1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #include <sys/cdefs.h>
38 #include "opt_ddb.h"
39 #include "opt_ktrace.h"
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/sysproto.h>
44 #include <sys/capsicum.h>
45 #include <sys/eventhandler.h>
46 #include <sys/kernel.h>
47 #include <sys/ktr.h>
48 #include <sys/malloc.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/procdesc.h>
53 #include <sys/jail.h>
54 #include <sys/tty.h>
55 #include <sys/wait.h>
56 #include <sys/vmmeter.h>
57 #include <sys/vnode.h>
58 #include <sys/racct.h>
59 #include <sys/resourcevar.h>
60 #include <sys/sbuf.h>
61 #include <sys/signalvar.h>
62 #include <sys/sched.h>
63 #include <sys/sx.h>
64 #include <sys/syscallsubr.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/ptrace.h>
68 #include <sys/acct.h> /* for acct_process() function prototype */
69 #include <sys/filedesc.h>
70 #include <sys/sdt.h>
71 #include <sys/shm.h>
72 #include <sys/sem.h>
73 #include <sys/sysent.h>
74 #include <sys/timers.h>
75 #include <sys/umtxvar.h>
76 #ifdef KTRACE
77 #include <sys/ktrace.h>
78 #endif
79
80 #include <security/audit/audit.h>
81 #include <security/mac/mac_framework.h>
82
83 #include <vm/vm.h>
84 #include <vm/vm_extern.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/uma.h>
90
91 #ifdef KDTRACE_HOOKS
92 #include <sys/dtrace_bsd.h>
93 dtrace_execexit_func_t dtrace_fasttrap_exit;
94 #endif
95
96 SDT_PROVIDER_DECLARE(proc);
97 SDT_PROBE_DEFINE1(proc, , , exit, "int");
98
99 static int kern_kill_on_dbg_exit = 1;
100 SYSCTL_INT(_kern, OID_AUTO, kill_on_debugger_exit, CTLFLAG_RWTUN,
101 &kern_kill_on_dbg_exit, 0,
102 "Kill ptraced processes when debugger exits");
103
104 static bool kern_wait_dequeue_sigchld = 1;
105 SYSCTL_BOOL(_kern, OID_AUTO, wait_dequeue_sigchld, CTLFLAG_RWTUN,
106 &kern_wait_dequeue_sigchld, 0,
107 "Dequeue SIGCHLD on wait(2) for live process");
108
109 struct proc *
proc_realparent(struct proc * child)110 proc_realparent(struct proc *child)
111 {
112 struct proc *p, *parent;
113
114 sx_assert(&proctree_lock, SX_LOCKED);
115 if ((child->p_treeflag & P_TREE_ORPHANED) == 0)
116 return (child->p_pptr->p_pid == child->p_oppid ?
117 child->p_pptr : child->p_reaper);
118 for (p = child; (p->p_treeflag & P_TREE_FIRST_ORPHAN) == 0;) {
119 /* Cannot use LIST_PREV(), since the list head is not known. */
120 p = __containerof(p->p_orphan.le_prev, struct proc,
121 p_orphan.le_next);
122 KASSERT((p->p_treeflag & P_TREE_ORPHANED) != 0,
123 ("missing P_ORPHAN %p", p));
124 }
125 parent = __containerof(p->p_orphan.le_prev, struct proc,
126 p_orphans.lh_first);
127 return (parent);
128 }
129
130 void
reaper_abandon_children(struct proc * p,bool exiting)131 reaper_abandon_children(struct proc *p, bool exiting)
132 {
133 struct proc *p1, *p2, *ptmp;
134
135 sx_assert(&proctree_lock, SX_XLOCKED);
136 KASSERT(p != initproc, ("reaper_abandon_children for initproc"));
137 if ((p->p_treeflag & P_TREE_REAPER) == 0)
138 return;
139 p1 = p->p_reaper;
140 LIST_FOREACH_SAFE(p2, &p->p_reaplist, p_reapsibling, ptmp) {
141 LIST_REMOVE(p2, p_reapsibling);
142 p2->p_reaper = p1;
143 p2->p_reapsubtree = p->p_reapsubtree;
144 LIST_INSERT_HEAD(&p1->p_reaplist, p2, p_reapsibling);
145 if (exiting && p2->p_pptr == p) {
146 PROC_LOCK(p2);
147 proc_reparent(p2, p1, true);
148 PROC_UNLOCK(p2);
149 }
150 }
151 KASSERT(LIST_EMPTY(&p->p_reaplist), ("p_reaplist not empty"));
152 p->p_treeflag &= ~P_TREE_REAPER;
153 }
154
155 static void
reaper_clear(struct proc * p)156 reaper_clear(struct proc *p)
157 {
158 struct proc *p1;
159 bool clear;
160
161 sx_assert(&proctree_lock, SX_LOCKED);
162 LIST_REMOVE(p, p_reapsibling);
163 if (p->p_reapsubtree == 1)
164 return;
165 clear = true;
166 LIST_FOREACH(p1, &p->p_reaper->p_reaplist, p_reapsibling) {
167 if (p1->p_reapsubtree == p->p_reapsubtree) {
168 clear = false;
169 break;
170 }
171 }
172 if (clear)
173 proc_id_clear(PROC_ID_REAP, p->p_reapsubtree);
174 }
175
176 void
proc_clear_orphan(struct proc * p)177 proc_clear_orphan(struct proc *p)
178 {
179 struct proc *p1;
180
181 sx_assert(&proctree_lock, SA_XLOCKED);
182 if ((p->p_treeflag & P_TREE_ORPHANED) == 0)
183 return;
184 if ((p->p_treeflag & P_TREE_FIRST_ORPHAN) != 0) {
185 p1 = LIST_NEXT(p, p_orphan);
186 if (p1 != NULL)
187 p1->p_treeflag |= P_TREE_FIRST_ORPHAN;
188 p->p_treeflag &= ~P_TREE_FIRST_ORPHAN;
189 }
190 LIST_REMOVE(p, p_orphan);
191 p->p_treeflag &= ~P_TREE_ORPHANED;
192 }
193
194 void
exit_onexit(struct proc * p)195 exit_onexit(struct proc *p)
196 {
197 MPASS(p->p_numthreads == 1);
198 umtx_thread_exit(FIRST_THREAD_IN_PROC(p));
199 }
200
201 /*
202 * exit -- death of process.
203 */
204 int
sys_exit(struct thread * td,struct exit_args * uap)205 sys_exit(struct thread *td, struct exit_args *uap)
206 {
207
208 exit1(td, uap->rval, 0);
209 __unreachable();
210 }
211
212 void
proc_set_p2_wexit(struct proc * p)213 proc_set_p2_wexit(struct proc *p)
214 {
215 PROC_LOCK_ASSERT(p, MA_OWNED);
216 p->p_flag2 |= P2_WEXIT;
217 }
218
219 /*
220 * Exit: deallocate address space and other resources, change proc state to
221 * zombie, and unlink proc from allproc and parent's lists. Save exit status
222 * and rusage for wait(). Check for child processes and orphan them.
223 */
224 void
exit1(struct thread * td,int rval,int signo)225 exit1(struct thread *td, int rval, int signo)
226 {
227 struct proc *p, *nq, *q, *t;
228 struct thread *tdt;
229 ksiginfo_t *ksi, *ksi1;
230 int signal_parent;
231
232 mtx_assert(&Giant, MA_NOTOWNED);
233 KASSERT(rval == 0 || signo == 0, ("exit1 rv %d sig %d", rval, signo));
234 TSPROCEXIT(td->td_proc->p_pid);
235
236 p = td->td_proc;
237 /*
238 * In case we're rebooting we just let init die in order to
239 * work around an issues where pid 1 might get a fatal signal.
240 * For instance, if network interface serving NFS root is
241 * going down due to reboot, page-in requests for text are
242 * failing.
243 */
244 if (p == initproc && rebooting == 0) {
245 printf("init died (signal %d, exit %d)\n", signo, rval);
246 panic("Going nowhere without my init!");
247 }
248
249 /*
250 * Process deferred operations, designated with ASTF_KCLEAR.
251 * For instance, we need to deref SU mp, since the thread does
252 * not return to userspace, and wait for geom to stabilize.
253 */
254 ast_kclear(td);
255
256 /*
257 * MUST abort all other threads before proceeding past here.
258 */
259 PROC_LOCK(p);
260 proc_set_p2_wexit(p);
261
262 /*
263 * First check if some other thread or external request got
264 * here before us. If so, act appropriately: exit or suspend.
265 * We must ensure that stop requests are handled before we set
266 * P_WEXIT.
267 */
268 thread_suspend_check(0);
269 while (p->p_flag & P_HADTHREADS) {
270 /*
271 * Kill off the other threads. This requires
272 * some co-operation from other parts of the kernel
273 * so it may not be instantaneous. With this state set
274 * any thread attempting to interruptibly
275 * sleep will return immediately with EINTR or EWOULDBLOCK
276 * which will hopefully force them to back out to userland
277 * freeing resources as they go. Any thread attempting
278 * to return to userland will thread_exit() from ast().
279 * thread_exit() will unsuspend us when the last of the
280 * other threads exits.
281 * If there is already a thread singler after resumption,
282 * calling thread_single() will fail; in that case, we just
283 * re-check all suspension request, the thread should
284 * either be suspended there or exit.
285 */
286 if (!thread_single(p, SINGLE_EXIT))
287 /*
288 * All other activity in this process is now
289 * stopped. Threading support has been turned
290 * off.
291 */
292 break;
293 /*
294 * Recheck for new stop or suspend requests which
295 * might appear while process lock was dropped in
296 * thread_single().
297 */
298 thread_suspend_check(0);
299 }
300 KASSERT(p->p_numthreads == 1,
301 ("exit1: proc %p exiting with %d threads", p, p->p_numthreads));
302 racct_sub(p, RACCT_NTHR, 1);
303
304 /* Let event handler change exit status */
305 p->p_xexit = rval;
306 p->p_xsig = signo;
307
308 /*
309 * Ignore any pending request to stop due to a stop signal.
310 * Once P_WEXIT is set, future requests will be ignored as
311 * well.
312 */
313 p->p_flag &= ~P_STOPPED_SIG;
314 KASSERT(!P_SHOULDSTOP(p), ("exiting process is stopped"));
315
316 /* Note that we are exiting. */
317 p->p_flag |= P_WEXIT;
318
319 /*
320 * Wait for any processes that have a hold on our vmspace to
321 * release their reference.
322 */
323 while (p->p_lock > 0)
324 msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0);
325
326 PROC_UNLOCK(p);
327 /* Drain the limit callout while we don't have the proc locked */
328 callout_drain(&p->p_limco);
329
330 #ifdef AUDIT
331 /*
332 * The Sun BSM exit token contains two components: an exit status as
333 * passed to exit(), and a return value to indicate what sort of exit
334 * it was. The exit status is WEXITSTATUS(rv), but it's not clear
335 * what the return value is.
336 */
337 AUDIT_ARG_EXIT(rval, 0);
338 AUDIT_SYSCALL_EXIT(0, td);
339 #endif
340
341 /* Are we a task leader with peers? */
342 if (p->p_peers != NULL && p == p->p_leader) {
343 mtx_lock(&ppeers_lock);
344 q = p->p_peers;
345 while (q != NULL) {
346 PROC_LOCK(q);
347 kern_psignal(q, SIGKILL);
348 PROC_UNLOCK(q);
349 q = q->p_peers;
350 }
351 while (p->p_peers != NULL)
352 msleep(p, &ppeers_lock, PWAIT, "exit1", 0);
353 mtx_unlock(&ppeers_lock);
354 }
355
356 itimers_exit(p);
357
358 /*
359 * Check if any loadable modules need anything done at process exit.
360 * E.g. SYSV IPC stuff.
361 * Event handler could change exit status.
362 * XXX what if one of these generates an error?
363 */
364 EVENTHANDLER_DIRECT_INVOKE(process_exit, p);
365
366 /*
367 * If parent is waiting for us to exit or exec,
368 * P_PPWAIT is set; we will wakeup the parent below.
369 */
370 PROC_LOCK(p);
371 stopprofclock(p);
372 p->p_ptevents = 0;
373
374 /*
375 * Stop the real interval timer. If the handler is currently
376 * executing, prevent it from rearming itself and let it finish.
377 */
378 p->p_flag2 &= ~P2_ITSTOPPED;
379 if (timevalisset(&p->p_realtimer.it_value) &&
380 callout_stop(&p->p_itcallout) == 0) {
381 timevalclear(&p->p_realtimer.it_interval);
382 PROC_UNLOCK(p);
383 callout_drain(&p->p_itcallout);
384 } else {
385 PROC_UNLOCK(p);
386 }
387
388 if (p->p_sysent->sv_onexit != NULL)
389 p->p_sysent->sv_onexit(p);
390 seltdfini(td);
391
392 /*
393 * Reset any sigio structures pointing to us as a result of
394 * F_SETOWN with our pid. The P_WEXIT flag interlocks with fsetown().
395 */
396 funsetownlst(&p->p_sigiolst);
397
398 /*
399 * Close open files and release open-file table.
400 * This may block!
401 */
402 pdescfree(td);
403 fdescfree(td);
404
405 /*
406 * Remove ourself from our leader's peer list and wake our leader.
407 */
408 if (p->p_leader->p_peers != NULL) {
409 mtx_lock(&ppeers_lock);
410 if (p->p_leader->p_peers != NULL) {
411 q = p->p_leader;
412 while (q->p_peers != p)
413 q = q->p_peers;
414 q->p_peers = p->p_peers;
415 wakeup(p->p_leader);
416 }
417 mtx_unlock(&ppeers_lock);
418 }
419
420 exec_free_abi_mappings(p);
421 vmspace_exit(td);
422 (void)acct_process(td);
423
424 #ifdef KTRACE
425 ktrprocexit(td);
426 #endif
427 /*
428 * Release reference to text vnode etc
429 */
430 if (p->p_textvp != NULL) {
431 vrele(p->p_textvp);
432 p->p_textvp = NULL;
433 }
434 if (p->p_textdvp != NULL) {
435 vrele(p->p_textdvp);
436 p->p_textdvp = NULL;
437 }
438 if (p->p_binname != NULL) {
439 free(p->p_binname, M_PARGS);
440 p->p_binname = NULL;
441 }
442
443 /*
444 * Release our limits structure.
445 */
446 lim_free(p->p_limit);
447 p->p_limit = NULL;
448
449 tidhash_remove(td);
450
451 /*
452 * Call machine-dependent code to release any
453 * machine-dependent resources other than the address space.
454 * The address space is released by "vmspace_exitfree(p)" in
455 * vm_waitproc().
456 */
457 cpu_exit(td);
458
459 WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid);
460
461 /*
462 * Remove from allproc. It still sits in the hash.
463 */
464 sx_xlock(&allproc_lock);
465 LIST_REMOVE(p, p_list);
466
467 #ifdef DDB
468 /*
469 * Used by ddb's 'ps' command to find this process via the
470 * pidhash.
471 */
472 p->p_list.le_prev = NULL;
473 #endif
474 prison_proc_unlink(p->p_ucred->cr_prison, p);
475 sx_xunlock(&allproc_lock);
476
477 sx_xlock(&proctree_lock);
478 if ((p->p_flag & (P_TRACED | P_PPWAIT | P_PPTRACE)) != 0) {
479 PROC_LOCK(p);
480 p->p_flag &= ~(P_TRACED | P_PPWAIT | P_PPTRACE);
481 PROC_UNLOCK(p);
482 }
483
484 /*
485 * killjobc() might drop and re-acquire proctree_lock to
486 * revoke control tty if exiting process was a session leader.
487 */
488 killjobc();
489
490 /*
491 * Reparent all children processes:
492 * - traced ones to the original parent (or init if we are that parent)
493 * - the rest to init
494 */
495 q = LIST_FIRST(&p->p_children);
496 if (q != NULL) /* only need this if any child is S_ZOMB */
497 wakeup(q->p_reaper);
498 for (; q != NULL; q = nq) {
499 nq = LIST_NEXT(q, p_sibling);
500 ksi = ksiginfo_alloc(M_WAITOK);
501 PROC_LOCK(q);
502 q->p_sigparent = SIGCHLD;
503
504 if ((q->p_flag & P_TRACED) == 0) {
505 proc_reparent(q, q->p_reaper, true);
506 if (q->p_state == PRS_ZOMBIE) {
507 /*
508 * Inform reaper about the reparented
509 * zombie, since wait(2) has something
510 * new to report. Guarantee queueing
511 * of the SIGCHLD signal, similar to
512 * the _exit() behaviour, by providing
513 * our ksiginfo. Ksi is freed by the
514 * signal delivery.
515 */
516 if (q->p_ksi == NULL) {
517 ksi1 = NULL;
518 } else {
519 ksiginfo_copy(q->p_ksi, ksi);
520 ksi->ksi_flags |= KSI_INS;
521 ksi1 = ksi;
522 ksi = NULL;
523 }
524 PROC_LOCK(q->p_reaper);
525 pksignal(q->p_reaper, SIGCHLD, ksi1);
526 PROC_UNLOCK(q->p_reaper);
527 } else if (q->p_pdeathsig > 0) {
528 /*
529 * The child asked to received a signal
530 * when we exit.
531 */
532 kern_psignal(q, q->p_pdeathsig);
533 }
534 } else {
535 /*
536 * Traced processes are killed by default
537 * since their existence means someone is
538 * screwing up.
539 */
540 t = proc_realparent(q);
541 if (t == p) {
542 proc_reparent(q, q->p_reaper, true);
543 } else {
544 PROC_LOCK(t);
545 proc_reparent(q, t, true);
546 PROC_UNLOCK(t);
547 }
548 /*
549 * Since q was found on our children list, the
550 * proc_reparent() call moved q to the orphan
551 * list due to present P_TRACED flag. Clear
552 * orphan link for q now while q is locked.
553 */
554 proc_clear_orphan(q);
555 q->p_flag &= ~P_TRACED;
556 q->p_flag2 &= ~P2_PTRACE_FSTP;
557 q->p_ptevents = 0;
558 p->p_xthread = NULL;
559 FOREACH_THREAD_IN_PROC(q, tdt) {
560 tdt->td_dbgflags &= ~(TDB_SUSPEND | TDB_XSIG |
561 TDB_FSTP);
562 tdt->td_xsig = 0;
563 }
564 if (kern_kill_on_dbg_exit) {
565 q->p_flag &= ~P_STOPPED_TRACE;
566 kern_psignal(q, SIGKILL);
567 } else if ((q->p_flag & (P_STOPPED_TRACE |
568 P_STOPPED_SIG)) != 0) {
569 sigqueue_delete_proc(q, SIGTRAP);
570 ptrace_unsuspend(q);
571 }
572 }
573 PROC_UNLOCK(q);
574 if (ksi != NULL)
575 ksiginfo_free(ksi);
576 }
577
578 /*
579 * Also get rid of our orphans.
580 */
581 while ((q = LIST_FIRST(&p->p_orphans)) != NULL) {
582 PROC_LOCK(q);
583 KASSERT(q->p_oppid == p->p_pid,
584 ("orphan %p of %p has unexpected oppid %d", q, p,
585 q->p_oppid));
586 q->p_oppid = q->p_reaper->p_pid;
587
588 /*
589 * If we are the real parent of this process
590 * but it has been reparented to a debugger, then
591 * check if it asked for a signal when we exit.
592 */
593 if (q->p_pdeathsig > 0)
594 kern_psignal(q, q->p_pdeathsig);
595 CTR2(KTR_PTRACE, "exit: pid %d, clearing orphan %d", p->p_pid,
596 q->p_pid);
597 proc_clear_orphan(q);
598 PROC_UNLOCK(q);
599 }
600
601 #ifdef KDTRACE_HOOKS
602 if (SDT_PROBES_ENABLED()) {
603 int reason = CLD_EXITED;
604 if (WCOREDUMP(signo))
605 reason = CLD_DUMPED;
606 else if (WIFSIGNALED(signo))
607 reason = CLD_KILLED;
608 SDT_PROBE1(proc, , , exit, reason);
609 }
610 #endif
611
612 /* Save exit status. */
613 PROC_LOCK(p);
614 p->p_xthread = td;
615
616 if (p->p_sysent->sv_ontdexit != NULL)
617 p->p_sysent->sv_ontdexit(td);
618
619 #ifdef KDTRACE_HOOKS
620 /*
621 * Tell the DTrace fasttrap provider about the exit if it
622 * has declared an interest.
623 */
624 if (dtrace_fasttrap_exit)
625 dtrace_fasttrap_exit(p);
626 #endif
627
628 /*
629 * Notify interested parties of our demise.
630 */
631 KNOTE_LOCKED(p->p_klist, NOTE_EXIT);
632
633 /*
634 * If this is a process with a descriptor, we may not need to deliver
635 * a signal to the parent. proctree_lock is held over
636 * procdesc_exit() to serialize concurrent calls to close() and
637 * exit().
638 */
639 signal_parent = 0;
640 if (p->p_procdesc == NULL || procdesc_exit(p)) {
641 /*
642 * Notify parent that we're gone. If parent has the
643 * PS_NOCLDWAIT flag set, or if the handler is set to SIG_IGN,
644 * notify process 1 instead (and hope it will handle this
645 * situation).
646 */
647 PROC_LOCK(p->p_pptr);
648 mtx_lock(&p->p_pptr->p_sigacts->ps_mtx);
649 if (p->p_pptr->p_sigacts->ps_flag &
650 (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
651 struct proc *pp;
652
653 mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
654 pp = p->p_pptr;
655 PROC_UNLOCK(pp);
656 proc_reparent(p, p->p_reaper, true);
657 p->p_sigparent = SIGCHLD;
658 PROC_LOCK(p->p_pptr);
659
660 /*
661 * Notify parent, so in case he was wait(2)ing or
662 * executing waitpid(2) with our pid, he will
663 * continue.
664 */
665 wakeup(pp);
666 } else
667 mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
668
669 if (p->p_pptr == p->p_reaper || p->p_pptr == initproc) {
670 signal_parent = 1;
671 } else if (p->p_sigparent != 0) {
672 if (p->p_sigparent == SIGCHLD) {
673 signal_parent = 1;
674 } else { /* LINUX thread */
675 signal_parent = 2;
676 }
677 }
678 } else
679 PROC_LOCK(p->p_pptr);
680 sx_xunlock(&proctree_lock);
681
682 if (signal_parent == 1) {
683 childproc_exited(p);
684 } else if (signal_parent == 2) {
685 kern_psignal(p->p_pptr, p->p_sigparent);
686 }
687
688 /* Tell the prison that we are gone. */
689 prison_proc_free(p->p_ucred->cr_prison);
690
691 /*
692 * The state PRS_ZOMBIE prevents other processes from sending
693 * signal to the process, to avoid memory leak, we free memory
694 * for signal queue at the time when the state is set.
695 */
696 sigqueue_flush(&p->p_sigqueue);
697 sigqueue_flush(&td->td_sigqueue);
698
699 /*
700 * We have to wait until after acquiring all locks before
701 * changing p_state. We need to avoid all possible context
702 * switches (including ones from blocking on a mutex) while
703 * marked as a zombie. We also have to set the zombie state
704 * before we release the parent process' proc lock to avoid
705 * a lost wakeup. So, we first call wakeup, then we grab the
706 * sched lock, update the state, and release the parent process'
707 * proc lock.
708 */
709 wakeup(p->p_pptr);
710 cv_broadcast(&p->p_pwait);
711 sched_exit(p->p_pptr, td);
712 PROC_SLOCK(p);
713 p->p_state = PRS_ZOMBIE;
714 PROC_UNLOCK(p->p_pptr);
715
716 /*
717 * Save our children's rusage information in our exit rusage.
718 */
719 PROC_STATLOCK(p);
720 ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux);
721 PROC_STATUNLOCK(p);
722
723 /*
724 * Make sure the scheduler takes this thread out of its tables etc.
725 * This will also release this thread's reference to the ucred.
726 * Other thread parts to release include pcb bits and such.
727 */
728 thread_exit();
729 }
730
731 #ifndef _SYS_SYSPROTO_H_
732 struct abort2_args {
733 char *why;
734 int nargs;
735 void **args;
736 };
737 #endif
738
739 int
sys_abort2(struct thread * td,struct abort2_args * uap)740 sys_abort2(struct thread *td, struct abort2_args *uap)
741 {
742 void *uargs[16];
743 void **uargsp;
744 int error, nargs;
745
746 nargs = uap->nargs;
747 if (nargs < 0 || nargs > nitems(uargs))
748 nargs = -1;
749 uargsp = NULL;
750 if (nargs > 0) {
751 if (uap->args != NULL) {
752 error = copyin(uap->args, uargs,
753 nargs * sizeof(void *));
754 if (error != 0)
755 nargs = -1;
756 else
757 uargsp = uargs;
758 } else
759 nargs = -1;
760 }
761 return (kern_abort2(td, uap->why, nargs, uargsp));
762 }
763
764 /*
765 * kern_abort2()
766 * Arguments:
767 * why - user pointer to why
768 * nargs - number of arguments copied or -1 if an error occurred in copying
769 * args - pointer to an array of pointers in kernel format
770 */
771 int
kern_abort2(struct thread * td,const char * why,int nargs,void ** uargs)772 kern_abort2(struct thread *td, const char *why, int nargs, void **uargs)
773 {
774 struct proc *p = td->td_proc;
775 struct sbuf *sb;
776 int error, i, sig;
777
778 /*
779 * Do it right now so we can log either proper call of abort2(), or
780 * note, that invalid argument was passed. 512 is big enough to
781 * handle 16 arguments' descriptions with additional comments.
782 */
783 sb = sbuf_new(NULL, NULL, 512, SBUF_FIXEDLEN);
784 sbuf_clear(sb);
785 sbuf_printf(sb, "%s(pid %d uid %d) aborted: ",
786 p->p_comm, p->p_pid, td->td_ucred->cr_uid);
787 /*
788 * Since we can't return from abort2(), send SIGKILL in cases, where
789 * abort2() was called improperly
790 */
791 sig = SIGKILL;
792 /* Prevent from DoSes from user-space. */
793 if (nargs == -1)
794 goto out;
795 KASSERT(nargs >= 0 && nargs <= 16, ("called with too many args (%d)",
796 nargs));
797 /*
798 * Limit size of 'reason' string to 128. Will fit even when
799 * maximal number of arguments was chosen to be logged.
800 */
801 if (why != NULL) {
802 error = sbuf_copyin(sb, why, 128);
803 if (error < 0)
804 goto out;
805 } else {
806 sbuf_cat(sb, "(null)");
807 }
808 if (nargs > 0) {
809 sbuf_putc(sb, '(');
810 for (i = 0;i < nargs; i++)
811 sbuf_printf(sb, "%s%p", i == 0 ? "" : ", ", uargs[i]);
812 sbuf_putc(sb, ')');
813 }
814 /*
815 * Final stage: arguments were proper, string has been
816 * successfully copied from userspace, and copying pointers
817 * from user-space succeed.
818 */
819 sig = SIGABRT;
820 out:
821 if (sig == SIGKILL) {
822 sbuf_trim(sb);
823 sbuf_cat(sb, " (Reason text inaccessible)");
824 }
825 sbuf_cat(sb, "\n");
826 sbuf_finish(sb);
827 log(LOG_INFO, "%s", sbuf_data(sb));
828 sbuf_delete(sb);
829 PROC_LOCK(p);
830 sigexit(td, sig);
831 /* NOTREACHED */
832 }
833
834 #ifdef COMPAT_43
835 /*
836 * The dirty work is handled by kern_wait().
837 */
838 int
owait(struct thread * td,struct owait_args * uap __unused)839 owait(struct thread *td, struct owait_args *uap __unused)
840 {
841 int error, status;
842
843 error = kern_wait(td, WAIT_ANY, &status, 0, NULL);
844 if (error == 0)
845 td->td_retval[1] = status;
846 return (error);
847 }
848 #endif /* COMPAT_43 */
849
850 /*
851 * The dirty work is handled by kern_wait().
852 */
853 int
sys_wait4(struct thread * td,struct wait4_args * uap)854 sys_wait4(struct thread *td, struct wait4_args *uap)
855 {
856 struct rusage ru, *rup;
857 int error, status;
858
859 if (uap->rusage != NULL)
860 rup = &ru;
861 else
862 rup = NULL;
863 error = kern_wait(td, uap->pid, &status, uap->options, rup);
864 if (uap->status != NULL && error == 0 && td->td_retval[0] != 0)
865 error = copyout(&status, uap->status, sizeof(status));
866 if (uap->rusage != NULL && error == 0 && td->td_retval[0] != 0)
867 error = copyout(&ru, uap->rusage, sizeof(struct rusage));
868 return (error);
869 }
870
871 int
sys_wait6(struct thread * td,struct wait6_args * uap)872 sys_wait6(struct thread *td, struct wait6_args *uap)
873 {
874 struct __wrusage wru, *wrup;
875 siginfo_t si, *sip;
876 idtype_t idtype;
877 id_t id;
878 int error, status;
879
880 idtype = uap->idtype;
881 id = uap->id;
882
883 if (uap->wrusage != NULL)
884 wrup = &wru;
885 else
886 wrup = NULL;
887
888 if (uap->info != NULL) {
889 sip = &si;
890 bzero(sip, sizeof(*sip));
891 } else
892 sip = NULL;
893
894 /*
895 * We expect all callers of wait6() to know about WEXITED and
896 * WTRAPPED.
897 */
898 error = kern_wait6(td, idtype, id, &status, uap->options, wrup, sip);
899
900 if (uap->status != NULL && error == 0 && td->td_retval[0] != 0)
901 error = copyout(&status, uap->status, sizeof(status));
902 if (uap->wrusage != NULL && error == 0 && td->td_retval[0] != 0)
903 error = copyout(&wru, uap->wrusage, sizeof(wru));
904 if (uap->info != NULL && error == 0)
905 error = copyout(&si, uap->info, sizeof(si));
906 return (error);
907 }
908
909 /*
910 * Reap the remains of a zombie process and optionally return status and
911 * rusage. Asserts and will release both the proctree_lock and the process
912 * lock as part of its work.
913 */
914 void
proc_reap(struct thread * td,struct proc * p,int * status,int options)915 proc_reap(struct thread *td, struct proc *p, int *status, int options)
916 {
917 struct proc *q, *t;
918
919 sx_assert(&proctree_lock, SA_XLOCKED);
920 PROC_LOCK_ASSERT(p, MA_OWNED);
921 KASSERT(p->p_state == PRS_ZOMBIE, ("proc_reap: !PRS_ZOMBIE"));
922
923 mtx_spin_wait_unlocked(&p->p_slock);
924
925 q = td->td_proc;
926
927 if (status)
928 *status = KW_EXITCODE(p->p_xexit, p->p_xsig);
929 if (options & WNOWAIT) {
930 /*
931 * Only poll, returning the status. Caller does not wish to
932 * release the proc struct just yet.
933 */
934 PROC_UNLOCK(p);
935 sx_xunlock(&proctree_lock);
936 return;
937 }
938
939 PROC_LOCK(q);
940 sigqueue_take(p->p_ksi);
941 PROC_UNLOCK(q);
942
943 /*
944 * If we got the child via a ptrace 'attach', we need to give it back
945 * to the old parent.
946 */
947 if (p->p_oppid != p->p_pptr->p_pid) {
948 PROC_UNLOCK(p);
949 t = proc_realparent(p);
950 PROC_LOCK(t);
951 PROC_LOCK(p);
952 CTR2(KTR_PTRACE,
953 "wait: traced child %d moved back to parent %d", p->p_pid,
954 t->p_pid);
955 proc_reparent(p, t, false);
956 PROC_UNLOCK(p);
957 pksignal(t, SIGCHLD, p->p_ksi);
958 wakeup(t);
959 cv_broadcast(&p->p_pwait);
960 PROC_UNLOCK(t);
961 sx_xunlock(&proctree_lock);
962 return;
963 }
964 PROC_UNLOCK(p);
965
966 /*
967 * Remove other references to this process to ensure we have an
968 * exclusive reference.
969 */
970 sx_xlock(PIDHASHLOCK(p->p_pid));
971 LIST_REMOVE(p, p_hash);
972 sx_xunlock(PIDHASHLOCK(p->p_pid));
973 LIST_REMOVE(p, p_sibling);
974 reaper_abandon_children(p, true);
975 reaper_clear(p);
976 PROC_LOCK(p);
977 proc_clear_orphan(p);
978 PROC_UNLOCK(p);
979 leavepgrp(p);
980 if (p->p_procdesc != NULL)
981 procdesc_reap(p);
982 sx_xunlock(&proctree_lock);
983
984 proc_id_clear(PROC_ID_PID, p->p_pid);
985
986 PROC_LOCK(p);
987 knlist_detach(p->p_klist);
988 p->p_klist = NULL;
989 PROC_UNLOCK(p);
990
991 /*
992 * Removal from allproc list and process group list paired with
993 * PROC_LOCK which was executed during that time should guarantee
994 * nothing can reach this process anymore. As such further locking
995 * is unnecessary.
996 */
997 p->p_xexit = p->p_xsig = 0; /* XXX: why? */
998
999 PROC_LOCK(q);
1000 ruadd(&q->p_stats->p_cru, &q->p_crux, &p->p_ru, &p->p_rux);
1001 PROC_UNLOCK(q);
1002
1003 /*
1004 * Destroy resource accounting information associated with the process.
1005 */
1006 #ifdef RACCT
1007 if (racct_enable) {
1008 PROC_LOCK(p);
1009 racct_sub(p, RACCT_NPROC, 1);
1010 PROC_UNLOCK(p);
1011 }
1012 #endif
1013 racct_proc_exit(p);
1014
1015 /*
1016 * Free credentials, arguments, and sigacts, and decrement the count of
1017 * processes running with this uid.
1018 */
1019 proc_unset_cred(p, true);
1020 pargs_drop(p->p_args);
1021 p->p_args = NULL;
1022 sigacts_free(p->p_sigacts);
1023 p->p_sigacts = NULL;
1024
1025 /*
1026 * Do any thread-system specific cleanups.
1027 */
1028 thread_wait(p);
1029
1030 /*
1031 * Give vm and machine-dependent layer a chance to free anything that
1032 * cpu_exit couldn't release while still running in process context.
1033 */
1034 vm_waitproc(p);
1035 #ifdef MAC
1036 mac_proc_destroy(p);
1037 #endif
1038
1039 KASSERT(FIRST_THREAD_IN_PROC(p),
1040 ("proc_reap: no residual thread!"));
1041 uma_zfree(proc_zone, p);
1042 atomic_add_int(&nprocs, -1);
1043 }
1044
1045 static int
proc_to_reap(struct thread * td,struct proc * p,idtype_t idtype,id_t id,int * status,int options,struct __wrusage * wrusage,siginfo_t * siginfo,int check_only)1046 proc_to_reap(struct thread *td, struct proc *p, idtype_t idtype, id_t id,
1047 int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo,
1048 int check_only)
1049 {
1050 struct rusage *rup;
1051
1052 sx_assert(&proctree_lock, SA_XLOCKED);
1053
1054 PROC_LOCK(p);
1055
1056 switch (idtype) {
1057 case P_ALL:
1058 if (p->p_procdesc == NULL ||
1059 (p->p_pptr == td->td_proc &&
1060 (p->p_flag & P_TRACED) != 0)) {
1061 break;
1062 }
1063
1064 PROC_UNLOCK(p);
1065 return (0);
1066 case P_PID:
1067 if (p->p_pid != (pid_t)id) {
1068 PROC_UNLOCK(p);
1069 return (0);
1070 }
1071 break;
1072 case P_PGID:
1073 if (p->p_pgid != (pid_t)id) {
1074 PROC_UNLOCK(p);
1075 return (0);
1076 }
1077 break;
1078 case P_SID:
1079 if (p->p_session->s_sid != (pid_t)id) {
1080 PROC_UNLOCK(p);
1081 return (0);
1082 }
1083 break;
1084 case P_UID:
1085 if (p->p_ucred->cr_uid != (uid_t)id) {
1086 PROC_UNLOCK(p);
1087 return (0);
1088 }
1089 break;
1090 case P_GID:
1091 if (p->p_ucred->cr_gid != (gid_t)id) {
1092 PROC_UNLOCK(p);
1093 return (0);
1094 }
1095 break;
1096 case P_JAILID:
1097 if (p->p_ucred->cr_prison->pr_id != (int)id) {
1098 PROC_UNLOCK(p);
1099 return (0);
1100 }
1101 break;
1102 /*
1103 * It seems that the thread structures get zeroed out
1104 * at process exit. This makes it impossible to
1105 * support P_SETID, P_CID or P_CPUID.
1106 */
1107 default:
1108 PROC_UNLOCK(p);
1109 return (0);
1110 }
1111
1112 if (p_canwait(td, p)) {
1113 PROC_UNLOCK(p);
1114 return (0);
1115 }
1116
1117 if (((options & WEXITED) == 0) && (p->p_state == PRS_ZOMBIE)) {
1118 PROC_UNLOCK(p);
1119 return (0);
1120 }
1121
1122 /*
1123 * This special case handles a kthread spawned by linux_clone
1124 * (see linux_misc.c). The linux_wait4 and linux_waitpid
1125 * functions need to be able to distinguish between waiting
1126 * on a process and waiting on a thread. It is a thread if
1127 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
1128 * signifies we want to wait for threads and not processes.
1129 */
1130 if ((p->p_sigparent != SIGCHLD) ^
1131 ((options & WLINUXCLONE) != 0)) {
1132 PROC_UNLOCK(p);
1133 return (0);
1134 }
1135
1136 if (siginfo != NULL) {
1137 bzero(siginfo, sizeof(*siginfo));
1138 siginfo->si_errno = 0;
1139
1140 /*
1141 * SUSv4 requires that the si_signo value is always
1142 * SIGCHLD. Obey it despite the rfork(2) interface
1143 * allows to request other signal for child exit
1144 * notification.
1145 */
1146 siginfo->si_signo = SIGCHLD;
1147
1148 /*
1149 * This is still a rough estimate. We will fix the
1150 * cases TRAPPED, STOPPED, and CONTINUED later.
1151 */
1152 if (WCOREDUMP(p->p_xsig)) {
1153 siginfo->si_code = CLD_DUMPED;
1154 siginfo->si_status = WTERMSIG(p->p_xsig);
1155 } else if (WIFSIGNALED(p->p_xsig)) {
1156 siginfo->si_code = CLD_KILLED;
1157 siginfo->si_status = WTERMSIG(p->p_xsig);
1158 } else {
1159 siginfo->si_code = CLD_EXITED;
1160 siginfo->si_status = p->p_xexit;
1161 }
1162
1163 siginfo->si_pid = p->p_pid;
1164 siginfo->si_uid = p->p_ucred->cr_uid;
1165
1166 /*
1167 * The si_addr field would be useful additional
1168 * detail, but apparently the PC value may be lost
1169 * when we reach this point. bzero() above sets
1170 * siginfo->si_addr to NULL.
1171 */
1172 }
1173
1174 /*
1175 * There should be no reason to limit resources usage info to
1176 * exited processes only. A snapshot about any resources used
1177 * by a stopped process may be exactly what is needed.
1178 */
1179 if (wrusage != NULL) {
1180 rup = &wrusage->wru_self;
1181 *rup = p->p_ru;
1182 PROC_STATLOCK(p);
1183 calcru(p, &rup->ru_utime, &rup->ru_stime);
1184 PROC_STATUNLOCK(p);
1185
1186 rup = &wrusage->wru_children;
1187 *rup = p->p_stats->p_cru;
1188 calccru(p, &rup->ru_utime, &rup->ru_stime);
1189 }
1190
1191 if (p->p_state == PRS_ZOMBIE && !check_only) {
1192 proc_reap(td, p, status, options);
1193 return (-1);
1194 }
1195 return (1);
1196 }
1197
1198 int
kern_wait(struct thread * td,pid_t pid,int * status,int options,struct rusage * rusage)1199 kern_wait(struct thread *td, pid_t pid, int *status, int options,
1200 struct rusage *rusage)
1201 {
1202 struct __wrusage wru, *wrup;
1203 idtype_t idtype;
1204 id_t id;
1205 int ret;
1206
1207 /*
1208 * Translate the special pid values into the (idtype, pid)
1209 * pair for kern_wait6. The WAIT_MYPGRP case is handled by
1210 * kern_wait6() on its own.
1211 */
1212 if (pid == WAIT_ANY) {
1213 idtype = P_ALL;
1214 id = 0;
1215 } else if (pid < 0) {
1216 idtype = P_PGID;
1217 id = (id_t)-pid;
1218 } else {
1219 idtype = P_PID;
1220 id = (id_t)pid;
1221 }
1222
1223 if (rusage != NULL)
1224 wrup = &wru;
1225 else
1226 wrup = NULL;
1227
1228 /*
1229 * For backward compatibility we implicitly add flags WEXITED
1230 * and WTRAPPED here.
1231 */
1232 options |= WEXITED | WTRAPPED;
1233 ret = kern_wait6(td, idtype, id, status, options, wrup, NULL);
1234 if (rusage != NULL)
1235 *rusage = wru.wru_self;
1236 return (ret);
1237 }
1238
1239 static void
report_alive_proc(struct thread * td,struct proc * p,siginfo_t * siginfo,int * status,int options,int si_code)1240 report_alive_proc(struct thread *td, struct proc *p, siginfo_t *siginfo,
1241 int *status, int options, int si_code)
1242 {
1243 bool cont;
1244
1245 PROC_LOCK_ASSERT(p, MA_OWNED);
1246 sx_assert(&proctree_lock, SA_XLOCKED);
1247 MPASS(si_code == CLD_TRAPPED || si_code == CLD_STOPPED ||
1248 si_code == CLD_CONTINUED);
1249
1250 cont = si_code == CLD_CONTINUED;
1251 if ((options & WNOWAIT) == 0) {
1252 if (cont)
1253 p->p_flag &= ~P_CONTINUED;
1254 else
1255 p->p_flag |= P_WAITED;
1256 if (kern_wait_dequeue_sigchld &&
1257 (td->td_proc->p_sysent->sv_flags & SV_SIG_WAITNDQ) == 0) {
1258 PROC_LOCK(td->td_proc);
1259 sigqueue_take(p->p_ksi);
1260 PROC_UNLOCK(td->td_proc);
1261 }
1262 }
1263 sx_xunlock(&proctree_lock);
1264 if (siginfo != NULL) {
1265 siginfo->si_code = si_code;
1266 siginfo->si_status = cont ? SIGCONT : p->p_xsig;
1267 }
1268 if (status != NULL)
1269 *status = cont ? SIGCONT : W_STOPCODE(p->p_xsig);
1270 td->td_retval[0] = p->p_pid;
1271 PROC_UNLOCK(p);
1272 }
1273
1274 int
kern_wait6(struct thread * td,idtype_t idtype,id_t id,int * status,int options,struct __wrusage * wrusage,siginfo_t * siginfo)1275 kern_wait6(struct thread *td, idtype_t idtype, id_t id, int *status,
1276 int options, struct __wrusage *wrusage, siginfo_t *siginfo)
1277 {
1278 struct proc *p, *q;
1279 pid_t pid;
1280 int error, nfound, ret;
1281 bool report;
1282
1283 AUDIT_ARG_VALUE((int)idtype); /* XXX - This is likely wrong! */
1284 AUDIT_ARG_PID((pid_t)id); /* XXX - This may be wrong! */
1285 AUDIT_ARG_VALUE(options);
1286
1287 q = td->td_proc;
1288
1289 if ((pid_t)id == WAIT_MYPGRP && (idtype == P_PID || idtype == P_PGID)) {
1290 PROC_LOCK(q);
1291 id = (id_t)q->p_pgid;
1292 PROC_UNLOCK(q);
1293 idtype = P_PGID;
1294 }
1295
1296 /* If we don't know the option, just return. */
1297 if ((options & ~(WUNTRACED | WNOHANG | WCONTINUED | WNOWAIT |
1298 WEXITED | WTRAPPED | WLINUXCLONE)) != 0)
1299 return (EINVAL);
1300 if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) {
1301 /*
1302 * We will be unable to find any matching processes,
1303 * because there are no known events to look for.
1304 * Prefer to return error instead of blocking
1305 * indefinitely.
1306 */
1307 return (EINVAL);
1308 }
1309
1310 loop:
1311 if (q->p_flag & P_STATCHILD) {
1312 PROC_LOCK(q);
1313 q->p_flag &= ~P_STATCHILD;
1314 PROC_UNLOCK(q);
1315 }
1316 sx_xlock(&proctree_lock);
1317 loop_locked:
1318 nfound = 0;
1319 LIST_FOREACH(p, &q->p_children, p_sibling) {
1320 pid = p->p_pid;
1321 ret = proc_to_reap(td, p, idtype, id, status, options,
1322 wrusage, siginfo, 0);
1323 if (ret == 0)
1324 continue;
1325 else if (ret != 1) {
1326 td->td_retval[0] = pid;
1327 return (0);
1328 }
1329
1330 /*
1331 * When running in capsicum(4) mode, make wait(2) ignore
1332 * processes created with pdfork(2). This is because one can
1333 * disown them - by passing their process descriptor to another
1334 * process - which means it needs to be prevented from touching
1335 * them afterwards.
1336 */
1337 if (IN_CAPABILITY_MODE(td) && p->p_procdesc != NULL) {
1338 PROC_UNLOCK(p);
1339 continue;
1340 }
1341
1342 nfound++;
1343 PROC_LOCK_ASSERT(p, MA_OWNED);
1344
1345 if ((options & WTRAPPED) != 0 &&
1346 (p->p_flag & P_TRACED) != 0) {
1347 PROC_SLOCK(p);
1348 report =
1349 ((p->p_flag & (P_STOPPED_TRACE | P_STOPPED_SIG)) &&
1350 p->p_suspcount == p->p_numthreads &&
1351 (p->p_flag & P_WAITED) == 0);
1352 PROC_SUNLOCK(p);
1353 if (report) {
1354 CTR4(KTR_PTRACE,
1355 "wait: returning trapped pid %d status %#x "
1356 "(xstat %d) xthread %d",
1357 p->p_pid, W_STOPCODE(p->p_xsig), p->p_xsig,
1358 p->p_xthread != NULL ?
1359 p->p_xthread->td_tid : -1);
1360 report_alive_proc(td, p, siginfo, status,
1361 options, CLD_TRAPPED);
1362 return (0);
1363 }
1364 }
1365 if ((options & WUNTRACED) != 0 &&
1366 (p->p_flag & P_STOPPED_SIG) != 0) {
1367 PROC_SLOCK(p);
1368 report = (p->p_suspcount == p->p_numthreads &&
1369 ((p->p_flag & P_WAITED) == 0));
1370 PROC_SUNLOCK(p);
1371 if (report) {
1372 report_alive_proc(td, p, siginfo, status,
1373 options, CLD_STOPPED);
1374 return (0);
1375 }
1376 }
1377 if ((options & WCONTINUED) != 0 &&
1378 (p->p_flag & P_CONTINUED) != 0) {
1379 report_alive_proc(td, p, siginfo, status, options,
1380 CLD_CONTINUED);
1381 return (0);
1382 }
1383 PROC_UNLOCK(p);
1384 }
1385
1386 /*
1387 * Look in the orphans list too, to allow the parent to
1388 * collect it's child exit status even if child is being
1389 * debugged.
1390 *
1391 * Debugger detaches from the parent upon successful
1392 * switch-over from parent to child. At this point due to
1393 * re-parenting the parent loses the child to debugger and a
1394 * wait4(2) call would report that it has no children to wait
1395 * for. By maintaining a list of orphans we allow the parent
1396 * to successfully wait until the child becomes a zombie.
1397 */
1398 if (nfound == 0) {
1399 LIST_FOREACH(p, &q->p_orphans, p_orphan) {
1400 ret = proc_to_reap(td, p, idtype, id, NULL, options,
1401 NULL, NULL, 1);
1402 if (ret != 0) {
1403 KASSERT(ret != -1, ("reaped an orphan (pid %d)",
1404 (int)td->td_retval[0]));
1405 PROC_UNLOCK(p);
1406 nfound++;
1407 break;
1408 }
1409 }
1410 }
1411 if (nfound == 0) {
1412 sx_xunlock(&proctree_lock);
1413 return (ECHILD);
1414 }
1415 if (options & WNOHANG) {
1416 sx_xunlock(&proctree_lock);
1417 td->td_retval[0] = 0;
1418 return (0);
1419 }
1420 PROC_LOCK(q);
1421 if (q->p_flag & P_STATCHILD) {
1422 q->p_flag &= ~P_STATCHILD;
1423 PROC_UNLOCK(q);
1424 goto loop_locked;
1425 }
1426 sx_xunlock(&proctree_lock);
1427 error = msleep(q, &q->p_mtx, PWAIT | PCATCH | PDROP, "wait", 0);
1428 if (error)
1429 return (error);
1430 goto loop;
1431 }
1432
1433 void
proc_add_orphan(struct proc * child,struct proc * parent)1434 proc_add_orphan(struct proc *child, struct proc *parent)
1435 {
1436
1437 sx_assert(&proctree_lock, SX_XLOCKED);
1438 KASSERT((child->p_flag & P_TRACED) != 0,
1439 ("proc_add_orphan: not traced"));
1440
1441 if (LIST_EMPTY(&parent->p_orphans)) {
1442 child->p_treeflag |= P_TREE_FIRST_ORPHAN;
1443 LIST_INSERT_HEAD(&parent->p_orphans, child, p_orphan);
1444 } else {
1445 LIST_INSERT_AFTER(LIST_FIRST(&parent->p_orphans),
1446 child, p_orphan);
1447 }
1448 child->p_treeflag |= P_TREE_ORPHANED;
1449 }
1450
1451 /*
1452 * Make process 'parent' the new parent of process 'child'.
1453 * Must be called with an exclusive hold of proctree lock.
1454 */
1455 void
proc_reparent(struct proc * child,struct proc * parent,bool set_oppid)1456 proc_reparent(struct proc *child, struct proc *parent, bool set_oppid)
1457 {
1458
1459 sx_assert(&proctree_lock, SX_XLOCKED);
1460 PROC_LOCK_ASSERT(child, MA_OWNED);
1461 if (child->p_pptr == parent)
1462 return;
1463
1464 PROC_LOCK(child->p_pptr);
1465 sigqueue_take(child->p_ksi);
1466 PROC_UNLOCK(child->p_pptr);
1467 LIST_REMOVE(child, p_sibling);
1468 LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1469
1470 proc_clear_orphan(child);
1471 if ((child->p_flag & P_TRACED) != 0) {
1472 proc_add_orphan(child, child->p_pptr);
1473 }
1474
1475 child->p_pptr = parent;
1476 if (set_oppid)
1477 child->p_oppid = parent->p_pid;
1478 }
1479