1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
29
30 /*
31 * Copyright 2023 Oxide Computer Company
32 */
33
34 #include <sys/types.h>
35 #include <sys/t_lock.h>
36 #include <sys/param.h>
37 #include <sys/cred.h>
38 #include <sys/debug.h>
39 #include <sys/inline.h>
40 #include <sys/kmem.h>
41 #include <sys/proc.h>
42 #include <sys/regset.h>
43 #include <sys/privregs.h>
44 #include <sys/sysmacros.h>
45 #include <sys/systm.h>
46 #include <sys/vfs.h>
47 #include <sys/vnode.h>
48 #include <sys/psw.h>
49 #include <sys/pcb.h>
50 #include <sys/buf.h>
51 #include <sys/signal.h>
52 #include <sys/user.h>
53 #include <sys/cpuvar.h>
54 #include <sys/stdalign.h>
55
56 #include <sys/fault.h>
57 #include <sys/syscall.h>
58 #include <sys/procfs.h>
59 #include <sys/cmn_err.h>
60 #include <sys/stack.h>
61 #include <sys/debugreg.h>
62 #include <sys/copyops.h>
63
64 #include <sys/vmem.h>
65 #include <sys/mman.h>
66 #include <sys/vmparam.h>
67 #include <sys/fp.h>
68 #include <sys/archsystm.h>
69 #include <sys/vmsystm.h>
70 #include <vm/hat.h>
71 #include <vm/as.h>
72 #include <vm/seg.h>
73 #include <vm/seg_kmem.h>
74 #include <vm/seg_kp.h>
75 #include <vm/page.h>
76
77 #include <sys/sysi86.h>
78
79 #include <fs/proc/prdata.h>
80
81 int prnwatch = 10000; /* maximum number of watched areas */
82
83 /*
84 * Force a thread into the kernel if it is not already there.
85 * This is a no-op on uniprocessors.
86 */
87 /* ARGSUSED */
88 void
prpokethread(kthread_t * t)89 prpokethread(kthread_t *t)
90 {
91 if (t->t_state == TS_ONPROC && t->t_cpu != CPU)
92 poke_cpu(t->t_cpu->cpu_id);
93 }
94
95 /*
96 * Return general registers.
97 */
98 void
prgetprregs(klwp_t * lwp,prgregset_t prp)99 prgetprregs(klwp_t *lwp, prgregset_t prp)
100 {
101 ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
102
103 getgregs(lwp, prp);
104 }
105
106 /*
107 * Set general registers.
108 * (Note: This can be an alias to setgregs().)
109 */
110 void
prsetprregs(klwp_t * lwp,prgregset_t prp,int initial)111 prsetprregs(klwp_t *lwp, prgregset_t prp, int initial)
112 {
113 if (initial) /* set initial values */
114 lwptoregs(lwp)->r_ps = PSL_USER;
115 (void) setgregs(lwp, prp);
116 }
117
118 #ifdef _SYSCALL32_IMPL
119
120 /*
121 * Convert prgregset32 to native prgregset
122 */
123 void
prgregset_32ton(klwp_t * lwp,prgregset32_t src,prgregset_t dst)124 prgregset_32ton(klwp_t *lwp, prgregset32_t src, prgregset_t dst)
125 {
126 struct regs *rp = lwptoregs(lwp);
127
128 dst[REG_GSBASE] = lwp->lwp_pcb.pcb_gsbase;
129 dst[REG_FSBASE] = lwp->lwp_pcb.pcb_fsbase;
130
131 dst[REG_DS] = (uint16_t)src[DS];
132 dst[REG_ES] = (uint16_t)src[ES];
133
134 dst[REG_GS] = (uint16_t)src[GS];
135 dst[REG_FS] = (uint16_t)src[FS];
136 dst[REG_SS] = (uint16_t)src[SS];
137 dst[REG_RSP] = (uint32_t)src[UESP];
138 dst[REG_RFL] =
139 (rp->r_ps & ~PSL_USERMASK) | (src[EFL] & PSL_USERMASK);
140 dst[REG_CS] = (uint16_t)src[CS];
141 dst[REG_RIP] = (uint32_t)src[EIP];
142 dst[REG_ERR] = (uint32_t)src[ERR];
143 dst[REG_TRAPNO] = (uint32_t)src[TRAPNO];
144 dst[REG_RAX] = (uint32_t)src[EAX];
145 dst[REG_RCX] = (uint32_t)src[ECX];
146 dst[REG_RDX] = (uint32_t)src[EDX];
147 dst[REG_RBX] = (uint32_t)src[EBX];
148 dst[REG_RBP] = (uint32_t)src[EBP];
149 dst[REG_RSI] = (uint32_t)src[ESI];
150 dst[REG_RDI] = (uint32_t)src[EDI];
151 dst[REG_R8] = dst[REG_R9] = dst[REG_R10] = dst[REG_R11] =
152 dst[REG_R12] = dst[REG_R13] = dst[REG_R14] = dst[REG_R15] = 0;
153 }
154
155 /*
156 * Return 32-bit general registers
157 */
158 void
prgetprregs32(klwp_t * lwp,prgregset32_t prp)159 prgetprregs32(klwp_t *lwp, prgregset32_t prp)
160 {
161 ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
162 getgregs32(lwp, prp);
163 }
164
165 #endif /* _SYSCALL32_IMPL */
166
167 /*
168 * Get the syscall return values for the lwp.
169 */
170 int
prgetrvals(klwp_t * lwp,long * rval1,long * rval2)171 prgetrvals(klwp_t *lwp, long *rval1, long *rval2)
172 {
173 struct regs *r = lwptoregs(lwp);
174
175 if (r->r_ps & PS_C)
176 return (r->r_r0);
177 if (lwp->lwp_eosys == JUSTRETURN) {
178 *rval1 = 0;
179 *rval2 = 0;
180 } else if (lwp_getdatamodel(lwp) != DATAMODEL_NATIVE) {
181 /*
182 * XX64 Not sure we -really- need to do this, because the
183 * syscall return already masks off the bottom values ..?
184 */
185 *rval1 = r->r_r0 & (uint32_t)0xffffffffu;
186 *rval2 = r->r_r1 & (uint32_t)0xffffffffu;
187 } else {
188 *rval1 = r->r_r0;
189 *rval2 = r->r_r1;
190 }
191 return (0);
192 }
193
194 /*
195 * Does the system support floating-point, either through hardware
196 * or by trapping and emulating floating-point machine instructions?
197 */
198 int
prhasfp(void)199 prhasfp(void)
200 {
201 extern int fp_kind;
202
203 return (fp_kind != FP_NO);
204 }
205
206 /*
207 * Get floating-point registers.
208 */
209 void
prgetprfpregs(klwp_t * lwp,prfpregset_t * pfp)210 prgetprfpregs(klwp_t *lwp, prfpregset_t *pfp)
211 {
212 bzero(pfp, sizeof (prfpregset_t));
213 getfpregs(lwp, pfp);
214 }
215
216 #if defined(_SYSCALL32_IMPL)
217 void
prgetprfpregs32(klwp_t * lwp,prfpregset32_t * pfp)218 prgetprfpregs32(klwp_t *lwp, prfpregset32_t *pfp)
219 {
220 bzero(pfp, sizeof (*pfp));
221 getfpregs32(lwp, pfp);
222 }
223 #endif /* _SYSCALL32_IMPL */
224
225 /*
226 * Set floating-point registers.
227 * (Note: This can be an alias to setfpregs().)
228 */
229 void
prsetprfpregs(klwp_t * lwp,prfpregset_t * pfp)230 prsetprfpregs(klwp_t *lwp, prfpregset_t *pfp)
231 {
232 setfpregs(lwp, pfp);
233 }
234
235 #if defined(_SYSCALL32_IMPL)
236 void
prsetprfpregs32(klwp_t * lwp,prfpregset32_t * pfp)237 prsetprfpregs32(klwp_t *lwp, prfpregset32_t *pfp)
238 {
239 setfpregs32(lwp, pfp);
240 }
241 #endif /* _SYSCALL32_IMPL */
242
243 /*
244 * This is a general function that the main part of /proc and the rest of the
245 * system uses to ask does a given process actually have extended state. Right
246 * now, this question is not process-specific, but rather CPU specific. We look
247 * at whether xsave has been enabled to determine that. While strictly speaking
248 * one could make the argument that all amd64 CPUs support fxsave and we could
249 * emulate something that only supports that, we don't think that makes sense.
250 */
251 int
prhasx(proc_t * p)252 prhasx(proc_t *p)
253 {
254 return (fpu_xsave_enabled());
255 }
256
257 /*
258 * Return the minimum size that we need to determine the full size of a
259 * prxregset_t.
260 */
261 boolean_t
prwriteminxreg(size_t * sizep)262 prwriteminxreg(size_t *sizep)
263 {
264 *sizep = sizeof (prxregset_hdr_t);
265 return (B_TRUE);
266 }
267
268 /*
269 * This routine services both ILP32 and LP64 callers. We cannot assume anything
270 * about the alignment of argp and must bcopy things to known structures that we
271 * care about. We are guaranteed to have prxregset_hdr_t bytes because we asked
272 * for them above.
273 */
274 boolean_t
prwritesizexreg(const void * argp,size_t * sizep)275 prwritesizexreg(const void *argp, size_t *sizep)
276 {
277 prxregset_hdr_t hdr;
278
279 /*
280 * While it's tempting to validate everything here, the only thing we
281 * care about is that we understand the type and the size meets our
282 * constraints:
283 *
284 * o We actually have an item of type PR_TYPE_XSAVE, otherwise we
285 * don't know what this is.
286 * o The indicated size actually contains at least the
287 * prxregset_hdr_t.
288 * o The indicated size isn't larger than what the FPU tells us is
289 * allowed.
290 *
291 * We do not check if the reset of the structure makes semantic sense at
292 * this point. We save all other validation for the normal set function
293 * as that's when we'll have the rest of our data.
294 */
295 bcopy(argp, &hdr, sizeof (hdr));
296 if (hdr.pr_type != PR_TYPE_XSAVE ||
297 hdr.pr_size > fpu_proc_xregs_max_size() ||
298 hdr.pr_size < sizeof (prxregset_hdr_t)) {
299 return (B_FALSE);
300 }
301
302 *sizep = hdr.pr_size - sizeof (prxregset_hdr_t);
303 return (B_TRUE);
304 }
305
306 /*
307 * Get the size of the extra registers. The ultimate size here depends on a
308 * combination of a few different things. Right now the xregs always have our
309 * header, the illumos-specific XCR information, the xsave information, and then
310 * otherwise this varies based on the items that the CPU supports.
311 *
312 * The ultimate size here is going to be:
313 *
314 * o 1x prxregset_hdr_t
315 * o n prxregset_info_t structures
316 * o The individual data for each one
317 */
318 size_t
prgetprxregsize(proc_t * p)319 prgetprxregsize(proc_t *p)
320 {
321 uint32_t size;
322
323 fpu_proc_xregs_info(p, NULL, &size, NULL);
324 return (size);
325 }
326
327 /*
328 * Get extra registers.
329 */
330 void
prgetprxregs(klwp_t * lwp,prxregset_t * prx)331 prgetprxregs(klwp_t *lwp, prxregset_t *prx)
332 {
333 fpu_proc_xregs_get(lwp, prx);
334 }
335
336 /*
337 * Set extra registers.
338 *
339 * We've been given a regset to set. Before we hand it off to the FPU, we have
340 * to go through and make sure that the different parts of this actually make
341 * sense. The kernel has guaranteed us through the functions above that we have
342 * the number of bytes that the header indicates are present. In particular we
343 * need to validate:
344 *
345 * o The information in the header is reasonable: we have a known type, flags
346 * and padding are zero, and there is at least one info structure.
347 * o Each of the info structures has a valid type, size, and fits within the
348 * data we were given.
349 * o We do not validate or modify the actual data in the different pieces for
350 * validity. That is considered something that the FPU does. Similarly if
351 * something is read-only or not used, that is something that it checks.
352 *
353 * While we would like to return something other than EINVAL, the /proc APIs
354 * pretty much lead that to being the primary errno for all sorts of situations.
355 */
356 int
prsetprxregs(klwp_t * lwp,prxregset_t * prx)357 prsetprxregs(klwp_t *lwp, prxregset_t *prx)
358 {
359 size_t infosz;
360 prxregset_hdr_t *hdr = (prxregset_hdr_t *)prx;
361
362 if (hdr->pr_type != PR_TYPE_XSAVE || hdr->pr_flags != 0 ||
363 hdr->pr_pad[0] != 0 || hdr->pr_pad[1] != 0 || hdr->pr_pad[2] != 0 ||
364 hdr->pr_pad[3] != 0 || hdr->pr_ninfo == 0) {
365 return (EINVAL);
366 }
367
368 infosz = hdr->pr_ninfo * sizeof (prxregset_info_t) +
369 sizeof (prxregset_hdr_t);
370 if (infosz > hdr->pr_size) {
371 return (EINVAL);
372 }
373
374 for (uint32_t i = 0; i < hdr->pr_ninfo; i++) {
375 uint32_t exp_size;
376 size_t need_len, exp_align;
377 const prxregset_info_t *info = &hdr->pr_info[i];
378
379 switch (info->pri_type) {
380 case PRX_INFO_XCR:
381 exp_size = sizeof (prxregset_xcr_t);
382 exp_align = alignof (prxregset_xcr_t);
383 break;
384 case PRX_INFO_XSAVE:
385 exp_size = sizeof (prxregset_xsave_t);
386 exp_align = alignof (prxregset_xsave_t);
387 break;
388 case PRX_INFO_YMM:
389 exp_size = sizeof (prxregset_ymm_t);
390 exp_align = alignof (prxregset_ymm_t);
391 break;
392 case PRX_INFO_OPMASK:
393 exp_size = sizeof (prxregset_opmask_t);
394 exp_align = alignof (prxregset_opmask_t);
395 break;
396 case PRX_INFO_ZMM:
397 exp_size = sizeof (prxregset_zmm_t);
398 exp_align = alignof (prxregset_zmm_t);
399 break;
400 case PRX_INFO_HI_ZMM:
401 exp_size = sizeof (prxregset_hi_zmm_t);
402 exp_align = alignof (prxregset_hi_zmm_t);
403 break;
404 default:
405 return (EINVAL);
406 }
407
408 if (info->pri_flags != 0 || info->pri_size != exp_size) {
409 return (EINVAL);
410 }
411
412 if ((info->pri_offset % exp_align) != 0) {
413 return (EINVAL);
414 }
415
416 /*
417 * No bytes of this item's entry should overlap with the
418 * information area. If users want to overlap the actual data
419 * information for some odd reason, we don't check that and let
420 * them do what they want. However, the total data for this
421 * region must actually fit. Because exp_size and pri_offset are
422 * uint32_t's, we can sum them without overflow worries in an
423 * LP64 environment.
424 *
425 * While we try to grantee alignment when writing this structure
426 * out to userland, that is in no way a requirement and users
427 * are allowed to start these structures wherever they want.
428 * Hence that is not checked here.
429 */
430 need_len = (size_t)exp_size + (size_t)info->pri_offset;
431 if (info->pri_offset < infosz ||
432 need_len > (size_t)hdr->pr_size) {
433 return (EINVAL);
434 }
435 }
436
437 return (fpu_proc_xregs_set(lwp, prx));
438 }
439
440 /*
441 * Return the base (lower limit) of the process stack.
442 */
443 caddr_t
prgetstackbase(proc_t * p)444 prgetstackbase(proc_t *p)
445 {
446 return (p->p_usrstack - p->p_stksize);
447 }
448
449 /*
450 * Return the "addr" field for pr_addr in prpsinfo_t.
451 * This is a vestige of the past, so whatever we return is OK.
452 */
453 caddr_t
prgetpsaddr(proc_t * p)454 prgetpsaddr(proc_t *p)
455 {
456 return ((caddr_t)p);
457 }
458
459 /*
460 * Arrange to single-step the lwp.
461 */
462 void
prstep(klwp_t * lwp,int watchstep)463 prstep(klwp_t *lwp, int watchstep)
464 {
465 ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
466
467 /*
468 * flag LWP so that its r_efl trace bit (PS_T) will be set on
469 * next return to usermode.
470 */
471 lwp->lwp_pcb.pcb_flags |= REQUEST_STEP;
472 lwp->lwp_pcb.pcb_flags &= ~REQUEST_NOSTEP;
473
474 if (watchstep)
475 lwp->lwp_pcb.pcb_flags |= WATCH_STEP;
476 else
477 lwp->lwp_pcb.pcb_flags |= NORMAL_STEP;
478
479 aston(lwptot(lwp)); /* let trap() set PS_T in rp->r_efl */
480 }
481
482 /*
483 * Undo prstep().
484 */
485 void
prnostep(klwp_t * lwp)486 prnostep(klwp_t *lwp)
487 {
488 ASSERT(ttolwp(curthread) == lwp ||
489 MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
490
491 /*
492 * flag LWP so that its r_efl trace bit (PS_T) will be cleared on
493 * next return to usermode.
494 */
495 lwp->lwp_pcb.pcb_flags |= REQUEST_NOSTEP;
496
497 lwp->lwp_pcb.pcb_flags &=
498 ~(REQUEST_STEP|NORMAL_STEP|WATCH_STEP|DEBUG_PENDING);
499
500 aston(lwptot(lwp)); /* let trap() clear PS_T in rp->r_efl */
501 }
502
503 /*
504 * Return non-zero if a single-step is in effect.
505 */
506 int
prisstep(klwp_t * lwp)507 prisstep(klwp_t *lwp)
508 {
509 ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
510
511 return ((lwp->lwp_pcb.pcb_flags &
512 (NORMAL_STEP|WATCH_STEP|DEBUG_PENDING)) != 0);
513 }
514
515 /*
516 * Set the PC to the specified virtual address.
517 */
518 void
prsvaddr(klwp_t * lwp,caddr_t vaddr)519 prsvaddr(klwp_t *lwp, caddr_t vaddr)
520 {
521 struct regs *r = lwptoregs(lwp);
522
523 ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
524
525 r->r_pc = (uintptr_t)vaddr;
526 }
527
528 /*
529 * Map address "addr" in address space "as" into a kernel virtual address.
530 * The memory is guaranteed to be resident and locked down.
531 */
532 caddr_t
prmapin(struct as * as,caddr_t addr,int writing)533 prmapin(struct as *as, caddr_t addr, int writing)
534 {
535 page_t *pp;
536 caddr_t kaddr;
537 pfn_t pfnum;
538
539 /*
540 * XXX - Because of past mistakes, we have bits being returned
541 * by getpfnum that are actually the page type bits of the pte.
542 * When the object we are trying to map is a memory page with
543 * a page structure everything is ok and we can use the optimal
544 * method, ppmapin. Otherwise, we have to do something special.
545 */
546 pfnum = hat_getpfnum(as->a_hat, addr);
547 if (pf_is_memory(pfnum)) {
548 pp = page_numtopp_nolock(pfnum);
549 if (pp != NULL) {
550 ASSERT(PAGE_LOCKED(pp));
551 kaddr = ppmapin(pp, writing ?
552 (PROT_READ | PROT_WRITE) : PROT_READ, (caddr_t)-1);
553 return (kaddr + ((uintptr_t)addr & PAGEOFFSET));
554 }
555 }
556
557 /*
558 * Oh well, we didn't have a page struct for the object we were
559 * trying to map in; ppmapin doesn't handle devices, but allocating a
560 * heap address allows ppmapout to free virtual space when done.
561 */
562 kaddr = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
563
564 hat_devload(kas.a_hat, kaddr, MMU_PAGESIZE, pfnum,
565 writing ? (PROT_READ | PROT_WRITE) : PROT_READ, 0);
566
567 return (kaddr + ((uintptr_t)addr & PAGEOFFSET));
568 }
569
570 /*
571 * Unmap address "addr" in address space "as"; inverse of prmapin().
572 */
573 /* ARGSUSED */
574 void
prmapout(struct as * as,caddr_t addr,caddr_t vaddr,int writing)575 prmapout(struct as *as, caddr_t addr, caddr_t vaddr, int writing)
576 {
577 extern void ppmapout(caddr_t);
578
579 vaddr = (caddr_t)((uintptr_t)vaddr & PAGEMASK);
580 ppmapout(vaddr);
581 }
582
583 /*
584 * Make sure the lwp is in an orderly state
585 * for inspection by a debugger through /proc.
586 *
587 * This needs to be called only once while the current thread remains in the
588 * kernel and needs to be called while holding no resources (mutex locks, etc).
589 *
590 * As a hedge against these conditions, if prstop() is called repeatedly
591 * before prunstop() is called, it does nothing and just returns.
592 *
593 * prunstop() must be called before the thread returns to user level.
594 */
595 /* ARGSUSED */
596 void
prstop(int why,int what)597 prstop(int why, int what)
598 {
599 klwp_t *lwp = ttolwp(curthread);
600 struct regs *r = lwptoregs(lwp);
601
602 if (lwp->lwp_pcb.pcb_flags & PRSTOP_CALLED)
603 return;
604
605 /*
606 * Make sure we don't deadlock on a recursive call
607 * to prstop(). stop() tests the lwp_nostop flag.
608 */
609 ASSERT(lwp->lwp_nostop == 0);
610 lwp->lwp_nostop = 1;
611
612 if (copyin_nowatch((caddr_t)r->r_pc, &lwp->lwp_pcb.pcb_instr,
613 sizeof (lwp->lwp_pcb.pcb_instr)) == 0)
614 lwp->lwp_pcb.pcb_flags |= INSTR_VALID;
615 else {
616 lwp->lwp_pcb.pcb_flags &= ~INSTR_VALID;
617 lwp->lwp_pcb.pcb_instr = 0;
618 }
619
620 (void) save_syscall_args();
621 ASSERT(lwp->lwp_nostop == 1);
622 lwp->lwp_nostop = 0;
623
624 lwp->lwp_pcb.pcb_flags |= PRSTOP_CALLED;
625 aston(curthread); /* so prunstop() will be called */
626 }
627
628 /*
629 * Inform prstop() that it should do its work again
630 * the next time it is called.
631 */
632 void
prunstop(void)633 prunstop(void)
634 {
635 ttolwp(curthread)->lwp_pcb.pcb_flags &= ~PRSTOP_CALLED;
636 }
637
638 /*
639 * Fetch the user-level instruction on which the lwp is stopped.
640 * It was saved by the lwp itself, in prstop().
641 * Return non-zero if the instruction is valid.
642 */
643 int
prfetchinstr(klwp_t * lwp,ulong_t * ip)644 prfetchinstr(klwp_t *lwp, ulong_t *ip)
645 {
646 *ip = (ulong_t)(instr_t)lwp->lwp_pcb.pcb_instr;
647 return (lwp->lwp_pcb.pcb_flags & INSTR_VALID);
648 }
649
650 /*
651 * Called from trap() when a load or store instruction
652 * falls in a watched page but is not a watchpoint.
653 * We emulate the instruction in the kernel.
654 */
655 /* ARGSUSED */
656 int
pr_watch_emul(struct regs * rp,caddr_t addr,enum seg_rw rw)657 pr_watch_emul(struct regs *rp, caddr_t addr, enum seg_rw rw)
658 {
659 #ifdef SOMEDAY
660 int res;
661 proc_t *p = curproc;
662 char *badaddr = (caddr_t)(-1);
663 int mapped;
664
665 /* prevent recursive calls to pr_watch_emul() */
666 ASSERT(!(curthread->t_flag & T_WATCHPT));
667 curthread->t_flag |= T_WATCHPT;
668
669 watch_disable_addr(addr, 8, rw);
670 res = do_unaligned(rp, &badaddr);
671 watch_enable_addr(addr, 8, rw);
672
673 curthread->t_flag &= ~T_WATCHPT;
674 if (res == SIMU_SUCCESS) {
675 /* adjust the pc */
676 return (1);
677 }
678 #endif
679 return (0);
680 }
681
682 /*
683 * Return the number of active entries in the local descriptor table.
684 */
685 int
prnldt(proc_t * p)686 prnldt(proc_t *p)
687 {
688 int limit, i, n;
689 user_desc_t *udp;
690
691 ASSERT(MUTEX_HELD(&p->p_ldtlock));
692
693 /*
694 * Currently 64 bit processes cannot have private LDTs.
695 */
696 ASSERT(p->p_model != DATAMODEL_LP64 || p->p_ldt == NULL);
697
698 if (p->p_ldt == NULL)
699 return (0);
700 n = 0;
701 limit = p->p_ldtlimit;
702 ASSERT(limit >= 0 && limit < MAXNLDT);
703
704 /*
705 * Count all present user descriptors.
706 */
707 for (i = LDT_UDBASE, udp = &p->p_ldt[i]; i <= limit; i++, udp++)
708 if (udp->usd_type != 0 || udp->usd_dpl != 0 || udp->usd_p != 0)
709 n++;
710 return (n);
711 }
712
713 /*
714 * Fetch the active entries from the local descriptor table.
715 */
716 void
prgetldt(proc_t * p,struct ssd * ssd)717 prgetldt(proc_t *p, struct ssd *ssd)
718 {
719 int i, limit;
720 user_desc_t *udp;
721
722 ASSERT(MUTEX_HELD(&p->p_ldtlock));
723
724 if (p->p_ldt == NULL)
725 return;
726
727 limit = p->p_ldtlimit;
728 ASSERT(limit >= 0 && limit < MAXNLDT);
729
730 /*
731 * All present user descriptors.
732 */
733 for (i = LDT_UDBASE, udp = &p->p_ldt[i]; i <= limit; i++, udp++)
734 if (udp->usd_type != 0 || udp->usd_dpl != 0 ||
735 udp->usd_p != 0)
736 usd_to_ssd(udp, ssd++, SEL_LDT(i));
737 }
738