1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CharInfo.h"
42 #include "clang/Basic/CodeGenOptions.h"
43 #include "clang/Basic/Diagnostic.h"
44 #include "clang/Basic/FileManager.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/SourceManager.h"
47 #include "clang/Basic/TargetInfo.h"
48 #include "clang/Basic/Version.h"
49 #include "clang/CodeGen/BackendUtil.h"
50 #include "clang/CodeGen/ConstantInitBuilder.h"
51 #include "clang/Frontend/FrontendDiagnostic.h"
52 #include "llvm/ADT/STLExtras.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/ADT/StringSwitch.h"
55 #include "llvm/Analysis/TargetLibraryInfo.h"
56 #include "llvm/BinaryFormat/ELF.h"
57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
58 #include "llvm/IR/AttributeMask.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/ProfileSummary.h"
65 #include "llvm/ProfileData/InstrProfReader.h"
66 #include "llvm/ProfileData/SampleProf.h"
67 #include "llvm/Support/CRC.h"
68 #include "llvm/Support/CodeGen.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ConvertUTF.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/Support/xxhash.h"
74 #include "llvm/TargetParser/RISCVISAInfo.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include "llvm/TargetParser/X86TargetParser.h"
77 #include "llvm/Transforms/Utils/BuildLibCalls.h"
78 #include <optional>
79
80 using namespace clang;
81 using namespace CodeGen;
82
83 static llvm::cl::opt<bool> LimitedCoverage(
84 "limited-coverage-experimental", llvm::cl::Hidden,
85 llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
86
87 static const char AnnotationSection[] = "llvm.metadata";
88
createCXXABI(CodeGenModule & CGM)89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
90 switch (CGM.getContext().getCXXABIKind()) {
91 case TargetCXXABI::AppleARM64:
92 case TargetCXXABI::Fuchsia:
93 case TargetCXXABI::GenericAArch64:
94 case TargetCXXABI::GenericARM:
95 case TargetCXXABI::iOS:
96 case TargetCXXABI::WatchOS:
97 case TargetCXXABI::GenericMIPS:
98 case TargetCXXABI::GenericItanium:
99 case TargetCXXABI::WebAssembly:
100 case TargetCXXABI::XL:
101 return CreateItaniumCXXABI(CGM);
102 case TargetCXXABI::Microsoft:
103 return CreateMicrosoftCXXABI(CGM);
104 }
105
106 llvm_unreachable("invalid C++ ABI kind");
107 }
108
109 static std::unique_ptr<TargetCodeGenInfo>
createTargetCodeGenInfo(CodeGenModule & CGM)110 createTargetCodeGenInfo(CodeGenModule &CGM) {
111 const TargetInfo &Target = CGM.getTarget();
112 const llvm::Triple &Triple = Target.getTriple();
113 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
114
115 switch (Triple.getArch()) {
116 default:
117 return createDefaultTargetCodeGenInfo(CGM);
118
119 case llvm::Triple::le32:
120 return createPNaClTargetCodeGenInfo(CGM);
121 case llvm::Triple::m68k:
122 return createM68kTargetCodeGenInfo(CGM);
123 case llvm::Triple::mips:
124 case llvm::Triple::mipsel:
125 if (Triple.getOS() == llvm::Triple::NaCl)
126 return createPNaClTargetCodeGenInfo(CGM);
127 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
128
129 case llvm::Triple::mips64:
130 case llvm::Triple::mips64el:
131 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
132
133 case llvm::Triple::avr: {
134 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
135 // on avrtiny. For passing return value, R18~R25 are used on avr, and
136 // R22~R25 are used on avrtiny.
137 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
138 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
139 return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
140 }
141
142 case llvm::Triple::aarch64:
143 case llvm::Triple::aarch64_32:
144 case llvm::Triple::aarch64_be: {
145 AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
146 if (Target.getABI() == "darwinpcs")
147 Kind = AArch64ABIKind::DarwinPCS;
148 else if (Triple.isOSWindows())
149 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
150 else if (Target.getABI() == "aapcs-soft")
151 Kind = AArch64ABIKind::AAPCSSoft;
152 else if (Target.getABI() == "pauthtest")
153 Kind = AArch64ABIKind::PAuthTest;
154
155 return createAArch64TargetCodeGenInfo(CGM, Kind);
156 }
157
158 case llvm::Triple::wasm32:
159 case llvm::Triple::wasm64: {
160 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
161 if (Target.getABI() == "experimental-mv")
162 Kind = WebAssemblyABIKind::ExperimentalMV;
163 return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
164 }
165
166 case llvm::Triple::arm:
167 case llvm::Triple::armeb:
168 case llvm::Triple::thumb:
169 case llvm::Triple::thumbeb: {
170 if (Triple.getOS() == llvm::Triple::Win32)
171 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
172
173 ARMABIKind Kind = ARMABIKind::AAPCS;
174 StringRef ABIStr = Target.getABI();
175 if (ABIStr == "apcs-gnu")
176 Kind = ARMABIKind::APCS;
177 else if (ABIStr == "aapcs16")
178 Kind = ARMABIKind::AAPCS16_VFP;
179 else if (CodeGenOpts.FloatABI == "hard" ||
180 (CodeGenOpts.FloatABI != "soft" && Triple.isHardFloatABI()))
181 Kind = ARMABIKind::AAPCS_VFP;
182
183 return createARMTargetCodeGenInfo(CGM, Kind);
184 }
185
186 case llvm::Triple::ppc: {
187 if (Triple.isOSAIX())
188 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
189
190 bool IsSoftFloat =
191 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
192 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
193 }
194 case llvm::Triple::ppcle: {
195 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
196 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
197 }
198 case llvm::Triple::ppc64:
199 if (Triple.isOSAIX())
200 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
201
202 if (Triple.isOSBinFormatELF()) {
203 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
204 if (Target.getABI() == "elfv2")
205 Kind = PPC64_SVR4_ABIKind::ELFv2;
206 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
207
208 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
209 }
210 return createPPC64TargetCodeGenInfo(CGM);
211 case llvm::Triple::ppc64le: {
212 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
213 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
214 if (Target.getABI() == "elfv1")
215 Kind = PPC64_SVR4_ABIKind::ELFv1;
216 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
217
218 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
219 }
220
221 case llvm::Triple::nvptx:
222 case llvm::Triple::nvptx64:
223 return createNVPTXTargetCodeGenInfo(CGM);
224
225 case llvm::Triple::msp430:
226 return createMSP430TargetCodeGenInfo(CGM);
227
228 case llvm::Triple::riscv32:
229 case llvm::Triple::riscv64: {
230 StringRef ABIStr = Target.getABI();
231 unsigned XLen = Target.getPointerWidth(LangAS::Default);
232 unsigned ABIFLen = 0;
233 if (ABIStr.ends_with("f"))
234 ABIFLen = 32;
235 else if (ABIStr.ends_with("d"))
236 ABIFLen = 64;
237 bool EABI = ABIStr.ends_with("e");
238 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
239 }
240
241 case llvm::Triple::systemz: {
242 bool SoftFloat = CodeGenOpts.FloatABI == "soft";
243 bool HasVector = !SoftFloat && Target.getABI() == "vector";
244 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
245 }
246
247 case llvm::Triple::tce:
248 case llvm::Triple::tcele:
249 return createTCETargetCodeGenInfo(CGM);
250
251 case llvm::Triple::x86: {
252 bool IsDarwinVectorABI = Triple.isOSDarwin();
253 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
254
255 if (Triple.getOS() == llvm::Triple::Win32) {
256 return createWinX86_32TargetCodeGenInfo(
257 CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
258 CodeGenOpts.NumRegisterParameters);
259 }
260 return createX86_32TargetCodeGenInfo(
261 CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
262 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
263 }
264
265 case llvm::Triple::x86_64: {
266 StringRef ABI = Target.getABI();
267 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
268 : ABI == "avx" ? X86AVXABILevel::AVX
269 : X86AVXABILevel::None);
270
271 switch (Triple.getOS()) {
272 case llvm::Triple::Win32:
273 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
274 default:
275 return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
276 }
277 }
278 case llvm::Triple::hexagon:
279 return createHexagonTargetCodeGenInfo(CGM);
280 case llvm::Triple::lanai:
281 return createLanaiTargetCodeGenInfo(CGM);
282 case llvm::Triple::r600:
283 return createAMDGPUTargetCodeGenInfo(CGM);
284 case llvm::Triple::amdgcn:
285 return createAMDGPUTargetCodeGenInfo(CGM);
286 case llvm::Triple::sparc:
287 return createSparcV8TargetCodeGenInfo(CGM);
288 case llvm::Triple::sparcv9:
289 return createSparcV9TargetCodeGenInfo(CGM);
290 case llvm::Triple::xcore:
291 return createXCoreTargetCodeGenInfo(CGM);
292 case llvm::Triple::arc:
293 return createARCTargetCodeGenInfo(CGM);
294 case llvm::Triple::spir:
295 case llvm::Triple::spir64:
296 return createCommonSPIRTargetCodeGenInfo(CGM);
297 case llvm::Triple::spirv32:
298 case llvm::Triple::spirv64:
299 return createSPIRVTargetCodeGenInfo(CGM);
300 case llvm::Triple::ve:
301 return createVETargetCodeGenInfo(CGM);
302 case llvm::Triple::csky: {
303 bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
304 bool hasFP64 =
305 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
306 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
307 : hasFP64 ? 64
308 : 32);
309 }
310 case llvm::Triple::bpfeb:
311 case llvm::Triple::bpfel:
312 return createBPFTargetCodeGenInfo(CGM);
313 case llvm::Triple::loongarch32:
314 case llvm::Triple::loongarch64: {
315 StringRef ABIStr = Target.getABI();
316 unsigned ABIFRLen = 0;
317 if (ABIStr.ends_with("f"))
318 ABIFRLen = 32;
319 else if (ABIStr.ends_with("d"))
320 ABIFRLen = 64;
321 return createLoongArchTargetCodeGenInfo(
322 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
323 }
324 }
325 }
326
getTargetCodeGenInfo()327 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
328 if (!TheTargetCodeGenInfo)
329 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
330 return *TheTargetCodeGenInfo;
331 }
332
CodeGenModule(ASTContext & C,IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,const HeaderSearchOptions & HSO,const PreprocessorOptions & PPO,const CodeGenOptions & CGO,llvm::Module & M,DiagnosticsEngine & diags,CoverageSourceInfo * CoverageInfo)333 CodeGenModule::CodeGenModule(ASTContext &C,
334 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
335 const HeaderSearchOptions &HSO,
336 const PreprocessorOptions &PPO,
337 const CodeGenOptions &CGO, llvm::Module &M,
338 DiagnosticsEngine &diags,
339 CoverageSourceInfo *CoverageInfo)
340 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
341 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
342 Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
343 VMContext(M.getContext()), VTables(*this),
344 SanitizerMD(new SanitizerMetadata(*this)) {
345
346 // Initialize the type cache.
347 Types.reset(new CodeGenTypes(*this));
348 llvm::LLVMContext &LLVMContext = M.getContext();
349 VoidTy = llvm::Type::getVoidTy(LLVMContext);
350 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
351 Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
352 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
353 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
354 HalfTy = llvm::Type::getHalfTy(LLVMContext);
355 BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
356 FloatTy = llvm::Type::getFloatTy(LLVMContext);
357 DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
358 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
359 PointerAlignInBytes =
360 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
361 .getQuantity();
362 SizeSizeInBytes =
363 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
364 IntAlignInBytes =
365 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
366 CharTy =
367 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
368 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
369 IntPtrTy = llvm::IntegerType::get(LLVMContext,
370 C.getTargetInfo().getMaxPointerWidth());
371 Int8PtrTy = llvm::PointerType::get(LLVMContext,
372 C.getTargetAddressSpace(LangAS::Default));
373 const llvm::DataLayout &DL = M.getDataLayout();
374 AllocaInt8PtrTy =
375 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
376 GlobalsInt8PtrTy =
377 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
378 ConstGlobalsPtrTy = llvm::PointerType::get(
379 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
380 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
381
382 // Build C++20 Module initializers.
383 // TODO: Add Microsoft here once we know the mangling required for the
384 // initializers.
385 CXX20ModuleInits =
386 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
387 ItaniumMangleContext::MK_Itanium;
388
389 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
390
391 if (LangOpts.ObjC)
392 createObjCRuntime();
393 if (LangOpts.OpenCL)
394 createOpenCLRuntime();
395 if (LangOpts.OpenMP)
396 createOpenMPRuntime();
397 if (LangOpts.CUDA)
398 createCUDARuntime();
399 if (LangOpts.HLSL)
400 createHLSLRuntime();
401
402 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
403 if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
404 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
405 TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
406 getLangOpts()));
407
408 // If debug info or coverage generation is enabled, create the CGDebugInfo
409 // object.
410 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
411 CodeGenOpts.CoverageNotesFile.size() ||
412 CodeGenOpts.CoverageDataFile.size())
413 DebugInfo.reset(new CGDebugInfo(*this));
414
415 Block.GlobalUniqueCount = 0;
416
417 if (C.getLangOpts().ObjC)
418 ObjCData.reset(new ObjCEntrypoints());
419
420 if (CodeGenOpts.hasProfileClangUse()) {
421 auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
422 CodeGenOpts.ProfileInstrumentUsePath, *FS,
423 CodeGenOpts.ProfileRemappingFile);
424 // We're checking for profile read errors in CompilerInvocation, so if
425 // there was an error it should've already been caught. If it hasn't been
426 // somehow, trip an assertion.
427 assert(ReaderOrErr);
428 PGOReader = std::move(ReaderOrErr.get());
429 }
430
431 // If coverage mapping generation is enabled, create the
432 // CoverageMappingModuleGen object.
433 if (CodeGenOpts.CoverageMapping)
434 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
435
436 // Generate the module name hash here if needed.
437 if (CodeGenOpts.UniqueInternalLinkageNames &&
438 !getModule().getSourceFileName().empty()) {
439 std::string Path = getModule().getSourceFileName();
440 // Check if a path substitution is needed from the MacroPrefixMap.
441 for (const auto &Entry : LangOpts.MacroPrefixMap)
442 if (Path.rfind(Entry.first, 0) != std::string::npos) {
443 Path = Entry.second + Path.substr(Entry.first.size());
444 break;
445 }
446 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
447 }
448
449 // Record mregparm value now so it is visible through all of codegen.
450 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
451 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
452 CodeGenOpts.NumRegisterParameters);
453 }
454
~CodeGenModule()455 CodeGenModule::~CodeGenModule() {}
456
createObjCRuntime()457 void CodeGenModule::createObjCRuntime() {
458 // This is just isGNUFamily(), but we want to force implementors of
459 // new ABIs to decide how best to do this.
460 switch (LangOpts.ObjCRuntime.getKind()) {
461 case ObjCRuntime::GNUstep:
462 case ObjCRuntime::GCC:
463 case ObjCRuntime::ObjFW:
464 ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
465 return;
466
467 case ObjCRuntime::FragileMacOSX:
468 case ObjCRuntime::MacOSX:
469 case ObjCRuntime::iOS:
470 case ObjCRuntime::WatchOS:
471 ObjCRuntime.reset(CreateMacObjCRuntime(*this));
472 return;
473 }
474 llvm_unreachable("bad runtime kind");
475 }
476
createOpenCLRuntime()477 void CodeGenModule::createOpenCLRuntime() {
478 OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
479 }
480
createOpenMPRuntime()481 void CodeGenModule::createOpenMPRuntime() {
482 // Select a specialized code generation class based on the target, if any.
483 // If it does not exist use the default implementation.
484 switch (getTriple().getArch()) {
485 case llvm::Triple::nvptx:
486 case llvm::Triple::nvptx64:
487 case llvm::Triple::amdgcn:
488 assert(getLangOpts().OpenMPIsTargetDevice &&
489 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
490 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
491 break;
492 default:
493 if (LangOpts.OpenMPSimd)
494 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
495 else
496 OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
497 break;
498 }
499 }
500
createCUDARuntime()501 void CodeGenModule::createCUDARuntime() {
502 CUDARuntime.reset(CreateNVCUDARuntime(*this));
503 }
504
createHLSLRuntime()505 void CodeGenModule::createHLSLRuntime() {
506 HLSLRuntime.reset(new CGHLSLRuntime(*this));
507 }
508
addReplacement(StringRef Name,llvm::Constant * C)509 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
510 Replacements[Name] = C;
511 }
512
applyReplacements()513 void CodeGenModule::applyReplacements() {
514 for (auto &I : Replacements) {
515 StringRef MangledName = I.first;
516 llvm::Constant *Replacement = I.second;
517 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
518 if (!Entry)
519 continue;
520 auto *OldF = cast<llvm::Function>(Entry);
521 auto *NewF = dyn_cast<llvm::Function>(Replacement);
522 if (!NewF) {
523 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
524 NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
525 } else {
526 auto *CE = cast<llvm::ConstantExpr>(Replacement);
527 assert(CE->getOpcode() == llvm::Instruction::BitCast ||
528 CE->getOpcode() == llvm::Instruction::GetElementPtr);
529 NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
530 }
531 }
532
533 // Replace old with new, but keep the old order.
534 OldF->replaceAllUsesWith(Replacement);
535 if (NewF) {
536 NewF->removeFromParent();
537 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
538 NewF);
539 }
540 OldF->eraseFromParent();
541 }
542 }
543
addGlobalValReplacement(llvm::GlobalValue * GV,llvm::Constant * C)544 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
545 GlobalValReplacements.push_back(std::make_pair(GV, C));
546 }
547
applyGlobalValReplacements()548 void CodeGenModule::applyGlobalValReplacements() {
549 for (auto &I : GlobalValReplacements) {
550 llvm::GlobalValue *GV = I.first;
551 llvm::Constant *C = I.second;
552
553 GV->replaceAllUsesWith(C);
554 GV->eraseFromParent();
555 }
556 }
557
558 // This is only used in aliases that we created and we know they have a
559 // linear structure.
getAliasedGlobal(const llvm::GlobalValue * GV)560 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
561 const llvm::Constant *C;
562 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
563 C = GA->getAliasee();
564 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
565 C = GI->getResolver();
566 else
567 return GV;
568
569 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
570 if (!AliaseeGV)
571 return nullptr;
572
573 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
574 if (FinalGV == GV)
575 return nullptr;
576
577 return FinalGV;
578 }
579
checkAliasedGlobal(const ASTContext & Context,DiagnosticsEngine & Diags,SourceLocation Location,bool IsIFunc,const llvm::GlobalValue * Alias,const llvm::GlobalValue * & GV,const llvm::MapVector<GlobalDecl,StringRef> & MangledDeclNames,SourceRange AliasRange)580 static bool checkAliasedGlobal(
581 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
582 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
583 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
584 SourceRange AliasRange) {
585 GV = getAliasedGlobal(Alias);
586 if (!GV) {
587 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
588 return false;
589 }
590
591 if (GV->hasCommonLinkage()) {
592 const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
593 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
594 Diags.Report(Location, diag::err_alias_to_common);
595 return false;
596 }
597 }
598
599 if (GV->isDeclaration()) {
600 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
601 Diags.Report(Location, diag::note_alias_requires_mangled_name)
602 << IsIFunc << IsIFunc;
603 // Provide a note if the given function is not found and exists as a
604 // mangled name.
605 for (const auto &[Decl, Name] : MangledDeclNames) {
606 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
607 if (ND->getName() == GV->getName()) {
608 Diags.Report(Location, diag::note_alias_mangled_name_alternative)
609 << Name
610 << FixItHint::CreateReplacement(
611 AliasRange,
612 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
613 .str());
614 }
615 }
616 }
617 return false;
618 }
619
620 if (IsIFunc) {
621 // Check resolver function type.
622 const auto *F = dyn_cast<llvm::Function>(GV);
623 if (!F) {
624 Diags.Report(Location, diag::err_alias_to_undefined)
625 << IsIFunc << IsIFunc;
626 return false;
627 }
628
629 llvm::FunctionType *FTy = F->getFunctionType();
630 if (!FTy->getReturnType()->isPointerTy()) {
631 Diags.Report(Location, diag::err_ifunc_resolver_return);
632 return false;
633 }
634 }
635
636 return true;
637 }
638
639 // Emit a warning if toc-data attribute is requested for global variables that
640 // have aliases and remove the toc-data attribute.
checkAliasForTocData(llvm::GlobalVariable * GVar,const CodeGenOptions & CodeGenOpts,DiagnosticsEngine & Diags,SourceLocation Location)641 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
642 const CodeGenOptions &CodeGenOpts,
643 DiagnosticsEngine &Diags,
644 SourceLocation Location) {
645 if (GVar->hasAttribute("toc-data")) {
646 auto GVId = GVar->getName();
647 // Is this a global variable specified by the user as local?
648 if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
649 Diags.Report(Location, diag::warn_toc_unsupported_type)
650 << GVId << "the variable has an alias";
651 }
652 llvm::AttributeSet CurrAttributes = GVar->getAttributes();
653 llvm::AttributeSet NewAttributes =
654 CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
655 GVar->setAttributes(NewAttributes);
656 }
657 }
658
checkAliases()659 void CodeGenModule::checkAliases() {
660 // Check if the constructed aliases are well formed. It is really unfortunate
661 // that we have to do this in CodeGen, but we only construct mangled names
662 // and aliases during codegen.
663 bool Error = false;
664 DiagnosticsEngine &Diags = getDiags();
665 for (const GlobalDecl &GD : Aliases) {
666 const auto *D = cast<ValueDecl>(GD.getDecl());
667 SourceLocation Location;
668 SourceRange Range;
669 bool IsIFunc = D->hasAttr<IFuncAttr>();
670 if (const Attr *A = D->getDefiningAttr()) {
671 Location = A->getLocation();
672 Range = A->getRange();
673 } else
674 llvm_unreachable("Not an alias or ifunc?");
675
676 StringRef MangledName = getMangledName(GD);
677 llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
678 const llvm::GlobalValue *GV = nullptr;
679 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
680 MangledDeclNames, Range)) {
681 Error = true;
682 continue;
683 }
684
685 if (getContext().getTargetInfo().getTriple().isOSAIX())
686 if (const llvm::GlobalVariable *GVar =
687 dyn_cast<const llvm::GlobalVariable>(GV))
688 checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
689 getCodeGenOpts(), Diags, Location);
690
691 llvm::Constant *Aliasee =
692 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
693 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
694
695 llvm::GlobalValue *AliaseeGV;
696 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
697 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
698 else
699 AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
700
701 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
702 StringRef AliasSection = SA->getName();
703 if (AliasSection != AliaseeGV->getSection())
704 Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
705 << AliasSection << IsIFunc << IsIFunc;
706 }
707
708 // We have to handle alias to weak aliases in here. LLVM itself disallows
709 // this since the object semantics would not match the IL one. For
710 // compatibility with gcc we implement it by just pointing the alias
711 // to its aliasee's aliasee. We also warn, since the user is probably
712 // expecting the link to be weak.
713 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
714 if (GA->isInterposable()) {
715 Diags.Report(Location, diag::warn_alias_to_weak_alias)
716 << GV->getName() << GA->getName() << IsIFunc;
717 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
718 GA->getAliasee(), Alias->getType());
719
720 if (IsIFunc)
721 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
722 else
723 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
724 }
725 }
726 // ifunc resolvers are usually implemented to run before sanitizer
727 // initialization. Disable instrumentation to prevent the ordering issue.
728 if (IsIFunc)
729 cast<llvm::Function>(Aliasee)->addFnAttr(
730 llvm::Attribute::DisableSanitizerInstrumentation);
731 }
732 if (!Error)
733 return;
734
735 for (const GlobalDecl &GD : Aliases) {
736 StringRef MangledName = getMangledName(GD);
737 llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
738 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
739 Alias->eraseFromParent();
740 }
741 }
742
clear()743 void CodeGenModule::clear() {
744 DeferredDeclsToEmit.clear();
745 EmittedDeferredDecls.clear();
746 DeferredAnnotations.clear();
747 if (OpenMPRuntime)
748 OpenMPRuntime->clear();
749 }
750
reportDiagnostics(DiagnosticsEngine & Diags,StringRef MainFile)751 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
752 StringRef MainFile) {
753 if (!hasDiagnostics())
754 return;
755 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
756 if (MainFile.empty())
757 MainFile = "<stdin>";
758 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
759 } else {
760 if (Mismatched > 0)
761 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
762
763 if (Missing > 0)
764 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
765 }
766 }
767
768 static std::optional<llvm::GlobalValue::VisibilityTypes>
getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K)769 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
770 // Map to LLVM visibility.
771 switch (K) {
772 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
773 return std::nullopt;
774 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
775 return llvm::GlobalValue::DefaultVisibility;
776 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
777 return llvm::GlobalValue::HiddenVisibility;
778 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
779 return llvm::GlobalValue::ProtectedVisibility;
780 }
781 llvm_unreachable("unknown option value!");
782 }
783
setLLVMVisibility(llvm::GlobalValue & GV,std::optional<llvm::GlobalValue::VisibilityTypes> V)784 void setLLVMVisibility(llvm::GlobalValue &GV,
785 std::optional<llvm::GlobalValue::VisibilityTypes> V) {
786 if (!V)
787 return;
788
789 // Reset DSO locality before setting the visibility. This removes
790 // any effects that visibility options and annotations may have
791 // had on the DSO locality. Setting the visibility will implicitly set
792 // appropriate globals to DSO Local; however, this will be pessimistic
793 // w.r.t. to the normal compiler IRGen.
794 GV.setDSOLocal(false);
795 GV.setVisibility(*V);
796 }
797
setVisibilityFromDLLStorageClass(const clang::LangOptions & LO,llvm::Module & M)798 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
799 llvm::Module &M) {
800 if (!LO.VisibilityFromDLLStorageClass)
801 return;
802
803 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
804 getLLVMVisibility(LO.getDLLExportVisibility());
805
806 std::optional<llvm::GlobalValue::VisibilityTypes>
807 NoDLLStorageClassVisibility =
808 getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
809
810 std::optional<llvm::GlobalValue::VisibilityTypes>
811 ExternDeclDLLImportVisibility =
812 getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
813
814 std::optional<llvm::GlobalValue::VisibilityTypes>
815 ExternDeclNoDLLStorageClassVisibility =
816 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
817
818 for (llvm::GlobalValue &GV : M.global_values()) {
819 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
820 continue;
821
822 if (GV.isDeclarationForLinker())
823 setLLVMVisibility(GV, GV.getDLLStorageClass() ==
824 llvm::GlobalValue::DLLImportStorageClass
825 ? ExternDeclDLLImportVisibility
826 : ExternDeclNoDLLStorageClassVisibility);
827 else
828 setLLVMVisibility(GV, GV.getDLLStorageClass() ==
829 llvm::GlobalValue::DLLExportStorageClass
830 ? DLLExportVisibility
831 : NoDLLStorageClassVisibility);
832
833 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
834 }
835 }
836
isStackProtectorOn(const LangOptions & LangOpts,const llvm::Triple & Triple,clang::LangOptions::StackProtectorMode Mode)837 static bool isStackProtectorOn(const LangOptions &LangOpts,
838 const llvm::Triple &Triple,
839 clang::LangOptions::StackProtectorMode Mode) {
840 if (Triple.isAMDGPU() || Triple.isNVPTX())
841 return false;
842 return LangOpts.getStackProtector() == Mode;
843 }
844
Release()845 void CodeGenModule::Release() {
846 Module *Primary = getContext().getCurrentNamedModule();
847 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
848 EmitModuleInitializers(Primary);
849 EmitDeferred();
850 DeferredDecls.insert(EmittedDeferredDecls.begin(),
851 EmittedDeferredDecls.end());
852 EmittedDeferredDecls.clear();
853 EmitVTablesOpportunistically();
854 applyGlobalValReplacements();
855 applyReplacements();
856 emitMultiVersionFunctions();
857
858 if (Context.getLangOpts().IncrementalExtensions &&
859 GlobalTopLevelStmtBlockInFlight.first) {
860 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
861 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
862 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
863 }
864
865 // Module implementations are initialized the same way as a regular TU that
866 // imports one or more modules.
867 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
868 EmitCXXModuleInitFunc(Primary);
869 else
870 EmitCXXGlobalInitFunc();
871 EmitCXXGlobalCleanUpFunc();
872 registerGlobalDtorsWithAtExit();
873 EmitCXXThreadLocalInitFunc();
874 if (ObjCRuntime)
875 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
876 AddGlobalCtor(ObjCInitFunction);
877 if (Context.getLangOpts().CUDA && CUDARuntime) {
878 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
879 AddGlobalCtor(CudaCtorFunction);
880 }
881 if (OpenMPRuntime) {
882 OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
883 OpenMPRuntime->clear();
884 }
885 if (PGOReader) {
886 getModule().setProfileSummary(
887 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
888 llvm::ProfileSummary::PSK_Instr);
889 if (PGOStats.hasDiagnostics())
890 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
891 }
892 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
893 return L.LexOrder < R.LexOrder;
894 });
895 EmitCtorList(GlobalCtors, "llvm.global_ctors");
896 EmitCtorList(GlobalDtors, "llvm.global_dtors");
897 EmitGlobalAnnotations();
898 EmitStaticExternCAliases();
899 checkAliases();
900 EmitDeferredUnusedCoverageMappings();
901 CodeGenPGO(*this).setValueProfilingFlag(getModule());
902 CodeGenPGO(*this).setProfileVersion(getModule());
903 if (CoverageMapping)
904 CoverageMapping->emit();
905 if (CodeGenOpts.SanitizeCfiCrossDso) {
906 CodeGenFunction(*this).EmitCfiCheckFail();
907 CodeGenFunction(*this).EmitCfiCheckStub();
908 }
909 if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
910 finalizeKCFITypes();
911 emitAtAvailableLinkGuard();
912 if (Context.getTargetInfo().getTriple().isWasm())
913 EmitMainVoidAlias();
914
915 if (getTriple().isAMDGPU() ||
916 (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) {
917 // Emit amdhsa_code_object_version module flag, which is code object version
918 // times 100.
919 if (getTarget().getTargetOpts().CodeObjectVersion !=
920 llvm::CodeObjectVersionKind::COV_None) {
921 getModule().addModuleFlag(llvm::Module::Error,
922 "amdhsa_code_object_version",
923 getTarget().getTargetOpts().CodeObjectVersion);
924 }
925
926 // Currently, "-mprintf-kind" option is only supported for HIP
927 if (LangOpts.HIP) {
928 auto *MDStr = llvm::MDString::get(
929 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
930 TargetOptions::AMDGPUPrintfKind::Hostcall)
931 ? "hostcall"
932 : "buffered");
933 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
934 MDStr);
935 }
936 }
937
938 // Emit a global array containing all external kernels or device variables
939 // used by host functions and mark it as used for CUDA/HIP. This is necessary
940 // to get kernels or device variables in archives linked in even if these
941 // kernels or device variables are only used in host functions.
942 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
943 SmallVector<llvm::Constant *, 8> UsedArray;
944 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
945 GlobalDecl GD;
946 if (auto *FD = dyn_cast<FunctionDecl>(D))
947 GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
948 else
949 GD = GlobalDecl(D);
950 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
951 GetAddrOfGlobal(GD), Int8PtrTy));
952 }
953
954 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
955
956 auto *GV = new llvm::GlobalVariable(
957 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
958 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
959 addCompilerUsedGlobal(GV);
960 }
961 if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
962 // Emit a unique ID so that host and device binaries from the same
963 // compilation unit can be associated.
964 auto *GV = new llvm::GlobalVariable(
965 getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
966 llvm::Constant::getNullValue(Int8Ty),
967 "__hip_cuid_" + getContext().getCUIDHash());
968 addCompilerUsedGlobal(GV);
969 }
970 emitLLVMUsed();
971 if (SanStats)
972 SanStats->finish();
973
974 if (CodeGenOpts.Autolink &&
975 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
976 EmitModuleLinkOptions();
977 }
978
979 // On ELF we pass the dependent library specifiers directly to the linker
980 // without manipulating them. This is in contrast to other platforms where
981 // they are mapped to a specific linker option by the compiler. This
982 // difference is a result of the greater variety of ELF linkers and the fact
983 // that ELF linkers tend to handle libraries in a more complicated fashion
984 // than on other platforms. This forces us to defer handling the dependent
985 // libs to the linker.
986 //
987 // CUDA/HIP device and host libraries are different. Currently there is no
988 // way to differentiate dependent libraries for host or device. Existing
989 // usage of #pragma comment(lib, *) is intended for host libraries on
990 // Windows. Therefore emit llvm.dependent-libraries only for host.
991 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
992 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
993 for (auto *MD : ELFDependentLibraries)
994 NMD->addOperand(MD);
995 }
996
997 if (CodeGenOpts.DwarfVersion) {
998 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
999 CodeGenOpts.DwarfVersion);
1000 }
1001
1002 if (CodeGenOpts.Dwarf64)
1003 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
1004
1005 if (Context.getLangOpts().SemanticInterposition)
1006 // Require various optimization to respect semantic interposition.
1007 getModule().setSemanticInterposition(true);
1008
1009 if (CodeGenOpts.EmitCodeView) {
1010 // Indicate that we want CodeView in the metadata.
1011 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1012 }
1013 if (CodeGenOpts.CodeViewGHash) {
1014 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1015 }
1016 if (CodeGenOpts.ControlFlowGuard) {
1017 // Function ID tables and checks for Control Flow Guard (cfguard=2).
1018 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1019 } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1020 // Function ID tables for Control Flow Guard (cfguard=1).
1021 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1022 }
1023 if (CodeGenOpts.EHContGuard) {
1024 // Function ID tables for EH Continuation Guard.
1025 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1026 }
1027 if (Context.getLangOpts().Kernel) {
1028 // Note if we are compiling with /kernel.
1029 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1030 }
1031 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1032 // We don't support LTO with 2 with different StrictVTablePointers
1033 // FIXME: we could support it by stripping all the information introduced
1034 // by StrictVTablePointers.
1035
1036 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1037
1038 llvm::Metadata *Ops[2] = {
1039 llvm::MDString::get(VMContext, "StrictVTablePointers"),
1040 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1041 llvm::Type::getInt32Ty(VMContext), 1))};
1042
1043 getModule().addModuleFlag(llvm::Module::Require,
1044 "StrictVTablePointersRequirement",
1045 llvm::MDNode::get(VMContext, Ops));
1046 }
1047 if (getModuleDebugInfo())
1048 // We support a single version in the linked module. The LLVM
1049 // parser will drop debug info with a different version number
1050 // (and warn about it, too).
1051 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1052 llvm::DEBUG_METADATA_VERSION);
1053
1054 // We need to record the widths of enums and wchar_t, so that we can generate
1055 // the correct build attributes in the ARM backend. wchar_size is also used by
1056 // TargetLibraryInfo.
1057 uint64_t WCharWidth =
1058 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1059 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1060
1061 if (getTriple().isOSzOS()) {
1062 getModule().addModuleFlag(llvm::Module::Warning,
1063 "zos_product_major_version",
1064 uint32_t(CLANG_VERSION_MAJOR));
1065 getModule().addModuleFlag(llvm::Module::Warning,
1066 "zos_product_minor_version",
1067 uint32_t(CLANG_VERSION_MINOR));
1068 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1069 uint32_t(CLANG_VERSION_PATCHLEVEL));
1070 std::string ProductId = getClangVendor() + "clang";
1071 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1072 llvm::MDString::get(VMContext, ProductId));
1073
1074 // Record the language because we need it for the PPA2.
1075 StringRef lang_str = languageToString(
1076 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1077 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1078 llvm::MDString::get(VMContext, lang_str));
1079
1080 time_t TT = PreprocessorOpts.SourceDateEpoch
1081 ? *PreprocessorOpts.SourceDateEpoch
1082 : std::time(nullptr);
1083 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1084 static_cast<uint64_t>(TT));
1085
1086 // Multiple modes will be supported here.
1087 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1088 llvm::MDString::get(VMContext, "ascii"));
1089 }
1090
1091 llvm::Triple T = Context.getTargetInfo().getTriple();
1092 if (T.isARM() || T.isThumb()) {
1093 // The minimum width of an enum in bytes
1094 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1095 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1096 }
1097
1098 if (T.isRISCV()) {
1099 StringRef ABIStr = Target.getABI();
1100 llvm::LLVMContext &Ctx = TheModule.getContext();
1101 getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1102 llvm::MDString::get(Ctx, ABIStr));
1103
1104 // Add the canonical ISA string as metadata so the backend can set the ELF
1105 // attributes correctly. We use AppendUnique so LTO will keep all of the
1106 // unique ISA strings that were linked together.
1107 const std::vector<std::string> &Features =
1108 getTarget().getTargetOpts().Features;
1109 auto ParseResult =
1110 llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1111 if (!errorToBool(ParseResult.takeError()))
1112 getModule().addModuleFlag(
1113 llvm::Module::AppendUnique, "riscv-isa",
1114 llvm::MDNode::get(
1115 Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1116 }
1117
1118 if (CodeGenOpts.SanitizeCfiCrossDso) {
1119 // Indicate that we want cross-DSO control flow integrity checks.
1120 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1121 }
1122
1123 if (CodeGenOpts.WholeProgramVTables) {
1124 // Indicate whether VFE was enabled for this module, so that the
1125 // vcall_visibility metadata added under whole program vtables is handled
1126 // appropriately in the optimizer.
1127 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1128 CodeGenOpts.VirtualFunctionElimination);
1129 }
1130
1131 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1132 getModule().addModuleFlag(llvm::Module::Override,
1133 "CFI Canonical Jump Tables",
1134 CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1135 }
1136
1137 if (CodeGenOpts.SanitizeCfiICallNormalizeIntegers) {
1138 getModule().addModuleFlag(llvm::Module::Override, "cfi-normalize-integers",
1139 1);
1140 }
1141
1142 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1143 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1144 // KCFI assumes patchable-function-prefix is the same for all indirectly
1145 // called functions. Store the expected offset for code generation.
1146 if (CodeGenOpts.PatchableFunctionEntryOffset)
1147 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1148 CodeGenOpts.PatchableFunctionEntryOffset);
1149 }
1150
1151 if (CodeGenOpts.CFProtectionReturn &&
1152 Target.checkCFProtectionReturnSupported(getDiags())) {
1153 // Indicate that we want to instrument return control flow protection.
1154 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1155 1);
1156 }
1157
1158 if (CodeGenOpts.CFProtectionBranch &&
1159 Target.checkCFProtectionBranchSupported(getDiags())) {
1160 // Indicate that we want to instrument branch control flow protection.
1161 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1162 1);
1163 }
1164
1165 if (CodeGenOpts.FunctionReturnThunks)
1166 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1167
1168 if (CodeGenOpts.IndirectBranchCSPrefix)
1169 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1170
1171 // Add module metadata for return address signing (ignoring
1172 // non-leaf/all) and stack tagging. These are actually turned on by function
1173 // attributes, but we use module metadata to emit build attributes. This is
1174 // needed for LTO, where the function attributes are inside bitcode
1175 // serialised into a global variable by the time build attributes are
1176 // emitted, so we can't access them. LTO objects could be compiled with
1177 // different flags therefore module flags are set to "Min" behavior to achieve
1178 // the same end result of the normal build where e.g BTI is off if any object
1179 // doesn't support it.
1180 if (Context.getTargetInfo().hasFeature("ptrauth") &&
1181 LangOpts.getSignReturnAddressScope() !=
1182 LangOptions::SignReturnAddressScopeKind::None)
1183 getModule().addModuleFlag(llvm::Module::Override,
1184 "sign-return-address-buildattr", 1);
1185 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1186 getModule().addModuleFlag(llvm::Module::Override,
1187 "tag-stack-memory-buildattr", 1);
1188
1189 if (T.isARM() || T.isThumb() || T.isAArch64()) {
1190 if (LangOpts.BranchTargetEnforcement)
1191 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1192 1);
1193 if (LangOpts.BranchProtectionPAuthLR)
1194 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1195 1);
1196 if (LangOpts.GuardedControlStack)
1197 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1198 if (LangOpts.hasSignReturnAddress())
1199 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1200 if (LangOpts.isSignReturnAddressScopeAll())
1201 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1202 1);
1203 if (!LangOpts.isSignReturnAddressWithAKey())
1204 getModule().addModuleFlag(llvm::Module::Min,
1205 "sign-return-address-with-bkey", 1);
1206
1207 if (getTriple().isOSLinux()) {
1208 assert(getTriple().isOSBinFormatELF());
1209 using namespace llvm::ELF;
1210 uint64_t PAuthABIVersion =
1211 (LangOpts.PointerAuthIntrinsics
1212 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1213 (LangOpts.PointerAuthCalls
1214 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1215 (LangOpts.PointerAuthReturns
1216 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1217 (LangOpts.PointerAuthAuthTraps
1218 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1219 (LangOpts.PointerAuthVTPtrAddressDiscrimination
1220 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1221 (LangOpts.PointerAuthVTPtrTypeDiscrimination
1222 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1223 (LangOpts.PointerAuthInitFini
1224 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI);
1225 static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI ==
1226 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1227 "Update when new enum items are defined");
1228 if (PAuthABIVersion != 0) {
1229 getModule().addModuleFlag(llvm::Module::Error,
1230 "aarch64-elf-pauthabi-platform",
1231 AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1232 getModule().addModuleFlag(llvm::Module::Error,
1233 "aarch64-elf-pauthabi-version",
1234 PAuthABIVersion);
1235 }
1236 }
1237 }
1238
1239 if (CodeGenOpts.StackClashProtector)
1240 getModule().addModuleFlag(
1241 llvm::Module::Override, "probe-stack",
1242 llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1243
1244 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1245 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1246 CodeGenOpts.StackProbeSize);
1247
1248 if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1249 llvm::LLVMContext &Ctx = TheModule.getContext();
1250 getModule().addModuleFlag(
1251 llvm::Module::Error, "MemProfProfileFilename",
1252 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1253 }
1254
1255 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1256 // Indicate whether __nvvm_reflect should be configured to flush denormal
1257 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
1258 // property.)
1259 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1260 CodeGenOpts.FP32DenormalMode.Output !=
1261 llvm::DenormalMode::IEEE);
1262 }
1263
1264 if (LangOpts.EHAsynch)
1265 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1266
1267 // Indicate whether this Module was compiled with -fopenmp
1268 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1269 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1270 if (getLangOpts().OpenMPIsTargetDevice)
1271 getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1272 LangOpts.OpenMP);
1273
1274 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1275 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1276 EmitOpenCLMetadata();
1277 // Emit SPIR version.
1278 if (getTriple().isSPIR()) {
1279 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1280 // opencl.spir.version named metadata.
1281 // C++ for OpenCL has a distinct mapping for version compatibility with
1282 // OpenCL.
1283 auto Version = LangOpts.getOpenCLCompatibleVersion();
1284 llvm::Metadata *SPIRVerElts[] = {
1285 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1286 Int32Ty, Version / 100)),
1287 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1288 Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1289 llvm::NamedMDNode *SPIRVerMD =
1290 TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1291 llvm::LLVMContext &Ctx = TheModule.getContext();
1292 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1293 }
1294 }
1295
1296 // HLSL related end of code gen work items.
1297 if (LangOpts.HLSL)
1298 getHLSLRuntime().finishCodeGen();
1299
1300 if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1301 assert(PLevel < 3 && "Invalid PIC Level");
1302 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1303 if (Context.getLangOpts().PIE)
1304 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1305 }
1306
1307 if (getCodeGenOpts().CodeModel.size() > 0) {
1308 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1309 .Case("tiny", llvm::CodeModel::Tiny)
1310 .Case("small", llvm::CodeModel::Small)
1311 .Case("kernel", llvm::CodeModel::Kernel)
1312 .Case("medium", llvm::CodeModel::Medium)
1313 .Case("large", llvm::CodeModel::Large)
1314 .Default(~0u);
1315 if (CM != ~0u) {
1316 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1317 getModule().setCodeModel(codeModel);
1318
1319 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1320 Context.getTargetInfo().getTriple().getArch() ==
1321 llvm::Triple::x86_64) {
1322 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1323 }
1324 }
1325 }
1326
1327 if (CodeGenOpts.NoPLT)
1328 getModule().setRtLibUseGOT();
1329 if (getTriple().isOSBinFormatELF() &&
1330 CodeGenOpts.DirectAccessExternalData !=
1331 getModule().getDirectAccessExternalData()) {
1332 getModule().setDirectAccessExternalData(
1333 CodeGenOpts.DirectAccessExternalData);
1334 }
1335 if (CodeGenOpts.UnwindTables)
1336 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1337
1338 switch (CodeGenOpts.getFramePointer()) {
1339 case CodeGenOptions::FramePointerKind::None:
1340 // 0 ("none") is the default.
1341 break;
1342 case CodeGenOptions::FramePointerKind::Reserved:
1343 getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1344 break;
1345 case CodeGenOptions::FramePointerKind::NonLeaf:
1346 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1347 break;
1348 case CodeGenOptions::FramePointerKind::All:
1349 getModule().setFramePointer(llvm::FramePointerKind::All);
1350 break;
1351 }
1352
1353 SimplifyPersonality();
1354
1355 if (getCodeGenOpts().EmitDeclMetadata)
1356 EmitDeclMetadata();
1357
1358 if (getCodeGenOpts().CoverageNotesFile.size() ||
1359 getCodeGenOpts().CoverageDataFile.size())
1360 EmitCoverageFile();
1361
1362 if (CGDebugInfo *DI = getModuleDebugInfo())
1363 DI->finalize();
1364
1365 if (getCodeGenOpts().EmitVersionIdentMetadata)
1366 EmitVersionIdentMetadata();
1367
1368 if (!getCodeGenOpts().RecordCommandLine.empty())
1369 EmitCommandLineMetadata();
1370
1371 if (!getCodeGenOpts().StackProtectorGuard.empty())
1372 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1373 if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1374 getModule().setStackProtectorGuardReg(
1375 getCodeGenOpts().StackProtectorGuardReg);
1376 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1377 getModule().setStackProtectorGuardSymbol(
1378 getCodeGenOpts().StackProtectorGuardSymbol);
1379 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1380 getModule().setStackProtectorGuardOffset(
1381 getCodeGenOpts().StackProtectorGuardOffset);
1382 if (getCodeGenOpts().StackAlignment)
1383 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1384 if (getCodeGenOpts().SkipRaxSetup)
1385 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1386 if (getLangOpts().RegCall4)
1387 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1388
1389 if (getContext().getTargetInfo().getMaxTLSAlign())
1390 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1391 getContext().getTargetInfo().getMaxTLSAlign());
1392
1393 getTargetCodeGenInfo().emitTargetGlobals(*this);
1394
1395 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1396
1397 EmitBackendOptionsMetadata(getCodeGenOpts());
1398
1399 // If there is device offloading code embed it in the host now.
1400 EmbedObject(&getModule(), CodeGenOpts, getDiags());
1401
1402 // Set visibility from DLL storage class
1403 // We do this at the end of LLVM IR generation; after any operation
1404 // that might affect the DLL storage class or the visibility, and
1405 // before anything that might act on these.
1406 setVisibilityFromDLLStorageClass(LangOpts, getModule());
1407
1408 // Check the tail call symbols are truly undefined.
1409 if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) {
1410 for (auto &I : MustTailCallUndefinedGlobals) {
1411 if (!I.first->isDefined())
1412 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1413 else {
1414 StringRef MangledName = getMangledName(GlobalDecl(I.first));
1415 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1416 if (!Entry || Entry->isWeakForLinker() ||
1417 Entry->isDeclarationForLinker())
1418 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1419 }
1420 }
1421 }
1422 }
1423
EmitOpenCLMetadata()1424 void CodeGenModule::EmitOpenCLMetadata() {
1425 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1426 // opencl.ocl.version named metadata node.
1427 // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1428 auto CLVersion = LangOpts.getOpenCLCompatibleVersion();
1429
1430 auto EmitVersion = [this](StringRef MDName, int Version) {
1431 llvm::Metadata *OCLVerElts[] = {
1432 llvm::ConstantAsMetadata::get(
1433 llvm::ConstantInt::get(Int32Ty, Version / 100)),
1434 llvm::ConstantAsMetadata::get(
1435 llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))};
1436 llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName);
1437 llvm::LLVMContext &Ctx = TheModule.getContext();
1438 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1439 };
1440
1441 EmitVersion("opencl.ocl.version", CLVersion);
1442 if (LangOpts.OpenCLCPlusPlus) {
1443 // In addition to the OpenCL compatible version, emit the C++ version.
1444 EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion);
1445 }
1446 }
1447
EmitBackendOptionsMetadata(const CodeGenOptions & CodeGenOpts)1448 void CodeGenModule::EmitBackendOptionsMetadata(
1449 const CodeGenOptions &CodeGenOpts) {
1450 if (getTriple().isRISCV()) {
1451 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1452 CodeGenOpts.SmallDataLimit);
1453 }
1454 }
1455
UpdateCompletedType(const TagDecl * TD)1456 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1457 // Make sure that this type is translated.
1458 getTypes().UpdateCompletedType(TD);
1459 }
1460
RefreshTypeCacheForClass(const CXXRecordDecl * RD)1461 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1462 // Make sure that this type is translated.
1463 getTypes().RefreshTypeCacheForClass(RD);
1464 }
1465
getTBAATypeInfo(QualType QTy)1466 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1467 if (!TBAA)
1468 return nullptr;
1469 return TBAA->getTypeInfo(QTy);
1470 }
1471
getTBAAAccessInfo(QualType AccessType)1472 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1473 if (!TBAA)
1474 return TBAAAccessInfo();
1475 if (getLangOpts().CUDAIsDevice) {
1476 // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1477 // access info.
1478 if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1479 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1480 nullptr)
1481 return TBAAAccessInfo();
1482 } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1483 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1484 nullptr)
1485 return TBAAAccessInfo();
1486 }
1487 }
1488 return TBAA->getAccessInfo(AccessType);
1489 }
1490
1491 TBAAAccessInfo
getTBAAVTablePtrAccessInfo(llvm::Type * VTablePtrType)1492 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1493 if (!TBAA)
1494 return TBAAAccessInfo();
1495 return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1496 }
1497
getTBAAStructInfo(QualType QTy)1498 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1499 if (!TBAA)
1500 return nullptr;
1501 return TBAA->getTBAAStructInfo(QTy);
1502 }
1503
getTBAABaseTypeInfo(QualType QTy)1504 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1505 if (!TBAA)
1506 return nullptr;
1507 return TBAA->getBaseTypeInfo(QTy);
1508 }
1509
getTBAAAccessTagInfo(TBAAAccessInfo Info)1510 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1511 if (!TBAA)
1512 return nullptr;
1513 return TBAA->getAccessTagInfo(Info);
1514 }
1515
mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,TBAAAccessInfo TargetInfo)1516 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1517 TBAAAccessInfo TargetInfo) {
1518 if (!TBAA)
1519 return TBAAAccessInfo();
1520 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1521 }
1522
1523 TBAAAccessInfo
mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,TBAAAccessInfo InfoB)1524 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1525 TBAAAccessInfo InfoB) {
1526 if (!TBAA)
1527 return TBAAAccessInfo();
1528 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1529 }
1530
1531 TBAAAccessInfo
mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,TBAAAccessInfo SrcInfo)1532 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1533 TBAAAccessInfo SrcInfo) {
1534 if (!TBAA)
1535 return TBAAAccessInfo();
1536 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1537 }
1538
DecorateInstructionWithTBAA(llvm::Instruction * Inst,TBAAAccessInfo TBAAInfo)1539 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1540 TBAAAccessInfo TBAAInfo) {
1541 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1542 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1543 }
1544
DecorateInstructionWithInvariantGroup(llvm::Instruction * I,const CXXRecordDecl * RD)1545 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1546 llvm::Instruction *I, const CXXRecordDecl *RD) {
1547 I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1548 llvm::MDNode::get(getLLVMContext(), {}));
1549 }
1550
Error(SourceLocation loc,StringRef message)1551 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1552 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1553 getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1554 }
1555
1556 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1557 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type)1558 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1559 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1560 "cannot compile this %0 yet");
1561 std::string Msg = Type;
1562 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1563 << Msg << S->getSourceRange();
1564 }
1565
1566 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1567 /// specified decl yet.
ErrorUnsupported(const Decl * D,const char * Type)1568 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1569 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1570 "cannot compile this %0 yet");
1571 std::string Msg = Type;
1572 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1573 }
1574
getSize(CharUnits size)1575 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1576 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1577 }
1578
setGlobalVisibility(llvm::GlobalValue * GV,const NamedDecl * D) const1579 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1580 const NamedDecl *D) const {
1581 // Internal definitions always have default visibility.
1582 if (GV->hasLocalLinkage()) {
1583 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1584 return;
1585 }
1586 if (!D)
1587 return;
1588
1589 // Set visibility for definitions, and for declarations if requested globally
1590 // or set explicitly.
1591 LinkageInfo LV = D->getLinkageAndVisibility();
1592
1593 // OpenMP declare target variables must be visible to the host so they can
1594 // be registered. We require protected visibility unless the variable has
1595 // the DT_nohost modifier and does not need to be registered.
1596 if (Context.getLangOpts().OpenMP &&
1597 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1598 D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1599 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1600 OMPDeclareTargetDeclAttr::DT_NoHost &&
1601 LV.getVisibility() == HiddenVisibility) {
1602 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1603 return;
1604 }
1605
1606 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1607 // Reject incompatible dlllstorage and visibility annotations.
1608 if (!LV.isVisibilityExplicit())
1609 return;
1610 if (GV->hasDLLExportStorageClass()) {
1611 if (LV.getVisibility() == HiddenVisibility)
1612 getDiags().Report(D->getLocation(),
1613 diag::err_hidden_visibility_dllexport);
1614 } else if (LV.getVisibility() != DefaultVisibility) {
1615 getDiags().Report(D->getLocation(),
1616 diag::err_non_default_visibility_dllimport);
1617 }
1618 return;
1619 }
1620
1621 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1622 !GV->isDeclarationForLinker())
1623 GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1624 }
1625
shouldAssumeDSOLocal(const CodeGenModule & CGM,llvm::GlobalValue * GV)1626 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1627 llvm::GlobalValue *GV) {
1628 if (GV->hasLocalLinkage())
1629 return true;
1630
1631 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1632 return true;
1633
1634 // DLLImport explicitly marks the GV as external.
1635 if (GV->hasDLLImportStorageClass())
1636 return false;
1637
1638 const llvm::Triple &TT = CGM.getTriple();
1639 const auto &CGOpts = CGM.getCodeGenOpts();
1640 if (TT.isWindowsGNUEnvironment()) {
1641 // In MinGW, variables without DLLImport can still be automatically
1642 // imported from a DLL by the linker; don't mark variables that
1643 // potentially could come from another DLL as DSO local.
1644
1645 // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1646 // (and this actually happens in the public interface of libstdc++), so
1647 // such variables can't be marked as DSO local. (Native TLS variables
1648 // can't be dllimported at all, though.)
1649 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1650 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1651 CGOpts.AutoImport)
1652 return false;
1653 }
1654
1655 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1656 // remain unresolved in the link, they can be resolved to zero, which is
1657 // outside the current DSO.
1658 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1659 return false;
1660
1661 // Every other GV is local on COFF.
1662 // Make an exception for windows OS in the triple: Some firmware builds use
1663 // *-win32-macho triples. This (accidentally?) produced windows relocations
1664 // without GOT tables in older clang versions; Keep this behaviour.
1665 // FIXME: even thread local variables?
1666 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1667 return true;
1668
1669 // Only handle COFF and ELF for now.
1670 if (!TT.isOSBinFormatELF())
1671 return false;
1672
1673 // If this is not an executable, don't assume anything is local.
1674 llvm::Reloc::Model RM = CGOpts.RelocationModel;
1675 const auto &LOpts = CGM.getLangOpts();
1676 if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1677 // On ELF, if -fno-semantic-interposition is specified and the target
1678 // supports local aliases, there will be neither CC1
1679 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1680 // dso_local on the function if using a local alias is preferable (can avoid
1681 // PLT indirection).
1682 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1683 return false;
1684 return !(CGM.getLangOpts().SemanticInterposition ||
1685 CGM.getLangOpts().HalfNoSemanticInterposition);
1686 }
1687
1688 // A definition cannot be preempted from an executable.
1689 if (!GV->isDeclarationForLinker())
1690 return true;
1691
1692 // Most PIC code sequences that assume that a symbol is local cannot produce a
1693 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1694 // depended, it seems worth it to handle it here.
1695 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1696 return false;
1697
1698 // PowerPC64 prefers TOC indirection to avoid copy relocations.
1699 if (TT.isPPC64())
1700 return false;
1701
1702 if (CGOpts.DirectAccessExternalData) {
1703 // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1704 // for non-thread-local variables. If the symbol is not defined in the
1705 // executable, a copy relocation will be needed at link time. dso_local is
1706 // excluded for thread-local variables because they generally don't support
1707 // copy relocations.
1708 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1709 if (!Var->isThreadLocal())
1710 return true;
1711
1712 // -fno-pic sets dso_local on a function declaration to allow direct
1713 // accesses when taking its address (similar to a data symbol). If the
1714 // function is not defined in the executable, a canonical PLT entry will be
1715 // needed at link time. -fno-direct-access-external-data can avoid the
1716 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1717 // it could just cause trouble without providing perceptible benefits.
1718 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1719 return true;
1720 }
1721
1722 // If we can use copy relocations we can assume it is local.
1723
1724 // Otherwise don't assume it is local.
1725 return false;
1726 }
1727
setDSOLocal(llvm::GlobalValue * GV) const1728 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1729 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1730 }
1731
setDLLImportDLLExport(llvm::GlobalValue * GV,GlobalDecl GD) const1732 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1733 GlobalDecl GD) const {
1734 const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1735 // C++ destructors have a few C++ ABI specific special cases.
1736 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1737 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1738 return;
1739 }
1740 setDLLImportDLLExport(GV, D);
1741 }
1742
setDLLImportDLLExport(llvm::GlobalValue * GV,const NamedDecl * D) const1743 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1744 const NamedDecl *D) const {
1745 if (D && D->isExternallyVisible()) {
1746 if (D->hasAttr<DLLImportAttr>())
1747 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1748 else if ((D->hasAttr<DLLExportAttr>() ||
1749 shouldMapVisibilityToDLLExport(D)) &&
1750 !GV->isDeclarationForLinker())
1751 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1752 }
1753 }
1754
setGVProperties(llvm::GlobalValue * GV,GlobalDecl GD) const1755 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1756 GlobalDecl GD) const {
1757 setDLLImportDLLExport(GV, GD);
1758 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1759 }
1760
setGVProperties(llvm::GlobalValue * GV,const NamedDecl * D) const1761 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1762 const NamedDecl *D) const {
1763 setDLLImportDLLExport(GV, D);
1764 setGVPropertiesAux(GV, D);
1765 }
1766
setGVPropertiesAux(llvm::GlobalValue * GV,const NamedDecl * D) const1767 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1768 const NamedDecl *D) const {
1769 setGlobalVisibility(GV, D);
1770 setDSOLocal(GV);
1771 GV->setPartition(CodeGenOpts.SymbolPartition);
1772 }
1773
GetLLVMTLSModel(StringRef S)1774 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1775 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1776 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1777 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1778 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1779 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1780 }
1781
1782 llvm::GlobalVariable::ThreadLocalMode
GetDefaultLLVMTLSModel() const1783 CodeGenModule::GetDefaultLLVMTLSModel() const {
1784 switch (CodeGenOpts.getDefaultTLSModel()) {
1785 case CodeGenOptions::GeneralDynamicTLSModel:
1786 return llvm::GlobalVariable::GeneralDynamicTLSModel;
1787 case CodeGenOptions::LocalDynamicTLSModel:
1788 return llvm::GlobalVariable::LocalDynamicTLSModel;
1789 case CodeGenOptions::InitialExecTLSModel:
1790 return llvm::GlobalVariable::InitialExecTLSModel;
1791 case CodeGenOptions::LocalExecTLSModel:
1792 return llvm::GlobalVariable::LocalExecTLSModel;
1793 }
1794 llvm_unreachable("Invalid TLS model!");
1795 }
1796
setTLSMode(llvm::GlobalValue * GV,const VarDecl & D) const1797 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1798 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1799
1800 llvm::GlobalValue::ThreadLocalMode TLM;
1801 TLM = GetDefaultLLVMTLSModel();
1802
1803 // Override the TLS model if it is explicitly specified.
1804 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1805 TLM = GetLLVMTLSModel(Attr->getModel());
1806 }
1807
1808 GV->setThreadLocalMode(TLM);
1809 }
1810
getCPUSpecificMangling(const CodeGenModule & CGM,StringRef Name)1811 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1812 StringRef Name) {
1813 const TargetInfo &Target = CGM.getTarget();
1814 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1815 }
1816
AppendCPUSpecificCPUDispatchMangling(const CodeGenModule & CGM,const CPUSpecificAttr * Attr,unsigned CPUIndex,raw_ostream & Out)1817 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1818 const CPUSpecificAttr *Attr,
1819 unsigned CPUIndex,
1820 raw_ostream &Out) {
1821 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1822 // supported.
1823 if (Attr)
1824 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1825 else if (CGM.getTarget().supportsIFunc())
1826 Out << ".resolver";
1827 }
1828
1829 // Returns true if GD is a function decl with internal linkage and
1830 // needs a unique suffix after the mangled name.
isUniqueInternalLinkageDecl(GlobalDecl GD,CodeGenModule & CGM)1831 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1832 CodeGenModule &CGM) {
1833 const Decl *D = GD.getDecl();
1834 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1835 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1836 }
1837
getMangledNameImpl(CodeGenModule & CGM,GlobalDecl GD,const NamedDecl * ND,bool OmitMultiVersionMangling=false)1838 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1839 const NamedDecl *ND,
1840 bool OmitMultiVersionMangling = false) {
1841 SmallString<256> Buffer;
1842 llvm::raw_svector_ostream Out(Buffer);
1843 MangleContext &MC = CGM.getCXXABI().getMangleContext();
1844 if (!CGM.getModuleNameHash().empty())
1845 MC.needsUniqueInternalLinkageNames();
1846 bool ShouldMangle = MC.shouldMangleDeclName(ND);
1847 if (ShouldMangle)
1848 MC.mangleName(GD.getWithDecl(ND), Out);
1849 else {
1850 IdentifierInfo *II = ND->getIdentifier();
1851 assert(II && "Attempt to mangle unnamed decl.");
1852 const auto *FD = dyn_cast<FunctionDecl>(ND);
1853
1854 if (FD &&
1855 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1856 if (CGM.getLangOpts().RegCall4)
1857 Out << "__regcall4__" << II->getName();
1858 else
1859 Out << "__regcall3__" << II->getName();
1860 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1861 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1862 Out << "__device_stub__" << II->getName();
1863 } else {
1864 Out << II->getName();
1865 }
1866 }
1867
1868 // Check if the module name hash should be appended for internal linkage
1869 // symbols. This should come before multi-version target suffixes are
1870 // appended. This is to keep the name and module hash suffix of the
1871 // internal linkage function together. The unique suffix should only be
1872 // added when name mangling is done to make sure that the final name can
1873 // be properly demangled. For example, for C functions without prototypes,
1874 // name mangling is not done and the unique suffix should not be appeneded
1875 // then.
1876 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1877 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1878 "Hash computed when not explicitly requested");
1879 Out << CGM.getModuleNameHash();
1880 }
1881
1882 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1883 if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1884 switch (FD->getMultiVersionKind()) {
1885 case MultiVersionKind::CPUDispatch:
1886 case MultiVersionKind::CPUSpecific:
1887 AppendCPUSpecificCPUDispatchMangling(CGM,
1888 FD->getAttr<CPUSpecificAttr>(),
1889 GD.getMultiVersionIndex(), Out);
1890 break;
1891 case MultiVersionKind::Target: {
1892 auto *Attr = FD->getAttr<TargetAttr>();
1893 assert(Attr && "Expected TargetAttr to be present "
1894 "for attribute mangling");
1895 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1896 Info.appendAttributeMangling(Attr, Out);
1897 break;
1898 }
1899 case MultiVersionKind::TargetVersion: {
1900 auto *Attr = FD->getAttr<TargetVersionAttr>();
1901 assert(Attr && "Expected TargetVersionAttr to be present "
1902 "for attribute mangling");
1903 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1904 Info.appendAttributeMangling(Attr, Out);
1905 break;
1906 }
1907 case MultiVersionKind::TargetClones: {
1908 auto *Attr = FD->getAttr<TargetClonesAttr>();
1909 assert(Attr && "Expected TargetClonesAttr to be present "
1910 "for attribute mangling");
1911 unsigned Index = GD.getMultiVersionIndex();
1912 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1913 Info.appendAttributeMangling(Attr, Index, Out);
1914 break;
1915 }
1916 case MultiVersionKind::None:
1917 llvm_unreachable("None multiversion type isn't valid here");
1918 }
1919 }
1920
1921 // Make unique name for device side static file-scope variable for HIP.
1922 if (CGM.getContext().shouldExternalize(ND) &&
1923 CGM.getLangOpts().GPURelocatableDeviceCode &&
1924 CGM.getLangOpts().CUDAIsDevice)
1925 CGM.printPostfixForExternalizedDecl(Out, ND);
1926
1927 return std::string(Out.str());
1928 }
1929
UpdateMultiVersionNames(GlobalDecl GD,const FunctionDecl * FD,StringRef & CurName)1930 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1931 const FunctionDecl *FD,
1932 StringRef &CurName) {
1933 if (!FD->isMultiVersion())
1934 return;
1935
1936 // Get the name of what this would be without the 'target' attribute. This
1937 // allows us to lookup the version that was emitted when this wasn't a
1938 // multiversion function.
1939 std::string NonTargetName =
1940 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1941 GlobalDecl OtherGD;
1942 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1943 assert(OtherGD.getCanonicalDecl()
1944 .getDecl()
1945 ->getAsFunction()
1946 ->isMultiVersion() &&
1947 "Other GD should now be a multiversioned function");
1948 // OtherFD is the version of this function that was mangled BEFORE
1949 // becoming a MultiVersion function. It potentially needs to be updated.
1950 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1951 .getDecl()
1952 ->getAsFunction()
1953 ->getMostRecentDecl();
1954 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1955 // This is so that if the initial version was already the 'default'
1956 // version, we don't try to update it.
1957 if (OtherName != NonTargetName) {
1958 // Remove instead of erase, since others may have stored the StringRef
1959 // to this.
1960 const auto ExistingRecord = Manglings.find(NonTargetName);
1961 if (ExistingRecord != std::end(Manglings))
1962 Manglings.remove(&(*ExistingRecord));
1963 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1964 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1965 Result.first->first();
1966 // If this is the current decl is being created, make sure we update the name.
1967 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1968 CurName = OtherNameRef;
1969 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1970 Entry->setName(OtherName);
1971 }
1972 }
1973 }
1974
getMangledName(GlobalDecl GD)1975 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1976 GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1977
1978 // Some ABIs don't have constructor variants. Make sure that base and
1979 // complete constructors get mangled the same.
1980 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1981 if (!getTarget().getCXXABI().hasConstructorVariants()) {
1982 CXXCtorType OrigCtorType = GD.getCtorType();
1983 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1984 if (OrigCtorType == Ctor_Base)
1985 CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1986 }
1987 }
1988
1989 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1990 // static device variable depends on whether the variable is referenced by
1991 // a host or device host function. Therefore the mangled name cannot be
1992 // cached.
1993 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1994 auto FoundName = MangledDeclNames.find(CanonicalGD);
1995 if (FoundName != MangledDeclNames.end())
1996 return FoundName->second;
1997 }
1998
1999 // Keep the first result in the case of a mangling collision.
2000 const auto *ND = cast<NamedDecl>(GD.getDecl());
2001 std::string MangledName = getMangledNameImpl(*this, GD, ND);
2002
2003 // Ensure either we have different ABIs between host and device compilations,
2004 // says host compilation following MSVC ABI but device compilation follows
2005 // Itanium C++ ABI or, if they follow the same ABI, kernel names after
2006 // mangling should be the same after name stubbing. The later checking is
2007 // very important as the device kernel name being mangled in host-compilation
2008 // is used to resolve the device binaries to be executed. Inconsistent naming
2009 // result in undefined behavior. Even though we cannot check that naming
2010 // directly between host- and device-compilations, the host- and
2011 // device-mangling in host compilation could help catching certain ones.
2012 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
2013 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
2014 (getContext().getAuxTargetInfo() &&
2015 (getContext().getAuxTargetInfo()->getCXXABI() !=
2016 getContext().getTargetInfo().getCXXABI())) ||
2017 getCUDARuntime().getDeviceSideName(ND) ==
2018 getMangledNameImpl(
2019 *this,
2020 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
2021 ND));
2022
2023 auto Result = Manglings.insert(std::make_pair(MangledName, GD));
2024 return MangledDeclNames[CanonicalGD] = Result.first->first();
2025 }
2026
getBlockMangledName(GlobalDecl GD,const BlockDecl * BD)2027 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2028 const BlockDecl *BD) {
2029 MangleContext &MangleCtx = getCXXABI().getMangleContext();
2030 const Decl *D = GD.getDecl();
2031
2032 SmallString<256> Buffer;
2033 llvm::raw_svector_ostream Out(Buffer);
2034 if (!D)
2035 MangleCtx.mangleGlobalBlock(BD,
2036 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2037 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2038 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2039 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2040 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2041 else
2042 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2043
2044 auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2045 return Result.first->first();
2046 }
2047
getMangledNameDecl(StringRef Name)2048 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2049 auto it = MangledDeclNames.begin();
2050 while (it != MangledDeclNames.end()) {
2051 if (it->second == Name)
2052 return it->first;
2053 it++;
2054 }
2055 return GlobalDecl();
2056 }
2057
GetGlobalValue(StringRef Name)2058 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2059 return getModule().getNamedValue(Name);
2060 }
2061
2062 /// AddGlobalCtor - Add a function to the list that will be called before
2063 /// main() runs.
AddGlobalCtor(llvm::Function * Ctor,int Priority,unsigned LexOrder,llvm::Constant * AssociatedData)2064 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2065 unsigned LexOrder,
2066 llvm::Constant *AssociatedData) {
2067 // FIXME: Type coercion of void()* types.
2068 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2069 }
2070
2071 /// AddGlobalDtor - Add a function to the list that will be called
2072 /// when the module is unloaded.
AddGlobalDtor(llvm::Function * Dtor,int Priority,bool IsDtorAttrFunc)2073 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2074 bool IsDtorAttrFunc) {
2075 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2076 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2077 DtorsUsingAtExit[Priority].push_back(Dtor);
2078 return;
2079 }
2080
2081 // FIXME: Type coercion of void()* types.
2082 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2083 }
2084
EmitCtorList(CtorList & Fns,const char * GlobalName)2085 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2086 if (Fns.empty()) return;
2087
2088 // Ctor function type is void()*.
2089 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
2090 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
2091 TheModule.getDataLayout().getProgramAddressSpace());
2092
2093 // Get the type of a ctor entry, { i32, void ()*, i8* }.
2094 llvm::StructType *CtorStructTy = llvm::StructType::get(
2095 Int32Ty, CtorPFTy, VoidPtrTy);
2096
2097 // Construct the constructor and destructor arrays.
2098 ConstantInitBuilder builder(*this);
2099 auto ctors = builder.beginArray(CtorStructTy);
2100 for (const auto &I : Fns) {
2101 auto ctor = ctors.beginStruct(CtorStructTy);
2102 ctor.addInt(Int32Ty, I.Priority);
2103 ctor.add(I.Initializer);
2104 if (I.AssociatedData)
2105 ctor.add(I.AssociatedData);
2106 else
2107 ctor.addNullPointer(VoidPtrTy);
2108 ctor.finishAndAddTo(ctors);
2109 }
2110
2111 auto list =
2112 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2113 /*constant*/ false,
2114 llvm::GlobalValue::AppendingLinkage);
2115
2116 // The LTO linker doesn't seem to like it when we set an alignment
2117 // on appending variables. Take it off as a workaround.
2118 list->setAlignment(std::nullopt);
2119
2120 Fns.clear();
2121 }
2122
2123 llvm::GlobalValue::LinkageTypes
getFunctionLinkage(GlobalDecl GD)2124 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2125 const auto *D = cast<FunctionDecl>(GD.getDecl());
2126
2127 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2128
2129 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2130 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2131
2132 return getLLVMLinkageForDeclarator(D, Linkage);
2133 }
2134
CreateCrossDsoCfiTypeId(llvm::Metadata * MD)2135 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2136 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2137 if (!MDS) return nullptr;
2138
2139 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2140 }
2141
CreateKCFITypeId(QualType T)2142 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2143 if (auto *FnType = T->getAs<FunctionProtoType>())
2144 T = getContext().getFunctionType(
2145 FnType->getReturnType(), FnType->getParamTypes(),
2146 FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2147
2148 std::string OutName;
2149 llvm::raw_string_ostream Out(OutName);
2150 getCXXABI().getMangleContext().mangleCanonicalTypeName(
2151 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2152
2153 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2154 Out << ".normalized";
2155
2156 return llvm::ConstantInt::get(Int32Ty,
2157 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2158 }
2159
SetLLVMFunctionAttributes(GlobalDecl GD,const CGFunctionInfo & Info,llvm::Function * F,bool IsThunk)2160 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2161 const CGFunctionInfo &Info,
2162 llvm::Function *F, bool IsThunk) {
2163 unsigned CallingConv;
2164 llvm::AttributeList PAL;
2165 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2166 /*AttrOnCallSite=*/false, IsThunk);
2167 if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2168 getTarget().getTriple().isWindowsArm64EC()) {
2169 SourceLocation Loc;
2170 if (const Decl *D = GD.getDecl())
2171 Loc = D->getLocation();
2172
2173 Error(Loc, "__vectorcall calling convention is not currently supported");
2174 }
2175 F->setAttributes(PAL);
2176 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2177 }
2178
removeImageAccessQualifier(std::string & TyName)2179 static void removeImageAccessQualifier(std::string& TyName) {
2180 std::string ReadOnlyQual("__read_only");
2181 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2182 if (ReadOnlyPos != std::string::npos)
2183 // "+ 1" for the space after access qualifier.
2184 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2185 else {
2186 std::string WriteOnlyQual("__write_only");
2187 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2188 if (WriteOnlyPos != std::string::npos)
2189 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2190 else {
2191 std::string ReadWriteQual("__read_write");
2192 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2193 if (ReadWritePos != std::string::npos)
2194 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2195 }
2196 }
2197 }
2198
2199 // Returns the address space id that should be produced to the
2200 // kernel_arg_addr_space metadata. This is always fixed to the ids
2201 // as specified in the SPIR 2.0 specification in order to differentiate
2202 // for example in clGetKernelArgInfo() implementation between the address
2203 // spaces with targets without unique mapping to the OpenCL address spaces
2204 // (basically all single AS CPUs).
ArgInfoAddressSpace(LangAS AS)2205 static unsigned ArgInfoAddressSpace(LangAS AS) {
2206 switch (AS) {
2207 case LangAS::opencl_global:
2208 return 1;
2209 case LangAS::opencl_constant:
2210 return 2;
2211 case LangAS::opencl_local:
2212 return 3;
2213 case LangAS::opencl_generic:
2214 return 4; // Not in SPIR 2.0 specs.
2215 case LangAS::opencl_global_device:
2216 return 5;
2217 case LangAS::opencl_global_host:
2218 return 6;
2219 default:
2220 return 0; // Assume private.
2221 }
2222 }
2223
GenKernelArgMetadata(llvm::Function * Fn,const FunctionDecl * FD,CodeGenFunction * CGF)2224 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2225 const FunctionDecl *FD,
2226 CodeGenFunction *CGF) {
2227 assert(((FD && CGF) || (!FD && !CGF)) &&
2228 "Incorrect use - FD and CGF should either be both null or not!");
2229 // Create MDNodes that represent the kernel arg metadata.
2230 // Each MDNode is a list in the form of "key", N number of values which is
2231 // the same number of values as their are kernel arguments.
2232
2233 const PrintingPolicy &Policy = Context.getPrintingPolicy();
2234
2235 // MDNode for the kernel argument address space qualifiers.
2236 SmallVector<llvm::Metadata *, 8> addressQuals;
2237
2238 // MDNode for the kernel argument access qualifiers (images only).
2239 SmallVector<llvm::Metadata *, 8> accessQuals;
2240
2241 // MDNode for the kernel argument type names.
2242 SmallVector<llvm::Metadata *, 8> argTypeNames;
2243
2244 // MDNode for the kernel argument base type names.
2245 SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2246
2247 // MDNode for the kernel argument type qualifiers.
2248 SmallVector<llvm::Metadata *, 8> argTypeQuals;
2249
2250 // MDNode for the kernel argument names.
2251 SmallVector<llvm::Metadata *, 8> argNames;
2252
2253 if (FD && CGF)
2254 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2255 const ParmVarDecl *parm = FD->getParamDecl(i);
2256 // Get argument name.
2257 argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2258
2259 if (!getLangOpts().OpenCL)
2260 continue;
2261 QualType ty = parm->getType();
2262 std::string typeQuals;
2263
2264 // Get image and pipe access qualifier:
2265 if (ty->isImageType() || ty->isPipeType()) {
2266 const Decl *PDecl = parm;
2267 if (const auto *TD = ty->getAs<TypedefType>())
2268 PDecl = TD->getDecl();
2269 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2270 if (A && A->isWriteOnly())
2271 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2272 else if (A && A->isReadWrite())
2273 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2274 else
2275 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2276 } else
2277 accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2278
2279 auto getTypeSpelling = [&](QualType Ty) {
2280 auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2281
2282 if (Ty.isCanonical()) {
2283 StringRef typeNameRef = typeName;
2284 // Turn "unsigned type" to "utype"
2285 if (typeNameRef.consume_front("unsigned "))
2286 return std::string("u") + typeNameRef.str();
2287 if (typeNameRef.consume_front("signed "))
2288 return typeNameRef.str();
2289 }
2290
2291 return typeName;
2292 };
2293
2294 if (ty->isPointerType()) {
2295 QualType pointeeTy = ty->getPointeeType();
2296
2297 // Get address qualifier.
2298 addressQuals.push_back(
2299 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2300 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2301
2302 // Get argument type name.
2303 std::string typeName = getTypeSpelling(pointeeTy) + "*";
2304 std::string baseTypeName =
2305 getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2306 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2307 argBaseTypeNames.push_back(
2308 llvm::MDString::get(VMContext, baseTypeName));
2309
2310 // Get argument type qualifiers:
2311 if (ty.isRestrictQualified())
2312 typeQuals = "restrict";
2313 if (pointeeTy.isConstQualified() ||
2314 (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2315 typeQuals += typeQuals.empty() ? "const" : " const";
2316 if (pointeeTy.isVolatileQualified())
2317 typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2318 } else {
2319 uint32_t AddrSpc = 0;
2320 bool isPipe = ty->isPipeType();
2321 if (ty->isImageType() || isPipe)
2322 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2323
2324 addressQuals.push_back(
2325 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2326
2327 // Get argument type name.
2328 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2329 std::string typeName = getTypeSpelling(ty);
2330 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2331
2332 // Remove access qualifiers on images
2333 // (as they are inseparable from type in clang implementation,
2334 // but OpenCL spec provides a special query to get access qualifier
2335 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2336 if (ty->isImageType()) {
2337 removeImageAccessQualifier(typeName);
2338 removeImageAccessQualifier(baseTypeName);
2339 }
2340
2341 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2342 argBaseTypeNames.push_back(
2343 llvm::MDString::get(VMContext, baseTypeName));
2344
2345 if (isPipe)
2346 typeQuals = "pipe";
2347 }
2348 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2349 }
2350
2351 if (getLangOpts().OpenCL) {
2352 Fn->setMetadata("kernel_arg_addr_space",
2353 llvm::MDNode::get(VMContext, addressQuals));
2354 Fn->setMetadata("kernel_arg_access_qual",
2355 llvm::MDNode::get(VMContext, accessQuals));
2356 Fn->setMetadata("kernel_arg_type",
2357 llvm::MDNode::get(VMContext, argTypeNames));
2358 Fn->setMetadata("kernel_arg_base_type",
2359 llvm::MDNode::get(VMContext, argBaseTypeNames));
2360 Fn->setMetadata("kernel_arg_type_qual",
2361 llvm::MDNode::get(VMContext, argTypeQuals));
2362 }
2363 if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2364 getCodeGenOpts().HIPSaveKernelArgName)
2365 Fn->setMetadata("kernel_arg_name",
2366 llvm::MDNode::get(VMContext, argNames));
2367 }
2368
2369 /// Determines whether the language options require us to model
2370 /// unwind exceptions. We treat -fexceptions as mandating this
2371 /// except under the fragile ObjC ABI with only ObjC exceptions
2372 /// enabled. This means, for example, that C with -fexceptions
2373 /// enables this.
hasUnwindExceptions(const LangOptions & LangOpts)2374 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2375 // If exceptions are completely disabled, obviously this is false.
2376 if (!LangOpts.Exceptions) return false;
2377
2378 // If C++ exceptions are enabled, this is true.
2379 if (LangOpts.CXXExceptions) return true;
2380
2381 // If ObjC exceptions are enabled, this depends on the ABI.
2382 if (LangOpts.ObjCExceptions) {
2383 return LangOpts.ObjCRuntime.hasUnwindExceptions();
2384 }
2385
2386 return true;
2387 }
2388
requiresMemberFunctionPointerTypeMetadata(CodeGenModule & CGM,const CXXMethodDecl * MD)2389 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2390 const CXXMethodDecl *MD) {
2391 // Check that the type metadata can ever actually be used by a call.
2392 if (!CGM.getCodeGenOpts().LTOUnit ||
2393 !CGM.HasHiddenLTOVisibility(MD->getParent()))
2394 return false;
2395
2396 // Only functions whose address can be taken with a member function pointer
2397 // need this sort of type metadata.
2398 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2399 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2400 }
2401
2402 SmallVector<const CXXRecordDecl *, 0>
getMostBaseClasses(const CXXRecordDecl * RD)2403 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2404 llvm::SetVector<const CXXRecordDecl *> MostBases;
2405
2406 std::function<void (const CXXRecordDecl *)> CollectMostBases;
2407 CollectMostBases = [&](const CXXRecordDecl *RD) {
2408 if (RD->getNumBases() == 0)
2409 MostBases.insert(RD);
2410 for (const CXXBaseSpecifier &B : RD->bases())
2411 CollectMostBases(B.getType()->getAsCXXRecordDecl());
2412 };
2413 CollectMostBases(RD);
2414 return MostBases.takeVector();
2415 }
2416
SetLLVMFunctionAttributesForDefinition(const Decl * D,llvm::Function * F)2417 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2418 llvm::Function *F) {
2419 llvm::AttrBuilder B(F->getContext());
2420
2421 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2422 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2423
2424 if (CodeGenOpts.StackClashProtector)
2425 B.addAttribute("probe-stack", "inline-asm");
2426
2427 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2428 B.addAttribute("stack-probe-size",
2429 std::to_string(CodeGenOpts.StackProbeSize));
2430
2431 if (!hasUnwindExceptions(LangOpts))
2432 B.addAttribute(llvm::Attribute::NoUnwind);
2433
2434 if (D && D->hasAttr<NoStackProtectorAttr>())
2435 ; // Do nothing.
2436 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2437 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2438 B.addAttribute(llvm::Attribute::StackProtectStrong);
2439 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2440 B.addAttribute(llvm::Attribute::StackProtect);
2441 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2442 B.addAttribute(llvm::Attribute::StackProtectStrong);
2443 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2444 B.addAttribute(llvm::Attribute::StackProtectReq);
2445
2446 if (!D) {
2447 // If we don't have a declaration to control inlining, the function isn't
2448 // explicitly marked as alwaysinline for semantic reasons, and inlining is
2449 // disabled, mark the function as noinline.
2450 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2451 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2452 B.addAttribute(llvm::Attribute::NoInline);
2453
2454 F->addFnAttrs(B);
2455 return;
2456 }
2457
2458 // Handle SME attributes that apply to function definitions,
2459 // rather than to function prototypes.
2460 if (D->hasAttr<ArmLocallyStreamingAttr>())
2461 B.addAttribute("aarch64_pstate_sm_body");
2462
2463 if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2464 if (Attr->isNewZA())
2465 B.addAttribute("aarch64_new_za");
2466 if (Attr->isNewZT0())
2467 B.addAttribute("aarch64_new_zt0");
2468 }
2469
2470 // Track whether we need to add the optnone LLVM attribute,
2471 // starting with the default for this optimization level.
2472 bool ShouldAddOptNone =
2473 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2474 // We can't add optnone in the following cases, it won't pass the verifier.
2475 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2476 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2477
2478 // Add optnone, but do so only if the function isn't always_inline.
2479 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2480 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2481 B.addAttribute(llvm::Attribute::OptimizeNone);
2482
2483 // OptimizeNone implies noinline; we should not be inlining such functions.
2484 B.addAttribute(llvm::Attribute::NoInline);
2485
2486 // We still need to handle naked functions even though optnone subsumes
2487 // much of their semantics.
2488 if (D->hasAttr<NakedAttr>())
2489 B.addAttribute(llvm::Attribute::Naked);
2490
2491 // OptimizeNone wins over OptimizeForSize and MinSize.
2492 F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2493 F->removeFnAttr(llvm::Attribute::MinSize);
2494 } else if (D->hasAttr<NakedAttr>()) {
2495 // Naked implies noinline: we should not be inlining such functions.
2496 B.addAttribute(llvm::Attribute::Naked);
2497 B.addAttribute(llvm::Attribute::NoInline);
2498 } else if (D->hasAttr<NoDuplicateAttr>()) {
2499 B.addAttribute(llvm::Attribute::NoDuplicate);
2500 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2501 // Add noinline if the function isn't always_inline.
2502 B.addAttribute(llvm::Attribute::NoInline);
2503 } else if (D->hasAttr<AlwaysInlineAttr>() &&
2504 !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2505 // (noinline wins over always_inline, and we can't specify both in IR)
2506 B.addAttribute(llvm::Attribute::AlwaysInline);
2507 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2508 // If we're not inlining, then force everything that isn't always_inline to
2509 // carry an explicit noinline attribute.
2510 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2511 B.addAttribute(llvm::Attribute::NoInline);
2512 } else {
2513 // Otherwise, propagate the inline hint attribute and potentially use its
2514 // absence to mark things as noinline.
2515 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2516 // Search function and template pattern redeclarations for inline.
2517 auto CheckForInline = [](const FunctionDecl *FD) {
2518 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2519 return Redecl->isInlineSpecified();
2520 };
2521 if (any_of(FD->redecls(), CheckRedeclForInline))
2522 return true;
2523 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2524 if (!Pattern)
2525 return false;
2526 return any_of(Pattern->redecls(), CheckRedeclForInline);
2527 };
2528 if (CheckForInline(FD)) {
2529 B.addAttribute(llvm::Attribute::InlineHint);
2530 } else if (CodeGenOpts.getInlining() ==
2531 CodeGenOptions::OnlyHintInlining &&
2532 !FD->isInlined() &&
2533 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2534 B.addAttribute(llvm::Attribute::NoInline);
2535 }
2536 }
2537 }
2538
2539 // Add other optimization related attributes if we are optimizing this
2540 // function.
2541 if (!D->hasAttr<OptimizeNoneAttr>()) {
2542 if (D->hasAttr<ColdAttr>()) {
2543 if (!ShouldAddOptNone)
2544 B.addAttribute(llvm::Attribute::OptimizeForSize);
2545 B.addAttribute(llvm::Attribute::Cold);
2546 }
2547 if (D->hasAttr<HotAttr>())
2548 B.addAttribute(llvm::Attribute::Hot);
2549 if (D->hasAttr<MinSizeAttr>())
2550 B.addAttribute(llvm::Attribute::MinSize);
2551 }
2552
2553 F->addFnAttrs(B);
2554
2555 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2556 if (alignment)
2557 F->setAlignment(llvm::Align(alignment));
2558
2559 if (!D->hasAttr<AlignedAttr>())
2560 if (LangOpts.FunctionAlignment)
2561 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2562
2563 // Some C++ ABIs require 2-byte alignment for member functions, in order to
2564 // reserve a bit for differentiating between virtual and non-virtual member
2565 // functions. If the current target's C++ ABI requires this and this is a
2566 // member function, set its alignment accordingly.
2567 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2568 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2569 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2570 }
2571
2572 // In the cross-dso CFI mode with canonical jump tables, we want !type
2573 // attributes on definitions only.
2574 if (CodeGenOpts.SanitizeCfiCrossDso &&
2575 CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2576 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2577 // Skip available_externally functions. They won't be codegen'ed in the
2578 // current module anyway.
2579 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2580 CreateFunctionTypeMetadataForIcall(FD, F);
2581 }
2582 }
2583
2584 // Emit type metadata on member functions for member function pointer checks.
2585 // These are only ever necessary on definitions; we're guaranteed that the
2586 // definition will be present in the LTO unit as a result of LTO visibility.
2587 auto *MD = dyn_cast<CXXMethodDecl>(D);
2588 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2589 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2590 llvm::Metadata *Id =
2591 CreateMetadataIdentifierForType(Context.getMemberPointerType(
2592 MD->getType(), Context.getRecordType(Base).getTypePtr()));
2593 F->addTypeMetadata(0, Id);
2594 }
2595 }
2596 }
2597
SetCommonAttributes(GlobalDecl GD,llvm::GlobalValue * GV)2598 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2599 const Decl *D = GD.getDecl();
2600 if (isa_and_nonnull<NamedDecl>(D))
2601 setGVProperties(GV, GD);
2602 else
2603 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2604
2605 if (D && D->hasAttr<UsedAttr>())
2606 addUsedOrCompilerUsedGlobal(GV);
2607
2608 if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2609 VD &&
2610 ((CodeGenOpts.KeepPersistentStorageVariables &&
2611 (VD->getStorageDuration() == SD_Static ||
2612 VD->getStorageDuration() == SD_Thread)) ||
2613 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2614 VD->getType().isConstQualified())))
2615 addUsedOrCompilerUsedGlobal(GV);
2616 }
2617
GetCPUAndFeaturesAttributes(GlobalDecl GD,llvm::AttrBuilder & Attrs,bool SetTargetFeatures)2618 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2619 llvm::AttrBuilder &Attrs,
2620 bool SetTargetFeatures) {
2621 // Add target-cpu and target-features attributes to functions. If
2622 // we have a decl for the function and it has a target attribute then
2623 // parse that and add it to the feature set.
2624 StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2625 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2626 std::vector<std::string> Features;
2627 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2628 FD = FD ? FD->getMostRecentDecl() : FD;
2629 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2630 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2631 assert((!TD || !TV) && "both target_version and target specified");
2632 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2633 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2634 bool AddedAttr = false;
2635 if (TD || TV || SD || TC) {
2636 llvm::StringMap<bool> FeatureMap;
2637 getContext().getFunctionFeatureMap(FeatureMap, GD);
2638
2639 // Produce the canonical string for this set of features.
2640 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2641 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2642
2643 // Now add the target-cpu and target-features to the function.
2644 // While we populated the feature map above, we still need to
2645 // get and parse the target attribute so we can get the cpu for
2646 // the function.
2647 if (TD) {
2648 ParsedTargetAttr ParsedAttr =
2649 Target.parseTargetAttr(TD->getFeaturesStr());
2650 if (!ParsedAttr.CPU.empty() &&
2651 getTarget().isValidCPUName(ParsedAttr.CPU)) {
2652 TargetCPU = ParsedAttr.CPU;
2653 TuneCPU = ""; // Clear the tune CPU.
2654 }
2655 if (!ParsedAttr.Tune.empty() &&
2656 getTarget().isValidCPUName(ParsedAttr.Tune))
2657 TuneCPU = ParsedAttr.Tune;
2658 }
2659
2660 if (SD) {
2661 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2662 // favor this processor.
2663 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2664 }
2665 } else {
2666 // Otherwise just add the existing target cpu and target features to the
2667 // function.
2668 Features = getTarget().getTargetOpts().Features;
2669 }
2670
2671 if (!TargetCPU.empty()) {
2672 Attrs.addAttribute("target-cpu", TargetCPU);
2673 AddedAttr = true;
2674 }
2675 if (!TuneCPU.empty()) {
2676 Attrs.addAttribute("tune-cpu", TuneCPU);
2677 AddedAttr = true;
2678 }
2679 if (!Features.empty() && SetTargetFeatures) {
2680 llvm::erase_if(Features, [&](const std::string& F) {
2681 return getTarget().isReadOnlyFeature(F.substr(1));
2682 });
2683 llvm::sort(Features);
2684 Attrs.addAttribute("target-features", llvm::join(Features, ","));
2685 AddedAttr = true;
2686 }
2687
2688 return AddedAttr;
2689 }
2690
setNonAliasAttributes(GlobalDecl GD,llvm::GlobalObject * GO)2691 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2692 llvm::GlobalObject *GO) {
2693 const Decl *D = GD.getDecl();
2694 SetCommonAttributes(GD, GO);
2695
2696 if (D) {
2697 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2698 if (D->hasAttr<RetainAttr>())
2699 addUsedGlobal(GV);
2700 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2701 GV->addAttribute("bss-section", SA->getName());
2702 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2703 GV->addAttribute("data-section", SA->getName());
2704 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2705 GV->addAttribute("rodata-section", SA->getName());
2706 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2707 GV->addAttribute("relro-section", SA->getName());
2708 }
2709
2710 if (auto *F = dyn_cast<llvm::Function>(GO)) {
2711 if (D->hasAttr<RetainAttr>())
2712 addUsedGlobal(F);
2713 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2714 if (!D->getAttr<SectionAttr>())
2715 F->setSection(SA->getName());
2716
2717 llvm::AttrBuilder Attrs(F->getContext());
2718 if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2719 // We know that GetCPUAndFeaturesAttributes will always have the
2720 // newest set, since it has the newest possible FunctionDecl, so the
2721 // new ones should replace the old.
2722 llvm::AttributeMask RemoveAttrs;
2723 RemoveAttrs.addAttribute("target-cpu");
2724 RemoveAttrs.addAttribute("target-features");
2725 RemoveAttrs.addAttribute("tune-cpu");
2726 F->removeFnAttrs(RemoveAttrs);
2727 F->addFnAttrs(Attrs);
2728 }
2729 }
2730
2731 if (const auto *CSA = D->getAttr<CodeSegAttr>())
2732 GO->setSection(CSA->getName());
2733 else if (const auto *SA = D->getAttr<SectionAttr>())
2734 GO->setSection(SA->getName());
2735 }
2736
2737 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2738 }
2739
SetInternalFunctionAttributes(GlobalDecl GD,llvm::Function * F,const CGFunctionInfo & FI)2740 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2741 llvm::Function *F,
2742 const CGFunctionInfo &FI) {
2743 const Decl *D = GD.getDecl();
2744 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2745 SetLLVMFunctionAttributesForDefinition(D, F);
2746
2747 F->setLinkage(llvm::Function::InternalLinkage);
2748
2749 setNonAliasAttributes(GD, F);
2750 }
2751
setLinkageForGV(llvm::GlobalValue * GV,const NamedDecl * ND)2752 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2753 // Set linkage and visibility in case we never see a definition.
2754 LinkageInfo LV = ND->getLinkageAndVisibility();
2755 // Don't set internal linkage on declarations.
2756 // "extern_weak" is overloaded in LLVM; we probably should have
2757 // separate linkage types for this.
2758 if (isExternallyVisible(LV.getLinkage()) &&
2759 (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2760 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2761 }
2762
CreateFunctionTypeMetadataForIcall(const FunctionDecl * FD,llvm::Function * F)2763 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2764 llvm::Function *F) {
2765 // Only if we are checking indirect calls.
2766 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2767 return;
2768
2769 // Non-static class methods are handled via vtable or member function pointer
2770 // checks elsewhere.
2771 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2772 return;
2773
2774 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2775 F->addTypeMetadata(0, MD);
2776 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2777
2778 // Emit a hash-based bit set entry for cross-DSO calls.
2779 if (CodeGenOpts.SanitizeCfiCrossDso)
2780 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2781 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2782 }
2783
setKCFIType(const FunctionDecl * FD,llvm::Function * F)2784 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2785 llvm::LLVMContext &Ctx = F->getContext();
2786 llvm::MDBuilder MDB(Ctx);
2787 F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2788 llvm::MDNode::get(
2789 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2790 }
2791
allowKCFIIdentifier(StringRef Name)2792 static bool allowKCFIIdentifier(StringRef Name) {
2793 // KCFI type identifier constants are only necessary for external assembly
2794 // functions, which means it's safe to skip unusual names. Subset of
2795 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2796 return llvm::all_of(Name, [](const char &C) {
2797 return llvm::isAlnum(C) || C == '_' || C == '.';
2798 });
2799 }
2800
finalizeKCFITypes()2801 void CodeGenModule::finalizeKCFITypes() {
2802 llvm::Module &M = getModule();
2803 for (auto &F : M.functions()) {
2804 // Remove KCFI type metadata from non-address-taken local functions.
2805 bool AddressTaken = F.hasAddressTaken();
2806 if (!AddressTaken && F.hasLocalLinkage())
2807 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2808
2809 // Generate a constant with the expected KCFI type identifier for all
2810 // address-taken function declarations to support annotating indirectly
2811 // called assembly functions.
2812 if (!AddressTaken || !F.isDeclaration())
2813 continue;
2814
2815 const llvm::ConstantInt *Type;
2816 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2817 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2818 else
2819 continue;
2820
2821 StringRef Name = F.getName();
2822 if (!allowKCFIIdentifier(Name))
2823 continue;
2824
2825 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2826 Name + ", " + Twine(Type->getZExtValue()) + "\n")
2827 .str();
2828 M.appendModuleInlineAsm(Asm);
2829 }
2830 }
2831
SetFunctionAttributes(GlobalDecl GD,llvm::Function * F,bool IsIncompleteFunction,bool IsThunk)2832 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2833 bool IsIncompleteFunction,
2834 bool IsThunk) {
2835
2836 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2837 // If this is an intrinsic function, set the function's attributes
2838 // to the intrinsic's attributes.
2839 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2840 return;
2841 }
2842
2843 const auto *FD = cast<FunctionDecl>(GD.getDecl());
2844
2845 if (!IsIncompleteFunction)
2846 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2847 IsThunk);
2848
2849 // Add the Returned attribute for "this", except for iOS 5 and earlier
2850 // where substantial code, including the libstdc++ dylib, was compiled with
2851 // GCC and does not actually return "this".
2852 if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2853 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2854 assert(!F->arg_empty() &&
2855 F->arg_begin()->getType()
2856 ->canLosslesslyBitCastTo(F->getReturnType()) &&
2857 "unexpected this return");
2858 F->addParamAttr(0, llvm::Attribute::Returned);
2859 }
2860
2861 // Only a few attributes are set on declarations; these may later be
2862 // overridden by a definition.
2863
2864 setLinkageForGV(F, FD);
2865 setGVProperties(F, FD);
2866
2867 // Setup target-specific attributes.
2868 if (!IsIncompleteFunction && F->isDeclaration())
2869 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2870
2871 if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2872 F->setSection(CSA->getName());
2873 else if (const auto *SA = FD->getAttr<SectionAttr>())
2874 F->setSection(SA->getName());
2875
2876 if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2877 if (EA->isError())
2878 F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2879 else if (EA->isWarning())
2880 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2881 }
2882
2883 // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2884 if (FD->isInlineBuiltinDeclaration()) {
2885 const FunctionDecl *FDBody;
2886 bool HasBody = FD->hasBody(FDBody);
2887 (void)HasBody;
2888 assert(HasBody && "Inline builtin declarations should always have an "
2889 "available body!");
2890 if (shouldEmitFunction(FDBody))
2891 F->addFnAttr(llvm::Attribute::NoBuiltin);
2892 }
2893
2894 if (FD->isReplaceableGlobalAllocationFunction()) {
2895 // A replaceable global allocation function does not act like a builtin by
2896 // default, only if it is invoked by a new-expression or delete-expression.
2897 F->addFnAttr(llvm::Attribute::NoBuiltin);
2898 }
2899
2900 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2901 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2902 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2903 if (MD->isVirtual())
2904 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2905
2906 // Don't emit entries for function declarations in the cross-DSO mode. This
2907 // is handled with better precision by the receiving DSO. But if jump tables
2908 // are non-canonical then we need type metadata in order to produce the local
2909 // jump table.
2910 if (!CodeGenOpts.SanitizeCfiCrossDso ||
2911 !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2912 CreateFunctionTypeMetadataForIcall(FD, F);
2913
2914 if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2915 setKCFIType(FD, F);
2916
2917 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2918 getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2919
2920 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2921 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2922
2923 if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2924 // Annotate the callback behavior as metadata:
2925 // - The callback callee (as argument number).
2926 // - The callback payloads (as argument numbers).
2927 llvm::LLVMContext &Ctx = F->getContext();
2928 llvm::MDBuilder MDB(Ctx);
2929
2930 // The payload indices are all but the first one in the encoding. The first
2931 // identifies the callback callee.
2932 int CalleeIdx = *CB->encoding_begin();
2933 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2934 F->addMetadata(llvm::LLVMContext::MD_callback,
2935 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2936 CalleeIdx, PayloadIndices,
2937 /* VarArgsArePassed */ false)}));
2938 }
2939 }
2940
addUsedGlobal(llvm::GlobalValue * GV)2941 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2942 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2943 "Only globals with definition can force usage.");
2944 LLVMUsed.emplace_back(GV);
2945 }
2946
addCompilerUsedGlobal(llvm::GlobalValue * GV)2947 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2948 assert(!GV->isDeclaration() &&
2949 "Only globals with definition can force usage.");
2950 LLVMCompilerUsed.emplace_back(GV);
2951 }
2952
addUsedOrCompilerUsedGlobal(llvm::GlobalValue * GV)2953 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2954 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2955 "Only globals with definition can force usage.");
2956 if (getTriple().isOSBinFormatELF())
2957 LLVMCompilerUsed.emplace_back(GV);
2958 else
2959 LLVMUsed.emplace_back(GV);
2960 }
2961
emitUsed(CodeGenModule & CGM,StringRef Name,std::vector<llvm::WeakTrackingVH> & List)2962 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2963 std::vector<llvm::WeakTrackingVH> &List) {
2964 // Don't create llvm.used if there is no need.
2965 if (List.empty())
2966 return;
2967
2968 // Convert List to what ConstantArray needs.
2969 SmallVector<llvm::Constant*, 8> UsedArray;
2970 UsedArray.resize(List.size());
2971 for (unsigned i = 0, e = List.size(); i != e; ++i) {
2972 UsedArray[i] =
2973 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2974 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2975 }
2976
2977 if (UsedArray.empty())
2978 return;
2979 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2980
2981 auto *GV = new llvm::GlobalVariable(
2982 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2983 llvm::ConstantArray::get(ATy, UsedArray), Name);
2984
2985 GV->setSection("llvm.metadata");
2986 }
2987
emitLLVMUsed()2988 void CodeGenModule::emitLLVMUsed() {
2989 emitUsed(*this, "llvm.used", LLVMUsed);
2990 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2991 }
2992
AppendLinkerOptions(StringRef Opts)2993 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2994 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2995 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2996 }
2997
AddDetectMismatch(StringRef Name,StringRef Value)2998 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2999 llvm::SmallString<32> Opt;
3000 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
3001 if (Opt.empty())
3002 return;
3003 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3004 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3005 }
3006
AddDependentLib(StringRef Lib)3007 void CodeGenModule::AddDependentLib(StringRef Lib) {
3008 auto &C = getLLVMContext();
3009 if (getTarget().getTriple().isOSBinFormatELF()) {
3010 ELFDependentLibraries.push_back(
3011 llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
3012 return;
3013 }
3014
3015 llvm::SmallString<24> Opt;
3016 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
3017 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3018 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
3019 }
3020
3021 /// Add link options implied by the given module, including modules
3022 /// it depends on, using a postorder walk.
addLinkOptionsPostorder(CodeGenModule & CGM,Module * Mod,SmallVectorImpl<llvm::MDNode * > & Metadata,llvm::SmallPtrSet<Module *,16> & Visited)3023 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
3024 SmallVectorImpl<llvm::MDNode *> &Metadata,
3025 llvm::SmallPtrSet<Module *, 16> &Visited) {
3026 // Import this module's parent.
3027 if (Mod->Parent && Visited.insert(Mod->Parent).second) {
3028 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
3029 }
3030
3031 // Import this module's dependencies.
3032 for (Module *Import : llvm::reverse(Mod->Imports)) {
3033 if (Visited.insert(Import).second)
3034 addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3035 }
3036
3037 // Add linker options to link against the libraries/frameworks
3038 // described by this module.
3039 llvm::LLVMContext &Context = CGM.getLLVMContext();
3040 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3041
3042 // For modules that use export_as for linking, use that module
3043 // name instead.
3044 if (Mod->UseExportAsModuleLinkName)
3045 return;
3046
3047 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3048 // Link against a framework. Frameworks are currently Darwin only, so we
3049 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3050 if (LL.IsFramework) {
3051 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3052 llvm::MDString::get(Context, LL.Library)};
3053
3054 Metadata.push_back(llvm::MDNode::get(Context, Args));
3055 continue;
3056 }
3057
3058 // Link against a library.
3059 if (IsELF) {
3060 llvm::Metadata *Args[2] = {
3061 llvm::MDString::get(Context, "lib"),
3062 llvm::MDString::get(Context, LL.Library),
3063 };
3064 Metadata.push_back(llvm::MDNode::get(Context, Args));
3065 } else {
3066 llvm::SmallString<24> Opt;
3067 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3068 auto *OptString = llvm::MDString::get(Context, Opt);
3069 Metadata.push_back(llvm::MDNode::get(Context, OptString));
3070 }
3071 }
3072 }
3073
EmitModuleInitializers(clang::Module * Primary)3074 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3075 assert(Primary->isNamedModuleUnit() &&
3076 "We should only emit module initializers for named modules.");
3077
3078 // Emit the initializers in the order that sub-modules appear in the
3079 // source, first Global Module Fragments, if present.
3080 if (auto GMF = Primary->getGlobalModuleFragment()) {
3081 for (Decl *D : getContext().getModuleInitializers(GMF)) {
3082 if (isa<ImportDecl>(D))
3083 continue;
3084 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3085 EmitTopLevelDecl(D);
3086 }
3087 }
3088 // Second any associated with the module, itself.
3089 for (Decl *D : getContext().getModuleInitializers(Primary)) {
3090 // Skip import decls, the inits for those are called explicitly.
3091 if (isa<ImportDecl>(D))
3092 continue;
3093 EmitTopLevelDecl(D);
3094 }
3095 // Third any associated with the Privat eMOdule Fragment, if present.
3096 if (auto PMF = Primary->getPrivateModuleFragment()) {
3097 for (Decl *D : getContext().getModuleInitializers(PMF)) {
3098 // Skip import decls, the inits for those are called explicitly.
3099 if (isa<ImportDecl>(D))
3100 continue;
3101 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3102 EmitTopLevelDecl(D);
3103 }
3104 }
3105 }
3106
EmitModuleLinkOptions()3107 void CodeGenModule::EmitModuleLinkOptions() {
3108 // Collect the set of all of the modules we want to visit to emit link
3109 // options, which is essentially the imported modules and all of their
3110 // non-explicit child modules.
3111 llvm::SetVector<clang::Module *> LinkModules;
3112 llvm::SmallPtrSet<clang::Module *, 16> Visited;
3113 SmallVector<clang::Module *, 16> Stack;
3114
3115 // Seed the stack with imported modules.
3116 for (Module *M : ImportedModules) {
3117 // Do not add any link flags when an implementation TU of a module imports
3118 // a header of that same module.
3119 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3120 !getLangOpts().isCompilingModule())
3121 continue;
3122 if (Visited.insert(M).second)
3123 Stack.push_back(M);
3124 }
3125
3126 // Find all of the modules to import, making a little effort to prune
3127 // non-leaf modules.
3128 while (!Stack.empty()) {
3129 clang::Module *Mod = Stack.pop_back_val();
3130
3131 bool AnyChildren = false;
3132
3133 // Visit the submodules of this module.
3134 for (const auto &SM : Mod->submodules()) {
3135 // Skip explicit children; they need to be explicitly imported to be
3136 // linked against.
3137 if (SM->IsExplicit)
3138 continue;
3139
3140 if (Visited.insert(SM).second) {
3141 Stack.push_back(SM);
3142 AnyChildren = true;
3143 }
3144 }
3145
3146 // We didn't find any children, so add this module to the list of
3147 // modules to link against.
3148 if (!AnyChildren) {
3149 LinkModules.insert(Mod);
3150 }
3151 }
3152
3153 // Add link options for all of the imported modules in reverse topological
3154 // order. We don't do anything to try to order import link flags with respect
3155 // to linker options inserted by things like #pragma comment().
3156 SmallVector<llvm::MDNode *, 16> MetadataArgs;
3157 Visited.clear();
3158 for (Module *M : LinkModules)
3159 if (Visited.insert(M).second)
3160 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3161 std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3162 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3163
3164 // Add the linker options metadata flag.
3165 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3166 for (auto *MD : LinkerOptionsMetadata)
3167 NMD->addOperand(MD);
3168 }
3169
EmitDeferred()3170 void CodeGenModule::EmitDeferred() {
3171 // Emit deferred declare target declarations.
3172 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3173 getOpenMPRuntime().emitDeferredTargetDecls();
3174
3175 // Emit code for any potentially referenced deferred decls. Since a
3176 // previously unused static decl may become used during the generation of code
3177 // for a static function, iterate until no changes are made.
3178
3179 if (!DeferredVTables.empty()) {
3180 EmitDeferredVTables();
3181
3182 // Emitting a vtable doesn't directly cause more vtables to
3183 // become deferred, although it can cause functions to be
3184 // emitted that then need those vtables.
3185 assert(DeferredVTables.empty());
3186 }
3187
3188 // Emit CUDA/HIP static device variables referenced by host code only.
3189 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3190 // needed for further handling.
3191 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3192 llvm::append_range(DeferredDeclsToEmit,
3193 getContext().CUDADeviceVarODRUsedByHost);
3194
3195 // Stop if we're out of both deferred vtables and deferred declarations.
3196 if (DeferredDeclsToEmit.empty())
3197 return;
3198
3199 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3200 // work, it will not interfere with this.
3201 std::vector<GlobalDecl> CurDeclsToEmit;
3202 CurDeclsToEmit.swap(DeferredDeclsToEmit);
3203
3204 for (GlobalDecl &D : CurDeclsToEmit) {
3205 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3206 // to get GlobalValue with exactly the type we need, not something that
3207 // might had been created for another decl with the same mangled name but
3208 // different type.
3209 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3210 GetAddrOfGlobal(D, ForDefinition));
3211
3212 // In case of different address spaces, we may still get a cast, even with
3213 // IsForDefinition equal to true. Query mangled names table to get
3214 // GlobalValue.
3215 if (!GV)
3216 GV = GetGlobalValue(getMangledName(D));
3217
3218 // Make sure GetGlobalValue returned non-null.
3219 assert(GV);
3220
3221 // Check to see if we've already emitted this. This is necessary
3222 // for a couple of reasons: first, decls can end up in the
3223 // deferred-decls queue multiple times, and second, decls can end
3224 // up with definitions in unusual ways (e.g. by an extern inline
3225 // function acquiring a strong function redefinition). Just
3226 // ignore these cases.
3227 if (!GV->isDeclaration())
3228 continue;
3229
3230 // If this is OpenMP, check if it is legal to emit this global normally.
3231 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3232 continue;
3233
3234 // Otherwise, emit the definition and move on to the next one.
3235 EmitGlobalDefinition(D, GV);
3236
3237 // If we found out that we need to emit more decls, do that recursively.
3238 // This has the advantage that the decls are emitted in a DFS and related
3239 // ones are close together, which is convenient for testing.
3240 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3241 EmitDeferred();
3242 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3243 }
3244 }
3245 }
3246
EmitVTablesOpportunistically()3247 void CodeGenModule::EmitVTablesOpportunistically() {
3248 // Try to emit external vtables as available_externally if they have emitted
3249 // all inlined virtual functions. It runs after EmitDeferred() and therefore
3250 // is not allowed to create new references to things that need to be emitted
3251 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3252
3253 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3254 && "Only emit opportunistic vtables with optimizations");
3255
3256 for (const CXXRecordDecl *RD : OpportunisticVTables) {
3257 assert(getVTables().isVTableExternal(RD) &&
3258 "This queue should only contain external vtables");
3259 if (getCXXABI().canSpeculativelyEmitVTable(RD))
3260 VTables.GenerateClassData(RD);
3261 }
3262 OpportunisticVTables.clear();
3263 }
3264
EmitGlobalAnnotations()3265 void CodeGenModule::EmitGlobalAnnotations() {
3266 for (const auto& [MangledName, VD] : DeferredAnnotations) {
3267 llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3268 if (GV)
3269 AddGlobalAnnotations(VD, GV);
3270 }
3271 DeferredAnnotations.clear();
3272
3273 if (Annotations.empty())
3274 return;
3275
3276 // Create a new global variable for the ConstantStruct in the Module.
3277 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3278 Annotations[0]->getType(), Annotations.size()), Annotations);
3279 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3280 llvm::GlobalValue::AppendingLinkage,
3281 Array, "llvm.global.annotations");
3282 gv->setSection(AnnotationSection);
3283 }
3284
EmitAnnotationString(StringRef Str)3285 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3286 llvm::Constant *&AStr = AnnotationStrings[Str];
3287 if (AStr)
3288 return AStr;
3289
3290 // Not found yet, create a new global.
3291 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3292 auto *gv = new llvm::GlobalVariable(
3293 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3294 ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3295 ConstGlobalsPtrTy->getAddressSpace());
3296 gv->setSection(AnnotationSection);
3297 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3298 AStr = gv;
3299 return gv;
3300 }
3301
EmitAnnotationUnit(SourceLocation Loc)3302 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3303 SourceManager &SM = getContext().getSourceManager();
3304 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3305 if (PLoc.isValid())
3306 return EmitAnnotationString(PLoc.getFilename());
3307 return EmitAnnotationString(SM.getBufferName(Loc));
3308 }
3309
EmitAnnotationLineNo(SourceLocation L)3310 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3311 SourceManager &SM = getContext().getSourceManager();
3312 PresumedLoc PLoc = SM.getPresumedLoc(L);
3313 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3314 SM.getExpansionLineNumber(L);
3315 return llvm::ConstantInt::get(Int32Ty, LineNo);
3316 }
3317
EmitAnnotationArgs(const AnnotateAttr * Attr)3318 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3319 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3320 if (Exprs.empty())
3321 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3322
3323 llvm::FoldingSetNodeID ID;
3324 for (Expr *E : Exprs) {
3325 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3326 }
3327 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3328 if (Lookup)
3329 return Lookup;
3330
3331 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3332 LLVMArgs.reserve(Exprs.size());
3333 ConstantEmitter ConstEmiter(*this);
3334 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3335 const auto *CE = cast<clang::ConstantExpr>(E);
3336 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3337 CE->getType());
3338 });
3339 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3340 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3341 llvm::GlobalValue::PrivateLinkage, Struct,
3342 ".args");
3343 GV->setSection(AnnotationSection);
3344 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3345
3346 Lookup = GV;
3347 return GV;
3348 }
3349
EmitAnnotateAttr(llvm::GlobalValue * GV,const AnnotateAttr * AA,SourceLocation L)3350 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3351 const AnnotateAttr *AA,
3352 SourceLocation L) {
3353 // Get the globals for file name, annotation, and the line number.
3354 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3355 *UnitGV = EmitAnnotationUnit(L),
3356 *LineNoCst = EmitAnnotationLineNo(L),
3357 *Args = EmitAnnotationArgs(AA);
3358
3359 llvm::Constant *GVInGlobalsAS = GV;
3360 if (GV->getAddressSpace() !=
3361 getDataLayout().getDefaultGlobalsAddressSpace()) {
3362 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3363 GV,
3364 llvm::PointerType::get(
3365 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3366 }
3367
3368 // Create the ConstantStruct for the global annotation.
3369 llvm::Constant *Fields[] = {
3370 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3371 };
3372 return llvm::ConstantStruct::getAnon(Fields);
3373 }
3374
AddGlobalAnnotations(const ValueDecl * D,llvm::GlobalValue * GV)3375 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3376 llvm::GlobalValue *GV) {
3377 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3378 // Get the struct elements for these annotations.
3379 for (const auto *I : D->specific_attrs<AnnotateAttr>())
3380 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3381 }
3382
isInNoSanitizeList(SanitizerMask Kind,llvm::Function * Fn,SourceLocation Loc) const3383 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3384 SourceLocation Loc) const {
3385 const auto &NoSanitizeL = getContext().getNoSanitizeList();
3386 // NoSanitize by function name.
3387 if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3388 return true;
3389 // NoSanitize by location. Check "mainfile" prefix.
3390 auto &SM = Context.getSourceManager();
3391 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3392 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3393 return true;
3394
3395 // Check "src" prefix.
3396 if (Loc.isValid())
3397 return NoSanitizeL.containsLocation(Kind, Loc);
3398 // If location is unknown, this may be a compiler-generated function. Assume
3399 // it's located in the main file.
3400 return NoSanitizeL.containsFile(Kind, MainFile.getName());
3401 }
3402
isInNoSanitizeList(SanitizerMask Kind,llvm::GlobalVariable * GV,SourceLocation Loc,QualType Ty,StringRef Category) const3403 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3404 llvm::GlobalVariable *GV,
3405 SourceLocation Loc, QualType Ty,
3406 StringRef Category) const {
3407 const auto &NoSanitizeL = getContext().getNoSanitizeList();
3408 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3409 return true;
3410 auto &SM = Context.getSourceManager();
3411 if (NoSanitizeL.containsMainFile(
3412 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3413 Category))
3414 return true;
3415 if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3416 return true;
3417
3418 // Check global type.
3419 if (!Ty.isNull()) {
3420 // Drill down the array types: if global variable of a fixed type is
3421 // not sanitized, we also don't instrument arrays of them.
3422 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3423 Ty = AT->getElementType();
3424 Ty = Ty.getCanonicalType().getUnqualifiedType();
3425 // Only record types (classes, structs etc.) are ignored.
3426 if (Ty->isRecordType()) {
3427 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3428 if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3429 return true;
3430 }
3431 }
3432 return false;
3433 }
3434
imbueXRayAttrs(llvm::Function * Fn,SourceLocation Loc,StringRef Category) const3435 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3436 StringRef Category) const {
3437 const auto &XRayFilter = getContext().getXRayFilter();
3438 using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3439 auto Attr = ImbueAttr::NONE;
3440 if (Loc.isValid())
3441 Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3442 if (Attr == ImbueAttr::NONE)
3443 Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3444 switch (Attr) {
3445 case ImbueAttr::NONE:
3446 return false;
3447 case ImbueAttr::ALWAYS:
3448 Fn->addFnAttr("function-instrument", "xray-always");
3449 break;
3450 case ImbueAttr::ALWAYS_ARG1:
3451 Fn->addFnAttr("function-instrument", "xray-always");
3452 Fn->addFnAttr("xray-log-args", "1");
3453 break;
3454 case ImbueAttr::NEVER:
3455 Fn->addFnAttr("function-instrument", "xray-never");
3456 break;
3457 }
3458 return true;
3459 }
3460
3461 ProfileList::ExclusionType
isFunctionBlockedByProfileList(llvm::Function * Fn,SourceLocation Loc) const3462 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3463 SourceLocation Loc) const {
3464 const auto &ProfileList = getContext().getProfileList();
3465 // If the profile list is empty, then instrument everything.
3466 if (ProfileList.isEmpty())
3467 return ProfileList::Allow;
3468 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3469 // First, check the function name.
3470 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3471 return *V;
3472 // Next, check the source location.
3473 if (Loc.isValid())
3474 if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3475 return *V;
3476 // If location is unknown, this may be a compiler-generated function. Assume
3477 // it's located in the main file.
3478 auto &SM = Context.getSourceManager();
3479 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3480 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3481 return *V;
3482 return ProfileList.getDefault(Kind);
3483 }
3484
3485 ProfileList::ExclusionType
isFunctionBlockedFromProfileInstr(llvm::Function * Fn,SourceLocation Loc) const3486 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3487 SourceLocation Loc) const {
3488 auto V = isFunctionBlockedByProfileList(Fn, Loc);
3489 if (V != ProfileList::Allow)
3490 return V;
3491
3492 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3493 if (NumGroups > 1) {
3494 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3495 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3496 return ProfileList::Skip;
3497 }
3498 return ProfileList::Allow;
3499 }
3500
MustBeEmitted(const ValueDecl * Global)3501 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3502 // Never defer when EmitAllDecls is specified.
3503 if (LangOpts.EmitAllDecls)
3504 return true;
3505
3506 const auto *VD = dyn_cast<VarDecl>(Global);
3507 if (VD &&
3508 ((CodeGenOpts.KeepPersistentStorageVariables &&
3509 (VD->getStorageDuration() == SD_Static ||
3510 VD->getStorageDuration() == SD_Thread)) ||
3511 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3512 VD->getType().isConstQualified())))
3513 return true;
3514
3515 return getContext().DeclMustBeEmitted(Global);
3516 }
3517
MayBeEmittedEagerly(const ValueDecl * Global)3518 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3519 // In OpenMP 5.0 variables and function may be marked as
3520 // device_type(host/nohost) and we should not emit them eagerly unless we sure
3521 // that they must be emitted on the host/device. To be sure we need to have
3522 // seen a declare target with an explicit mentioning of the function, we know
3523 // we have if the level of the declare target attribute is -1. Note that we
3524 // check somewhere else if we should emit this at all.
3525 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3526 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3527 OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3528 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3529 return false;
3530 }
3531
3532 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3533 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3534 // Implicit template instantiations may change linkage if they are later
3535 // explicitly instantiated, so they should not be emitted eagerly.
3536 return false;
3537 // Defer until all versions have been semantically checked.
3538 if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3539 return false;
3540 }
3541 if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3542 if (Context.getInlineVariableDefinitionKind(VD) ==
3543 ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3544 // A definition of an inline constexpr static data member may change
3545 // linkage later if it's redeclared outside the class.
3546 return false;
3547 if (CXX20ModuleInits && VD->getOwningModule() &&
3548 !VD->getOwningModule()->isModuleMapModule()) {
3549 // For CXX20, module-owned initializers need to be deferred, since it is
3550 // not known at this point if they will be run for the current module or
3551 // as part of the initializer for an imported one.
3552 return false;
3553 }
3554 }
3555 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3556 // codegen for global variables, because they may be marked as threadprivate.
3557 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3558 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3559 !Global->getType().isConstantStorage(getContext(), false, false) &&
3560 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3561 return false;
3562
3563 return true;
3564 }
3565
GetAddrOfMSGuidDecl(const MSGuidDecl * GD)3566 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3567 StringRef Name = getMangledName(GD);
3568
3569 // The UUID descriptor should be pointer aligned.
3570 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3571
3572 // Look for an existing global.
3573 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3574 return ConstantAddress(GV, GV->getValueType(), Alignment);
3575
3576 ConstantEmitter Emitter(*this);
3577 llvm::Constant *Init;
3578
3579 APValue &V = GD->getAsAPValue();
3580 if (!V.isAbsent()) {
3581 // If possible, emit the APValue version of the initializer. In particular,
3582 // this gets the type of the constant right.
3583 Init = Emitter.emitForInitializer(
3584 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3585 } else {
3586 // As a fallback, directly construct the constant.
3587 // FIXME: This may get padding wrong under esoteric struct layout rules.
3588 // MSVC appears to create a complete type 'struct __s_GUID' that it
3589 // presumably uses to represent these constants.
3590 MSGuidDecl::Parts Parts = GD->getParts();
3591 llvm::Constant *Fields[4] = {
3592 llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3593 llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3594 llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3595 llvm::ConstantDataArray::getRaw(
3596 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3597 Int8Ty)};
3598 Init = llvm::ConstantStruct::getAnon(Fields);
3599 }
3600
3601 auto *GV = new llvm::GlobalVariable(
3602 getModule(), Init->getType(),
3603 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3604 if (supportsCOMDAT())
3605 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3606 setDSOLocal(GV);
3607
3608 if (!V.isAbsent()) {
3609 Emitter.finalize(GV);
3610 return ConstantAddress(GV, GV->getValueType(), Alignment);
3611 }
3612
3613 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3614 return ConstantAddress(GV, Ty, Alignment);
3615 }
3616
GetAddrOfUnnamedGlobalConstantDecl(const UnnamedGlobalConstantDecl * GCD)3617 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3618 const UnnamedGlobalConstantDecl *GCD) {
3619 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3620
3621 llvm::GlobalVariable **Entry = nullptr;
3622 Entry = &UnnamedGlobalConstantDeclMap[GCD];
3623 if (*Entry)
3624 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3625
3626 ConstantEmitter Emitter(*this);
3627 llvm::Constant *Init;
3628
3629 const APValue &V = GCD->getValue();
3630
3631 assert(!V.isAbsent());
3632 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3633 GCD->getType());
3634
3635 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3636 /*isConstant=*/true,
3637 llvm::GlobalValue::PrivateLinkage, Init,
3638 ".constant");
3639 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3640 GV->setAlignment(Alignment.getAsAlign());
3641
3642 Emitter.finalize(GV);
3643
3644 *Entry = GV;
3645 return ConstantAddress(GV, GV->getValueType(), Alignment);
3646 }
3647
GetAddrOfTemplateParamObject(const TemplateParamObjectDecl * TPO)3648 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3649 const TemplateParamObjectDecl *TPO) {
3650 StringRef Name = getMangledName(TPO);
3651 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3652
3653 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3654 return ConstantAddress(GV, GV->getValueType(), Alignment);
3655
3656 ConstantEmitter Emitter(*this);
3657 llvm::Constant *Init = Emitter.emitForInitializer(
3658 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3659
3660 if (!Init) {
3661 ErrorUnsupported(TPO, "template parameter object");
3662 return ConstantAddress::invalid();
3663 }
3664
3665 llvm::GlobalValue::LinkageTypes Linkage =
3666 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3667 ? llvm::GlobalValue::LinkOnceODRLinkage
3668 : llvm::GlobalValue::InternalLinkage;
3669 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3670 /*isConstant=*/true, Linkage, Init, Name);
3671 setGVProperties(GV, TPO);
3672 if (supportsCOMDAT())
3673 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3674 Emitter.finalize(GV);
3675
3676 return ConstantAddress(GV, GV->getValueType(), Alignment);
3677 }
3678
GetWeakRefReference(const ValueDecl * VD)3679 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3680 const AliasAttr *AA = VD->getAttr<AliasAttr>();
3681 assert(AA && "No alias?");
3682
3683 CharUnits Alignment = getContext().getDeclAlign(VD);
3684 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3685
3686 // See if there is already something with the target's name in the module.
3687 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3688 if (Entry)
3689 return ConstantAddress(Entry, DeclTy, Alignment);
3690
3691 llvm::Constant *Aliasee;
3692 if (isa<llvm::FunctionType>(DeclTy))
3693 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3694 GlobalDecl(cast<FunctionDecl>(VD)),
3695 /*ForVTable=*/false);
3696 else
3697 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3698 nullptr);
3699
3700 auto *F = cast<llvm::GlobalValue>(Aliasee);
3701 F->setLinkage(llvm::Function::ExternalWeakLinkage);
3702 WeakRefReferences.insert(F);
3703
3704 return ConstantAddress(Aliasee, DeclTy, Alignment);
3705 }
3706
hasImplicitAttr(const ValueDecl * D)3707 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3708 if (!D)
3709 return false;
3710 if (auto *A = D->getAttr<AttrT>())
3711 return A->isImplicit();
3712 return D->isImplicit();
3713 }
3714
shouldEmitCUDAGlobalVar(const VarDecl * Global) const3715 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const {
3716 assert(LangOpts.CUDA && "Should not be called by non-CUDA languages");
3717 // We need to emit host-side 'shadows' for all global
3718 // device-side variables because the CUDA runtime needs their
3719 // size and host-side address in order to provide access to
3720 // their device-side incarnations.
3721 return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() ||
3722 Global->hasAttr<CUDAConstantAttr>() ||
3723 Global->hasAttr<CUDASharedAttr>() ||
3724 Global->getType()->isCUDADeviceBuiltinSurfaceType() ||
3725 Global->getType()->isCUDADeviceBuiltinTextureType();
3726 }
3727
EmitGlobal(GlobalDecl GD)3728 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3729 const auto *Global = cast<ValueDecl>(GD.getDecl());
3730
3731 // Weak references don't produce any output by themselves.
3732 if (Global->hasAttr<WeakRefAttr>())
3733 return;
3734
3735 // If this is an alias definition (which otherwise looks like a declaration)
3736 // emit it now.
3737 if (Global->hasAttr<AliasAttr>())
3738 return EmitAliasDefinition(GD);
3739
3740 // IFunc like an alias whose value is resolved at runtime by calling resolver.
3741 if (Global->hasAttr<IFuncAttr>())
3742 return emitIFuncDefinition(GD);
3743
3744 // If this is a cpu_dispatch multiversion function, emit the resolver.
3745 if (Global->hasAttr<CPUDispatchAttr>())
3746 return emitCPUDispatchDefinition(GD);
3747
3748 // If this is CUDA, be selective about which declarations we emit.
3749 // Non-constexpr non-lambda implicit host device functions are not emitted
3750 // unless they are used on device side.
3751 if (LangOpts.CUDA) {
3752 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3753 "Expected Variable or Function");
3754 if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3755 if (!shouldEmitCUDAGlobalVar(VD))
3756 return;
3757 } else if (LangOpts.CUDAIsDevice) {
3758 const auto *FD = dyn_cast<FunctionDecl>(Global);
3759 if ((!Global->hasAttr<CUDADeviceAttr>() ||
3760 (LangOpts.OffloadImplicitHostDeviceTemplates &&
3761 hasImplicitAttr<CUDAHostAttr>(FD) &&
3762 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3763 !isLambdaCallOperator(FD) &&
3764 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3765 !Global->hasAttr<CUDAGlobalAttr>() &&
3766 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3767 !Global->hasAttr<CUDAHostAttr>()))
3768 return;
3769 // Device-only functions are the only things we skip.
3770 } else if (!Global->hasAttr<CUDAHostAttr>() &&
3771 Global->hasAttr<CUDADeviceAttr>())
3772 return;
3773 }
3774
3775 if (LangOpts.OpenMP) {
3776 // If this is OpenMP, check if it is legal to emit this global normally.
3777 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3778 return;
3779 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3780 if (MustBeEmitted(Global))
3781 EmitOMPDeclareReduction(DRD);
3782 return;
3783 }
3784 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3785 if (MustBeEmitted(Global))
3786 EmitOMPDeclareMapper(DMD);
3787 return;
3788 }
3789 }
3790
3791 // Ignore declarations, they will be emitted on their first use.
3792 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3793 // Update deferred annotations with the latest declaration if the function
3794 // function was already used or defined.
3795 if (FD->hasAttr<AnnotateAttr>()) {
3796 StringRef MangledName = getMangledName(GD);
3797 if (GetGlobalValue(MangledName))
3798 DeferredAnnotations[MangledName] = FD;
3799 }
3800
3801 // Forward declarations are emitted lazily on first use.
3802 if (!FD->doesThisDeclarationHaveABody()) {
3803 if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3804 (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64()))
3805 return;
3806
3807 StringRef MangledName = getMangledName(GD);
3808
3809 // Compute the function info and LLVM type.
3810 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3811 llvm::Type *Ty = getTypes().GetFunctionType(FI);
3812
3813 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3814 /*DontDefer=*/false);
3815 return;
3816 }
3817 } else {
3818 const auto *VD = cast<VarDecl>(Global);
3819 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3820 if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3821 !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3822 if (LangOpts.OpenMP) {
3823 // Emit declaration of the must-be-emitted declare target variable.
3824 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3825 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3826
3827 // If this variable has external storage and doesn't require special
3828 // link handling we defer to its canonical definition.
3829 if (VD->hasExternalStorage() &&
3830 Res != OMPDeclareTargetDeclAttr::MT_Link)
3831 return;
3832
3833 bool UnifiedMemoryEnabled =
3834 getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3835 if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3836 *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3837 !UnifiedMemoryEnabled) {
3838 (void)GetAddrOfGlobalVar(VD);
3839 } else {
3840 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3841 ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3842 *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3843 UnifiedMemoryEnabled)) &&
3844 "Link clause or to clause with unified memory expected.");
3845 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3846 }
3847
3848 return;
3849 }
3850 }
3851 // If this declaration may have caused an inline variable definition to
3852 // change linkage, make sure that it's emitted.
3853 if (Context.getInlineVariableDefinitionKind(VD) ==
3854 ASTContext::InlineVariableDefinitionKind::Strong)
3855 GetAddrOfGlobalVar(VD);
3856 return;
3857 }
3858 }
3859
3860 // Defer code generation to first use when possible, e.g. if this is an inline
3861 // function. If the global must always be emitted, do it eagerly if possible
3862 // to benefit from cache locality.
3863 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3864 // Emit the definition if it can't be deferred.
3865 EmitGlobalDefinition(GD);
3866 addEmittedDeferredDecl(GD);
3867 return;
3868 }
3869
3870 // If we're deferring emission of a C++ variable with an
3871 // initializer, remember the order in which it appeared in the file.
3872 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3873 cast<VarDecl>(Global)->hasInit()) {
3874 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3875 CXXGlobalInits.push_back(nullptr);
3876 }
3877
3878 StringRef MangledName = getMangledName(GD);
3879 if (GetGlobalValue(MangledName) != nullptr) {
3880 // The value has already been used and should therefore be emitted.
3881 addDeferredDeclToEmit(GD);
3882 } else if (MustBeEmitted(Global)) {
3883 // The value must be emitted, but cannot be emitted eagerly.
3884 assert(!MayBeEmittedEagerly(Global));
3885 addDeferredDeclToEmit(GD);
3886 } else {
3887 // Otherwise, remember that we saw a deferred decl with this name. The
3888 // first use of the mangled name will cause it to move into
3889 // DeferredDeclsToEmit.
3890 DeferredDecls[MangledName] = GD;
3891 }
3892 }
3893
3894 // Check if T is a class type with a destructor that's not dllimport.
HasNonDllImportDtor(QualType T)3895 static bool HasNonDllImportDtor(QualType T) {
3896 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3897 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3898 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3899 return true;
3900
3901 return false;
3902 }
3903
3904 namespace {
3905 struct FunctionIsDirectlyRecursive
3906 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3907 const StringRef Name;
3908 const Builtin::Context &BI;
FunctionIsDirectlyRecursive__anona4b266790a11::FunctionIsDirectlyRecursive3909 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3910 : Name(N), BI(C) {}
3911
VisitCallExpr__anona4b266790a11::FunctionIsDirectlyRecursive3912 bool VisitCallExpr(const CallExpr *E) {
3913 const FunctionDecl *FD = E->getDirectCallee();
3914 if (!FD)
3915 return false;
3916 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3917 if (Attr && Name == Attr->getLabel())
3918 return true;
3919 unsigned BuiltinID = FD->getBuiltinID();
3920 if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3921 return false;
3922 StringRef BuiltinName = BI.getName(BuiltinID);
3923 if (BuiltinName.starts_with("__builtin_") &&
3924 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3925 return true;
3926 }
3927 return false;
3928 }
3929
VisitStmt__anona4b266790a11::FunctionIsDirectlyRecursive3930 bool VisitStmt(const Stmt *S) {
3931 for (const Stmt *Child : S->children())
3932 if (Child && this->Visit(Child))
3933 return true;
3934 return false;
3935 }
3936 };
3937
3938 // Make sure we're not referencing non-imported vars or functions.
3939 struct DLLImportFunctionVisitor
3940 : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3941 bool SafeToInline = true;
3942
shouldVisitImplicitCode__anona4b266790a11::DLLImportFunctionVisitor3943 bool shouldVisitImplicitCode() const { return true; }
3944
VisitVarDecl__anona4b266790a11::DLLImportFunctionVisitor3945 bool VisitVarDecl(VarDecl *VD) {
3946 if (VD->getTLSKind()) {
3947 // A thread-local variable cannot be imported.
3948 SafeToInline = false;
3949 return SafeToInline;
3950 }
3951
3952 // A variable definition might imply a destructor call.
3953 if (VD->isThisDeclarationADefinition())
3954 SafeToInline = !HasNonDllImportDtor(VD->getType());
3955
3956 return SafeToInline;
3957 }
3958
VisitCXXBindTemporaryExpr__anona4b266790a11::DLLImportFunctionVisitor3959 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3960 if (const auto *D = E->getTemporary()->getDestructor())
3961 SafeToInline = D->hasAttr<DLLImportAttr>();
3962 return SafeToInline;
3963 }
3964
VisitDeclRefExpr__anona4b266790a11::DLLImportFunctionVisitor3965 bool VisitDeclRefExpr(DeclRefExpr *E) {
3966 ValueDecl *VD = E->getDecl();
3967 if (isa<FunctionDecl>(VD))
3968 SafeToInline = VD->hasAttr<DLLImportAttr>();
3969 else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3970 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3971 return SafeToInline;
3972 }
3973
VisitCXXConstructExpr__anona4b266790a11::DLLImportFunctionVisitor3974 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3975 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3976 return SafeToInline;
3977 }
3978
VisitCXXMemberCallExpr__anona4b266790a11::DLLImportFunctionVisitor3979 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3980 CXXMethodDecl *M = E->getMethodDecl();
3981 if (!M) {
3982 // Call through a pointer to member function. This is safe to inline.
3983 SafeToInline = true;
3984 } else {
3985 SafeToInline = M->hasAttr<DLLImportAttr>();
3986 }
3987 return SafeToInline;
3988 }
3989
VisitCXXDeleteExpr__anona4b266790a11::DLLImportFunctionVisitor3990 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3991 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3992 return SafeToInline;
3993 }
3994
VisitCXXNewExpr__anona4b266790a11::DLLImportFunctionVisitor3995 bool VisitCXXNewExpr(CXXNewExpr *E) {
3996 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3997 return SafeToInline;
3998 }
3999 };
4000 }
4001
4002 // isTriviallyRecursive - Check if this function calls another
4003 // decl that, because of the asm attribute or the other decl being a builtin,
4004 // ends up pointing to itself.
4005 bool
isTriviallyRecursive(const FunctionDecl * FD)4006 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
4007 StringRef Name;
4008 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
4009 // asm labels are a special kind of mangling we have to support.
4010 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
4011 if (!Attr)
4012 return false;
4013 Name = Attr->getLabel();
4014 } else {
4015 Name = FD->getName();
4016 }
4017
4018 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
4019 const Stmt *Body = FD->getBody();
4020 return Body ? Walker.Visit(Body) : false;
4021 }
4022
shouldEmitFunction(GlobalDecl GD)4023 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
4024 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
4025 return true;
4026
4027 const auto *F = cast<FunctionDecl>(GD.getDecl());
4028 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
4029 return false;
4030
4031 // We don't import function bodies from other named module units since that
4032 // behavior may break ABI compatibility of the current unit.
4033 if (const Module *M = F->getOwningModule();
4034 M && M->getTopLevelModule()->isNamedModule() &&
4035 getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
4036 // There are practices to mark template member function as always-inline
4037 // and mark the template as extern explicit instantiation but not give
4038 // the definition for member function. So we have to emit the function
4039 // from explicitly instantiation with always-inline.
4040 //
4041 // See https://github.com/llvm/llvm-project/issues/86893 for details.
4042 //
4043 // TODO: Maybe it is better to give it a warning if we call a non-inline
4044 // function from other module units which is marked as always-inline.
4045 if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4046 return false;
4047 }
4048 }
4049
4050 if (F->hasAttr<NoInlineAttr>())
4051 return false;
4052
4053 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4054 // Check whether it would be safe to inline this dllimport function.
4055 DLLImportFunctionVisitor Visitor;
4056 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4057 if (!Visitor.SafeToInline)
4058 return false;
4059
4060 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4061 // Implicit destructor invocations aren't captured in the AST, so the
4062 // check above can't see them. Check for them manually here.
4063 for (const Decl *Member : Dtor->getParent()->decls())
4064 if (isa<FieldDecl>(Member))
4065 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4066 return false;
4067 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4068 if (HasNonDllImportDtor(B.getType()))
4069 return false;
4070 }
4071 }
4072
4073 // Inline builtins declaration must be emitted. They often are fortified
4074 // functions.
4075 if (F->isInlineBuiltinDeclaration())
4076 return true;
4077
4078 // PR9614. Avoid cases where the source code is lying to us. An available
4079 // externally function should have an equivalent function somewhere else,
4080 // but a function that calls itself through asm label/`__builtin_` trickery is
4081 // clearly not equivalent to the real implementation.
4082 // This happens in glibc's btowc and in some configure checks.
4083 return !isTriviallyRecursive(F);
4084 }
4085
shouldOpportunisticallyEmitVTables()4086 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4087 return CodeGenOpts.OptimizationLevel > 0;
4088 }
4089
EmitMultiVersionFunctionDefinition(GlobalDecl GD,llvm::GlobalValue * GV)4090 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4091 llvm::GlobalValue *GV) {
4092 const auto *FD = cast<FunctionDecl>(GD.getDecl());
4093
4094 if (FD->isCPUSpecificMultiVersion()) {
4095 auto *Spec = FD->getAttr<CPUSpecificAttr>();
4096 for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4097 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4098 } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4099 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4100 // AArch64 favors the default target version over the clone if any.
4101 if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4102 TC->isFirstOfVersion(I))
4103 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4104 // Ensure that the resolver function is also emitted.
4105 GetOrCreateMultiVersionResolver(GD);
4106 } else
4107 EmitGlobalFunctionDefinition(GD, GV);
4108
4109 // Defer the resolver emission until we can reason whether the TU
4110 // contains a default target version implementation.
4111 if (FD->isTargetVersionMultiVersion())
4112 AddDeferredMultiVersionResolverToEmit(GD);
4113 }
4114
EmitGlobalDefinition(GlobalDecl GD,llvm::GlobalValue * GV)4115 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4116 const auto *D = cast<ValueDecl>(GD.getDecl());
4117
4118 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4119 Context.getSourceManager(),
4120 "Generating code for declaration");
4121
4122 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4123 // At -O0, don't generate IR for functions with available_externally
4124 // linkage.
4125 if (!shouldEmitFunction(GD))
4126 return;
4127
4128 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4129 std::string Name;
4130 llvm::raw_string_ostream OS(Name);
4131 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4132 /*Qualified=*/true);
4133 return Name;
4134 });
4135
4136 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4137 // Make sure to emit the definition(s) before we emit the thunks.
4138 // This is necessary for the generation of certain thunks.
4139 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4140 ABI->emitCXXStructor(GD);
4141 else if (FD->isMultiVersion())
4142 EmitMultiVersionFunctionDefinition(GD, GV);
4143 else
4144 EmitGlobalFunctionDefinition(GD, GV);
4145
4146 if (Method->isVirtual())
4147 getVTables().EmitThunks(GD);
4148
4149 return;
4150 }
4151
4152 if (FD->isMultiVersion())
4153 return EmitMultiVersionFunctionDefinition(GD, GV);
4154 return EmitGlobalFunctionDefinition(GD, GV);
4155 }
4156
4157 if (const auto *VD = dyn_cast<VarDecl>(D))
4158 return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4159
4160 llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4161 }
4162
4163 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4164 llvm::Function *NewFn);
4165
4166 static unsigned
TargetMVPriority(const TargetInfo & TI,const CodeGenFunction::MultiVersionResolverOption & RO)4167 TargetMVPriority(const TargetInfo &TI,
4168 const CodeGenFunction::MultiVersionResolverOption &RO) {
4169 unsigned Priority = 0;
4170 unsigned NumFeatures = 0;
4171 for (StringRef Feat : RO.Conditions.Features) {
4172 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4173 NumFeatures++;
4174 }
4175
4176 if (!RO.Conditions.Architecture.empty())
4177 Priority = std::max(
4178 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4179
4180 Priority += TI.multiVersionFeatureCost() * NumFeatures;
4181
4182 return Priority;
4183 }
4184
4185 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4186 // TU can forward declare the function without causing problems. Particularly
4187 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4188 // work with internal linkage functions, so that the same function name can be
4189 // used with internal linkage in multiple TUs.
getMultiversionLinkage(CodeGenModule & CGM,GlobalDecl GD)4190 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
4191 GlobalDecl GD) {
4192 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4193 if (FD->getFormalLinkage() == Linkage::Internal)
4194 return llvm::GlobalValue::InternalLinkage;
4195 return llvm::GlobalValue::WeakODRLinkage;
4196 }
4197
emitMultiVersionFunctions()4198 void CodeGenModule::emitMultiVersionFunctions() {
4199 std::vector<GlobalDecl> MVFuncsToEmit;
4200 MultiVersionFuncs.swap(MVFuncsToEmit);
4201 for (GlobalDecl GD : MVFuncsToEmit) {
4202 const auto *FD = cast<FunctionDecl>(GD.getDecl());
4203 assert(FD && "Expected a FunctionDecl");
4204
4205 auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4206 GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4207 StringRef MangledName = getMangledName(CurGD);
4208 llvm::Constant *Func = GetGlobalValue(MangledName);
4209 if (!Func) {
4210 if (Decl->isDefined()) {
4211 EmitGlobalFunctionDefinition(CurGD, nullptr);
4212 Func = GetGlobalValue(MangledName);
4213 } else {
4214 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4215 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4216 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4217 /*DontDefer=*/false, ForDefinition);
4218 }
4219 assert(Func && "This should have just been created");
4220 }
4221 return cast<llvm::Function>(Func);
4222 };
4223
4224 // For AArch64, a resolver is only emitted if a function marked with
4225 // target_version("default")) or target_clones() is present and defined
4226 // in this TU. For other architectures it is always emitted.
4227 bool ShouldEmitResolver = !getTarget().getTriple().isAArch64();
4228 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4229
4230 getContext().forEachMultiversionedFunctionVersion(
4231 FD, [&](const FunctionDecl *CurFD) {
4232 llvm::SmallVector<StringRef, 8> Feats;
4233 bool IsDefined = CurFD->doesThisDeclarationHaveABody();
4234
4235 if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4236 TA->getAddedFeatures(Feats);
4237 llvm::Function *Func = createFunction(CurFD);
4238 Options.emplace_back(Func, TA->getArchitecture(), Feats);
4239 } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4240 if (TVA->isDefaultVersion() && IsDefined)
4241 ShouldEmitResolver = true;
4242 TVA->getFeatures(Feats);
4243 llvm::Function *Func = createFunction(CurFD);
4244 Options.emplace_back(Func, /*Architecture*/ "", Feats);
4245 } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4246 if (IsDefined)
4247 ShouldEmitResolver = true;
4248 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4249 if (!TC->isFirstOfVersion(I))
4250 continue;
4251
4252 llvm::Function *Func = createFunction(CurFD, I);
4253 StringRef Architecture;
4254 Feats.clear();
4255 if (getTarget().getTriple().isAArch64())
4256 TC->getFeatures(Feats, I);
4257 else {
4258 StringRef Version = TC->getFeatureStr(I);
4259 if (Version.starts_with("arch="))
4260 Architecture = Version.drop_front(sizeof("arch=") - 1);
4261 else if (Version != "default")
4262 Feats.push_back(Version);
4263 }
4264 Options.emplace_back(Func, Architecture, Feats);
4265 }
4266 } else
4267 llvm_unreachable("unexpected MultiVersionKind");
4268 });
4269
4270 if (!ShouldEmitResolver)
4271 continue;
4272
4273 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4274 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4275 ResolverConstant = IFunc->getResolver();
4276 if (FD->isTargetClonesMultiVersion() &&
4277 !getTarget().getTriple().isAArch64()) {
4278 std::string MangledName = getMangledNameImpl(
4279 *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4280 if (!GetGlobalValue(MangledName + ".ifunc")) {
4281 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4282 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4283 // In prior versions of Clang, the mangling for ifuncs incorrectly
4284 // included an .ifunc suffix. This alias is generated for backward
4285 // compatibility. It is deprecated, and may be removed in the future.
4286 auto *Alias = llvm::GlobalAlias::create(
4287 DeclTy, 0, getMultiversionLinkage(*this, GD),
4288 MangledName + ".ifunc", IFunc, &getModule());
4289 SetCommonAttributes(FD, Alias);
4290 }
4291 }
4292 }
4293 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4294
4295 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4296
4297 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4298 ResolverFunc->setComdat(
4299 getModule().getOrInsertComdat(ResolverFunc->getName()));
4300
4301 const TargetInfo &TI = getTarget();
4302 llvm::stable_sort(
4303 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4304 const CodeGenFunction::MultiVersionResolverOption &RHS) {
4305 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4306 });
4307 CodeGenFunction CGF(*this);
4308 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4309 }
4310
4311 // Ensure that any additions to the deferred decls list caused by emitting a
4312 // variant are emitted. This can happen when the variant itself is inline and
4313 // calls a function without linkage.
4314 if (!MVFuncsToEmit.empty())
4315 EmitDeferred();
4316
4317 // Ensure that any additions to the multiversion funcs list from either the
4318 // deferred decls or the multiversion functions themselves are emitted.
4319 if (!MultiVersionFuncs.empty())
4320 emitMultiVersionFunctions();
4321 }
4322
replaceDeclarationWith(llvm::GlobalValue * Old,llvm::Constant * New)4323 static void replaceDeclarationWith(llvm::GlobalValue *Old,
4324 llvm::Constant *New) {
4325 assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration");
4326 New->takeName(Old);
4327 Old->replaceAllUsesWith(New);
4328 Old->eraseFromParent();
4329 }
4330
emitCPUDispatchDefinition(GlobalDecl GD)4331 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4332 const auto *FD = cast<FunctionDecl>(GD.getDecl());
4333 assert(FD && "Not a FunctionDecl?");
4334 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4335 const auto *DD = FD->getAttr<CPUDispatchAttr>();
4336 assert(DD && "Not a cpu_dispatch Function?");
4337
4338 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4339 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4340
4341 StringRef ResolverName = getMangledName(GD);
4342 UpdateMultiVersionNames(GD, FD, ResolverName);
4343
4344 llvm::Type *ResolverType;
4345 GlobalDecl ResolverGD;
4346 if (getTarget().supportsIFunc()) {
4347 ResolverType = llvm::FunctionType::get(
4348 llvm::PointerType::get(DeclTy,
4349 getTypes().getTargetAddressSpace(FD->getType())),
4350 false);
4351 }
4352 else {
4353 ResolverType = DeclTy;
4354 ResolverGD = GD;
4355 }
4356
4357 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4358 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4359 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4360 if (supportsCOMDAT())
4361 ResolverFunc->setComdat(
4362 getModule().getOrInsertComdat(ResolverFunc->getName()));
4363
4364 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4365 const TargetInfo &Target = getTarget();
4366 unsigned Index = 0;
4367 for (const IdentifierInfo *II : DD->cpus()) {
4368 // Get the name of the target function so we can look it up/create it.
4369 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4370 getCPUSpecificMangling(*this, II->getName());
4371
4372 llvm::Constant *Func = GetGlobalValue(MangledName);
4373
4374 if (!Func) {
4375 GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4376 if (ExistingDecl.getDecl() &&
4377 ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4378 EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4379 Func = GetGlobalValue(MangledName);
4380 } else {
4381 if (!ExistingDecl.getDecl())
4382 ExistingDecl = GD.getWithMultiVersionIndex(Index);
4383
4384 Func = GetOrCreateLLVMFunction(
4385 MangledName, DeclTy, ExistingDecl,
4386 /*ForVTable=*/false, /*DontDefer=*/true,
4387 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4388 }
4389 }
4390
4391 llvm::SmallVector<StringRef, 32> Features;
4392 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4393 llvm::transform(Features, Features.begin(),
4394 [](StringRef Str) { return Str.substr(1); });
4395 llvm::erase_if(Features, [&Target](StringRef Feat) {
4396 return !Target.validateCpuSupports(Feat);
4397 });
4398 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4399 ++Index;
4400 }
4401
4402 llvm::stable_sort(
4403 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4404 const CodeGenFunction::MultiVersionResolverOption &RHS) {
4405 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4406 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4407 });
4408
4409 // If the list contains multiple 'default' versions, such as when it contains
4410 // 'pentium' and 'generic', don't emit the call to the generic one (since we
4411 // always run on at least a 'pentium'). We do this by deleting the 'least
4412 // advanced' (read, lowest mangling letter).
4413 while (Options.size() > 1 &&
4414 llvm::all_of(llvm::X86::getCpuSupportsMask(
4415 (Options.end() - 2)->Conditions.Features),
4416 [](auto X) { return X == 0; })) {
4417 StringRef LHSName = (Options.end() - 2)->Function->getName();
4418 StringRef RHSName = (Options.end() - 1)->Function->getName();
4419 if (LHSName.compare(RHSName) < 0)
4420 Options.erase(Options.end() - 2);
4421 else
4422 Options.erase(Options.end() - 1);
4423 }
4424
4425 CodeGenFunction CGF(*this);
4426 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4427
4428 if (getTarget().supportsIFunc()) {
4429 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4430 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4431
4432 // Fix up function declarations that were created for cpu_specific before
4433 // cpu_dispatch was known
4434 if (!isa<llvm::GlobalIFunc>(IFunc)) {
4435 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4436 &getModule());
4437 replaceDeclarationWith(IFunc, GI);
4438 IFunc = GI;
4439 }
4440
4441 std::string AliasName = getMangledNameImpl(
4442 *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4443 llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4444 if (!AliasFunc) {
4445 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4446 &getModule());
4447 SetCommonAttributes(GD, GA);
4448 }
4449 }
4450 }
4451
4452 /// Adds a declaration to the list of multi version functions if not present.
AddDeferredMultiVersionResolverToEmit(GlobalDecl GD)4453 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4454 const auto *FD = cast<FunctionDecl>(GD.getDecl());
4455 assert(FD && "Not a FunctionDecl?");
4456
4457 if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4458 std::string MangledName =
4459 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4460 if (!DeferredResolversToEmit.insert(MangledName).second)
4461 return;
4462 }
4463 MultiVersionFuncs.push_back(GD);
4464 }
4465
4466 /// If a dispatcher for the specified mangled name is not in the module, create
4467 /// and return it. The dispatcher is either an llvm Function with the specified
4468 /// type, or a global ifunc.
GetOrCreateMultiVersionResolver(GlobalDecl GD)4469 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4470 const auto *FD = cast<FunctionDecl>(GD.getDecl());
4471 assert(FD && "Not a FunctionDecl?");
4472
4473 std::string MangledName =
4474 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4475
4476 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4477 // a separate resolver).
4478 std::string ResolverName = MangledName;
4479 if (getTarget().supportsIFunc()) {
4480 switch (FD->getMultiVersionKind()) {
4481 case MultiVersionKind::None:
4482 llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4483 case MultiVersionKind::Target:
4484 case MultiVersionKind::CPUSpecific:
4485 case MultiVersionKind::CPUDispatch:
4486 ResolverName += ".ifunc";
4487 break;
4488 case MultiVersionKind::TargetClones:
4489 case MultiVersionKind::TargetVersion:
4490 break;
4491 }
4492 } else if (FD->isTargetMultiVersion()) {
4493 ResolverName += ".resolver";
4494 }
4495
4496 // If the resolver has already been created, just return it. This lookup may
4497 // yield a function declaration instead of a resolver on AArch64. That is
4498 // because we didn't know whether a resolver will be generated when we first
4499 // encountered a use of the symbol named after this resolver. Therefore,
4500 // targets which support ifuncs should not return here unless we actually
4501 // found an ifunc.
4502 llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName);
4503 if (ResolverGV &&
4504 (isa<llvm::GlobalIFunc>(ResolverGV) || !getTarget().supportsIFunc()))
4505 return ResolverGV;
4506
4507 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4508 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4509
4510 // The resolver needs to be created. For target and target_clones, defer
4511 // creation until the end of the TU.
4512 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4513 AddDeferredMultiVersionResolverToEmit(GD);
4514
4515 // For cpu_specific, don't create an ifunc yet because we don't know if the
4516 // cpu_dispatch will be emitted in this translation unit.
4517 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4518 llvm::Type *ResolverType = llvm::FunctionType::get(
4519 llvm::PointerType::get(DeclTy,
4520 getTypes().getTargetAddressSpace(FD->getType())),
4521 false);
4522 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4523 MangledName + ".resolver", ResolverType, GlobalDecl{},
4524 /*ForVTable=*/false);
4525 llvm::GlobalIFunc *GIF =
4526 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4527 "", Resolver, &getModule());
4528 GIF->setName(ResolverName);
4529 SetCommonAttributes(FD, GIF);
4530 if (ResolverGV)
4531 replaceDeclarationWith(ResolverGV, GIF);
4532 return GIF;
4533 }
4534
4535 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4536 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4537 assert(isa<llvm::GlobalValue>(Resolver) &&
4538 "Resolver should be created for the first time");
4539 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4540 if (ResolverGV)
4541 replaceDeclarationWith(ResolverGV, Resolver);
4542 return Resolver;
4543 }
4544
shouldDropDLLAttribute(const Decl * D,const llvm::GlobalValue * GV) const4545 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D,
4546 const llvm::GlobalValue *GV) const {
4547 auto SC = GV->getDLLStorageClass();
4548 if (SC == llvm::GlobalValue::DefaultStorageClass)
4549 return false;
4550 const Decl *MRD = D->getMostRecentDecl();
4551 return (((SC == llvm::GlobalValue::DLLImportStorageClass &&
4552 !MRD->hasAttr<DLLImportAttr>()) ||
4553 (SC == llvm::GlobalValue::DLLExportStorageClass &&
4554 !MRD->hasAttr<DLLExportAttr>())) &&
4555 !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD)));
4556 }
4557
4558 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4559 /// module, create and return an llvm Function with the specified type. If there
4560 /// is something in the module with the specified name, return it potentially
4561 /// bitcasted to the right type.
4562 ///
4563 /// If D is non-null, it specifies a decl that correspond to this. This is used
4564 /// to set the attributes on the function when it is first created.
GetOrCreateLLVMFunction(StringRef MangledName,llvm::Type * Ty,GlobalDecl GD,bool ForVTable,bool DontDefer,bool IsThunk,llvm::AttributeList ExtraAttrs,ForDefinition_t IsForDefinition)4565 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4566 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4567 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4568 ForDefinition_t IsForDefinition) {
4569 const Decl *D = GD.getDecl();
4570
4571 std::string NameWithoutMultiVersionMangling;
4572 // Any attempts to use a MultiVersion function should result in retrieving
4573 // the iFunc instead. Name Mangling will handle the rest of the changes.
4574 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4575 // For the device mark the function as one that should be emitted.
4576 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4577 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4578 !DontDefer && !IsForDefinition) {
4579 if (const FunctionDecl *FDDef = FD->getDefinition()) {
4580 GlobalDecl GDDef;
4581 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4582 GDDef = GlobalDecl(CD, GD.getCtorType());
4583 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4584 GDDef = GlobalDecl(DD, GD.getDtorType());
4585 else
4586 GDDef = GlobalDecl(FDDef);
4587 EmitGlobal(GDDef);
4588 }
4589 }
4590
4591 if (FD->isMultiVersion()) {
4592 UpdateMultiVersionNames(GD, FD, MangledName);
4593 if (!IsForDefinition) {
4594 // On AArch64 we do not immediatelly emit an ifunc resolver when a
4595 // function is used. Instead we defer the emission until we see a
4596 // default definition. In the meantime we just reference the symbol
4597 // without FMV mangling (it may or may not be replaced later).
4598 if (getTarget().getTriple().isAArch64()) {
4599 AddDeferredMultiVersionResolverToEmit(GD);
4600 NameWithoutMultiVersionMangling = getMangledNameImpl(
4601 *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4602 } else
4603 return GetOrCreateMultiVersionResolver(GD);
4604 }
4605 }
4606 }
4607
4608 if (!NameWithoutMultiVersionMangling.empty())
4609 MangledName = NameWithoutMultiVersionMangling;
4610
4611 // Lookup the entry, lazily creating it if necessary.
4612 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4613 if (Entry) {
4614 if (WeakRefReferences.erase(Entry)) {
4615 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4616 if (FD && !FD->hasAttr<WeakAttr>())
4617 Entry->setLinkage(llvm::Function::ExternalLinkage);
4618 }
4619
4620 // Handle dropped DLL attributes.
4621 if (D && shouldDropDLLAttribute(D, Entry)) {
4622 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4623 setDSOLocal(Entry);
4624 }
4625
4626 // If there are two attempts to define the same mangled name, issue an
4627 // error.
4628 if (IsForDefinition && !Entry->isDeclaration()) {
4629 GlobalDecl OtherGD;
4630 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4631 // to make sure that we issue an error only once.
4632 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4633 (GD.getCanonicalDecl().getDecl() !=
4634 OtherGD.getCanonicalDecl().getDecl()) &&
4635 DiagnosedConflictingDefinitions.insert(GD).second) {
4636 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4637 << MangledName;
4638 getDiags().Report(OtherGD.getDecl()->getLocation(),
4639 diag::note_previous_definition);
4640 }
4641 }
4642
4643 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4644 (Entry->getValueType() == Ty)) {
4645 return Entry;
4646 }
4647
4648 // Make sure the result is of the correct type.
4649 // (If function is requested for a definition, we always need to create a new
4650 // function, not just return a bitcast.)
4651 if (!IsForDefinition)
4652 return Entry;
4653 }
4654
4655 // This function doesn't have a complete type (for example, the return
4656 // type is an incomplete struct). Use a fake type instead, and make
4657 // sure not to try to set attributes.
4658 bool IsIncompleteFunction = false;
4659
4660 llvm::FunctionType *FTy;
4661 if (isa<llvm::FunctionType>(Ty)) {
4662 FTy = cast<llvm::FunctionType>(Ty);
4663 } else {
4664 FTy = llvm::FunctionType::get(VoidTy, false);
4665 IsIncompleteFunction = true;
4666 }
4667
4668 llvm::Function *F =
4669 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4670 Entry ? StringRef() : MangledName, &getModule());
4671
4672 // Store the declaration associated with this function so it is potentially
4673 // updated by further declarations or definitions and emitted at the end.
4674 if (D && D->hasAttr<AnnotateAttr>())
4675 DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4676
4677 // If we already created a function with the same mangled name (but different
4678 // type) before, take its name and add it to the list of functions to be
4679 // replaced with F at the end of CodeGen.
4680 //
4681 // This happens if there is a prototype for a function (e.g. "int f()") and
4682 // then a definition of a different type (e.g. "int f(int x)").
4683 if (Entry) {
4684 F->takeName(Entry);
4685
4686 // This might be an implementation of a function without a prototype, in
4687 // which case, try to do special replacement of calls which match the new
4688 // prototype. The really key thing here is that we also potentially drop
4689 // arguments from the call site so as to make a direct call, which makes the
4690 // inliner happier and suppresses a number of optimizer warnings (!) about
4691 // dropping arguments.
4692 if (!Entry->use_empty()) {
4693 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4694 Entry->removeDeadConstantUsers();
4695 }
4696
4697 addGlobalValReplacement(Entry, F);
4698 }
4699
4700 assert(F->getName() == MangledName && "name was uniqued!");
4701 if (D)
4702 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4703 if (ExtraAttrs.hasFnAttrs()) {
4704 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4705 F->addFnAttrs(B);
4706 }
4707
4708 if (!DontDefer) {
4709 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4710 // each other bottoming out with the base dtor. Therefore we emit non-base
4711 // dtors on usage, even if there is no dtor definition in the TU.
4712 if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4713 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4714 GD.getDtorType()))
4715 addDeferredDeclToEmit(GD);
4716
4717 // This is the first use or definition of a mangled name. If there is a
4718 // deferred decl with this name, remember that we need to emit it at the end
4719 // of the file.
4720 auto DDI = DeferredDecls.find(MangledName);
4721 if (DDI != DeferredDecls.end()) {
4722 // Move the potentially referenced deferred decl to the
4723 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4724 // don't need it anymore).
4725 addDeferredDeclToEmit(DDI->second);
4726 DeferredDecls.erase(DDI);
4727
4728 // Otherwise, there are cases we have to worry about where we're
4729 // using a declaration for which we must emit a definition but where
4730 // we might not find a top-level definition:
4731 // - member functions defined inline in their classes
4732 // - friend functions defined inline in some class
4733 // - special member functions with implicit definitions
4734 // If we ever change our AST traversal to walk into class methods,
4735 // this will be unnecessary.
4736 //
4737 // We also don't emit a definition for a function if it's going to be an
4738 // entry in a vtable, unless it's already marked as used.
4739 } else if (getLangOpts().CPlusPlus && D) {
4740 // Look for a declaration that's lexically in a record.
4741 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4742 FD = FD->getPreviousDecl()) {
4743 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4744 if (FD->doesThisDeclarationHaveABody()) {
4745 addDeferredDeclToEmit(GD.getWithDecl(FD));
4746 break;
4747 }
4748 }
4749 }
4750 }
4751 }
4752
4753 // Make sure the result is of the requested type.
4754 if (!IsIncompleteFunction) {
4755 assert(F->getFunctionType() == Ty);
4756 return F;
4757 }
4758
4759 return F;
4760 }
4761
4762 /// GetAddrOfFunction - Return the address of the given function. If Ty is
4763 /// non-null, then this function will use the specified type if it has to
4764 /// create it (this occurs when we see a definition of the function).
4765 llvm::Constant *
GetAddrOfFunction(GlobalDecl GD,llvm::Type * Ty,bool ForVTable,bool DontDefer,ForDefinition_t IsForDefinition)4766 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4767 bool DontDefer,
4768 ForDefinition_t IsForDefinition) {
4769 // If there was no specific requested type, just convert it now.
4770 if (!Ty) {
4771 const auto *FD = cast<FunctionDecl>(GD.getDecl());
4772 Ty = getTypes().ConvertType(FD->getType());
4773 }
4774
4775 // Devirtualized destructor calls may come through here instead of via
4776 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4777 // of the complete destructor when necessary.
4778 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4779 if (getTarget().getCXXABI().isMicrosoft() &&
4780 GD.getDtorType() == Dtor_Complete &&
4781 DD->getParent()->getNumVBases() == 0)
4782 GD = GlobalDecl(DD, Dtor_Base);
4783 }
4784
4785 StringRef MangledName = getMangledName(GD);
4786 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4787 /*IsThunk=*/false, llvm::AttributeList(),
4788 IsForDefinition);
4789 // Returns kernel handle for HIP kernel stub function.
4790 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4791 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4792 auto *Handle = getCUDARuntime().getKernelHandle(
4793 cast<llvm::Function>(F->stripPointerCasts()), GD);
4794 if (IsForDefinition)
4795 return F;
4796 return Handle;
4797 }
4798 return F;
4799 }
4800
GetFunctionStart(const ValueDecl * Decl)4801 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4802 llvm::GlobalValue *F =
4803 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4804
4805 return llvm::NoCFIValue::get(F);
4806 }
4807
4808 static const FunctionDecl *
GetRuntimeFunctionDecl(ASTContext & C,StringRef Name)4809 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4810 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4811 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4812
4813 IdentifierInfo &CII = C.Idents.get(Name);
4814 for (const auto *Result : DC->lookup(&CII))
4815 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4816 return FD;
4817
4818 if (!C.getLangOpts().CPlusPlus)
4819 return nullptr;
4820
4821 // Demangle the premangled name from getTerminateFn()
4822 IdentifierInfo &CXXII =
4823 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4824 ? C.Idents.get("terminate")
4825 : C.Idents.get(Name);
4826
4827 for (const auto &N : {"__cxxabiv1", "std"}) {
4828 IdentifierInfo &NS = C.Idents.get(N);
4829 for (const auto *Result : DC->lookup(&NS)) {
4830 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4831 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4832 for (const auto *Result : LSD->lookup(&NS))
4833 if ((ND = dyn_cast<NamespaceDecl>(Result)))
4834 break;
4835
4836 if (ND)
4837 for (const auto *Result : ND->lookup(&CXXII))
4838 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4839 return FD;
4840 }
4841 }
4842
4843 return nullptr;
4844 }
4845
4846 /// CreateRuntimeFunction - Create a new runtime function with the specified
4847 /// type and name.
4848 llvm::FunctionCallee
CreateRuntimeFunction(llvm::FunctionType * FTy,StringRef Name,llvm::AttributeList ExtraAttrs,bool Local,bool AssumeConvergent)4849 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4850 llvm::AttributeList ExtraAttrs, bool Local,
4851 bool AssumeConvergent) {
4852 if (AssumeConvergent) {
4853 ExtraAttrs =
4854 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4855 }
4856
4857 llvm::Constant *C =
4858 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4859 /*DontDefer=*/false, /*IsThunk=*/false,
4860 ExtraAttrs);
4861
4862 if (auto *F = dyn_cast<llvm::Function>(C)) {
4863 if (F->empty()) {
4864 F->setCallingConv(getRuntimeCC());
4865
4866 // In Windows Itanium environments, try to mark runtime functions
4867 // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4868 // will link their standard library statically or dynamically. Marking
4869 // functions imported when they are not imported can cause linker errors
4870 // and warnings.
4871 if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4872 !getCodeGenOpts().LTOVisibilityPublicStd) {
4873 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4874 if (!FD || FD->hasAttr<DLLImportAttr>()) {
4875 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4876 F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4877 }
4878 }
4879 setDSOLocal(F);
4880 // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4881 // of trying to approximate the attributes using the LLVM function
4882 // signature. This requires revising the API of CreateRuntimeFunction().
4883 markRegisterParameterAttributes(F);
4884 }
4885 }
4886
4887 return {FTy, C};
4888 }
4889
4890 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4891 /// create and return an llvm GlobalVariable with the specified type and address
4892 /// space. If there is something in the module with the specified name, return
4893 /// it potentially bitcasted to the right type.
4894 ///
4895 /// If D is non-null, it specifies a decl that correspond to this. This is used
4896 /// to set the attributes on the global when it is first created.
4897 ///
4898 /// If IsForDefinition is true, it is guaranteed that an actual global with
4899 /// type Ty will be returned, not conversion of a variable with the same
4900 /// mangled name but some other type.
4901 llvm::Constant *
GetOrCreateLLVMGlobal(StringRef MangledName,llvm::Type * Ty,LangAS AddrSpace,const VarDecl * D,ForDefinition_t IsForDefinition)4902 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4903 LangAS AddrSpace, const VarDecl *D,
4904 ForDefinition_t IsForDefinition) {
4905 // Lookup the entry, lazily creating it if necessary.
4906 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4907 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4908 if (Entry) {
4909 if (WeakRefReferences.erase(Entry)) {
4910 if (D && !D->hasAttr<WeakAttr>())
4911 Entry->setLinkage(llvm::Function::ExternalLinkage);
4912 }
4913
4914 // Handle dropped DLL attributes.
4915 if (D && shouldDropDLLAttribute(D, Entry))
4916 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4917
4918 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4919 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4920
4921 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4922 return Entry;
4923
4924 // If there are two attempts to define the same mangled name, issue an
4925 // error.
4926 if (IsForDefinition && !Entry->isDeclaration()) {
4927 GlobalDecl OtherGD;
4928 const VarDecl *OtherD;
4929
4930 // Check that D is not yet in DiagnosedConflictingDefinitions is required
4931 // to make sure that we issue an error only once.
4932 if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4933 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4934 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4935 OtherD->hasInit() &&
4936 DiagnosedConflictingDefinitions.insert(D).second) {
4937 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4938 << MangledName;
4939 getDiags().Report(OtherGD.getDecl()->getLocation(),
4940 diag::note_previous_definition);
4941 }
4942 }
4943
4944 // Make sure the result is of the correct type.
4945 if (Entry->getType()->getAddressSpace() != TargetAS)
4946 return llvm::ConstantExpr::getAddrSpaceCast(
4947 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
4948
4949 // (If global is requested for a definition, we always need to create a new
4950 // global, not just return a bitcast.)
4951 if (!IsForDefinition)
4952 return Entry;
4953 }
4954
4955 auto DAddrSpace = GetGlobalVarAddressSpace(D);
4956
4957 auto *GV = new llvm::GlobalVariable(
4958 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4959 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4960 getContext().getTargetAddressSpace(DAddrSpace));
4961
4962 // If we already created a global with the same mangled name (but different
4963 // type) before, take its name and remove it from its parent.
4964 if (Entry) {
4965 GV->takeName(Entry);
4966
4967 if (!Entry->use_empty()) {
4968 Entry->replaceAllUsesWith(GV);
4969 }
4970
4971 Entry->eraseFromParent();
4972 }
4973
4974 // This is the first use or definition of a mangled name. If there is a
4975 // deferred decl with this name, remember that we need to emit it at the end
4976 // of the file.
4977 auto DDI = DeferredDecls.find(MangledName);
4978 if (DDI != DeferredDecls.end()) {
4979 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4980 // list, and remove it from DeferredDecls (since we don't need it anymore).
4981 addDeferredDeclToEmit(DDI->second);
4982 DeferredDecls.erase(DDI);
4983 }
4984
4985 // Handle things which are present even on external declarations.
4986 if (D) {
4987 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4988 getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4989
4990 // FIXME: This code is overly simple and should be merged with other global
4991 // handling.
4992 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
4993
4994 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4995
4996 setLinkageForGV(GV, D);
4997
4998 if (D->getTLSKind()) {
4999 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5000 CXXThreadLocals.push_back(D);
5001 setTLSMode(GV, *D);
5002 }
5003
5004 setGVProperties(GV, D);
5005
5006 // If required by the ABI, treat declarations of static data members with
5007 // inline initializers as definitions.
5008 if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
5009 EmitGlobalVarDefinition(D);
5010 }
5011
5012 // Emit section information for extern variables.
5013 if (D->hasExternalStorage()) {
5014 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
5015 GV->setSection(SA->getName());
5016 }
5017
5018 // Handle XCore specific ABI requirements.
5019 if (getTriple().getArch() == llvm::Triple::xcore &&
5020 D->getLanguageLinkage() == CLanguageLinkage &&
5021 D->getType().isConstant(Context) &&
5022 isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
5023 GV->setSection(".cp.rodata");
5024
5025 // Handle code model attribute
5026 if (const auto *CMA = D->getAttr<CodeModelAttr>())
5027 GV->setCodeModel(CMA->getModel());
5028
5029 // Check if we a have a const declaration with an initializer, we may be
5030 // able to emit it as available_externally to expose it's value to the
5031 // optimizer.
5032 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
5033 D->getType().isConstQualified() && !GV->hasInitializer() &&
5034 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
5035 const auto *Record =
5036 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
5037 bool HasMutableFields = Record && Record->hasMutableFields();
5038 if (!HasMutableFields) {
5039 const VarDecl *InitDecl;
5040 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5041 if (InitExpr) {
5042 ConstantEmitter emitter(*this);
5043 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
5044 if (Init) {
5045 auto *InitType = Init->getType();
5046 if (GV->getValueType() != InitType) {
5047 // The type of the initializer does not match the definition.
5048 // This happens when an initializer has a different type from
5049 // the type of the global (because of padding at the end of a
5050 // structure for instance).
5051 GV->setName(StringRef());
5052 // Make a new global with the correct type, this is now guaranteed
5053 // to work.
5054 auto *NewGV = cast<llvm::GlobalVariable>(
5055 GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5056 ->stripPointerCasts());
5057
5058 // Erase the old global, since it is no longer used.
5059 GV->eraseFromParent();
5060 GV = NewGV;
5061 } else {
5062 GV->setInitializer(Init);
5063 GV->setConstant(true);
5064 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5065 }
5066 emitter.finalize(GV);
5067 }
5068 }
5069 }
5070 }
5071 }
5072
5073 if (D &&
5074 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5075 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5076 // External HIP managed variables needed to be recorded for transformation
5077 // in both device and host compilations.
5078 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5079 D->hasExternalStorage())
5080 getCUDARuntime().handleVarRegistration(D, *GV);
5081 }
5082
5083 if (D)
5084 SanitizerMD->reportGlobal(GV, *D);
5085
5086 LangAS ExpectedAS =
5087 D ? D->getType().getAddressSpace()
5088 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5089 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5090 if (DAddrSpace != ExpectedAS) {
5091 return getTargetCodeGenInfo().performAddrSpaceCast(
5092 *this, GV, DAddrSpace, ExpectedAS,
5093 llvm::PointerType::get(getLLVMContext(), TargetAS));
5094 }
5095
5096 return GV;
5097 }
5098
5099 llvm::Constant *
GetAddrOfGlobal(GlobalDecl GD,ForDefinition_t IsForDefinition)5100 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5101 const Decl *D = GD.getDecl();
5102
5103 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5104 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5105 /*DontDefer=*/false, IsForDefinition);
5106
5107 if (isa<CXXMethodDecl>(D)) {
5108 auto FInfo =
5109 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5110 auto Ty = getTypes().GetFunctionType(*FInfo);
5111 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5112 IsForDefinition);
5113 }
5114
5115 if (isa<FunctionDecl>(D)) {
5116 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5117 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5118 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5119 IsForDefinition);
5120 }
5121
5122 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5123 }
5124
CreateOrReplaceCXXRuntimeVariable(StringRef Name,llvm::Type * Ty,llvm::GlobalValue::LinkageTypes Linkage,llvm::Align Alignment)5125 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5126 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5127 llvm::Align Alignment) {
5128 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5129 llvm::GlobalVariable *OldGV = nullptr;
5130
5131 if (GV) {
5132 // Check if the variable has the right type.
5133 if (GV->getValueType() == Ty)
5134 return GV;
5135
5136 // Because C++ name mangling, the only way we can end up with an already
5137 // existing global with the same name is if it has been declared extern "C".
5138 assert(GV->isDeclaration() && "Declaration has wrong type!");
5139 OldGV = GV;
5140 }
5141
5142 // Create a new variable.
5143 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5144 Linkage, nullptr, Name);
5145
5146 if (OldGV) {
5147 // Replace occurrences of the old variable if needed.
5148 GV->takeName(OldGV);
5149
5150 if (!OldGV->use_empty()) {
5151 OldGV->replaceAllUsesWith(GV);
5152 }
5153
5154 OldGV->eraseFromParent();
5155 }
5156
5157 if (supportsCOMDAT() && GV->isWeakForLinker() &&
5158 !GV->hasAvailableExternallyLinkage())
5159 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5160
5161 GV->setAlignment(Alignment);
5162
5163 return GV;
5164 }
5165
5166 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5167 /// given global variable. If Ty is non-null and if the global doesn't exist,
5168 /// then it will be created with the specified type instead of whatever the
5169 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5170 /// that an actual global with type Ty will be returned, not conversion of a
5171 /// variable with the same mangled name but some other type.
GetAddrOfGlobalVar(const VarDecl * D,llvm::Type * Ty,ForDefinition_t IsForDefinition)5172 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5173 llvm::Type *Ty,
5174 ForDefinition_t IsForDefinition) {
5175 assert(D->hasGlobalStorage() && "Not a global variable");
5176 QualType ASTTy = D->getType();
5177 if (!Ty)
5178 Ty = getTypes().ConvertTypeForMem(ASTTy);
5179
5180 StringRef MangledName = getMangledName(D);
5181 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5182 IsForDefinition);
5183 }
5184
5185 /// CreateRuntimeVariable - Create a new runtime global variable with the
5186 /// specified type and name.
5187 llvm::Constant *
CreateRuntimeVariable(llvm::Type * Ty,StringRef Name)5188 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5189 StringRef Name) {
5190 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5191 : LangAS::Default;
5192 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5193 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5194 return Ret;
5195 }
5196
EmitTentativeDefinition(const VarDecl * D)5197 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5198 assert(!D->getInit() && "Cannot emit definite definitions here!");
5199
5200 StringRef MangledName = getMangledName(D);
5201 llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5202
5203 // We already have a definition, not declaration, with the same mangled name.
5204 // Emitting of declaration is not required (and actually overwrites emitted
5205 // definition).
5206 if (GV && !GV->isDeclaration())
5207 return;
5208
5209 // If we have not seen a reference to this variable yet, place it into the
5210 // deferred declarations table to be emitted if needed later.
5211 if (!MustBeEmitted(D) && !GV) {
5212 DeferredDecls[MangledName] = D;
5213 return;
5214 }
5215
5216 // The tentative definition is the only definition.
5217 EmitGlobalVarDefinition(D);
5218 }
5219
EmitExternalDeclaration(const DeclaratorDecl * D)5220 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) {
5221 if (auto const *V = dyn_cast<const VarDecl>(D))
5222 EmitExternalVarDeclaration(V);
5223 if (auto const *FD = dyn_cast<const FunctionDecl>(D))
5224 EmitExternalFunctionDeclaration(FD);
5225 }
5226
GetTargetTypeStoreSize(llvm::Type * Ty) const5227 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5228 return Context.toCharUnitsFromBits(
5229 getDataLayout().getTypeStoreSizeInBits(Ty));
5230 }
5231
GetGlobalVarAddressSpace(const VarDecl * D)5232 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5233 if (LangOpts.OpenCL) {
5234 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5235 assert(AS == LangAS::opencl_global ||
5236 AS == LangAS::opencl_global_device ||
5237 AS == LangAS::opencl_global_host ||
5238 AS == LangAS::opencl_constant ||
5239 AS == LangAS::opencl_local ||
5240 AS >= LangAS::FirstTargetAddressSpace);
5241 return AS;
5242 }
5243
5244 if (LangOpts.SYCLIsDevice &&
5245 (!D || D->getType().getAddressSpace() == LangAS::Default))
5246 return LangAS::sycl_global;
5247
5248 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5249 if (D) {
5250 if (D->hasAttr<CUDAConstantAttr>())
5251 return LangAS::cuda_constant;
5252 if (D->hasAttr<CUDASharedAttr>())
5253 return LangAS::cuda_shared;
5254 if (D->hasAttr<CUDADeviceAttr>())
5255 return LangAS::cuda_device;
5256 if (D->getType().isConstQualified())
5257 return LangAS::cuda_constant;
5258 }
5259 return LangAS::cuda_device;
5260 }
5261
5262 if (LangOpts.OpenMP) {
5263 LangAS AS;
5264 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5265 return AS;
5266 }
5267 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5268 }
5269
GetGlobalConstantAddressSpace() const5270 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5271 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5272 if (LangOpts.OpenCL)
5273 return LangAS::opencl_constant;
5274 if (LangOpts.SYCLIsDevice)
5275 return LangAS::sycl_global;
5276 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5277 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5278 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5279 // with OpVariable instructions with Generic storage class which is not
5280 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5281 // UniformConstant storage class is not viable as pointers to it may not be
5282 // casted to Generic pointers which are used to model HIP's "flat" pointers.
5283 return LangAS::cuda_device;
5284 if (auto AS = getTarget().getConstantAddressSpace())
5285 return *AS;
5286 return LangAS::Default;
5287 }
5288
5289 // In address space agnostic languages, string literals are in default address
5290 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5291 // emitted in constant address space in LLVM IR. To be consistent with other
5292 // parts of AST, string literal global variables in constant address space
5293 // need to be casted to default address space before being put into address
5294 // map and referenced by other part of CodeGen.
5295 // In OpenCL, string literals are in constant address space in AST, therefore
5296 // they should not be casted to default address space.
5297 static llvm::Constant *
castStringLiteralToDefaultAddressSpace(CodeGenModule & CGM,llvm::GlobalVariable * GV)5298 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5299 llvm::GlobalVariable *GV) {
5300 llvm::Constant *Cast = GV;
5301 if (!CGM.getLangOpts().OpenCL) {
5302 auto AS = CGM.GetGlobalConstantAddressSpace();
5303 if (AS != LangAS::Default)
5304 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5305 CGM, GV, AS, LangAS::Default,
5306 llvm::PointerType::get(
5307 CGM.getLLVMContext(),
5308 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5309 }
5310 return Cast;
5311 }
5312
5313 template<typename SomeDecl>
MaybeHandleStaticInExternC(const SomeDecl * D,llvm::GlobalValue * GV)5314 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5315 llvm::GlobalValue *GV) {
5316 if (!getLangOpts().CPlusPlus)
5317 return;
5318
5319 // Must have 'used' attribute, or else inline assembly can't rely on
5320 // the name existing.
5321 if (!D->template hasAttr<UsedAttr>())
5322 return;
5323
5324 // Must have internal linkage and an ordinary name.
5325 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5326 return;
5327
5328 // Must be in an extern "C" context. Entities declared directly within
5329 // a record are not extern "C" even if the record is in such a context.
5330 const SomeDecl *First = D->getFirstDecl();
5331 if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5332 return;
5333
5334 // OK, this is an internal linkage entity inside an extern "C" linkage
5335 // specification. Make a note of that so we can give it the "expected"
5336 // mangled name if nothing else is using that name.
5337 std::pair<StaticExternCMap::iterator, bool> R =
5338 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5339
5340 // If we have multiple internal linkage entities with the same name
5341 // in extern "C" regions, none of them gets that name.
5342 if (!R.second)
5343 R.first->second = nullptr;
5344 }
5345
shouldBeInCOMDAT(CodeGenModule & CGM,const Decl & D)5346 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5347 if (!CGM.supportsCOMDAT())
5348 return false;
5349
5350 if (D.hasAttr<SelectAnyAttr>())
5351 return true;
5352
5353 GVALinkage Linkage;
5354 if (auto *VD = dyn_cast<VarDecl>(&D))
5355 Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5356 else
5357 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5358
5359 switch (Linkage) {
5360 case GVA_Internal:
5361 case GVA_AvailableExternally:
5362 case GVA_StrongExternal:
5363 return false;
5364 case GVA_DiscardableODR:
5365 case GVA_StrongODR:
5366 return true;
5367 }
5368 llvm_unreachable("No such linkage");
5369 }
5370
supportsCOMDAT() const5371 bool CodeGenModule::supportsCOMDAT() const {
5372 return getTriple().supportsCOMDAT();
5373 }
5374
maybeSetTrivialComdat(const Decl & D,llvm::GlobalObject & GO)5375 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5376 llvm::GlobalObject &GO) {
5377 if (!shouldBeInCOMDAT(*this, D))
5378 return;
5379 GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5380 }
5381
getABIInfo()5382 const ABIInfo &CodeGenModule::getABIInfo() {
5383 return getTargetCodeGenInfo().getABIInfo();
5384 }
5385
5386 /// Pass IsTentative as true if you want to create a tentative definition.
EmitGlobalVarDefinition(const VarDecl * D,bool IsTentative)5387 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5388 bool IsTentative) {
5389 // OpenCL global variables of sampler type are translated to function calls,
5390 // therefore no need to be translated.
5391 QualType ASTTy = D->getType();
5392 if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5393 return;
5394
5395 // If this is OpenMP device, check if it is legal to emit this global
5396 // normally.
5397 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5398 OpenMPRuntime->emitTargetGlobalVariable(D))
5399 return;
5400
5401 llvm::TrackingVH<llvm::Constant> Init;
5402 bool NeedsGlobalCtor = false;
5403 // Whether the definition of the variable is available externally.
5404 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5405 // since this is the job for its original source.
5406 bool IsDefinitionAvailableExternally =
5407 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5408 bool NeedsGlobalDtor =
5409 !IsDefinitionAvailableExternally &&
5410 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5411
5412 // It is helpless to emit the definition for an available_externally variable
5413 // which can't be marked as const.
5414 // We don't need to check if it needs global ctor or dtor. See the above
5415 // comment for ideas.
5416 if (IsDefinitionAvailableExternally &&
5417 (!D->hasConstantInitialization() ||
5418 // TODO: Update this when we have interface to check constexpr
5419 // destructor.
5420 D->needsDestruction(getContext()) ||
5421 !D->getType().isConstantStorage(getContext(), true, true)))
5422 return;
5423
5424 const VarDecl *InitDecl;
5425 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5426
5427 std::optional<ConstantEmitter> emitter;
5428
5429 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5430 // as part of their declaration." Sema has already checked for
5431 // error cases, so we just need to set Init to UndefValue.
5432 bool IsCUDASharedVar =
5433 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5434 // Shadows of initialized device-side global variables are also left
5435 // undefined.
5436 // Managed Variables should be initialized on both host side and device side.
5437 bool IsCUDAShadowVar =
5438 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5439 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5440 D->hasAttr<CUDASharedAttr>());
5441 bool IsCUDADeviceShadowVar =
5442 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5443 (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5444 D->getType()->isCUDADeviceBuiltinTextureType());
5445 if (getLangOpts().CUDA &&
5446 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5447 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5448 else if (D->hasAttr<LoaderUninitializedAttr>())
5449 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5450 else if (!InitExpr) {
5451 // This is a tentative definition; tentative definitions are
5452 // implicitly initialized with { 0 }.
5453 //
5454 // Note that tentative definitions are only emitted at the end of
5455 // a translation unit, so they should never have incomplete
5456 // type. In addition, EmitTentativeDefinition makes sure that we
5457 // never attempt to emit a tentative definition if a real one
5458 // exists. A use may still exists, however, so we still may need
5459 // to do a RAUW.
5460 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5461 Init = EmitNullConstant(D->getType());
5462 } else {
5463 initializedGlobalDecl = GlobalDecl(D);
5464 emitter.emplace(*this);
5465 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5466 if (!Initializer) {
5467 QualType T = InitExpr->getType();
5468 if (D->getType()->isReferenceType())
5469 T = D->getType();
5470
5471 if (getLangOpts().CPlusPlus) {
5472 if (InitDecl->hasFlexibleArrayInit(getContext()))
5473 ErrorUnsupported(D, "flexible array initializer");
5474 Init = EmitNullConstant(T);
5475
5476 if (!IsDefinitionAvailableExternally)
5477 NeedsGlobalCtor = true;
5478 } else {
5479 ErrorUnsupported(D, "static initializer");
5480 Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5481 }
5482 } else {
5483 Init = Initializer;
5484 // We don't need an initializer, so remove the entry for the delayed
5485 // initializer position (just in case this entry was delayed) if we
5486 // also don't need to register a destructor.
5487 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5488 DelayedCXXInitPosition.erase(D);
5489
5490 #ifndef NDEBUG
5491 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5492 InitDecl->getFlexibleArrayInitChars(getContext());
5493 CharUnits CstSize = CharUnits::fromQuantity(
5494 getDataLayout().getTypeAllocSize(Init->getType()));
5495 assert(VarSize == CstSize && "Emitted constant has unexpected size");
5496 #endif
5497 }
5498 }
5499
5500 llvm::Type* InitType = Init->getType();
5501 llvm::Constant *Entry =
5502 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5503
5504 // Strip off pointer casts if we got them.
5505 Entry = Entry->stripPointerCasts();
5506
5507 // Entry is now either a Function or GlobalVariable.
5508 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5509
5510 // We have a definition after a declaration with the wrong type.
5511 // We must make a new GlobalVariable* and update everything that used OldGV
5512 // (a declaration or tentative definition) with the new GlobalVariable*
5513 // (which will be a definition).
5514 //
5515 // This happens if there is a prototype for a global (e.g.
5516 // "extern int x[];") and then a definition of a different type (e.g.
5517 // "int x[10];"). This also happens when an initializer has a different type
5518 // from the type of the global (this happens with unions).
5519 if (!GV || GV->getValueType() != InitType ||
5520 GV->getType()->getAddressSpace() !=
5521 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5522
5523 // Move the old entry aside so that we'll create a new one.
5524 Entry->setName(StringRef());
5525
5526 // Make a new global with the correct type, this is now guaranteed to work.
5527 GV = cast<llvm::GlobalVariable>(
5528 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5529 ->stripPointerCasts());
5530
5531 // Replace all uses of the old global with the new global
5532 llvm::Constant *NewPtrForOldDecl =
5533 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5534 Entry->getType());
5535 Entry->replaceAllUsesWith(NewPtrForOldDecl);
5536
5537 // Erase the old global, since it is no longer used.
5538 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5539 }
5540
5541 MaybeHandleStaticInExternC(D, GV);
5542
5543 if (D->hasAttr<AnnotateAttr>())
5544 AddGlobalAnnotations(D, GV);
5545
5546 // Set the llvm linkage type as appropriate.
5547 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5548
5549 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5550 // the device. [...]"
5551 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5552 // __device__, declares a variable that: [...]
5553 // Is accessible from all the threads within the grid and from the host
5554 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5555 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5556 if (LangOpts.CUDA) {
5557 if (LangOpts.CUDAIsDevice) {
5558 if (Linkage != llvm::GlobalValue::InternalLinkage &&
5559 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5560 D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5561 D->getType()->isCUDADeviceBuiltinTextureType()))
5562 GV->setExternallyInitialized(true);
5563 } else {
5564 getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5565 }
5566 getCUDARuntime().handleVarRegistration(D, *GV);
5567 }
5568
5569 GV->setInitializer(Init);
5570 if (emitter)
5571 emitter->finalize(GV);
5572
5573 // If it is safe to mark the global 'constant', do so now.
5574 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5575 D->getType().isConstantStorage(getContext(), true, true));
5576
5577 // If it is in a read-only section, mark it 'constant'.
5578 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5579 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5580 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5581 GV->setConstant(true);
5582 }
5583
5584 CharUnits AlignVal = getContext().getDeclAlign(D);
5585 // Check for alignment specifed in an 'omp allocate' directive.
5586 if (std::optional<CharUnits> AlignValFromAllocate =
5587 getOMPAllocateAlignment(D))
5588 AlignVal = *AlignValFromAllocate;
5589 GV->setAlignment(AlignVal.getAsAlign());
5590
5591 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5592 // function is only defined alongside the variable, not also alongside
5593 // callers. Normally, all accesses to a thread_local go through the
5594 // thread-wrapper in order to ensure initialization has occurred, underlying
5595 // variable will never be used other than the thread-wrapper, so it can be
5596 // converted to internal linkage.
5597 //
5598 // However, if the variable has the 'constinit' attribute, it _can_ be
5599 // referenced directly, without calling the thread-wrapper, so the linkage
5600 // must not be changed.
5601 //
5602 // Additionally, if the variable isn't plain external linkage, e.g. if it's
5603 // weak or linkonce, the de-duplication semantics are important to preserve,
5604 // so we don't change the linkage.
5605 if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5606 Linkage == llvm::GlobalValue::ExternalLinkage &&
5607 Context.getTargetInfo().getTriple().isOSDarwin() &&
5608 !D->hasAttr<ConstInitAttr>())
5609 Linkage = llvm::GlobalValue::InternalLinkage;
5610
5611 GV->setLinkage(Linkage);
5612 if (D->hasAttr<DLLImportAttr>())
5613 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5614 else if (D->hasAttr<DLLExportAttr>())
5615 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5616 else
5617 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5618
5619 if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5620 // common vars aren't constant even if declared const.
5621 GV->setConstant(false);
5622 // Tentative definition of global variables may be initialized with
5623 // non-zero null pointers. In this case they should have weak linkage
5624 // since common linkage must have zero initializer and must not have
5625 // explicit section therefore cannot have non-zero initial value.
5626 if (!GV->getInitializer()->isNullValue())
5627 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5628 }
5629
5630 setNonAliasAttributes(D, GV);
5631
5632 if (D->getTLSKind() && !GV->isThreadLocal()) {
5633 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5634 CXXThreadLocals.push_back(D);
5635 setTLSMode(GV, *D);
5636 }
5637
5638 maybeSetTrivialComdat(*D, *GV);
5639
5640 // Emit the initializer function if necessary.
5641 if (NeedsGlobalCtor || NeedsGlobalDtor)
5642 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5643
5644 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5645
5646 // Emit global variable debug information.
5647 if (CGDebugInfo *DI = getModuleDebugInfo())
5648 if (getCodeGenOpts().hasReducedDebugInfo())
5649 DI->EmitGlobalVariable(GV, D);
5650 }
5651
EmitExternalVarDeclaration(const VarDecl * D)5652 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5653 if (CGDebugInfo *DI = getModuleDebugInfo())
5654 if (getCodeGenOpts().hasReducedDebugInfo()) {
5655 QualType ASTTy = D->getType();
5656 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5657 llvm::Constant *GV =
5658 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5659 DI->EmitExternalVariable(
5660 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5661 }
5662 }
5663
EmitExternalFunctionDeclaration(const FunctionDecl * FD)5664 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) {
5665 if (CGDebugInfo *DI = getModuleDebugInfo())
5666 if (getCodeGenOpts().hasReducedDebugInfo()) {
5667 auto *Ty = getTypes().ConvertType(FD->getType());
5668 StringRef MangledName = getMangledName(FD);
5669 auto *Fn = dyn_cast<llvm::Function>(
5670 GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false));
5671 if (!Fn->getSubprogram())
5672 DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn);
5673 }
5674 }
5675
isVarDeclStrongDefinition(const ASTContext & Context,CodeGenModule & CGM,const VarDecl * D,bool NoCommon)5676 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5677 CodeGenModule &CGM, const VarDecl *D,
5678 bool NoCommon) {
5679 // Don't give variables common linkage if -fno-common was specified unless it
5680 // was overridden by a NoCommon attribute.
5681 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5682 return true;
5683
5684 // C11 6.9.2/2:
5685 // A declaration of an identifier for an object that has file scope without
5686 // an initializer, and without a storage-class specifier or with the
5687 // storage-class specifier static, constitutes a tentative definition.
5688 if (D->getInit() || D->hasExternalStorage())
5689 return true;
5690
5691 // A variable cannot be both common and exist in a section.
5692 if (D->hasAttr<SectionAttr>())
5693 return true;
5694
5695 // A variable cannot be both common and exist in a section.
5696 // We don't try to determine which is the right section in the front-end.
5697 // If no specialized section name is applicable, it will resort to default.
5698 if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5699 D->hasAttr<PragmaClangDataSectionAttr>() ||
5700 D->hasAttr<PragmaClangRelroSectionAttr>() ||
5701 D->hasAttr<PragmaClangRodataSectionAttr>())
5702 return true;
5703
5704 // Thread local vars aren't considered common linkage.
5705 if (D->getTLSKind())
5706 return true;
5707
5708 // Tentative definitions marked with WeakImportAttr are true definitions.
5709 if (D->hasAttr<WeakImportAttr>())
5710 return true;
5711
5712 // A variable cannot be both common and exist in a comdat.
5713 if (shouldBeInCOMDAT(CGM, *D))
5714 return true;
5715
5716 // Declarations with a required alignment do not have common linkage in MSVC
5717 // mode.
5718 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5719 if (D->hasAttr<AlignedAttr>())
5720 return true;
5721 QualType VarType = D->getType();
5722 if (Context.isAlignmentRequired(VarType))
5723 return true;
5724
5725 if (const auto *RT = VarType->getAs<RecordType>()) {
5726 const RecordDecl *RD = RT->getDecl();
5727 for (const FieldDecl *FD : RD->fields()) {
5728 if (FD->isBitField())
5729 continue;
5730 if (FD->hasAttr<AlignedAttr>())
5731 return true;
5732 if (Context.isAlignmentRequired(FD->getType()))
5733 return true;
5734 }
5735 }
5736 }
5737
5738 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5739 // common symbols, so symbols with greater alignment requirements cannot be
5740 // common.
5741 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5742 // alignments for common symbols via the aligncomm directive, so this
5743 // restriction only applies to MSVC environments.
5744 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5745 Context.getTypeAlignIfKnown(D->getType()) >
5746 Context.toBits(CharUnits::fromQuantity(32)))
5747 return true;
5748
5749 return false;
5750 }
5751
5752 llvm::GlobalValue::LinkageTypes
getLLVMLinkageForDeclarator(const DeclaratorDecl * D,GVALinkage Linkage)5753 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5754 GVALinkage Linkage) {
5755 if (Linkage == GVA_Internal)
5756 return llvm::Function::InternalLinkage;
5757
5758 if (D->hasAttr<WeakAttr>())
5759 return llvm::GlobalVariable::WeakAnyLinkage;
5760
5761 if (const auto *FD = D->getAsFunction())
5762 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5763 return llvm::GlobalVariable::LinkOnceAnyLinkage;
5764
5765 // We are guaranteed to have a strong definition somewhere else,
5766 // so we can use available_externally linkage.
5767 if (Linkage == GVA_AvailableExternally)
5768 return llvm::GlobalValue::AvailableExternallyLinkage;
5769
5770 // Note that Apple's kernel linker doesn't support symbol
5771 // coalescing, so we need to avoid linkonce and weak linkages there.
5772 // Normally, this means we just map to internal, but for explicit
5773 // instantiations we'll map to external.
5774
5775 // In C++, the compiler has to emit a definition in every translation unit
5776 // that references the function. We should use linkonce_odr because
5777 // a) if all references in this translation unit are optimized away, we
5778 // don't need to codegen it. b) if the function persists, it needs to be
5779 // merged with other definitions. c) C++ has the ODR, so we know the
5780 // definition is dependable.
5781 if (Linkage == GVA_DiscardableODR)
5782 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5783 : llvm::Function::InternalLinkage;
5784
5785 // An explicit instantiation of a template has weak linkage, since
5786 // explicit instantiations can occur in multiple translation units
5787 // and must all be equivalent. However, we are not allowed to
5788 // throw away these explicit instantiations.
5789 //
5790 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5791 // so say that CUDA templates are either external (for kernels) or internal.
5792 // This lets llvm perform aggressive inter-procedural optimizations. For
5793 // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5794 // therefore we need to follow the normal linkage paradigm.
5795 if (Linkage == GVA_StrongODR) {
5796 if (getLangOpts().AppleKext)
5797 return llvm::Function::ExternalLinkage;
5798 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5799 !getLangOpts().GPURelocatableDeviceCode)
5800 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5801 : llvm::Function::InternalLinkage;
5802 return llvm::Function::WeakODRLinkage;
5803 }
5804
5805 // C++ doesn't have tentative definitions and thus cannot have common
5806 // linkage.
5807 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5808 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5809 CodeGenOpts.NoCommon))
5810 return llvm::GlobalVariable::CommonLinkage;
5811
5812 // selectany symbols are externally visible, so use weak instead of
5813 // linkonce. MSVC optimizes away references to const selectany globals, so
5814 // all definitions should be the same and ODR linkage should be used.
5815 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5816 if (D->hasAttr<SelectAnyAttr>())
5817 return llvm::GlobalVariable::WeakODRLinkage;
5818
5819 // Otherwise, we have strong external linkage.
5820 assert(Linkage == GVA_StrongExternal);
5821 return llvm::GlobalVariable::ExternalLinkage;
5822 }
5823
5824 llvm::GlobalValue::LinkageTypes
getLLVMLinkageVarDefinition(const VarDecl * VD)5825 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5826 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5827 return getLLVMLinkageForDeclarator(VD, Linkage);
5828 }
5829
5830 /// Replace the uses of a function that was declared with a non-proto type.
5831 /// We want to silently drop extra arguments from call sites
replaceUsesOfNonProtoConstant(llvm::Constant * old,llvm::Function * newFn)5832 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5833 llvm::Function *newFn) {
5834 // Fast path.
5835 if (old->use_empty())
5836 return;
5837
5838 llvm::Type *newRetTy = newFn->getReturnType();
5839 SmallVector<llvm::Value *, 4> newArgs;
5840
5841 SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5842
5843 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5844 ui != ue; ui++) {
5845 llvm::User *user = ui->getUser();
5846
5847 // Recognize and replace uses of bitcasts. Most calls to
5848 // unprototyped functions will use bitcasts.
5849 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5850 if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5851 replaceUsesOfNonProtoConstant(bitcast, newFn);
5852 continue;
5853 }
5854
5855 // Recognize calls to the function.
5856 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5857 if (!callSite)
5858 continue;
5859 if (!callSite->isCallee(&*ui))
5860 continue;
5861
5862 // If the return types don't match exactly, then we can't
5863 // transform this call unless it's dead.
5864 if (callSite->getType() != newRetTy && !callSite->use_empty())
5865 continue;
5866
5867 // Get the call site's attribute list.
5868 SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5869 llvm::AttributeList oldAttrs = callSite->getAttributes();
5870
5871 // If the function was passed too few arguments, don't transform.
5872 unsigned newNumArgs = newFn->arg_size();
5873 if (callSite->arg_size() < newNumArgs)
5874 continue;
5875
5876 // If extra arguments were passed, we silently drop them.
5877 // If any of the types mismatch, we don't transform.
5878 unsigned argNo = 0;
5879 bool dontTransform = false;
5880 for (llvm::Argument &A : newFn->args()) {
5881 if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5882 dontTransform = true;
5883 break;
5884 }
5885
5886 // Add any parameter attributes.
5887 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5888 argNo++;
5889 }
5890 if (dontTransform)
5891 continue;
5892
5893 // Okay, we can transform this. Create the new call instruction and copy
5894 // over the required information.
5895 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5896
5897 // Copy over any operand bundles.
5898 SmallVector<llvm::OperandBundleDef, 1> newBundles;
5899 callSite->getOperandBundlesAsDefs(newBundles);
5900
5901 llvm::CallBase *newCall;
5902 if (isa<llvm::CallInst>(callSite)) {
5903 newCall =
5904 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5905 } else {
5906 auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5907 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5908 oldInvoke->getUnwindDest(), newArgs,
5909 newBundles, "", callSite);
5910 }
5911 newArgs.clear(); // for the next iteration
5912
5913 if (!newCall->getType()->isVoidTy())
5914 newCall->takeName(callSite);
5915 newCall->setAttributes(
5916 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5917 oldAttrs.getRetAttrs(), newArgAttrs));
5918 newCall->setCallingConv(callSite->getCallingConv());
5919
5920 // Finally, remove the old call, replacing any uses with the new one.
5921 if (!callSite->use_empty())
5922 callSite->replaceAllUsesWith(newCall);
5923
5924 // Copy debug location attached to CI.
5925 if (callSite->getDebugLoc())
5926 newCall->setDebugLoc(callSite->getDebugLoc());
5927
5928 callSitesToBeRemovedFromParent.push_back(callSite);
5929 }
5930
5931 for (auto *callSite : callSitesToBeRemovedFromParent) {
5932 callSite->eraseFromParent();
5933 }
5934 }
5935
5936 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5937 /// implement a function with no prototype, e.g. "int foo() {}". If there are
5938 /// existing call uses of the old function in the module, this adjusts them to
5939 /// call the new function directly.
5940 ///
5941 /// This is not just a cleanup: the always_inline pass requires direct calls to
5942 /// functions to be able to inline them. If there is a bitcast in the way, it
5943 /// won't inline them. Instcombine normally deletes these calls, but it isn't
5944 /// run at -O0.
ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue * Old,llvm::Function * NewFn)5945 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5946 llvm::Function *NewFn) {
5947 // If we're redefining a global as a function, don't transform it.
5948 if (!isa<llvm::Function>(Old)) return;
5949
5950 replaceUsesOfNonProtoConstant(Old, NewFn);
5951 }
5952
HandleCXXStaticMemberVarInstantiation(VarDecl * VD)5953 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5954 auto DK = VD->isThisDeclarationADefinition();
5955 if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) ||
5956 (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD)))
5957 return;
5958
5959 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5960 // If we have a definition, this might be a deferred decl. If the
5961 // instantiation is explicit, make sure we emit it at the end.
5962 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5963 GetAddrOfGlobalVar(VD);
5964
5965 EmitTopLevelDecl(VD);
5966 }
5967
EmitGlobalFunctionDefinition(GlobalDecl GD,llvm::GlobalValue * GV)5968 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5969 llvm::GlobalValue *GV) {
5970 const auto *D = cast<FunctionDecl>(GD.getDecl());
5971
5972 // Compute the function info and LLVM type.
5973 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5974 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5975
5976 // Get or create the prototype for the function.
5977 if (!GV || (GV->getValueType() != Ty))
5978 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5979 /*DontDefer=*/true,
5980 ForDefinition));
5981
5982 // Already emitted.
5983 if (!GV->isDeclaration())
5984 return;
5985
5986 // We need to set linkage and visibility on the function before
5987 // generating code for it because various parts of IR generation
5988 // want to propagate this information down (e.g. to local static
5989 // declarations).
5990 auto *Fn = cast<llvm::Function>(GV);
5991 setFunctionLinkage(GD, Fn);
5992
5993 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5994 setGVProperties(Fn, GD);
5995
5996 MaybeHandleStaticInExternC(D, Fn);
5997
5998 maybeSetTrivialComdat(*D, *Fn);
5999
6000 CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
6001
6002 setNonAliasAttributes(GD, Fn);
6003 SetLLVMFunctionAttributesForDefinition(D, Fn);
6004
6005 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
6006 AddGlobalCtor(Fn, CA->getPriority());
6007 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
6008 AddGlobalDtor(Fn, DA->getPriority(), true);
6009 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
6010 getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
6011 }
6012
EmitAliasDefinition(GlobalDecl GD)6013 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
6014 const auto *D = cast<ValueDecl>(GD.getDecl());
6015 const AliasAttr *AA = D->getAttr<AliasAttr>();
6016 assert(AA && "Not an alias?");
6017
6018 StringRef MangledName = getMangledName(GD);
6019
6020 if (AA->getAliasee() == MangledName) {
6021 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6022 return;
6023 }
6024
6025 // If there is a definition in the module, then it wins over the alias.
6026 // This is dubious, but allow it to be safe. Just ignore the alias.
6027 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6028 if (Entry && !Entry->isDeclaration())
6029 return;
6030
6031 Aliases.push_back(GD);
6032
6033 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6034
6035 // Create a reference to the named value. This ensures that it is emitted
6036 // if a deferred decl.
6037 llvm::Constant *Aliasee;
6038 llvm::GlobalValue::LinkageTypes LT;
6039 if (isa<llvm::FunctionType>(DeclTy)) {
6040 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
6041 /*ForVTable=*/false);
6042 LT = getFunctionLinkage(GD);
6043 } else {
6044 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
6045 /*D=*/nullptr);
6046 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
6047 LT = getLLVMLinkageVarDefinition(VD);
6048 else
6049 LT = getFunctionLinkage(GD);
6050 }
6051
6052 // Create the new alias itself, but don't set a name yet.
6053 unsigned AS = Aliasee->getType()->getPointerAddressSpace();
6054 auto *GA =
6055 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
6056
6057 if (Entry) {
6058 if (GA->getAliasee() == Entry) {
6059 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6060 return;
6061 }
6062
6063 assert(Entry->isDeclaration());
6064
6065 // If there is a declaration in the module, then we had an extern followed
6066 // by the alias, as in:
6067 // extern int test6();
6068 // ...
6069 // int test6() __attribute__((alias("test7")));
6070 //
6071 // Remove it and replace uses of it with the alias.
6072 GA->takeName(Entry);
6073
6074 Entry->replaceAllUsesWith(GA);
6075 Entry->eraseFromParent();
6076 } else {
6077 GA->setName(MangledName);
6078 }
6079
6080 // Set attributes which are particular to an alias; this is a
6081 // specialization of the attributes which may be set on a global
6082 // variable/function.
6083 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6084 D->isWeakImported()) {
6085 GA->setLinkage(llvm::Function::WeakAnyLinkage);
6086 }
6087
6088 if (const auto *VD = dyn_cast<VarDecl>(D))
6089 if (VD->getTLSKind())
6090 setTLSMode(GA, *VD);
6091
6092 SetCommonAttributes(GD, GA);
6093
6094 // Emit global alias debug information.
6095 if (isa<VarDecl>(D))
6096 if (CGDebugInfo *DI = getModuleDebugInfo())
6097 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6098 }
6099
emitIFuncDefinition(GlobalDecl GD)6100 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6101 const auto *D = cast<ValueDecl>(GD.getDecl());
6102 const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6103 assert(IFA && "Not an ifunc?");
6104
6105 StringRef MangledName = getMangledName(GD);
6106
6107 if (IFA->getResolver() == MangledName) {
6108 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6109 return;
6110 }
6111
6112 // Report an error if some definition overrides ifunc.
6113 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6114 if (Entry && !Entry->isDeclaration()) {
6115 GlobalDecl OtherGD;
6116 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6117 DiagnosedConflictingDefinitions.insert(GD).second) {
6118 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6119 << MangledName;
6120 Diags.Report(OtherGD.getDecl()->getLocation(),
6121 diag::note_previous_definition);
6122 }
6123 return;
6124 }
6125
6126 Aliases.push_back(GD);
6127
6128 // The resolver might not be visited yet. Specify a dummy non-function type to
6129 // indicate IsIncompleteFunction. Either the type is ignored (if the resolver
6130 // was emitted) or the whole function will be replaced (if the resolver has
6131 // not been emitted).
6132 llvm::Constant *Resolver =
6133 GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {},
6134 /*ForVTable=*/false);
6135 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6136 llvm::GlobalIFunc *GIF =
6137 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
6138 "", Resolver, &getModule());
6139 if (Entry) {
6140 if (GIF->getResolver() == Entry) {
6141 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6142 return;
6143 }
6144 assert(Entry->isDeclaration());
6145
6146 // If there is a declaration in the module, then we had an extern followed
6147 // by the ifunc, as in:
6148 // extern int test();
6149 // ...
6150 // int test() __attribute__((ifunc("resolver")));
6151 //
6152 // Remove it and replace uses of it with the ifunc.
6153 GIF->takeName(Entry);
6154
6155 Entry->replaceAllUsesWith(GIF);
6156 Entry->eraseFromParent();
6157 } else
6158 GIF->setName(MangledName);
6159 SetCommonAttributes(GD, GIF);
6160 }
6161
getIntrinsic(unsigned IID,ArrayRef<llvm::Type * > Tys)6162 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6163 ArrayRef<llvm::Type*> Tys) {
6164 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
6165 Tys);
6166 }
6167
6168 static llvm::StringMapEntry<llvm::GlobalVariable *> &
GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable * > & Map,const StringLiteral * Literal,bool TargetIsLSB,bool & IsUTF16,unsigned & StringLength)6169 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6170 const StringLiteral *Literal, bool TargetIsLSB,
6171 bool &IsUTF16, unsigned &StringLength) {
6172 StringRef String = Literal->getString();
6173 unsigned NumBytes = String.size();
6174
6175 // Check for simple case.
6176 if (!Literal->containsNonAsciiOrNull()) {
6177 StringLength = NumBytes;
6178 return *Map.insert(std::make_pair(String, nullptr)).first;
6179 }
6180
6181 // Otherwise, convert the UTF8 literals into a string of shorts.
6182 IsUTF16 = true;
6183
6184 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6185 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6186 llvm::UTF16 *ToPtr = &ToBuf[0];
6187
6188 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6189 ToPtr + NumBytes, llvm::strictConversion);
6190
6191 // ConvertUTF8toUTF16 returns the length in ToPtr.
6192 StringLength = ToPtr - &ToBuf[0];
6193
6194 // Add an explicit null.
6195 *ToPtr = 0;
6196 return *Map.insert(std::make_pair(
6197 StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6198 (StringLength + 1) * 2),
6199 nullptr)).first;
6200 }
6201
6202 ConstantAddress
GetAddrOfConstantCFString(const StringLiteral * Literal)6203 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6204 unsigned StringLength = 0;
6205 bool isUTF16 = false;
6206 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6207 GetConstantCFStringEntry(CFConstantStringMap, Literal,
6208 getDataLayout().isLittleEndian(), isUTF16,
6209 StringLength);
6210
6211 if (auto *C = Entry.second)
6212 return ConstantAddress(
6213 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6214
6215 const ASTContext &Context = getContext();
6216 const llvm::Triple &Triple = getTriple();
6217
6218 const auto CFRuntime = getLangOpts().CFRuntime;
6219 const bool IsSwiftABI =
6220 static_cast<unsigned>(CFRuntime) >=
6221 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6222 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6223
6224 // If we don't already have it, get __CFConstantStringClassReference.
6225 if (!CFConstantStringClassRef) {
6226 const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6227 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6228 Ty = llvm::ArrayType::get(Ty, 0);
6229
6230 switch (CFRuntime) {
6231 default: break;
6232 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6233 case LangOptions::CoreFoundationABI::Swift5_0:
6234 CFConstantStringClassName =
6235 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6236 : "$s10Foundation19_NSCFConstantStringCN";
6237 Ty = IntPtrTy;
6238 break;
6239 case LangOptions::CoreFoundationABI::Swift4_2:
6240 CFConstantStringClassName =
6241 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6242 : "$S10Foundation19_NSCFConstantStringCN";
6243 Ty = IntPtrTy;
6244 break;
6245 case LangOptions::CoreFoundationABI::Swift4_1:
6246 CFConstantStringClassName =
6247 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6248 : "__T010Foundation19_NSCFConstantStringCN";
6249 Ty = IntPtrTy;
6250 break;
6251 }
6252
6253 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6254
6255 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6256 llvm::GlobalValue *GV = nullptr;
6257
6258 if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6259 IdentifierInfo &II = Context.Idents.get(GV->getName());
6260 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6261 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6262
6263 const VarDecl *VD = nullptr;
6264 for (const auto *Result : DC->lookup(&II))
6265 if ((VD = dyn_cast<VarDecl>(Result)))
6266 break;
6267
6268 if (Triple.isOSBinFormatELF()) {
6269 if (!VD)
6270 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6271 } else {
6272 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6273 if (!VD || !VD->hasAttr<DLLExportAttr>())
6274 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6275 else
6276 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6277 }
6278
6279 setDSOLocal(GV);
6280 }
6281 }
6282
6283 // Decay array -> ptr
6284 CFConstantStringClassRef =
6285 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6286 }
6287
6288 QualType CFTy = Context.getCFConstantStringType();
6289
6290 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6291
6292 ConstantInitBuilder Builder(*this);
6293 auto Fields = Builder.beginStruct(STy);
6294
6295 // Class pointer.
6296 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6297
6298 // Flags.
6299 if (IsSwiftABI) {
6300 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6301 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6302 } else {
6303 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6304 }
6305
6306 // String pointer.
6307 llvm::Constant *C = nullptr;
6308 if (isUTF16) {
6309 auto Arr = llvm::ArrayRef(
6310 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6311 Entry.first().size() / 2);
6312 C = llvm::ConstantDataArray::get(VMContext, Arr);
6313 } else {
6314 C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6315 }
6316
6317 // Note: -fwritable-strings doesn't make the backing store strings of
6318 // CFStrings writable.
6319 auto *GV =
6320 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6321 llvm::GlobalValue::PrivateLinkage, C, ".str");
6322 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6323 // Don't enforce the target's minimum global alignment, since the only use
6324 // of the string is via this class initializer.
6325 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6326 : Context.getTypeAlignInChars(Context.CharTy);
6327 GV->setAlignment(Align.getAsAlign());
6328
6329 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6330 // Without it LLVM can merge the string with a non unnamed_addr one during
6331 // LTO. Doing that changes the section it ends in, which surprises ld64.
6332 if (Triple.isOSBinFormatMachO())
6333 GV->setSection(isUTF16 ? "__TEXT,__ustring"
6334 : "__TEXT,__cstring,cstring_literals");
6335 // Make sure the literal ends up in .rodata to allow for safe ICF and for
6336 // the static linker to adjust permissions to read-only later on.
6337 else if (Triple.isOSBinFormatELF())
6338 GV->setSection(".rodata");
6339
6340 // String.
6341 Fields.add(GV);
6342
6343 // String length.
6344 llvm::IntegerType *LengthTy =
6345 llvm::IntegerType::get(getModule().getContext(),
6346 Context.getTargetInfo().getLongWidth());
6347 if (IsSwiftABI) {
6348 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6349 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6350 LengthTy = Int32Ty;
6351 else
6352 LengthTy = IntPtrTy;
6353 }
6354 Fields.addInt(LengthTy, StringLength);
6355
6356 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6357 // properly aligned on 32-bit platforms.
6358 CharUnits Alignment =
6359 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6360
6361 // The struct.
6362 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6363 /*isConstant=*/false,
6364 llvm::GlobalVariable::PrivateLinkage);
6365 GV->addAttribute("objc_arc_inert");
6366 switch (Triple.getObjectFormat()) {
6367 case llvm::Triple::UnknownObjectFormat:
6368 llvm_unreachable("unknown file format");
6369 case llvm::Triple::DXContainer:
6370 case llvm::Triple::GOFF:
6371 case llvm::Triple::SPIRV:
6372 case llvm::Triple::XCOFF:
6373 llvm_unreachable("unimplemented");
6374 case llvm::Triple::COFF:
6375 case llvm::Triple::ELF:
6376 case llvm::Triple::Wasm:
6377 GV->setSection("cfstring");
6378 break;
6379 case llvm::Triple::MachO:
6380 GV->setSection("__DATA,__cfstring");
6381 break;
6382 }
6383 Entry.second = GV;
6384
6385 return ConstantAddress(GV, GV->getValueType(), Alignment);
6386 }
6387
getExpressionLocationsEnabled() const6388 bool CodeGenModule::getExpressionLocationsEnabled() const {
6389 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6390 }
6391
getObjCFastEnumerationStateType()6392 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6393 if (ObjCFastEnumerationStateType.isNull()) {
6394 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6395 D->startDefinition();
6396
6397 QualType FieldTypes[] = {
6398 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6399 Context.getPointerType(Context.UnsignedLongTy),
6400 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6401 nullptr, ArraySizeModifier::Normal, 0)};
6402
6403 for (size_t i = 0; i < 4; ++i) {
6404 FieldDecl *Field = FieldDecl::Create(Context,
6405 D,
6406 SourceLocation(),
6407 SourceLocation(), nullptr,
6408 FieldTypes[i], /*TInfo=*/nullptr,
6409 /*BitWidth=*/nullptr,
6410 /*Mutable=*/false,
6411 ICIS_NoInit);
6412 Field->setAccess(AS_public);
6413 D->addDecl(Field);
6414 }
6415
6416 D->completeDefinition();
6417 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6418 }
6419
6420 return ObjCFastEnumerationStateType;
6421 }
6422
6423 llvm::Constant *
GetConstantArrayFromStringLiteral(const StringLiteral * E)6424 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6425 assert(!E->getType()->isPointerType() && "Strings are always arrays");
6426
6427 // Don't emit it as the address of the string, emit the string data itself
6428 // as an inline array.
6429 if (E->getCharByteWidth() == 1) {
6430 SmallString<64> Str(E->getString());
6431
6432 // Resize the string to the right size, which is indicated by its type.
6433 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6434 assert(CAT && "String literal not of constant array type!");
6435 Str.resize(CAT->getZExtSize());
6436 return llvm::ConstantDataArray::getString(VMContext, Str, false);
6437 }
6438
6439 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6440 llvm::Type *ElemTy = AType->getElementType();
6441 unsigned NumElements = AType->getNumElements();
6442
6443 // Wide strings have either 2-byte or 4-byte elements.
6444 if (ElemTy->getPrimitiveSizeInBits() == 16) {
6445 SmallVector<uint16_t, 32> Elements;
6446 Elements.reserve(NumElements);
6447
6448 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6449 Elements.push_back(E->getCodeUnit(i));
6450 Elements.resize(NumElements);
6451 return llvm::ConstantDataArray::get(VMContext, Elements);
6452 }
6453
6454 assert(ElemTy->getPrimitiveSizeInBits() == 32);
6455 SmallVector<uint32_t, 32> Elements;
6456 Elements.reserve(NumElements);
6457
6458 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6459 Elements.push_back(E->getCodeUnit(i));
6460 Elements.resize(NumElements);
6461 return llvm::ConstantDataArray::get(VMContext, Elements);
6462 }
6463
6464 static llvm::GlobalVariable *
GenerateStringLiteral(llvm::Constant * C,llvm::GlobalValue::LinkageTypes LT,CodeGenModule & CGM,StringRef GlobalName,CharUnits Alignment)6465 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6466 CodeGenModule &CGM, StringRef GlobalName,
6467 CharUnits Alignment) {
6468 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6469 CGM.GetGlobalConstantAddressSpace());
6470
6471 llvm::Module &M = CGM.getModule();
6472 // Create a global variable for this string
6473 auto *GV = new llvm::GlobalVariable(
6474 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6475 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6476 GV->setAlignment(Alignment.getAsAlign());
6477 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6478 if (GV->isWeakForLinker()) {
6479 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6480 GV->setComdat(M.getOrInsertComdat(GV->getName()));
6481 }
6482 CGM.setDSOLocal(GV);
6483
6484 return GV;
6485 }
6486
6487 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6488 /// constant array for the given string literal.
6489 ConstantAddress
GetAddrOfConstantStringFromLiteral(const StringLiteral * S,StringRef Name)6490 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6491 StringRef Name) {
6492 CharUnits Alignment =
6493 getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6494
6495 llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6496 llvm::GlobalVariable **Entry = nullptr;
6497 if (!LangOpts.WritableStrings) {
6498 Entry = &ConstantStringMap[C];
6499 if (auto GV = *Entry) {
6500 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6501 GV->setAlignment(Alignment.getAsAlign());
6502 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6503 GV->getValueType(), Alignment);
6504 }
6505 }
6506
6507 SmallString<256> MangledNameBuffer;
6508 StringRef GlobalVariableName;
6509 llvm::GlobalValue::LinkageTypes LT;
6510
6511 // Mangle the string literal if that's how the ABI merges duplicate strings.
6512 // Don't do it if they are writable, since we don't want writes in one TU to
6513 // affect strings in another.
6514 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6515 !LangOpts.WritableStrings) {
6516 llvm::raw_svector_ostream Out(MangledNameBuffer);
6517 getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6518 LT = llvm::GlobalValue::LinkOnceODRLinkage;
6519 GlobalVariableName = MangledNameBuffer;
6520 } else {
6521 LT = llvm::GlobalValue::PrivateLinkage;
6522 GlobalVariableName = Name;
6523 }
6524
6525 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6526
6527 CGDebugInfo *DI = getModuleDebugInfo();
6528 if (DI && getCodeGenOpts().hasReducedDebugInfo())
6529 DI->AddStringLiteralDebugInfo(GV, S);
6530
6531 if (Entry)
6532 *Entry = GV;
6533
6534 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6535
6536 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6537 GV->getValueType(), Alignment);
6538 }
6539
6540 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6541 /// array for the given ObjCEncodeExpr node.
6542 ConstantAddress
GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr * E)6543 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6544 std::string Str;
6545 getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6546
6547 return GetAddrOfConstantCString(Str);
6548 }
6549
6550 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6551 /// the literal and a terminating '\0' character.
6552 /// The result has pointer to array type.
GetAddrOfConstantCString(const std::string & Str,const char * GlobalName)6553 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6554 const std::string &Str, const char *GlobalName) {
6555 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6556 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6557 getContext().CharTy, /*VD=*/nullptr);
6558
6559 llvm::Constant *C =
6560 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6561
6562 // Don't share any string literals if strings aren't constant.
6563 llvm::GlobalVariable **Entry = nullptr;
6564 if (!LangOpts.WritableStrings) {
6565 Entry = &ConstantStringMap[C];
6566 if (auto GV = *Entry) {
6567 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6568 GV->setAlignment(Alignment.getAsAlign());
6569 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6570 GV->getValueType(), Alignment);
6571 }
6572 }
6573
6574 // Get the default prefix if a name wasn't specified.
6575 if (!GlobalName)
6576 GlobalName = ".str";
6577 // Create a global variable for this.
6578 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6579 GlobalName, Alignment);
6580 if (Entry)
6581 *Entry = GV;
6582
6583 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6584 GV->getValueType(), Alignment);
6585 }
6586
GetAddrOfGlobalTemporary(const MaterializeTemporaryExpr * E,const Expr * Init)6587 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6588 const MaterializeTemporaryExpr *E, const Expr *Init) {
6589 assert((E->getStorageDuration() == SD_Static ||
6590 E->getStorageDuration() == SD_Thread) && "not a global temporary");
6591 const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6592
6593 // If we're not materializing a subobject of the temporary, keep the
6594 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6595 QualType MaterializedType = Init->getType();
6596 if (Init == E->getSubExpr())
6597 MaterializedType = E->getType();
6598
6599 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6600
6601 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6602 if (!InsertResult.second) {
6603 // We've seen this before: either we already created it or we're in the
6604 // process of doing so.
6605 if (!InsertResult.first->second) {
6606 // We recursively re-entered this function, probably during emission of
6607 // the initializer. Create a placeholder. We'll clean this up in the
6608 // outer call, at the end of this function.
6609 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6610 InsertResult.first->second = new llvm::GlobalVariable(
6611 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6612 nullptr);
6613 }
6614 return ConstantAddress(InsertResult.first->second,
6615 llvm::cast<llvm::GlobalVariable>(
6616 InsertResult.first->second->stripPointerCasts())
6617 ->getValueType(),
6618 Align);
6619 }
6620
6621 // FIXME: If an externally-visible declaration extends multiple temporaries,
6622 // we need to give each temporary the same name in every translation unit (and
6623 // we also need to make the temporaries externally-visible).
6624 SmallString<256> Name;
6625 llvm::raw_svector_ostream Out(Name);
6626 getCXXABI().getMangleContext().mangleReferenceTemporary(
6627 VD, E->getManglingNumber(), Out);
6628
6629 APValue *Value = nullptr;
6630 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6631 // If the initializer of the extending declaration is a constant
6632 // initializer, we should have a cached constant initializer for this
6633 // temporary. Note that this might have a different value from the value
6634 // computed by evaluating the initializer if the surrounding constant
6635 // expression modifies the temporary.
6636 Value = E->getOrCreateValue(false);
6637 }
6638
6639 // Try evaluating it now, it might have a constant initializer.
6640 Expr::EvalResult EvalResult;
6641 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6642 !EvalResult.hasSideEffects())
6643 Value = &EvalResult.Val;
6644
6645 LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6646
6647 std::optional<ConstantEmitter> emitter;
6648 llvm::Constant *InitialValue = nullptr;
6649 bool Constant = false;
6650 llvm::Type *Type;
6651 if (Value) {
6652 // The temporary has a constant initializer, use it.
6653 emitter.emplace(*this);
6654 InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6655 MaterializedType);
6656 Constant =
6657 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6658 /*ExcludeDtor*/ false);
6659 Type = InitialValue->getType();
6660 } else {
6661 // No initializer, the initialization will be provided when we
6662 // initialize the declaration which performed lifetime extension.
6663 Type = getTypes().ConvertTypeForMem(MaterializedType);
6664 }
6665
6666 // Create a global variable for this lifetime-extended temporary.
6667 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6668 if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6669 const VarDecl *InitVD;
6670 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6671 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6672 // Temporaries defined inside a class get linkonce_odr linkage because the
6673 // class can be defined in multiple translation units.
6674 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6675 } else {
6676 // There is no need for this temporary to have external linkage if the
6677 // VarDecl has external linkage.
6678 Linkage = llvm::GlobalVariable::InternalLinkage;
6679 }
6680 }
6681 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6682 auto *GV = new llvm::GlobalVariable(
6683 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6684 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6685 if (emitter) emitter->finalize(GV);
6686 // Don't assign dllimport or dllexport to local linkage globals.
6687 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6688 setGVProperties(GV, VD);
6689 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6690 // The reference temporary should never be dllexport.
6691 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6692 }
6693 GV->setAlignment(Align.getAsAlign());
6694 if (supportsCOMDAT() && GV->isWeakForLinker())
6695 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6696 if (VD->getTLSKind())
6697 setTLSMode(GV, *VD);
6698 llvm::Constant *CV = GV;
6699 if (AddrSpace != LangAS::Default)
6700 CV = getTargetCodeGenInfo().performAddrSpaceCast(
6701 *this, GV, AddrSpace, LangAS::Default,
6702 llvm::PointerType::get(
6703 getLLVMContext(),
6704 getContext().getTargetAddressSpace(LangAS::Default)));
6705
6706 // Update the map with the new temporary. If we created a placeholder above,
6707 // replace it with the new global now.
6708 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6709 if (Entry) {
6710 Entry->replaceAllUsesWith(CV);
6711 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6712 }
6713 Entry = CV;
6714
6715 return ConstantAddress(CV, Type, Align);
6716 }
6717
6718 /// EmitObjCPropertyImplementations - Emit information for synthesized
6719 /// properties for an implementation.
EmitObjCPropertyImplementations(const ObjCImplementationDecl * D)6720 void CodeGenModule::EmitObjCPropertyImplementations(const
6721 ObjCImplementationDecl *D) {
6722 for (const auto *PID : D->property_impls()) {
6723 // Dynamic is just for type-checking.
6724 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6725 ObjCPropertyDecl *PD = PID->getPropertyDecl();
6726
6727 // Determine which methods need to be implemented, some may have
6728 // been overridden. Note that ::isPropertyAccessor is not the method
6729 // we want, that just indicates if the decl came from a
6730 // property. What we want to know is if the method is defined in
6731 // this implementation.
6732 auto *Getter = PID->getGetterMethodDecl();
6733 if (!Getter || Getter->isSynthesizedAccessorStub())
6734 CodeGenFunction(*this).GenerateObjCGetter(
6735 const_cast<ObjCImplementationDecl *>(D), PID);
6736 auto *Setter = PID->getSetterMethodDecl();
6737 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6738 CodeGenFunction(*this).GenerateObjCSetter(
6739 const_cast<ObjCImplementationDecl *>(D), PID);
6740 }
6741 }
6742 }
6743
needsDestructMethod(ObjCImplementationDecl * impl)6744 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6745 const ObjCInterfaceDecl *iface = impl->getClassInterface();
6746 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6747 ivar; ivar = ivar->getNextIvar())
6748 if (ivar->getType().isDestructedType())
6749 return true;
6750
6751 return false;
6752 }
6753
AllTrivialInitializers(CodeGenModule & CGM,ObjCImplementationDecl * D)6754 static bool AllTrivialInitializers(CodeGenModule &CGM,
6755 ObjCImplementationDecl *D) {
6756 CodeGenFunction CGF(CGM);
6757 for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6758 E = D->init_end(); B != E; ++B) {
6759 CXXCtorInitializer *CtorInitExp = *B;
6760 Expr *Init = CtorInitExp->getInit();
6761 if (!CGF.isTrivialInitializer(Init))
6762 return false;
6763 }
6764 return true;
6765 }
6766
6767 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6768 /// for an implementation.
EmitObjCIvarInitializations(ObjCImplementationDecl * D)6769 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6770 // We might need a .cxx_destruct even if we don't have any ivar initializers.
6771 if (needsDestructMethod(D)) {
6772 const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6773 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6774 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6775 getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6776 getContext().VoidTy, nullptr, D,
6777 /*isInstance=*/true, /*isVariadic=*/false,
6778 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6779 /*isImplicitlyDeclared=*/true,
6780 /*isDefined=*/false, ObjCImplementationControl::Required);
6781 D->addInstanceMethod(DTORMethod);
6782 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6783 D->setHasDestructors(true);
6784 }
6785
6786 // If the implementation doesn't have any ivar initializers, we don't need
6787 // a .cxx_construct.
6788 if (D->getNumIvarInitializers() == 0 ||
6789 AllTrivialInitializers(*this, D))
6790 return;
6791
6792 const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6793 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6794 // The constructor returns 'self'.
6795 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6796 getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6797 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6798 /*isVariadic=*/false,
6799 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6800 /*isImplicitlyDeclared=*/true,
6801 /*isDefined=*/false, ObjCImplementationControl::Required);
6802 D->addInstanceMethod(CTORMethod);
6803 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6804 D->setHasNonZeroConstructors(true);
6805 }
6806
6807 // EmitLinkageSpec - Emit all declarations in a linkage spec.
EmitLinkageSpec(const LinkageSpecDecl * LSD)6808 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6809 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6810 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6811 ErrorUnsupported(LSD, "linkage spec");
6812 return;
6813 }
6814
6815 EmitDeclContext(LSD);
6816 }
6817
EmitTopLevelStmt(const TopLevelStmtDecl * D)6818 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6819 // Device code should not be at top level.
6820 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6821 return;
6822
6823 std::unique_ptr<CodeGenFunction> &CurCGF =
6824 GlobalTopLevelStmtBlockInFlight.first;
6825
6826 // We emitted a top-level stmt but after it there is initialization.
6827 // Stop squashing the top-level stmts into a single function.
6828 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6829 CurCGF->FinishFunction(D->getEndLoc());
6830 CurCGF = nullptr;
6831 }
6832
6833 if (!CurCGF) {
6834 // void __stmts__N(void)
6835 // FIXME: Ask the ABI name mangler to pick a name.
6836 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6837 FunctionArgList Args;
6838 QualType RetTy = getContext().VoidTy;
6839 const CGFunctionInfo &FnInfo =
6840 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6841 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6842 llvm::Function *Fn = llvm::Function::Create(
6843 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6844
6845 CurCGF.reset(new CodeGenFunction(*this));
6846 GlobalTopLevelStmtBlockInFlight.second = D;
6847 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6848 D->getBeginLoc(), D->getBeginLoc());
6849 CXXGlobalInits.push_back(Fn);
6850 }
6851
6852 CurCGF->EmitStmt(D->getStmt());
6853 }
6854
EmitDeclContext(const DeclContext * DC)6855 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6856 for (auto *I : DC->decls()) {
6857 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6858 // are themselves considered "top-level", so EmitTopLevelDecl on an
6859 // ObjCImplDecl does not recursively visit them. We need to do that in
6860 // case they're nested inside another construct (LinkageSpecDecl /
6861 // ExportDecl) that does stop them from being considered "top-level".
6862 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6863 for (auto *M : OID->methods())
6864 EmitTopLevelDecl(M);
6865 }
6866
6867 EmitTopLevelDecl(I);
6868 }
6869 }
6870
6871 /// EmitTopLevelDecl - Emit code for a single top level declaration.
EmitTopLevelDecl(Decl * D)6872 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6873 // Ignore dependent declarations.
6874 if (D->isTemplated())
6875 return;
6876
6877 // Consteval function shouldn't be emitted.
6878 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6879 return;
6880
6881 switch (D->getKind()) {
6882 case Decl::CXXConversion:
6883 case Decl::CXXMethod:
6884 case Decl::Function:
6885 EmitGlobal(cast<FunctionDecl>(D));
6886 // Always provide some coverage mapping
6887 // even for the functions that aren't emitted.
6888 AddDeferredUnusedCoverageMapping(D);
6889 break;
6890
6891 case Decl::CXXDeductionGuide:
6892 // Function-like, but does not result in code emission.
6893 break;
6894
6895 case Decl::Var:
6896 case Decl::Decomposition:
6897 case Decl::VarTemplateSpecialization:
6898 EmitGlobal(cast<VarDecl>(D));
6899 if (auto *DD = dyn_cast<DecompositionDecl>(D))
6900 for (auto *B : DD->bindings())
6901 if (auto *HD = B->getHoldingVar())
6902 EmitGlobal(HD);
6903 break;
6904
6905 // Indirect fields from global anonymous structs and unions can be
6906 // ignored; only the actual variable requires IR gen support.
6907 case Decl::IndirectField:
6908 break;
6909
6910 // C++ Decls
6911 case Decl::Namespace:
6912 EmitDeclContext(cast<NamespaceDecl>(D));
6913 break;
6914 case Decl::ClassTemplateSpecialization: {
6915 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6916 if (CGDebugInfo *DI = getModuleDebugInfo())
6917 if (Spec->getSpecializationKind() ==
6918 TSK_ExplicitInstantiationDefinition &&
6919 Spec->hasDefinition())
6920 DI->completeTemplateDefinition(*Spec);
6921 } [[fallthrough]];
6922 case Decl::CXXRecord: {
6923 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6924 if (CGDebugInfo *DI = getModuleDebugInfo()) {
6925 if (CRD->hasDefinition())
6926 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6927 if (auto *ES = D->getASTContext().getExternalSource())
6928 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6929 DI->completeUnusedClass(*CRD);
6930 }
6931 // Emit any static data members, they may be definitions.
6932 for (auto *I : CRD->decls())
6933 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6934 EmitTopLevelDecl(I);
6935 break;
6936 }
6937 // No code generation needed.
6938 case Decl::UsingShadow:
6939 case Decl::ClassTemplate:
6940 case Decl::VarTemplate:
6941 case Decl::Concept:
6942 case Decl::VarTemplatePartialSpecialization:
6943 case Decl::FunctionTemplate:
6944 case Decl::TypeAliasTemplate:
6945 case Decl::Block:
6946 case Decl::Empty:
6947 case Decl::Binding:
6948 break;
6949 case Decl::Using: // using X; [C++]
6950 if (CGDebugInfo *DI = getModuleDebugInfo())
6951 DI->EmitUsingDecl(cast<UsingDecl>(*D));
6952 break;
6953 case Decl::UsingEnum: // using enum X; [C++]
6954 if (CGDebugInfo *DI = getModuleDebugInfo())
6955 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6956 break;
6957 case Decl::NamespaceAlias:
6958 if (CGDebugInfo *DI = getModuleDebugInfo())
6959 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6960 break;
6961 case Decl::UsingDirective: // using namespace X; [C++]
6962 if (CGDebugInfo *DI = getModuleDebugInfo())
6963 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6964 break;
6965 case Decl::CXXConstructor:
6966 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6967 break;
6968 case Decl::CXXDestructor:
6969 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6970 break;
6971
6972 case Decl::StaticAssert:
6973 // Nothing to do.
6974 break;
6975
6976 // Objective-C Decls
6977
6978 // Forward declarations, no (immediate) code generation.
6979 case Decl::ObjCInterface:
6980 case Decl::ObjCCategory:
6981 break;
6982
6983 case Decl::ObjCProtocol: {
6984 auto *Proto = cast<ObjCProtocolDecl>(D);
6985 if (Proto->isThisDeclarationADefinition())
6986 ObjCRuntime->GenerateProtocol(Proto);
6987 break;
6988 }
6989
6990 case Decl::ObjCCategoryImpl:
6991 // Categories have properties but don't support synthesize so we
6992 // can ignore them here.
6993 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6994 break;
6995
6996 case Decl::ObjCImplementation: {
6997 auto *OMD = cast<ObjCImplementationDecl>(D);
6998 EmitObjCPropertyImplementations(OMD);
6999 EmitObjCIvarInitializations(OMD);
7000 ObjCRuntime->GenerateClass(OMD);
7001 // Emit global variable debug information.
7002 if (CGDebugInfo *DI = getModuleDebugInfo())
7003 if (getCodeGenOpts().hasReducedDebugInfo())
7004 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
7005 OMD->getClassInterface()), OMD->getLocation());
7006 break;
7007 }
7008 case Decl::ObjCMethod: {
7009 auto *OMD = cast<ObjCMethodDecl>(D);
7010 // If this is not a prototype, emit the body.
7011 if (OMD->getBody())
7012 CodeGenFunction(*this).GenerateObjCMethod(OMD);
7013 break;
7014 }
7015 case Decl::ObjCCompatibleAlias:
7016 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
7017 break;
7018
7019 case Decl::PragmaComment: {
7020 const auto *PCD = cast<PragmaCommentDecl>(D);
7021 switch (PCD->getCommentKind()) {
7022 case PCK_Unknown:
7023 llvm_unreachable("unexpected pragma comment kind");
7024 case PCK_Linker:
7025 AppendLinkerOptions(PCD->getArg());
7026 break;
7027 case PCK_Lib:
7028 AddDependentLib(PCD->getArg());
7029 break;
7030 case PCK_Compiler:
7031 case PCK_ExeStr:
7032 case PCK_User:
7033 break; // We ignore all of these.
7034 }
7035 break;
7036 }
7037
7038 case Decl::PragmaDetectMismatch: {
7039 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
7040 AddDetectMismatch(PDMD->getName(), PDMD->getValue());
7041 break;
7042 }
7043
7044 case Decl::LinkageSpec:
7045 EmitLinkageSpec(cast<LinkageSpecDecl>(D));
7046 break;
7047
7048 case Decl::FileScopeAsm: {
7049 // File-scope asm is ignored during device-side CUDA compilation.
7050 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
7051 break;
7052 // File-scope asm is ignored during device-side OpenMP compilation.
7053 if (LangOpts.OpenMPIsTargetDevice)
7054 break;
7055 // File-scope asm is ignored during device-side SYCL compilation.
7056 if (LangOpts.SYCLIsDevice)
7057 break;
7058 auto *AD = cast<FileScopeAsmDecl>(D);
7059 getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
7060 break;
7061 }
7062
7063 case Decl::TopLevelStmt:
7064 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
7065 break;
7066
7067 case Decl::Import: {
7068 auto *Import = cast<ImportDecl>(D);
7069
7070 // If we've already imported this module, we're done.
7071 if (!ImportedModules.insert(Import->getImportedModule()))
7072 break;
7073
7074 // Emit debug information for direct imports.
7075 if (!Import->getImportedOwningModule()) {
7076 if (CGDebugInfo *DI = getModuleDebugInfo())
7077 DI->EmitImportDecl(*Import);
7078 }
7079
7080 // For C++ standard modules we are done - we will call the module
7081 // initializer for imported modules, and that will likewise call those for
7082 // any imports it has.
7083 if (CXX20ModuleInits && Import->getImportedOwningModule() &&
7084 !Import->getImportedOwningModule()->isModuleMapModule())
7085 break;
7086
7087 // For clang C++ module map modules the initializers for sub-modules are
7088 // emitted here.
7089
7090 // Find all of the submodules and emit the module initializers.
7091 llvm::SmallPtrSet<clang::Module *, 16> Visited;
7092 SmallVector<clang::Module *, 16> Stack;
7093 Visited.insert(Import->getImportedModule());
7094 Stack.push_back(Import->getImportedModule());
7095
7096 while (!Stack.empty()) {
7097 clang::Module *Mod = Stack.pop_back_val();
7098 if (!EmittedModuleInitializers.insert(Mod).second)
7099 continue;
7100
7101 for (auto *D : Context.getModuleInitializers(Mod))
7102 EmitTopLevelDecl(D);
7103
7104 // Visit the submodules of this module.
7105 for (auto *Submodule : Mod->submodules()) {
7106 // Skip explicit children; they need to be explicitly imported to emit
7107 // the initializers.
7108 if (Submodule->IsExplicit)
7109 continue;
7110
7111 if (Visited.insert(Submodule).second)
7112 Stack.push_back(Submodule);
7113 }
7114 }
7115 break;
7116 }
7117
7118 case Decl::Export:
7119 EmitDeclContext(cast<ExportDecl>(D));
7120 break;
7121
7122 case Decl::OMPThreadPrivate:
7123 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7124 break;
7125
7126 case Decl::OMPAllocate:
7127 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7128 break;
7129
7130 case Decl::OMPDeclareReduction:
7131 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7132 break;
7133
7134 case Decl::OMPDeclareMapper:
7135 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7136 break;
7137
7138 case Decl::OMPRequires:
7139 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7140 break;
7141
7142 case Decl::Typedef:
7143 case Decl::TypeAlias: // using foo = bar; [C++11]
7144 if (CGDebugInfo *DI = getModuleDebugInfo())
7145 DI->EmitAndRetainType(
7146 getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7147 break;
7148
7149 case Decl::Record:
7150 if (CGDebugInfo *DI = getModuleDebugInfo())
7151 if (cast<RecordDecl>(D)->getDefinition())
7152 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7153 break;
7154
7155 case Decl::Enum:
7156 if (CGDebugInfo *DI = getModuleDebugInfo())
7157 if (cast<EnumDecl>(D)->getDefinition())
7158 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7159 break;
7160
7161 case Decl::HLSLBuffer:
7162 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7163 break;
7164
7165 default:
7166 // Make sure we handled everything we should, every other kind is a
7167 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
7168 // function. Need to recode Decl::Kind to do that easily.
7169 assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7170 break;
7171 }
7172 }
7173
AddDeferredUnusedCoverageMapping(Decl * D)7174 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7175 // Do we need to generate coverage mapping?
7176 if (!CodeGenOpts.CoverageMapping)
7177 return;
7178 switch (D->getKind()) {
7179 case Decl::CXXConversion:
7180 case Decl::CXXMethod:
7181 case Decl::Function:
7182 case Decl::ObjCMethod:
7183 case Decl::CXXConstructor:
7184 case Decl::CXXDestructor: {
7185 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7186 break;
7187 SourceManager &SM = getContext().getSourceManager();
7188 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7189 break;
7190 if (!llvm::coverage::SystemHeadersCoverage &&
7191 SM.isInSystemHeader(D->getBeginLoc()))
7192 break;
7193 DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7194 break;
7195 }
7196 default:
7197 break;
7198 };
7199 }
7200
ClearUnusedCoverageMapping(const Decl * D)7201 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7202 // Do we need to generate coverage mapping?
7203 if (!CodeGenOpts.CoverageMapping)
7204 return;
7205 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7206 if (Fn->isTemplateInstantiation())
7207 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7208 }
7209 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7210 }
7211
EmitDeferredUnusedCoverageMappings()7212 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7213 // We call takeVector() here to avoid use-after-free.
7214 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7215 // we deserialize function bodies to emit coverage info for them, and that
7216 // deserializes more declarations. How should we handle that case?
7217 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7218 if (!Entry.second)
7219 continue;
7220 const Decl *D = Entry.first;
7221 switch (D->getKind()) {
7222 case Decl::CXXConversion:
7223 case Decl::CXXMethod:
7224 case Decl::Function:
7225 case Decl::ObjCMethod: {
7226 CodeGenPGO PGO(*this);
7227 GlobalDecl GD(cast<FunctionDecl>(D));
7228 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7229 getFunctionLinkage(GD));
7230 break;
7231 }
7232 case Decl::CXXConstructor: {
7233 CodeGenPGO PGO(*this);
7234 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7235 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7236 getFunctionLinkage(GD));
7237 break;
7238 }
7239 case Decl::CXXDestructor: {
7240 CodeGenPGO PGO(*this);
7241 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7242 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7243 getFunctionLinkage(GD));
7244 break;
7245 }
7246 default:
7247 break;
7248 };
7249 }
7250 }
7251
EmitMainVoidAlias()7252 void CodeGenModule::EmitMainVoidAlias() {
7253 // In order to transition away from "__original_main" gracefully, emit an
7254 // alias for "main" in the no-argument case so that libc can detect when
7255 // new-style no-argument main is in used.
7256 if (llvm::Function *F = getModule().getFunction("main")) {
7257 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7258 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7259 auto *GA = llvm::GlobalAlias::create("__main_void", F);
7260 GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7261 }
7262 }
7263 }
7264
7265 /// Turns the given pointer into a constant.
GetPointerConstant(llvm::LLVMContext & Context,const void * Ptr)7266 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7267 const void *Ptr) {
7268 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7269 llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7270 return llvm::ConstantInt::get(i64, PtrInt);
7271 }
7272
EmitGlobalDeclMetadata(CodeGenModule & CGM,llvm::NamedMDNode * & GlobalMetadata,GlobalDecl D,llvm::GlobalValue * Addr)7273 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7274 llvm::NamedMDNode *&GlobalMetadata,
7275 GlobalDecl D,
7276 llvm::GlobalValue *Addr) {
7277 if (!GlobalMetadata)
7278 GlobalMetadata =
7279 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7280
7281 // TODO: should we report variant information for ctors/dtors?
7282 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7283 llvm::ConstantAsMetadata::get(GetPointerConstant(
7284 CGM.getLLVMContext(), D.getDecl()))};
7285 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7286 }
7287
CheckAndReplaceExternCIFuncs(llvm::GlobalValue * Elem,llvm::GlobalValue * CppFunc)7288 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7289 llvm::GlobalValue *CppFunc) {
7290 // Store the list of ifuncs we need to replace uses in.
7291 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7292 // List of ConstantExprs that we should be able to delete when we're done
7293 // here.
7294 llvm::SmallVector<llvm::ConstantExpr *> CEs;
7295
7296 // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7297 if (Elem == CppFunc)
7298 return false;
7299
7300 // First make sure that all users of this are ifuncs (or ifuncs via a
7301 // bitcast), and collect the list of ifuncs and CEs so we can work on them
7302 // later.
7303 for (llvm::User *User : Elem->users()) {
7304 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7305 // ifunc directly. In any other case, just give up, as we don't know what we
7306 // could break by changing those.
7307 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7308 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7309 return false;
7310
7311 for (llvm::User *CEUser : ConstExpr->users()) {
7312 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7313 IFuncs.push_back(IFunc);
7314 } else {
7315 return false;
7316 }
7317 }
7318 CEs.push_back(ConstExpr);
7319 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7320 IFuncs.push_back(IFunc);
7321 } else {
7322 // This user is one we don't know how to handle, so fail redirection. This
7323 // will result in an ifunc retaining a resolver name that will ultimately
7324 // fail to be resolved to a defined function.
7325 return false;
7326 }
7327 }
7328
7329 // Now we know this is a valid case where we can do this alias replacement, we
7330 // need to remove all of the references to Elem (and the bitcasts!) so we can
7331 // delete it.
7332 for (llvm::GlobalIFunc *IFunc : IFuncs)
7333 IFunc->setResolver(nullptr);
7334 for (llvm::ConstantExpr *ConstExpr : CEs)
7335 ConstExpr->destroyConstant();
7336
7337 // We should now be out of uses for the 'old' version of this function, so we
7338 // can erase it as well.
7339 Elem->eraseFromParent();
7340
7341 for (llvm::GlobalIFunc *IFunc : IFuncs) {
7342 // The type of the resolver is always just a function-type that returns the
7343 // type of the IFunc, so create that here. If the type of the actual
7344 // resolver doesn't match, it just gets bitcast to the right thing.
7345 auto *ResolverTy =
7346 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7347 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7348 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7349 IFunc->setResolver(Resolver);
7350 }
7351 return true;
7352 }
7353
7354 /// For each function which is declared within an extern "C" region and marked
7355 /// as 'used', but has internal linkage, create an alias from the unmangled
7356 /// name to the mangled name if possible. People expect to be able to refer
7357 /// to such functions with an unmangled name from inline assembly within the
7358 /// same translation unit.
EmitStaticExternCAliases()7359 void CodeGenModule::EmitStaticExternCAliases() {
7360 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7361 return;
7362 for (auto &I : StaticExternCValues) {
7363 const IdentifierInfo *Name = I.first;
7364 llvm::GlobalValue *Val = I.second;
7365
7366 // If Val is null, that implies there were multiple declarations that each
7367 // had a claim to the unmangled name. In this case, generation of the alias
7368 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7369 if (!Val)
7370 break;
7371
7372 llvm::GlobalValue *ExistingElem =
7373 getModule().getNamedValue(Name->getName());
7374
7375 // If there is either not something already by this name, or we were able to
7376 // replace all uses from IFuncs, create the alias.
7377 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7378 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7379 }
7380 }
7381
lookupRepresentativeDecl(StringRef MangledName,GlobalDecl & Result) const7382 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7383 GlobalDecl &Result) const {
7384 auto Res = Manglings.find(MangledName);
7385 if (Res == Manglings.end())
7386 return false;
7387 Result = Res->getValue();
7388 return true;
7389 }
7390
7391 /// Emits metadata nodes associating all the global values in the
7392 /// current module with the Decls they came from. This is useful for
7393 /// projects using IR gen as a subroutine.
7394 ///
7395 /// Since there's currently no way to associate an MDNode directly
7396 /// with an llvm::GlobalValue, we create a global named metadata
7397 /// with the name 'clang.global.decl.ptrs'.
EmitDeclMetadata()7398 void CodeGenModule::EmitDeclMetadata() {
7399 llvm::NamedMDNode *GlobalMetadata = nullptr;
7400
7401 for (auto &I : MangledDeclNames) {
7402 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7403 // Some mangled names don't necessarily have an associated GlobalValue
7404 // in this module, e.g. if we mangled it for DebugInfo.
7405 if (Addr)
7406 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7407 }
7408 }
7409
7410 /// Emits metadata nodes for all the local variables in the current
7411 /// function.
EmitDeclMetadata()7412 void CodeGenFunction::EmitDeclMetadata() {
7413 if (LocalDeclMap.empty()) return;
7414
7415 llvm::LLVMContext &Context = getLLVMContext();
7416
7417 // Find the unique metadata ID for this name.
7418 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7419
7420 llvm::NamedMDNode *GlobalMetadata = nullptr;
7421
7422 for (auto &I : LocalDeclMap) {
7423 const Decl *D = I.first;
7424 llvm::Value *Addr = I.second.emitRawPointer(*this);
7425 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7426 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7427 Alloca->setMetadata(
7428 DeclPtrKind, llvm::MDNode::get(
7429 Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7430 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7431 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7432 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7433 }
7434 }
7435 }
7436
EmitVersionIdentMetadata()7437 void CodeGenModule::EmitVersionIdentMetadata() {
7438 llvm::NamedMDNode *IdentMetadata =
7439 TheModule.getOrInsertNamedMetadata("llvm.ident");
7440 std::string Version = getClangFullVersion();
7441 llvm::LLVMContext &Ctx = TheModule.getContext();
7442
7443 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7444 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7445 }
7446
EmitCommandLineMetadata()7447 void CodeGenModule::EmitCommandLineMetadata() {
7448 llvm::NamedMDNode *CommandLineMetadata =
7449 TheModule.getOrInsertNamedMetadata("llvm.commandline");
7450 std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7451 llvm::LLVMContext &Ctx = TheModule.getContext();
7452
7453 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7454 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7455 }
7456
EmitCoverageFile()7457 void CodeGenModule::EmitCoverageFile() {
7458 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7459 if (!CUNode)
7460 return;
7461
7462 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7463 llvm::LLVMContext &Ctx = TheModule.getContext();
7464 auto *CoverageDataFile =
7465 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7466 auto *CoverageNotesFile =
7467 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7468 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7469 llvm::MDNode *CU = CUNode->getOperand(i);
7470 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7471 GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7472 }
7473 }
7474
GetAddrOfRTTIDescriptor(QualType Ty,bool ForEH)7475 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7476 bool ForEH) {
7477 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7478 // FIXME: should we even be calling this method if RTTI is disabled
7479 // and it's not for EH?
7480 if (!shouldEmitRTTI(ForEH))
7481 return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7482
7483 if (ForEH && Ty->isObjCObjectPointerType() &&
7484 LangOpts.ObjCRuntime.isGNUFamily())
7485 return ObjCRuntime->GetEHType(Ty);
7486
7487 return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7488 }
7489
EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl * D)7490 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7491 // Do not emit threadprivates in simd-only mode.
7492 if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7493 return;
7494 for (auto RefExpr : D->varlists()) {
7495 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7496 bool PerformInit =
7497 VD->getAnyInitializer() &&
7498 !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7499 /*ForRef=*/false);
7500
7501 Address Addr(GetAddrOfGlobalVar(VD),
7502 getTypes().ConvertTypeForMem(VD->getType()),
7503 getContext().getDeclAlign(VD));
7504 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7505 VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7506 CXXGlobalInits.push_back(InitFunction);
7507 }
7508 }
7509
7510 llvm::Metadata *
CreateMetadataIdentifierImpl(QualType T,MetadataTypeMap & Map,StringRef Suffix)7511 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7512 StringRef Suffix) {
7513 if (auto *FnType = T->getAs<FunctionProtoType>())
7514 T = getContext().getFunctionType(
7515 FnType->getReturnType(), FnType->getParamTypes(),
7516 FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7517
7518 llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7519 if (InternalId)
7520 return InternalId;
7521
7522 if (isExternallyVisible(T->getLinkage())) {
7523 std::string OutName;
7524 llvm::raw_string_ostream Out(OutName);
7525 getCXXABI().getMangleContext().mangleCanonicalTypeName(
7526 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7527
7528 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7529 Out << ".normalized";
7530
7531 Out << Suffix;
7532
7533 InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7534 } else {
7535 InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7536 llvm::ArrayRef<llvm::Metadata *>());
7537 }
7538
7539 return InternalId;
7540 }
7541
CreateMetadataIdentifierForType(QualType T)7542 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7543 return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7544 }
7545
7546 llvm::Metadata *
CreateMetadataIdentifierForVirtualMemPtrType(QualType T)7547 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7548 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7549 }
7550
7551 // Generalize pointer types to a void pointer with the qualifiers of the
7552 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7553 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7554 // 'void *'.
GeneralizeType(ASTContext & Ctx,QualType Ty)7555 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7556 if (!Ty->isPointerType())
7557 return Ty;
7558
7559 return Ctx.getPointerType(
7560 QualType(Ctx.VoidTy).withCVRQualifiers(
7561 Ty->getPointeeType().getCVRQualifiers()));
7562 }
7563
7564 // Apply type generalization to a FunctionType's return and argument types
GeneralizeFunctionType(ASTContext & Ctx,QualType Ty)7565 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7566 if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7567 SmallVector<QualType, 8> GeneralizedParams;
7568 for (auto &Param : FnType->param_types())
7569 GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7570
7571 return Ctx.getFunctionType(
7572 GeneralizeType(Ctx, FnType->getReturnType()),
7573 GeneralizedParams, FnType->getExtProtoInfo());
7574 }
7575
7576 if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7577 return Ctx.getFunctionNoProtoType(
7578 GeneralizeType(Ctx, FnType->getReturnType()));
7579
7580 llvm_unreachable("Encountered unknown FunctionType");
7581 }
7582
CreateMetadataIdentifierGeneralized(QualType T)7583 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7584 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7585 GeneralizedMetadataIdMap, ".generalized");
7586 }
7587
7588 /// Returns whether this module needs the "all-vtables" type identifier.
NeedAllVtablesTypeId() const7589 bool CodeGenModule::NeedAllVtablesTypeId() const {
7590 // Returns true if at least one of vtable-based CFI checkers is enabled and
7591 // is not in the trapping mode.
7592 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7593 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7594 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7595 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7596 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7597 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7598 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7599 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7600 }
7601
AddVTableTypeMetadata(llvm::GlobalVariable * VTable,CharUnits Offset,const CXXRecordDecl * RD)7602 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7603 CharUnits Offset,
7604 const CXXRecordDecl *RD) {
7605 llvm::Metadata *MD =
7606 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7607 VTable->addTypeMetadata(Offset.getQuantity(), MD);
7608
7609 if (CodeGenOpts.SanitizeCfiCrossDso)
7610 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7611 VTable->addTypeMetadata(Offset.getQuantity(),
7612 llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7613
7614 if (NeedAllVtablesTypeId()) {
7615 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7616 VTable->addTypeMetadata(Offset.getQuantity(), MD);
7617 }
7618 }
7619
getSanStats()7620 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7621 if (!SanStats)
7622 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7623
7624 return *SanStats;
7625 }
7626
7627 llvm::Value *
createOpenCLIntToSamplerConversion(const Expr * E,CodeGenFunction & CGF)7628 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7629 CodeGenFunction &CGF) {
7630 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7631 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7632 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7633 auto *Call = CGF.EmitRuntimeCall(
7634 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7635 return Call;
7636 }
7637
getNaturalPointeeTypeAlignment(QualType T,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo)7638 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7639 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7640 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7641 /* forPointeeType= */ true);
7642 }
7643
getNaturalTypeAlignment(QualType T,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo,bool forPointeeType)7644 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7645 LValueBaseInfo *BaseInfo,
7646 TBAAAccessInfo *TBAAInfo,
7647 bool forPointeeType) {
7648 if (TBAAInfo)
7649 *TBAAInfo = getTBAAAccessInfo(T);
7650
7651 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7652 // that doesn't return the information we need to compute BaseInfo.
7653
7654 // Honor alignment typedef attributes even on incomplete types.
7655 // We also honor them straight for C++ class types, even as pointees;
7656 // there's an expressivity gap here.
7657 if (auto TT = T->getAs<TypedefType>()) {
7658 if (auto Align = TT->getDecl()->getMaxAlignment()) {
7659 if (BaseInfo)
7660 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7661 return getContext().toCharUnitsFromBits(Align);
7662 }
7663 }
7664
7665 bool AlignForArray = T->isArrayType();
7666
7667 // Analyze the base element type, so we don't get confused by incomplete
7668 // array types.
7669 T = getContext().getBaseElementType(T);
7670
7671 if (T->isIncompleteType()) {
7672 // We could try to replicate the logic from
7673 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7674 // type is incomplete, so it's impossible to test. We could try to reuse
7675 // getTypeAlignIfKnown, but that doesn't return the information we need
7676 // to set BaseInfo. So just ignore the possibility that the alignment is
7677 // greater than one.
7678 if (BaseInfo)
7679 *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7680 return CharUnits::One();
7681 }
7682
7683 if (BaseInfo)
7684 *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7685
7686 CharUnits Alignment;
7687 const CXXRecordDecl *RD;
7688 if (T.getQualifiers().hasUnaligned()) {
7689 Alignment = CharUnits::One();
7690 } else if (forPointeeType && !AlignForArray &&
7691 (RD = T->getAsCXXRecordDecl())) {
7692 // For C++ class pointees, we don't know whether we're pointing at a
7693 // base or a complete object, so we generally need to use the
7694 // non-virtual alignment.
7695 Alignment = getClassPointerAlignment(RD);
7696 } else {
7697 Alignment = getContext().getTypeAlignInChars(T);
7698 }
7699
7700 // Cap to the global maximum type alignment unless the alignment
7701 // was somehow explicit on the type.
7702 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7703 if (Alignment.getQuantity() > MaxAlign &&
7704 !getContext().isAlignmentRequired(T))
7705 Alignment = CharUnits::fromQuantity(MaxAlign);
7706 }
7707 return Alignment;
7708 }
7709
stopAutoInit()7710 bool CodeGenModule::stopAutoInit() {
7711 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7712 if (StopAfter) {
7713 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7714 // used
7715 if (NumAutoVarInit >= StopAfter) {
7716 return true;
7717 }
7718 if (!NumAutoVarInit) {
7719 unsigned DiagID = getDiags().getCustomDiagID(
7720 DiagnosticsEngine::Warning,
7721 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7722 "number of times ftrivial-auto-var-init=%1 gets applied.");
7723 getDiags().Report(DiagID)
7724 << StopAfter
7725 << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7726 LangOptions::TrivialAutoVarInitKind::Zero
7727 ? "zero"
7728 : "pattern");
7729 }
7730 ++NumAutoVarInit;
7731 }
7732 return false;
7733 }
7734
printPostfixForExternalizedDecl(llvm::raw_ostream & OS,const Decl * D) const7735 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7736 const Decl *D) const {
7737 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7738 // postfix beginning with '.' since the symbol name can be demangled.
7739 if (LangOpts.HIP)
7740 OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7741 else
7742 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7743
7744 // If the CUID is not specified we try to generate a unique postfix.
7745 if (getLangOpts().CUID.empty()) {
7746 SourceManager &SM = getContext().getSourceManager();
7747 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7748 assert(PLoc.isValid() && "Source location is expected to be valid.");
7749
7750 // Get the hash of the user defined macros.
7751 llvm::MD5 Hash;
7752 llvm::MD5::MD5Result Result;
7753 for (const auto &Arg : PreprocessorOpts.Macros)
7754 Hash.update(Arg.first);
7755 Hash.final(Result);
7756
7757 // Get the UniqueID for the file containing the decl.
7758 llvm::sys::fs::UniqueID ID;
7759 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7760 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7761 assert(PLoc.isValid() && "Source location is expected to be valid.");
7762 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7763 SM.getDiagnostics().Report(diag::err_cannot_open_file)
7764 << PLoc.getFilename() << EC.message();
7765 }
7766 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7767 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7768 } else {
7769 OS << getContext().getCUIDHash();
7770 }
7771 }
7772
moveLazyEmissionStates(CodeGenModule * NewBuilder)7773 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7774 assert(DeferredDeclsToEmit.empty() &&
7775 "Should have emitted all decls deferred to emit.");
7776 assert(NewBuilder->DeferredDecls.empty() &&
7777 "Newly created module should not have deferred decls");
7778 NewBuilder->DeferredDecls = std::move(DeferredDecls);
7779 assert(EmittedDeferredDecls.empty() &&
7780 "Still have (unmerged) EmittedDeferredDecls deferred decls");
7781
7782 assert(NewBuilder->DeferredVTables.empty() &&
7783 "Newly created module should not have deferred vtables");
7784 NewBuilder->DeferredVTables = std::move(DeferredVTables);
7785
7786 assert(NewBuilder->MangledDeclNames.empty() &&
7787 "Newly created module should not have mangled decl names");
7788 assert(NewBuilder->Manglings.empty() &&
7789 "Newly created module should not have manglings");
7790 NewBuilder->Manglings = std::move(Manglings);
7791
7792 NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7793
7794 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7795 }
7796