xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/Common/CodeGenRegisters.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate information gleaned from the
10 // target register and register class definitions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenRegisters.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/IntEqClasses.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/StringSet.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/TableGen/Error.h"
30 #include "llvm/TableGen/Record.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <cstdint>
34 #include <iterator>
35 #include <map>
36 #include <queue>
37 #include <set>
38 #include <string>
39 #include <tuple>
40 #include <utility>
41 #include <vector>
42 
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "regalloc-emitter"
46 
47 //===----------------------------------------------------------------------===//
48 //                             CodeGenSubRegIndex
49 //===----------------------------------------------------------------------===//
50 
CodeGenSubRegIndex(Record * R,unsigned Enum,const CodeGenHwModes & CGH)51 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum,
52                                        const CodeGenHwModes &CGH)
53     : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
54   Name = std::string(R->getName());
55   if (R->getValue("Namespace"))
56     Namespace = std::string(R->getValueAsString("Namespace"));
57 
58   if (const RecordVal *RV = R->getValue("SubRegRanges"))
59     if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
60       Range = SubRegRangeByHwMode(DI->getDef(), CGH);
61   if (!Range.hasDefault())
62     Range.insertSubRegRangeForMode(DefaultMode, SubRegRange(R));
63 }
64 
CodeGenSubRegIndex(StringRef N,StringRef Nspace,unsigned Enum)65 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
66                                        unsigned Enum)
67     : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)),
68       Range(SubRegRange(-1, -1)), EnumValue(Enum), AllSuperRegsCovered(true),
69       Artificial(true) {}
70 
getQualifiedName() const71 std::string CodeGenSubRegIndex::getQualifiedName() const {
72   std::string N = getNamespace();
73   if (!N.empty())
74     N += "::";
75   N += getName();
76   return N;
77 }
78 
updateComponents(CodeGenRegBank & RegBank)79 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
80   if (!TheDef)
81     return;
82 
83   std::vector<Record *> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
84   if (!Comps.empty()) {
85     if (Comps.size() != 2)
86       PrintFatalError(TheDef->getLoc(),
87                       "ComposedOf must have exactly two entries");
88     CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
89     CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
90     CodeGenSubRegIndex *X = A->addComposite(B, this, RegBank.getHwModes());
91     if (X)
92       PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
93   }
94 
95   std::vector<Record *> Parts =
96       TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
97   if (!Parts.empty()) {
98     if (Parts.size() < 2)
99       PrintFatalError(TheDef->getLoc(),
100                       "CoveredBySubRegs must have two or more entries");
101     SmallVector<CodeGenSubRegIndex *, 8> IdxParts;
102     for (Record *Part : Parts)
103       IdxParts.push_back(RegBank.getSubRegIdx(Part));
104     setConcatenationOf(IdxParts);
105   }
106 }
107 
computeLaneMask() const108 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
109   // Already computed?
110   if (LaneMask.any())
111     return LaneMask;
112 
113   // Recursion guard, shouldn't be required.
114   LaneMask = LaneBitmask::getAll();
115 
116   // The lane mask is simply the union of all sub-indices.
117   LaneBitmask M;
118   for (const auto &C : Composed)
119     M |= C.second->computeLaneMask();
120   assert(M.any() && "Missing lane mask, sub-register cycle?");
121   LaneMask = M;
122   return LaneMask;
123 }
124 
setConcatenationOf(ArrayRef<CodeGenSubRegIndex * > Parts)125 void CodeGenSubRegIndex::setConcatenationOf(
126     ArrayRef<CodeGenSubRegIndex *> Parts) {
127   if (ConcatenationOf.empty())
128     ConcatenationOf.assign(Parts.begin(), Parts.end());
129   else
130     assert(std::equal(Parts.begin(), Parts.end(), ConcatenationOf.begin()) &&
131            "parts consistent");
132 }
133 
computeConcatTransitiveClosure()134 void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
135   for (SmallVectorImpl<CodeGenSubRegIndex *>::iterator I =
136            ConcatenationOf.begin();
137        I != ConcatenationOf.end();
138        /*empty*/) {
139     CodeGenSubRegIndex *SubIdx = *I;
140     SubIdx->computeConcatTransitiveClosure();
141 #ifndef NDEBUG
142     for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf)
143       assert(SRI->ConcatenationOf.empty() && "No transitive closure?");
144 #endif
145 
146     if (SubIdx->ConcatenationOf.empty()) {
147       ++I;
148     } else {
149       I = ConcatenationOf.erase(I);
150       I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(),
151                                  SubIdx->ConcatenationOf.end());
152       I += SubIdx->ConcatenationOf.size();
153     }
154   }
155 }
156 
157 //===----------------------------------------------------------------------===//
158 //                              CodeGenRegister
159 //===----------------------------------------------------------------------===//
160 
CodeGenRegister(Record * R,unsigned Enum)161 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
162     : TheDef(R), EnumValue(Enum),
163       CostPerUse(R->getValueAsListOfInts("CostPerUse")),
164       CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
165       HasDisjunctSubRegs(false), Constant(R->getValueAsBit("isConstant")),
166       SubRegsComplete(false), SuperRegsComplete(false), TopoSig(~0u) {
167   Artificial = R->getValueAsBit("isArtificial");
168 }
169 
buildObjectGraph(CodeGenRegBank & RegBank)170 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
171   std::vector<Record *> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
172   std::vector<Record *> SRs = TheDef->getValueAsListOfDefs("SubRegs");
173 
174   if (SRIs.size() != SRs.size())
175     PrintFatalError(TheDef->getLoc(),
176                     "SubRegs and SubRegIndices must have the same size");
177 
178   for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
179     ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
180     ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
181   }
182 
183   // Also compute leading super-registers. Each register has a list of
184   // covered-by-subregs super-registers where it appears as the first explicit
185   // sub-register.
186   //
187   // This is used by computeSecondarySubRegs() to find candidates.
188   if (CoveredBySubRegs && !ExplicitSubRegs.empty())
189     ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
190 
191   // Add ad hoc alias links. This is a symmetric relationship between two
192   // registers, so build a symmetric graph by adding links in both ends.
193   std::vector<Record *> Aliases = TheDef->getValueAsListOfDefs("Aliases");
194   for (Record *Alias : Aliases) {
195     CodeGenRegister *Reg = RegBank.getReg(Alias);
196     ExplicitAliases.push_back(Reg);
197     Reg->ExplicitAliases.push_back(this);
198   }
199 }
200 
getName() const201 StringRef CodeGenRegister::getName() const {
202   assert(TheDef && "no def");
203   return TheDef->getName();
204 }
205 
206 namespace {
207 
208 // Iterate over all register units in a set of registers.
209 class RegUnitIterator {
210   CodeGenRegister::Vec::const_iterator RegI, RegE;
211   CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
212   static CodeGenRegister::RegUnitList Sentinel;
213 
214 public:
RegUnitIterator(const CodeGenRegister::Vec & Regs)215   RegUnitIterator(const CodeGenRegister::Vec &Regs)
216       : RegI(Regs.begin()), RegE(Regs.end()) {
217 
218     if (RegI == RegE) {
219       UnitI = Sentinel.end();
220       UnitE = Sentinel.end();
221     } else {
222       UnitI = (*RegI)->getRegUnits().begin();
223       UnitE = (*RegI)->getRegUnits().end();
224       advance();
225     }
226   }
227 
isValid() const228   bool isValid() const { return UnitI != UnitE; }
229 
operator *() const230   unsigned operator*() const {
231     assert(isValid());
232     return *UnitI;
233   }
234 
getReg() const235   const CodeGenRegister *getReg() const {
236     assert(isValid());
237     return *RegI;
238   }
239 
240   /// Preincrement.  Move to the next unit.
operator ++()241   void operator++() {
242     assert(isValid() && "Cannot advance beyond the last operand");
243     ++UnitI;
244     advance();
245   }
246 
247 protected:
advance()248   void advance() {
249     while (UnitI == UnitE) {
250       if (++RegI == RegE)
251         break;
252       UnitI = (*RegI)->getRegUnits().begin();
253       UnitE = (*RegI)->getRegUnits().end();
254     }
255   }
256 };
257 
258 CodeGenRegister::RegUnitList RegUnitIterator::Sentinel;
259 
260 } // end anonymous namespace
261 
262 // Inherit register units from subregisters.
263 // Return true if the RegUnits changed.
inheritRegUnits(CodeGenRegBank & RegBank)264 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
265   bool changed = false;
266   for (const auto &SubReg : SubRegs) {
267     CodeGenRegister *SR = SubReg.second;
268     // Merge the subregister's units into this register's RegUnits.
269     changed |= (RegUnits |= SR->RegUnits);
270   }
271 
272   return changed;
273 }
274 
275 const CodeGenRegister::SubRegMap &
computeSubRegs(CodeGenRegBank & RegBank)276 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
277   // Only compute this map once.
278   if (SubRegsComplete)
279     return SubRegs;
280   SubRegsComplete = true;
281 
282   HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
283 
284   // First insert the explicit subregs and make sure they are fully indexed.
285   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
286     CodeGenRegister *SR = ExplicitSubRegs[i];
287     CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
288     if (!SR->Artificial)
289       Idx->Artificial = false;
290     if (!SubRegs.insert(std::pair(Idx, SR)).second)
291       PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
292                                             " appears twice in Register " +
293                                             getName());
294     // Map explicit sub-registers first, so the names take precedence.
295     // The inherited sub-registers are mapped below.
296     SubReg2Idx.insert(std::pair(SR, Idx));
297   }
298 
299   // Keep track of inherited subregs and how they can be reached.
300   SmallPtrSet<CodeGenRegister *, 8> Orphans;
301 
302   // Clone inherited subregs and place duplicate entries in Orphans.
303   // Here the order is important - earlier subregs take precedence.
304   for (CodeGenRegister *ESR : ExplicitSubRegs) {
305     const SubRegMap &Map = ESR->computeSubRegs(RegBank);
306     HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs;
307 
308     for (const auto &SR : Map) {
309       if (!SubRegs.insert(SR).second)
310         Orphans.insert(SR.second);
311     }
312   }
313 
314   // Expand any composed subreg indices.
315   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
316   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
317   // expanded subreg indices recursively.
318   SmallVector<CodeGenSubRegIndex *, 8> Indices = ExplicitSubRegIndices;
319   for (unsigned i = 0; i != Indices.size(); ++i) {
320     CodeGenSubRegIndex *Idx = Indices[i];
321     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
322     CodeGenRegister *SR = SubRegs[Idx];
323     const SubRegMap &Map = SR->computeSubRegs(RegBank);
324 
325     // Look at the possible compositions of Idx.
326     // They may not all be supported by SR.
327     for (auto Comp : Comps) {
328       SubRegMap::const_iterator SRI = Map.find(Comp.first);
329       if (SRI == Map.end())
330         continue; // Idx + I->first doesn't exist in SR.
331       // Add I->second as a name for the subreg SRI->second, assuming it is
332       // orphaned, and the name isn't already used for something else.
333       if (SubRegs.count(Comp.second) || !Orphans.erase(SRI->second))
334         continue;
335       // We found a new name for the orphaned sub-register.
336       SubRegs.insert(std::pair(Comp.second, SRI->second));
337       Indices.push_back(Comp.second);
338     }
339   }
340 
341   // Now Orphans contains the inherited subregisters without a direct index.
342   // Create inferred indexes for all missing entries.
343   // Work backwards in the Indices vector in order to compose subregs bottom-up.
344   // Consider this subreg sequence:
345   //
346   //   qsub_1 -> dsub_0 -> ssub_0
347   //
348   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
349   // can be reached in two different ways:
350   //
351   //   qsub_1 -> ssub_0
352   //   dsub_2 -> ssub_0
353   //
354   // We pick the latter composition because another register may have [dsub_0,
355   // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
356   // dsub_2 -> ssub_0 composition can be shared.
357   while (!Indices.empty() && !Orphans.empty()) {
358     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
359     CodeGenRegister *SR = SubRegs[Idx];
360     const SubRegMap &Map = SR->computeSubRegs(RegBank);
361     for (const auto &SubReg : Map)
362       if (Orphans.erase(SubReg.second))
363         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] =
364             SubReg.second;
365   }
366 
367   // Compute the inverse SubReg -> Idx map.
368   for (const auto &SubReg : SubRegs) {
369     if (SubReg.second == this) {
370       ArrayRef<SMLoc> Loc;
371       if (TheDef)
372         Loc = TheDef->getLoc();
373       PrintFatalError(Loc, "Register " + getName() +
374                                " has itself as a sub-register");
375     }
376 
377     // Compute AllSuperRegsCovered.
378     if (!CoveredBySubRegs)
379       SubReg.first->AllSuperRegsCovered = false;
380 
381     // Ensure that every sub-register has a unique name.
382     DenseMap<const CodeGenRegister *, CodeGenSubRegIndex *>::iterator Ins =
383         SubReg2Idx.insert(std::pair(SubReg.second, SubReg.first)).first;
384     if (Ins->second == SubReg.first)
385       continue;
386     // Trouble: Two different names for SubReg.second.
387     ArrayRef<SMLoc> Loc;
388     if (TheDef)
389       Loc = TheDef->getLoc();
390     PrintFatalError(
391         Loc, "Sub-register can't have two names: " + SubReg.second->getName() +
392                  " available as " + SubReg.first->getName() + " and " +
393                  Ins->second->getName());
394   }
395 
396   // Derive possible names for sub-register concatenations from any explicit
397   // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
398   // that getConcatSubRegIndex() won't invent any concatenated indices that the
399   // user already specified.
400   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
401     CodeGenRegister *SR = ExplicitSubRegs[i];
402     if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 ||
403         SR->Artificial)
404       continue;
405 
406     // SR is composed of multiple sub-regs. Find their names in this register.
407     SmallVector<CodeGenSubRegIndex *, 8> Parts;
408     for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) {
409       CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j];
410       if (!I.Artificial)
411         Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
412     }
413 
414     // Offer this as an existing spelling for the concatenation of Parts.
415     CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i];
416     Idx.setConcatenationOf(Parts);
417   }
418 
419   // Initialize RegUnitList. Because getSubRegs is called recursively, this
420   // processes the register hierarchy in postorder.
421   //
422   // Inherit all sub-register units. It is good enough to look at the explicit
423   // sub-registers, the other registers won't contribute any more units.
424   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
425     CodeGenRegister *SR = ExplicitSubRegs[i];
426     RegUnits |= SR->RegUnits;
427   }
428 
429   // Absent any ad hoc aliasing, we create one register unit per leaf register.
430   // These units correspond to the maximal cliques in the register overlap
431   // graph which is optimal.
432   //
433   // When there is ad hoc aliasing, we simply create one unit per edge in the
434   // undirected ad hoc aliasing graph. Technically, we could do better by
435   // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
436   // are extremely rare anyway (I've never seen one), so we don't bother with
437   // the added complexity.
438   for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
439     CodeGenRegister *AR = ExplicitAliases[i];
440     // Only visit each edge once.
441     if (AR->SubRegsComplete)
442       continue;
443     // Create a RegUnit representing this alias edge, and add it to both
444     // registers.
445     unsigned Unit = RegBank.newRegUnit(this, AR);
446     RegUnits.set(Unit);
447     AR->RegUnits.set(Unit);
448   }
449 
450   // Finally, create units for leaf registers without ad hoc aliases. Note that
451   // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
452   // necessary. This means the aliasing leaf registers can share a single unit.
453   if (RegUnits.empty())
454     RegUnits.set(RegBank.newRegUnit(this));
455 
456   // We have now computed the native register units. More may be adopted later
457   // for balancing purposes.
458   NativeRegUnits = RegUnits;
459 
460   return SubRegs;
461 }
462 
463 // In a register that is covered by its sub-registers, try to find redundant
464 // sub-registers. For example:
465 //
466 //   QQ0 = {Q0, Q1}
467 //   Q0 = {D0, D1}
468 //   Q1 = {D2, D3}
469 //
470 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
471 // the register definition.
472 //
473 // The explicitly specified registers form a tree. This function discovers
474 // sub-register relationships that would force a DAG.
475 //
computeSecondarySubRegs(CodeGenRegBank & RegBank)476 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
477   SmallVector<SubRegMap::value_type, 8> NewSubRegs;
478 
479   std::queue<std::pair<CodeGenSubRegIndex *, CodeGenRegister *>> SubRegQueue;
480   for (std::pair<CodeGenSubRegIndex *, CodeGenRegister *> P : SubRegs)
481     SubRegQueue.push(P);
482 
483   // Look at the leading super-registers of each sub-register. Those are the
484   // candidates for new sub-registers, assuming they are fully contained in
485   // this register.
486   while (!SubRegQueue.empty()) {
487     CodeGenSubRegIndex *SubRegIdx;
488     const CodeGenRegister *SubReg;
489     std::tie(SubRegIdx, SubReg) = SubRegQueue.front();
490     SubRegQueue.pop();
491 
492     const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
493     for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
494       CodeGenRegister *Cand = const_cast<CodeGenRegister *>(Leads[i]);
495       // Already got this sub-register?
496       if (Cand == this || getSubRegIndex(Cand))
497         continue;
498       // Check if each component of Cand is already a sub-register.
499       assert(!Cand->ExplicitSubRegs.empty() &&
500              "Super-register has no sub-registers");
501       if (Cand->ExplicitSubRegs.size() == 1)
502         continue;
503       SmallVector<CodeGenSubRegIndex *, 8> Parts;
504       // We know that the first component is (SubRegIdx,SubReg). However we
505       // may still need to split it into smaller subregister parts.
506       assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct");
507       assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct");
508       for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) {
509         if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) {
510           if (SubRegIdx->ConcatenationOf.empty())
511             Parts.push_back(SubRegIdx);
512           else
513             append_range(Parts, SubRegIdx->ConcatenationOf);
514         } else {
515           // Sub-register doesn't exist.
516           Parts.clear();
517           break;
518         }
519       }
520       // There is nothing to do if some Cand sub-register is not part of this
521       // register.
522       if (Parts.empty())
523         continue;
524 
525       // Each part of Cand is a sub-register of this. Make the full Cand also
526       // a sub-register with a concatenated sub-register index.
527       CodeGenSubRegIndex *Concat =
528           RegBank.getConcatSubRegIndex(Parts, RegBank.getHwModes());
529       std::pair<CodeGenSubRegIndex *, CodeGenRegister *> NewSubReg =
530           std::pair(Concat, Cand);
531 
532       if (!SubRegs.insert(NewSubReg).second)
533         continue;
534 
535       // We inserted a new subregister.
536       NewSubRegs.push_back(NewSubReg);
537       SubRegQueue.push(NewSubReg);
538       SubReg2Idx.insert(std::pair(Cand, Concat));
539     }
540   }
541 
542   // Create sub-register index composition maps for the synthesized indices.
543   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
544     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
545     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
546     for (auto SubReg : NewSubReg->SubRegs) {
547       CodeGenSubRegIndex *SubIdx = getSubRegIndex(SubReg.second);
548       if (!SubIdx)
549         PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
550                                               SubReg.second->getName() +
551                                               " in " + getName());
552       NewIdx->addComposite(SubReg.first, SubIdx, RegBank.getHwModes());
553     }
554   }
555 }
556 
computeSuperRegs(CodeGenRegBank & RegBank)557 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
558   // Only visit each register once.
559   if (SuperRegsComplete)
560     return;
561   SuperRegsComplete = true;
562 
563   // Make sure all sub-registers have been visited first, so the super-reg
564   // lists will be topologically ordered.
565   for (auto SubReg : SubRegs)
566     SubReg.second->computeSuperRegs(RegBank);
567 
568   // Now add this as a super-register on all sub-registers.
569   // Also compute the TopoSigId in post-order.
570   TopoSigId Id;
571   for (auto SubReg : SubRegs) {
572     // Topological signature computed from SubIdx, TopoId(SubReg).
573     // Loops and idempotent indices have TopoSig = ~0u.
574     Id.push_back(SubReg.first->EnumValue);
575     Id.push_back(SubReg.second->TopoSig);
576 
577     // Don't add duplicate entries.
578     if (!SubReg.second->SuperRegs.empty() &&
579         SubReg.second->SuperRegs.back() == this)
580       continue;
581     SubReg.second->SuperRegs.push_back(this);
582   }
583   TopoSig = RegBank.getTopoSig(Id);
584 }
585 
addSubRegsPreOrder(SetVector<const CodeGenRegister * > & OSet,CodeGenRegBank & RegBank) const586 void CodeGenRegister::addSubRegsPreOrder(
587     SetVector<const CodeGenRegister *> &OSet, CodeGenRegBank &RegBank) const {
588   assert(SubRegsComplete && "Must precompute sub-registers");
589   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
590     CodeGenRegister *SR = ExplicitSubRegs[i];
591     if (OSet.insert(SR))
592       SR->addSubRegsPreOrder(OSet, RegBank);
593   }
594   // Add any secondary sub-registers that weren't part of the explicit tree.
595   for (auto SubReg : SubRegs)
596     OSet.insert(SubReg.second);
597 }
598 
599 // Get the sum of this register's unit weights.
getWeight(const CodeGenRegBank & RegBank) const600 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
601   unsigned Weight = 0;
602   for (unsigned RegUnit : RegUnits) {
603     Weight += RegBank.getRegUnit(RegUnit).Weight;
604   }
605   return Weight;
606 }
607 
608 //===----------------------------------------------------------------------===//
609 //                               RegisterTuples
610 //===----------------------------------------------------------------------===//
611 
612 // A RegisterTuples def is used to generate pseudo-registers from lists of
613 // sub-registers. We provide a SetTheory expander class that returns the new
614 // registers.
615 namespace {
616 
617 struct TupleExpander : SetTheory::Expander {
618   // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
619   // the synthesized definitions for their lifetime.
620   std::vector<std::unique_ptr<Record>> &SynthDefs;
621 
622   // Track all synthesized tuple names in order to detect duplicate definitions.
623   llvm::StringSet<> TupleNames;
624 
TupleExpander__anon90463ec00211::TupleExpander625   TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs)
626       : SynthDefs(SynthDefs) {}
627 
expand__anon90463ec00211::TupleExpander628   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
629     std::vector<Record *> Indices = Def->getValueAsListOfDefs("SubRegIndices");
630     unsigned Dim = Indices.size();
631     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
632     if (Dim != SubRegs->size())
633       PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
634     if (Dim < 2)
635       PrintFatalError(Def->getLoc(),
636                       "Tuples must have at least 2 sub-registers");
637 
638     // Evaluate the sub-register lists to be zipped.
639     unsigned Length = ~0u;
640     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
641     for (unsigned i = 0; i != Dim; ++i) {
642       ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
643       Length = std::min(Length, unsigned(Lists[i].size()));
644     }
645 
646     if (Length == 0)
647       return;
648 
649     // Precompute some types.
650     Record *RegisterCl = Def->getRecords().getClass("Register");
651     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
652     std::vector<StringRef> RegNames =
653         Def->getValueAsListOfStrings("RegAsmNames");
654 
655     // Zip them up.
656     RecordKeeper &RK = Def->getRecords();
657     for (unsigned n = 0; n != Length; ++n) {
658       std::string Name;
659       Record *Proto = Lists[0][n];
660       std::vector<Init *> Tuple;
661       for (unsigned i = 0; i != Dim; ++i) {
662         Record *Reg = Lists[i][n];
663         if (i)
664           Name += '_';
665         Name += Reg->getName();
666         Tuple.push_back(DefInit::get(Reg));
667       }
668 
669       // Take the cost list of the first register in the tuple.
670       ListInit *CostList = Proto->getValueAsListInit("CostPerUse");
671       SmallVector<Init *, 2> CostPerUse;
672       CostPerUse.insert(CostPerUse.end(), CostList->begin(), CostList->end());
673 
674       StringInit *AsmName = StringInit::get(RK, "");
675       if (!RegNames.empty()) {
676         if (RegNames.size() <= n)
677           PrintFatalError(Def->getLoc(),
678                           "Register tuple definition missing name for '" +
679                               Name + "'.");
680         AsmName = StringInit::get(RK, RegNames[n]);
681       }
682 
683       // Create a new Record representing the synthesized register. This record
684       // is only for consumption by CodeGenRegister, it is not added to the
685       // RecordKeeper.
686       SynthDefs.emplace_back(
687           std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords()));
688       Record *NewReg = SynthDefs.back().get();
689       Elts.insert(NewReg);
690 
691       // Detect duplicates among synthesized registers.
692       const auto Res = TupleNames.insert(NewReg->getName());
693       if (!Res.second)
694         PrintFatalError(Def->getLoc(),
695                         "Register tuple redefines register '" + Name + "'.");
696 
697       // Copy Proto super-classes.
698       ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
699       for (const auto &SuperPair : Supers)
700         NewReg->addSuperClass(SuperPair.first, SuperPair.second);
701 
702       // Copy Proto fields.
703       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
704         RecordVal RV = Proto->getValues()[i];
705 
706         // Skip existing fields, like NAME.
707         if (NewReg->getValue(RV.getNameInit()))
708           continue;
709 
710         StringRef Field = RV.getName();
711 
712         // Replace the sub-register list with Tuple.
713         if (Field == "SubRegs")
714           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
715 
716         if (Field == "AsmName")
717           RV.setValue(AsmName);
718 
719         // CostPerUse is aggregated from all Tuple members.
720         if (Field == "CostPerUse")
721           RV.setValue(ListInit::get(CostPerUse, CostList->getElementType()));
722 
723         // Composite registers are always covered by sub-registers.
724         if (Field == "CoveredBySubRegs")
725           RV.setValue(BitInit::get(RK, true));
726 
727         // Copy fields from the RegisterTuples def.
728         if (Field == "SubRegIndices" || Field == "CompositeIndices") {
729           NewReg->addValue(*Def->getValue(Field));
730           continue;
731         }
732 
733         // Some fields get their default uninitialized value.
734         if (Field == "DwarfNumbers" || Field == "DwarfAlias" ||
735             Field == "Aliases") {
736           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
737             NewReg->addValue(*DefRV);
738           continue;
739         }
740 
741         // Everything else is copied from Proto.
742         NewReg->addValue(RV);
743       }
744     }
745   }
746 };
747 
748 } // end anonymous namespace
749 
750 //===----------------------------------------------------------------------===//
751 //                            CodeGenRegisterClass
752 //===----------------------------------------------------------------------===//
753 
sortAndUniqueRegisters(CodeGenRegister::Vec & M)754 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
755   llvm::sort(M, deref<std::less<>>());
756   M.erase(llvm::unique(M, deref<std::equal_to<>>()), M.end());
757 }
758 
CodeGenRegisterClass(CodeGenRegBank & RegBank,Record * R)759 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
760     : TheDef(R), Name(std::string(R->getName())),
761       TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), TSFlags(0) {
762   GeneratePressureSet = R->getValueAsBit("GeneratePressureSet");
763   std::vector<Record *> TypeList = R->getValueAsListOfDefs("RegTypes");
764   if (TypeList.empty())
765     PrintFatalError(R->getLoc(), "RegTypes list must not be empty!");
766   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
767     Record *Type = TypeList[i];
768     if (!Type->isSubClassOf("ValueType"))
769       PrintFatalError(R->getLoc(),
770                       "RegTypes list member '" + Type->getName() +
771                           "' does not derive from the ValueType class!");
772     VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes()));
773   }
774 
775   // Allocation order 0 is the full set. AltOrders provides others.
776   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
777   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
778   Orders.resize(1 + AltOrders->size());
779 
780   // Default allocation order always contains all registers.
781   Artificial = true;
782   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
783     Orders[0].push_back((*Elements)[i]);
784     const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
785     Members.push_back(Reg);
786     Artificial &= Reg->Artificial;
787     TopoSigs.set(Reg->getTopoSig());
788   }
789   sortAndUniqueRegisters(Members);
790 
791   // Alternative allocation orders may be subsets.
792   SetTheory::RecSet Order;
793   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
794     RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
795     Orders[1 + i].append(Order.begin(), Order.end());
796     // Verify that all altorder members are regclass members.
797     while (!Order.empty()) {
798       CodeGenRegister *Reg = RegBank.getReg(Order.back());
799       Order.pop_back();
800       if (!contains(Reg))
801         PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
802                                          " is not a class member");
803     }
804   }
805 
806   Namespace = R->getValueAsString("Namespace");
807 
808   if (const RecordVal *RV = R->getValue("RegInfos"))
809     if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
810       RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes());
811   unsigned Size = R->getValueAsInt("Size");
812   assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) &&
813          "Impossible to determine register size");
814   if (!RSI.hasDefault()) {
815     RegSizeInfo RI;
816     RI.RegSize = RI.SpillSize =
817         Size ? Size : VTs[0].getSimple().getSizeInBits();
818     RI.SpillAlignment = R->getValueAsInt("Alignment");
819     RSI.insertRegSizeForMode(DefaultMode, RI);
820   }
821 
822   CopyCost = R->getValueAsInt("CopyCost");
823   Allocatable = R->getValueAsBit("isAllocatable");
824   AltOrderSelect = R->getValueAsString("AltOrderSelect");
825   int AllocationPriority = R->getValueAsInt("AllocationPriority");
826   if (!isUInt<5>(AllocationPriority))
827     PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,31]");
828   this->AllocationPriority = AllocationPriority;
829 
830   GlobalPriority = R->getValueAsBit("GlobalPriority");
831 
832   BitsInit *TSF = R->getValueAsBitsInit("TSFlags");
833   for (unsigned I = 0, E = TSF->getNumBits(); I != E; ++I) {
834     BitInit *Bit = cast<BitInit>(TSF->getBit(I));
835     TSFlags |= uint8_t(Bit->getValue()) << I;
836   }
837 }
838 
839 // Create an inferred register class that was missing from the .td files.
840 // Most properties will be inherited from the closest super-class after the
841 // class structure has been computed.
CodeGenRegisterClass(CodeGenRegBank & RegBank,StringRef Name,Key Props)842 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
843                                            StringRef Name, Key Props)
844     : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)),
845       TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI),
846       CopyCost(0), Allocatable(true), AllocationPriority(0),
847       GlobalPriority(false), TSFlags(0) {
848   Artificial = true;
849   GeneratePressureSet = false;
850   for (const auto R : Members) {
851     TopoSigs.set(R->getTopoSig());
852     Artificial &= R->Artificial;
853   }
854 }
855 
856 // Compute inherited propertied for a synthesized register class.
inheritProperties(CodeGenRegBank & RegBank)857 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
858   assert(!getDef() && "Only synthesized classes can inherit properties");
859   assert(!SuperClasses.empty() && "Synthesized class without super class");
860 
861   // The last super-class is the smallest one.
862   CodeGenRegisterClass &Super = *SuperClasses.back();
863 
864   // Most properties are copied directly.
865   // Exceptions are members, size, and alignment
866   Namespace = Super.Namespace;
867   VTs = Super.VTs;
868   CopyCost = Super.CopyCost;
869   // Check for allocatable superclasses.
870   Allocatable = any_of(SuperClasses, [&](const CodeGenRegisterClass *S) {
871     return S->Allocatable;
872   });
873   AltOrderSelect = Super.AltOrderSelect;
874   AllocationPriority = Super.AllocationPriority;
875   GlobalPriority = Super.GlobalPriority;
876   TSFlags = Super.TSFlags;
877   GeneratePressureSet |= Super.GeneratePressureSet;
878 
879   // Copy all allocation orders, filter out foreign registers from the larger
880   // super-class.
881   Orders.resize(Super.Orders.size());
882   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
883     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
884       if (contains(RegBank.getReg(Super.Orders[i][j])))
885         Orders[i].push_back(Super.Orders[i][j]);
886 }
887 
hasType(const ValueTypeByHwMode & VT) const888 bool CodeGenRegisterClass::hasType(const ValueTypeByHwMode &VT) const {
889   if (llvm::is_contained(VTs, VT))
890     return true;
891 
892   // If VT is not identical to any of this class's types, but is a simple
893   // type, check if any of the types for this class contain it under some
894   // mode.
895   // The motivating example came from RISC-V, where (likely because of being
896   // guarded by "64-bit" predicate), the type of X5 was {*:[i64]}, but the
897   // type in GRC was {*:[i32], m1:[i64]}.
898   if (VT.isSimple()) {
899     MVT T = VT.getSimple();
900     for (const ValueTypeByHwMode &OurVT : VTs) {
901       if (llvm::count_if(OurVT, [T](auto &&P) { return P.second == T; }))
902         return true;
903     }
904   }
905   return false;
906 }
907 
contains(const CodeGenRegister * Reg) const908 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
909   return std::binary_search(Members.begin(), Members.end(), Reg,
910                             deref<std::less<>>());
911 }
912 
getWeight(const CodeGenRegBank & RegBank) const913 unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank &RegBank) const {
914   if (TheDef && !TheDef->isValueUnset("Weight"))
915     return TheDef->getValueAsInt("Weight");
916 
917   if (Members.empty() || Artificial)
918     return 0;
919 
920   return (*Members.begin())->getWeight(RegBank);
921 }
922 
923 namespace llvm {
924 
operator <<(raw_ostream & OS,const CodeGenRegisterClass::Key & K)925 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
926   OS << "{ " << K.RSI;
927   for (const auto R : *K.Members)
928     OS << ", " << R->getName();
929   return OS << " }";
930 }
931 
932 } // end namespace llvm
933 
934 // This is a simple lexicographical order that can be used to search for sets.
935 // It is not the same as the topological order provided by TopoOrderRC.
operator <(const CodeGenRegisterClass::Key & B) const936 bool CodeGenRegisterClass::Key::operator<(
937     const CodeGenRegisterClass::Key &B) const {
938   assert(Members && B.Members);
939   return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI);
940 }
941 
942 // Returns true if RC is a strict subclass.
943 // RC is a sub-class of this class if it is a valid replacement for any
944 // instruction operand where a register of this classis required. It must
945 // satisfy these conditions:
946 //
947 // 1. All RC registers are also in this.
948 // 2. The RC spill size must not be smaller than our spill size.
949 // 3. RC spill alignment must be compatible with ours.
950 //
testSubClass(const CodeGenRegisterClass * A,const CodeGenRegisterClass * B)951 static bool testSubClass(const CodeGenRegisterClass *A,
952                          const CodeGenRegisterClass *B) {
953   return A->RSI.isSubClassOf(B->RSI) &&
954          std::includes(A->getMembers().begin(), A->getMembers().end(),
955                        B->getMembers().begin(), B->getMembers().end(),
956                        deref<std::less<>>());
957 }
958 
959 /// Sorting predicate for register classes.  This provides a topological
960 /// ordering that arranges all register classes before their sub-classes.
961 ///
962 /// Register classes with the same registers, spill size, and alignment form a
963 /// clique.  They will be ordered alphabetically.
964 ///
TopoOrderRC(const CodeGenRegisterClass & PA,const CodeGenRegisterClass & PB)965 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
966                         const CodeGenRegisterClass &PB) {
967   auto *A = &PA;
968   auto *B = &PB;
969   if (A == B)
970     return false;
971 
972   if (A->RSI < B->RSI)
973     return true;
974   if (A->RSI != B->RSI)
975     return false;
976 
977   // Order by descending set size.  Note that the classes' allocation order may
978   // not have been computed yet.  The Members set is always vaild.
979   if (A->getMembers().size() > B->getMembers().size())
980     return true;
981   if (A->getMembers().size() < B->getMembers().size())
982     return false;
983 
984   // Finally order by name as a tie breaker.
985   return StringRef(A->getName()) < B->getName();
986 }
987 
getNamespaceQualification() const988 std::string CodeGenRegisterClass::getNamespaceQualification() const {
989   return Namespace.empty() ? "" : (Namespace + "::").str();
990 }
991 
getQualifiedName() const992 std::string CodeGenRegisterClass::getQualifiedName() const {
993   return getNamespaceQualification() + getName();
994 }
995 
getIdName() const996 std::string CodeGenRegisterClass::getIdName() const {
997   return getName() + "RegClassID";
998 }
999 
getQualifiedIdName() const1000 std::string CodeGenRegisterClass::getQualifiedIdName() const {
1001   return getNamespaceQualification() + getIdName();
1002 }
1003 
1004 // Compute sub-classes of all register classes.
1005 // Assume the classes are ordered topologically.
computeSubClasses(CodeGenRegBank & RegBank)1006 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
1007   auto &RegClasses = RegBank.getRegClasses();
1008 
1009   // Visit backwards so sub-classes are seen first.
1010   for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
1011     CodeGenRegisterClass &RC = *I;
1012     RC.SubClasses.resize(RegClasses.size());
1013     RC.SubClasses.set(RC.EnumValue);
1014     if (RC.Artificial)
1015       continue;
1016 
1017     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
1018     for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
1019       CodeGenRegisterClass &SubRC = *I2;
1020       if (RC.SubClasses.test(SubRC.EnumValue))
1021         continue;
1022       if (!testSubClass(&RC, &SubRC))
1023         continue;
1024       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
1025       // check them again.
1026       RC.SubClasses |= SubRC.SubClasses;
1027     }
1028 
1029     // Sweep up missed clique members.  They will be immediately preceding RC.
1030     for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
1031       RC.SubClasses.set(I2->EnumValue);
1032   }
1033 
1034   // Compute the SuperClasses lists from the SubClasses vectors.
1035   for (auto &RC : RegClasses) {
1036     const BitVector &SC = RC.getSubClasses();
1037     auto I = RegClasses.begin();
1038     for (int s = 0, next_s = SC.find_first(); next_s != -1;
1039          next_s = SC.find_next(s)) {
1040       std::advance(I, next_s - s);
1041       s = next_s;
1042       if (&*I == &RC)
1043         continue;
1044       I->SuperClasses.push_back(&RC);
1045     }
1046   }
1047 
1048   // With the class hierarchy in place, let synthesized register classes inherit
1049   // properties from their closest super-class. The iteration order here can
1050   // propagate properties down multiple levels.
1051   for (auto &RC : RegClasses)
1052     if (!RC.getDef())
1053       RC.inheritProperties(RegBank);
1054 }
1055 
1056 std::optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
getMatchingSubClassWithSubRegs(CodeGenRegBank & RegBank,const CodeGenSubRegIndex * SubIdx) const1057 CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
1058     CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
1059   auto WeakSizeOrder = [this](const CodeGenRegisterClass *A,
1060                               const CodeGenRegisterClass *B) {
1061     // If there are multiple, identical register classes, prefer the original
1062     // register class.
1063     if (A == B)
1064       return false;
1065     if (A->getMembers().size() == B->getMembers().size())
1066       return A == this;
1067     return A->getMembers().size() > B->getMembers().size();
1068   };
1069 
1070   auto &RegClasses = RegBank.getRegClasses();
1071 
1072   // Find all the subclasses of this one that fully support the sub-register
1073   // index and order them by size. BiggestSuperRC should always be first.
1074   CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
1075   if (!BiggestSuperRegRC)
1076     return std::nullopt;
1077   BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
1078   std::vector<CodeGenRegisterClass *> SuperRegRCs;
1079   for (auto &RC : RegClasses)
1080     if (SuperRegRCsBV[RC.EnumValue])
1081       SuperRegRCs.emplace_back(&RC);
1082   llvm::stable_sort(SuperRegRCs, WeakSizeOrder);
1083 
1084   assert(SuperRegRCs.front() == BiggestSuperRegRC &&
1085          "Biggest class wasn't first");
1086 
1087   // Find all the subreg classes and order them by size too.
1088   std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
1089   for (auto &RC : RegClasses) {
1090     BitVector SuperRegClassesBV(RegClasses.size());
1091     RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
1092     if (SuperRegClassesBV.any())
1093       SuperRegClasses.push_back(std::pair(&RC, SuperRegClassesBV));
1094   }
1095   llvm::stable_sort(SuperRegClasses,
1096                     [&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
1097                         const std::pair<CodeGenRegisterClass *, BitVector> &B) {
1098                       return WeakSizeOrder(A.first, B.first);
1099                     });
1100 
1101   // Find the biggest subclass and subreg class such that R:subidx is in the
1102   // subreg class for all R in subclass.
1103   //
1104   // For example:
1105   // All registers in X86's GR64 have a sub_32bit subregister but no class
1106   // exists that contains all the 32-bit subregisters because GR64 contains RIP
1107   // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
1108   // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
1109   // having excluded RIP, we are able to find a SubRegRC (GR32).
1110   CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
1111   CodeGenRegisterClass *SubRegRC = nullptr;
1112   for (auto *SuperRegRC : SuperRegRCs) {
1113     for (const auto &SuperRegClassPair : SuperRegClasses) {
1114       const BitVector &SuperRegClassBV = SuperRegClassPair.second;
1115       if (SuperRegClassBV[SuperRegRC->EnumValue]) {
1116         SubRegRC = SuperRegClassPair.first;
1117         ChosenSuperRegClass = SuperRegRC;
1118 
1119         // If SubRegRC is bigger than SuperRegRC then there are members of
1120         // SubRegRC that don't have super registers via SubIdx. Keep looking to
1121         // find a better fit and fall back on this one if there isn't one.
1122         //
1123         // This is intended to prevent X86 from making odd choices such as
1124         // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
1125         // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
1126         // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
1127         // mapping.
1128         if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
1129           return std::pair(ChosenSuperRegClass, SubRegRC);
1130       }
1131     }
1132 
1133     // If we found a fit but it wasn't quite ideal because SubRegRC had excess
1134     // registers, then we're done.
1135     if (ChosenSuperRegClass)
1136       return std::pair(ChosenSuperRegClass, SubRegRC);
1137   }
1138 
1139   return std::nullopt;
1140 }
1141 
getSuperRegClasses(const CodeGenSubRegIndex * SubIdx,BitVector & Out) const1142 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
1143                                               BitVector &Out) const {
1144   auto FindI = SuperRegClasses.find(SubIdx);
1145   if (FindI == SuperRegClasses.end())
1146     return;
1147   for (CodeGenRegisterClass *RC : FindI->second)
1148     Out.set(RC->EnumValue);
1149 }
1150 
1151 // Populate a unique sorted list of units from a register set.
buildRegUnitSet(const CodeGenRegBank & RegBank,std::vector<unsigned> & RegUnits) const1152 void CodeGenRegisterClass::buildRegUnitSet(
1153     const CodeGenRegBank &RegBank, std::vector<unsigned> &RegUnits) const {
1154   std::vector<unsigned> TmpUnits;
1155   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) {
1156     const RegUnit &RU = RegBank.getRegUnit(*UnitI);
1157     if (!RU.Artificial)
1158       TmpUnits.push_back(*UnitI);
1159   }
1160   llvm::sort(TmpUnits);
1161   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
1162                    std::back_inserter(RegUnits));
1163 }
1164 
1165 //===----------------------------------------------------------------------===//
1166 //                           CodeGenRegisterCategory
1167 //===----------------------------------------------------------------------===//
1168 
CodeGenRegisterCategory(CodeGenRegBank & RegBank,Record * R)1169 CodeGenRegisterCategory::CodeGenRegisterCategory(CodeGenRegBank &RegBank,
1170                                                  Record *R)
1171     : TheDef(R), Name(std::string(R->getName())) {
1172   for (Record *RegClass : R->getValueAsListOfDefs("Classes"))
1173     Classes.push_back(RegBank.getRegClass(RegClass));
1174 }
1175 
1176 //===----------------------------------------------------------------------===//
1177 //                               CodeGenRegBank
1178 //===----------------------------------------------------------------------===//
1179 
CodeGenRegBank(RecordKeeper & Records,const CodeGenHwModes & Modes)1180 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records,
1181                                const CodeGenHwModes &Modes)
1182     : CGH(Modes) {
1183   // Configure register Sets to understand register classes and tuples.
1184   Sets.addFieldExpander("RegisterClass", "MemberList");
1185   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
1186   Sets.addExpander("RegisterTuples",
1187                    std::make_unique<TupleExpander>(SynthDefs));
1188 
1189   // Read in the user-defined (named) sub-register indices.
1190   // More indices will be synthesized later.
1191   std::vector<Record *> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
1192   llvm::sort(SRIs, LessRecord());
1193   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
1194     getSubRegIdx(SRIs[i]);
1195   // Build composite maps from ComposedOf fields.
1196   for (auto &Idx : SubRegIndices)
1197     Idx.updateComponents(*this);
1198 
1199   // Read in the register and register tuple definitions.
1200   std::vector<Record *> Regs = Records.getAllDerivedDefinitions("Register");
1201   if (!Regs.empty() && Regs[0]->isSubClassOf("X86Reg")) {
1202     // For X86, we need to sort Registers and RegisterTuples together to list
1203     // new registers and register tuples at a later position. So that we can
1204     // reduce unnecessary iterations on unsupported registers in LiveVariables.
1205     // TODO: Remove this logic when migrate from LiveVariables to LiveIntervals
1206     // completely.
1207     std::vector<Record *> Tups =
1208         Records.getAllDerivedDefinitions("RegisterTuples");
1209     for (Record *R : Tups) {
1210       // Expand tuples and merge the vectors
1211       std::vector<Record *> TupRegs = *Sets.expand(R);
1212       Regs.insert(Regs.end(), TupRegs.begin(), TupRegs.end());
1213     }
1214 
1215     llvm::sort(Regs, LessRecordRegister());
1216     // Assign the enumeration values.
1217     for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1218       getReg(Regs[i]);
1219   } else {
1220     llvm::sort(Regs, LessRecordRegister());
1221     // Assign the enumeration values.
1222     for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1223       getReg(Regs[i]);
1224 
1225     // Expand tuples and number the new registers.
1226     std::vector<Record *> Tups =
1227         Records.getAllDerivedDefinitions("RegisterTuples");
1228 
1229     for (Record *R : Tups) {
1230       std::vector<Record *> TupRegs = *Sets.expand(R);
1231       llvm::sort(TupRegs, LessRecordRegister());
1232       for (Record *RC : TupRegs)
1233         getReg(RC);
1234     }
1235   }
1236 
1237   // Now all the registers are known. Build the object graph of explicit
1238   // register-register references.
1239   for (auto &Reg : Registers)
1240     Reg.buildObjectGraph(*this);
1241 
1242   // Compute register name map.
1243   for (auto &Reg : Registers)
1244     // FIXME: This could just be RegistersByName[name] = register, except that
1245     // causes some failures in MIPS - perhaps they have duplicate register name
1246     // entries? (or maybe there's a reason for it - I don't know much about this
1247     // code, just drive-by refactoring)
1248     RegistersByName.insert(
1249         std::pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
1250 
1251   // Precompute all sub-register maps.
1252   // This will create Composite entries for all inferred sub-register indices.
1253   for (auto &Reg : Registers)
1254     Reg.computeSubRegs(*this);
1255 
1256   // Compute transitive closure of subregister index ConcatenationOf vectors
1257   // and initialize ConcatIdx map.
1258   for (CodeGenSubRegIndex &SRI : SubRegIndices) {
1259     SRI.computeConcatTransitiveClosure();
1260     if (!SRI.ConcatenationOf.empty())
1261       ConcatIdx.insert(
1262           std::pair(SmallVector<CodeGenSubRegIndex *, 8>(
1263                         SRI.ConcatenationOf.begin(), SRI.ConcatenationOf.end()),
1264                     &SRI));
1265   }
1266 
1267   // Infer even more sub-registers by combining leading super-registers.
1268   for (auto &Reg : Registers)
1269     if (Reg.CoveredBySubRegs)
1270       Reg.computeSecondarySubRegs(*this);
1271 
1272   // After the sub-register graph is complete, compute the topologically
1273   // ordered SuperRegs list.
1274   for (auto &Reg : Registers)
1275     Reg.computeSuperRegs(*this);
1276 
1277   // For each pair of Reg:SR, if both are non-artificial, mark the
1278   // corresponding sub-register index as non-artificial.
1279   for (auto &Reg : Registers) {
1280     if (Reg.Artificial)
1281       continue;
1282     for (auto P : Reg.getSubRegs()) {
1283       const CodeGenRegister *SR = P.second;
1284       if (!SR->Artificial)
1285         P.first->Artificial = false;
1286     }
1287   }
1288 
1289   // Native register units are associated with a leaf register. They've all been
1290   // discovered now.
1291   NumNativeRegUnits = RegUnits.size();
1292 
1293   // Read in register class definitions.
1294   std::vector<Record *> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1295   if (RCs.empty())
1296     PrintFatalError("No 'RegisterClass' subclasses defined!");
1297 
1298   // Allocate user-defined register classes.
1299   for (auto *R : RCs) {
1300     RegClasses.emplace_back(*this, R);
1301     CodeGenRegisterClass &RC = RegClasses.back();
1302     if (!RC.Artificial)
1303       addToMaps(&RC);
1304   }
1305 
1306   // Infer missing classes to create a full algebra.
1307   computeInferredRegisterClasses();
1308 
1309   // Order register classes topologically and assign enum values.
1310   RegClasses.sort(TopoOrderRC);
1311   unsigned i = 0;
1312   for (auto &RC : RegClasses)
1313     RC.EnumValue = i++;
1314   CodeGenRegisterClass::computeSubClasses(*this);
1315 
1316   // Read in the register category definitions.
1317   std::vector<Record *> RCats =
1318       Records.getAllDerivedDefinitions("RegisterCategory");
1319   for (auto *R : RCats)
1320     RegCategories.emplace_back(*this, R);
1321 }
1322 
1323 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
createSubRegIndex(StringRef Name,StringRef Namespace)1324 CodeGenSubRegIndex *CodeGenRegBank::createSubRegIndex(StringRef Name,
1325                                                       StringRef Namespace) {
1326   SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1327   return &SubRegIndices.back();
1328 }
1329 
getSubRegIdx(Record * Def)1330 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1331   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1332   if (Idx)
1333     return Idx;
1334   SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1, getHwModes());
1335   Idx = &SubRegIndices.back();
1336   return Idx;
1337 }
1338 
1339 const CodeGenSubRegIndex *
findSubRegIdx(const Record * Def) const1340 CodeGenRegBank::findSubRegIdx(const Record *Def) const {
1341   return Def2SubRegIdx.lookup(Def);
1342 }
1343 
getReg(Record * Def)1344 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1345   CodeGenRegister *&Reg = Def2Reg[Def];
1346   if (Reg)
1347     return Reg;
1348   Registers.emplace_back(Def, Registers.size() + 1);
1349   Reg = &Registers.back();
1350   return Reg;
1351 }
1352 
addToMaps(CodeGenRegisterClass * RC)1353 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1354   if (Record *Def = RC->getDef())
1355     Def2RC.insert(std::pair(Def, RC));
1356 
1357   // Duplicate classes are rejected by insert().
1358   // That's OK, we only care about the properties handled by CGRC::Key.
1359   CodeGenRegisterClass::Key K(*RC);
1360   Key2RC.insert(std::pair(K, RC));
1361 }
1362 
1363 // Create a synthetic sub-class if it is missing.
1364 CodeGenRegisterClass *
getOrCreateSubClass(const CodeGenRegisterClass * RC,const CodeGenRegister::Vec * Members,StringRef Name)1365 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1366                                     const CodeGenRegister::Vec *Members,
1367                                     StringRef Name) {
1368   // Synthetic sub-class has the same size and alignment as RC.
1369   CodeGenRegisterClass::Key K(Members, RC->RSI);
1370   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1371   if (FoundI != Key2RC.end())
1372     return FoundI->second;
1373 
1374   // Sub-class doesn't exist, create a new one.
1375   RegClasses.emplace_back(*this, Name, K);
1376   addToMaps(&RegClasses.back());
1377   return &RegClasses.back();
1378 }
1379 
getRegClass(const Record * Def) const1380 CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const {
1381   if (CodeGenRegisterClass *RC = Def2RC.lookup(Def))
1382     return RC;
1383 
1384   PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1385 }
1386 
1387 CodeGenSubRegIndex *
getCompositeSubRegIndex(CodeGenSubRegIndex * A,CodeGenSubRegIndex * B)1388 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1389                                         CodeGenSubRegIndex *B) {
1390   // Look for an existing entry.
1391   CodeGenSubRegIndex *Comp = A->compose(B);
1392   if (Comp)
1393     return Comp;
1394 
1395   // None exists, synthesize one.
1396   std::string Name = A->getName() + "_then_" + B->getName();
1397   Comp = createSubRegIndex(Name, A->getNamespace());
1398   A->addComposite(B, Comp, getHwModes());
1399   return Comp;
1400 }
1401 
getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *,8> & Parts,const CodeGenHwModes & CGH)1402 CodeGenSubRegIndex *CodeGenRegBank::getConcatSubRegIndex(
1403     const SmallVector<CodeGenSubRegIndex *, 8> &Parts,
1404     const CodeGenHwModes &CGH) {
1405   assert(Parts.size() > 1 && "Need two parts to concatenate");
1406 #ifndef NDEBUG
1407   for (CodeGenSubRegIndex *Idx : Parts) {
1408     assert(Idx->ConcatenationOf.empty() && "No transitive closure?");
1409   }
1410 #endif
1411 
1412   // Look for an existing entry.
1413   CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1414   if (Idx)
1415     return Idx;
1416 
1417   // None exists, synthesize one.
1418   std::string Name = Parts.front()->getName();
1419   const unsigned UnknownSize = (uint16_t)-1;
1420 
1421   for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1422     Name += '_';
1423     Name += Parts[i]->getName();
1424   }
1425 
1426   Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1427   Idx->ConcatenationOf.assign(Parts.begin(), Parts.end());
1428 
1429   unsigned NumModes = CGH.getNumModeIds();
1430   for (unsigned M = 0; M < NumModes; ++M) {
1431     const CodeGenSubRegIndex *Part = Parts.front();
1432 
1433     // Determine whether all parts are contiguous.
1434     bool IsContinuous = true;
1435     const SubRegRange &FirstPartRange = Part->Range.get(M);
1436     unsigned Size = FirstPartRange.Size;
1437     unsigned LastOffset = FirstPartRange.Offset;
1438     unsigned LastSize = FirstPartRange.Size;
1439 
1440     for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1441       Part = Parts[i];
1442       Name += '_';
1443       Name += Part->getName();
1444 
1445       const SubRegRange &PartRange = Part->Range.get(M);
1446       if (Size == UnknownSize || PartRange.Size == UnknownSize)
1447         Size = UnknownSize;
1448       else
1449         Size += PartRange.Size;
1450       if (LastSize == UnknownSize ||
1451           PartRange.Offset != (LastOffset + LastSize))
1452         IsContinuous = false;
1453       LastOffset = PartRange.Offset;
1454       LastSize = PartRange.Size;
1455     }
1456     unsigned Offset = IsContinuous ? FirstPartRange.Offset : -1;
1457     Idx->Range.get(M) = SubRegRange(Size, Offset);
1458   }
1459 
1460   return Idx;
1461 }
1462 
computeComposites()1463 void CodeGenRegBank::computeComposites() {
1464   using RegMap = std::map<const CodeGenRegister *, const CodeGenRegister *>;
1465 
1466   // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
1467   // register to (sub)register associated with the action of the left-hand
1468   // side subregister.
1469   std::map<const CodeGenSubRegIndex *, RegMap> SubRegAction;
1470   for (const CodeGenRegister &R : Registers) {
1471     const CodeGenRegister::SubRegMap &SM = R.getSubRegs();
1472     for (std::pair<const CodeGenSubRegIndex *, const CodeGenRegister *> P : SM)
1473       SubRegAction[P.first].insert({&R, P.second});
1474   }
1475 
1476   // Calculate the composition of two subregisters as compositions of their
1477   // associated actions.
1478   auto compose = [&SubRegAction](const CodeGenSubRegIndex *Sub1,
1479                                  const CodeGenSubRegIndex *Sub2) {
1480     RegMap C;
1481     const RegMap &Img1 = SubRegAction.at(Sub1);
1482     const RegMap &Img2 = SubRegAction.at(Sub2);
1483     for (std::pair<const CodeGenRegister *, const CodeGenRegister *> P : Img1) {
1484       auto F = Img2.find(P.second);
1485       if (F != Img2.end())
1486         C.insert({P.first, F->second});
1487     }
1488     return C;
1489   };
1490 
1491   // Check if the two maps agree on the intersection of their domains.
1492   auto agree = [](const RegMap &Map1, const RegMap &Map2) {
1493     // Technically speaking, an empty map agrees with any other map, but
1494     // this could flag false positives. We're interested in non-vacuous
1495     // agreements.
1496     if (Map1.empty() || Map2.empty())
1497       return false;
1498     for (std::pair<const CodeGenRegister *, const CodeGenRegister *> P : Map1) {
1499       auto F = Map2.find(P.first);
1500       if (F == Map2.end() || P.second != F->second)
1501         return false;
1502     }
1503     return true;
1504   };
1505 
1506   using CompositePair =
1507       std::pair<const CodeGenSubRegIndex *, const CodeGenSubRegIndex *>;
1508   SmallSet<CompositePair, 4> UserDefined;
1509   for (const CodeGenSubRegIndex &Idx : SubRegIndices)
1510     for (auto P : Idx.getComposites())
1511       UserDefined.insert(std::pair(&Idx, P.first));
1512 
1513   // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1514   // and many registers will share TopoSigs on regular architectures.
1515   BitVector TopoSigs(getNumTopoSigs());
1516 
1517   for (const auto &Reg1 : Registers) {
1518     // Skip identical subreg structures already processed.
1519     if (TopoSigs.test(Reg1.getTopoSig()))
1520       continue;
1521     TopoSigs.set(Reg1.getTopoSig());
1522 
1523     const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1524     for (auto I1 : SRM1) {
1525       CodeGenSubRegIndex *Idx1 = I1.first;
1526       CodeGenRegister *Reg2 = I1.second;
1527       // Ignore identity compositions.
1528       if (&Reg1 == Reg2)
1529         continue;
1530       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1531       // Try composing Idx1 with another SubRegIndex.
1532       for (auto I2 : SRM2) {
1533         CodeGenSubRegIndex *Idx2 = I2.first;
1534         CodeGenRegister *Reg3 = I2.second;
1535         // Ignore identity compositions.
1536         if (Reg2 == Reg3)
1537           continue;
1538         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1539         CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1540         assert(Idx3 && "Sub-register doesn't have an index");
1541 
1542         // Conflicting composition? Emit a warning but allow it.
1543         if (CodeGenSubRegIndex *Prev =
1544                 Idx1->addComposite(Idx2, Idx3, getHwModes())) {
1545           // If the composition was not user-defined, always emit a warning.
1546           if (!UserDefined.count({Idx1, Idx2}) ||
1547               agree(compose(Idx1, Idx2), SubRegAction.at(Idx3)))
1548             PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1549                          " and " + Idx2->getQualifiedName() +
1550                          " compose ambiguously as " + Prev->getQualifiedName() +
1551                          " or " + Idx3->getQualifiedName());
1552         }
1553       }
1554     }
1555   }
1556 }
1557 
1558 // Compute lane masks. This is similar to register units, but at the
1559 // sub-register index level. Each bit in the lane mask is like a register unit
1560 // class, and two lane masks will have a bit in common if two sub-register
1561 // indices overlap in some register.
1562 //
1563 // Conservatively share a lane mask bit if two sub-register indices overlap in
1564 // some registers, but not in others. That shouldn't happen a lot.
computeSubRegLaneMasks()1565 void CodeGenRegBank::computeSubRegLaneMasks() {
1566   // First assign individual bits to all the leaf indices.
1567   unsigned Bit = 0;
1568   // Determine mask of lanes that cover their registers.
1569   CoveringLanes = LaneBitmask::getAll();
1570   for (auto &Idx : SubRegIndices) {
1571     if (Idx.getComposites().empty()) {
1572       if (Bit > LaneBitmask::BitWidth) {
1573         PrintFatalError(
1574             Twine("Ran out of lanemask bits to represent subregister ") +
1575             Idx.getName());
1576       }
1577       Idx.LaneMask = LaneBitmask::getLane(Bit);
1578       ++Bit;
1579     } else {
1580       Idx.LaneMask = LaneBitmask::getNone();
1581     }
1582   }
1583 
1584   // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1585   // here is that for each possible target subregister we look at the leafs
1586   // in the subregister graph that compose for this target and create
1587   // transformation sequences for the lanemasks. Each step in the sequence
1588   // consists of a bitmask and a bitrotate operation. As the rotation amounts
1589   // are usually the same for many subregisters we can easily combine the steps
1590   // by combining the masks.
1591   for (const auto &Idx : SubRegIndices) {
1592     const auto &Composites = Idx.getComposites();
1593     auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1594 
1595     if (Composites.empty()) {
1596       // Moving from a class with no subregisters we just had a single lane:
1597       // The subregister must be a leaf subregister and only occupies 1 bit.
1598       // Move the bit from the class without subregisters into that position.
1599       unsigned DstBit = Idx.LaneMask.getHighestLane();
1600       assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
1601              "Must be a leaf subregister");
1602       MaskRolPair MaskRol = {LaneBitmask::getLane(0), (uint8_t)DstBit};
1603       LaneTransforms.push_back(MaskRol);
1604     } else {
1605       // Go through all leaf subregisters and find the ones that compose with
1606       // Idx. These make out all possible valid bits in the lane mask we want to
1607       // transform. Looking only at the leafs ensure that only a single bit in
1608       // the mask is set.
1609       unsigned NextBit = 0;
1610       for (auto &Idx2 : SubRegIndices) {
1611         // Skip non-leaf subregisters.
1612         if (!Idx2.getComposites().empty())
1613           continue;
1614         // Replicate the behaviour from the lane mask generation loop above.
1615         unsigned SrcBit = NextBit;
1616         LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
1617         if (NextBit < LaneBitmask::BitWidth - 1)
1618           ++NextBit;
1619         assert(Idx2.LaneMask == SrcMask);
1620 
1621         // Get the composed subregister if there is any.
1622         auto C = Composites.find(&Idx2);
1623         if (C == Composites.end())
1624           continue;
1625         const CodeGenSubRegIndex *Composite = C->second;
1626         // The Composed subreg should be a leaf subreg too
1627         assert(Composite->getComposites().empty());
1628 
1629         // Create Mask+Rotate operation and merge with existing ops if possible.
1630         unsigned DstBit = Composite->LaneMask.getHighestLane();
1631         int Shift = DstBit - SrcBit;
1632         uint8_t RotateLeft =
1633             Shift >= 0 ? (uint8_t)Shift : LaneBitmask::BitWidth + Shift;
1634         for (auto &I : LaneTransforms) {
1635           if (I.RotateLeft == RotateLeft) {
1636             I.Mask |= SrcMask;
1637             SrcMask = LaneBitmask::getNone();
1638           }
1639         }
1640         if (SrcMask.any()) {
1641           MaskRolPair MaskRol = {SrcMask, RotateLeft};
1642           LaneTransforms.push_back(MaskRol);
1643         }
1644       }
1645     }
1646 
1647     // Optimize if the transformation consists of one step only: Set mask to
1648     // 0xffffffff (including some irrelevant invalid bits) so that it should
1649     // merge with more entries later while compressing the table.
1650     if (LaneTransforms.size() == 1)
1651       LaneTransforms[0].Mask = LaneBitmask::getAll();
1652 
1653     // Further compression optimization: For invalid compositions resulting
1654     // in a sequence with 0 entries we can just pick any other. Choose
1655     // Mask 0xffffffff with Rotation 0.
1656     if (LaneTransforms.size() == 0) {
1657       MaskRolPair P = {LaneBitmask::getAll(), 0};
1658       LaneTransforms.push_back(P);
1659     }
1660   }
1661 
1662   // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1663   // by the sub-register graph? This doesn't occur in any known targets.
1664 
1665   // Inherit lanes from composites.
1666   for (const auto &Idx : SubRegIndices) {
1667     LaneBitmask Mask = Idx.computeLaneMask();
1668     // If some super-registers without CoveredBySubRegs use this index, we can
1669     // no longer assume that the lanes are covering their registers.
1670     if (!Idx.AllSuperRegsCovered)
1671       CoveringLanes &= ~Mask;
1672   }
1673 
1674   // Compute lane mask combinations for register classes.
1675   for (auto &RegClass : RegClasses) {
1676     LaneBitmask LaneMask;
1677     for (const auto &SubRegIndex : SubRegIndices) {
1678       if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1679         continue;
1680       LaneMask |= SubRegIndex.LaneMask;
1681     }
1682 
1683     // For classes without any subregisters set LaneMask to 1 instead of 0.
1684     // This makes it easier for client code to handle classes uniformly.
1685     if (LaneMask.none())
1686       LaneMask = LaneBitmask::getLane(0);
1687 
1688     RegClass.LaneMask = LaneMask;
1689   }
1690 }
1691 
1692 namespace {
1693 
1694 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1695 // the transitive closure of the union of overlapping register
1696 // classes. Together, the UberRegSets form a partition of the registers. If we
1697 // consider overlapping register classes to be connected, then each UberRegSet
1698 // is a set of connected components.
1699 //
1700 // An UberRegSet will likely be a horizontal slice of register names of
1701 // the same width. Nontrivial subregisters should then be in a separate
1702 // UberRegSet. But this property isn't required for valid computation of
1703 // register unit weights.
1704 //
1705 // A Weight field caches the max per-register unit weight in each UberRegSet.
1706 //
1707 // A set of SingularDeterminants flags single units of some register in this set
1708 // for which the unit weight equals the set weight. These units should not have
1709 // their weight increased.
1710 struct UberRegSet {
1711   CodeGenRegister::Vec Regs;
1712   unsigned Weight = 0;
1713   CodeGenRegister::RegUnitList SingularDeterminants;
1714 
1715   UberRegSet() = default;
1716 };
1717 
1718 } // end anonymous namespace
1719 
1720 // Partition registers into UberRegSets, where each set is the transitive
1721 // closure of the union of overlapping register classes.
1722 //
1723 // UberRegSets[0] is a special non-allocatable set.
computeUberSets(std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,CodeGenRegBank & RegBank)1724 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1725                             std::vector<UberRegSet *> &RegSets,
1726                             CodeGenRegBank &RegBank) {
1727   const auto &Registers = RegBank.getRegisters();
1728 
1729   // The Register EnumValue is one greater than its index into Registers.
1730   assert(Registers.size() == Registers.back().EnumValue &&
1731          "register enum value mismatch");
1732 
1733   // For simplicitly make the SetID the same as EnumValue.
1734   IntEqClasses UberSetIDs(Registers.size() + 1);
1735   BitVector AllocatableRegs(Registers.size() + 1);
1736   for (auto &RegClass : RegBank.getRegClasses()) {
1737     if (!RegClass.Allocatable)
1738       continue;
1739 
1740     const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1741     if (Regs.empty())
1742       continue;
1743 
1744     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1745     assert(USetID && "register number 0 is invalid");
1746 
1747     AllocatableRegs.set((*Regs.begin())->EnumValue);
1748     for (const CodeGenRegister *CGR : llvm::drop_begin(Regs)) {
1749       AllocatableRegs.set(CGR->EnumValue);
1750       UberSetIDs.join(USetID, CGR->EnumValue);
1751     }
1752   }
1753   // Combine non-allocatable regs.
1754   for (const auto &Reg : Registers) {
1755     unsigned RegNum = Reg.EnumValue;
1756     if (AllocatableRegs.test(RegNum))
1757       continue;
1758 
1759     UberSetIDs.join(0, RegNum);
1760   }
1761   UberSetIDs.compress();
1762 
1763   // Make the first UberSet a special unallocatable set.
1764   unsigned ZeroID = UberSetIDs[0];
1765 
1766   // Insert Registers into the UberSets formed by union-find.
1767   // Do not resize after this.
1768   UberSets.resize(UberSetIDs.getNumClasses());
1769   unsigned i = 0;
1770   for (const CodeGenRegister &Reg : Registers) {
1771     unsigned USetID = UberSetIDs[Reg.EnumValue];
1772     if (!USetID)
1773       USetID = ZeroID;
1774     else if (USetID == ZeroID)
1775       USetID = 0;
1776 
1777     UberRegSet *USet = &UberSets[USetID];
1778     USet->Regs.push_back(&Reg);
1779     RegSets[i++] = USet;
1780   }
1781 }
1782 
1783 // Recompute each UberSet weight after changing unit weights.
computeUberWeights(std::vector<UberRegSet> & UberSets,CodeGenRegBank & RegBank)1784 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1785                                CodeGenRegBank &RegBank) {
1786   // Skip the first unallocatable set.
1787   for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1788                                          E = UberSets.end();
1789        I != E; ++I) {
1790 
1791     // Initialize all unit weights in this set, and remember the max units/reg.
1792     const CodeGenRegister *Reg = nullptr;
1793     unsigned MaxWeight = 0, Weight = 0;
1794     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1795       if (Reg != UnitI.getReg()) {
1796         if (Weight > MaxWeight)
1797           MaxWeight = Weight;
1798         Reg = UnitI.getReg();
1799         Weight = 0;
1800       }
1801       if (!RegBank.getRegUnit(*UnitI).Artificial) {
1802         unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1803         if (!UWeight) {
1804           UWeight = 1;
1805           RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1806         }
1807         Weight += UWeight;
1808       }
1809     }
1810     if (Weight > MaxWeight)
1811       MaxWeight = Weight;
1812     if (I->Weight != MaxWeight) {
1813       LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight "
1814                         << MaxWeight;
1815                  for (auto &Unit
1816                       : I->Regs) dbgs()
1817                  << " " << Unit->getName();
1818                  dbgs() << "\n");
1819       // Update the set weight.
1820       I->Weight = MaxWeight;
1821     }
1822 
1823     // Find singular determinants.
1824     for (const auto R : I->Regs) {
1825       if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1826         I->SingularDeterminants |= R->getRegUnits();
1827       }
1828     }
1829   }
1830 }
1831 
1832 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1833 // a register and its subregisters so that they have the same weight as their
1834 // UberSet. Self-recursion processes the subregister tree in postorder so
1835 // subregisters are normalized first.
1836 //
1837 // Side effects:
1838 // - creates new adopted register units
1839 // - causes superregisters to inherit adopted units
1840 // - increases the weight of "singular" units
1841 // - induces recomputation of UberWeights.
normalizeWeight(CodeGenRegister * Reg,std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,BitVector & NormalRegs,CodeGenRegister::RegUnitList & NormalUnits,CodeGenRegBank & RegBank)1842 static bool normalizeWeight(CodeGenRegister *Reg,
1843                             std::vector<UberRegSet> &UberSets,
1844                             std::vector<UberRegSet *> &RegSets,
1845                             BitVector &NormalRegs,
1846                             CodeGenRegister::RegUnitList &NormalUnits,
1847                             CodeGenRegBank &RegBank) {
1848   NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size()));
1849   if (NormalRegs.test(Reg->EnumValue))
1850     return false;
1851   NormalRegs.set(Reg->EnumValue);
1852 
1853   bool Changed = false;
1854   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1855   for (auto SRI : SRM) {
1856     if (SRI.second == Reg)
1857       continue; // self-cycles happen
1858 
1859     Changed |= normalizeWeight(SRI.second, UberSets, RegSets, NormalRegs,
1860                                NormalUnits, RegBank);
1861   }
1862   // Postorder register normalization.
1863 
1864   // Inherit register units newly adopted by subregisters.
1865   if (Reg->inheritRegUnits(RegBank))
1866     computeUberWeights(UberSets, RegBank);
1867 
1868   // Check if this register is too skinny for its UberRegSet.
1869   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1870 
1871   unsigned RegWeight = Reg->getWeight(RegBank);
1872   if (UberSet->Weight > RegWeight) {
1873     // A register unit's weight can be adjusted only if it is the singular unit
1874     // for this register, has not been used to normalize a subregister's set,
1875     // and has not already been used to singularly determine this UberRegSet.
1876     unsigned AdjustUnit = *Reg->getRegUnits().begin();
1877     if (Reg->getRegUnits().count() != 1 || NormalUnits.test(AdjustUnit) ||
1878         UberSet->SingularDeterminants.test(AdjustUnit)) {
1879       // We don't have an adjustable unit, so adopt a new one.
1880       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1881       Reg->adoptRegUnit(AdjustUnit);
1882       // Adopting a unit does not immediately require recomputing set weights.
1883     } else {
1884       // Adjust the existing single unit.
1885       if (!RegBank.getRegUnit(AdjustUnit).Artificial)
1886         RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1887       // The unit may be shared among sets and registers within this set.
1888       computeUberWeights(UberSets, RegBank);
1889     }
1890     Changed = true;
1891   }
1892 
1893   // Mark these units normalized so superregisters can't change their weights.
1894   NormalUnits |= Reg->getRegUnits();
1895 
1896   return Changed;
1897 }
1898 
1899 // Compute a weight for each register unit created during getSubRegs.
1900 //
1901 // The goal is that two registers in the same class will have the same weight,
1902 // where each register's weight is defined as sum of its units' weights.
computeRegUnitWeights()1903 void CodeGenRegBank::computeRegUnitWeights() {
1904   std::vector<UberRegSet> UberSets;
1905   std::vector<UberRegSet *> RegSets(Registers.size());
1906   computeUberSets(UberSets, RegSets, *this);
1907   // UberSets and RegSets are now immutable.
1908 
1909   computeUberWeights(UberSets, *this);
1910 
1911   // Iterate over each Register, normalizing the unit weights until reaching
1912   // a fix point.
1913   unsigned NumIters = 0;
1914   for (bool Changed = true; Changed; ++NumIters) {
1915     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1916     (void)NumIters;
1917     Changed = false;
1918     for (auto &Reg : Registers) {
1919       CodeGenRegister::RegUnitList NormalUnits;
1920       BitVector NormalRegs;
1921       Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1922                                  NormalUnits, *this);
1923     }
1924   }
1925 }
1926 
1927 // Find a set in UniqueSets with the same elements as Set.
1928 // Return an iterator into UniqueSets.
1929 static std::vector<RegUnitSet>::const_iterator
findRegUnitSet(const std::vector<RegUnitSet> & UniqueSets,const RegUnitSet & Set)1930 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1931                const RegUnitSet &Set) {
1932   return find_if(UniqueSets,
1933                  [&Set](const RegUnitSet &I) { return I.Units == Set.Units; });
1934 }
1935 
1936 // Return true if the RUSubSet is a subset of RUSuperSet.
isRegUnitSubSet(const std::vector<unsigned> & RUSubSet,const std::vector<unsigned> & RUSuperSet)1937 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1938                             const std::vector<unsigned> &RUSuperSet) {
1939   return std::includes(RUSuperSet.begin(), RUSuperSet.end(), RUSubSet.begin(),
1940                        RUSubSet.end());
1941 }
1942 
1943 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1944 /// but with one or two registers removed. We occasionally have registers like
1945 /// APSR and PC thrown in with the general registers. We also see many
1946 /// special-purpose register subsets, such as tail-call and Thumb
1947 /// encodings. Generating all possible overlapping sets is combinatorial and
1948 /// overkill for modeling pressure. Ideally we could fix this statically in
1949 /// tablegen by (1) having the target define register classes that only include
1950 /// the allocatable registers and marking other classes as non-allocatable and
1951 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1952 /// the purpose of pressure.  However, we make an attempt to handle targets that
1953 /// are not nicely defined by merging nearly identical register unit sets
1954 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1955 /// set limit by filtering the reserved registers.
1956 ///
1957 /// Merge sets only if the units have the same weight. For example, on ARM,
1958 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1959 /// should not expand the S set to include D regs.
pruneUnitSets()1960 void CodeGenRegBank::pruneUnitSets() {
1961   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1962 
1963   // Form an equivalence class of UnitSets with no significant difference.
1964   std::vector<unsigned> SuperSetIDs;
1965   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); SubIdx != EndIdx;
1966        ++SubIdx) {
1967     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1968     unsigned SuperIdx = 0;
1969     for (; SuperIdx != EndIdx; ++SuperIdx) {
1970       if (SuperIdx == SubIdx)
1971         continue;
1972 
1973       unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1974       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1975       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) &&
1976           (SubSet.Units.size() + 3 > SuperSet.Units.size()) &&
1977           UnitWeight == RegUnits[SuperSet.Units[0]].Weight &&
1978           UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1979         LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1980                           << "\n");
1981         // We can pick any of the set names for the merged set. Go for the
1982         // shortest one to avoid picking the name of one of the classes that are
1983         // artificially created by tablegen. So "FPR128_lo" instead of
1984         // "QQQQ_with_qsub3_in_FPR128_lo".
1985         if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1986           RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1987         break;
1988       }
1989     }
1990     if (SuperIdx == EndIdx)
1991       SuperSetIDs.push_back(SubIdx);
1992   }
1993   // Populate PrunedUnitSets with each equivalence class's superset.
1994   std::vector<RegUnitSet> PrunedUnitSets;
1995   PrunedUnitSets.reserve(SuperSetIDs.size());
1996   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1997     unsigned SuperIdx = SuperSetIDs[i];
1998     PrunedUnitSets.emplace_back(RegUnitSets[SuperIdx].Name);
1999     PrunedUnitSets.back().Units = std::move(RegUnitSets[SuperIdx].Units);
2000   }
2001   RegUnitSets = std::move(PrunedUnitSets);
2002 }
2003 
2004 // Create a RegUnitSet for each RegClass that contains all units in the class
2005 // including adopted units that are necessary to model register pressure. Then
2006 // iteratively compute RegUnitSets such that the union of any two overlapping
2007 // RegUnitSets is repreresented.
2008 //
2009 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
2010 // RegUnitSet that is a superset of that RegUnitClass.
computeRegUnitSets()2011 void CodeGenRegBank::computeRegUnitSets() {
2012   assert(RegUnitSets.empty() && "dirty RegUnitSets");
2013 
2014   // Compute a unique RegUnitSet for each RegClass.
2015   auto &RegClasses = getRegClasses();
2016   for (auto &RC : RegClasses) {
2017     if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet)
2018       continue;
2019 
2020     // Compute a sorted list of units in this class.
2021     RegUnitSet RUSet(RC.getName());
2022     RC.buildRegUnitSet(*this, RUSet.Units);
2023 
2024     // Find an existing RegUnitSet.
2025     if (findRegUnitSet(RegUnitSets, RUSet) == RegUnitSets.end())
2026       RegUnitSets.push_back(std::move(RUSet));
2027   }
2028 
2029   if (RegUnitSets.empty())
2030     PrintFatalError("RegUnitSets cannot be empty!");
2031 
2032   LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0,
2033                                                    USEnd = RegUnitSets.size();
2034                                                    USIdx < USEnd; ++USIdx) {
2035     dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
2036     for (auto &U : RegUnitSets[USIdx].Units)
2037       printRegUnitName(U);
2038     dbgs() << "\n";
2039   });
2040 
2041   // Iteratively prune unit sets.
2042   pruneUnitSets();
2043 
2044   LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0,
2045                                                  USEnd = RegUnitSets.size();
2046                                                  USIdx < USEnd; ++USIdx) {
2047     dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
2048     for (auto &U : RegUnitSets[USIdx].Units)
2049       printRegUnitName(U);
2050     dbgs() << "\n";
2051   } dbgs() << "\nUnion sets:\n");
2052 
2053   // Iterate over all unit sets, including new ones added by this loop.
2054   unsigned NumRegUnitSubSets = RegUnitSets.size();
2055   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2056     // In theory, this is combinatorial. In practice, it needs to be bounded
2057     // by a small number of sets for regpressure to be efficient.
2058     // If the assert is hit, we need to implement pruning.
2059     assert(Idx < (2 * NumRegUnitSubSets) && "runaway unit set inference");
2060 
2061     // Compare new sets with all original classes.
2062     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx + 1;
2063          SearchIdx != EndIdx; ++SearchIdx) {
2064       std::vector<unsigned> Intersection;
2065       std::set_intersection(
2066           RegUnitSets[Idx].Units.begin(), RegUnitSets[Idx].Units.end(),
2067           RegUnitSets[SearchIdx].Units.begin(),
2068           RegUnitSets[SearchIdx].Units.end(), std::back_inserter(Intersection));
2069       if (Intersection.empty())
2070         continue;
2071 
2072       RegUnitSet RUSet(RegUnitSets[Idx].Name + "_with_" +
2073                        RegUnitSets[SearchIdx].Name);
2074       std::set_union(RegUnitSets[Idx].Units.begin(),
2075                      RegUnitSets[Idx].Units.end(),
2076                      RegUnitSets[SearchIdx].Units.begin(),
2077                      RegUnitSets[SearchIdx].Units.end(),
2078                      std::inserter(RUSet.Units, RUSet.Units.begin()));
2079 
2080       // Find an existing RegUnitSet, or add the union to the unique sets.
2081       if (findRegUnitSet(RegUnitSets, RUSet) == RegUnitSets.end()) {
2082         LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() << " "
2083                           << RUSet.Name << ":";
2084                    for (auto &U
2085                         : RUSet.Units) printRegUnitName(U);
2086                    dbgs() << "\n";);
2087         RegUnitSets.push_back(std::move(RUSet));
2088       }
2089     }
2090   }
2091 
2092   // Iteratively prune unit sets after inferring supersets.
2093   pruneUnitSets();
2094 
2095   LLVM_DEBUG(
2096       dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2097                            USIdx < USEnd; ++USIdx) {
2098         dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
2099         for (auto &U : RegUnitSets[USIdx].Units)
2100           printRegUnitName(U);
2101         dbgs() << "\n";
2102       });
2103 
2104   // For each register class, list the UnitSets that are supersets.
2105   RegClassUnitSets.resize(RegClasses.size());
2106   int RCIdx = -1;
2107   for (auto &RC : RegClasses) {
2108     ++RCIdx;
2109     if (!RC.Allocatable)
2110       continue;
2111 
2112     // Recompute the sorted list of units in this class.
2113     std::vector<unsigned> RCRegUnits;
2114     RC.buildRegUnitSet(*this, RCRegUnits);
2115 
2116     // Don't increase pressure for unallocatable regclasses.
2117     if (RCRegUnits.empty())
2118       continue;
2119 
2120     LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units:\n";
2121                for (auto U
2122                     : RCRegUnits) printRegUnitName(U);
2123                dbgs() << "\n  UnitSetIDs:");
2124 
2125     // Find all supersets.
2126     for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); USIdx != USEnd;
2127          ++USIdx) {
2128       if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
2129         LLVM_DEBUG(dbgs() << " " << USIdx);
2130         RegClassUnitSets[RCIdx].push_back(USIdx);
2131       }
2132     }
2133     LLVM_DEBUG(dbgs() << "\n");
2134     assert((!RegClassUnitSets[RCIdx].empty() || !RC.GeneratePressureSet) &&
2135            "missing unit set for regclass");
2136   }
2137 
2138   // For each register unit, ensure that we have the list of UnitSets that
2139   // contain the unit. Normally, this matches an existing list of UnitSets for a
2140   // register class. If not, we create a new entry in RegClassUnitSets as a
2141   // "fake" register class.
2142   for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; UnitIdx < UnitEnd;
2143        ++UnitIdx) {
2144     std::vector<unsigned> RUSets;
2145     for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
2146       if (is_contained(RegUnitSets[i].Units, UnitIdx))
2147         RUSets.push_back(i);
2148     }
2149     unsigned RCUnitSetsIdx = 0;
2150     for (unsigned e = RegClassUnitSets.size(); RCUnitSetsIdx != e;
2151          ++RCUnitSetsIdx) {
2152       if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
2153         break;
2154       }
2155     }
2156     RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
2157     if (RCUnitSetsIdx == RegClassUnitSets.size()) {
2158       // Create a new list of UnitSets as a "fake" register class.
2159       RegClassUnitSets.push_back(std::move(RUSets));
2160     }
2161   }
2162 }
2163 
computeRegUnitLaneMasks()2164 void CodeGenRegBank::computeRegUnitLaneMasks() {
2165   for (auto &Register : Registers) {
2166     // Create an initial lane mask for all register units.
2167     const auto &RegUnits = Register.getRegUnits();
2168     CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(
2169         RegUnits.count(), LaneBitmask::getAll());
2170     // Iterate through SubRegisters.
2171     typedef CodeGenRegister::SubRegMap SubRegMap;
2172     const SubRegMap &SubRegs = Register.getSubRegs();
2173     for (auto S : SubRegs) {
2174       CodeGenRegister *SubReg = S.second;
2175       // Ignore non-leaf subregisters, their lane masks are fully covered by
2176       // the leaf subregisters anyway.
2177       if (!SubReg->getSubRegs().empty())
2178         continue;
2179       CodeGenSubRegIndex *SubRegIndex = S.first;
2180       const CodeGenRegister *SubRegister = S.second;
2181       LaneBitmask LaneMask = SubRegIndex->LaneMask;
2182       // Distribute LaneMask to Register Units touched.
2183       for (unsigned SUI : SubRegister->getRegUnits()) {
2184         bool Found = false;
2185         unsigned u = 0;
2186         for (unsigned RU : RegUnits) {
2187           if (SUI == RU) {
2188             RegUnitLaneMasks[u] &= LaneMask;
2189             assert(!Found);
2190             Found = true;
2191           }
2192           ++u;
2193         }
2194         (void)Found;
2195         assert(Found);
2196       }
2197     }
2198     Register.setRegUnitLaneMasks(RegUnitLaneMasks);
2199   }
2200 }
2201 
computeDerivedInfo()2202 void CodeGenRegBank::computeDerivedInfo() {
2203   computeComposites();
2204   computeSubRegLaneMasks();
2205 
2206   // Compute a weight for each register unit created during getSubRegs.
2207   // This may create adopted register units (with unit # >= NumNativeRegUnits).
2208   computeRegUnitWeights();
2209 
2210   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
2211   // supersets for the union of overlapping sets.
2212   computeRegUnitSets();
2213 
2214   computeRegUnitLaneMasks();
2215 
2216   // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
2217   for (CodeGenRegisterClass &RC : RegClasses) {
2218     RC.HasDisjunctSubRegs = false;
2219     RC.CoveredBySubRegs = true;
2220     for (const CodeGenRegister *Reg : RC.getMembers()) {
2221       RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
2222       RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
2223     }
2224   }
2225 
2226   // Get the weight of each set.
2227   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2228     RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
2229 
2230   // Find the order of each set.
2231   RegUnitSetOrder.reserve(RegUnitSets.size());
2232   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2233     RegUnitSetOrder.push_back(Idx);
2234 
2235   llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) {
2236     return getRegPressureSet(ID1).Units.size() <
2237            getRegPressureSet(ID2).Units.size();
2238   });
2239   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2240     RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
2241   }
2242 }
2243 
2244 //
2245 // Synthesize missing register class intersections.
2246 //
2247 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
2248 // returns a maximal register class for all X.
2249 //
inferCommonSubClass(CodeGenRegisterClass * RC)2250 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
2251   assert(!RegClasses.empty());
2252   // Stash the iterator to the last element so that this loop doesn't visit
2253   // elements added by the getOrCreateSubClass call within it.
2254   for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
2255        I != std::next(E); ++I) {
2256     CodeGenRegisterClass *RC1 = RC;
2257     CodeGenRegisterClass *RC2 = &*I;
2258     if (RC1 == RC2)
2259       continue;
2260 
2261     // Compute the set intersection of RC1 and RC2.
2262     const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
2263     const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
2264     CodeGenRegister::Vec Intersection;
2265     std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(),
2266                           Memb2.end(),
2267                           std::inserter(Intersection, Intersection.begin()),
2268                           deref<std::less<>>());
2269 
2270     // Skip disjoint class pairs.
2271     if (Intersection.empty())
2272       continue;
2273 
2274     // If RC1 and RC2 have different spill sizes or alignments, use the
2275     // stricter one for sub-classing.  If they are equal, prefer RC1.
2276     if (RC2->RSI.hasStricterSpillThan(RC1->RSI))
2277       std::swap(RC1, RC2);
2278 
2279     getOrCreateSubClass(RC1, &Intersection,
2280                         RC1->getName() + "_and_" + RC2->getName());
2281   }
2282 }
2283 
2284 //
2285 // Synthesize missing sub-classes for getSubClassWithSubReg().
2286 //
2287 // Make sure that the set of registers in RC with a given SubIdx sub-register
2288 // form a register class.  Update RC->SubClassWithSubReg.
2289 //
inferSubClassWithSubReg(CodeGenRegisterClass * RC)2290 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
2291   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2292   typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
2293                    deref<std::less<>>>
2294       SubReg2SetMap;
2295 
2296   // Compute the set of registers supporting each SubRegIndex.
2297   SubReg2SetMap SRSets;
2298   for (const auto R : RC->getMembers()) {
2299     if (R->Artificial)
2300       continue;
2301     const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
2302     for (auto I : SRM) {
2303       if (!I.first->Artificial)
2304         SRSets[I.first].push_back(R);
2305     }
2306   }
2307 
2308   for (auto I : SRSets)
2309     sortAndUniqueRegisters(I.second);
2310 
2311   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
2312   // numerical order to visit synthetic indices last.
2313   for (const auto &SubIdx : SubRegIndices) {
2314     if (SubIdx.Artificial)
2315       continue;
2316     SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
2317     // Unsupported SubRegIndex. Skip it.
2318     if (I == SRSets.end())
2319       continue;
2320     // In most cases, all RC registers support the SubRegIndex.
2321     if (I->second.size() == RC->getMembers().size()) {
2322       RC->setSubClassWithSubReg(&SubIdx, RC);
2323       continue;
2324     }
2325     // This is a real subset.  See if we have a matching class.
2326     CodeGenRegisterClass *SubRC = getOrCreateSubClass(
2327         RC, &I->second, RC->getName() + "_with_" + I->first->getName());
2328     RC->setSubClassWithSubReg(&SubIdx, SubRC);
2329   }
2330 }
2331 
2332 //
2333 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2334 //
2335 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2336 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2337 //
2338 
inferMatchingSuperRegClass(CodeGenRegisterClass * RC,std::list<CodeGenRegisterClass>::iterator FirstSubRegRC)2339 void CodeGenRegBank::inferMatchingSuperRegClass(
2340     CodeGenRegisterClass *RC,
2341     std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
2342   DenseMap<const CodeGenRegister *, std::vector<const CodeGenRegister *>>
2343       SubToSuperRegs;
2344   BitVector TopoSigs(getNumTopoSigs());
2345 
2346   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2347   for (auto &SubIdx : SubRegIndices) {
2348     // Skip indexes that aren't fully supported by RC's registers. This was
2349     // computed by inferSubClassWithSubReg() above which should have been
2350     // called first.
2351     if (RC->getSubClassWithSubReg(&SubIdx) != RC)
2352       continue;
2353 
2354     // Build list of (Super, Sub) pairs for this SubIdx.
2355     SubToSuperRegs.clear();
2356     TopoSigs.reset();
2357     for (const auto Super : RC->getMembers()) {
2358       const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
2359       assert(Sub && "Missing sub-register");
2360       SubToSuperRegs[Sub].push_back(Super);
2361       TopoSigs.set(Sub->getTopoSig());
2362     }
2363 
2364     // Iterate over sub-register class candidates.  Ignore classes created by
2365     // this loop. They will never be useful.
2366     // Store an iterator to the last element (not end) so that this loop doesn't
2367     // visit newly inserted elements.
2368     assert(!RegClasses.empty());
2369     for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
2370          I != std::next(E); ++I) {
2371       CodeGenRegisterClass &SubRC = *I;
2372       if (SubRC.Artificial)
2373         continue;
2374       // Topological shortcut: SubRC members have the wrong shape.
2375       if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
2376         continue;
2377       // Compute the subset of RC that maps into SubRC.
2378       CodeGenRegister::Vec SubSetVec;
2379       for (const CodeGenRegister *R : SubRC.getMembers()) {
2380         auto It = SubToSuperRegs.find(R);
2381         if (It != SubToSuperRegs.end()) {
2382           const std::vector<const CodeGenRegister *> &SuperRegs = It->second;
2383           SubSetVec.insert(SubSetVec.end(), SuperRegs.begin(), SuperRegs.end());
2384         }
2385       }
2386 
2387       if (SubSetVec.empty())
2388         continue;
2389 
2390       // RC injects completely into SubRC.
2391       sortAndUniqueRegisters(SubSetVec);
2392       if (SubSetVec.size() == RC->getMembers().size()) {
2393         SubRC.addSuperRegClass(&SubIdx, RC);
2394         continue;
2395       }
2396 
2397       // Only a subset of RC maps into SubRC. Make sure it is represented by a
2398       // class.
2399       getOrCreateSubClass(RC, &SubSetVec,
2400                           RC->getName() + "_with_" + SubIdx.getName() + "_in_" +
2401                               SubRC.getName());
2402     }
2403   }
2404 }
2405 
2406 //
2407 // Infer missing register classes.
2408 //
computeInferredRegisterClasses()2409 void CodeGenRegBank::computeInferredRegisterClasses() {
2410   assert(!RegClasses.empty());
2411   // When this function is called, the register classes have not been sorted
2412   // and assigned EnumValues yet.  That means getSubClasses(),
2413   // getSuperClasses(), and hasSubClass() functions are defunct.
2414 
2415   // Use one-before-the-end so it doesn't move forward when new elements are
2416   // added.
2417   auto FirstNewRC = std::prev(RegClasses.end());
2418 
2419   // Visit all register classes, including the ones being added by the loop.
2420   // Watch out for iterator invalidation here.
2421   for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2422     CodeGenRegisterClass *RC = &*I;
2423     if (RC->Artificial)
2424       continue;
2425 
2426     // Synthesize answers for getSubClassWithSubReg().
2427     inferSubClassWithSubReg(RC);
2428 
2429     // Synthesize answers for getCommonSubClass().
2430     inferCommonSubClass(RC);
2431 
2432     // Synthesize answers for getMatchingSuperRegClass().
2433     inferMatchingSuperRegClass(RC);
2434 
2435     // New register classes are created while this loop is running, and we need
2436     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
2437     // to match old super-register classes with sub-register classes created
2438     // after inferMatchingSuperRegClass was called.  At this point,
2439     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2440     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
2441     if (I == FirstNewRC) {
2442       auto NextNewRC = std::prev(RegClasses.end());
2443       for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2444            ++I2)
2445         inferMatchingSuperRegClass(&*I2, E2);
2446       FirstNewRC = NextNewRC;
2447     }
2448   }
2449 }
2450 
2451 /// getRegisterClassForRegister - Find the register class that contains the
2452 /// specified physical register.  If the register is not in a register class,
2453 /// return null. If the register is in multiple classes, and the classes have a
2454 /// superset-subset relationship and the same set of types, return the
2455 /// superclass.  Otherwise return null.
getRegClassForRegister(Record * R)2456 const CodeGenRegisterClass *CodeGenRegBank::getRegClassForRegister(Record *R) {
2457   const CodeGenRegister *Reg = getReg(R);
2458   const CodeGenRegisterClass *FoundRC = nullptr;
2459   for (const auto &RC : getRegClasses()) {
2460     if (!RC.contains(Reg))
2461       continue;
2462 
2463     // If this is the first class that contains the register,
2464     // make a note of it and go on to the next class.
2465     if (!FoundRC) {
2466       FoundRC = &RC;
2467       continue;
2468     }
2469 
2470     // If a register's classes have different types, return null.
2471     if (RC.getValueTypes() != FoundRC->getValueTypes())
2472       return nullptr;
2473 
2474     // Check to see if the previously found class that contains
2475     // the register is a subclass of the current class. If so,
2476     // prefer the superclass.
2477     if (RC.hasSubClass(FoundRC)) {
2478       FoundRC = &RC;
2479       continue;
2480     }
2481 
2482     // Check to see if the previously found class that contains
2483     // the register is a superclass of the current class. If so,
2484     // prefer the superclass.
2485     if (FoundRC->hasSubClass(&RC))
2486       continue;
2487 
2488     // Multiple classes, and neither is a superclass of the other.
2489     // Return null.
2490     return nullptr;
2491   }
2492   return FoundRC;
2493 }
2494 
2495 const CodeGenRegisterClass *
getMinimalPhysRegClass(Record * RegRecord,ValueTypeByHwMode * VT)2496 CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord,
2497                                        ValueTypeByHwMode *VT) {
2498   const CodeGenRegister *Reg = getReg(RegRecord);
2499   const CodeGenRegisterClass *BestRC = nullptr;
2500   for (const auto &RC : getRegClasses()) {
2501     if ((!VT || RC.hasType(*VT)) && RC.contains(Reg) &&
2502         (!BestRC || BestRC->hasSubClass(&RC)))
2503       BestRC = &RC;
2504   }
2505 
2506   assert(BestRC && "Couldn't find the register class");
2507   return BestRC;
2508 }
2509 
computeCoveredRegisters(ArrayRef<Record * > Regs)2510 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record *> Regs) {
2511   SetVector<const CodeGenRegister *> Set;
2512 
2513   // First add Regs with all sub-registers.
2514   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2515     CodeGenRegister *Reg = getReg(Regs[i]);
2516     if (Set.insert(Reg))
2517       // Reg is new, add all sub-registers.
2518       // The pre-ordering is not important here.
2519       Reg->addSubRegsPreOrder(Set, *this);
2520   }
2521 
2522   // Second, find all super-registers that are completely covered by the set.
2523   for (unsigned i = 0; i != Set.size(); ++i) {
2524     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2525     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2526       const CodeGenRegister *Super = SR[j];
2527       if (!Super->CoveredBySubRegs || Set.count(Super))
2528         continue;
2529       // This new super-register is covered by its sub-registers.
2530       bool AllSubsInSet = true;
2531       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2532       for (auto I : SRM)
2533         if (!Set.count(I.second)) {
2534           AllSubsInSet = false;
2535           break;
2536         }
2537       // All sub-registers in Set, add Super as well.
2538       // We will visit Super later to recheck its super-registers.
2539       if (AllSubsInSet)
2540         Set.insert(Super);
2541     }
2542   }
2543 
2544   // Convert to BitVector.
2545   BitVector BV(Registers.size() + 1);
2546   for (unsigned i = 0, e = Set.size(); i != e; ++i)
2547     BV.set(Set[i]->EnumValue);
2548   return BV;
2549 }
2550 
printRegUnitName(unsigned Unit) const2551 void CodeGenRegBank::printRegUnitName(unsigned Unit) const {
2552   if (Unit < NumNativeRegUnits)
2553     dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
2554   else
2555     dbgs() << " #" << Unit;
2556 }
2557