vm_offset_t ps_strings;
3026 	int error;
3027 #ifdef COMPAT_FREEBSD32
3028 	uint32_t ps_strings32;
3029 #endif
3030 
3031 	if (namelen != 1)
3032 		return (EINVAL);
3033 
3034 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3035 	if (error != 0)
3036 		return (error);
3037 #ifdef COMPAT_FREEBSD32
3038 	if ((req->flags & SCTL_MASK32) != 0) {
3039 		/*
3040 		 * We return 0 if the 32 bit emulation request is for a 64 bit
3041 		 * process.
3042 		 */
3043 		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
3044 		    PTROUT(PROC_PS_STRINGS(p)) : 0;
3045 		PROC_UNLOCK(p);
3046 		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
3047 		return (error);
3048 	}
3049 #endif
3050 	ps_strings = PROC_PS_STRINGS(p);
3051 	PROC_UNLOCK(p);
3052 	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
3053 	return (error);
3054 }
3055 
3056 /*
3057  * This sysctl allows a process to retrieve umask of another process.
3058  */
3059 static int
sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)3060 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
3061 {
3062 	int *name = (int *)arg1;
3063 	u_int namelen = arg2;
3064 	struct proc *p;
3065 	int error;
3066 	u_short cmask;
3067 	pid_t pid;
3068 
3069 	if (namelen != 1)
3070 		return (EINVAL);
3071 
3072 	pid = (pid_t)name[0];
3073 	p = curproc;
3074 	if (pid == p->p_pid || pid == 0) {
3075 		cmask = p->p_pd->pd_cmask;
3076 		goto out;
3077 	}
3078 
3079 	error = pget(pid, PGET_WANTREAD, &p);
3080 	if (error != 0)
3081 		return (error);
3082 
3083 	cmask = p->p_pd->pd_cmask;
3084 	PRELE(p);
3085 out:
3086 	error = SYSCTL_OUT(req, &cmask, sizeof(cmask));
3087 	return (error);
3088 }
3089 
3090 /*
3091  * This sysctl allows a process to set and retrieve binary osreldate of
3092  * another process.
3093  */
3094 static int
sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)3095 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
3096 {
3097 	int *name = (int *)arg1;
3098 	u_int namelen = arg2;
3099 	struct proc *p;
3100 	int flags, error, osrel;
3101 
3102 	if (namelen != 1)
3103 		return (EINVAL);
3104 
3105 	if (req->newptr != NULL && req->newlen != sizeof(osrel))
3106 		return (EINVAL);
3107 
3108 	flags = PGET_HOLD | PGET_NOTWEXIT;
3109 	if (req->newptr != NULL)
3110 		flags |= PGET_CANDEBUG;
3111 	else
3112 		flags |= PGET_CANSEE;
3113 	error = pget((pid_t)name[0], flags, &p);
3114 	if (error != 0)
3115 		return (error);
3116 
3117 	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
3118 	if (error != 0)
3119 		goto errout;
3120 
3121 	if (req->newptr != NULL) {
3122 		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
3123 		if (error != 0)
3124 			goto errout;
3125 		if (osrel < 0) {
3126 			error = EINVAL;
3127 			goto errout;
3128 		}
3129 		p->p_osrel = osrel;
3130 	}
3131 errout:
3132 	PRELE(p);
3133 	return (error);
3134 }
3135 
3136 static int
sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)3137 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
3138 {
3139 	int *name = (int *)arg1;
3140 	u_int namelen = arg2;
3141 	struct proc *p;
3142 	struct kinfo_sigtramp kst;
3143 	const struct sysentvec *sv;
3144 	int error;
3145 #ifdef COMPAT_FREEBSD32
3146 	struct kinfo_sigtramp32 kst32;
3147 #endif
3148 
3149 	if (namelen != 1)
3150 		return (EINVAL);
3151 
3152 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3153 	if (error != 0)
3154 		return (error);
3155 	sv = p->p_sysent;
3156 #ifdef COMPAT_FREEBSD32
3157 	if ((req->flags & SCTL_MASK32) != 0) {
3158 		bzero(&kst32, sizeof(kst32));
3159 		if (SV_PROC_FLAG(p, SV_ILP32)) {
3160 			if (PROC_HAS_SHP(p)) {
3161 				kst32.ksigtramp_start = PROC_SIGCODE(p);
3162 				kst32.ksigtramp_end = kst32.ksigtramp_start +
3163 				    ((sv->sv_flags & SV_DSO_SIG) == 0 ?
3164 				    *sv->sv_szsigcode :
3165 				    (uintptr_t)sv->sv_szsigcode);
3166 			} else {
3167 				kst32.ksigtramp_start = PROC_PS_STRINGS(p) -
3168 				    *sv->sv_szsigcode;
3169 				kst32.ksigtramp_end = PROC_PS_STRINGS(p);
3170 			}
3171 		}
3172 		PROC_UNLOCK(p);
3173 		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
3174 		return (error);
3175 	}
3176 #endif
3177 	bzero(&kst, sizeof(kst));
3178 	if (PROC_HAS_SHP(p)) {
3179 		kst.ksigtramp_start = (char *)PROC_SIGCODE(p);
3180 		kst.ksigtramp_end = (char *)kst.ksigtramp_start +
3181 		    ((sv->sv_flags & SV_DSO_SIG) == 0 ? *sv->sv_szsigcode :
3182 		    (uintptr_t)sv->sv_szsigcode);
3183 	} else {
3184 		kst.ksigtramp_start = (char *)PROC_PS_STRINGS(p) -
3185 		    *sv->sv_szsigcode;
3186 		kst.ksigtramp_end = (char *)PROC_PS_STRINGS(p);
3187 	}
3188 	PROC_UNLOCK(p);
3189 	error = SYSCTL_OUT(req, &kst, sizeof(kst));
3190 	return (error);
3191 }
3192 
3193 static int
sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)3194 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)
3195 {
3196 	int *name = (int *)arg1;
3197 	u_int namelen = arg2;
3198 	pid_t pid;
3199 	struct proc *p;
3200 	struct thread *td1;
3201 	uintptr_t addr;
3202 #ifdef COMPAT_FREEBSD32
3203 	uint32_t addr32;
3204 #endif
3205 	int error;
3206 
3207 	if (namelen != 1 || req->newptr != NULL)
3208 		return (EINVAL);
3209 
3210 	pid = (pid_t)name[0];
3211 	error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p);
3212 	if (error != 0)
3213 		return (error);
3214 
3215 	PROC_LOCK(p);
3216 #ifdef COMPAT_FREEBSD32
3217 	if (SV_CURPROC_FLAG(SV_ILP32)) {
3218 		if (!SV_PROC_FLAG(p, SV_ILP32)) {
3219 			error = EINVAL;
3220 			goto errlocked;
3221 		}
3222 	}
3223 #endif
3224 	if (pid <= PID_MAX) {
3225 		td1 = FIRST_THREAD_IN_PROC(p);
3226 	} else {
3227 		FOREACH_THREAD_IN_PROC(p, td1) {
3228 			if (td1->td_tid == pid)
3229 				break;
3230 		}
3231 	}
3232 	if (td1 == NULL) {
3233 		error = ESRCH;
3234 		goto errlocked;
3235 	}
3236 	/*
3237 	 * The access to the private thread flags.  It is fine as far
3238 	 * as no out-of-thin-air values are read from td_pflags, and
3239 	 * usermode read of the td_sigblock_ptr is racy inherently,
3240 	 * since target process might have already changed it
3241 	 * meantime.
3242 	 */
3243 	if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0)
3244 		addr = (uintptr_t)td1->td_sigblock_ptr;
3245 	else
3246 		error = ENOTTY;
3247 
3248 errlocked:
3249 	_PRELE(p);
3250 	PROC_UNLOCK(p);
3251 	if (error != 0)
3252 		return (error);
3253 
3254 #ifdef COMPAT_FREEBSD32
3255 	if (SV_CURPROC_FLAG(SV_ILP32)) {
3256 		addr32 = addr;
3257 		error = SYSCTL_OUT(req, &addr32, sizeof(addr32));
3258 	} else
3259 #endif
3260 		error = SYSCTL_OUT(req, &addr, sizeof(addr));
3261 	return (error);
3262 }
3263 
3264 static int
sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS)3265 sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS)
3266 {
3267 	struct kinfo_vm_layout kvm;
3268 	struct proc *p;
3269 	struct vmspace *vmspace;
3270 	int error, *name;
3271 
3272 	name = (int *)arg1;
3273 	if ((u_int)arg2 != 1)
3274 		return (EINVAL);
3275 
3276 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3277 	if (error != 0)
3278 		return (error);
3279 #ifdef COMPAT_FREEBSD32
3280 	if (SV_CURPROC_FLAG(SV_ILP32)) {
3281 		if (!SV_PROC_FLAG(p, SV_ILP32)) {
3282 			PROC_UNLOCK(p);
3283 			return (EINVAL);
3284 		}
3285 	}
3286 #endif
3287 	vmspace = vmspace_acquire_ref(p);
3288 	PROC_UNLOCK(p);
3289 
3290 	memset(&kvm, 0, sizeof(kvm));
3291 	kvm.kvm_min_user_addr = vm_map_min(&vmspace->vm_map);
3292 	kvm.kvm_max_user_addr = vm_map_max(&vmspace->vm_map);
3293 	kvm.kvm_text_addr = (uintptr_t)vmspace->vm_taddr;
3294 	kvm.kvm_text_size = vmspace->vm_tsize;
3295 	kvm.kvm_data_addr = (uintptr_t)vmspace->vm_daddr;
3296 	kvm.kvm_data_size = vmspace->vm_dsize;
3297 	kvm.kvm_stack_addr = (uintptr_t)vmspace->vm_maxsaddr;
3298 	kvm.kvm_stack_size = vmspace->vm_ssize;
3299 	kvm.kvm_shp_addr = vmspace->vm_shp_base;
3300 	kvm.kvm_shp_size = p->p_sysent->sv_shared_page_len;
3301 	if ((vmspace->vm_map.flags & MAP_WIREFUTURE) != 0)
3302 		kvm.kvm_map_flags |= KMAP_FLAG_WIREFUTURE;
3303 	if ((vmspace->vm_map.flags & MAP_ASLR) != 0)
3304 		kvm.kvm_map_flags |= KMAP_FLAG_ASLR;
3305 	if ((vmspace->vm_map.flags & MAP_ASLR_IGNSTART) != 0)
3306 		kvm.kvm_map_flags |= KMAP_FLAG_ASLR_IGNSTART;
3307 	if ((vmspace->vm_map.flags & MAP_WXORX) != 0)
3308 		kvm.kvm_map_flags |= KMAP_FLAG_WXORX;
3309 	if ((vmspace->vm_map.flags & MAP_ASLR_STACK) != 0)
3310 		kvm.kvm_map_flags |= KMAP_FLAG_ASLR_STACK;
3311 	if (vmspace->vm_shp_base != p->p_sysent->sv_shared_page_base &&
3312 	    PROC_HAS_SHP(p))
3313 		kvm.kvm_map_flags |= KMAP_FLAG_ASLR_SHARED_PAGE;
3314 
3315 #ifdef COMPAT_FREEBSD32
3316 	if (SV_CURPROC_FLAG(SV_ILP32)) {
3317 		struct kinfo_vm_layout32 kvm32;
3318 
3319 		memset(&kvm32, 0, sizeof(kvm32));
3320 		kvm32.kvm_min_user_addr = (uint32_t)kvm.kvm_min_user_addr;
3321 		kvm32.kvm_max_user_addr = (uint32_t)kvm.kvm_max_user_addr;
3322 		kvm32.kvm_text_addr = (uint32_t)kvm.kvm_text_addr;
3323 		kvm32.kvm_text_size = (uint32_t)kvm.kvm_text_size;
3324 		kvm32.kvm_data_addr = (uint32_t)kvm.kvm_data_addr;
3325 		kvm32.kvm_data_size = (uint32_t)kvm.kvm_data_size;
3326 		kvm32.kvm_stack_addr = (uint32_t)kvm.kvm_stack_addr;
3327 		kvm32.kvm_stack_size = (uint32_t)kvm.kvm_stack_size;
3328 		kvm32.kvm_shp_addr = (uint32_t)kvm.kvm_shp_addr;
3329 		kvm32.kvm_shp_size = (uint32_t)kvm.kvm_shp_size;
3330 		kvm32.kvm_map_flags = kvm.kvm_map_flags;
3331 		error = SYSCTL_OUT(req, &kvm32, sizeof(kvm32));
3332 		goto out;
3333 	}
3334 #endif
3335 
3336 	error = SYSCTL_OUT(req, &kvm, sizeof(kvm));
3337 #ifdef COMPAT_FREEBSD32
3338 out:
3339 #endif
3340 	vmspace_free(vmspace);
3341 	return (error);
3342 }
3343 
3344 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,  0,
3345     "Process table");
3346 
3347 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
3348 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
3349 	"Return entire process table");
3350 
3351 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3352 	sysctl_kern_proc, "Process table");
3353 
3354 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
3355 	sysctl_kern_proc, "Process table");
3356 
3357 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3358 	sysctl_kern_proc, "Process table");
3359 
3360 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
3361 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3362 
3363 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
3364 	sysctl_kern_proc, "Process table");
3365 
3366 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3367 	sysctl_kern_proc, "Process table");
3368 
3369 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3370 	sysctl_kern_proc, "Process table");
3371 
3372 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3373 	sysctl_kern_proc, "Process table");
3374 
3375 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
3376 	sysctl_kern_proc, "Return process table, no threads");
3377 
3378 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
3379 	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
3380 	sysctl_kern_proc_args, "Process argument list");
3381 
3382 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
3383 	sysctl_kern_proc_env, "Process environment");
3384 
3385 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
3386 	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
3387 
3388 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
3389 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
3390 
3391 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
3392 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
3393 	"Process syscall vector name (ABI type)");
3394 
3395 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
3396 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3397 
3398 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
3399 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3400 
3401 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
3402 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3403 
3404 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
3405 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3406 
3407 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
3408 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3409 
3410 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
3411 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3412 
3413 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
3414 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3415 
3416 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
3417 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3418 
3419 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
3420 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
3421 	"Return process table, including threads");
3422 
3423 #ifdef COMPAT_FREEBSD7
3424 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
3425 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
3426 #endif
3427 
3428 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
3429 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
3430 
3431 #if defined(STACK) || defined(DDB)
3432 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
3433 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
3434 #endif
3435 
3436 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
3437 	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
3438 
3439 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
3440 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
3441 	"Process resource limits");
3442 
3443 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
3444 	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
3445 	"Process ps_strings location");
3446 
3447 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
3448 	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
3449 
3450 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
3451 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
3452 	"Process binary osreldate");
3453 
3454 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
3455 	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
3456 	"Process signal trampoline location");
3457 
3458 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD |
3459 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk,
3460 	"Thread sigfastblock address");
3461 
3462 static SYSCTL_NODE(_kern_proc, KERN_PROC_VM_LAYOUT, vm_layout, CTLFLAG_RD |
3463 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_vm_layout,
3464 	"Process virtual address space layout info");
3465 
3466 static struct sx stop_all_proc_blocker;
3467 SX_SYSINIT(stop_all_proc_blocker, &stop_all_proc_blocker, "sapblk");
3468 
3469 bool
stop_all_proc_block(void)3470 stop_all_proc_block(void)
3471 {
3472 	return (sx_xlock_sig(&stop_all_proc_blocker) == 0);
3473 }
3474 
3475 void
stop_all_proc_unblock(void)3476 stop_all_proc_unblock(void)
3477 {
3478 	sx_xunlock(&stop_all_proc_blocker);
3479 }
3480 
3481 int allproc_gen;
3482 
3483 /*
3484  * stop_all_proc() purpose is to stop all process which have usermode,
3485  * except current process for obvious reasons.  This makes it somewhat
3486  * unreliable when invoked from multithreaded process.  The service
3487  * must not be user-callable anyway.
3488  */
3489 void
stop_all_proc(void)3490 stop_all_proc(void)
3491 {
3492 	struct proc *cp, *p;
3493 	int r, gen;
3494 	bool restart, seen_stopped, seen_exiting, stopped_some;
3495 
3496 	if (!stop_all_proc_block())
3497 		return;
3498 
3499 	cp = curproc;
3500 allproc_loop:
3501 	sx_xlock(&allproc_lock);
3502 	gen = allproc_gen;
3503 	seen_exiting = seen_stopped = stopped_some = restart = false;
3504 	LIST_REMOVE(cp, p_list);
3505 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3506 	for (;;) {
3507 		p = LIST_NEXT(cp, p_list);
3508 		if (p == NULL)
3509 			break;
3510 		LIST_REMOVE(cp, p_list);
3511 		LIST_INSERT_AFTER(p, cp, p_list);
3512 		PROC_LOCK(p);
3513 		if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP |
3514 		    P_STOPPED_SIG)) != 0) {
3515 			PROC_UNLOCK(p);
3516 			continue;
3517 		}
3518 		if ((p->p_flag2 & P2_WEXIT) != 0) {
3519 			seen_exiting = true;
3520 			PROC_UNLOCK(p);
3521 			continue;
3522 		}
3523 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
3524 			/*
3525 			 * Stopped processes are tolerated when there
3526 			 * are no other processes which might continue
3527 			 * them.  P_STOPPED_SINGLE but not
3528 			 * P_TOTAL_STOP process still has at least one
3529 			 * thread running.
3530 			 */
3531 			seen_stopped = true;
3532 			PROC_UNLOCK(p);
3533 			continue;
3534 		}
3535 		if ((p->p_flag & P_TRACED) != 0) {
3536 			/*
3537 			 * thread_single() below cannot stop traced p,
3538 			 * so skip it.  OTOH, we cannot require
3539 			 * restart because debugger might be either
3540 			 * already stopped or traced as well.
3541 			 */
3542 			PROC_UNLOCK(p);
3543 			continue;
3544 		}
3545 		sx_xunlock(&allproc_lock);
3546 		_PHOLD(p);
3547 		r = thread_single(p, SINGLE_ALLPROC);
3548 		if (r != 0)
3549 			restart = true;
3550 		else
3551 			stopped_some = true;
3552 		_PRELE(p);
3553 		PROC_UNLOCK(p);
3554 		sx_xlock(&allproc_lock);
3555 	}
3556 	/* Catch forked children we did not see in iteration. */
3557 	if (gen != allproc_gen)
3558 		restart = true;
3559 	sx_xunlock(&allproc_lock);
3560 	if (restart || stopped_some || seen_exiting || seen_stopped) {
3561 		kern_yield(PRI_USER);
3562 		goto allproc_loop;
3563 	}
3564 }
3565 
3566 void
resume_all_proc(void)3567 resume_all_proc(void)
3568 {
3569 	struct proc *cp, *p;
3570 
3571 	cp = curproc;
3572 	sx_xlock(&allproc_lock);
3573 again:
3574 	LIST_REMOVE(cp, p_list);
3575 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3576 	for (;;) {
3577 		p = LIST_NEXT(cp, p_list);
3578 		if (p == NULL)
3579 			break;
3580 		LIST_REMOVE(cp, p_list);
3581 		LIST_INSERT_AFTER(p, cp, p_list);
3582 		PROC_LOCK(p);
3583 		if ((p->p_flag & P_TOTAL_STOP) != 0) {
3584 			sx_xunlock(&allproc_lock);
3585 			_PHOLD(p);
3586 			thread_single_end(p, SINGLE_ALLPROC);
3587 			_PRELE(p);
3588 			PROC_UNLOCK(p);
3589 			sx_xlock(&allproc_lock);
3590 		} else {
3591 			PROC_UNLOCK(p);
3592 		}
3593 	}
3594 	/*  Did the loop above missed any stopped process ? */
3595 	FOREACH_PROC_IN_SYSTEM(p) {
3596 		/* No need for proc lock. */
3597 		if ((p->p_flag & P_TOTAL_STOP) != 0)
3598 			goto again;
3599 	}
3600 	sx_xunlock(&allproc_lock);
3601 
3602 	stop_all_proc_unblock();
3603 }
3604 
3605 /* #define	TOTAL_STOP_DEBUG	1 */
3606 #ifdef TOTAL_STOP_DEBUG
3607 volatile static int ap_resume;
3608 #include <sys/mount.h>
3609 
3610 static int
sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)3611 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3612 {
3613 	int error, val;
3614 
3615 	val = 0;
3616 	ap_resume = 0;
3617 	error = sysctl_handle_int(oidp, &val, 0, req);
3618 	if (error != 0 || req->newptr == NULL)
3619 		return (error);
3620 	if (val != 0) {
3621 		stop_all_proc();
3622 		syncer_suspend();
3623 		while (ap_resume == 0)
3624 			;
3625 		syncer_resume();
3626 		resume_all_proc();
3627 	}
3628 	return (0);
3629 }
3630 
3631 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3632     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3633     sysctl_debug_stop_all_proc, "I",
3634     "");
3635 #endif
3636