xref: /illumos-gate/usr/src/cmd/format/menu_partition.c (revision b12aaafbf56c5a06b6cfd21655531a33e38a8ed9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * This file contains functions to implement the partition menu commands.
27  */
28 #include "global.h"
29 #include <stdlib.h>
30 #include <string.h>
31 
32 #include "partition.h"
33 #include "menu_partition.h"
34 #include "menu_command.h"
35 #include "misc.h"
36 #include "param.h"
37 
38 static void	nspaces(int);
39 static int	ndigits(uint64_t);
40 
41 /*
42  * This routine implements the 'a' command.  It changes the 'a' partition.
43  */
44 int
p_apart(void)45 p_apart(void)
46 {
47 
48 	change_partition(0);
49 	return (0);
50 }
51 
52 /*
53  * This routine implements the 'b' command.  It changes the 'b' partition.
54  */
55 int
p_bpart(void)56 p_bpart(void)
57 {
58 
59 	change_partition(1);
60 	return (0);
61 }
62 
63 /*
64  * This routine implements the 'c' command.  It changes the 'c' partition.
65  */
66 int
p_cpart(void)67 p_cpart(void)
68 {
69 
70 	change_partition(2);
71 	return (0);
72 }
73 
74 /*
75  * This routine implements the 'd' command.  It changes the 'd' partition.
76  */
77 int
p_dpart(void)78 p_dpart(void)
79 {
80 
81 	change_partition(3);
82 	return (0);
83 }
84 
85 /*
86  * This routine implements the 'e' command.  It changes the 'e' partition.
87  */
88 int
p_epart(void)89 p_epart(void)
90 {
91 
92 	change_partition(4);
93 	return (0);
94 }
95 
96 /*
97  * This routine implements the 'f' command.  It changes the 'f' partition.
98  */
99 int
p_fpart(void)100 p_fpart(void)
101 {
102 
103 	change_partition(5);
104 	return (0);
105 }
106 
107 /*
108  * This routine implements the 'g' command.  It changes the 'g' partition.
109  */
110 int
p_gpart(void)111 p_gpart(void)
112 {
113 
114 	change_partition(6);
115 	return (0);
116 }
117 
118 /*
119  * This routine implements the 'h' command.  It changes the 'h' partition.
120  */
121 int
p_hpart(void)122 p_hpart(void)
123 {
124 
125 	change_partition(7);
126 	return (0);
127 }
128 
129 /*
130  * This routine implements the 'i' command. It is valid only for EFI
131  * labeled disks. This can be used only in expert mode.
132  */
133 int
p_ipart(void)134 p_ipart(void)
135 {
136 	change_partition(8);
137 	return (0);
138 }
139 
140 #if defined(i386)
141 /*
142  * This routine implements the 'j' command.  It changes the 'j' partition.
143  */
144 int
p_jpart(void)145 p_jpart(void)
146 {
147 
148 	change_partition(9);
149 	return (0);
150 }
151 #endif	/* defined(i386) */
152 
153 int
p_expand(void)154 p_expand(void)
155 {
156 	uint64_t delta;
157 	uint_t nparts;
158 	struct dk_gpt *efi_label = cur_parts->etoc;
159 
160 	if (cur_parts->etoc->efi_altern_lba == 1 ||
161 	    (cur_parts->etoc->efi_altern_lba >=
162 	    cur_parts->etoc->efi_last_lba)) {
163 		err_print("Warning: No expanded capacity is found.\n");
164 		return (0);
165 	}
166 
167 	delta = efi_label->efi_last_lba - efi_label->efi_altern_lba;
168 	nparts = efi_label->efi_nparts;
169 
170 	enter_critical();
171 	efi_label->efi_parts[nparts - 1].p_start += delta;
172 	efi_label->efi_last_u_lba += delta;
173 	efi_label->efi_altern_lba = cur_parts->etoc->efi_last_lba;
174 	exit_critical();
175 
176 	fmt_print("The expanded capacity is added to the unallocated space.\n");
177 	return (0);
178 }
179 
180 /*
181  * This routine implements the 'select' command.  It allows the user
182  * to make a pre-defined partition map the current map.
183  */
184 int
p_select(void)185 p_select(void)
186 {
187 	struct partition_info	*pptr, *parts;
188 	u_ioparam_t		ioparam;
189 	int			i, index, deflt, *defltptr = NULL;
190 	blkaddr_t		b_cylno;
191 #if defined(i386)
192 	blkaddr_t		cyl_offset;
193 #endif
194 
195 	parts = cur_dtype->dtype_plist;
196 	/*
197 	 * If there are no pre-defined maps for this disk type, it's
198 	 * an error.
199 	 */
200 	if (parts == NULL) {
201 		err_print("No defined partition tables.\n");
202 		return (-1);
203 	}
204 
205 	/*
206 	 * Loop through the pre-defined maps and list them by name.  If
207 	 * the current map is one of them, make it the default.  If any
208 	 * the maps are unnamed, label them as such.
209 	 */
210 	for (i = 0, pptr = parts; pptr != NULL; pptr = pptr->pinfo_next) {
211 		if (cur_parts == pptr) {
212 			deflt = i;
213 			defltptr = &deflt;
214 		}
215 		if (pptr->pinfo_name == NULL)
216 			fmt_print("        %d. unnamed\n", i++);
217 		else
218 			fmt_print("        %d. %s\n", i++, pptr->pinfo_name);
219 	}
220 	ioparam.io_bounds.lower = 0;
221 	ioparam.io_bounds.upper = i - 1;
222 	/*
223 	 * Ask which map should be made current.
224 	 */
225 	index = input(FIO_INT, "Specify table (enter its number)", ':',
226 	    &ioparam, defltptr, DATA_INPUT);
227 	for (i = 0, pptr = parts; i < index; i++, pptr = pptr->pinfo_next)
228 		;
229 	if (cur_label == L_TYPE_EFI) {
230 		enter_critical();
231 		cur_disk->disk_parts = cur_parts = pptr;
232 		exit_critical();
233 		fmt_print("\n");
234 		return (0);
235 	}
236 #if defined(i386)
237 	/*
238 	 * Adjust for the boot and alternate sectors partition - assuming that
239 	 * the alternate sectors partition physical location follows
240 	 * immediately the boot partition and partition sizes are
241 	 * expressed in multiple of cylinder size.
242 	 */
243 	cyl_offset = pptr->pinfo_map[I_PARTITION].dkl_cylno + 1;
244 	if (pptr->pinfo_map[J_PARTITION].dkl_nblk != 0) {
245 		cyl_offset = pptr->pinfo_map[J_PARTITION].dkl_cylno +
246 		    ((pptr->pinfo_map[J_PARTITION].dkl_nblk +
247 		    (spc() - 1)) / spc());
248 	}
249 #else	/* !defined(i386) */
250 
251 	b_cylno = 0;
252 
253 #endif	/* defined(i386) */
254 
255 	/*
256 	 * Before we blow the current map away, do some limits checking.
257 	 */
258 	for (i = 0; i < NDKMAP; i++)  {
259 
260 #if defined(i386)
261 		if (i == I_PARTITION || i == J_PARTITION || i == C_PARTITION) {
262 			b_cylno = 0;
263 		} else if (pptr->pinfo_map[i].dkl_nblk == 0) {
264 			/*
265 			 * Always accept starting cyl 0 if the size is 0 also
266 			 */
267 			b_cylno = 0;
268 		} else {
269 			b_cylno = cyl_offset;
270 		}
271 #endif		/* defined(i386) */
272 		if (pptr->pinfo_map[i].dkl_cylno < b_cylno ||
273 		    pptr->pinfo_map[i].dkl_cylno > (ncyl-1)) {
274 			err_print("partition %c: starting cylinder %d is out "
275 			    "of range\n", (PARTITION_BASE + i),
276 			    pptr->pinfo_map[i].dkl_cylno);
277 			return (0);
278 		}
279 		if (pptr->pinfo_map[i].dkl_nblk > ((ncyl -
280 		    pptr->pinfo_map[i].dkl_cylno) * spc())) {
281 			err_print(
282 			    "partition %c: specified # of blocks, %u, "
283 			    "is out of range\n",
284 			    (PARTITION_BASE+i),
285 			    pptr->pinfo_map[i].dkl_nblk);
286 			return (0);
287 		}
288 	}
289 	/*
290 	 * Lock out interrupts so the lists don't get mangled.
291 	 */
292 	enter_critical();
293 	/*
294 	 * If the old current map is unnamed, delete it.
295 	 */
296 	if (cur_parts != NULL && cur_parts != pptr &&
297 	    cur_parts->pinfo_name == NULL)
298 		delete_partition(cur_parts);
299 	/*
300 	 * Make the selected map current.
301 	 */
302 	cur_disk->disk_parts = cur_parts = pptr;
303 
304 #if defined(_SUNOS_VTOC_16)
305 	for (i = 0; i < NDKMAP; i++)  {
306 		cur_parts->vtoc.v_part[i].p_start =
307 		    (blkaddr_t)(cur_parts->pinfo_map[i].dkl_cylno *
308 		    (nhead * nsect));
309 		cur_parts->vtoc.v_part[i].p_size =
310 		    (blkaddr_t)cur_parts->pinfo_map[i].dkl_nblk;
311 	}
312 #endif	/* defined(_SUNOS_VTOC_16) */
313 
314 	exit_critical();
315 	fmt_print("\n");
316 	return (0);
317 }
318 
319 /*
320  * This routine implements the 'name' command.  It allows the user
321  * to name the current partition map.  If the map was already named,
322  * the name is changed.  Once a map is named, the values of the partitions
323  * cannot be changed.  Attempts to change them will cause another map
324  * to be created.
325  */
326 int
p_name(void)327 p_name(void)
328 {
329 	char	*name;
330 
331 	/*
332 	 * check if there exists a partition table for the disk.
333 	 */
334 	if (cur_parts == NULL) {
335 		err_print("Current Disk has no partition table.\n");
336 		return (-1);
337 	}
338 
339 
340 	/*
341 	 * Ask for the name.  Note that the input routine will malloc
342 	 * space for the name since we are using the OSTR input type.
343 	 */
344 	name = (char *)(uintptr_t)input(FIO_OSTR,
345 	    "Enter table name (remember quotes)",
346 	    ':', NULL, NULL, DATA_INPUT);
347 	/*
348 	 * Lock out interrupts.
349 	 */
350 	enter_critical();
351 	/*
352 	 * If it was already named, destroy the old name.
353 	 */
354 	if (cur_parts->pinfo_name != NULL)
355 		destroy_data(cur_parts->pinfo_name);
356 	/*
357 	 * Set the name.
358 	 */
359 	cur_parts->pinfo_name = name;
360 	exit_critical();
361 	fmt_print("\n");
362 	return (0);
363 }
364 
365 
366 /*
367  * This routine implements the 'print' command.  It lists the values
368  * for all the partitions in the current partition map.
369  */
370 int
p_print(void)371 p_print(void)
372 {
373 	/*
374 	 * check if there exists a partition table for the disk.
375 	 */
376 	if (cur_parts == NULL) {
377 		err_print("Current Disk has no partition table.\n");
378 		return (-1);
379 	}
380 
381 	/*
382 	 * Print the volume name, if it appears to be set
383 	 */
384 	if (chk_volname(cur_disk)) {
385 		fmt_print("Volume:  ");
386 		print_volname(cur_disk);
387 		fmt_print("\n");
388 	}
389 	/*
390 	 * Print the name of the current map.
391 	 */
392 	if ((cur_parts->pinfo_name != NULL) && (cur_label == L_TYPE_SOLARIS)) {
393 		fmt_print("Current partition table (%s):\n",
394 		    cur_parts->pinfo_name);
395 		fmt_print("Total disk cylinders available: %d + %d "
396 		    "(reserved cylinders)\n\n", ncyl, acyl);
397 	} else if (cur_label == L_TYPE_SOLARIS) {
398 		fmt_print("Current partition table (unnamed):\n");
399 		fmt_print("Total disk cylinders available: %d + %d "
400 		    "(reserved cylinders)\n\n", ncyl, acyl);
401 	} else if (cur_label == L_TYPE_EFI) {
402 		unsigned reserved;
403 
404 		reserved = efi_reserved_sectors(cur_parts->etoc);
405 		fmt_print("Current partition table (%s):\n",
406 		    cur_parts->pinfo_name != NULL ?
407 		    cur_parts->pinfo_name : "unnamed");
408 		fmt_print("Total disk sectors available: %llu + %u "
409 		    "(reserved sectors)\n\n",
410 		    cur_parts->etoc->efi_last_u_lba - reserved -
411 		    cur_parts->etoc->efi_first_u_lba + 1, reserved);
412 	}
413 
414 
415 	/*
416 	 * Print the partition map itself
417 	 */
418 	print_map(cur_parts);
419 	return (0);
420 }
421 
422 
423 /*
424  * Print a partition map
425  */
426 void
print_map(struct partition_info * map)427 print_map(struct partition_info *map)
428 {
429 	int	i;
430 	int	want_header;
431 	struct	dk_gpt *vtoc64;
432 
433 	if (cur_label == L_TYPE_EFI) {
434 		vtoc64 = map->etoc;
435 		want_header = 1;
436 		for (i = 0; i < vtoc64->efi_nparts; i++) {
437 		/*
438 		 * we want to print partitions above 7 in expert mode only
439 		 * or if the partition is reserved
440 		 */
441 			if (i >= 7 && !expert_mode &&
442 			    ((int)vtoc64->efi_parts[i].p_tag !=
443 			    V_RESERVED)) {
444 				continue;
445 			}
446 
447 			print_efi_partition(vtoc64, i, want_header);
448 			want_header = 0;
449 		}
450 		fmt_print("\n");
451 		return;
452 	}
453 	/*
454 	 * Loop through each partition, printing the header
455 	 * the first time.
456 	 */
457 	want_header = 1;
458 	for (i = 0; i < NDKMAP; i++) {
459 		if (i > 9) {
460 			break;
461 		}
462 		print_partition(map, i, want_header);
463 		want_header = 0;
464 	}
465 
466 	fmt_print("\n");
467 }
468 
469 /*
470  * Print out one line of partition information,
471  * with optional header for EFI type disks.
472  */
473 /*ARGSUSED*/
474 void
print_efi_partition(struct dk_gpt * map,int partnum,int want_header)475 print_efi_partition(struct dk_gpt *map, int partnum, int want_header)
476 {
477 	int		ncyl2_digits = 0;
478 	float		scaled;
479 	char		*s;
480 	uint64_t	secsize;
481 
482 	ncyl2_digits = ndigits(map->efi_last_u_lba);
483 	if (want_header) {
484 		fmt_print("Part      ");
485 		fmt_print("Tag    Flag     ");
486 		fmt_print("First Sector");
487 		nspaces(ncyl2_digits);
488 		fmt_print("Size");
489 		nspaces(ncyl2_digits);
490 		fmt_print("Last Sector\n");
491 	}
492 
493 	fmt_print("  %d ", partnum);
494 	s = find_string(ptag_choices, (int)map->efi_parts[partnum].p_tag);
495 	if (s == NULL)
496 		s = "-";
497 	nspaces(10 - (int)strlen(s));
498 	fmt_print("%s", s);
499 
500 	s = find_string(pflag_choices, (int)map->efi_parts[partnum].p_flag);
501 	if (s == NULL)
502 		s = "-";
503 	nspaces(6 - (int)strlen(s));
504 	fmt_print("%s", s);
505 
506 	nspaces(2);
507 
508 	secsize = map->efi_parts[partnum].p_size;
509 	if (secsize == 0) {
510 		fmt_print("%16llu", map->efi_parts[partnum].p_start);
511 		nspaces(ncyl2_digits);
512 		fmt_print("  0     ");
513 	} else {
514 		fmt_print("%16llu", map->efi_parts[partnum].p_start);
515 		scaled = bn2mb(secsize);
516 		nspaces(ncyl2_digits - 5);
517 		if (scaled >= (float)1024.0 * 1024) {
518 			fmt_print("%8.2fTB", scaled/((float)1024.0 * 1024));
519 		} else if (scaled >= (float)1024.0) {
520 			fmt_print("%8.2fGB", scaled/(float)1024.0);
521 		} else {
522 			fmt_print("%8.2fMB", scaled);
523 		}
524 	}
525 	nspaces(ncyl2_digits);
526 	if ((map->efi_parts[partnum].p_start + secsize - 1) == UINT_MAX64) {
527 		fmt_print(" 0    \n");
528 	} else {
529 		fmt_print(" %llu    \n",
530 		    map->efi_parts[partnum].p_start + secsize - 1);
531 	}
532 }
533 
534 /*
535  * Print out one line of partition information,
536  * with optional header.
537  */
538 /*ARGSUSED*/
539 void
print_partition(struct partition_info * pinfo,int partnum,int want_header)540 print_partition(struct partition_info *pinfo, int partnum, int want_header)
541 {
542 	int		i;
543 	blkaddr_t	nblks;
544 	int		cyl1;
545 	int		cyl2;
546 	float		scaled;
547 	int		maxcyl2;
548 	int		ncyl2_digits;
549 	char		*s;
550 	blkaddr_t	maxnblks = 0;
551 	blkaddr_t	len;
552 
553 	/*
554 	 * To align things nicely, we need to know the maximum
555 	 * width of the number of cylinders field.
556 	 */
557 	maxcyl2 = 0;
558 	for (i = 0; i < NDKMAP; i++) {
559 		nblks	= (uint_t)pinfo->pinfo_map[i].dkl_nblk;
560 		cyl1	= pinfo->pinfo_map[i].dkl_cylno;
561 		cyl2	= cyl1 + (nblks / spc()) - 1;
562 		if (nblks > 0) {
563 			maxcyl2 = max(cyl2, maxcyl2);
564 			maxnblks = max(nblks, maxnblks);
565 		}
566 	}
567 	/*
568 	 * Get the number of digits required
569 	 */
570 	ncyl2_digits = ndigits(maxcyl2);
571 
572 	/*
573 	 * Print the header, if necessary
574 	 */
575 	if (want_header) {
576 		fmt_print("Part      ");
577 		fmt_print("Tag    Flag     ");
578 		fmt_print("Cylinders");
579 		nspaces(ncyl2_digits);
580 		fmt_print("    Size            Blocks\n");
581 	}
582 
583 	/*
584 	 * Print the partition information
585 	 */
586 	nblks	= pinfo->pinfo_map[partnum].dkl_nblk;
587 	cyl1	= pinfo->pinfo_map[partnum].dkl_cylno;
588 	cyl2	= cyl1 + (nblks / spc()) - 1;
589 
590 	fmt_print("  %x ", partnum);
591 
592 	/*
593 	 * Print the partition tag.  If invalid, print -
594 	 */
595 	s = find_string(ptag_choices, (int)pinfo->vtoc.v_part[partnum].p_tag);
596 	if (s == NULL)
597 		s = "-";
598 	nspaces(10 - (int)strlen(s));
599 	fmt_print("%s", s);
600 
601 	/*
602 	 * Print the partition flag.  If invalid print -
603 	 */
604 	s = find_string(pflag_choices, (int)pinfo->vtoc.v_part[partnum].p_flag);
605 	if (s == NULL)
606 		s = "-";
607 	nspaces(6 - (int)strlen(s));
608 	fmt_print("%s", s);
609 
610 	nspaces(2);
611 
612 	if (nblks == 0) {
613 		fmt_print("%6d      ", cyl1);
614 		nspaces(ncyl2_digits);
615 		fmt_print("     0         ");
616 	} else {
617 		fmt_print("%6d - ", cyl1);
618 		nspaces(ncyl2_digits - ndigits(cyl2));
619 		fmt_print("%d    ", cyl2);
620 		scaled = bn2mb(nblks);
621 		if (scaled > (float)1024.0 * 1024.0) {
622 			fmt_print("%8.2fTB    ",
623 			    scaled/((float)1024.0 * 1024.0));
624 		} else if (scaled > (float)1024.0) {
625 			fmt_print("%8.2fGB    ", scaled/(float)1024.0);
626 		} else {
627 			fmt_print("%8.2fMB    ", scaled);
628 		}
629 	}
630 	fmt_print("(");
631 	pr_dblock(fmt_print, nblks);
632 	fmt_print(")");
633 
634 	nspaces(ndigits(maxnblks/spc()) - ndigits(nblks/spc()));
635 	/*
636 	 * Allocates size of the printf format string.
637 	 * ndigits(ndigits(maxblks)) gives the byte size of
638 	 * the printf width field for maxnblks.
639 	 */
640 	len = strlen(" %") + ndigits(ndigits(maxnblks)) + strlen("d\n") + 1;
641 	s = zalloc(len);
642 	(void) snprintf(s, len, "%s%u%s", " %", ndigits(maxnblks), "u\n");
643 	fmt_print(s, nblks);
644 	(void) free(s);
645 }
646 
647 
648 /*
649  * Return true if a disk has a volume name
650  */
651 int
chk_volname(struct disk_info * disk)652 chk_volname(struct disk_info *disk)
653 {
654 	return (disk->v_volume[0] != 0);
655 }
656 
657 
658 /*
659  * Print the volume name, if it appears to be set
660  */
661 void
print_volname(struct disk_info * disk)662 print_volname(struct disk_info *disk)
663 {
664 	int	i;
665 	char	*p;
666 
667 	p = disk->v_volume;
668 	for (i = 0; i < LEN_DKL_VVOL; i++, p++) {
669 		if (*p == 0)
670 			break;
671 		fmt_print("%c", *p);
672 	}
673 }
674 
675 
676 /*
677  * Print a number of spaces
678  */
679 static void
nspaces(int n)680 nspaces(int n)
681 {
682 	while (n-- > 0)
683 		fmt_print(" ");
684 }
685 
686 /*
687  * Return the number of digits required to print a number
688  */
689 static int
ndigits(uint64_t n)690 ndigits(uint64_t n)
691 {
692 	int	i;
693 
694 	i = 0;
695 	while (n > 0) {
696 		n /= 10;
697 		i++;
698 	}
699 
700 	return (i == 0 ? 1 : i);
701 }
702