1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993
5  *	The Regents of the University of California.
6  * (c) UNIX System Laboratories, Inc.
7  * Copyright (c) 2000-2001 Robert N. M. Watson.
8  * All rights reserved.
9  *
10  * All or some portions of this file are derived from material licensed
11  * to the University of California by American Telephone and Telegraph
12  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
13  * the permission of UNIX System Laboratories, Inc.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  */
39 
40 /*
41  * System calls related to processes and protection
42  */
43 
44 #include <sys/cdefs.h>
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/abi_compat.h>
51 #include <sys/acct.h>
52 #include <sys/kdb.h>
53 #include <sys/kernel.h>
54 #include <sys/libkern.h>
55 #include <sys/lock.h>
56 #include <sys/loginclass.h>
57 #include <sys/malloc.h>
58 #include <sys/mutex.h>
59 #include <sys/ptrace.h>
60 #include <sys/refcount.h>
61 #include <sys/sx.h>
62 #include <sys/priv.h>
63 #include <sys/proc.h>
64 #ifdef COMPAT_43
65 #include <sys/sysent.h>
66 #endif
67 #include <sys/sysproto.h>
68 #include <sys/jail.h>
69 #include <sys/racct.h>
70 #include <sys/rctl.h>
71 #include <sys/resourcevar.h>
72 #include <sys/socket.h>
73 #include <sys/socketvar.h>
74 #include <sys/syscallsubr.h>
75 #include <sys/sysctl.h>
76 
77 #ifdef MAC
78 #include <security/mac/mac_syscalls.h>
79 #endif
80 
81 #include <vm/uma.h>
82 
83 #ifdef REGRESSION
84 FEATURE(regression,
85     "Kernel support for interfaces necessary for regression testing (SECURITY RISK!)");
86 #endif
87 
88 #include <security/audit/audit.h>
89 #include <security/mac/mac_framework.h>
90 
91 static MALLOC_DEFINE(M_CRED, "cred", "credentials");
92 
93 SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
94     "BSD security policy");
95 
96 static void crfree_final(struct ucred *cr);
97 
98 static inline void
groups_check_positive_len(int ngrp)99 groups_check_positive_len(int ngrp)
100 {
101 	MPASS2(ngrp >= 0, "negative number of groups");
102 }
103 static inline void
groups_check_max_len(int ngrp)104 groups_check_max_len(int ngrp)
105 {
106 	MPASS2(ngrp <= ngroups_max, "too many supplementary groups");
107 }
108 
109 static void groups_normalize(int *ngrp, gid_t *groups);
110 static void crsetgroups_internal(struct ucred *cr, int ngrp,
111     const gid_t *groups);
112 
113 static int cr_canseeotheruids(struct ucred *u1, struct ucred *u2);
114 static int cr_canseeothergids(struct ucred *u1, struct ucred *u2);
115 static int cr_canseejailproc(struct ucred *u1, struct ucred *u2);
116 
117 #ifndef _SYS_SYSPROTO_H_
118 struct getpid_args {
119 	int	dummy;
120 };
121 #endif
122 /* ARGSUSED */
123 int
sys_getpid(struct thread * td,struct getpid_args * uap)124 sys_getpid(struct thread *td, struct getpid_args *uap)
125 {
126 	struct proc *p = td->td_proc;
127 
128 	td->td_retval[0] = p->p_pid;
129 #if defined(COMPAT_43)
130 	if (SV_PROC_FLAG(p, SV_AOUT))
131 		td->td_retval[1] = kern_getppid(td);
132 #endif
133 	return (0);
134 }
135 
136 #ifndef _SYS_SYSPROTO_H_
137 struct getppid_args {
138         int     dummy;
139 };
140 #endif
141 /* ARGSUSED */
142 int
sys_getppid(struct thread * td,struct getppid_args * uap)143 sys_getppid(struct thread *td, struct getppid_args *uap)
144 {
145 
146 	td->td_retval[0] = kern_getppid(td);
147 	return (0);
148 }
149 
150 int
kern_getppid(struct thread * td)151 kern_getppid(struct thread *td)
152 {
153 	struct proc *p = td->td_proc;
154 
155 	return (p->p_oppid);
156 }
157 
158 /*
159  * Get process group ID; note that POSIX getpgrp takes no parameter.
160  */
161 #ifndef _SYS_SYSPROTO_H_
162 struct getpgrp_args {
163         int     dummy;
164 };
165 #endif
166 int
sys_getpgrp(struct thread * td,struct getpgrp_args * uap)167 sys_getpgrp(struct thread *td, struct getpgrp_args *uap)
168 {
169 	struct proc *p = td->td_proc;
170 
171 	PROC_LOCK(p);
172 	td->td_retval[0] = p->p_pgrp->pg_id;
173 	PROC_UNLOCK(p);
174 	return (0);
175 }
176 
177 /* Get an arbitrary pid's process group id */
178 #ifndef _SYS_SYSPROTO_H_
179 struct getpgid_args {
180 	pid_t	pid;
181 };
182 #endif
183 int
sys_getpgid(struct thread * td,struct getpgid_args * uap)184 sys_getpgid(struct thread *td, struct getpgid_args *uap)
185 {
186 	struct proc *p;
187 	int error;
188 
189 	if (uap->pid == 0) {
190 		p = td->td_proc;
191 		PROC_LOCK(p);
192 	} else {
193 		p = pfind(uap->pid);
194 		if (p == NULL)
195 			return (ESRCH);
196 		error = p_cansee(td, p);
197 		if (error) {
198 			PROC_UNLOCK(p);
199 			return (error);
200 		}
201 	}
202 	td->td_retval[0] = p->p_pgrp->pg_id;
203 	PROC_UNLOCK(p);
204 	return (0);
205 }
206 
207 /*
208  * Get an arbitrary pid's session id.
209  */
210 #ifndef _SYS_SYSPROTO_H_
211 struct getsid_args {
212 	pid_t	pid;
213 };
214 #endif
215 int
sys_getsid(struct thread * td,struct getsid_args * uap)216 sys_getsid(struct thread *td, struct getsid_args *uap)
217 {
218 
219 	return (kern_getsid(td, uap->pid));
220 }
221 
222 int
kern_getsid(struct thread * td,pid_t pid)223 kern_getsid(struct thread *td, pid_t pid)
224 {
225 	struct proc *p;
226 	int error;
227 
228 	if (pid == 0) {
229 		p = td->td_proc;
230 		PROC_LOCK(p);
231 	} else {
232 		p = pfind(pid);
233 		if (p == NULL)
234 			return (ESRCH);
235 		error = p_cansee(td, p);
236 		if (error) {
237 			PROC_UNLOCK(p);
238 			return (error);
239 		}
240 	}
241 	td->td_retval[0] = p->p_session->s_sid;
242 	PROC_UNLOCK(p);
243 	return (0);
244 }
245 
246 #ifndef _SYS_SYSPROTO_H_
247 struct getuid_args {
248         int     dummy;
249 };
250 #endif
251 /* ARGSUSED */
252 int
sys_getuid(struct thread * td,struct getuid_args * uap)253 sys_getuid(struct thread *td, struct getuid_args *uap)
254 {
255 
256 	td->td_retval[0] = td->td_ucred->cr_ruid;
257 #if defined(COMPAT_43)
258 	td->td_retval[1] = td->td_ucred->cr_uid;
259 #endif
260 	return (0);
261 }
262 
263 #ifndef _SYS_SYSPROTO_H_
264 struct geteuid_args {
265         int     dummy;
266 };
267 #endif
268 /* ARGSUSED */
269 int
sys_geteuid(struct thread * td,struct geteuid_args * uap)270 sys_geteuid(struct thread *td, struct geteuid_args *uap)
271 {
272 
273 	td->td_retval[0] = td->td_ucred->cr_uid;
274 	return (0);
275 }
276 
277 #ifndef _SYS_SYSPROTO_H_
278 struct getgid_args {
279         int     dummy;
280 };
281 #endif
282 /* ARGSUSED */
283 int
sys_getgid(struct thread * td,struct getgid_args * uap)284 sys_getgid(struct thread *td, struct getgid_args *uap)
285 {
286 
287 	td->td_retval[0] = td->td_ucred->cr_rgid;
288 #if defined(COMPAT_43)
289 	td->td_retval[1] = td->td_ucred->cr_gid;
290 #endif
291 	return (0);
292 }
293 
294 #ifndef _SYS_SYSPROTO_H_
295 struct getegid_args {
296         int     dummy;
297 };
298 #endif
299 /* ARGSUSED */
300 int
sys_getegid(struct thread * td,struct getegid_args * uap)301 sys_getegid(struct thread *td, struct getegid_args *uap)
302 {
303 
304 	td->td_retval[0] = td->td_ucred->cr_gid;
305 	return (0);
306 }
307 
308 #ifdef COMPAT_FREEBSD14
309 int
freebsd14_getgroups(struct thread * td,struct freebsd14_getgroups_args * uap)310 freebsd14_getgroups(struct thread *td, struct freebsd14_getgroups_args *uap)
311 {
312 	struct ucred *cred;
313 	int ngrp, error;
314 
315 	cred = td->td_ucred;
316 
317 	/*
318 	 * For FreeBSD < 15.0, we account for the egid being placed at the
319 	 * beginning of the group list prior to all supplementary groups.
320 	 */
321 	ngrp = cred->cr_ngroups + 1;
322 	if (uap->gidsetsize == 0) {
323 		error = 0;
324 		goto out;
325 	} else if (uap->gidsetsize < ngrp) {
326 		return (EINVAL);
327 	}
328 
329 	error = copyout(&cred->cr_gid, uap->gidset, sizeof(gid_t));
330 	if (error == 0)
331 		error = copyout(cred->cr_groups, uap->gidset + 1,
332 		    (ngrp - 1) * sizeof(gid_t));
333 
334 out:
335 	td->td_retval[0] = ngrp;
336 	return (error);
337 
338 }
339 #endif	/* COMPAT_FREEBSD14 */
340 
341 #ifndef _SYS_SYSPROTO_H_
342 struct getgroups_args {
343 	int	gidsetsize;
344 	gid_t	*gidset;
345 };
346 #endif
347 int
sys_getgroups(struct thread * td,struct getgroups_args * uap)348 sys_getgroups(struct thread *td, struct getgroups_args *uap)
349 {
350 	struct ucred *cred;
351 	int ngrp, error;
352 
353 	cred = td->td_ucred;
354 
355 	ngrp = cred->cr_ngroups;
356 	if (uap->gidsetsize == 0) {
357 		error = 0;
358 		goto out;
359 	}
360 	if (uap->gidsetsize < ngrp)
361 		return (EINVAL);
362 
363 	error = copyout(cred->cr_groups, uap->gidset, ngrp * sizeof(gid_t));
364 out:
365 	td->td_retval[0] = ngrp;
366 	return (error);
367 }
368 
369 #ifndef _SYS_SYSPROTO_H_
370 struct setsid_args {
371         int     dummy;
372 };
373 #endif
374 /* ARGSUSED */
375 int
sys_setsid(struct thread * td,struct setsid_args * uap)376 sys_setsid(struct thread *td, struct setsid_args *uap)
377 {
378 	struct pgrp *pgrp;
379 	int error;
380 	struct proc *p = td->td_proc;
381 	struct pgrp *newpgrp;
382 	struct session *newsess;
383 
384 	pgrp = NULL;
385 
386 	newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
387 	newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO);
388 
389 again:
390 	error = 0;
391 	sx_xlock(&proctree_lock);
392 
393 	if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) {
394 		if (pgrp != NULL)
395 			PGRP_UNLOCK(pgrp);
396 		error = EPERM;
397 	} else {
398 		error = enterpgrp(p, p->p_pid, newpgrp, newsess);
399 		if (error == ERESTART)
400 			goto again;
401 		MPASS(error == 0);
402 		td->td_retval[0] = p->p_pid;
403 		newpgrp = NULL;
404 		newsess = NULL;
405 	}
406 
407 	sx_xunlock(&proctree_lock);
408 
409 	uma_zfree(pgrp_zone, newpgrp);
410 	free(newsess, M_SESSION);
411 
412 	return (error);
413 }
414 
415 /*
416  * set process group (setpgid/old setpgrp)
417  *
418  * caller does setpgid(targpid, targpgid)
419  *
420  * pid must be caller or child of caller (ESRCH)
421  * if a child
422  *	pid must be in same session (EPERM)
423  *	pid can't have done an exec (EACCES)
424  * if pgid != pid
425  * 	there must exist some pid in same session having pgid (EPERM)
426  * pid must not be session leader (EPERM)
427  */
428 #ifndef _SYS_SYSPROTO_H_
429 struct setpgid_args {
430 	int	pid;		/* target process id */
431 	int	pgid;		/* target pgrp id */
432 };
433 #endif
434 /* ARGSUSED */
435 int
sys_setpgid(struct thread * td,struct setpgid_args * uap)436 sys_setpgid(struct thread *td, struct setpgid_args *uap)
437 {
438 	struct proc *curp = td->td_proc;
439 	struct proc *targp;	/* target process */
440 	struct pgrp *pgrp;	/* target pgrp */
441 	int error;
442 	struct pgrp *newpgrp;
443 
444 	if (uap->pgid < 0)
445 		return (EINVAL);
446 
447 	newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
448 
449 again:
450 	error = 0;
451 
452 	sx_xlock(&proctree_lock);
453 	if (uap->pid != 0 && uap->pid != curp->p_pid) {
454 		if ((targp = pfind(uap->pid)) == NULL) {
455 			error = ESRCH;
456 			goto done;
457 		}
458 		if (!inferior(targp)) {
459 			PROC_UNLOCK(targp);
460 			error = ESRCH;
461 			goto done;
462 		}
463 		if ((error = p_cansee(td, targp))) {
464 			PROC_UNLOCK(targp);
465 			goto done;
466 		}
467 		if (targp->p_pgrp == NULL ||
468 		    targp->p_session != curp->p_session) {
469 			PROC_UNLOCK(targp);
470 			error = EPERM;
471 			goto done;
472 		}
473 		if (targp->p_flag & P_EXEC) {
474 			PROC_UNLOCK(targp);
475 			error = EACCES;
476 			goto done;
477 		}
478 		PROC_UNLOCK(targp);
479 	} else
480 		targp = curp;
481 	if (SESS_LEADER(targp)) {
482 		error = EPERM;
483 		goto done;
484 	}
485 	if (uap->pgid == 0)
486 		uap->pgid = targp->p_pid;
487 	if ((pgrp = pgfind(uap->pgid)) == NULL) {
488 		if (uap->pgid == targp->p_pid) {
489 			error = enterpgrp(targp, uap->pgid, newpgrp,
490 			    NULL);
491 			if (error == 0)
492 				newpgrp = NULL;
493 		} else
494 			error = EPERM;
495 	} else {
496 		if (pgrp == targp->p_pgrp) {
497 			PGRP_UNLOCK(pgrp);
498 			goto done;
499 		}
500 		if (pgrp->pg_id != targp->p_pid &&
501 		    pgrp->pg_session != curp->p_session) {
502 			PGRP_UNLOCK(pgrp);
503 			error = EPERM;
504 			goto done;
505 		}
506 		PGRP_UNLOCK(pgrp);
507 		error = enterthispgrp(targp, pgrp);
508 	}
509 done:
510 	KASSERT(error == 0 || newpgrp != NULL,
511 	    ("setpgid failed and newpgrp is NULL"));
512 	if (error == ERESTART)
513 		goto again;
514 	sx_xunlock(&proctree_lock);
515 	uma_zfree(pgrp_zone, newpgrp);
516 	return (error);
517 }
518 
519 static int
gidp_cmp(const void * p1,const void * p2)520 gidp_cmp(const void *p1, const void *p2)
521 {
522 	const gid_t g1 = *(const gid_t *)p1;
523 	const gid_t g2 = *(const gid_t *)p2;
524 
525 	return ((g1 > g2) - (g1 < g2));
526 }
527 
528 /*
529  * Final storage for supplementary groups will be returned via 'groups'.
530  * '*groups' must be NULL on input, and if not equal to 'smallgroups'
531  * on output, must be freed (M_TEMP) *even if* an error is returned.
532  */
533 static int
kern_setcred_copyin_supp_groups(struct setcred * const wcred,const u_int flags,gid_t * const smallgroups,gid_t ** const groups)534 kern_setcred_copyin_supp_groups(struct setcred *const wcred,
535     const u_int flags, gid_t *const smallgroups, gid_t **const groups)
536 {
537 	MPASS(*groups == NULL);
538 
539 	if (flags & SETCREDF_SUPP_GROUPS) {
540 		int error;
541 
542 		/*
543 		 * Check for the limit for number of groups right now in order
544 		 * to limit the amount of bytes to copy.
545 		 */
546 		if (wcred->sc_supp_groups_nb > ngroups_max)
547 			return (EINVAL);
548 
549 		/*
550 		 * Since we are going to be copying the supplementary groups
551 		 * from userland, make room also for the effective GID right
552 		 * now, to avoid having to allocate and copy again the
553 		 * supplementary groups.
554 		 */
555 		*groups = wcred->sc_supp_groups_nb <= CRED_SMALLGROUPS_NB ?
556 		    smallgroups : malloc(wcred->sc_supp_groups_nb *
557 		    sizeof(*groups), M_TEMP, M_WAITOK);
558 
559 		error = copyin(wcred->sc_supp_groups, *groups,
560 		    wcred->sc_supp_groups_nb * sizeof(*groups));
561 		if (error != 0)
562 			return (error);
563 		wcred->sc_supp_groups = *groups;
564 	} else {
565 		wcred->sc_supp_groups_nb = 0;
566 		wcred->sc_supp_groups = NULL;
567 	}
568 
569 	return (0);
570 }
571 
572 int
user_setcred(struct thread * td,const u_int flags,const void * const uwcred,const size_t size,bool is_32bit)573 user_setcred(struct thread *td, const u_int flags,
574     const void *const uwcred, const size_t size, bool is_32bit)
575 {
576 	struct setcred wcred;
577 #ifdef MAC
578 	struct mac mac;
579 	/* Pointer to 'struct mac' or 'struct mac32'. */
580 	void *umac;
581 #endif
582 	gid_t smallgroups[CRED_SMALLGROUPS_NB];
583 	gid_t *groups = NULL;
584 	int error;
585 
586 	/*
587 	 * As the only point of this wrapper function is to copyin() from
588 	 * userland, we only interpret the data pieces we need to perform this
589 	 * operation and defer further sanity checks to kern_setcred(), except
590 	 * that we redundantly check here that no unknown flags have been
591 	 * passed.
592 	 */
593 	if ((flags & ~SETCREDF_MASK) != 0)
594 		return (EINVAL);
595 
596 #ifdef COMPAT_FREEBSD32
597 	if (is_32bit) {
598 		struct setcred32 wcred32;
599 
600 		if (size != sizeof(wcred32))
601 			return (EINVAL);
602 		error = copyin(uwcred, &wcred32, sizeof(wcred32));
603 		if (error != 0)
604 			return (error);
605 		/* These fields have exactly the same sizes and positions. */
606 		memcpy(&wcred, &wcred32, &wcred32.setcred32_copy_end -
607 		    &wcred32.setcred32_copy_start);
608 		/* Remaining fields are pointers and need PTRIN*(). */
609 		PTRIN_CP(wcred32, wcred, sc_supp_groups);
610 		PTRIN_CP(wcred32, wcred, sc_label);
611 	} else
612 #endif /* COMPAT_FREEBSD32 */
613 	{
614 		if (size != sizeof(wcred))
615 			return (EINVAL);
616 		error = copyin(uwcred, &wcred, sizeof(wcred));
617 		if (error != 0)
618 			return (error);
619 	}
620 #ifdef MAC
621 	umac = wcred.sc_label;
622 #endif
623 	/* Also done on !MAC as a defensive measure. */
624 	wcred.sc_label = NULL;
625 
626 	/*
627 	 * Copy supplementary groups as needed.  There is no specific
628 	 * alternative for 32-bit compatibility as 'gid_t' has the same size
629 	 * everywhere.
630 	 */
631 	error = kern_setcred_copyin_supp_groups(&wcred, flags, smallgroups,
632 	    &groups);
633 	if (error != 0)
634 		goto free_groups;
635 
636 #ifdef MAC
637 	if ((flags & SETCREDF_MAC_LABEL) != 0) {
638 #ifdef COMPAT_FREEBSD32
639 		if (is_32bit)
640 			error = mac_label_copyin32(umac, &mac, NULL);
641 		else
642 #endif
643 			error = mac_label_copyin(umac, &mac, NULL);
644 		if (error != 0)
645 			goto free_groups;
646 		wcred.sc_label = &mac;
647 	}
648 #endif
649 
650 	error = kern_setcred(td, flags, &wcred, groups);
651 
652 #ifdef MAC
653 	if (wcred.sc_label != NULL)
654 		free_copied_label(wcred.sc_label);
655 #endif
656 
657 free_groups:
658 	if (groups != smallgroups)
659 		free(groups, M_TEMP);
660 
661 	return (error);
662 }
663 
664 #ifndef _SYS_SYSPROTO_H_
665 struct setcred_args {
666 	u_int			 flags;	/* Flags. */
667 	const struct setcred	*wcred;
668 	size_t			 size;	/* Passed 'setcred' structure length. */
669 };
670 #endif
671 /* ARGSUSED */
672 int
sys_setcred(struct thread * td,struct setcred_args * uap)673 sys_setcred(struct thread *td, struct setcred_args *uap)
674 {
675 	return (user_setcred(td, uap->flags, uap->wcred, uap->size, false));
676 }
677 
678 /*
679  * CAUTION: This function normalizes groups in 'wcred'.
680  *
681  * If 'preallocated_groups' is non-NULL, it must be an already allocated array
682  * of size 'wcred->sc_supp_groups_nb' containing the supplementary groups, and
683  * 'wcred->sc_supp_groups' then must point to it.
684  */
685 int
kern_setcred(struct thread * const td,const u_int flags,struct setcred * const wcred,gid_t * preallocated_groups)686 kern_setcred(struct thread *const td, const u_int flags,
687     struct setcred *const wcred, gid_t *preallocated_groups)
688 {
689 	struct proc *const p = td->td_proc;
690 	struct ucred *new_cred, *old_cred, *to_free_cred;
691 	struct uidinfo *uip = NULL, *ruip = NULL;
692 #ifdef MAC
693 	void *mac_set_proc_data = NULL;
694 	bool proc_label_set = false;
695 #endif
696 	gid_t *groups = NULL;
697 	gid_t smallgroups[CRED_SMALLGROUPS_NB];
698 	int error;
699 	bool cred_set = false;
700 
701 	/* Bail out on unrecognized flags. */
702 	if (flags & ~SETCREDF_MASK)
703 		return (EINVAL);
704 
705 	/*
706 	 * Part 1: We allocate and perform preparatory operations with no locks.
707 	 */
708 
709 	if (flags & SETCREDF_SUPP_GROUPS) {
710 		if (wcred->sc_supp_groups_nb > ngroups_max)
711 			return (EINVAL);
712 		if (preallocated_groups != NULL) {
713 			groups = preallocated_groups;
714 			MPASS(preallocated_groups == wcred->sc_supp_groups);
715 		} else {
716 			if (wcred->sc_supp_groups_nb <= CRED_SMALLGROUPS_NB)
717 				groups = smallgroups;
718 			else
719 				groups = malloc(wcred->sc_supp_groups_nb *
720 				    sizeof(*groups), M_TEMP, M_WAITOK);
721 			memcpy(groups, wcred->sc_supp_groups,
722 			    wcred->sc_supp_groups_nb * sizeof(*groups));
723 		}
724 	}
725 
726 	if (flags & SETCREDF_MAC_LABEL) {
727 #ifdef MAC
728 		error = mac_set_proc_prepare(td, wcred->sc_label,
729 		    &mac_set_proc_data);
730 		if (error != 0)
731 			goto free_groups;
732 #else
733 		error = ENOTSUP;
734 		goto free_groups;
735 #endif
736 	}
737 
738 	if (flags & SETCREDF_UID) {
739 		AUDIT_ARG_EUID(wcred->sc_uid);
740 		uip = uifind(wcred->sc_uid);
741 	}
742 	if (flags & SETCREDF_RUID) {
743 		AUDIT_ARG_RUID(wcred->sc_ruid);
744 		ruip = uifind(wcred->sc_ruid);
745 	}
746 	if (flags & SETCREDF_SVUID)
747 		AUDIT_ARG_SUID(wcred->sc_svuid);
748 
749 	if (flags & SETCREDF_GID)
750 		AUDIT_ARG_EGID(wcred->sc_gid);
751 	if (flags & SETCREDF_RGID)
752 		AUDIT_ARG_RGID(wcred->sc_rgid);
753 	if (flags & SETCREDF_SVGID)
754 		AUDIT_ARG_SGID(wcred->sc_svgid);
755 	if (flags & SETCREDF_SUPP_GROUPS) {
756 		/*
757 		 * Output the raw supplementary groups array for better
758 		 * traceability.
759 		 */
760 		AUDIT_ARG_GROUPSET(groups, wcred->sc_supp_groups_nb);
761 		groups_normalize(&wcred->sc_supp_groups_nb, groups);
762 	}
763 
764 	/*
765 	 * We first completely build the new credentials and only then pass them
766 	 * to MAC along with the old ones so that modules can check whether the
767 	 * requested transition is allowed.
768 	 */
769 	new_cred = crget();
770 	to_free_cred = new_cred;
771 	if (flags & SETCREDF_SUPP_GROUPS)
772 		crextend(new_cred, wcred->sc_supp_groups_nb);
773 
774 #ifdef MAC
775 	mac_cred_setcred_enter();
776 #endif
777 
778 	/*
779 	 * Part 2: We grab the process lock as to have a stable view of its
780 	 * current credentials, and prepare a copy of them with the requested
781 	 * changes applied under that lock.
782 	 */
783 
784 	PROC_LOCK(p);
785 	old_cred = crcopysafe(p, new_cred);
786 
787 	/*
788 	 * Change user IDs.
789 	 */
790 	if (flags & SETCREDF_UID)
791 		change_euid(new_cred, uip);
792 	if (flags & SETCREDF_RUID)
793 		change_ruid(new_cred, ruip);
794 	if (flags & SETCREDF_SVUID)
795 		change_svuid(new_cred, wcred->sc_svuid);
796 
797 	/*
798 	 * Change groups.
799 	 */
800 	if (flags & SETCREDF_SUPP_GROUPS)
801 		crsetgroups_internal(new_cred, wcred->sc_supp_groups_nb,
802 		    groups);
803 	if (flags & SETCREDF_GID)
804 		change_egid(new_cred, wcred->sc_gid);
805 	if (flags & SETCREDF_RGID)
806 		change_rgid(new_cred, wcred->sc_rgid);
807 	if (flags & SETCREDF_SVGID)
808 		change_svgid(new_cred, wcred->sc_svgid);
809 
810 #ifdef MAC
811 	/*
812 	 * Change the MAC label.
813 	 */
814 	if (flags & SETCREDF_MAC_LABEL) {
815 		error = mac_set_proc_core(td, new_cred, mac_set_proc_data);
816 		if (error != 0)
817 			goto unlock_finish;
818 		proc_label_set = true;
819 	}
820 
821 	/*
822 	 * MAC security modules checks.
823 	 */
824 	error = mac_cred_check_setcred(flags, old_cred, new_cred);
825 	if (error != 0)
826 		goto unlock_finish;
827 #endif
828 	/*
829 	 * Privilege check.
830 	 */
831 	error = priv_check_cred(old_cred, PRIV_CRED_SETCRED);
832 	if (error != 0)
833 		goto unlock_finish;
834 
835 	/*
836 	 * Set the new credentials, noting that they have changed.
837 	 */
838 	cred_set = proc_set_cred_enforce_proc_lim(p, new_cred);
839 	if (cred_set) {
840 		setsugid(p);
841 		to_free_cred = old_cred;
842 #ifdef RACCT
843 		racct_proc_ucred_changed(p, old_cred, new_cred);
844 #endif
845 #ifdef RCTL
846 		crhold(new_cred);
847 #endif
848 		MPASS(error == 0);
849 	} else
850 		error = EAGAIN;
851 
852 unlock_finish:
853 	PROC_UNLOCK(p);
854 
855 	/*
856 	 * Part 3: After releasing the process lock, we perform cleanups and
857 	 * finishing operations.
858 	 */
859 
860 #ifdef RCTL
861 	if (cred_set) {
862 		rctl_proc_ucred_changed(p, new_cred);
863 		/* Paired with the crhold() just above. */
864 		crfree(new_cred);
865 	}
866 #endif
867 
868 #ifdef MAC
869 	if (mac_set_proc_data != NULL)
870 		mac_set_proc_finish(td, proc_label_set, mac_set_proc_data);
871 	mac_cred_setcred_exit();
872 #endif
873 	crfree(to_free_cred);
874 	if (uip != NULL)
875 		uifree(uip);
876 	if (ruip != NULL)
877 		uifree(ruip);
878 free_groups:
879 	if (groups != preallocated_groups && groups != smallgroups)
880 		free(groups, M_TEMP); /* Deals with 'groups' being NULL. */
881 	return (error);
882 }
883 
884 /*
885  * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD
886  * compatible.  It says that setting the uid/gid to euid/egid is a special
887  * case of "appropriate privilege".  Once the rules are expanded out, this
888  * basically means that setuid(nnn) sets all three id's, in all permitted
889  * cases unless _POSIX_SAVED_IDS is enabled.  In that case, setuid(getuid())
890  * does not set the saved id - this is dangerous for traditional BSD
891  * programs.  For this reason, we *really* do not want to set
892  * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2.
893  */
894 #define POSIX_APPENDIX_B_4_2_2
895 
896 #ifndef _SYS_SYSPROTO_H_
897 struct setuid_args {
898 	uid_t	uid;
899 };
900 #endif
901 /* ARGSUSED */
902 int
sys_setuid(struct thread * td,struct setuid_args * uap)903 sys_setuid(struct thread *td, struct setuid_args *uap)
904 {
905 	struct proc *p = td->td_proc;
906 	struct ucred *newcred, *oldcred;
907 	uid_t uid;
908 	struct uidinfo *uip;
909 	int error;
910 
911 	uid = uap->uid;
912 	AUDIT_ARG_UID(uid);
913 	newcred = crget();
914 	uip = uifind(uid);
915 	PROC_LOCK(p);
916 	/*
917 	 * Copy credentials so other references do not see our changes.
918 	 */
919 	oldcred = crcopysafe(p, newcred);
920 
921 #ifdef MAC
922 	error = mac_cred_check_setuid(oldcred, uid);
923 	if (error)
924 		goto fail;
925 #endif
926 
927 	/*
928 	 * See if we have "permission" by POSIX 1003.1 rules.
929 	 *
930 	 * Note that setuid(geteuid()) is a special case of
931 	 * "appropriate privileges" in appendix B.4.2.2.  We need
932 	 * to use this clause to be compatible with traditional BSD
933 	 * semantics.  Basically, it means that "setuid(xx)" sets all
934 	 * three id's (assuming you have privs).
935 	 *
936 	 * Notes on the logic.  We do things in three steps.
937 	 * 1: We determine if the euid is going to change, and do EPERM
938 	 *    right away.  We unconditionally change the euid later if this
939 	 *    test is satisfied, simplifying that part of the logic.
940 	 * 2: We determine if the real and/or saved uids are going to
941 	 *    change.  Determined by compile options.
942 	 * 3: Change euid last. (after tests in #2 for "appropriate privs")
943 	 */
944 	if (uid != oldcred->cr_ruid &&		/* allow setuid(getuid()) */
945 #ifdef _POSIX_SAVED_IDS
946 	    uid != oldcred->cr_svuid &&		/* allow setuid(saved gid) */
947 #endif
948 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
949 	    uid != oldcred->cr_uid &&		/* allow setuid(geteuid()) */
950 #endif
951 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETUID)) != 0)
952 		goto fail;
953 
954 #ifdef _POSIX_SAVED_IDS
955 	/*
956 	 * Do we have "appropriate privileges" (are we root or uid == euid)
957 	 * If so, we are changing the real uid and/or saved uid.
958 	 */
959 	if (
960 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use the clause from B.4.2.2 */
961 	    uid == oldcred->cr_uid ||
962 #endif
963 	    /* We are using privs. */
964 	    priv_check_cred(oldcred, PRIV_CRED_SETUID) == 0)
965 #endif
966 	{
967 		/*
968 		 * Set the real uid.
969 		 */
970 		if (uid != oldcred->cr_ruid) {
971 			change_ruid(newcred, uip);
972 			setsugid(p);
973 		}
974 		/*
975 		 * Set saved uid
976 		 *
977 		 * XXX always set saved uid even if not _POSIX_SAVED_IDS, as
978 		 * the security of seteuid() depends on it.  B.4.2.2 says it
979 		 * is important that we should do this.
980 		 */
981 		if (uid != oldcred->cr_svuid) {
982 			change_svuid(newcred, uid);
983 			setsugid(p);
984 		}
985 	}
986 
987 	/*
988 	 * In all permitted cases, we are changing the euid.
989 	 */
990 	if (uid != oldcred->cr_uid) {
991 		change_euid(newcred, uip);
992 		setsugid(p);
993 	}
994 	/*
995 	 * This also transfers the proc count to the new user.
996 	 */
997 	proc_set_cred(p, newcred);
998 #ifdef RACCT
999 	racct_proc_ucred_changed(p, oldcred, newcred);
1000 #endif
1001 #ifdef RCTL
1002 	crhold(newcred);
1003 #endif
1004 	PROC_UNLOCK(p);
1005 #ifdef RCTL
1006 	rctl_proc_ucred_changed(p, newcred);
1007 	crfree(newcred);
1008 #endif
1009 	uifree(uip);
1010 	crfree(oldcred);
1011 	return (0);
1012 
1013 fail:
1014 	PROC_UNLOCK(p);
1015 	uifree(uip);
1016 	crfree(newcred);
1017 	return (error);
1018 }
1019 
1020 #ifndef _SYS_SYSPROTO_H_
1021 struct seteuid_args {
1022 	uid_t	euid;
1023 };
1024 #endif
1025 /* ARGSUSED */
1026 int
sys_seteuid(struct thread * td,struct seteuid_args * uap)1027 sys_seteuid(struct thread *td, struct seteuid_args *uap)
1028 {
1029 	struct proc *p = td->td_proc;
1030 	struct ucred *newcred, *oldcred;
1031 	uid_t euid;
1032 	struct uidinfo *euip;
1033 	int error;
1034 
1035 	euid = uap->euid;
1036 	AUDIT_ARG_EUID(euid);
1037 	newcred = crget();
1038 	euip = uifind(euid);
1039 	PROC_LOCK(p);
1040 	/*
1041 	 * Copy credentials so other references do not see our changes.
1042 	 */
1043 	oldcred = crcopysafe(p, newcred);
1044 
1045 #ifdef MAC
1046 	error = mac_cred_check_seteuid(oldcred, euid);
1047 	if (error)
1048 		goto fail;
1049 #endif
1050 
1051 	if (euid != oldcred->cr_ruid &&		/* allow seteuid(getuid()) */
1052 	    euid != oldcred->cr_svuid &&	/* allow seteuid(saved uid) */
1053 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID)) != 0)
1054 		goto fail;
1055 
1056 	/*
1057 	 * Everything's okay, do it.
1058 	 */
1059 	if (oldcred->cr_uid != euid) {
1060 		change_euid(newcred, euip);
1061 		setsugid(p);
1062 	}
1063 	proc_set_cred(p, newcred);
1064 	PROC_UNLOCK(p);
1065 	uifree(euip);
1066 	crfree(oldcred);
1067 	return (0);
1068 
1069 fail:
1070 	PROC_UNLOCK(p);
1071 	uifree(euip);
1072 	crfree(newcred);
1073 	return (error);
1074 }
1075 
1076 #ifndef _SYS_SYSPROTO_H_
1077 struct setgid_args {
1078 	gid_t	gid;
1079 };
1080 #endif
1081 /* ARGSUSED */
1082 int
sys_setgid(struct thread * td,struct setgid_args * uap)1083 sys_setgid(struct thread *td, struct setgid_args *uap)
1084 {
1085 	struct proc *p = td->td_proc;
1086 	struct ucred *newcred, *oldcred;
1087 	gid_t gid;
1088 	int error;
1089 
1090 	gid = uap->gid;
1091 	AUDIT_ARG_GID(gid);
1092 	newcred = crget();
1093 	PROC_LOCK(p);
1094 	oldcred = crcopysafe(p, newcred);
1095 
1096 #ifdef MAC
1097 	error = mac_cred_check_setgid(oldcred, gid);
1098 	if (error)
1099 		goto fail;
1100 #endif
1101 
1102 	/*
1103 	 * See if we have "permission" by POSIX 1003.1 rules.
1104 	 *
1105 	 * Note that setgid(getegid()) is a special case of
1106 	 * "appropriate privileges" in appendix B.4.2.2.  We need
1107 	 * to use this clause to be compatible with traditional BSD
1108 	 * semantics.  Basically, it means that "setgid(xx)" sets all
1109 	 * three id's (assuming you have privs).
1110 	 *
1111 	 * For notes on the logic here, see setuid() above.
1112 	 */
1113 	if (gid != oldcred->cr_rgid &&		/* allow setgid(getgid()) */
1114 #ifdef _POSIX_SAVED_IDS
1115 	    gid != oldcred->cr_svgid &&		/* allow setgid(saved gid) */
1116 #endif
1117 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
1118 	    gid != oldcred->cr_gid && /* allow setgid(getegid()) */
1119 #endif
1120 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETGID)) != 0)
1121 		goto fail;
1122 
1123 #ifdef _POSIX_SAVED_IDS
1124 	/*
1125 	 * Do we have "appropriate privileges" (are we root or gid == egid)
1126 	 * If so, we are changing the real uid and saved gid.
1127 	 */
1128 	if (
1129 #ifdef POSIX_APPENDIX_B_4_2_2	/* use the clause from B.4.2.2 */
1130 	    gid == oldcred->cr_gid ||
1131 #endif
1132 	    /* We are using privs. */
1133 	    priv_check_cred(oldcred, PRIV_CRED_SETGID) == 0)
1134 #endif
1135 	{
1136 		/*
1137 		 * Set real gid
1138 		 */
1139 		if (oldcred->cr_rgid != gid) {
1140 			change_rgid(newcred, gid);
1141 			setsugid(p);
1142 		}
1143 		/*
1144 		 * Set saved gid
1145 		 *
1146 		 * XXX always set saved gid even if not _POSIX_SAVED_IDS, as
1147 		 * the security of setegid() depends on it.  B.4.2.2 says it
1148 		 * is important that we should do this.
1149 		 */
1150 		if (oldcred->cr_svgid != gid) {
1151 			change_svgid(newcred, gid);
1152 			setsugid(p);
1153 		}
1154 	}
1155 	/*
1156 	 * In all cases permitted cases, we are changing the egid.
1157 	 * Copy credentials so other references do not see our changes.
1158 	 */
1159 	if (oldcred->cr_gid != gid) {
1160 		change_egid(newcred, gid);
1161 		setsugid(p);
1162 	}
1163 	proc_set_cred(p, newcred);
1164 	PROC_UNLOCK(p);
1165 	crfree(oldcred);
1166 	return (0);
1167 
1168 fail:
1169 	PROC_UNLOCK(p);
1170 	crfree(newcred);
1171 	return (error);
1172 }
1173 
1174 #ifndef _SYS_SYSPROTO_H_
1175 struct setegid_args {
1176 	gid_t	egid;
1177 };
1178 #endif
1179 /* ARGSUSED */
1180 int
sys_setegid(struct thread * td,struct setegid_args * uap)1181 sys_setegid(struct thread *td, struct setegid_args *uap)
1182 {
1183 	struct proc *p = td->td_proc;
1184 	struct ucred *newcred, *oldcred;
1185 	gid_t egid;
1186 	int error;
1187 
1188 	egid = uap->egid;
1189 	AUDIT_ARG_EGID(egid);
1190 	newcred = crget();
1191 	PROC_LOCK(p);
1192 	oldcred = crcopysafe(p, newcred);
1193 
1194 #ifdef MAC
1195 	error = mac_cred_check_setegid(oldcred, egid);
1196 	if (error)
1197 		goto fail;
1198 #endif
1199 
1200 	if (egid != oldcred->cr_rgid &&		/* allow setegid(getgid()) */
1201 	    egid != oldcred->cr_svgid &&	/* allow setegid(saved gid) */
1202 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID)) != 0)
1203 		goto fail;
1204 
1205 	if (oldcred->cr_gid != egid) {
1206 		change_egid(newcred, egid);
1207 		setsugid(p);
1208 	}
1209 	proc_set_cred(p, newcred);
1210 	PROC_UNLOCK(p);
1211 	crfree(oldcred);
1212 	return (0);
1213 
1214 fail:
1215 	PROC_UNLOCK(p);
1216 	crfree(newcred);
1217 	return (error);
1218 }
1219 
1220 #ifdef COMPAT_FREEBSD14
1221 int
freebsd14_setgroups(struct thread * td,struct freebsd14_setgroups_args * uap)1222 freebsd14_setgroups(struct thread *td, struct freebsd14_setgroups_args *uap)
1223 {
1224 	gid_t smallgroups[CRED_SMALLGROUPS_NB];
1225 	gid_t *groups;
1226 	int gidsetsize, error;
1227 
1228 	/*
1229 	 * Before FreeBSD 15.0, we allow one more group to be supplied to
1230 	 * account for the egid appearing before the supplementary groups.  This
1231 	 * may technically allow one more supplementary group for systems that
1232 	 * did use the default NGROUPS_MAX if we round it back up to 1024.
1233 	 */
1234 	gidsetsize = uap->gidsetsize;
1235 	if (gidsetsize > ngroups_max + 1 || gidsetsize < 0)
1236 		return (EINVAL);
1237 
1238 	if (gidsetsize > CRED_SMALLGROUPS_NB)
1239 		groups = malloc(gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK);
1240 	else
1241 		groups = smallgroups;
1242 
1243 	error = copyin(uap->gidset, groups, gidsetsize * sizeof(gid_t));
1244 	if (error == 0) {
1245 		int ngroups = gidsetsize > 0 ? gidsetsize - 1 /* egid */ : 0;
1246 
1247 		error = kern_setgroups(td, &ngroups, groups + 1);
1248 		if (error == 0 && gidsetsize > 0)
1249 			td->td_proc->p_ucred->cr_gid = groups[0];
1250 	}
1251 
1252 	if (groups != smallgroups)
1253 		free(groups, M_TEMP);
1254 	return (error);
1255 }
1256 #endif	/* COMPAT_FREEBSD14 */
1257 
1258 #ifndef _SYS_SYSPROTO_H_
1259 struct setgroups_args {
1260 	int	gidsetsize;
1261 	gid_t	*gidset;
1262 };
1263 #endif
1264 /* ARGSUSED */
1265 int
sys_setgroups(struct thread * td,struct setgroups_args * uap)1266 sys_setgroups(struct thread *td, struct setgroups_args *uap)
1267 {
1268 	gid_t smallgroups[CRED_SMALLGROUPS_NB];
1269 	gid_t *groups;
1270 	int gidsetsize, error;
1271 
1272 	/*
1273 	 * Sanity check size now to avoid passing too big a value to copyin(),
1274 	 * even if kern_setgroups() will do it again.
1275 	 *
1276 	 * Ideally, the 'gidsetsize' argument should have been a 'u_int' (and it
1277 	 * was, in this implementation, for a long time), but POSIX standardized
1278 	 * getgroups() to take an 'int' and it would be quite entrapping to have
1279 	 * setgroups() differ.
1280 	 */
1281 	gidsetsize = uap->gidsetsize;
1282 	if (gidsetsize > ngroups_max || gidsetsize < 0)
1283 		return (EINVAL);
1284 
1285 	if (gidsetsize > CRED_SMALLGROUPS_NB)
1286 		groups = malloc(gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK);
1287 	else
1288 		groups = smallgroups;
1289 
1290 	error = copyin(uap->gidset, groups, gidsetsize * sizeof(gid_t));
1291 	if (error == 0)
1292 		error = kern_setgroups(td, &gidsetsize, groups);
1293 
1294 	if (groups != smallgroups)
1295 		free(groups, M_TEMP);
1296 	return (error);
1297 }
1298 
1299 /*
1300  * CAUTION: This function normalizes 'groups', possibly also changing the value
1301  * of '*ngrpp' as a consequence.
1302  */
1303 int
kern_setgroups(struct thread * td,int * ngrpp,gid_t * groups)1304 kern_setgroups(struct thread *td, int *ngrpp, gid_t *groups)
1305 {
1306 	struct proc *p = td->td_proc;
1307 	struct ucred *newcred, *oldcred;
1308 	int ngrp, error;
1309 
1310 	ngrp = *ngrpp;
1311 	/* Sanity check size. */
1312 	if (ngrp < 0 || ngrp > ngroups_max)
1313 		return (EINVAL);
1314 
1315 	AUDIT_ARG_GROUPSET(groups, ngrp);
1316 
1317 	groups_normalize(&ngrp, groups);
1318 	*ngrpp = ngrp;
1319 
1320 	newcred = crget();
1321 	crextend(newcred, ngrp);
1322 	PROC_LOCK(p);
1323 	oldcred = crcopysafe(p, newcred);
1324 
1325 #ifdef MAC
1326 	/*
1327 	 * We pass NULL here explicitly if we don't have any supplementary
1328 	 * groups mostly for the sake of normalization, but also to avoid/detect
1329 	 * a situation where a MAC module has some assumption about the layout
1330 	 * of `groups` matching historical behavior.
1331 	 */
1332 	error = mac_cred_check_setgroups(oldcred, ngrp,
1333 	    ngrp == 0 ? NULL : groups);
1334 	if (error)
1335 		goto fail;
1336 #endif
1337 
1338 	error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS);
1339 	if (error)
1340 		goto fail;
1341 
1342 	crsetgroups_internal(newcred, ngrp, groups);
1343 	setsugid(p);
1344 	proc_set_cred(p, newcred);
1345 	PROC_UNLOCK(p);
1346 	crfree(oldcred);
1347 	return (0);
1348 
1349 fail:
1350 	PROC_UNLOCK(p);
1351 	crfree(newcred);
1352 	return (error);
1353 }
1354 
1355 #ifndef _SYS_SYSPROTO_H_
1356 struct setreuid_args {
1357 	uid_t	ruid;
1358 	uid_t	euid;
1359 };
1360 #endif
1361 /* ARGSUSED */
1362 int
sys_setreuid(struct thread * td,struct setreuid_args * uap)1363 sys_setreuid(struct thread *td, struct setreuid_args *uap)
1364 {
1365 	struct proc *p = td->td_proc;
1366 	struct ucred *newcred, *oldcred;
1367 	uid_t euid, ruid;
1368 	struct uidinfo *euip, *ruip;
1369 	int error;
1370 
1371 	euid = uap->euid;
1372 	ruid = uap->ruid;
1373 	AUDIT_ARG_EUID(euid);
1374 	AUDIT_ARG_RUID(ruid);
1375 	newcred = crget();
1376 	euip = uifind(euid);
1377 	ruip = uifind(ruid);
1378 	PROC_LOCK(p);
1379 	oldcred = crcopysafe(p, newcred);
1380 
1381 #ifdef MAC
1382 	error = mac_cred_check_setreuid(oldcred, ruid, euid);
1383 	if (error)
1384 		goto fail;
1385 #endif
1386 
1387 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
1388 	      ruid != oldcred->cr_svuid) ||
1389 	     (euid != (uid_t)-1 && euid != oldcred->cr_uid &&
1390 	      euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) &&
1391 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID)) != 0)
1392 		goto fail;
1393 
1394 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
1395 		change_euid(newcred, euip);
1396 		setsugid(p);
1397 	}
1398 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
1399 		change_ruid(newcred, ruip);
1400 		setsugid(p);
1401 	}
1402 	if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) &&
1403 	    newcred->cr_svuid != newcred->cr_uid) {
1404 		change_svuid(newcred, newcred->cr_uid);
1405 		setsugid(p);
1406 	}
1407 	proc_set_cred(p, newcred);
1408 #ifdef RACCT
1409 	racct_proc_ucred_changed(p, oldcred, newcred);
1410 #endif
1411 #ifdef RCTL
1412 	crhold(newcred);
1413 #endif
1414 	PROC_UNLOCK(p);
1415 #ifdef RCTL
1416 	rctl_proc_ucred_changed(p, newcred);
1417 	crfree(newcred);
1418 #endif
1419 	uifree(ruip);
1420 	uifree(euip);
1421 	crfree(oldcred);
1422 	return (0);
1423 
1424 fail:
1425 	PROC_UNLOCK(p);
1426 	uifree(ruip);
1427 	uifree(euip);
1428 	crfree(newcred);
1429 	return (error);
1430 }
1431 
1432 #ifndef _SYS_SYSPROTO_H_
1433 struct setregid_args {
1434 	gid_t	rgid;
1435 	gid_t	egid;
1436 };
1437 #endif
1438 /* ARGSUSED */
1439 int
sys_setregid(struct thread * td,struct setregid_args * uap)1440 sys_setregid(struct thread *td, struct setregid_args *uap)
1441 {
1442 	struct proc *p = td->td_proc;
1443 	struct ucred *newcred, *oldcred;
1444 	gid_t egid, rgid;
1445 	int error;
1446 
1447 	egid = uap->egid;
1448 	rgid = uap->rgid;
1449 	AUDIT_ARG_EGID(egid);
1450 	AUDIT_ARG_RGID(rgid);
1451 	newcred = crget();
1452 	PROC_LOCK(p);
1453 	oldcred = crcopysafe(p, newcred);
1454 
1455 #ifdef MAC
1456 	error = mac_cred_check_setregid(oldcred, rgid, egid);
1457 	if (error)
1458 		goto fail;
1459 #endif
1460 
1461 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
1462 	    rgid != oldcred->cr_svgid) ||
1463 	     (egid != (gid_t)-1 && egid != oldcred->cr_gid &&
1464 	     egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) &&
1465 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID)) != 0)
1466 		goto fail;
1467 
1468 	if (egid != (gid_t)-1 && oldcred->cr_gid != egid) {
1469 		change_egid(newcred, egid);
1470 		setsugid(p);
1471 	}
1472 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
1473 		change_rgid(newcred, rgid);
1474 		setsugid(p);
1475 	}
1476 	if ((rgid != (gid_t)-1 || newcred->cr_gid != newcred->cr_rgid) &&
1477 	    newcred->cr_svgid != newcred->cr_gid) {
1478 		change_svgid(newcred, newcred->cr_gid);
1479 		setsugid(p);
1480 	}
1481 	proc_set_cred(p, newcred);
1482 	PROC_UNLOCK(p);
1483 	crfree(oldcred);
1484 	return (0);
1485 
1486 fail:
1487 	PROC_UNLOCK(p);
1488 	crfree(newcred);
1489 	return (error);
1490 }
1491 
1492 /*
1493  * setresuid(ruid, euid, suid) is like setreuid except control over the saved
1494  * uid is explicit.
1495  */
1496 #ifndef _SYS_SYSPROTO_H_
1497 struct setresuid_args {
1498 	uid_t	ruid;
1499 	uid_t	euid;
1500 	uid_t	suid;
1501 };
1502 #endif
1503 /* ARGSUSED */
1504 int
sys_setresuid(struct thread * td,struct setresuid_args * uap)1505 sys_setresuid(struct thread *td, struct setresuid_args *uap)
1506 {
1507 	struct proc *p = td->td_proc;
1508 	struct ucred *newcred, *oldcred;
1509 	uid_t euid, ruid, suid;
1510 	struct uidinfo *euip, *ruip;
1511 	int error;
1512 
1513 	euid = uap->euid;
1514 	ruid = uap->ruid;
1515 	suid = uap->suid;
1516 	AUDIT_ARG_EUID(euid);
1517 	AUDIT_ARG_RUID(ruid);
1518 	AUDIT_ARG_SUID(suid);
1519 	newcred = crget();
1520 	euip = uifind(euid);
1521 	ruip = uifind(ruid);
1522 	PROC_LOCK(p);
1523 	oldcred = crcopysafe(p, newcred);
1524 
1525 #ifdef MAC
1526 	error = mac_cred_check_setresuid(oldcred, ruid, euid, suid);
1527 	if (error)
1528 		goto fail;
1529 #endif
1530 
1531 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
1532 	     ruid != oldcred->cr_svuid &&
1533 	      ruid != oldcred->cr_uid) ||
1534 	     (euid != (uid_t)-1 && euid != oldcred->cr_ruid &&
1535 	    euid != oldcred->cr_svuid &&
1536 	      euid != oldcred->cr_uid) ||
1537 	     (suid != (uid_t)-1 && suid != oldcred->cr_ruid &&
1538 	    suid != oldcred->cr_svuid &&
1539 	      suid != oldcred->cr_uid)) &&
1540 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID)) != 0)
1541 		goto fail;
1542 
1543 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
1544 		change_euid(newcred, euip);
1545 		setsugid(p);
1546 	}
1547 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
1548 		change_ruid(newcred, ruip);
1549 		setsugid(p);
1550 	}
1551 	if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) {
1552 		change_svuid(newcred, suid);
1553 		setsugid(p);
1554 	}
1555 	proc_set_cred(p, newcred);
1556 #ifdef RACCT
1557 	racct_proc_ucred_changed(p, oldcred, newcred);
1558 #endif
1559 #ifdef RCTL
1560 	crhold(newcred);
1561 #endif
1562 	PROC_UNLOCK(p);
1563 #ifdef RCTL
1564 	rctl_proc_ucred_changed(p, newcred);
1565 	crfree(newcred);
1566 #endif
1567 	uifree(ruip);
1568 	uifree(euip);
1569 	crfree(oldcred);
1570 	return (0);
1571 
1572 fail:
1573 	PROC_UNLOCK(p);
1574 	uifree(ruip);
1575 	uifree(euip);
1576 	crfree(newcred);
1577 	return (error);
1578 
1579 }
1580 
1581 /*
1582  * setresgid(rgid, egid, sgid) is like setregid except control over the saved
1583  * gid is explicit.
1584  */
1585 #ifndef _SYS_SYSPROTO_H_
1586 struct setresgid_args {
1587 	gid_t	rgid;
1588 	gid_t	egid;
1589 	gid_t	sgid;
1590 };
1591 #endif
1592 /* ARGSUSED */
1593 int
sys_setresgid(struct thread * td,struct setresgid_args * uap)1594 sys_setresgid(struct thread *td, struct setresgid_args *uap)
1595 {
1596 	struct proc *p = td->td_proc;
1597 	struct ucred *newcred, *oldcred;
1598 	gid_t egid, rgid, sgid;
1599 	int error;
1600 
1601 	egid = uap->egid;
1602 	rgid = uap->rgid;
1603 	sgid = uap->sgid;
1604 	AUDIT_ARG_EGID(egid);
1605 	AUDIT_ARG_RGID(rgid);
1606 	AUDIT_ARG_SGID(sgid);
1607 	newcred = crget();
1608 	PROC_LOCK(p);
1609 	oldcred = crcopysafe(p, newcred);
1610 
1611 #ifdef MAC
1612 	error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid);
1613 	if (error)
1614 		goto fail;
1615 #endif
1616 
1617 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
1618 	      rgid != oldcred->cr_svgid &&
1619 	      rgid != oldcred->cr_gid) ||
1620 	     (egid != (gid_t)-1 && egid != oldcred->cr_rgid &&
1621 	      egid != oldcred->cr_svgid &&
1622 	      egid != oldcred->cr_gid) ||
1623 	     (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid &&
1624 	      sgid != oldcred->cr_svgid &&
1625 	      sgid != oldcred->cr_gid)) &&
1626 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID)) != 0)
1627 		goto fail;
1628 
1629 	if (egid != (gid_t)-1 && oldcred->cr_gid != egid) {
1630 		change_egid(newcred, egid);
1631 		setsugid(p);
1632 	}
1633 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
1634 		change_rgid(newcred, rgid);
1635 		setsugid(p);
1636 	}
1637 	if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) {
1638 		change_svgid(newcred, sgid);
1639 		setsugid(p);
1640 	}
1641 	proc_set_cred(p, newcred);
1642 	PROC_UNLOCK(p);
1643 	crfree(oldcred);
1644 	return (0);
1645 
1646 fail:
1647 	PROC_UNLOCK(p);
1648 	crfree(newcred);
1649 	return (error);
1650 }
1651 
1652 #ifndef _SYS_SYSPROTO_H_
1653 struct getresuid_args {
1654 	uid_t	*ruid;
1655 	uid_t	*euid;
1656 	uid_t	*suid;
1657 };
1658 #endif
1659 /* ARGSUSED */
1660 int
sys_getresuid(struct thread * td,struct getresuid_args * uap)1661 sys_getresuid(struct thread *td, struct getresuid_args *uap)
1662 {
1663 	struct ucred *cred;
1664 	int error1 = 0, error2 = 0, error3 = 0;
1665 
1666 	cred = td->td_ucred;
1667 	if (uap->ruid)
1668 		error1 = copyout(&cred->cr_ruid,
1669 		    uap->ruid, sizeof(cred->cr_ruid));
1670 	if (uap->euid)
1671 		error2 = copyout(&cred->cr_uid,
1672 		    uap->euid, sizeof(cred->cr_uid));
1673 	if (uap->suid)
1674 		error3 = copyout(&cred->cr_svuid,
1675 		    uap->suid, sizeof(cred->cr_svuid));
1676 	return (error1 ? error1 : error2 ? error2 : error3);
1677 }
1678 
1679 #ifndef _SYS_SYSPROTO_H_
1680 struct getresgid_args {
1681 	gid_t	*rgid;
1682 	gid_t	*egid;
1683 	gid_t	*sgid;
1684 };
1685 #endif
1686 /* ARGSUSED */
1687 int
sys_getresgid(struct thread * td,struct getresgid_args * uap)1688 sys_getresgid(struct thread *td, struct getresgid_args *uap)
1689 {
1690 	struct ucred *cred;
1691 	int error1 = 0, error2 = 0, error3 = 0;
1692 
1693 	cred = td->td_ucred;
1694 	if (uap->rgid)
1695 		error1 = copyout(&cred->cr_rgid,
1696 		    uap->rgid, sizeof(cred->cr_rgid));
1697 	if (uap->egid)
1698 		error2 = copyout(&cred->cr_gid,
1699 		    uap->egid, sizeof(cred->cr_gid));
1700 	if (uap->sgid)
1701 		error3 = copyout(&cred->cr_svgid,
1702 		    uap->sgid, sizeof(cred->cr_svgid));
1703 	return (error1 ? error1 : error2 ? error2 : error3);
1704 }
1705 
1706 #ifndef _SYS_SYSPROTO_H_
1707 struct issetugid_args {
1708 	int dummy;
1709 };
1710 #endif
1711 /* ARGSUSED */
1712 int
sys_issetugid(struct thread * td,struct issetugid_args * uap)1713 sys_issetugid(struct thread *td, struct issetugid_args *uap)
1714 {
1715 	struct proc *p = td->td_proc;
1716 
1717 	/*
1718 	 * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time,
1719 	 * we use P_SUGID because we consider changing the owners as
1720 	 * "tainting" as well.
1721 	 * This is significant for procs that start as root and "become"
1722 	 * a user without an exec - programs cannot know *everything*
1723 	 * that libc *might* have put in their data segment.
1724 	 */
1725 	td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0;
1726 	return (0);
1727 }
1728 
1729 int
sys___setugid(struct thread * td,struct __setugid_args * uap)1730 sys___setugid(struct thread *td, struct __setugid_args *uap)
1731 {
1732 #ifdef REGRESSION
1733 	struct proc *p;
1734 
1735 	p = td->td_proc;
1736 	switch (uap->flag) {
1737 	case 0:
1738 		PROC_LOCK(p);
1739 		p->p_flag &= ~P_SUGID;
1740 		PROC_UNLOCK(p);
1741 		return (0);
1742 	case 1:
1743 		PROC_LOCK(p);
1744 		p->p_flag |= P_SUGID;
1745 		PROC_UNLOCK(p);
1746 		return (0);
1747 	default:
1748 		return (EINVAL);
1749 	}
1750 #else /* !REGRESSION */
1751 
1752 	return (ENOSYS);
1753 #endif /* REGRESSION */
1754 }
1755 
1756 #ifdef INVARIANTS
1757 static void
groups_check_normalized(int ngrp,const gid_t * groups)1758 groups_check_normalized(int ngrp, const gid_t *groups)
1759 {
1760 	gid_t prev_g;
1761 
1762 	groups_check_positive_len(ngrp);
1763 	groups_check_max_len(ngrp);
1764 
1765 	if (ngrp <= 1)
1766 		return;
1767 
1768 	prev_g = groups[0];
1769 	for (int i = 1; i < ngrp; ++i) {
1770 		const gid_t g = groups[i];
1771 
1772 		if (prev_g >= g)
1773 			panic("%s: groups[%d] (%u) >= groups[%d] (%u)",
1774 			    __func__, i - 1, prev_g, i, g);
1775 		prev_g = g;
1776 	}
1777 }
1778 #else
1779 #define groups_check_normalized(...)
1780 #endif
1781 
1782 /*
1783  * Returns whether gid designates a supplementary group in cred.
1784  */
1785 bool
group_is_supplementary(const gid_t gid,const struct ucred * const cred)1786 group_is_supplementary(const gid_t gid, const struct ucred *const cred)
1787 {
1788 
1789 	groups_check_normalized(cred->cr_ngroups, cred->cr_groups);
1790 
1791 	/*
1792 	 * Perform a binary search of the supplementary groups.  This is
1793 	 * possible because we sort the groups in crsetgroups().
1794 	 */
1795 	return (bsearch(&gid, cred->cr_groups, cred->cr_ngroups,
1796 	    sizeof(gid), gidp_cmp) != NULL);
1797 }
1798 
1799 /*
1800  * Check if gid is a member of the (effective) group set (i.e., effective and
1801  * supplementary groups).
1802  */
1803 bool
groupmember(gid_t gid,const struct ucred * cred)1804 groupmember(gid_t gid, const struct ucred *cred)
1805 {
1806 
1807 	groups_check_positive_len(cred->cr_ngroups);
1808 
1809 	if (gid == cred->cr_gid)
1810 		return (true);
1811 
1812 	return (group_is_supplementary(gid, cred));
1813 }
1814 
1815 /*
1816  * Check if gid is a member of the real group set (i.e., real and supplementary
1817  * groups).
1818  */
1819 bool
realgroupmember(gid_t gid,const struct ucred * cred)1820 realgroupmember(gid_t gid, const struct ucred *cred)
1821 {
1822 	groups_check_positive_len(cred->cr_ngroups);
1823 
1824 	if (gid == cred->cr_rgid)
1825 		return (true);
1826 
1827 	return (group_is_supplementary(gid, cred));
1828 }
1829 
1830 /*
1831  * Test the active securelevel against a given level.  securelevel_gt()
1832  * implements (securelevel > level).  securelevel_ge() implements
1833  * (securelevel >= level).  Note that the logic is inverted -- these
1834  * functions return EPERM on "success" and 0 on "failure".
1835  *
1836  * Due to care taken when setting the securelevel, we know that no jail will
1837  * be less secure that its parent (or the physical system), so it is sufficient
1838  * to test the current jail only.
1839  *
1840  * XXXRW: Possibly since this has to do with privilege, it should move to
1841  * kern_priv.c.
1842  */
1843 int
securelevel_gt(struct ucred * cr,int level)1844 securelevel_gt(struct ucred *cr, int level)
1845 {
1846 
1847 	return (cr->cr_prison->pr_securelevel > level ? EPERM : 0);
1848 }
1849 
1850 int
securelevel_ge(struct ucred * cr,int level)1851 securelevel_ge(struct ucred *cr, int level)
1852 {
1853 
1854 	return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0);
1855 }
1856 
1857 /*
1858  * 'see_other_uids' determines whether or not visibility of processes
1859  * and sockets with credentials holding different real uids is possible
1860  * using a variety of system MIBs.
1861  * XXX: data declarations should be together near the beginning of the file.
1862  */
1863 static int	see_other_uids = 1;
1864 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW,
1865     &see_other_uids, 0,
1866     "Unprivileged processes may see subjects/objects with different real uid");
1867 
1868 /*-
1869  * Determine if u1 "can see" the subject specified by u2, according to the
1870  * 'see_other_uids' policy.
1871  * Returns: 0 for permitted, ESRCH otherwise
1872  * Locks: none
1873  * References: *u1 and *u2 must not change during the call
1874  *             u1 may equal u2, in which case only one reference is required
1875  */
1876 static int
cr_canseeotheruids(struct ucred * u1,struct ucred * u2)1877 cr_canseeotheruids(struct ucred *u1, struct ucred *u2)
1878 {
1879 
1880 	if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) {
1881 		if (priv_check_cred(u1, PRIV_SEEOTHERUIDS) != 0)
1882 			return (ESRCH);
1883 	}
1884 	return (0);
1885 }
1886 
1887 /*
1888  * 'see_other_gids' determines whether or not visibility of processes
1889  * and sockets with credentials holding different real gids is possible
1890  * using a variety of system MIBs.
1891  * XXX: data declarations should be together near the beginning of the file.
1892  */
1893 static int	see_other_gids = 1;
1894 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW,
1895     &see_other_gids, 0,
1896     "Unprivileged processes may see subjects/objects with different real gid");
1897 
1898 /*
1899  * Determine if u1 can "see" the subject specified by u2, according to the
1900  * 'see_other_gids' policy.
1901  * Returns: 0 for permitted, ESRCH otherwise
1902  * Locks: none
1903  * References: *u1 and *u2 must not change during the call
1904  *             u1 may equal u2, in which case only one reference is required
1905  */
1906 static int
cr_canseeothergids(struct ucred * u1,struct ucred * u2)1907 cr_canseeothergids(struct ucred *u1, struct ucred *u2)
1908 {
1909 	if (see_other_gids)
1910 		return (0);
1911 
1912 	/* Restriction in force. */
1913 
1914 	if (realgroupmember(u1->cr_rgid, u2))
1915 		return (0);
1916 
1917 	for (int i = 0; i < u1->cr_ngroups; i++)
1918 		if (realgroupmember(u1->cr_groups[i], u2))
1919 			return (0);
1920 
1921 	if (priv_check_cred(u1, PRIV_SEEOTHERGIDS) == 0)
1922 		return (0);
1923 
1924 	return (ESRCH);
1925 }
1926 
1927 /*
1928  * 'see_jail_proc' determines whether or not visibility of processes and
1929  * sockets with credentials holding different jail ids is possible using a
1930  * variety of system MIBs.
1931  *
1932  * XXX: data declarations should be together near the beginning of the file.
1933  */
1934 
1935 static int	see_jail_proc = 1;
1936 SYSCTL_INT(_security_bsd, OID_AUTO, see_jail_proc, CTLFLAG_RW,
1937     &see_jail_proc, 0,
1938     "Unprivileged processes may see subjects/objects with different jail ids");
1939 
1940 /*-
1941  * Determine if u1 "can see" the subject specified by u2, according to the
1942  * 'see_jail_proc' policy.
1943  * Returns: 0 for permitted, ESRCH otherwise
1944  * Locks: none
1945  * References: *u1 and *u2 must not change during the call
1946  *             u1 may equal u2, in which case only one reference is required
1947  */
1948 static int
cr_canseejailproc(struct ucred * u1,struct ucred * u2)1949 cr_canseejailproc(struct ucred *u1, struct ucred *u2)
1950 {
1951 	if (see_jail_proc || /* Policy deactivated. */
1952 	    u1->cr_prison == u2->cr_prison || /* Same jail. */
1953 	    priv_check_cred(u1, PRIV_SEEJAILPROC) == 0) /* Privileged. */
1954 		return (0);
1955 
1956 	return (ESRCH);
1957 }
1958 
1959 /*
1960  * Determine if u1 can tamper with the subject specified by u2, if they are in
1961  * different jails and 'unprivileged_parent_tampering' jail policy allows it.
1962  *
1963  * May be called if u1 and u2 are in the same jail, but it is expected that the
1964  * caller has already done a prison_check() prior to calling it.
1965  *
1966  * Returns: 0 for permitted, EPERM otherwise
1967  */
1968 static int
cr_can_tamper_with_subjail(struct ucred * u1,struct ucred * u2,int priv)1969 cr_can_tamper_with_subjail(struct ucred *u1, struct ucred *u2, int priv)
1970 {
1971 
1972 	MPASS(prison_check(u1, u2) == 0);
1973 	if (u1->cr_prison == u2->cr_prison)
1974 		return (0);
1975 
1976 	if (priv_check_cred(u1, priv) == 0)
1977 		return (0);
1978 
1979 	/*
1980 	 * Jails do not maintain a distinct UID space, so process visibility is
1981 	 * all that would control an unprivileged process' ability to tamper
1982 	 * with a process in a subjail by default if we did not have the
1983 	 * allow.unprivileged_parent_tampering knob to restrict it by default.
1984 	 */
1985 	if (prison_allow(u2, PR_ALLOW_UNPRIV_PARENT_TAMPER))
1986 		return (0);
1987 
1988 	return (EPERM);
1989 }
1990 
1991 /*
1992  * Helper for cr_cansee*() functions to abide by system-wide security.bsd.see_*
1993  * policies.  Determines if u1 "can see" u2 according to these policies.
1994  * Returns: 0 for permitted, ESRCH otherwise
1995  */
1996 int
cr_bsd_visible(struct ucred * u1,struct ucred * u2)1997 cr_bsd_visible(struct ucred *u1, struct ucred *u2)
1998 {
1999 	int error;
2000 
2001 	error = cr_canseeotheruids(u1, u2);
2002 	if (error != 0)
2003 		return (error);
2004 	error = cr_canseeothergids(u1, u2);
2005 	if (error != 0)
2006 		return (error);
2007 	error = cr_canseejailproc(u1, u2);
2008 	if (error != 0)
2009 		return (error);
2010 	return (0);
2011 }
2012 
2013 /*-
2014  * Determine if u1 "can see" the subject specified by u2.
2015  * Returns: 0 for permitted, an errno value otherwise
2016  * Locks: none
2017  * References: *u1 and *u2 must not change during the call
2018  *             u1 may equal u2, in which case only one reference is required
2019  */
2020 int
cr_cansee(struct ucred * u1,struct ucred * u2)2021 cr_cansee(struct ucred *u1, struct ucred *u2)
2022 {
2023 	int error;
2024 
2025 	if ((error = prison_check(u1, u2)))
2026 		return (error);
2027 #ifdef MAC
2028 	if ((error = mac_cred_check_visible(u1, u2)))
2029 		return (error);
2030 #endif
2031 	if ((error = cr_bsd_visible(u1, u2)))
2032 		return (error);
2033 	return (0);
2034 }
2035 
2036 /*-
2037  * Determine if td "can see" the subject specified by p.
2038  * Returns: 0 for permitted, an errno value otherwise
2039  * Locks: Sufficient locks to protect p->p_ucred must be held.  td really
2040  *        should be curthread.
2041  * References: td and p must be valid for the lifetime of the call
2042  */
2043 int
p_cansee(struct thread * td,struct proc * p)2044 p_cansee(struct thread *td, struct proc *p)
2045 {
2046 	/* Wrap cr_cansee() for all functionality. */
2047 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
2048 	PROC_LOCK_ASSERT(p, MA_OWNED);
2049 
2050 	if (td->td_proc == p)
2051 		return (0);
2052 	return (cr_cansee(td->td_ucred, p->p_ucred));
2053 }
2054 
2055 /*
2056  * 'conservative_signals' prevents the delivery of a broad class of
2057  * signals by unprivileged processes to processes that have changed their
2058  * credentials since the last invocation of execve().  This can prevent
2059  * the leakage of cached information or retained privileges as a result
2060  * of a common class of signal-related vulnerabilities.  However, this
2061  * may interfere with some applications that expect to be able to
2062  * deliver these signals to peer processes after having given up
2063  * privilege.
2064  */
2065 static int	conservative_signals = 1;
2066 SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW,
2067     &conservative_signals, 0, "Unprivileged processes prevented from "
2068     "sending certain signals to processes whose credentials have changed");
2069 /*-
2070  * Determine whether cred may deliver the specified signal to proc.
2071  * Returns: 0 for permitted, an errno value otherwise.
2072  * Locks: A lock must be held for proc.
2073  * References: cred and proc must be valid for the lifetime of the call.
2074  */
2075 int
cr_cansignal(struct ucred * cred,struct proc * proc,int signum)2076 cr_cansignal(struct ucred *cred, struct proc *proc, int signum)
2077 {
2078 	int error;
2079 
2080 	PROC_LOCK_ASSERT(proc, MA_OWNED);
2081 	/*
2082 	 * Jail semantics limit the scope of signalling to proc in the
2083 	 * same jail as cred, if cred is in jail.
2084 	 */
2085 	error = prison_check(cred, proc->p_ucred);
2086 	if (error)
2087 		return (error);
2088 #ifdef MAC
2089 	if ((error = mac_proc_check_signal(cred, proc, signum)))
2090 		return (error);
2091 #endif
2092 	if ((error = cr_bsd_visible(cred, proc->p_ucred)))
2093 		return (error);
2094 
2095 	/*
2096 	 * UNIX signal semantics depend on the status of the P_SUGID
2097 	 * bit on the target process.  If the bit is set, then additional
2098 	 * restrictions are placed on the set of available signals.
2099 	 */
2100 	if (conservative_signals && (proc->p_flag & P_SUGID)) {
2101 		switch (signum) {
2102 		case 0:
2103 		case SIGKILL:
2104 		case SIGINT:
2105 		case SIGTERM:
2106 		case SIGALRM:
2107 		case SIGSTOP:
2108 		case SIGTTIN:
2109 		case SIGTTOU:
2110 		case SIGTSTP:
2111 		case SIGHUP:
2112 		case SIGUSR1:
2113 		case SIGUSR2:
2114 			/*
2115 			 * Generally, permit job and terminal control
2116 			 * signals.
2117 			 */
2118 			break;
2119 		default:
2120 			/* Not permitted without privilege. */
2121 			error = priv_check_cred(cred, PRIV_SIGNAL_SUGID);
2122 			if (error)
2123 				return (error);
2124 		}
2125 	}
2126 
2127 	/*
2128 	 * Generally, the target credential's ruid or svuid must match the
2129 	 * subject credential's ruid or euid.
2130 	 */
2131 	if (cred->cr_ruid != proc->p_ucred->cr_ruid &&
2132 	    cred->cr_ruid != proc->p_ucred->cr_svuid &&
2133 	    cred->cr_uid != proc->p_ucred->cr_ruid &&
2134 	    cred->cr_uid != proc->p_ucred->cr_svuid) {
2135 		error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED);
2136 		if (error)
2137 			return (error);
2138 	}
2139 
2140 	/*
2141 	 * At this point, the target may be in a different jail than the
2142 	 * subject -- the subject must be in a parent jail to the target,
2143 	 * whether it is prison0 or a subordinate of prison0 that has
2144 	 * children.  Additional privileges are required to allow this, as
2145 	 * whether the creds are truly equivalent or not must be determined on
2146 	 * a case-by-case basis.
2147 	 */
2148 	error = cr_can_tamper_with_subjail(cred, proc->p_ucred,
2149 	    PRIV_SIGNAL_DIFFJAIL);
2150 	if (error)
2151 		return (error);
2152 
2153 	return (0);
2154 }
2155 
2156 /*-
2157  * Determine whether td may deliver the specified signal to p.
2158  * Returns: 0 for permitted, an errno value otherwise
2159  * Locks: Sufficient locks to protect various components of td and p
2160  *        must be held.  td must be curthread, and a lock must be
2161  *        held for p.
2162  * References: td and p must be valid for the lifetime of the call
2163  */
2164 int
p_cansignal(struct thread * td,struct proc * p,int signum)2165 p_cansignal(struct thread *td, struct proc *p, int signum)
2166 {
2167 
2168 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
2169 	PROC_LOCK_ASSERT(p, MA_OWNED);
2170 	if (td->td_proc == p)
2171 		return (0);
2172 
2173 	/*
2174 	 * UNIX signalling semantics require that processes in the same
2175 	 * session always be able to deliver SIGCONT to one another,
2176 	 * overriding the remaining protections.
2177 	 */
2178 	/* XXX: This will require an additional lock of some sort. */
2179 	if (signum == SIGCONT && td->td_proc->p_session == p->p_session)
2180 		return (0);
2181 	/*
2182 	 * Some compat layers use SIGTHR and higher signals for
2183 	 * communication between different kernel threads of the same
2184 	 * process, so that they expect that it's always possible to
2185 	 * deliver them, even for suid applications where cr_cansignal() can
2186 	 * deny such ability for security consideration.  It should be
2187 	 * pretty safe to do since the only way to create two processes
2188 	 * with the same p_leader is via rfork(2).
2189 	 */
2190 	if (td->td_proc->p_leader != NULL && signum >= SIGTHR &&
2191 	    signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader)
2192 		return (0);
2193 
2194 	return (cr_cansignal(td->td_ucred, p, signum));
2195 }
2196 
2197 /*-
2198  * Determine whether td may reschedule p.
2199  * Returns: 0 for permitted, an errno value otherwise
2200  * Locks: Sufficient locks to protect various components of td and p
2201  *        must be held.  td must be curthread, and a lock must
2202  *        be held for p.
2203  * References: td and p must be valid for the lifetime of the call
2204  */
2205 int
p_cansched(struct thread * td,struct proc * p)2206 p_cansched(struct thread *td, struct proc *p)
2207 {
2208 	int error;
2209 
2210 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
2211 	PROC_LOCK_ASSERT(p, MA_OWNED);
2212 	if (td->td_proc == p)
2213 		return (0);
2214 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
2215 		return (error);
2216 #ifdef MAC
2217 	if ((error = mac_proc_check_sched(td->td_ucred, p)))
2218 		return (error);
2219 #endif
2220 	if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred)))
2221 		return (error);
2222 
2223 	if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid &&
2224 	    td->td_ucred->cr_uid != p->p_ucred->cr_ruid) {
2225 		error = priv_check(td, PRIV_SCHED_DIFFCRED);
2226 		if (error)
2227 			return (error);
2228 	}
2229 
2230 	error = cr_can_tamper_with_subjail(td->td_ucred, p->p_ucred,
2231 	    PRIV_SCHED_DIFFJAIL);
2232 	if (error)
2233 		return (error);
2234 
2235 	return (0);
2236 }
2237 
2238 /*
2239  * Handle getting or setting the prison's unprivileged_proc_debug
2240  * value.
2241  */
2242 static int
sysctl_unprivileged_proc_debug(SYSCTL_HANDLER_ARGS)2243 sysctl_unprivileged_proc_debug(SYSCTL_HANDLER_ARGS)
2244 {
2245 	int error, val;
2246 
2247 	val = prison_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG);
2248 	error = sysctl_handle_int(oidp, &val, 0, req);
2249 	if (error != 0 || req->newptr == NULL)
2250 		return (error);
2251 	if (val != 0 && val != 1)
2252 		return (EINVAL);
2253 	prison_set_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG, val);
2254 	return (0);
2255 }
2256 
2257 /*
2258  * The 'unprivileged_proc_debug' flag may be used to disable a variety of
2259  * unprivileged inter-process debugging services, including some procfs
2260  * functionality, ptrace(), and ktrace().  In the past, inter-process
2261  * debugging has been involved in a variety of security problems, and sites
2262  * not requiring the service might choose to disable it when hardening
2263  * systems.
2264  */
2265 SYSCTL_PROC(_security_bsd, OID_AUTO, unprivileged_proc_debug,
2266     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_SECURE |
2267     CTLFLAG_MPSAFE, 0, 0, sysctl_unprivileged_proc_debug, "I",
2268     "Unprivileged processes may use process debugging facilities");
2269 
2270 /*
2271  * Return true if the object owner/group ids are subset of the active
2272  * credentials.
2273  */
2274 bool
cr_xids_subset(struct ucred * active_cred,struct ucred * obj_cred)2275 cr_xids_subset(struct ucred *active_cred, struct ucred *obj_cred)
2276 {
2277 	int i;
2278 	bool grpsubset, uidsubset;
2279 
2280 	/*
2281 	 * Is p's group set a subset of td's effective group set?  This
2282 	 * includes p's egid, group access list, rgid, and svgid.
2283 	 */
2284 	grpsubset = true;
2285 	for (i = 0; i < obj_cred->cr_ngroups; i++) {
2286 		if (!groupmember(obj_cred->cr_groups[i], active_cred)) {
2287 			grpsubset = false;
2288 			break;
2289 		}
2290 	}
2291 	grpsubset = grpsubset &&
2292 	    groupmember(obj_cred->cr_gid, active_cred) &&
2293 	    groupmember(obj_cred->cr_rgid, active_cred) &&
2294 	    groupmember(obj_cred->cr_svgid, active_cred);
2295 
2296 	/*
2297 	 * Are the uids present in obj_cred's credential equal to
2298 	 * active_cred's effective uid?  This includes obj_cred's
2299 	 * euid, svuid, and ruid.
2300 	 */
2301 	uidsubset = (active_cred->cr_uid == obj_cred->cr_uid &&
2302 	    active_cred->cr_uid == obj_cred->cr_svuid &&
2303 	    active_cred->cr_uid == obj_cred->cr_ruid);
2304 
2305 	return (uidsubset && grpsubset);
2306 }
2307 
2308 /*-
2309  * Determine whether td may debug p.
2310  * Returns: 0 for permitted, an errno value otherwise
2311  * Locks: Sufficient locks to protect various components of td and p
2312  *        must be held.  td must be curthread, and a lock must
2313  *        be held for p.
2314  * References: td and p must be valid for the lifetime of the call
2315  */
2316 int
p_candebug(struct thread * td,struct proc * p)2317 p_candebug(struct thread *td, struct proc *p)
2318 {
2319 	int error;
2320 
2321 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
2322 	PROC_LOCK_ASSERT(p, MA_OWNED);
2323 	if (td->td_proc == p)
2324 		return (0);
2325 	if ((error = priv_check(td, PRIV_DEBUG_UNPRIV)))
2326 		return (error);
2327 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
2328 		return (error);
2329 #ifdef MAC
2330 	if ((error = mac_proc_check_debug(td->td_ucred, p)))
2331 		return (error);
2332 #endif
2333 	if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred)))
2334 		return (error);
2335 
2336 	/*
2337 	 * If p's gids aren't a subset, or the uids aren't a subset,
2338 	 * or the credential has changed, require appropriate privilege
2339 	 * for td to debug p.
2340 	 */
2341 	if (!cr_xids_subset(td->td_ucred, p->p_ucred)) {
2342 		error = priv_check(td, PRIV_DEBUG_DIFFCRED);
2343 		if (error)
2344 			return (error);
2345 	}
2346 
2347 	/*
2348 	 * Has the credential of the process changed since the last exec()?
2349 	 */
2350 	if ((p->p_flag & P_SUGID) != 0) {
2351 		error = priv_check(td, PRIV_DEBUG_SUGID);
2352 		if (error)
2353 			return (error);
2354 	}
2355 
2356 	error = cr_can_tamper_with_subjail(td->td_ucred, p->p_ucred,
2357 	    PRIV_DEBUG_DIFFJAIL);
2358 	if (error)
2359 		return (error);
2360 
2361 	/* Can't trace init when securelevel > 0. */
2362 	if (p == initproc) {
2363 		error = securelevel_gt(td->td_ucred, 0);
2364 		if (error)
2365 			return (error);
2366 	}
2367 
2368 	/*
2369 	 * Can't trace a process that's currently exec'ing.
2370 	 *
2371 	 * XXX: Note, this is not a security policy decision, it's a
2372 	 * basic correctness/functionality decision.  Therefore, this check
2373 	 * should be moved to the caller's of p_candebug().
2374 	 */
2375 	if ((p->p_flag & P_INEXEC) != 0)
2376 		return (EBUSY);
2377 
2378 	/* Denied explicitly */
2379 	if ((p->p_flag2 & P2_NOTRACE) != 0) {
2380 		error = priv_check(td, PRIV_DEBUG_DENIED);
2381 		if (error != 0)
2382 			return (error);
2383 	}
2384 
2385 	return (0);
2386 }
2387 
2388 /*-
2389  * Determine whether the subject represented by cred can "see" a socket.
2390  * Returns: 0 for permitted, ENOENT otherwise.
2391  */
2392 int
cr_canseesocket(struct ucred * cred,struct socket * so)2393 cr_canseesocket(struct ucred *cred, struct socket *so)
2394 {
2395 	int error;
2396 
2397 	error = prison_check(cred, so->so_cred);
2398 	if (error)
2399 		return (ENOENT);
2400 #ifdef MAC
2401 	error = mac_socket_check_visible(cred, so);
2402 	if (error)
2403 		return (error);
2404 #endif
2405 	if (cr_bsd_visible(cred, so->so_cred))
2406 		return (ENOENT);
2407 
2408 	return (0);
2409 }
2410 
2411 /*-
2412  * Determine whether td can wait for the exit of p.
2413  * Returns: 0 for permitted, an errno value otherwise
2414  * Locks: Sufficient locks to protect various components of td and p
2415  *        must be held.  td must be curthread, and a lock must
2416  *        be held for p.
2417  * References: td and p must be valid for the lifetime of the call
2418 
2419  */
2420 int
p_canwait(struct thread * td,struct proc * p)2421 p_canwait(struct thread *td, struct proc *p)
2422 {
2423 	int error;
2424 
2425 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
2426 	PROC_LOCK_ASSERT(p, MA_OWNED);
2427 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
2428 		return (error);
2429 #ifdef MAC
2430 	if ((error = mac_proc_check_wait(td->td_ucred, p)))
2431 		return (error);
2432 #endif
2433 #if 0
2434 	/* XXXMAC: This could have odd effects on some shells. */
2435 	if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred)))
2436 		return (error);
2437 #endif
2438 
2439 	return (0);
2440 }
2441 
2442 /*
2443  * Credential management.
2444  *
2445  * struct ucred objects are rarely allocated but gain and lose references all
2446  * the time (e.g., on struct file alloc/dealloc) turning refcount updates into
2447  * a significant source of cache-line ping ponging. Common cases are worked
2448  * around by modifying thread-local counter instead if the cred to operate on
2449  * matches td_realucred.
2450  *
2451  * The counter is split into 2 parts:
2452  * - cr_users -- total count of all struct proc and struct thread objects
2453  *   which have given cred in p_ucred and td_ucred respectively
2454  * - cr_ref -- the actual ref count, only valid if cr_users == 0
2455  *
2456  * If users == 0 then cr_ref behaves similarly to refcount(9), in particular if
2457  * the count reaches 0 the object is freeable.
2458  * If users > 0 and curthread->td_realucred == cred, then updates are performed
2459  * against td_ucredref.
2460  * In other cases updates are performed against cr_ref.
2461  *
2462  * Changing td_realucred into something else decrements cr_users and transfers
2463  * accumulated updates.
2464  */
2465 struct ucred *
crcowget(struct ucred * cr)2466 crcowget(struct ucred *cr)
2467 {
2468 
2469 	mtx_lock(&cr->cr_mtx);
2470 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2471 	    __func__, cr->cr_users, cr));
2472 	cr->cr_users++;
2473 	cr->cr_ref++;
2474 	mtx_unlock(&cr->cr_mtx);
2475 	return (cr);
2476 }
2477 
2478 static struct ucred *
crunuse(struct thread * td)2479 crunuse(struct thread *td)
2480 {
2481 	struct ucred *cr, *crold;
2482 
2483 	MPASS(td->td_realucred == td->td_ucred);
2484 	cr = td->td_realucred;
2485 	mtx_lock(&cr->cr_mtx);
2486 	cr->cr_ref += td->td_ucredref;
2487 	td->td_ucredref = 0;
2488 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2489 	    __func__, cr->cr_users, cr));
2490 	cr->cr_users--;
2491 	if (cr->cr_users == 0) {
2492 		KASSERT(cr->cr_ref > 0, ("%s: ref %ld not > 0 on cred %p",
2493 		    __func__, cr->cr_ref, cr));
2494 		crold = cr;
2495 	} else {
2496 		cr->cr_ref--;
2497 		crold = NULL;
2498 	}
2499 	mtx_unlock(&cr->cr_mtx);
2500 	td->td_realucred = NULL;
2501 	return (crold);
2502 }
2503 
2504 static void
crunusebatch(struct ucred * cr,u_int users,long ref)2505 crunusebatch(struct ucred *cr, u_int users, long ref)
2506 {
2507 
2508 	KASSERT(users > 0, ("%s: passed users %d not > 0 ; cred %p",
2509 	    __func__, users, cr));
2510 	mtx_lock(&cr->cr_mtx);
2511 	KASSERT(cr->cr_users >= users, ("%s: users %d not > %d on cred %p",
2512 	    __func__, cr->cr_users, users, cr));
2513 	cr->cr_users -= users;
2514 	cr->cr_ref += ref;
2515 	cr->cr_ref -= users;
2516 	if (cr->cr_users > 0) {
2517 		mtx_unlock(&cr->cr_mtx);
2518 		return;
2519 	}
2520 	KASSERT(cr->cr_ref >= 0, ("%s: ref %ld not >= 0 on cred %p",
2521 	    __func__, cr->cr_ref, cr));
2522 	if (cr->cr_ref > 0) {
2523 		mtx_unlock(&cr->cr_mtx);
2524 		return;
2525 	}
2526 	crfree_final(cr);
2527 }
2528 
2529 void
crcowfree(struct thread * td)2530 crcowfree(struct thread *td)
2531 {
2532 	struct ucred *cr;
2533 
2534 	cr = crunuse(td);
2535 	if (cr != NULL)
2536 		crfree(cr);
2537 }
2538 
2539 struct ucred *
crcowsync(void)2540 crcowsync(void)
2541 {
2542 	struct thread *td;
2543 	struct proc *p;
2544 	struct ucred *crnew, *crold;
2545 
2546 	td = curthread;
2547 	p = td->td_proc;
2548 	PROC_LOCK_ASSERT(p, MA_OWNED);
2549 
2550 	MPASS(td->td_realucred == td->td_ucred);
2551 	if (td->td_realucred == p->p_ucred)
2552 		return (NULL);
2553 
2554 	crnew = crcowget(p->p_ucred);
2555 	crold = crunuse(td);
2556 	td->td_realucred = crnew;
2557 	td->td_ucred = td->td_realucred;
2558 	return (crold);
2559 }
2560 
2561 /*
2562  * Batching.
2563  */
2564 void
credbatch_add(struct credbatch * crb,struct thread * td)2565 credbatch_add(struct credbatch *crb, struct thread *td)
2566 {
2567 	struct ucred *cr;
2568 
2569 	MPASS(td->td_realucred != NULL);
2570 	MPASS(td->td_realucred == td->td_ucred);
2571 	MPASS(TD_GET_STATE(td) == TDS_INACTIVE);
2572 	cr = td->td_realucred;
2573 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2574 	    __func__, cr->cr_users, cr));
2575 	if (crb->cred != cr) {
2576 		if (crb->users > 0) {
2577 			MPASS(crb->cred != NULL);
2578 			crunusebatch(crb->cred, crb->users, crb->ref);
2579 			crb->users = 0;
2580 			crb->ref = 0;
2581 		}
2582 	}
2583 	crb->cred = cr;
2584 	crb->users++;
2585 	crb->ref += td->td_ucredref;
2586 	td->td_ucredref = 0;
2587 	td->td_realucred = NULL;
2588 }
2589 
2590 void
credbatch_final(struct credbatch * crb)2591 credbatch_final(struct credbatch *crb)
2592 {
2593 
2594 	MPASS(crb->cred != NULL);
2595 	MPASS(crb->users > 0);
2596 	crunusebatch(crb->cred, crb->users, crb->ref);
2597 }
2598 
2599 /*
2600  * Allocate a zeroed cred structure.
2601  */
2602 struct ucred *
crget(void)2603 crget(void)
2604 {
2605 	struct ucred *cr;
2606 
2607 	cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO);
2608 	mtx_init(&cr->cr_mtx, "cred", NULL, MTX_DEF);
2609 	cr->cr_ref = 1;
2610 #ifdef AUDIT
2611 	audit_cred_init(cr);
2612 #endif
2613 #ifdef MAC
2614 	mac_cred_init(cr);
2615 #endif
2616 	cr->cr_groups = cr->cr_smallgroups;
2617 	cr->cr_agroups = nitems(cr->cr_smallgroups);
2618 	return (cr);
2619 }
2620 
2621 /*
2622  * Claim another reference to a ucred structure.
2623  */
2624 struct ucred *
crhold(struct ucred * cr)2625 crhold(struct ucred *cr)
2626 {
2627 	struct thread *td;
2628 
2629 	td = curthread;
2630 	if (__predict_true(td->td_realucred == cr)) {
2631 		KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2632 		    __func__, cr->cr_users, cr));
2633 		td->td_ucredref++;
2634 		return (cr);
2635 	}
2636 	mtx_lock(&cr->cr_mtx);
2637 	cr->cr_ref++;
2638 	mtx_unlock(&cr->cr_mtx);
2639 	return (cr);
2640 }
2641 
2642 /*
2643  * Free a cred structure.  Throws away space when ref count gets to 0.
2644  */
2645 void
crfree(struct ucred * cr)2646 crfree(struct ucred *cr)
2647 {
2648 	struct thread *td;
2649 
2650 	td = curthread;
2651 	if (__predict_true(td->td_realucred == cr)) {
2652 		KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2653 		    __func__, cr->cr_users, cr));
2654 		td->td_ucredref--;
2655 		return;
2656 	}
2657 	mtx_lock(&cr->cr_mtx);
2658 	KASSERT(cr->cr_users >= 0, ("%s: users %d not >= 0 on cred %p",
2659 	    __func__, cr->cr_users, cr));
2660 	cr->cr_ref--;
2661 	if (cr->cr_users > 0) {
2662 		mtx_unlock(&cr->cr_mtx);
2663 		return;
2664 	}
2665 	KASSERT(cr->cr_ref >= 0, ("%s: ref %ld not >= 0 on cred %p",
2666 	    __func__, cr->cr_ref, cr));
2667 	if (cr->cr_ref > 0) {
2668 		mtx_unlock(&cr->cr_mtx);
2669 		return;
2670 	}
2671 	crfree_final(cr);
2672 }
2673 
2674 static void
crfree_final(struct ucred * cr)2675 crfree_final(struct ucred *cr)
2676 {
2677 
2678 	KASSERT(cr->cr_users == 0, ("%s: users %d not == 0 on cred %p",
2679 	    __func__, cr->cr_users, cr));
2680 	KASSERT(cr->cr_ref == 0, ("%s: ref %ld not == 0 on cred %p",
2681 	    __func__, cr->cr_ref, cr));
2682 
2683 	/*
2684 	 * Some callers of crget(), such as nfs_statfs(), allocate a temporary
2685 	 * credential, but don't allocate a uidinfo structure.
2686 	 */
2687 	if (cr->cr_uidinfo != NULL)
2688 		uifree(cr->cr_uidinfo);
2689 	if (cr->cr_ruidinfo != NULL)
2690 		uifree(cr->cr_ruidinfo);
2691 	if (cr->cr_prison != NULL)
2692 		prison_free(cr->cr_prison);
2693 	if (cr->cr_loginclass != NULL)
2694 		loginclass_free(cr->cr_loginclass);
2695 #ifdef AUDIT
2696 	audit_cred_destroy(cr);
2697 #endif
2698 #ifdef MAC
2699 	mac_cred_destroy(cr);
2700 #endif
2701 	mtx_destroy(&cr->cr_mtx);
2702 	if (cr->cr_groups != cr->cr_smallgroups)
2703 		free(cr->cr_groups, M_CRED);
2704 	free(cr, M_CRED);
2705 }
2706 
2707 /*
2708  * Copy a ucred's contents from a template.  Does not block.
2709  */
2710 void
crcopy(struct ucred * dest,struct ucred * src)2711 crcopy(struct ucred *dest, struct ucred *src)
2712 {
2713 
2714 	bcopy(&src->cr_startcopy, &dest->cr_startcopy,
2715 	    (unsigned)((caddr_t)&src->cr_endcopy -
2716 		(caddr_t)&src->cr_startcopy));
2717 	dest->cr_flags = src->cr_flags;
2718 	crsetgroups(dest, src->cr_ngroups, src->cr_groups);
2719 	uihold(dest->cr_uidinfo);
2720 	uihold(dest->cr_ruidinfo);
2721 	prison_hold(dest->cr_prison);
2722 	loginclass_hold(dest->cr_loginclass);
2723 #ifdef AUDIT
2724 	audit_cred_copy(src, dest);
2725 #endif
2726 #ifdef MAC
2727 	mac_cred_copy(src, dest);
2728 #endif
2729 }
2730 
2731 /*
2732  * Dup cred struct to a new held one.
2733  */
2734 struct ucred *
crdup(struct ucred * cr)2735 crdup(struct ucred *cr)
2736 {
2737 	struct ucred *newcr;
2738 
2739 	newcr = crget();
2740 	crcopy(newcr, cr);
2741 	return (newcr);
2742 }
2743 
2744 /*
2745  * Fill in a struct xucred based on a struct ucred.
2746  */
2747 void
cru2x(struct ucred * cr,struct xucred * xcr)2748 cru2x(struct ucred *cr, struct xucred *xcr)
2749 {
2750 	int ngroups;
2751 
2752 	bzero(xcr, sizeof(*xcr));
2753 	xcr->cr_version = XUCRED_VERSION;
2754 	xcr->cr_uid = cr->cr_uid;
2755 	xcr->cr_gid = cr->cr_gid;
2756 
2757 	/*
2758 	 * We use a union to alias cr_gid to cr_groups[0] in the xucred, so
2759 	 * this is kind of ugly; cr_ngroups still includes the egid for our
2760 	 * purposes to avoid bumping the xucred version.
2761 	 */
2762 	ngroups = MIN(cr->cr_ngroups + 1, nitems(xcr->cr_groups));
2763 	xcr->cr_ngroups = ngroups;
2764 	bcopy(cr->cr_groups, xcr->cr_sgroups,
2765 	    (ngroups - 1) * sizeof(*cr->cr_groups));
2766 }
2767 
2768 void
cru2xt(struct thread * td,struct xucred * xcr)2769 cru2xt(struct thread *td, struct xucred *xcr)
2770 {
2771 
2772 	cru2x(td->td_ucred, xcr);
2773 	xcr->cr_pid = td->td_proc->p_pid;
2774 }
2775 
2776 /*
2777  * Change process credentials.
2778  *
2779  * Callers are responsible for providing the reference for passed credentials
2780  * and for freeing old ones.  Calls chgproccnt() to correctly account the
2781  * current process to the proper real UID, if the latter has changed.  Returns
2782  * whether the operation was successful.  Failure can happen only on
2783  * 'enforce_proc_lim' being true and if no new process can be accounted to the
2784  * new real UID because of the current limit (see the inner comment for more
2785  * details) and the caller does not have privilege (PRIV_PROC_LIMIT) to override
2786  * that.
2787  */
2788 static bool
_proc_set_cred(struct proc * p,struct ucred * newcred,bool enforce_proc_lim)2789 _proc_set_cred(struct proc *p, struct ucred *newcred, bool enforce_proc_lim)
2790 {
2791 	struct ucred *const oldcred = p->p_ucred;
2792 
2793 	MPASS(oldcred != NULL);
2794 	PROC_LOCK_ASSERT(p, MA_OWNED);
2795 	KASSERT(newcred->cr_users == 0, ("%s: users %d not 0 on cred %p",
2796 	    __func__, newcred->cr_users, newcred));
2797 	KASSERT(newcred->cr_ref == 1, ("%s: ref %ld not 1 on cred %p",
2798 	    __func__, newcred->cr_ref, newcred));
2799 
2800 	if (newcred->cr_ruidinfo != oldcred->cr_ruidinfo) {
2801 		/*
2802 		 * XXXOC: This check is flawed but nonetheless the best we can
2803 		 * currently do as we don't really track limits per UID contrary
2804 		 * to what we pretend in setrlimit(2).  Until this is reworked,
2805 		 * we just check here that the number of processes for our new
2806 		 * real UID doesn't exceed this process' process number limit
2807 		 * (which is meant to be associated with the current real UID).
2808 		 */
2809 		const int proccnt_changed = chgproccnt(newcred->cr_ruidinfo, 1,
2810 		    enforce_proc_lim ? lim_cur_proc(p, RLIMIT_NPROC) : 0);
2811 
2812 		if (!proccnt_changed) {
2813 			if (priv_check_cred(oldcred, PRIV_PROC_LIMIT) != 0)
2814 				return (false);
2815 			(void)chgproccnt(newcred->cr_ruidinfo, 1, 0);
2816 		}
2817 	}
2818 
2819 	mtx_lock(&oldcred->cr_mtx);
2820 	KASSERT(oldcred->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2821 	    __func__, oldcred->cr_users, oldcred));
2822 	oldcred->cr_users--;
2823 	mtx_unlock(&oldcred->cr_mtx);
2824 	p->p_ucred = newcred;
2825 	newcred->cr_users = 1;
2826 	PROC_UPDATE_COW(p);
2827 	if (newcred->cr_ruidinfo != oldcred->cr_ruidinfo)
2828 		(void)chgproccnt(oldcred->cr_ruidinfo, -1, 0);
2829 	return (true);
2830 }
2831 
2832 void
proc_set_cred(struct proc * p,struct ucred * newcred)2833 proc_set_cred(struct proc *p, struct ucred *newcred)
2834 {
2835 	bool success __diagused = _proc_set_cred(p, newcred, false);
2836 
2837 	MPASS(success);
2838 }
2839 
2840 bool
proc_set_cred_enforce_proc_lim(struct proc * p,struct ucred * newcred)2841 proc_set_cred_enforce_proc_lim(struct proc *p, struct ucred *newcred)
2842 {
2843 	return (_proc_set_cred(p, newcred, true));
2844 }
2845 
2846 void
proc_unset_cred(struct proc * p,bool decrement_proc_count)2847 proc_unset_cred(struct proc *p, bool decrement_proc_count)
2848 {
2849 	struct ucred *cr;
2850 
2851 	MPASS(p->p_state == PRS_ZOMBIE || p->p_state == PRS_NEW);
2852 	cr = p->p_ucred;
2853 	p->p_ucred = NULL;
2854 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2855 	    __func__, cr->cr_users, cr));
2856 	mtx_lock(&cr->cr_mtx);
2857 	cr->cr_users--;
2858 	if (cr->cr_users == 0)
2859 		KASSERT(cr->cr_ref > 0, ("%s: ref %ld not > 0 on cred %p",
2860 		    __func__, cr->cr_ref, cr));
2861 	mtx_unlock(&cr->cr_mtx);
2862 	if (decrement_proc_count)
2863 		(void)chgproccnt(cr->cr_ruidinfo, -1, 0);
2864 	crfree(cr);
2865 }
2866 
2867 struct ucred *
crcopysafe(struct proc * p,struct ucred * cr)2868 crcopysafe(struct proc *p, struct ucred *cr)
2869 {
2870 	struct ucred *oldcred;
2871 	int groups;
2872 
2873 	PROC_LOCK_ASSERT(p, MA_OWNED);
2874 
2875 	oldcred = p->p_ucred;
2876 	while (cr->cr_agroups < oldcred->cr_ngroups) {
2877 		groups = oldcred->cr_ngroups;
2878 		PROC_UNLOCK(p);
2879 		crextend(cr, groups);
2880 		PROC_LOCK(p);
2881 		oldcred = p->p_ucred;
2882 	}
2883 	crcopy(cr, oldcred);
2884 
2885 	return (oldcred);
2886 }
2887 
2888 /*
2889  * Extend the passed-in credentials to hold n groups.
2890  *
2891  * Must not be called after groups have been set.
2892  */
2893 void
crextend(struct ucred * cr,int n)2894 crextend(struct ucred *cr, int n)
2895 {
2896 	size_t nbytes;
2897 
2898 	MPASS2(cr->cr_ref == 1, "'cr_ref' must be 1 (referenced, unshared)");
2899 	MPASS2((cr->cr_flags & CRED_FLAG_GROUPSET) == 0,
2900 	    "groups on 'cr' already set!");
2901 	groups_check_positive_len(n);
2902 	groups_check_max_len(n);
2903 
2904 	if (n <= cr->cr_agroups)
2905 		return;
2906 
2907 	nbytes = n * sizeof(gid_t);
2908 	if (nbytes < n)
2909 		panic("Too many groups (memory size overflow)! "
2910 		    "Computation of 'kern.ngroups' should have prevented this, "
2911 		    "please fix it. In the meantime, reduce 'kern.ngroups'.");
2912 
2913 	/*
2914 	 * We allocate a power of 2 larger than 'nbytes', except when that
2915 	 * exceeds PAGE_SIZE, in which case we allocate the right multiple of
2916 	 * pages.  We assume PAGE_SIZE is a power of 2 (the call to roundup2()
2917 	 * below) but do not need to for sizeof(gid_t).
2918 	 */
2919 	if (nbytes < PAGE_SIZE) {
2920 		if (!powerof2(nbytes))
2921 			/* fls*() return a bit index starting at 1. */
2922 			nbytes = 1 << flsl(nbytes);
2923 	} else
2924 		nbytes = roundup2(nbytes, PAGE_SIZE);
2925 
2926 	/* Free the old array. */
2927 	if (cr->cr_groups != cr->cr_smallgroups)
2928 		free(cr->cr_groups, M_CRED);
2929 
2930 	cr->cr_groups = malloc(nbytes, M_CRED, M_WAITOK | M_ZERO);
2931 	cr->cr_agroups = nbytes / sizeof(gid_t);
2932 }
2933 
2934 /*
2935  * Normalizes a set of groups to be applied to a 'struct ucred'.
2936  *
2937  * Normalization ensures that the supplementary groups are sorted in ascending
2938  * order and do not contain duplicates.  This allows group_is_supplementary() to
2939  * do a binary search.
2940  */
2941 static void
groups_normalize(int * ngrp,gid_t * groups)2942 groups_normalize(int *ngrp, gid_t *groups)
2943 {
2944 	gid_t prev_g;
2945 	int ins_idx;
2946 
2947 	groups_check_positive_len(*ngrp);
2948 	groups_check_max_len(*ngrp);
2949 
2950 	if (*ngrp <= 1)
2951 		return;
2952 
2953 	qsort(groups, *ngrp, sizeof(*groups), gidp_cmp);
2954 
2955 	/* Remove duplicates. */
2956 	prev_g = groups[0];
2957 	ins_idx = 1;
2958 	for (int i = ins_idx; i < *ngrp; ++i) {
2959 		const gid_t g = groups[i];
2960 
2961 		if (g != prev_g) {
2962 			if (i != ins_idx)
2963 				groups[ins_idx] = g;
2964 			++ins_idx;
2965 			prev_g = g;
2966 		}
2967 	}
2968 	*ngrp = ins_idx;
2969 
2970 	groups_check_normalized(*ngrp, groups);
2971 }
2972 
2973 /*
2974  * Internal function copying groups into a credential.
2975  *
2976  * 'ngrp' must be strictly positive.  Either the passed 'groups' array must have
2977  * been normalized in advance (see groups_normalize()), else it must be so
2978  * before the structure is to be used again.
2979  *
2980  * This function is suitable to be used under any lock (it doesn't take any lock
2981  * itself nor sleep, and in particular doesn't allocate memory).  crextend()
2982  * must have been called beforehand to ensure sufficient space is available.
2983  * See also crsetgroups(), which handles that.
2984  */
2985 static void
crsetgroups_internal(struct ucred * cr,int ngrp,const gid_t * groups)2986 crsetgroups_internal(struct ucred *cr, int ngrp, const gid_t *groups)
2987 {
2988 
2989 	MPASS2(cr->cr_ref == 1, "'cr_ref' must be 1 (referenced, unshared)");
2990 	MPASS2(cr->cr_agroups >= ngrp, "'cr_agroups' too small");
2991 	groups_check_positive_len(ngrp);
2992 
2993 	bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t));
2994 	cr->cr_ngroups = ngrp;
2995 	cr->cr_flags |= CRED_FLAG_GROUPSET;
2996 }
2997 
2998 /*
2999  * Copy groups in to a credential after expanding it if required.
3000  *
3001  * May sleep in order to allocate memory (except if, e.g., crextend() was called
3002  * before with 'ngrp' or greater).  Truncates the list to 'ngroups_max' if
3003  * it is too large.  Array 'groups' doesn't need to be sorted.  'ngrp' must be
3004  * positive.
3005  */
3006 void
crsetgroups(struct ucred * cr,int ngrp,const gid_t * groups)3007 crsetgroups(struct ucred *cr, int ngrp, const gid_t *groups)
3008 {
3009 
3010 	if (ngrp > ngroups_max)
3011 		ngrp = ngroups_max;
3012 	cr->cr_ngroups = 0;
3013 	if (ngrp == 0) {
3014 		cr->cr_flags |= CRED_FLAG_GROUPSET;
3015 		return;
3016 	}
3017 
3018 	/*
3019 	 * crextend() asserts that groups are not set, as it may allocate a new
3020 	 * backing storage without copying the content of the old one.  Since we
3021 	 * are going to install a completely new set anyway, signal that we
3022 	 * consider the old ones thrown away.
3023 	 */
3024 	cr->cr_flags &= ~CRED_FLAG_GROUPSET;
3025 
3026 	crextend(cr, ngrp);
3027 	crsetgroups_internal(cr, ngrp, groups);
3028 	groups_normalize(&cr->cr_ngroups, cr->cr_groups);
3029 }
3030 
3031 /*
3032  * Same as crsetgroups() but sets the effective GID as well.
3033  *
3034  * This function ensures that an effective GID is always present in credentials.
3035  * An empty array will only set the effective GID to 'default_egid', while
3036  * a non-empty array will peel off groups[0] to set as the effective GID and use
3037  * the remainder, if any, as supplementary groups.
3038  */
3039 void
crsetgroups_and_egid(struct ucred * cr,int ngrp,const gid_t * groups,const gid_t default_egid)3040 crsetgroups_and_egid(struct ucred *cr, int ngrp, const gid_t *groups,
3041     const gid_t default_egid)
3042 {
3043 	if (ngrp == 0) {
3044 		cr->cr_gid = default_egid;
3045 		cr->cr_ngroups = 0;
3046 		cr->cr_flags |= CRED_FLAG_GROUPSET;
3047 		return;
3048 	}
3049 
3050 	crsetgroups(cr, ngrp - 1, groups + 1);
3051 	cr->cr_gid = groups[0];
3052 }
3053 
3054 /*
3055  * Get login name, if available.
3056  */
3057 #ifndef _SYS_SYSPROTO_H_
3058 struct getlogin_args {
3059 	char	*namebuf;
3060 	u_int	namelen;
3061 };
3062 #endif
3063 /* ARGSUSED */
3064 int
sys_getlogin(struct thread * td,struct getlogin_args * uap)3065 sys_getlogin(struct thread *td, struct getlogin_args *uap)
3066 {
3067 	char login[MAXLOGNAME];
3068 	struct proc *p = td->td_proc;
3069 	size_t len;
3070 
3071 	if (uap->namelen > MAXLOGNAME)
3072 		uap->namelen = MAXLOGNAME;
3073 	PROC_LOCK(p);
3074 	SESS_LOCK(p->p_session);
3075 	len = strlcpy(login, p->p_session->s_login, uap->namelen) + 1;
3076 	SESS_UNLOCK(p->p_session);
3077 	PROC_UNLOCK(p);
3078 	if (len > uap->namelen)
3079 		return (ERANGE);
3080 	return (copyout(login, uap->namebuf, len));
3081 }
3082 
3083 /*
3084  * Set login name.
3085  */
3086 #ifndef _SYS_SYSPROTO_H_
3087 struct setlogin_args {
3088 	char	*namebuf;
3089 };
3090 #endif
3091 /* ARGSUSED */
3092 int
sys_setlogin(struct thread * td,struct setlogin_args * uap)3093 sys_setlogin(struct thread *td, struct setlogin_args *uap)
3094 {
3095 	struct proc *p = td->td_proc;
3096 	int error;
3097 	char logintmp[MAXLOGNAME];
3098 
3099 	CTASSERT(sizeof(p->p_session->s_login) >= sizeof(logintmp));
3100 
3101 	error = priv_check(td, PRIV_PROC_SETLOGIN);
3102 	if (error)
3103 		return (error);
3104 	error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL);
3105 	if (error != 0) {
3106 		if (error == ENAMETOOLONG)
3107 			error = EINVAL;
3108 		return (error);
3109 	}
3110 	AUDIT_ARG_LOGIN(logintmp);
3111 	PROC_LOCK(p);
3112 	SESS_LOCK(p->p_session);
3113 	strcpy(p->p_session->s_login, logintmp);
3114 	SESS_UNLOCK(p->p_session);
3115 	PROC_UNLOCK(p);
3116 	return (0);
3117 }
3118 
3119 void
setsugid(struct proc * p)3120 setsugid(struct proc *p)
3121 {
3122 
3123 	PROC_LOCK_ASSERT(p, MA_OWNED);
3124 	p->p_flag |= P_SUGID;
3125 }
3126 
3127 /*-
3128  * Change a process's effective uid.
3129  * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified.
3130  * References: newcred must be an exclusive credential reference for the
3131  *             duration of the call.
3132  */
3133 void
change_euid(struct ucred * newcred,struct uidinfo * euip)3134 change_euid(struct ucred *newcred, struct uidinfo *euip)
3135 {
3136 
3137 	newcred->cr_uid = euip->ui_uid;
3138 	uihold(euip);
3139 	uifree(newcred->cr_uidinfo);
3140 	newcred->cr_uidinfo = euip;
3141 }
3142 
3143 /*-
3144  * Change a process's effective gid.
3145  * Side effects: newcred->cr_gid will be modified.
3146  * References: newcred must be an exclusive credential reference for the
3147  *             duration of the call.
3148  */
3149 void
change_egid(struct ucred * newcred,gid_t egid)3150 change_egid(struct ucred *newcred, gid_t egid)
3151 {
3152 
3153 	newcred->cr_gid = egid;
3154 }
3155 
3156 /*-
3157  * Change a process's real uid.
3158  * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo
3159  *               will be updated.
3160  * References: newcred must be an exclusive credential reference for the
3161  *             duration of the call.
3162  */
3163 void
change_ruid(struct ucred * newcred,struct uidinfo * ruip)3164 change_ruid(struct ucred *newcred, struct uidinfo *ruip)
3165 {
3166 
3167 	newcred->cr_ruid = ruip->ui_uid;
3168 	uihold(ruip);
3169 	uifree(newcred->cr_ruidinfo);
3170 	newcred->cr_ruidinfo = ruip;
3171 }
3172 
3173 /*-
3174  * Change a process's real gid.
3175  * Side effects: newcred->cr_rgid will be updated.
3176  * References: newcred must be an exclusive credential reference for the
3177  *             duration of the call.
3178  */
3179 void
change_rgid(struct ucred * newcred,gid_t rgid)3180 change_rgid(struct ucred *newcred, gid_t rgid)
3181 {
3182 
3183 	newcred->cr_rgid = rgid;
3184 }
3185 
3186 /*-
3187  * Change a process's saved uid.
3188  * Side effects: newcred->cr_svuid will be updated.
3189  * References: newcred must be an exclusive credential reference for the
3190  *             duration of the call.
3191  */
3192 void
change_svuid(struct ucred * newcred,uid_t svuid)3193 change_svuid(struct ucred *newcred, uid_t svuid)
3194 {
3195 
3196 	newcred->cr_svuid = svuid;
3197 }
3198 
3199 /*-
3200  * Change a process's saved gid.
3201  * Side effects: newcred->cr_svgid will be updated.
3202  * References: newcred must be an exclusive credential reference for the
3203  *             duration of the call.
3204  */
3205 void
change_svgid(struct ucred * newcred,gid_t svgid)3206 change_svgid(struct ucred *newcred, gid_t svgid)
3207 {
3208 
3209 	newcred->cr_svgid = svgid;
3210 }
3211 
3212 bool allow_ptrace = true;
3213 SYSCTL_BOOL(_security_bsd, OID_AUTO, allow_ptrace, CTLFLAG_RWTUN,
3214     &allow_ptrace, 0,
3215     "Deny ptrace(2) use by returning ENOSYS");
3216