1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2018, Joyent, Inc.
25 * Copyright (c) 2011, 2020, Delphix. All rights reserved.
26 * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved.
28 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
29 * Copyright (c) 2020, George Amanakis. All rights reserved.
30 * Copyright (c) 2019, 2024, 2025, Klara, Inc.
31 * Copyright (c) 2019, Allan Jude
32 * Copyright (c) 2020, The FreeBSD Foundation [1]
33 * Copyright (c) 2021, 2024 by George Melikov. All rights reserved.
34 *
35 * [1] Portions of this software were developed by Allan Jude
36 * under sponsorship from the FreeBSD Foundation.
37 */
38
39 /*
40 * DVA-based Adjustable Replacement Cache
41 *
42 * While much of the theory of operation used here is
43 * based on the self-tuning, low overhead replacement cache
44 * presented by Megiddo and Modha at FAST 2003, there are some
45 * significant differences:
46 *
47 * 1. The Megiddo and Modha model assumes any page is evictable.
48 * Pages in its cache cannot be "locked" into memory. This makes
49 * the eviction algorithm simple: evict the last page in the list.
50 * This also make the performance characteristics easy to reason
51 * about. Our cache is not so simple. At any given moment, some
52 * subset of the blocks in the cache are un-evictable because we
53 * have handed out a reference to them. Blocks are only evictable
54 * when there are no external references active. This makes
55 * eviction far more problematic: we choose to evict the evictable
56 * blocks that are the "lowest" in the list.
57 *
58 * There are times when it is not possible to evict the requested
59 * space. In these circumstances we are unable to adjust the cache
60 * size. To prevent the cache growing unbounded at these times we
61 * implement a "cache throttle" that slows the flow of new data
62 * into the cache until we can make space available.
63 *
64 * 2. The Megiddo and Modha model assumes a fixed cache size.
65 * Pages are evicted when the cache is full and there is a cache
66 * miss. Our model has a variable sized cache. It grows with
67 * high use, but also tries to react to memory pressure from the
68 * operating system: decreasing its size when system memory is
69 * tight.
70 *
71 * 3. The Megiddo and Modha model assumes a fixed page size. All
72 * elements of the cache are therefore exactly the same size. So
73 * when adjusting the cache size following a cache miss, its simply
74 * a matter of choosing a single page to evict. In our model, we
75 * have variable sized cache blocks (ranging from 512 bytes to
76 * 128K bytes). We therefore choose a set of blocks to evict to make
77 * space for a cache miss that approximates as closely as possible
78 * the space used by the new block.
79 *
80 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
81 * by N. Megiddo & D. Modha, FAST 2003
82 */
83
84 /*
85 * The locking model:
86 *
87 * A new reference to a cache buffer can be obtained in two
88 * ways: 1) via a hash table lookup using the DVA as a key,
89 * or 2) via one of the ARC lists. The arc_read() interface
90 * uses method 1, while the internal ARC algorithms for
91 * adjusting the cache use method 2. We therefore provide two
92 * types of locks: 1) the hash table lock array, and 2) the
93 * ARC list locks.
94 *
95 * Buffers do not have their own mutexes, rather they rely on the
96 * hash table mutexes for the bulk of their protection (i.e. most
97 * fields in the arc_buf_hdr_t are protected by these mutexes).
98 *
99 * buf_hash_find() returns the appropriate mutex (held) when it
100 * locates the requested buffer in the hash table. It returns
101 * NULL for the mutex if the buffer was not in the table.
102 *
103 * buf_hash_remove() expects the appropriate hash mutex to be
104 * already held before it is invoked.
105 *
106 * Each ARC state also has a mutex which is used to protect the
107 * buffer list associated with the state. When attempting to
108 * obtain a hash table lock while holding an ARC list lock you
109 * must use: mutex_tryenter() to avoid deadlock. Also note that
110 * the active state mutex must be held before the ghost state mutex.
111 *
112 * It as also possible to register a callback which is run when the
113 * metadata limit is reached and no buffers can be safely evicted. In
114 * this case the arc user should drop a reference on some arc buffers so
115 * they can be reclaimed. For example, when using the ZPL each dentry
116 * holds a references on a znode. These dentries must be pruned before
117 * the arc buffer holding the znode can be safely evicted.
118 *
119 * Note that the majority of the performance stats are manipulated
120 * with atomic operations.
121 *
122 * The L2ARC uses the l2ad_mtx on each vdev for the following:
123 *
124 * - L2ARC buflist creation
125 * - L2ARC buflist eviction
126 * - L2ARC write completion, which walks L2ARC buflists
127 * - ARC header destruction, as it removes from L2ARC buflists
128 * - ARC header release, as it removes from L2ARC buflists
129 */
130
131 /*
132 * ARC operation:
133 *
134 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
135 * This structure can point either to a block that is still in the cache or to
136 * one that is only accessible in an L2 ARC device, or it can provide
137 * information about a block that was recently evicted. If a block is
138 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
139 * information to retrieve it from the L2ARC device. This information is
140 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
141 * that is in this state cannot access the data directly.
142 *
143 * Blocks that are actively being referenced or have not been evicted
144 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
145 * the arc_buf_hdr_t that will point to the data block in memory. A block can
146 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
147 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
148 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
149 *
150 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
151 * ability to store the physical data (b_pabd) associated with the DVA of the
152 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
153 * it will match its on-disk compression characteristics. This behavior can be
154 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
155 * compressed ARC functionality is disabled, the b_pabd will point to an
156 * uncompressed version of the on-disk data.
157 *
158 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
159 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
160 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
161 * consumer. The ARC will provide references to this data and will keep it
162 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
163 * data block and will evict any arc_buf_t that is no longer referenced. The
164 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
165 * "overhead_size" kstat.
166 *
167 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
168 * compressed form. The typical case is that consumers will want uncompressed
169 * data, and when that happens a new data buffer is allocated where the data is
170 * decompressed for them to use. Currently the only consumer who wants
171 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
172 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
173 * with the arc_buf_hdr_t.
174 *
175 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
176 * first one is owned by a compressed send consumer (and therefore references
177 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
178 * used by any other consumer (and has its own uncompressed copy of the data
179 * buffer).
180 *
181 * arc_buf_hdr_t
182 * +-----------+
183 * | fields |
184 * | common to |
185 * | L1- and |
186 * | L2ARC |
187 * +-----------+
188 * | l2arc_buf_hdr_t
189 * | |
190 * +-----------+
191 * | l1arc_buf_hdr_t
192 * | | arc_buf_t
193 * | b_buf +------------>+-----------+ arc_buf_t
194 * | b_pabd +-+ |b_next +---->+-----------+
195 * +-----------+ | |-----------| |b_next +-->NULL
196 * | |b_comp = T | +-----------+
197 * | |b_data +-+ |b_comp = F |
198 * | +-----------+ | |b_data +-+
199 * +->+------+ | +-----------+ |
200 * compressed | | | |
201 * data | |<--------------+ | uncompressed
202 * +------+ compressed, | data
203 * shared +-->+------+
204 * data | |
205 * | |
206 * +------+
207 *
208 * When a consumer reads a block, the ARC must first look to see if the
209 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
210 * arc_buf_t and either copies uncompressed data into a new data buffer from an
211 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
212 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
213 * hdr is compressed and the desired compression characteristics of the
214 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
215 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
216 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
217 * be anywhere in the hdr's list.
218 *
219 * The diagram below shows an example of an uncompressed ARC hdr that is
220 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
221 * the last element in the buf list):
222 *
223 * arc_buf_hdr_t
224 * +-----------+
225 * | |
226 * | |
227 * | |
228 * +-----------+
229 * l2arc_buf_hdr_t| |
230 * | |
231 * +-----------+
232 * l1arc_buf_hdr_t| |
233 * | | arc_buf_t (shared)
234 * | b_buf +------------>+---------+ arc_buf_t
235 * | | |b_next +---->+---------+
236 * | b_pabd +-+ |---------| |b_next +-->NULL
237 * +-----------+ | | | +---------+
238 * | |b_data +-+ | |
239 * | +---------+ | |b_data +-+
240 * +->+------+ | +---------+ |
241 * | | | |
242 * uncompressed | | | |
243 * data +------+ | |
244 * ^ +->+------+ |
245 * | uncompressed | | |
246 * | data | | |
247 * | +------+ |
248 * +---------------------------------+
249 *
250 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
251 * since the physical block is about to be rewritten. The new data contents
252 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
253 * it may compress the data before writing it to disk. The ARC will be called
254 * with the transformed data and will memcpy the transformed on-disk block into
255 * a newly allocated b_pabd. Writes are always done into buffers which have
256 * either been loaned (and hence are new and don't have other readers) or
257 * buffers which have been released (and hence have their own hdr, if there
258 * were originally other readers of the buf's original hdr). This ensures that
259 * the ARC only needs to update a single buf and its hdr after a write occurs.
260 *
261 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
262 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
263 * that when compressed ARC is enabled that the L2ARC blocks are identical
264 * to the on-disk block in the main data pool. This provides a significant
265 * advantage since the ARC can leverage the bp's checksum when reading from the
266 * L2ARC to determine if the contents are valid. However, if the compressed
267 * ARC is disabled, then the L2ARC's block must be transformed to look
268 * like the physical block in the main data pool before comparing the
269 * checksum and determining its validity.
270 *
271 * The L1ARC has a slightly different system for storing encrypted data.
272 * Raw (encrypted + possibly compressed) data has a few subtle differences from
273 * data that is just compressed. The biggest difference is that it is not
274 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
275 * The other difference is that encryption cannot be treated as a suggestion.
276 * If a caller would prefer compressed data, but they actually wind up with
277 * uncompressed data the worst thing that could happen is there might be a
278 * performance hit. If the caller requests encrypted data, however, we must be
279 * sure they actually get it or else secret information could be leaked. Raw
280 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
281 * may have both an encrypted version and a decrypted version of its data at
282 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
283 * copied out of this header. To avoid complications with b_pabd, raw buffers
284 * cannot be shared.
285 */
286
287 #include <sys/spa.h>
288 #include <sys/zio.h>
289 #include <sys/spa_impl.h>
290 #include <sys/zio_compress.h>
291 #include <sys/zio_checksum.h>
292 #include <sys/zfs_context.h>
293 #include <sys/arc.h>
294 #include <sys/zfs_refcount.h>
295 #include <sys/vdev.h>
296 #include <sys/vdev_impl.h>
297 #include <sys/dsl_pool.h>
298 #include <sys/multilist.h>
299 #include <sys/abd.h>
300 #include <sys/dbuf.h>
301 #include <sys/zil.h>
302 #include <sys/fm/fs/zfs.h>
303 #include <sys/callb.h>
304 #include <sys/kstat.h>
305 #include <sys/zthr.h>
306 #include <zfs_fletcher.h>
307 #include <sys/arc_impl.h>
308 #include <sys/trace_zfs.h>
309 #include <sys/aggsum.h>
310 #include <sys/wmsum.h>
311 #include <cityhash.h>
312 #include <sys/vdev_trim.h>
313 #include <sys/zfs_racct.h>
314 #include <sys/zstd/zstd.h>
315
316 #ifndef _KERNEL
317 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
318 boolean_t arc_watch = B_FALSE;
319 #endif
320
321 /*
322 * This thread's job is to keep enough free memory in the system, by
323 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
324 * arc_available_memory().
325 */
326 static zthr_t *arc_reap_zthr;
327
328 /*
329 * This thread's job is to keep arc_size under arc_c, by calling
330 * arc_evict(), which improves arc_is_overflowing().
331 */
332 static zthr_t *arc_evict_zthr;
333 static arc_buf_hdr_t **arc_state_evict_markers;
334 static int arc_state_evict_marker_count;
335
336 static kmutex_t arc_evict_lock;
337 static boolean_t arc_evict_needed = B_FALSE;
338 static clock_t arc_last_uncached_flush;
339
340 static taskq_t *arc_evict_taskq;
341 static struct evict_arg *arc_evict_arg;
342
343 /*
344 * Count of bytes evicted since boot.
345 */
346 static uint64_t arc_evict_count;
347
348 /*
349 * List of arc_evict_waiter_t's, representing threads waiting for the
350 * arc_evict_count to reach specific values.
351 */
352 static list_t arc_evict_waiters;
353
354 /*
355 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
356 * the requested amount of data to be evicted. For example, by default for
357 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
358 * Since this is above 100%, it ensures that progress is made towards getting
359 * arc_size under arc_c. Since this is finite, it ensures that allocations
360 * can still happen, even during the potentially long time that arc_size is
361 * more than arc_c.
362 */
363 static uint_t zfs_arc_eviction_pct = 200;
364
365 /*
366 * The number of headers to evict in arc_evict_state_impl() before
367 * dropping the sublist lock and evicting from another sublist. A lower
368 * value means we're more likely to evict the "correct" header (i.e. the
369 * oldest header in the arc state), but comes with higher overhead
370 * (i.e. more invocations of arc_evict_state_impl()).
371 */
372 static uint_t zfs_arc_evict_batch_limit = 10;
373
374 /*
375 * Number batches to process per parallel eviction task under heavy load to
376 * reduce number of context switches.
377 */
378 static uint_t zfs_arc_evict_batches_limit = 5;
379
380 /* number of seconds before growing cache again */
381 uint_t arc_grow_retry = 5;
382
383 /*
384 * Minimum time between calls to arc_kmem_reap_soon().
385 */
386 static const int arc_kmem_cache_reap_retry_ms = 1000;
387
388 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
389 static int zfs_arc_overflow_shift = 8;
390
391 /* log2(fraction of arc to reclaim) */
392 uint_t arc_shrink_shift = 7;
393
394 #ifdef _KERNEL
395 /* percent of pagecache to reclaim arc to */
396 uint_t zfs_arc_pc_percent = 0;
397 #endif
398
399 /*
400 * log2(fraction of ARC which must be free to allow growing).
401 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
402 * when reading a new block into the ARC, we will evict an equal-sized block
403 * from the ARC.
404 *
405 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
406 * we will still not allow it to grow.
407 */
408 uint_t arc_no_grow_shift = 5;
409
410
411 /*
412 * minimum lifespan of a prefetch block in clock ticks
413 * (initialized in arc_init())
414 */
415 static uint_t arc_min_prefetch;
416 static uint_t arc_min_prescient_prefetch;
417
418 /*
419 * If this percent of memory is free, don't throttle.
420 */
421 uint_t arc_lotsfree_percent = 10;
422
423 /*
424 * The arc has filled available memory and has now warmed up.
425 */
426 boolean_t arc_warm;
427
428 /*
429 * These tunables are for performance analysis.
430 */
431 uint64_t zfs_arc_max = 0;
432 uint64_t zfs_arc_min = 0;
433 static uint64_t zfs_arc_dnode_limit = 0;
434 static uint_t zfs_arc_dnode_reduce_percent = 10;
435 static uint_t zfs_arc_grow_retry = 0;
436 static uint_t zfs_arc_shrink_shift = 0;
437 uint_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
438
439 /*
440 * ARC dirty data constraints for arc_tempreserve_space() throttle:
441 * * total dirty data limit
442 * * anon block dirty limit
443 * * each pool's anon allowance
444 */
445 static const unsigned long zfs_arc_dirty_limit_percent = 50;
446 static const unsigned long zfs_arc_anon_limit_percent = 25;
447 static const unsigned long zfs_arc_pool_dirty_percent = 20;
448
449 /*
450 * Enable or disable compressed arc buffers.
451 */
452 int zfs_compressed_arc_enabled = B_TRUE;
453
454 /*
455 * Balance between metadata and data on ghost hits. Values above 100
456 * increase metadata caching by proportionally reducing effect of ghost
457 * data hits on target data/metadata rate.
458 */
459 static uint_t zfs_arc_meta_balance = 500;
460
461 /*
462 * Percentage that can be consumed by dnodes of ARC meta buffers.
463 */
464 static uint_t zfs_arc_dnode_limit_percent = 10;
465
466 /*
467 * These tunables are Linux-specific
468 */
469 static uint64_t zfs_arc_sys_free = 0;
470 static uint_t zfs_arc_min_prefetch_ms = 0;
471 static uint_t zfs_arc_min_prescient_prefetch_ms = 0;
472 static uint_t zfs_arc_lotsfree_percent = 10;
473
474 /*
475 * Number of arc_prune threads
476 */
477 static int zfs_arc_prune_task_threads = 1;
478
479 /* Used by spa_export/spa_destroy to flush the arc asynchronously */
480 static taskq_t *arc_flush_taskq;
481
482 /*
483 * Controls the number of ARC eviction threads to dispatch sublists to.
484 *
485 * Possible values:
486 * 0 (auto) compute the number of threads using a logarithmic formula.
487 * 1 (disabled) one thread - parallel eviction is disabled.
488 * 2+ (manual) set the number manually.
489 *
490 * See arc_evict_thread_init() for how "auto" is computed.
491 */
492 static uint_t zfs_arc_evict_threads = 0;
493
494 /* The 7 states: */
495 arc_state_t ARC_anon;
496 arc_state_t ARC_mru;
497 arc_state_t ARC_mru_ghost;
498 arc_state_t ARC_mfu;
499 arc_state_t ARC_mfu_ghost;
500 arc_state_t ARC_l2c_only;
501 arc_state_t ARC_uncached;
502
503 arc_stats_t arc_stats = {
504 { "hits", KSTAT_DATA_UINT64 },
505 { "iohits", KSTAT_DATA_UINT64 },
506 { "misses", KSTAT_DATA_UINT64 },
507 { "demand_data_hits", KSTAT_DATA_UINT64 },
508 { "demand_data_iohits", KSTAT_DATA_UINT64 },
509 { "demand_data_misses", KSTAT_DATA_UINT64 },
510 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
511 { "demand_metadata_iohits", KSTAT_DATA_UINT64 },
512 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
513 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
514 { "prefetch_data_iohits", KSTAT_DATA_UINT64 },
515 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
516 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
517 { "prefetch_metadata_iohits", KSTAT_DATA_UINT64 },
518 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
519 { "mru_hits", KSTAT_DATA_UINT64 },
520 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
521 { "mfu_hits", KSTAT_DATA_UINT64 },
522 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
523 { "uncached_hits", KSTAT_DATA_UINT64 },
524 { "deleted", KSTAT_DATA_UINT64 },
525 { "mutex_miss", KSTAT_DATA_UINT64 },
526 { "access_skip", KSTAT_DATA_UINT64 },
527 { "evict_skip", KSTAT_DATA_UINT64 },
528 { "evict_not_enough", KSTAT_DATA_UINT64 },
529 { "evict_l2_cached", KSTAT_DATA_UINT64 },
530 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
531 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 },
532 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 },
533 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
534 { "evict_l2_skip", KSTAT_DATA_UINT64 },
535 { "hash_elements", KSTAT_DATA_UINT64 },
536 { "hash_elements_max", KSTAT_DATA_UINT64 },
537 { "hash_collisions", KSTAT_DATA_UINT64 },
538 { "hash_chains", KSTAT_DATA_UINT64 },
539 { "hash_chain_max", KSTAT_DATA_UINT64 },
540 { "meta", KSTAT_DATA_UINT64 },
541 { "pd", KSTAT_DATA_UINT64 },
542 { "pm", KSTAT_DATA_UINT64 },
543 { "c", KSTAT_DATA_UINT64 },
544 { "c_min", KSTAT_DATA_UINT64 },
545 { "c_max", KSTAT_DATA_UINT64 },
546 { "size", KSTAT_DATA_UINT64 },
547 { "compressed_size", KSTAT_DATA_UINT64 },
548 { "uncompressed_size", KSTAT_DATA_UINT64 },
549 { "overhead_size", KSTAT_DATA_UINT64 },
550 { "hdr_size", KSTAT_DATA_UINT64 },
551 { "data_size", KSTAT_DATA_UINT64 },
552 { "metadata_size", KSTAT_DATA_UINT64 },
553 { "dbuf_size", KSTAT_DATA_UINT64 },
554 { "dnode_size", KSTAT_DATA_UINT64 },
555 { "bonus_size", KSTAT_DATA_UINT64 },
556 #if defined(COMPAT_FREEBSD11)
557 { "other_size", KSTAT_DATA_UINT64 },
558 #endif
559 { "anon_size", KSTAT_DATA_UINT64 },
560 { "anon_data", KSTAT_DATA_UINT64 },
561 { "anon_metadata", KSTAT_DATA_UINT64 },
562 { "anon_evictable_data", KSTAT_DATA_UINT64 },
563 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
564 { "mru_size", KSTAT_DATA_UINT64 },
565 { "mru_data", KSTAT_DATA_UINT64 },
566 { "mru_metadata", KSTAT_DATA_UINT64 },
567 { "mru_evictable_data", KSTAT_DATA_UINT64 },
568 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
569 { "mru_ghost_size", KSTAT_DATA_UINT64 },
570 { "mru_ghost_data", KSTAT_DATA_UINT64 },
571 { "mru_ghost_metadata", KSTAT_DATA_UINT64 },
572 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
573 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
574 { "mfu_size", KSTAT_DATA_UINT64 },
575 { "mfu_data", KSTAT_DATA_UINT64 },
576 { "mfu_metadata", KSTAT_DATA_UINT64 },
577 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
578 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
579 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
580 { "mfu_ghost_data", KSTAT_DATA_UINT64 },
581 { "mfu_ghost_metadata", KSTAT_DATA_UINT64 },
582 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
583 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
584 { "uncached_size", KSTAT_DATA_UINT64 },
585 { "uncached_data", KSTAT_DATA_UINT64 },
586 { "uncached_metadata", KSTAT_DATA_UINT64 },
587 { "uncached_evictable_data", KSTAT_DATA_UINT64 },
588 { "uncached_evictable_metadata", KSTAT_DATA_UINT64 },
589 { "l2_hits", KSTAT_DATA_UINT64 },
590 { "l2_misses", KSTAT_DATA_UINT64 },
591 { "l2_prefetch_asize", KSTAT_DATA_UINT64 },
592 { "l2_mru_asize", KSTAT_DATA_UINT64 },
593 { "l2_mfu_asize", KSTAT_DATA_UINT64 },
594 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 },
595 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 },
596 { "l2_feeds", KSTAT_DATA_UINT64 },
597 { "l2_rw_clash", KSTAT_DATA_UINT64 },
598 { "l2_read_bytes", KSTAT_DATA_UINT64 },
599 { "l2_write_bytes", KSTAT_DATA_UINT64 },
600 { "l2_writes_sent", KSTAT_DATA_UINT64 },
601 { "l2_writes_done", KSTAT_DATA_UINT64 },
602 { "l2_writes_error", KSTAT_DATA_UINT64 },
603 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
604 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
605 { "l2_evict_reading", KSTAT_DATA_UINT64 },
606 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
607 { "l2_free_on_write", KSTAT_DATA_UINT64 },
608 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
609 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
610 { "l2_io_error", KSTAT_DATA_UINT64 },
611 { "l2_size", KSTAT_DATA_UINT64 },
612 { "l2_asize", KSTAT_DATA_UINT64 },
613 { "l2_hdr_size", KSTAT_DATA_UINT64 },
614 { "l2_log_blk_writes", KSTAT_DATA_UINT64 },
615 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 },
616 { "l2_log_blk_asize", KSTAT_DATA_UINT64 },
617 { "l2_log_blk_count", KSTAT_DATA_UINT64 },
618 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 },
619 { "l2_rebuild_success", KSTAT_DATA_UINT64 },
620 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 },
621 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 },
622 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 },
623 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 },
624 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 },
625 { "l2_rebuild_size", KSTAT_DATA_UINT64 },
626 { "l2_rebuild_asize", KSTAT_DATA_UINT64 },
627 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 },
628 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 },
629 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 },
630 { "memory_throttle_count", KSTAT_DATA_UINT64 },
631 { "memory_direct_count", KSTAT_DATA_UINT64 },
632 { "memory_indirect_count", KSTAT_DATA_UINT64 },
633 { "memory_all_bytes", KSTAT_DATA_UINT64 },
634 { "memory_free_bytes", KSTAT_DATA_UINT64 },
635 { "memory_available_bytes", KSTAT_DATA_INT64 },
636 { "arc_no_grow", KSTAT_DATA_UINT64 },
637 { "arc_tempreserve", KSTAT_DATA_UINT64 },
638 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
639 { "arc_prune", KSTAT_DATA_UINT64 },
640 { "arc_meta_used", KSTAT_DATA_UINT64 },
641 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
642 { "async_upgrade_sync", KSTAT_DATA_UINT64 },
643 { "predictive_prefetch", KSTAT_DATA_UINT64 },
644 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
645 { "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64 },
646 { "prescient_prefetch", KSTAT_DATA_UINT64 },
647 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
648 { "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64 },
649 { "arc_need_free", KSTAT_DATA_UINT64 },
650 { "arc_sys_free", KSTAT_DATA_UINT64 },
651 { "arc_raw_size", KSTAT_DATA_UINT64 },
652 { "cached_only_in_progress", KSTAT_DATA_UINT64 },
653 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 },
654 };
655
656 arc_sums_t arc_sums;
657
658 #define ARCSTAT_MAX(stat, val) { \
659 uint64_t m; \
660 while ((val) > (m = arc_stats.stat.value.ui64) && \
661 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
662 continue; \
663 }
664
665 /*
666 * We define a macro to allow ARC hits/misses to be easily broken down by
667 * two separate conditions, giving a total of four different subtypes for
668 * each of hits and misses (so eight statistics total).
669 */
670 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
671 if (cond1) { \
672 if (cond2) { \
673 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
674 } else { \
675 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
676 } \
677 } else { \
678 if (cond2) { \
679 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
680 } else { \
681 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
682 } \
683 }
684
685 /*
686 * This macro allows us to use kstats as floating averages. Each time we
687 * update this kstat, we first factor it and the update value by
688 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
689 * average. This macro assumes that integer loads and stores are atomic, but
690 * is not safe for multiple writers updating the kstat in parallel (only the
691 * last writer's update will remain).
692 */
693 #define ARCSTAT_F_AVG_FACTOR 3
694 #define ARCSTAT_F_AVG(stat, value) \
695 do { \
696 uint64_t x = ARCSTAT(stat); \
697 x = x - x / ARCSTAT_F_AVG_FACTOR + \
698 (value) / ARCSTAT_F_AVG_FACTOR; \
699 ARCSTAT(stat) = x; \
700 } while (0)
701
702 static kstat_t *arc_ksp;
703
704 /*
705 * There are several ARC variables that are critical to export as kstats --
706 * but we don't want to have to grovel around in the kstat whenever we wish to
707 * manipulate them. For these variables, we therefore define them to be in
708 * terms of the statistic variable. This assures that we are not introducing
709 * the possibility of inconsistency by having shadow copies of the variables,
710 * while still allowing the code to be readable.
711 */
712 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
713 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
714 #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
715 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */
716
717 hrtime_t arc_growtime;
718 list_t arc_prune_list;
719 kmutex_t arc_prune_mtx;
720 taskq_t *arc_prune_taskq;
721
722 #define GHOST_STATE(state) \
723 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
724 (state) == arc_l2c_only)
725
726 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
727 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
728 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
729 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
730 #define HDR_PRESCIENT_PREFETCH(hdr) \
731 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
732 #define HDR_COMPRESSION_ENABLED(hdr) \
733 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
734
735 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
736 #define HDR_UNCACHED(hdr) ((hdr)->b_flags & ARC_FLAG_UNCACHED)
737 #define HDR_L2_READING(hdr) \
738 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
739 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
740 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
741 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
742 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
743 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
744 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
745 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
746
747 #define HDR_ISTYPE_METADATA(hdr) \
748 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
749 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
750
751 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
752 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
753 #define HDR_HAS_RABD(hdr) \
754 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
755 (hdr)->b_crypt_hdr.b_rabd != NULL)
756 #define HDR_ENCRYPTED(hdr) \
757 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
758 #define HDR_AUTHENTICATED(hdr) \
759 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
760
761 /* For storing compression mode in b_flags */
762 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
763
764 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
765 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
766 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
767 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
768
769 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
770 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
771 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
772 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
773
774 /*
775 * Other sizes
776 */
777
778 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
779 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
780
781 /*
782 * Hash table routines
783 */
784
785 #define BUF_LOCKS 2048
786 typedef struct buf_hash_table {
787 uint64_t ht_mask;
788 arc_buf_hdr_t **ht_table;
789 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned;
790 } buf_hash_table_t;
791
792 static buf_hash_table_t buf_hash_table;
793
794 #define BUF_HASH_INDEX(spa, dva, birth) \
795 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
796 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
797 #define HDR_LOCK(hdr) \
798 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
799
800 uint64_t zfs_crc64_table[256];
801
802 /*
803 * Asynchronous ARC flush
804 *
805 * We track these in a list for arc_async_flush_guid_inuse().
806 * Used for both L1 and L2 async teardown.
807 */
808 static list_t arc_async_flush_list;
809 static kmutex_t arc_async_flush_lock;
810
811 typedef struct arc_async_flush {
812 uint64_t af_spa_guid;
813 taskq_ent_t af_tqent;
814 uint_t af_cache_level; /* 1 or 2 to differentiate node */
815 list_node_t af_node;
816 } arc_async_flush_t;
817
818
819 /*
820 * Level 2 ARC
821 */
822
823 #define L2ARC_WRITE_SIZE (32 * 1024 * 1024) /* initial write max */
824 #define L2ARC_HEADROOM 8 /* num of writes */
825
826 /*
827 * If we discover during ARC scan any buffers to be compressed, we boost
828 * our headroom for the next scanning cycle by this percentage multiple.
829 */
830 #define L2ARC_HEADROOM_BOOST 200
831 #define L2ARC_FEED_SECS 1 /* caching interval secs */
832 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
833
834 /*
835 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
836 * and each of the state has two types: data and metadata.
837 */
838 #define L2ARC_FEED_TYPES 4
839
840 /* L2ARC Performance Tunables */
841 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
842 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
843 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
844 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
845 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
846 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
847 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
848 int l2arc_feed_again = B_TRUE; /* turbo warmup */
849 int l2arc_norw = B_FALSE; /* no reads during writes */
850 static uint_t l2arc_meta_percent = 33; /* limit on headers size */
851
852 /*
853 * L2ARC Internals
854 */
855 static list_t L2ARC_dev_list; /* device list */
856 static list_t *l2arc_dev_list; /* device list pointer */
857 static kmutex_t l2arc_dev_mtx; /* device list mutex */
858 static l2arc_dev_t *l2arc_dev_last; /* last device used */
859 static list_t L2ARC_free_on_write; /* free after write buf list */
860 static list_t *l2arc_free_on_write; /* free after write list ptr */
861 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
862 static uint64_t l2arc_ndev; /* number of devices */
863
864 typedef struct l2arc_read_callback {
865 arc_buf_hdr_t *l2rcb_hdr; /* read header */
866 blkptr_t l2rcb_bp; /* original blkptr */
867 zbookmark_phys_t l2rcb_zb; /* original bookmark */
868 int l2rcb_flags; /* original flags */
869 abd_t *l2rcb_abd; /* temporary buffer */
870 } l2arc_read_callback_t;
871
872 typedef struct l2arc_data_free {
873 /* protected by l2arc_free_on_write_mtx */
874 abd_t *l2df_abd;
875 size_t l2df_size;
876 arc_buf_contents_t l2df_type;
877 list_node_t l2df_list_node;
878 } l2arc_data_free_t;
879
880 typedef enum arc_fill_flags {
881 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */
882 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */
883 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */
884 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */
885 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */
886 } arc_fill_flags_t;
887
888 typedef enum arc_ovf_level {
889 ARC_OVF_NONE, /* ARC within target size. */
890 ARC_OVF_SOME, /* ARC is slightly overflowed. */
891 ARC_OVF_SEVERE /* ARC is severely overflowed. */
892 } arc_ovf_level_t;
893
894 static kmutex_t l2arc_feed_thr_lock;
895 static kcondvar_t l2arc_feed_thr_cv;
896 static uint8_t l2arc_thread_exit;
897
898 static kmutex_t l2arc_rebuild_thr_lock;
899 static kcondvar_t l2arc_rebuild_thr_cv;
900
901 enum arc_hdr_alloc_flags {
902 ARC_HDR_ALLOC_RDATA = 0x1,
903 ARC_HDR_USE_RESERVE = 0x4,
904 ARC_HDR_ALLOC_LINEAR = 0x8,
905 };
906
907
908 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, const void *, int);
909 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, const void *);
910 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, const void *, int);
911 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, const void *);
912 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, const void *);
913 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size,
914 const void *tag);
915 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
916 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int);
917 static void arc_hdr_destroy(arc_buf_hdr_t *);
918 static void arc_access(arc_buf_hdr_t *, arc_flags_t, boolean_t);
919 static void arc_buf_watch(arc_buf_t *);
920 static void arc_change_state(arc_state_t *, arc_buf_hdr_t *);
921
922 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
923 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
924 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
925 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
926
927 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
928 static void l2arc_read_done(zio_t *);
929 static void l2arc_do_free_on_write(void);
930 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
931 boolean_t state_only);
932
933 static void arc_prune_async(uint64_t adjust);
934
935 #define l2arc_hdr_arcstats_increment(hdr) \
936 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
937 #define l2arc_hdr_arcstats_decrement(hdr) \
938 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
939 #define l2arc_hdr_arcstats_increment_state(hdr) \
940 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
941 #define l2arc_hdr_arcstats_decrement_state(hdr) \
942 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
943
944 /*
945 * l2arc_exclude_special : A zfs module parameter that controls whether buffers
946 * present on special vdevs are eligibile for caching in L2ARC. If
947 * set to 1, exclude dbufs on special vdevs from being cached to
948 * L2ARC.
949 */
950 int l2arc_exclude_special = 0;
951
952 /*
953 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
954 * metadata and data are cached from ARC into L2ARC.
955 */
956 static int l2arc_mfuonly = 0;
957
958 /*
959 * L2ARC TRIM
960 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
961 * the current write size (l2arc_write_max) we should TRIM if we
962 * have filled the device. It is defined as a percentage of the
963 * write size. If set to 100 we trim twice the space required to
964 * accommodate upcoming writes. A minimum of 64MB will be trimmed.
965 * It also enables TRIM of the whole L2ARC device upon creation or
966 * addition to an existing pool or if the header of the device is
967 * invalid upon importing a pool or onlining a cache device. The
968 * default is 0, which disables TRIM on L2ARC altogether as it can
969 * put significant stress on the underlying storage devices. This
970 * will vary depending of how well the specific device handles
971 * these commands.
972 */
973 static uint64_t l2arc_trim_ahead = 0;
974
975 /*
976 * Performance tuning of L2ARC persistence:
977 *
978 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
979 * an L2ARC device (either at pool import or later) will attempt
980 * to rebuild L2ARC buffer contents.
981 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
982 * whether log blocks are written to the L2ARC device. If the L2ARC
983 * device is less than 1GB, the amount of data l2arc_evict()
984 * evicts is significant compared to the amount of restored L2ARC
985 * data. In this case do not write log blocks in L2ARC in order
986 * not to waste space.
987 */
988 static int l2arc_rebuild_enabled = B_TRUE;
989 static uint64_t l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
990
991 /* L2ARC persistence rebuild control routines. */
992 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
993 static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg);
994 static int l2arc_rebuild(l2arc_dev_t *dev);
995
996 /* L2ARC persistence read I/O routines. */
997 static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
998 static int l2arc_log_blk_read(l2arc_dev_t *dev,
999 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
1000 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
1001 zio_t *this_io, zio_t **next_io);
1002 static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
1003 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
1004 static void l2arc_log_blk_fetch_abort(zio_t *zio);
1005
1006 /* L2ARC persistence block restoration routines. */
1007 static void l2arc_log_blk_restore(l2arc_dev_t *dev,
1008 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
1009 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
1010 l2arc_dev_t *dev);
1011
1012 /* L2ARC persistence write I/O routines. */
1013 static uint64_t l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
1014 l2arc_write_callback_t *cb);
1015
1016 /* L2ARC persistence auxiliary routines. */
1017 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
1018 const l2arc_log_blkptr_t *lbp);
1019 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
1020 const arc_buf_hdr_t *ab);
1021 boolean_t l2arc_range_check_overlap(uint64_t bottom,
1022 uint64_t top, uint64_t check);
1023 static void l2arc_blk_fetch_done(zio_t *zio);
1024 static inline uint64_t
1025 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
1026
1027 /*
1028 * We use Cityhash for this. It's fast, and has good hash properties without
1029 * requiring any large static buffers.
1030 */
1031 static uint64_t
buf_hash(uint64_t spa,const dva_t * dva,uint64_t birth)1032 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1033 {
1034 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
1035 }
1036
1037 #define HDR_EMPTY(hdr) \
1038 ((hdr)->b_dva.dva_word[0] == 0 && \
1039 (hdr)->b_dva.dva_word[1] == 0)
1040
1041 #define HDR_EMPTY_OR_LOCKED(hdr) \
1042 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
1043
1044 #define HDR_EQUAL(spa, dva, birth, hdr) \
1045 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1046 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1047 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1048
1049 static void
buf_discard_identity(arc_buf_hdr_t * hdr)1050 buf_discard_identity(arc_buf_hdr_t *hdr)
1051 {
1052 hdr->b_dva.dva_word[0] = 0;
1053 hdr->b_dva.dva_word[1] = 0;
1054 hdr->b_birth = 0;
1055 }
1056
1057 static arc_buf_hdr_t *
buf_hash_find(uint64_t spa,const blkptr_t * bp,kmutex_t ** lockp)1058 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1059 {
1060 const dva_t *dva = BP_IDENTITY(bp);
1061 uint64_t birth = BP_GET_PHYSICAL_BIRTH(bp);
1062 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1063 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1064 arc_buf_hdr_t *hdr;
1065
1066 mutex_enter(hash_lock);
1067 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1068 hdr = hdr->b_hash_next) {
1069 if (HDR_EQUAL(spa, dva, birth, hdr)) {
1070 *lockp = hash_lock;
1071 return (hdr);
1072 }
1073 }
1074 mutex_exit(hash_lock);
1075 *lockp = NULL;
1076 return (NULL);
1077 }
1078
1079 /*
1080 * Insert an entry into the hash table. If there is already an element
1081 * equal to elem in the hash table, then the already existing element
1082 * will be returned and the new element will not be inserted.
1083 * Otherwise returns NULL.
1084 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1085 */
1086 static arc_buf_hdr_t *
buf_hash_insert(arc_buf_hdr_t * hdr,kmutex_t ** lockp)1087 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1088 {
1089 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1090 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1091 arc_buf_hdr_t *fhdr;
1092 uint32_t i;
1093
1094 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1095 ASSERT(hdr->b_birth != 0);
1096 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1097
1098 if (lockp != NULL) {
1099 *lockp = hash_lock;
1100 mutex_enter(hash_lock);
1101 } else {
1102 ASSERT(MUTEX_HELD(hash_lock));
1103 }
1104
1105 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1106 fhdr = fhdr->b_hash_next, i++) {
1107 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1108 return (fhdr);
1109 }
1110
1111 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1112 buf_hash_table.ht_table[idx] = hdr;
1113 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1114
1115 /* collect some hash table performance data */
1116 if (i > 0) {
1117 ARCSTAT_BUMP(arcstat_hash_collisions);
1118 if (i == 1)
1119 ARCSTAT_BUMP(arcstat_hash_chains);
1120 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1121 }
1122 ARCSTAT_BUMP(arcstat_hash_elements);
1123
1124 return (NULL);
1125 }
1126
1127 static void
buf_hash_remove(arc_buf_hdr_t * hdr)1128 buf_hash_remove(arc_buf_hdr_t *hdr)
1129 {
1130 arc_buf_hdr_t *fhdr, **hdrp;
1131 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1132
1133 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1134 ASSERT(HDR_IN_HASH_TABLE(hdr));
1135
1136 hdrp = &buf_hash_table.ht_table[idx];
1137 while ((fhdr = *hdrp) != hdr) {
1138 ASSERT3P(fhdr, !=, NULL);
1139 hdrp = &fhdr->b_hash_next;
1140 }
1141 *hdrp = hdr->b_hash_next;
1142 hdr->b_hash_next = NULL;
1143 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1144
1145 /* collect some hash table performance data */
1146 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1147 if (buf_hash_table.ht_table[idx] &&
1148 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1149 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1150 }
1151
1152 /*
1153 * Global data structures and functions for the buf kmem cache.
1154 */
1155
1156 static kmem_cache_t *hdr_full_cache;
1157 static kmem_cache_t *hdr_l2only_cache;
1158 static kmem_cache_t *buf_cache;
1159
1160 static void
buf_fini(void)1161 buf_fini(void)
1162 {
1163 #if defined(_KERNEL)
1164 /*
1165 * Large allocations which do not require contiguous pages
1166 * should be using vmem_free() in the linux kernel.
1167 */
1168 vmem_free(buf_hash_table.ht_table,
1169 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1170 #else
1171 kmem_free(buf_hash_table.ht_table,
1172 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1173 #endif
1174 for (int i = 0; i < BUF_LOCKS; i++)
1175 mutex_destroy(BUF_HASH_LOCK(i));
1176 kmem_cache_destroy(hdr_full_cache);
1177 kmem_cache_destroy(hdr_l2only_cache);
1178 kmem_cache_destroy(buf_cache);
1179 }
1180
1181 /*
1182 * Constructor callback - called when the cache is empty
1183 * and a new buf is requested.
1184 */
1185 static int
hdr_full_cons(void * vbuf,void * unused,int kmflag)1186 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1187 {
1188 (void) unused, (void) kmflag;
1189 arc_buf_hdr_t *hdr = vbuf;
1190
1191 memset(hdr, 0, HDR_FULL_SIZE);
1192 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1193 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1194 #ifdef ZFS_DEBUG
1195 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1196 #endif
1197 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1198 list_link_init(&hdr->b_l2hdr.b_l2node);
1199 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1200
1201 return (0);
1202 }
1203
1204 static int
hdr_l2only_cons(void * vbuf,void * unused,int kmflag)1205 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1206 {
1207 (void) unused, (void) kmflag;
1208 arc_buf_hdr_t *hdr = vbuf;
1209
1210 memset(hdr, 0, HDR_L2ONLY_SIZE);
1211 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1212
1213 return (0);
1214 }
1215
1216 static int
buf_cons(void * vbuf,void * unused,int kmflag)1217 buf_cons(void *vbuf, void *unused, int kmflag)
1218 {
1219 (void) unused, (void) kmflag;
1220 arc_buf_t *buf = vbuf;
1221
1222 memset(buf, 0, sizeof (arc_buf_t));
1223 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1224
1225 return (0);
1226 }
1227
1228 /*
1229 * Destructor callback - called when a cached buf is
1230 * no longer required.
1231 */
1232 static void
hdr_full_dest(void * vbuf,void * unused)1233 hdr_full_dest(void *vbuf, void *unused)
1234 {
1235 (void) unused;
1236 arc_buf_hdr_t *hdr = vbuf;
1237
1238 ASSERT(HDR_EMPTY(hdr));
1239 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1240 #ifdef ZFS_DEBUG
1241 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1242 #endif
1243 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1244 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1245 }
1246
1247 static void
hdr_l2only_dest(void * vbuf,void * unused)1248 hdr_l2only_dest(void *vbuf, void *unused)
1249 {
1250 (void) unused;
1251 arc_buf_hdr_t *hdr = vbuf;
1252
1253 ASSERT(HDR_EMPTY(hdr));
1254 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1255 }
1256
1257 static void
buf_dest(void * vbuf,void * unused)1258 buf_dest(void *vbuf, void *unused)
1259 {
1260 (void) unused;
1261 (void) vbuf;
1262
1263 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1264 }
1265
1266 static void
buf_init(void)1267 buf_init(void)
1268 {
1269 uint64_t *ct = NULL;
1270 uint64_t hsize = 1ULL << 12;
1271 int i, j;
1272
1273 /*
1274 * The hash table is big enough to fill all of physical memory
1275 * with an average block size of zfs_arc_average_blocksize (default 8K).
1276 * By default, the table will take up
1277 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1278 */
1279 while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1280 hsize <<= 1;
1281 retry:
1282 buf_hash_table.ht_mask = hsize - 1;
1283 #if defined(_KERNEL)
1284 /*
1285 * Large allocations which do not require contiguous pages
1286 * should be using vmem_alloc() in the linux kernel
1287 */
1288 buf_hash_table.ht_table =
1289 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1290 #else
1291 buf_hash_table.ht_table =
1292 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1293 #endif
1294 if (buf_hash_table.ht_table == NULL) {
1295 ASSERT(hsize > (1ULL << 8));
1296 hsize >>= 1;
1297 goto retry;
1298 }
1299
1300 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1301 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, KMC_RECLAIMABLE);
1302 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1303 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
1304 NULL, NULL, 0);
1305 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1306 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1307
1308 for (i = 0; i < 256; i++)
1309 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1310 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1311
1312 for (i = 0; i < BUF_LOCKS; i++)
1313 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL);
1314 }
1315
1316 #define ARC_MINTIME (hz>>4) /* 62 ms */
1317
1318 /*
1319 * This is the size that the buf occupies in memory. If the buf is compressed,
1320 * it will correspond to the compressed size. You should use this method of
1321 * getting the buf size unless you explicitly need the logical size.
1322 */
1323 uint64_t
arc_buf_size(arc_buf_t * buf)1324 arc_buf_size(arc_buf_t *buf)
1325 {
1326 return (ARC_BUF_COMPRESSED(buf) ?
1327 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1328 }
1329
1330 uint64_t
arc_buf_lsize(arc_buf_t * buf)1331 arc_buf_lsize(arc_buf_t *buf)
1332 {
1333 return (HDR_GET_LSIZE(buf->b_hdr));
1334 }
1335
1336 /*
1337 * This function will return B_TRUE if the buffer is encrypted in memory.
1338 * This buffer can be decrypted by calling arc_untransform().
1339 */
1340 boolean_t
arc_is_encrypted(arc_buf_t * buf)1341 arc_is_encrypted(arc_buf_t *buf)
1342 {
1343 return (ARC_BUF_ENCRYPTED(buf) != 0);
1344 }
1345
1346 /*
1347 * Returns B_TRUE if the buffer represents data that has not had its MAC
1348 * verified yet.
1349 */
1350 boolean_t
arc_is_unauthenticated(arc_buf_t * buf)1351 arc_is_unauthenticated(arc_buf_t *buf)
1352 {
1353 return (HDR_NOAUTH(buf->b_hdr) != 0);
1354 }
1355
1356 void
arc_get_raw_params(arc_buf_t * buf,boolean_t * byteorder,uint8_t * salt,uint8_t * iv,uint8_t * mac)1357 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1358 uint8_t *iv, uint8_t *mac)
1359 {
1360 arc_buf_hdr_t *hdr = buf->b_hdr;
1361
1362 ASSERT(HDR_PROTECTED(hdr));
1363
1364 memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
1365 memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
1366 memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
1367 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1368 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1369 }
1370
1371 /*
1372 * Indicates how this buffer is compressed in memory. If it is not compressed
1373 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1374 * arc_untransform() as long as it is also unencrypted.
1375 */
1376 enum zio_compress
arc_get_compression(arc_buf_t * buf)1377 arc_get_compression(arc_buf_t *buf)
1378 {
1379 return (ARC_BUF_COMPRESSED(buf) ?
1380 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1381 }
1382
1383 /*
1384 * Return the compression algorithm used to store this data in the ARC. If ARC
1385 * compression is enabled or this is an encrypted block, this will be the same
1386 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1387 */
1388 static inline enum zio_compress
arc_hdr_get_compress(arc_buf_hdr_t * hdr)1389 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1390 {
1391 return (HDR_COMPRESSION_ENABLED(hdr) ?
1392 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1393 }
1394
1395 uint8_t
arc_get_complevel(arc_buf_t * buf)1396 arc_get_complevel(arc_buf_t *buf)
1397 {
1398 return (buf->b_hdr->b_complevel);
1399 }
1400
1401 __maybe_unused
1402 static inline boolean_t
arc_buf_is_shared(arc_buf_t * buf)1403 arc_buf_is_shared(arc_buf_t *buf)
1404 {
1405 boolean_t shared = (buf->b_data != NULL &&
1406 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1407 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1408 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1409 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1410 EQUIV(shared, ARC_BUF_SHARED(buf));
1411 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1412
1413 /*
1414 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1415 * already being shared" requirement prevents us from doing that.
1416 */
1417
1418 return (shared);
1419 }
1420
1421 /*
1422 * Free the checksum associated with this header. If there is no checksum, this
1423 * is a no-op.
1424 */
1425 static inline void
arc_cksum_free(arc_buf_hdr_t * hdr)1426 arc_cksum_free(arc_buf_hdr_t *hdr)
1427 {
1428 #ifdef ZFS_DEBUG
1429 ASSERT(HDR_HAS_L1HDR(hdr));
1430
1431 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1432 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1433 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1434 hdr->b_l1hdr.b_freeze_cksum = NULL;
1435 }
1436 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1437 #endif
1438 }
1439
1440 /*
1441 * Return true iff at least one of the bufs on hdr is not compressed.
1442 * Encrypted buffers count as compressed.
1443 */
1444 static boolean_t
arc_hdr_has_uncompressed_buf(arc_buf_hdr_t * hdr)1445 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1446 {
1447 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1448
1449 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1450 if (!ARC_BUF_COMPRESSED(b)) {
1451 return (B_TRUE);
1452 }
1453 }
1454 return (B_FALSE);
1455 }
1456
1457
1458 /*
1459 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1460 * matches the checksum that is stored in the hdr. If there is no checksum,
1461 * or if the buf is compressed, this is a no-op.
1462 */
1463 static void
arc_cksum_verify(arc_buf_t * buf)1464 arc_cksum_verify(arc_buf_t *buf)
1465 {
1466 #ifdef ZFS_DEBUG
1467 arc_buf_hdr_t *hdr = buf->b_hdr;
1468 zio_cksum_t zc;
1469
1470 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1471 return;
1472
1473 if (ARC_BUF_COMPRESSED(buf))
1474 return;
1475
1476 ASSERT(HDR_HAS_L1HDR(hdr));
1477
1478 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1479
1480 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1481 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1482 return;
1483 }
1484
1485 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1486 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1487 panic("buffer modified while frozen!");
1488 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1489 #endif
1490 }
1491
1492 /*
1493 * This function makes the assumption that data stored in the L2ARC
1494 * will be transformed exactly as it is in the main pool. Because of
1495 * this we can verify the checksum against the reading process's bp.
1496 */
1497 static boolean_t
arc_cksum_is_equal(arc_buf_hdr_t * hdr,zio_t * zio)1498 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1499 {
1500 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1501 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1502
1503 /*
1504 * Block pointers always store the checksum for the logical data.
1505 * If the block pointer has the gang bit set, then the checksum
1506 * it represents is for the reconstituted data and not for an
1507 * individual gang member. The zio pipeline, however, must be able to
1508 * determine the checksum of each of the gang constituents so it
1509 * treats the checksum comparison differently than what we need
1510 * for l2arc blocks. This prevents us from using the
1511 * zio_checksum_error() interface directly. Instead we must call the
1512 * zio_checksum_error_impl() so that we can ensure the checksum is
1513 * generated using the correct checksum algorithm and accounts for the
1514 * logical I/O size and not just a gang fragment.
1515 */
1516 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1517 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1518 zio->io_offset, NULL) == 0);
1519 }
1520
1521 /*
1522 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1523 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1524 * isn't modified later on. If buf is compressed or there is already a checksum
1525 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1526 */
1527 static void
arc_cksum_compute(arc_buf_t * buf)1528 arc_cksum_compute(arc_buf_t *buf)
1529 {
1530 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1531 return;
1532
1533 #ifdef ZFS_DEBUG
1534 arc_buf_hdr_t *hdr = buf->b_hdr;
1535 ASSERT(HDR_HAS_L1HDR(hdr));
1536 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1537 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1538 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1539 return;
1540 }
1541
1542 ASSERT(!ARC_BUF_ENCRYPTED(buf));
1543 ASSERT(!ARC_BUF_COMPRESSED(buf));
1544 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1545 KM_SLEEP);
1546 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1547 hdr->b_l1hdr.b_freeze_cksum);
1548 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1549 #endif
1550 arc_buf_watch(buf);
1551 }
1552
1553 #ifndef _KERNEL
1554 void
arc_buf_sigsegv(int sig,siginfo_t * si,void * unused)1555 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1556 {
1557 (void) sig, (void) unused;
1558 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1559 }
1560 #endif
1561
1562 static void
arc_buf_unwatch(arc_buf_t * buf)1563 arc_buf_unwatch(arc_buf_t *buf)
1564 {
1565 #ifndef _KERNEL
1566 if (arc_watch) {
1567 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1568 PROT_READ | PROT_WRITE));
1569 }
1570 #else
1571 (void) buf;
1572 #endif
1573 }
1574
1575 static void
arc_buf_watch(arc_buf_t * buf)1576 arc_buf_watch(arc_buf_t *buf)
1577 {
1578 #ifndef _KERNEL
1579 if (arc_watch)
1580 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1581 PROT_READ));
1582 #else
1583 (void) buf;
1584 #endif
1585 }
1586
1587 static arc_buf_contents_t
arc_buf_type(arc_buf_hdr_t * hdr)1588 arc_buf_type(arc_buf_hdr_t *hdr)
1589 {
1590 arc_buf_contents_t type;
1591 if (HDR_ISTYPE_METADATA(hdr)) {
1592 type = ARC_BUFC_METADATA;
1593 } else {
1594 type = ARC_BUFC_DATA;
1595 }
1596 VERIFY3U(hdr->b_type, ==, type);
1597 return (type);
1598 }
1599
1600 boolean_t
arc_is_metadata(arc_buf_t * buf)1601 arc_is_metadata(arc_buf_t *buf)
1602 {
1603 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1604 }
1605
1606 static uint32_t
arc_bufc_to_flags(arc_buf_contents_t type)1607 arc_bufc_to_flags(arc_buf_contents_t type)
1608 {
1609 switch (type) {
1610 case ARC_BUFC_DATA:
1611 /* metadata field is 0 if buffer contains normal data */
1612 return (0);
1613 case ARC_BUFC_METADATA:
1614 return (ARC_FLAG_BUFC_METADATA);
1615 default:
1616 break;
1617 }
1618 panic("undefined ARC buffer type!");
1619 return ((uint32_t)-1);
1620 }
1621
1622 void
arc_buf_thaw(arc_buf_t * buf)1623 arc_buf_thaw(arc_buf_t *buf)
1624 {
1625 arc_buf_hdr_t *hdr = buf->b_hdr;
1626
1627 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1628 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1629
1630 arc_cksum_verify(buf);
1631
1632 /*
1633 * Compressed buffers do not manipulate the b_freeze_cksum.
1634 */
1635 if (ARC_BUF_COMPRESSED(buf))
1636 return;
1637
1638 ASSERT(HDR_HAS_L1HDR(hdr));
1639 arc_cksum_free(hdr);
1640 arc_buf_unwatch(buf);
1641 }
1642
1643 void
arc_buf_freeze(arc_buf_t * buf)1644 arc_buf_freeze(arc_buf_t *buf)
1645 {
1646 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1647 return;
1648
1649 if (ARC_BUF_COMPRESSED(buf))
1650 return;
1651
1652 ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1653 arc_cksum_compute(buf);
1654 }
1655
1656 /*
1657 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1658 * the following functions should be used to ensure that the flags are
1659 * updated in a thread-safe way. When manipulating the flags either
1660 * the hash_lock must be held or the hdr must be undiscoverable. This
1661 * ensures that we're not racing with any other threads when updating
1662 * the flags.
1663 */
1664 static inline void
arc_hdr_set_flags(arc_buf_hdr_t * hdr,arc_flags_t flags)1665 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1666 {
1667 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1668 hdr->b_flags |= flags;
1669 }
1670
1671 static inline void
arc_hdr_clear_flags(arc_buf_hdr_t * hdr,arc_flags_t flags)1672 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1673 {
1674 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1675 hdr->b_flags &= ~flags;
1676 }
1677
1678 /*
1679 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1680 * done in a special way since we have to clear and set bits
1681 * at the same time. Consumers that wish to set the compression bits
1682 * must use this function to ensure that the flags are updated in
1683 * thread-safe manner.
1684 */
1685 static void
arc_hdr_set_compress(arc_buf_hdr_t * hdr,enum zio_compress cmp)1686 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1687 {
1688 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1689
1690 /*
1691 * Holes and embedded blocks will always have a psize = 0 so
1692 * we ignore the compression of the blkptr and set the
1693 * want to uncompress them. Mark them as uncompressed.
1694 */
1695 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1696 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1697 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1698 } else {
1699 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1700 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1701 }
1702
1703 HDR_SET_COMPRESS(hdr, cmp);
1704 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1705 }
1706
1707 /*
1708 * Looks for another buf on the same hdr which has the data decompressed, copies
1709 * from it, and returns true. If no such buf exists, returns false.
1710 */
1711 static boolean_t
arc_buf_try_copy_decompressed_data(arc_buf_t * buf)1712 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1713 {
1714 arc_buf_hdr_t *hdr = buf->b_hdr;
1715 boolean_t copied = B_FALSE;
1716
1717 ASSERT(HDR_HAS_L1HDR(hdr));
1718 ASSERT3P(buf->b_data, !=, NULL);
1719 ASSERT(!ARC_BUF_COMPRESSED(buf));
1720
1721 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1722 from = from->b_next) {
1723 /* can't use our own data buffer */
1724 if (from == buf) {
1725 continue;
1726 }
1727
1728 if (!ARC_BUF_COMPRESSED(from)) {
1729 memcpy(buf->b_data, from->b_data, arc_buf_size(buf));
1730 copied = B_TRUE;
1731 break;
1732 }
1733 }
1734
1735 #ifdef ZFS_DEBUG
1736 /*
1737 * There were no decompressed bufs, so there should not be a
1738 * checksum on the hdr either.
1739 */
1740 if (zfs_flags & ZFS_DEBUG_MODIFY)
1741 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1742 #endif
1743
1744 return (copied);
1745 }
1746
1747 /*
1748 * Allocates an ARC buf header that's in an evicted & L2-cached state.
1749 * This is used during l2arc reconstruction to make empty ARC buffers
1750 * which circumvent the regular disk->arc->l2arc path and instead come
1751 * into being in the reverse order, i.e. l2arc->arc.
1752 */
1753 static arc_buf_hdr_t *
arc_buf_alloc_l2only(size_t size,arc_buf_contents_t type,l2arc_dev_t * dev,dva_t dva,uint64_t daddr,int32_t psize,uint64_t asize,uint64_t birth,enum zio_compress compress,uint8_t complevel,boolean_t protected,boolean_t prefetch,arc_state_type_t arcs_state)1754 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
1755 dva_t dva, uint64_t daddr, int32_t psize, uint64_t asize, uint64_t birth,
1756 enum zio_compress compress, uint8_t complevel, boolean_t protected,
1757 boolean_t prefetch, arc_state_type_t arcs_state)
1758 {
1759 arc_buf_hdr_t *hdr;
1760
1761 ASSERT(size != 0);
1762 ASSERT(dev->l2ad_vdev != NULL);
1763
1764 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
1765 hdr->b_birth = birth;
1766 hdr->b_type = type;
1767 hdr->b_flags = 0;
1768 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
1769 HDR_SET_LSIZE(hdr, size);
1770 HDR_SET_PSIZE(hdr, psize);
1771 HDR_SET_L2SIZE(hdr, asize);
1772 arc_hdr_set_compress(hdr, compress);
1773 hdr->b_complevel = complevel;
1774 if (protected)
1775 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
1776 if (prefetch)
1777 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
1778 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
1779
1780 hdr->b_dva = dva;
1781
1782 hdr->b_l2hdr.b_dev = dev;
1783 hdr->b_l2hdr.b_daddr = daddr;
1784 hdr->b_l2hdr.b_arcs_state = arcs_state;
1785
1786 return (hdr);
1787 }
1788
1789 /*
1790 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1791 */
1792 static uint64_t
arc_hdr_size(arc_buf_hdr_t * hdr)1793 arc_hdr_size(arc_buf_hdr_t *hdr)
1794 {
1795 uint64_t size;
1796
1797 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1798 HDR_GET_PSIZE(hdr) > 0) {
1799 size = HDR_GET_PSIZE(hdr);
1800 } else {
1801 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1802 size = HDR_GET_LSIZE(hdr);
1803 }
1804 return (size);
1805 }
1806
1807 static int
arc_hdr_authenticate(arc_buf_hdr_t * hdr,spa_t * spa,uint64_t dsobj)1808 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1809 {
1810 int ret;
1811 uint64_t csize;
1812 uint64_t lsize = HDR_GET_LSIZE(hdr);
1813 uint64_t psize = HDR_GET_PSIZE(hdr);
1814 abd_t *abd = hdr->b_l1hdr.b_pabd;
1815 boolean_t free_abd = B_FALSE;
1816
1817 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1818 ASSERT(HDR_AUTHENTICATED(hdr));
1819 ASSERT3P(abd, !=, NULL);
1820
1821 /*
1822 * The MAC is calculated on the compressed data that is stored on disk.
1823 * However, if compressed arc is disabled we will only have the
1824 * decompressed data available to us now. Compress it into a temporary
1825 * abd so we can verify the MAC. The performance overhead of this will
1826 * be relatively low, since most objects in an encrypted objset will
1827 * be encrypted (instead of authenticated) anyway.
1828 */
1829 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1830 !HDR_COMPRESSION_ENABLED(hdr)) {
1831 abd = NULL;
1832 csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1833 hdr->b_l1hdr.b_pabd, &abd, lsize, MIN(lsize, psize),
1834 hdr->b_complevel);
1835 if (csize >= lsize || csize > psize) {
1836 ret = SET_ERROR(EIO);
1837 return (ret);
1838 }
1839 ASSERT3P(abd, !=, NULL);
1840 abd_zero_off(abd, csize, psize - csize);
1841 free_abd = B_TRUE;
1842 }
1843
1844 /*
1845 * Authentication is best effort. We authenticate whenever the key is
1846 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1847 */
1848 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1849 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1850 ASSERT3U(lsize, ==, psize);
1851 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1852 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1853 } else {
1854 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1855 hdr->b_crypt_hdr.b_mac);
1856 }
1857
1858 if (ret == 0)
1859 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1860 else if (ret == ENOENT)
1861 ret = 0;
1862
1863 if (free_abd)
1864 abd_free(abd);
1865
1866 return (ret);
1867 }
1868
1869 /*
1870 * This function will take a header that only has raw encrypted data in
1871 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1872 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1873 * also decompress the data.
1874 */
1875 static int
arc_hdr_decrypt(arc_buf_hdr_t * hdr,spa_t * spa,const zbookmark_phys_t * zb)1876 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1877 {
1878 int ret;
1879 abd_t *cabd = NULL;
1880 boolean_t no_crypt = B_FALSE;
1881 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1882
1883 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1884 ASSERT(HDR_ENCRYPTED(hdr));
1885
1886 arc_hdr_alloc_abd(hdr, 0);
1887
1888 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1889 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1890 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1891 hdr->b_crypt_hdr.b_rabd, &no_crypt);
1892 if (ret != 0)
1893 goto error;
1894
1895 if (no_crypt) {
1896 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1897 HDR_GET_PSIZE(hdr));
1898 }
1899
1900 /*
1901 * If this header has disabled arc compression but the b_pabd is
1902 * compressed after decrypting it, we need to decompress the newly
1903 * decrypted data.
1904 */
1905 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1906 !HDR_COMPRESSION_ENABLED(hdr)) {
1907 /*
1908 * We want to make sure that we are correctly honoring the
1909 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1910 * and then loan a buffer from it, rather than allocating a
1911 * linear buffer and wrapping it in an abd later.
1912 */
1913 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 0);
1914
1915 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1916 hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr),
1917 HDR_GET_LSIZE(hdr), &hdr->b_complevel);
1918 if (ret != 0) {
1919 goto error;
1920 }
1921
1922 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1923 arc_hdr_size(hdr), hdr);
1924 hdr->b_l1hdr.b_pabd = cabd;
1925 }
1926
1927 return (0);
1928
1929 error:
1930 arc_hdr_free_abd(hdr, B_FALSE);
1931 if (cabd != NULL)
1932 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
1933
1934 return (ret);
1935 }
1936
1937 /*
1938 * This function is called during arc_buf_fill() to prepare the header's
1939 * abd plaintext pointer for use. This involves authenticated protected
1940 * data and decrypting encrypted data into the plaintext abd.
1941 */
1942 static int
arc_fill_hdr_crypt(arc_buf_hdr_t * hdr,kmutex_t * hash_lock,spa_t * spa,const zbookmark_phys_t * zb,boolean_t noauth)1943 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1944 const zbookmark_phys_t *zb, boolean_t noauth)
1945 {
1946 int ret;
1947
1948 ASSERT(HDR_PROTECTED(hdr));
1949
1950 if (hash_lock != NULL)
1951 mutex_enter(hash_lock);
1952
1953 if (HDR_NOAUTH(hdr) && !noauth) {
1954 /*
1955 * The caller requested authenticated data but our data has
1956 * not been authenticated yet. Verify the MAC now if we can.
1957 */
1958 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1959 if (ret != 0)
1960 goto error;
1961 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1962 /*
1963 * If we only have the encrypted version of the data, but the
1964 * unencrypted version was requested we take this opportunity
1965 * to store the decrypted version in the header for future use.
1966 */
1967 ret = arc_hdr_decrypt(hdr, spa, zb);
1968 if (ret != 0)
1969 goto error;
1970 }
1971
1972 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1973
1974 if (hash_lock != NULL)
1975 mutex_exit(hash_lock);
1976
1977 return (0);
1978
1979 error:
1980 if (hash_lock != NULL)
1981 mutex_exit(hash_lock);
1982
1983 return (ret);
1984 }
1985
1986 /*
1987 * This function is used by the dbuf code to decrypt bonus buffers in place.
1988 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1989 * block, so we use the hash lock here to protect against concurrent calls to
1990 * arc_buf_fill().
1991 */
1992 static void
arc_buf_untransform_in_place(arc_buf_t * buf)1993 arc_buf_untransform_in_place(arc_buf_t *buf)
1994 {
1995 arc_buf_hdr_t *hdr = buf->b_hdr;
1996
1997 ASSERT(HDR_ENCRYPTED(hdr));
1998 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1999 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2000 ASSERT3PF(hdr->b_l1hdr.b_pabd, !=, NULL, "hdr %px buf %px", hdr, buf);
2001
2002 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
2003 arc_buf_size(buf));
2004 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
2005 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2006 }
2007
2008 /*
2009 * Given a buf that has a data buffer attached to it, this function will
2010 * efficiently fill the buf with data of the specified compression setting from
2011 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
2012 * are already sharing a data buf, no copy is performed.
2013 *
2014 * If the buf is marked as compressed but uncompressed data was requested, this
2015 * will allocate a new data buffer for the buf, remove that flag, and fill the
2016 * buf with uncompressed data. You can't request a compressed buf on a hdr with
2017 * uncompressed data, and (since we haven't added support for it yet) if you
2018 * want compressed data your buf must already be marked as compressed and have
2019 * the correct-sized data buffer.
2020 */
2021 static int
arc_buf_fill(arc_buf_t * buf,spa_t * spa,const zbookmark_phys_t * zb,arc_fill_flags_t flags)2022 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2023 arc_fill_flags_t flags)
2024 {
2025 int error = 0;
2026 arc_buf_hdr_t *hdr = buf->b_hdr;
2027 boolean_t hdr_compressed =
2028 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
2029 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
2030 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
2031 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2032 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
2033
2034 ASSERT3P(buf->b_data, !=, NULL);
2035 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
2036 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2037 IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2038 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2039 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2040 IMPLY(encrypted, !arc_buf_is_shared(buf));
2041
2042 /*
2043 * If the caller wanted encrypted data we just need to copy it from
2044 * b_rabd and potentially byteswap it. We won't be able to do any
2045 * further transforms on it.
2046 */
2047 if (encrypted) {
2048 ASSERT(HDR_HAS_RABD(hdr));
2049 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2050 HDR_GET_PSIZE(hdr));
2051 goto byteswap;
2052 }
2053
2054 /*
2055 * Adjust encrypted and authenticated headers to accommodate
2056 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2057 * allowed to fail decryption due to keys not being loaded
2058 * without being marked as an IO error.
2059 */
2060 if (HDR_PROTECTED(hdr)) {
2061 error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2062 zb, !!(flags & ARC_FILL_NOAUTH));
2063 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2064 return (error);
2065 } else if (error != 0) {
2066 if (hash_lock != NULL)
2067 mutex_enter(hash_lock);
2068 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2069 if (hash_lock != NULL)
2070 mutex_exit(hash_lock);
2071 return (error);
2072 }
2073 }
2074
2075 /*
2076 * There is a special case here for dnode blocks which are
2077 * decrypting their bonus buffers. These blocks may request to
2078 * be decrypted in-place. This is necessary because there may
2079 * be many dnodes pointing into this buffer and there is
2080 * currently no method to synchronize replacing the backing
2081 * b_data buffer and updating all of the pointers. Here we use
2082 * the hash lock to ensure there are no races. If the need
2083 * arises for other types to be decrypted in-place, they must
2084 * add handling here as well.
2085 */
2086 if ((flags & ARC_FILL_IN_PLACE) != 0) {
2087 ASSERT(!hdr_compressed);
2088 ASSERT(!compressed);
2089 ASSERT(!encrypted);
2090
2091 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2092 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2093
2094 if (hash_lock != NULL)
2095 mutex_enter(hash_lock);
2096 arc_buf_untransform_in_place(buf);
2097 if (hash_lock != NULL)
2098 mutex_exit(hash_lock);
2099
2100 /* Compute the hdr's checksum if necessary */
2101 arc_cksum_compute(buf);
2102 }
2103
2104 return (0);
2105 }
2106
2107 if (hdr_compressed == compressed) {
2108 if (ARC_BUF_SHARED(buf)) {
2109 ASSERT(arc_buf_is_shared(buf));
2110 } else {
2111 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2112 arc_buf_size(buf));
2113 }
2114 } else {
2115 ASSERT(hdr_compressed);
2116 ASSERT(!compressed);
2117
2118 /*
2119 * If the buf is sharing its data with the hdr, unlink it and
2120 * allocate a new data buffer for the buf.
2121 */
2122 if (ARC_BUF_SHARED(buf)) {
2123 ASSERTF(ARC_BUF_COMPRESSED(buf),
2124 "buf %p was uncompressed", buf);
2125
2126 /* We need to give the buf its own b_data */
2127 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2128 buf->b_data =
2129 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2130 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2131
2132 /* Previously overhead was 0; just add new overhead */
2133 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2134 } else if (ARC_BUF_COMPRESSED(buf)) {
2135 ASSERT(!arc_buf_is_shared(buf));
2136
2137 /* We need to reallocate the buf's b_data */
2138 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2139 buf);
2140 buf->b_data =
2141 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2142
2143 /* We increased the size of b_data; update overhead */
2144 ARCSTAT_INCR(arcstat_overhead_size,
2145 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2146 }
2147
2148 /*
2149 * Regardless of the buf's previous compression settings, it
2150 * should not be compressed at the end of this function.
2151 */
2152 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2153
2154 /*
2155 * Try copying the data from another buf which already has a
2156 * decompressed version. If that's not possible, it's time to
2157 * bite the bullet and decompress the data from the hdr.
2158 */
2159 if (arc_buf_try_copy_decompressed_data(buf)) {
2160 /* Skip byteswapping and checksumming (already done) */
2161 return (0);
2162 } else {
2163 abd_t dabd;
2164 abd_get_from_buf_struct(&dabd, buf->b_data,
2165 HDR_GET_LSIZE(hdr));
2166 error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2167 hdr->b_l1hdr.b_pabd, &dabd,
2168 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr),
2169 &hdr->b_complevel);
2170 abd_free(&dabd);
2171
2172 /*
2173 * Absent hardware errors or software bugs, this should
2174 * be impossible, but log it anyway so we can debug it.
2175 */
2176 if (error != 0) {
2177 zfs_dbgmsg(
2178 "hdr %px, compress %d, psize %d, lsize %d",
2179 hdr, arc_hdr_get_compress(hdr),
2180 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2181 if (hash_lock != NULL)
2182 mutex_enter(hash_lock);
2183 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2184 if (hash_lock != NULL)
2185 mutex_exit(hash_lock);
2186 return (SET_ERROR(EIO));
2187 }
2188 }
2189 }
2190
2191 byteswap:
2192 /* Byteswap the buf's data if necessary */
2193 if (bswap != DMU_BSWAP_NUMFUNCS) {
2194 ASSERT(!HDR_SHARED_DATA(hdr));
2195 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2196 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2197 }
2198
2199 /* Compute the hdr's checksum if necessary */
2200 arc_cksum_compute(buf);
2201
2202 return (0);
2203 }
2204
2205 /*
2206 * If this function is being called to decrypt an encrypted buffer or verify an
2207 * authenticated one, the key must be loaded and a mapping must be made
2208 * available in the keystore via spa_keystore_create_mapping() or one of its
2209 * callers.
2210 */
2211 int
arc_untransform(arc_buf_t * buf,spa_t * spa,const zbookmark_phys_t * zb,boolean_t in_place)2212 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2213 boolean_t in_place)
2214 {
2215 int ret;
2216 arc_fill_flags_t flags = 0;
2217
2218 if (in_place)
2219 flags |= ARC_FILL_IN_PLACE;
2220
2221 ret = arc_buf_fill(buf, spa, zb, flags);
2222 if (ret == ECKSUM) {
2223 /*
2224 * Convert authentication and decryption errors to EIO
2225 * (and generate an ereport) before leaving the ARC.
2226 */
2227 ret = SET_ERROR(EIO);
2228 spa_log_error(spa, zb, buf->b_hdr->b_birth);
2229 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2230 spa, NULL, zb, NULL, 0);
2231 }
2232
2233 return (ret);
2234 }
2235
2236 /*
2237 * Increment the amount of evictable space in the arc_state_t's refcount.
2238 * We account for the space used by the hdr and the arc buf individually
2239 * so that we can add and remove them from the refcount individually.
2240 */
2241 static void
arc_evictable_space_increment(arc_buf_hdr_t * hdr,arc_state_t * state)2242 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2243 {
2244 arc_buf_contents_t type = arc_buf_type(hdr);
2245
2246 ASSERT(HDR_HAS_L1HDR(hdr));
2247
2248 if (GHOST_STATE(state)) {
2249 ASSERT0P(hdr->b_l1hdr.b_buf);
2250 ASSERT0P(hdr->b_l1hdr.b_pabd);
2251 ASSERT(!HDR_HAS_RABD(hdr));
2252 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2253 HDR_GET_LSIZE(hdr), hdr);
2254 return;
2255 }
2256
2257 if (hdr->b_l1hdr.b_pabd != NULL) {
2258 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2259 arc_hdr_size(hdr), hdr);
2260 }
2261 if (HDR_HAS_RABD(hdr)) {
2262 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2263 HDR_GET_PSIZE(hdr), hdr);
2264 }
2265
2266 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2267 buf = buf->b_next) {
2268 if (ARC_BUF_SHARED(buf))
2269 continue;
2270 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2271 arc_buf_size(buf), buf);
2272 }
2273 }
2274
2275 /*
2276 * Decrement the amount of evictable space in the arc_state_t's refcount.
2277 * We account for the space used by the hdr and the arc buf individually
2278 * so that we can add and remove them from the refcount individually.
2279 */
2280 static void
arc_evictable_space_decrement(arc_buf_hdr_t * hdr,arc_state_t * state)2281 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2282 {
2283 arc_buf_contents_t type = arc_buf_type(hdr);
2284
2285 ASSERT(HDR_HAS_L1HDR(hdr));
2286
2287 if (GHOST_STATE(state)) {
2288 ASSERT0P(hdr->b_l1hdr.b_buf);
2289 ASSERT0P(hdr->b_l1hdr.b_pabd);
2290 ASSERT(!HDR_HAS_RABD(hdr));
2291 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2292 HDR_GET_LSIZE(hdr), hdr);
2293 return;
2294 }
2295
2296 if (hdr->b_l1hdr.b_pabd != NULL) {
2297 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2298 arc_hdr_size(hdr), hdr);
2299 }
2300 if (HDR_HAS_RABD(hdr)) {
2301 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2302 HDR_GET_PSIZE(hdr), hdr);
2303 }
2304
2305 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2306 buf = buf->b_next) {
2307 if (ARC_BUF_SHARED(buf))
2308 continue;
2309 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2310 arc_buf_size(buf), buf);
2311 }
2312 }
2313
2314 /*
2315 * Add a reference to this hdr indicating that someone is actively
2316 * referencing that memory. When the refcount transitions from 0 to 1,
2317 * we remove it from the respective arc_state_t list to indicate that
2318 * it is not evictable.
2319 */
2320 static void
add_reference(arc_buf_hdr_t * hdr,const void * tag)2321 add_reference(arc_buf_hdr_t *hdr, const void *tag)
2322 {
2323 arc_state_t *state = hdr->b_l1hdr.b_state;
2324
2325 ASSERT(HDR_HAS_L1HDR(hdr));
2326 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2327 ASSERT(state == arc_anon);
2328 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2329 ASSERT0P(hdr->b_l1hdr.b_buf);
2330 }
2331
2332 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2333 state != arc_anon && state != arc_l2c_only) {
2334 /* We don't use the L2-only state list. */
2335 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], hdr);
2336 arc_evictable_space_decrement(hdr, state);
2337 }
2338 }
2339
2340 /*
2341 * Remove a reference from this hdr. When the reference transitions from
2342 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2343 * list making it eligible for eviction.
2344 */
2345 static int
remove_reference(arc_buf_hdr_t * hdr,const void * tag)2346 remove_reference(arc_buf_hdr_t *hdr, const void *tag)
2347 {
2348 int cnt;
2349 arc_state_t *state = hdr->b_l1hdr.b_state;
2350
2351 ASSERT(HDR_HAS_L1HDR(hdr));
2352 ASSERT(state == arc_anon || MUTEX_HELD(HDR_LOCK(hdr)));
2353 ASSERT(!GHOST_STATE(state)); /* arc_l2c_only counts as a ghost. */
2354
2355 if ((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) != 0)
2356 return (cnt);
2357
2358 if (state == arc_anon) {
2359 arc_hdr_destroy(hdr);
2360 return (0);
2361 }
2362 if (state == arc_uncached && !HDR_PREFETCH(hdr)) {
2363 arc_change_state(arc_anon, hdr);
2364 arc_hdr_destroy(hdr);
2365 return (0);
2366 }
2367 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
2368 arc_evictable_space_increment(hdr, state);
2369 return (0);
2370 }
2371
2372 /*
2373 * Returns detailed information about a specific arc buffer. When the
2374 * state_index argument is set the function will calculate the arc header
2375 * list position for its arc state. Since this requires a linear traversal
2376 * callers are strongly encourage not to do this. However, it can be helpful
2377 * for targeted analysis so the functionality is provided.
2378 */
2379 void
arc_buf_info(arc_buf_t * ab,arc_buf_info_t * abi,int state_index)2380 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2381 {
2382 (void) state_index;
2383 arc_buf_hdr_t *hdr = ab->b_hdr;
2384 l1arc_buf_hdr_t *l1hdr = NULL;
2385 l2arc_buf_hdr_t *l2hdr = NULL;
2386 arc_state_t *state = NULL;
2387
2388 memset(abi, 0, sizeof (arc_buf_info_t));
2389
2390 if (hdr == NULL)
2391 return;
2392
2393 abi->abi_flags = hdr->b_flags;
2394
2395 if (HDR_HAS_L1HDR(hdr)) {
2396 l1hdr = &hdr->b_l1hdr;
2397 state = l1hdr->b_state;
2398 }
2399 if (HDR_HAS_L2HDR(hdr))
2400 l2hdr = &hdr->b_l2hdr;
2401
2402 if (l1hdr) {
2403 abi->abi_bufcnt = 0;
2404 for (arc_buf_t *buf = l1hdr->b_buf; buf; buf = buf->b_next)
2405 abi->abi_bufcnt++;
2406 abi->abi_access = l1hdr->b_arc_access;
2407 abi->abi_mru_hits = l1hdr->b_mru_hits;
2408 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2409 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2410 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2411 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
2412 }
2413
2414 if (l2hdr) {
2415 abi->abi_l2arc_dattr = l2hdr->b_daddr;
2416 abi->abi_l2arc_hits = l2hdr->b_hits;
2417 }
2418
2419 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2420 abi->abi_state_contents = arc_buf_type(hdr);
2421 abi->abi_size = arc_hdr_size(hdr);
2422 }
2423
2424 /*
2425 * Move the supplied buffer to the indicated state. The hash lock
2426 * for the buffer must be held by the caller.
2427 */
2428 static void
arc_change_state(arc_state_t * new_state,arc_buf_hdr_t * hdr)2429 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr)
2430 {
2431 arc_state_t *old_state;
2432 int64_t refcnt;
2433 boolean_t update_old, update_new;
2434 arc_buf_contents_t type = arc_buf_type(hdr);
2435
2436 /*
2437 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2438 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2439 * L1 hdr doesn't always exist when we change state to arc_anon before
2440 * destroying a header, in which case reallocating to add the L1 hdr is
2441 * pointless.
2442 */
2443 if (HDR_HAS_L1HDR(hdr)) {
2444 old_state = hdr->b_l1hdr.b_state;
2445 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2446 update_old = (hdr->b_l1hdr.b_buf != NULL ||
2447 hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
2448
2449 IMPLY(GHOST_STATE(old_state), hdr->b_l1hdr.b_buf == NULL);
2450 IMPLY(GHOST_STATE(new_state), hdr->b_l1hdr.b_buf == NULL);
2451 IMPLY(old_state == arc_anon, hdr->b_l1hdr.b_buf == NULL ||
2452 ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
2453 } else {
2454 old_state = arc_l2c_only;
2455 refcnt = 0;
2456 update_old = B_FALSE;
2457 }
2458 update_new = update_old;
2459 if (GHOST_STATE(old_state))
2460 update_old = B_TRUE;
2461 if (GHOST_STATE(new_state))
2462 update_new = B_TRUE;
2463
2464 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2465 ASSERT3P(new_state, !=, old_state);
2466
2467 /*
2468 * If this buffer is evictable, transfer it from the
2469 * old state list to the new state list.
2470 */
2471 if (refcnt == 0) {
2472 if (old_state != arc_anon && old_state != arc_l2c_only) {
2473 ASSERT(HDR_HAS_L1HDR(hdr));
2474 /* remove_reference() saves on insert. */
2475 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2476 multilist_remove(&old_state->arcs_list[type],
2477 hdr);
2478 arc_evictable_space_decrement(hdr, old_state);
2479 }
2480 }
2481 if (new_state != arc_anon && new_state != arc_l2c_only) {
2482 /*
2483 * An L1 header always exists here, since if we're
2484 * moving to some L1-cached state (i.e. not l2c_only or
2485 * anonymous), we realloc the header to add an L1hdr
2486 * beforehand.
2487 */
2488 ASSERT(HDR_HAS_L1HDR(hdr));
2489 multilist_insert(&new_state->arcs_list[type], hdr);
2490 arc_evictable_space_increment(hdr, new_state);
2491 }
2492 }
2493
2494 ASSERT(!HDR_EMPTY(hdr));
2495 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2496 buf_hash_remove(hdr);
2497
2498 /* adjust state sizes (ignore arc_l2c_only) */
2499
2500 if (update_new && new_state != arc_l2c_only) {
2501 ASSERT(HDR_HAS_L1HDR(hdr));
2502 if (GHOST_STATE(new_state)) {
2503
2504 /*
2505 * When moving a header to a ghost state, we first
2506 * remove all arc buffers. Thus, we'll have no arc
2507 * buffer to use for the reference. As a result, we
2508 * use the arc header pointer for the reference.
2509 */
2510 (void) zfs_refcount_add_many(
2511 &new_state->arcs_size[type],
2512 HDR_GET_LSIZE(hdr), hdr);
2513 ASSERT0P(hdr->b_l1hdr.b_pabd);
2514 ASSERT(!HDR_HAS_RABD(hdr));
2515 } else {
2516
2517 /*
2518 * Each individual buffer holds a unique reference,
2519 * thus we must remove each of these references one
2520 * at a time.
2521 */
2522 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2523 buf = buf->b_next) {
2524
2525 /*
2526 * When the arc_buf_t is sharing the data
2527 * block with the hdr, the owner of the
2528 * reference belongs to the hdr. Only
2529 * add to the refcount if the arc_buf_t is
2530 * not shared.
2531 */
2532 if (ARC_BUF_SHARED(buf))
2533 continue;
2534
2535 (void) zfs_refcount_add_many(
2536 &new_state->arcs_size[type],
2537 arc_buf_size(buf), buf);
2538 }
2539
2540 if (hdr->b_l1hdr.b_pabd != NULL) {
2541 (void) zfs_refcount_add_many(
2542 &new_state->arcs_size[type],
2543 arc_hdr_size(hdr), hdr);
2544 }
2545
2546 if (HDR_HAS_RABD(hdr)) {
2547 (void) zfs_refcount_add_many(
2548 &new_state->arcs_size[type],
2549 HDR_GET_PSIZE(hdr), hdr);
2550 }
2551 }
2552 }
2553
2554 if (update_old && old_state != arc_l2c_only) {
2555 ASSERT(HDR_HAS_L1HDR(hdr));
2556 if (GHOST_STATE(old_state)) {
2557 ASSERT0P(hdr->b_l1hdr.b_pabd);
2558 ASSERT(!HDR_HAS_RABD(hdr));
2559
2560 /*
2561 * When moving a header off of a ghost state,
2562 * the header will not contain any arc buffers.
2563 * We use the arc header pointer for the reference
2564 * which is exactly what we did when we put the
2565 * header on the ghost state.
2566 */
2567
2568 (void) zfs_refcount_remove_many(
2569 &old_state->arcs_size[type],
2570 HDR_GET_LSIZE(hdr), hdr);
2571 } else {
2572
2573 /*
2574 * Each individual buffer holds a unique reference,
2575 * thus we must remove each of these references one
2576 * at a time.
2577 */
2578 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2579 buf = buf->b_next) {
2580
2581 /*
2582 * When the arc_buf_t is sharing the data
2583 * block with the hdr, the owner of the
2584 * reference belongs to the hdr. Only
2585 * add to the refcount if the arc_buf_t is
2586 * not shared.
2587 */
2588 if (ARC_BUF_SHARED(buf))
2589 continue;
2590
2591 (void) zfs_refcount_remove_many(
2592 &old_state->arcs_size[type],
2593 arc_buf_size(buf), buf);
2594 }
2595 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2596 HDR_HAS_RABD(hdr));
2597
2598 if (hdr->b_l1hdr.b_pabd != NULL) {
2599 (void) zfs_refcount_remove_many(
2600 &old_state->arcs_size[type],
2601 arc_hdr_size(hdr), hdr);
2602 }
2603
2604 if (HDR_HAS_RABD(hdr)) {
2605 (void) zfs_refcount_remove_many(
2606 &old_state->arcs_size[type],
2607 HDR_GET_PSIZE(hdr), hdr);
2608 }
2609 }
2610 }
2611
2612 if (HDR_HAS_L1HDR(hdr)) {
2613 hdr->b_l1hdr.b_state = new_state;
2614
2615 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
2616 l2arc_hdr_arcstats_decrement_state(hdr);
2617 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
2618 l2arc_hdr_arcstats_increment_state(hdr);
2619 }
2620 }
2621 }
2622
2623 void
arc_space_consume(uint64_t space,arc_space_type_t type)2624 arc_space_consume(uint64_t space, arc_space_type_t type)
2625 {
2626 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2627
2628 switch (type) {
2629 default:
2630 break;
2631 case ARC_SPACE_DATA:
2632 ARCSTAT_INCR(arcstat_data_size, space);
2633 break;
2634 case ARC_SPACE_META:
2635 ARCSTAT_INCR(arcstat_metadata_size, space);
2636 break;
2637 case ARC_SPACE_BONUS:
2638 ARCSTAT_INCR(arcstat_bonus_size, space);
2639 break;
2640 case ARC_SPACE_DNODE:
2641 aggsum_add(&arc_sums.arcstat_dnode_size, space);
2642 break;
2643 case ARC_SPACE_DBUF:
2644 ARCSTAT_INCR(arcstat_dbuf_size, space);
2645 break;
2646 case ARC_SPACE_HDRS:
2647 ARCSTAT_INCR(arcstat_hdr_size, space);
2648 break;
2649 case ARC_SPACE_L2HDRS:
2650 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space);
2651 break;
2652 case ARC_SPACE_ABD_CHUNK_WASTE:
2653 /*
2654 * Note: this includes space wasted by all scatter ABD's, not
2655 * just those allocated by the ARC. But the vast majority of
2656 * scatter ABD's come from the ARC, because other users are
2657 * very short-lived.
2658 */
2659 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space);
2660 break;
2661 }
2662
2663 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2664 ARCSTAT_INCR(arcstat_meta_used, space);
2665
2666 aggsum_add(&arc_sums.arcstat_size, space);
2667 }
2668
2669 void
arc_space_return(uint64_t space,arc_space_type_t type)2670 arc_space_return(uint64_t space, arc_space_type_t type)
2671 {
2672 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2673
2674 switch (type) {
2675 default:
2676 break;
2677 case ARC_SPACE_DATA:
2678 ARCSTAT_INCR(arcstat_data_size, -space);
2679 break;
2680 case ARC_SPACE_META:
2681 ARCSTAT_INCR(arcstat_metadata_size, -space);
2682 break;
2683 case ARC_SPACE_BONUS:
2684 ARCSTAT_INCR(arcstat_bonus_size, -space);
2685 break;
2686 case ARC_SPACE_DNODE:
2687 aggsum_add(&arc_sums.arcstat_dnode_size, -space);
2688 break;
2689 case ARC_SPACE_DBUF:
2690 ARCSTAT_INCR(arcstat_dbuf_size, -space);
2691 break;
2692 case ARC_SPACE_HDRS:
2693 ARCSTAT_INCR(arcstat_hdr_size, -space);
2694 break;
2695 case ARC_SPACE_L2HDRS:
2696 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space);
2697 break;
2698 case ARC_SPACE_ABD_CHUNK_WASTE:
2699 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space);
2700 break;
2701 }
2702
2703 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2704 ARCSTAT_INCR(arcstat_meta_used, -space);
2705
2706 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0);
2707 aggsum_add(&arc_sums.arcstat_size, -space);
2708 }
2709
2710 /*
2711 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2712 * with the hdr's b_pabd.
2713 */
2714 static boolean_t
arc_can_share(arc_buf_hdr_t * hdr,arc_buf_t * buf)2715 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2716 {
2717 /*
2718 * The criteria for sharing a hdr's data are:
2719 * 1. the buffer is not encrypted
2720 * 2. the hdr's compression matches the buf's compression
2721 * 3. the hdr doesn't need to be byteswapped
2722 * 4. the hdr isn't already being shared
2723 * 5. the buf is either compressed or it is the last buf in the hdr list
2724 *
2725 * Criterion #5 maintains the invariant that shared uncompressed
2726 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2727 * might ask, "if a compressed buf is allocated first, won't that be the
2728 * last thing in the list?", but in that case it's impossible to create
2729 * a shared uncompressed buf anyway (because the hdr must be compressed
2730 * to have the compressed buf). You might also think that #3 is
2731 * sufficient to make this guarantee, however it's possible
2732 * (specifically in the rare L2ARC write race mentioned in
2733 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2734 * is shareable, but wasn't at the time of its allocation. Rather than
2735 * allow a new shared uncompressed buf to be created and then shuffle
2736 * the list around to make it the last element, this simply disallows
2737 * sharing if the new buf isn't the first to be added.
2738 */
2739 ASSERT3P(buf->b_hdr, ==, hdr);
2740 boolean_t hdr_compressed =
2741 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
2742 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2743 return (!ARC_BUF_ENCRYPTED(buf) &&
2744 buf_compressed == hdr_compressed &&
2745 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2746 !HDR_SHARED_DATA(hdr) &&
2747 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2748 }
2749
2750 /*
2751 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2752 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2753 * copy was made successfully, or an error code otherwise.
2754 */
2755 static int
arc_buf_alloc_impl(arc_buf_hdr_t * hdr,spa_t * spa,const zbookmark_phys_t * zb,const void * tag,boolean_t encrypted,boolean_t compressed,boolean_t noauth,boolean_t fill,arc_buf_t ** ret)2756 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2757 const void *tag, boolean_t encrypted, boolean_t compressed,
2758 boolean_t noauth, boolean_t fill, arc_buf_t **ret)
2759 {
2760 arc_buf_t *buf;
2761 arc_fill_flags_t flags = ARC_FILL_LOCKED;
2762
2763 ASSERT(HDR_HAS_L1HDR(hdr));
2764 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2765 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2766 hdr->b_type == ARC_BUFC_METADATA);
2767 ASSERT3P(ret, !=, NULL);
2768 ASSERT0P(*ret);
2769 IMPLY(encrypted, compressed);
2770
2771 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2772 buf->b_hdr = hdr;
2773 buf->b_data = NULL;
2774 buf->b_next = hdr->b_l1hdr.b_buf;
2775 buf->b_flags = 0;
2776
2777 add_reference(hdr, tag);
2778
2779 /*
2780 * We're about to change the hdr's b_flags. We must either
2781 * hold the hash_lock or be undiscoverable.
2782 */
2783 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2784
2785 /*
2786 * Only honor requests for compressed bufs if the hdr is actually
2787 * compressed. This must be overridden if the buffer is encrypted since
2788 * encrypted buffers cannot be decompressed.
2789 */
2790 if (encrypted) {
2791 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2792 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2793 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2794 } else if (compressed &&
2795 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2796 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2797 flags |= ARC_FILL_COMPRESSED;
2798 }
2799
2800 if (noauth) {
2801 ASSERT0(encrypted);
2802 flags |= ARC_FILL_NOAUTH;
2803 }
2804
2805 /*
2806 * If the hdr's data can be shared then we share the data buffer and
2807 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2808 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2809 * buffer to store the buf's data.
2810 *
2811 * There are two additional restrictions here because we're sharing
2812 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2813 * actively involved in an L2ARC write, because if this buf is used by
2814 * an arc_write() then the hdr's data buffer will be released when the
2815 * write completes, even though the L2ARC write might still be using it.
2816 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2817 * need to be ABD-aware. It must be allocated via
2818 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2819 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2820 * page" buffers because the ABD code needs to handle freeing them
2821 * specially.
2822 */
2823 boolean_t can_share = arc_can_share(hdr, buf) &&
2824 !HDR_L2_WRITING(hdr) &&
2825 hdr->b_l1hdr.b_pabd != NULL &&
2826 abd_is_linear(hdr->b_l1hdr.b_pabd) &&
2827 !abd_is_linear_page(hdr->b_l1hdr.b_pabd);
2828
2829 /* Set up b_data and sharing */
2830 if (can_share) {
2831 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2832 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2833 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2834 } else {
2835 buf->b_data =
2836 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2837 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2838 }
2839 VERIFY3P(buf->b_data, !=, NULL);
2840
2841 hdr->b_l1hdr.b_buf = buf;
2842
2843 /*
2844 * If the user wants the data from the hdr, we need to either copy or
2845 * decompress the data.
2846 */
2847 if (fill) {
2848 ASSERT3P(zb, !=, NULL);
2849 return (arc_buf_fill(buf, spa, zb, flags));
2850 }
2851
2852 return (0);
2853 }
2854
2855 static const char *arc_onloan_tag = "onloan";
2856
2857 static inline void
arc_loaned_bytes_update(int64_t delta)2858 arc_loaned_bytes_update(int64_t delta)
2859 {
2860 atomic_add_64(&arc_loaned_bytes, delta);
2861
2862 /* assert that it did not wrap around */
2863 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2864 }
2865
2866 /*
2867 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2868 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2869 * buffers must be returned to the arc before they can be used by the DMU or
2870 * freed.
2871 */
2872 arc_buf_t *
arc_loan_buf(spa_t * spa,boolean_t is_metadata,int size)2873 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2874 {
2875 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2876 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2877
2878 arc_loaned_bytes_update(arc_buf_size(buf));
2879
2880 return (buf);
2881 }
2882
2883 arc_buf_t *
arc_loan_compressed_buf(spa_t * spa,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)2884 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2885 enum zio_compress compression_type, uint8_t complevel)
2886 {
2887 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2888 psize, lsize, compression_type, complevel);
2889
2890 arc_loaned_bytes_update(arc_buf_size(buf));
2891
2892 return (buf);
2893 }
2894
2895 arc_buf_t *
arc_loan_raw_buf(spa_t * spa,uint64_t dsobj,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_object_type_t ot,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)2896 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2897 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2898 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2899 enum zio_compress compression_type, uint8_t complevel)
2900 {
2901 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2902 byteorder, salt, iv, mac, ot, psize, lsize, compression_type,
2903 complevel);
2904
2905 atomic_add_64(&arc_loaned_bytes, psize);
2906 return (buf);
2907 }
2908
2909
2910 /*
2911 * Return a loaned arc buffer to the arc.
2912 */
2913 void
arc_return_buf(arc_buf_t * buf,const void * tag)2914 arc_return_buf(arc_buf_t *buf, const void *tag)
2915 {
2916 arc_buf_hdr_t *hdr = buf->b_hdr;
2917
2918 ASSERT3P(buf->b_data, !=, NULL);
2919 ASSERT(HDR_HAS_L1HDR(hdr));
2920 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2921 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2922
2923 arc_loaned_bytes_update(-arc_buf_size(buf));
2924 }
2925
2926 /* Detach an arc_buf from a dbuf (tag) */
2927 void
arc_loan_inuse_buf(arc_buf_t * buf,const void * tag)2928 arc_loan_inuse_buf(arc_buf_t *buf, const void *tag)
2929 {
2930 arc_buf_hdr_t *hdr = buf->b_hdr;
2931
2932 ASSERT3P(buf->b_data, !=, NULL);
2933 ASSERT(HDR_HAS_L1HDR(hdr));
2934 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2935 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2936
2937 arc_loaned_bytes_update(arc_buf_size(buf));
2938 }
2939
2940 static void
l2arc_free_abd_on_write(abd_t * abd,size_t size,arc_buf_contents_t type)2941 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2942 {
2943 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2944
2945 df->l2df_abd = abd;
2946 df->l2df_size = size;
2947 df->l2df_type = type;
2948 mutex_enter(&l2arc_free_on_write_mtx);
2949 list_insert_head(l2arc_free_on_write, df);
2950 mutex_exit(&l2arc_free_on_write_mtx);
2951 }
2952
2953 static void
arc_hdr_free_on_write(arc_buf_hdr_t * hdr,boolean_t free_rdata)2954 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2955 {
2956 arc_state_t *state = hdr->b_l1hdr.b_state;
2957 arc_buf_contents_t type = arc_buf_type(hdr);
2958 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2959
2960 /* protected by hash lock, if in the hash table */
2961 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2962 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2963 ASSERT(state != arc_anon && state != arc_l2c_only);
2964
2965 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2966 size, hdr);
2967 }
2968 (void) zfs_refcount_remove_many(&state->arcs_size[type], size, hdr);
2969 if (type == ARC_BUFC_METADATA) {
2970 arc_space_return(size, ARC_SPACE_META);
2971 } else {
2972 ASSERT(type == ARC_BUFC_DATA);
2973 arc_space_return(size, ARC_SPACE_DATA);
2974 }
2975
2976 if (free_rdata) {
2977 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2978 } else {
2979 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2980 }
2981 }
2982
2983 /*
2984 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2985 * data buffer, we transfer the refcount ownership to the hdr and update
2986 * the appropriate kstats.
2987 */
2988 static void
arc_share_buf(arc_buf_hdr_t * hdr,arc_buf_t * buf)2989 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2990 {
2991 ASSERT(arc_can_share(hdr, buf));
2992 ASSERT0P(hdr->b_l1hdr.b_pabd);
2993 ASSERT(!ARC_BUF_ENCRYPTED(buf));
2994 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2995
2996 /*
2997 * Start sharing the data buffer. We transfer the
2998 * refcount ownership to the hdr since it always owns
2999 * the refcount whenever an arc_buf_t is shared.
3000 */
3001 zfs_refcount_transfer_ownership_many(
3002 &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
3003 arc_hdr_size(hdr), buf, hdr);
3004 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
3005 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
3006 HDR_ISTYPE_METADATA(hdr));
3007 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
3008 buf->b_flags |= ARC_BUF_FLAG_SHARED;
3009
3010 /*
3011 * Since we've transferred ownership to the hdr we need
3012 * to increment its compressed and uncompressed kstats and
3013 * decrement the overhead size.
3014 */
3015 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3016 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3017 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
3018 }
3019
3020 static void
arc_unshare_buf(arc_buf_hdr_t * hdr,arc_buf_t * buf)3021 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3022 {
3023 ASSERT(arc_buf_is_shared(buf));
3024 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3025 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3026
3027 /*
3028 * We are no longer sharing this buffer so we need
3029 * to transfer its ownership to the rightful owner.
3030 */
3031 zfs_refcount_transfer_ownership_many(
3032 &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
3033 arc_hdr_size(hdr), hdr, buf);
3034 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3035 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3036 abd_free(hdr->b_l1hdr.b_pabd);
3037 hdr->b_l1hdr.b_pabd = NULL;
3038 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
3039
3040 /*
3041 * Since the buffer is no longer shared between
3042 * the arc buf and the hdr, count it as overhead.
3043 */
3044 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3045 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3046 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3047 }
3048
3049 /*
3050 * Remove an arc_buf_t from the hdr's buf list and return the last
3051 * arc_buf_t on the list. If no buffers remain on the list then return
3052 * NULL.
3053 */
3054 static arc_buf_t *
arc_buf_remove(arc_buf_hdr_t * hdr,arc_buf_t * buf)3055 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3056 {
3057 ASSERT(HDR_HAS_L1HDR(hdr));
3058 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3059
3060 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3061 arc_buf_t *lastbuf = NULL;
3062
3063 /*
3064 * Remove the buf from the hdr list and locate the last
3065 * remaining buffer on the list.
3066 */
3067 while (*bufp != NULL) {
3068 if (*bufp == buf)
3069 *bufp = buf->b_next;
3070
3071 /*
3072 * If we've removed a buffer in the middle of
3073 * the list then update the lastbuf and update
3074 * bufp.
3075 */
3076 if (*bufp != NULL) {
3077 lastbuf = *bufp;
3078 bufp = &(*bufp)->b_next;
3079 }
3080 }
3081 buf->b_next = NULL;
3082 ASSERT3P(lastbuf, !=, buf);
3083 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3084
3085 return (lastbuf);
3086 }
3087
3088 /*
3089 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3090 * list and free it.
3091 */
3092 static void
arc_buf_destroy_impl(arc_buf_t * buf)3093 arc_buf_destroy_impl(arc_buf_t *buf)
3094 {
3095 arc_buf_hdr_t *hdr = buf->b_hdr;
3096
3097 /*
3098 * Free up the data associated with the buf but only if we're not
3099 * sharing this with the hdr. If we are sharing it with the hdr, the
3100 * hdr is responsible for doing the free.
3101 */
3102 if (buf->b_data != NULL) {
3103 /*
3104 * We're about to change the hdr's b_flags. We must either
3105 * hold the hash_lock or be undiscoverable.
3106 */
3107 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3108
3109 arc_cksum_verify(buf);
3110 arc_buf_unwatch(buf);
3111
3112 if (ARC_BUF_SHARED(buf)) {
3113 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3114 } else {
3115 ASSERT(!arc_buf_is_shared(buf));
3116 uint64_t size = arc_buf_size(buf);
3117 arc_free_data_buf(hdr, buf->b_data, size, buf);
3118 ARCSTAT_INCR(arcstat_overhead_size, -size);
3119 }
3120 buf->b_data = NULL;
3121
3122 /*
3123 * If we have no more encrypted buffers and we've already
3124 * gotten a copy of the decrypted data we can free b_rabd
3125 * to save some space.
3126 */
3127 if (ARC_BUF_ENCRYPTED(buf) && HDR_HAS_RABD(hdr) &&
3128 hdr->b_l1hdr.b_pabd != NULL && !HDR_IO_IN_PROGRESS(hdr)) {
3129 arc_buf_t *b;
3130 for (b = hdr->b_l1hdr.b_buf; b; b = b->b_next) {
3131 if (b != buf && ARC_BUF_ENCRYPTED(b))
3132 break;
3133 }
3134 if (b == NULL)
3135 arc_hdr_free_abd(hdr, B_TRUE);
3136 }
3137 }
3138
3139 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3140
3141 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3142 /*
3143 * If the current arc_buf_t is sharing its data buffer with the
3144 * hdr, then reassign the hdr's b_pabd to share it with the new
3145 * buffer at the end of the list. The shared buffer is always
3146 * the last one on the hdr's buffer list.
3147 *
3148 * There is an equivalent case for compressed bufs, but since
3149 * they aren't guaranteed to be the last buf in the list and
3150 * that is an exceedingly rare case, we just allow that space be
3151 * wasted temporarily. We must also be careful not to share
3152 * encrypted buffers, since they cannot be shared.
3153 */
3154 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3155 /* Only one buf can be shared at once */
3156 ASSERT(!arc_buf_is_shared(lastbuf));
3157 /* hdr is uncompressed so can't have compressed buf */
3158 ASSERT(!ARC_BUF_COMPRESSED(lastbuf));
3159
3160 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3161 arc_hdr_free_abd(hdr, B_FALSE);
3162
3163 /*
3164 * We must setup a new shared block between the
3165 * last buffer and the hdr. The data would have
3166 * been allocated by the arc buf so we need to transfer
3167 * ownership to the hdr since it's now being shared.
3168 */
3169 arc_share_buf(hdr, lastbuf);
3170 }
3171 } else if (HDR_SHARED_DATA(hdr)) {
3172 /*
3173 * Uncompressed shared buffers are always at the end
3174 * of the list. Compressed buffers don't have the
3175 * same requirements. This makes it hard to
3176 * simply assert that the lastbuf is shared so
3177 * we rely on the hdr's compression flags to determine
3178 * if we have a compressed, shared buffer.
3179 */
3180 ASSERT3P(lastbuf, !=, NULL);
3181 ASSERT(arc_buf_is_shared(lastbuf) ||
3182 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3183 }
3184
3185 /*
3186 * Free the checksum if we're removing the last uncompressed buf from
3187 * this hdr.
3188 */
3189 if (!arc_hdr_has_uncompressed_buf(hdr)) {
3190 arc_cksum_free(hdr);
3191 }
3192
3193 /* clean up the buf */
3194 buf->b_hdr = NULL;
3195 kmem_cache_free(buf_cache, buf);
3196 }
3197
3198 static void
arc_hdr_alloc_abd(arc_buf_hdr_t * hdr,int alloc_flags)3199 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags)
3200 {
3201 uint64_t size;
3202 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
3203
3204 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3205 ASSERT(HDR_HAS_L1HDR(hdr));
3206 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3207 IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3208
3209 if (alloc_rdata) {
3210 size = HDR_GET_PSIZE(hdr);
3211 ASSERT0P(hdr->b_crypt_hdr.b_rabd);
3212 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
3213 alloc_flags);
3214 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3215 ARCSTAT_INCR(arcstat_raw_size, size);
3216 } else {
3217 size = arc_hdr_size(hdr);
3218 ASSERT0P(hdr->b_l1hdr.b_pabd);
3219 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
3220 alloc_flags);
3221 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3222 }
3223
3224 ARCSTAT_INCR(arcstat_compressed_size, size);
3225 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3226 }
3227
3228 static void
arc_hdr_free_abd(arc_buf_hdr_t * hdr,boolean_t free_rdata)3229 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3230 {
3231 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3232
3233 ASSERT(HDR_HAS_L1HDR(hdr));
3234 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3235 IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3236
3237 /*
3238 * If the hdr is currently being written to the l2arc then
3239 * we defer freeing the data by adding it to the l2arc_free_on_write
3240 * list. The l2arc will free the data once it's finished
3241 * writing it to the l2arc device.
3242 */
3243 if (HDR_L2_WRITING(hdr)) {
3244 arc_hdr_free_on_write(hdr, free_rdata);
3245 ARCSTAT_BUMP(arcstat_l2_free_on_write);
3246 } else if (free_rdata) {
3247 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3248 } else {
3249 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
3250 }
3251
3252 if (free_rdata) {
3253 hdr->b_crypt_hdr.b_rabd = NULL;
3254 ARCSTAT_INCR(arcstat_raw_size, -size);
3255 } else {
3256 hdr->b_l1hdr.b_pabd = NULL;
3257 }
3258
3259 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3260 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3261
3262 ARCSTAT_INCR(arcstat_compressed_size, -size);
3263 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3264 }
3265
3266 /*
3267 * Allocate empty anonymous ARC header. The header will get its identity
3268 * assigned and buffers attached later as part of read or write operations.
3269 *
3270 * In case of read arc_read() assigns header its identify (b_dva + b_birth),
3271 * inserts it into ARC hash to become globally visible and allocates physical
3272 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read
3273 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
3274 * sharing one of them with the physical ABD buffer.
3275 *
3276 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
3277 * data. Then after compression and/or encryption arc_write_ready() allocates
3278 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
3279 * buffer. On disk write completion arc_write_done() assigns the header its
3280 * new identity (b_dva + b_birth) and inserts into ARC hash.
3281 *
3282 * In case of partial overwrite the old data is read first as described. Then
3283 * arc_release() either allocates new anonymous ARC header and moves the ARC
3284 * buffer to it, or reuses the old ARC header by discarding its identity and
3285 * removing it from ARC hash. After buffer modification normal write process
3286 * follows as described.
3287 */
3288 static arc_buf_hdr_t *
arc_hdr_alloc(uint64_t spa,int32_t psize,int32_t lsize,boolean_t protected,enum zio_compress compression_type,uint8_t complevel,arc_buf_contents_t type)3289 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3290 boolean_t protected, enum zio_compress compression_type, uint8_t complevel,
3291 arc_buf_contents_t type)
3292 {
3293 arc_buf_hdr_t *hdr;
3294
3295 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3296 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3297
3298 ASSERT(HDR_EMPTY(hdr));
3299 #ifdef ZFS_DEBUG
3300 ASSERT0P(hdr->b_l1hdr.b_freeze_cksum);
3301 #endif
3302 HDR_SET_PSIZE(hdr, psize);
3303 HDR_SET_LSIZE(hdr, lsize);
3304 hdr->b_spa = spa;
3305 hdr->b_type = type;
3306 hdr->b_flags = 0;
3307 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3308 arc_hdr_set_compress(hdr, compression_type);
3309 hdr->b_complevel = complevel;
3310 if (protected)
3311 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3312
3313 hdr->b_l1hdr.b_state = arc_anon;
3314 hdr->b_l1hdr.b_arc_access = 0;
3315 hdr->b_l1hdr.b_mru_hits = 0;
3316 hdr->b_l1hdr.b_mru_ghost_hits = 0;
3317 hdr->b_l1hdr.b_mfu_hits = 0;
3318 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3319 hdr->b_l1hdr.b_buf = NULL;
3320
3321 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3322
3323 return (hdr);
3324 }
3325
3326 /*
3327 * Transition between the two allocation states for the arc_buf_hdr struct.
3328 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3329 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3330 * version is used when a cache buffer is only in the L2ARC in order to reduce
3331 * memory usage.
3332 */
3333 static arc_buf_hdr_t *
arc_hdr_realloc(arc_buf_hdr_t * hdr,kmem_cache_t * old,kmem_cache_t * new)3334 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3335 {
3336 ASSERT(HDR_HAS_L2HDR(hdr));
3337
3338 arc_buf_hdr_t *nhdr;
3339 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3340
3341 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3342 (old == hdr_l2only_cache && new == hdr_full_cache));
3343
3344 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3345
3346 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3347 buf_hash_remove(hdr);
3348
3349 memcpy(nhdr, hdr, HDR_L2ONLY_SIZE);
3350
3351 if (new == hdr_full_cache) {
3352 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3353 /*
3354 * arc_access and arc_change_state need to be aware that a
3355 * header has just come out of L2ARC, so we set its state to
3356 * l2c_only even though it's about to change.
3357 */
3358 nhdr->b_l1hdr.b_state = arc_l2c_only;
3359
3360 /* Verify previous threads set to NULL before freeing */
3361 ASSERT0P(nhdr->b_l1hdr.b_pabd);
3362 ASSERT(!HDR_HAS_RABD(hdr));
3363 } else {
3364 ASSERT0P(hdr->b_l1hdr.b_buf);
3365 #ifdef ZFS_DEBUG
3366 ASSERT0P(hdr->b_l1hdr.b_freeze_cksum);
3367 #endif
3368
3369 /*
3370 * If we've reached here, We must have been called from
3371 * arc_evict_hdr(), as such we should have already been
3372 * removed from any ghost list we were previously on
3373 * (which protects us from racing with arc_evict_state),
3374 * thus no locking is needed during this check.
3375 */
3376 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3377
3378 /*
3379 * A buffer must not be moved into the arc_l2c_only
3380 * state if it's not finished being written out to the
3381 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3382 * might try to be accessed, even though it was removed.
3383 */
3384 VERIFY(!HDR_L2_WRITING(hdr));
3385 VERIFY0P(hdr->b_l1hdr.b_pabd);
3386 ASSERT(!HDR_HAS_RABD(hdr));
3387
3388 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3389 }
3390 /*
3391 * The header has been reallocated so we need to re-insert it into any
3392 * lists it was on.
3393 */
3394 (void) buf_hash_insert(nhdr, NULL);
3395
3396 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3397
3398 mutex_enter(&dev->l2ad_mtx);
3399
3400 /*
3401 * We must place the realloc'ed header back into the list at
3402 * the same spot. Otherwise, if it's placed earlier in the list,
3403 * l2arc_write_buffers() could find it during the function's
3404 * write phase, and try to write it out to the l2arc.
3405 */
3406 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3407 list_remove(&dev->l2ad_buflist, hdr);
3408
3409 mutex_exit(&dev->l2ad_mtx);
3410
3411 /*
3412 * Since we're using the pointer address as the tag when
3413 * incrementing and decrementing the l2ad_alloc refcount, we
3414 * must remove the old pointer (that we're about to destroy) and
3415 * add the new pointer to the refcount. Otherwise we'd remove
3416 * the wrong pointer address when calling arc_hdr_destroy() later.
3417 */
3418
3419 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
3420 arc_hdr_size(hdr), hdr);
3421 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
3422 arc_hdr_size(nhdr), nhdr);
3423
3424 buf_discard_identity(hdr);
3425 kmem_cache_free(old, hdr);
3426
3427 return (nhdr);
3428 }
3429
3430 /*
3431 * This function is used by the send / receive code to convert a newly
3432 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3433 * is also used to allow the root objset block to be updated without altering
3434 * its embedded MACs. Both block types will always be uncompressed so we do not
3435 * have to worry about compression type or psize.
3436 */
3437 void
arc_convert_to_raw(arc_buf_t * buf,uint64_t dsobj,boolean_t byteorder,dmu_object_type_t ot,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac)3438 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3439 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3440 const uint8_t *mac)
3441 {
3442 arc_buf_hdr_t *hdr = buf->b_hdr;
3443
3444 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3445 ASSERT(HDR_HAS_L1HDR(hdr));
3446 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3447
3448 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3449 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3450 hdr->b_crypt_hdr.b_dsobj = dsobj;
3451 hdr->b_crypt_hdr.b_ot = ot;
3452 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3453 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3454 if (!arc_hdr_has_uncompressed_buf(hdr))
3455 arc_cksum_free(hdr);
3456
3457 if (salt != NULL)
3458 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3459 if (iv != NULL)
3460 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3461 if (mac != NULL)
3462 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3463 }
3464
3465 /*
3466 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3467 * The buf is returned thawed since we expect the consumer to modify it.
3468 */
3469 arc_buf_t *
arc_alloc_buf(spa_t * spa,const void * tag,arc_buf_contents_t type,int32_t size)3470 arc_alloc_buf(spa_t *spa, const void *tag, arc_buf_contents_t type,
3471 int32_t size)
3472 {
3473 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3474 B_FALSE, ZIO_COMPRESS_OFF, 0, type);
3475
3476 arc_buf_t *buf = NULL;
3477 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3478 B_FALSE, B_FALSE, &buf));
3479 arc_buf_thaw(buf);
3480
3481 return (buf);
3482 }
3483
3484 /*
3485 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3486 * for bufs containing metadata.
3487 */
3488 arc_buf_t *
arc_alloc_compressed_buf(spa_t * spa,const void * tag,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)3489 arc_alloc_compressed_buf(spa_t *spa, const void *tag, uint64_t psize,
3490 uint64_t lsize, enum zio_compress compression_type, uint8_t complevel)
3491 {
3492 ASSERT3U(lsize, >, 0);
3493 ASSERT3U(lsize, >=, psize);
3494 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3495 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3496
3497 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3498 B_FALSE, compression_type, complevel, ARC_BUFC_DATA);
3499
3500 arc_buf_t *buf = NULL;
3501 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3502 B_TRUE, B_FALSE, B_FALSE, &buf));
3503 arc_buf_thaw(buf);
3504
3505 /*
3506 * To ensure that the hdr has the correct data in it if we call
3507 * arc_untransform() on this buf before it's been written to disk,
3508 * it's easiest if we just set up sharing between the buf and the hdr.
3509 */
3510 arc_share_buf(hdr, buf);
3511
3512 return (buf);
3513 }
3514
3515 arc_buf_t *
arc_alloc_raw_buf(spa_t * spa,const void * tag,uint64_t dsobj,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_object_type_t ot,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)3516 arc_alloc_raw_buf(spa_t *spa, const void *tag, uint64_t dsobj,
3517 boolean_t byteorder, const uint8_t *salt, const uint8_t *iv,
3518 const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3519 enum zio_compress compression_type, uint8_t complevel)
3520 {
3521 arc_buf_hdr_t *hdr;
3522 arc_buf_t *buf;
3523 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3524 ARC_BUFC_METADATA : ARC_BUFC_DATA;
3525
3526 ASSERT3U(lsize, >, 0);
3527 ASSERT3U(lsize, >=, psize);
3528 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3529 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3530
3531 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3532 compression_type, complevel, type);
3533
3534 hdr->b_crypt_hdr.b_dsobj = dsobj;
3535 hdr->b_crypt_hdr.b_ot = ot;
3536 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3537 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3538 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3539 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3540 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3541
3542 /*
3543 * This buffer will be considered encrypted even if the ot is not an
3544 * encrypted type. It will become authenticated instead in
3545 * arc_write_ready().
3546 */
3547 buf = NULL;
3548 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3549 B_FALSE, B_FALSE, &buf));
3550 arc_buf_thaw(buf);
3551
3552 return (buf);
3553 }
3554
3555 static void
l2arc_hdr_arcstats_update(arc_buf_hdr_t * hdr,boolean_t incr,boolean_t state_only)3556 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
3557 boolean_t state_only)
3558 {
3559 uint64_t lsize = HDR_GET_LSIZE(hdr);
3560 uint64_t psize = HDR_GET_PSIZE(hdr);
3561 uint64_t asize = HDR_GET_L2SIZE(hdr);
3562 arc_buf_contents_t type = hdr->b_type;
3563 int64_t lsize_s;
3564 int64_t psize_s;
3565 int64_t asize_s;
3566
3567 /* For L2 we expect the header's b_l2size to be valid */
3568 ASSERT3U(asize, >=, psize);
3569
3570 if (incr) {
3571 lsize_s = lsize;
3572 psize_s = psize;
3573 asize_s = asize;
3574 } else {
3575 lsize_s = -lsize;
3576 psize_s = -psize;
3577 asize_s = -asize;
3578 }
3579
3580 /* If the buffer is a prefetch, count it as such. */
3581 if (HDR_PREFETCH(hdr)) {
3582 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
3583 } else {
3584 /*
3585 * We use the value stored in the L2 header upon initial
3586 * caching in L2ARC. This value will be updated in case
3587 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3588 * metadata (log entry) cannot currently be updated. Having
3589 * the ARC state in the L2 header solves the problem of a
3590 * possibly absent L1 header (apparent in buffers restored
3591 * from persistent L2ARC).
3592 */
3593 switch (hdr->b_l2hdr.b_arcs_state) {
3594 case ARC_STATE_MRU_GHOST:
3595 case ARC_STATE_MRU:
3596 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
3597 break;
3598 case ARC_STATE_MFU_GHOST:
3599 case ARC_STATE_MFU:
3600 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
3601 break;
3602 default:
3603 break;
3604 }
3605 }
3606
3607 if (state_only)
3608 return;
3609
3610 ARCSTAT_INCR(arcstat_l2_psize, psize_s);
3611 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);
3612
3613 switch (type) {
3614 case ARC_BUFC_DATA:
3615 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
3616 break;
3617 case ARC_BUFC_METADATA:
3618 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
3619 break;
3620 default:
3621 break;
3622 }
3623 }
3624
3625
3626 static void
arc_hdr_l2hdr_destroy(arc_buf_hdr_t * hdr)3627 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3628 {
3629 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3630 l2arc_dev_t *dev = l2hdr->b_dev;
3631
3632 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3633 ASSERT(HDR_HAS_L2HDR(hdr));
3634
3635 list_remove(&dev->l2ad_buflist, hdr);
3636
3637 l2arc_hdr_arcstats_decrement(hdr);
3638 if (dev->l2ad_vdev != NULL) {
3639 uint64_t asize = HDR_GET_L2SIZE(hdr);
3640 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3641 }
3642
3643 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3644 hdr);
3645 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3646 }
3647
3648 static void
arc_hdr_destroy(arc_buf_hdr_t * hdr)3649 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3650 {
3651 if (HDR_HAS_L1HDR(hdr)) {
3652 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3653 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3654 }
3655 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3656 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3657
3658 if (HDR_HAS_L2HDR(hdr)) {
3659 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3660 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3661
3662 if (!buflist_held)
3663 mutex_enter(&dev->l2ad_mtx);
3664
3665 /*
3666 * Even though we checked this conditional above, we
3667 * need to check this again now that we have the
3668 * l2ad_mtx. This is because we could be racing with
3669 * another thread calling l2arc_evict() which might have
3670 * destroyed this header's L2 portion as we were waiting
3671 * to acquire the l2ad_mtx. If that happens, we don't
3672 * want to re-destroy the header's L2 portion.
3673 */
3674 if (HDR_HAS_L2HDR(hdr)) {
3675
3676 if (!HDR_EMPTY(hdr))
3677 buf_discard_identity(hdr);
3678
3679 arc_hdr_l2hdr_destroy(hdr);
3680 }
3681
3682 if (!buflist_held)
3683 mutex_exit(&dev->l2ad_mtx);
3684 }
3685
3686 /*
3687 * The header's identify can only be safely discarded once it is no
3688 * longer discoverable. This requires removing it from the hash table
3689 * and the l2arc header list. After this point the hash lock can not
3690 * be used to protect the header.
3691 */
3692 if (!HDR_EMPTY(hdr))
3693 buf_discard_identity(hdr);
3694
3695 if (HDR_HAS_L1HDR(hdr)) {
3696 arc_cksum_free(hdr);
3697
3698 while (hdr->b_l1hdr.b_buf != NULL)
3699 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3700
3701 if (hdr->b_l1hdr.b_pabd != NULL)
3702 arc_hdr_free_abd(hdr, B_FALSE);
3703
3704 if (HDR_HAS_RABD(hdr))
3705 arc_hdr_free_abd(hdr, B_TRUE);
3706 }
3707
3708 ASSERT0P(hdr->b_hash_next);
3709 if (HDR_HAS_L1HDR(hdr)) {
3710 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3711 ASSERT0P(hdr->b_l1hdr.b_acb);
3712 #ifdef ZFS_DEBUG
3713 ASSERT0P(hdr->b_l1hdr.b_freeze_cksum);
3714 #endif
3715 kmem_cache_free(hdr_full_cache, hdr);
3716 } else {
3717 kmem_cache_free(hdr_l2only_cache, hdr);
3718 }
3719 }
3720
3721 void
arc_buf_destroy(arc_buf_t * buf,const void * tag)3722 arc_buf_destroy(arc_buf_t *buf, const void *tag)
3723 {
3724 arc_buf_hdr_t *hdr = buf->b_hdr;
3725
3726 if (hdr->b_l1hdr.b_state == arc_anon) {
3727 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
3728 ASSERT(ARC_BUF_LAST(buf));
3729 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3730 VERIFY0(remove_reference(hdr, tag));
3731 return;
3732 }
3733
3734 kmutex_t *hash_lock = HDR_LOCK(hdr);
3735 mutex_enter(hash_lock);
3736
3737 ASSERT3P(hdr, ==, buf->b_hdr);
3738 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
3739 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3740 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3741 ASSERT3P(buf->b_data, !=, NULL);
3742
3743 arc_buf_destroy_impl(buf);
3744 (void) remove_reference(hdr, tag);
3745 mutex_exit(hash_lock);
3746 }
3747
3748 /*
3749 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3750 * state of the header is dependent on its state prior to entering this
3751 * function. The following transitions are possible:
3752 *
3753 * - arc_mru -> arc_mru_ghost
3754 * - arc_mfu -> arc_mfu_ghost
3755 * - arc_mru_ghost -> arc_l2c_only
3756 * - arc_mru_ghost -> deleted
3757 * - arc_mfu_ghost -> arc_l2c_only
3758 * - arc_mfu_ghost -> deleted
3759 * - arc_uncached -> deleted
3760 *
3761 * Return total size of evicted data buffers for eviction progress tracking.
3762 * When evicting from ghost states return logical buffer size to make eviction
3763 * progress at the same (or at least comparable) rate as from non-ghost states.
3764 *
3765 * Return *real_evicted for actual ARC size reduction to wake up threads
3766 * waiting for it. For non-ghost states it includes size of evicted data
3767 * buffers (the headers are not freed there). For ghost states it includes
3768 * only the evicted headers size.
3769 */
3770 static int64_t
arc_evict_hdr(arc_buf_hdr_t * hdr,uint64_t * real_evicted)3771 arc_evict_hdr(arc_buf_hdr_t *hdr, uint64_t *real_evicted)
3772 {
3773 arc_state_t *evicted_state, *state;
3774 int64_t bytes_evicted = 0;
3775
3776 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3777 ASSERT(HDR_HAS_L1HDR(hdr));
3778 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3779 ASSERT0P(hdr->b_l1hdr.b_buf);
3780 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3781
3782 *real_evicted = 0;
3783 state = hdr->b_l1hdr.b_state;
3784 if (GHOST_STATE(state)) {
3785
3786 /*
3787 * l2arc_write_buffers() relies on a header's L1 portion
3788 * (i.e. its b_pabd field) during it's write phase.
3789 * Thus, we cannot push a header onto the arc_l2c_only
3790 * state (removing its L1 piece) until the header is
3791 * done being written to the l2arc.
3792 */
3793 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3794 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3795 return (bytes_evicted);
3796 }
3797
3798 ARCSTAT_BUMP(arcstat_deleted);
3799 bytes_evicted += HDR_GET_LSIZE(hdr);
3800
3801 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3802
3803 if (HDR_HAS_L2HDR(hdr)) {
3804 ASSERT0P(hdr->b_l1hdr.b_pabd);
3805 ASSERT(!HDR_HAS_RABD(hdr));
3806 /*
3807 * This buffer is cached on the 2nd Level ARC;
3808 * don't destroy the header.
3809 */
3810 arc_change_state(arc_l2c_only, hdr);
3811 /*
3812 * dropping from L1+L2 cached to L2-only,
3813 * realloc to remove the L1 header.
3814 */
3815 (void) arc_hdr_realloc(hdr, hdr_full_cache,
3816 hdr_l2only_cache);
3817 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE;
3818 } else {
3819 arc_change_state(arc_anon, hdr);
3820 arc_hdr_destroy(hdr);
3821 *real_evicted += HDR_FULL_SIZE;
3822 }
3823 return (bytes_evicted);
3824 }
3825
3826 ASSERT(state == arc_mru || state == arc_mfu || state == arc_uncached);
3827 evicted_state = (state == arc_uncached) ? arc_anon :
3828 ((state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost);
3829
3830 /* prefetch buffers have a minimum lifespan */
3831 uint_t min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3832 arc_min_prescient_prefetch : arc_min_prefetch;
3833 if ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3834 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < min_lifetime) {
3835 ARCSTAT_BUMP(arcstat_evict_skip);
3836 return (bytes_evicted);
3837 }
3838
3839 if (HDR_HAS_L2HDR(hdr)) {
3840 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3841 } else {
3842 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3843 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3844 HDR_GET_LSIZE(hdr));
3845
3846 switch (state->arcs_state) {
3847 case ARC_STATE_MRU:
3848 ARCSTAT_INCR(
3849 arcstat_evict_l2_eligible_mru,
3850 HDR_GET_LSIZE(hdr));
3851 break;
3852 case ARC_STATE_MFU:
3853 ARCSTAT_INCR(
3854 arcstat_evict_l2_eligible_mfu,
3855 HDR_GET_LSIZE(hdr));
3856 break;
3857 default:
3858 break;
3859 }
3860 } else {
3861 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3862 HDR_GET_LSIZE(hdr));
3863 }
3864 }
3865
3866 bytes_evicted += arc_hdr_size(hdr);
3867 *real_evicted += arc_hdr_size(hdr);
3868
3869 /*
3870 * If this hdr is being evicted and has a compressed buffer then we
3871 * discard it here before we change states. This ensures that the
3872 * accounting is updated correctly in arc_free_data_impl().
3873 */
3874 if (hdr->b_l1hdr.b_pabd != NULL)
3875 arc_hdr_free_abd(hdr, B_FALSE);
3876
3877 if (HDR_HAS_RABD(hdr))
3878 arc_hdr_free_abd(hdr, B_TRUE);
3879
3880 arc_change_state(evicted_state, hdr);
3881 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3882 if (evicted_state == arc_anon) {
3883 arc_hdr_destroy(hdr);
3884 *real_evicted += HDR_FULL_SIZE;
3885 } else {
3886 ASSERT(HDR_IN_HASH_TABLE(hdr));
3887 }
3888
3889 return (bytes_evicted);
3890 }
3891
3892 static void
arc_set_need_free(void)3893 arc_set_need_free(void)
3894 {
3895 ASSERT(MUTEX_HELD(&arc_evict_lock));
3896 int64_t remaining = arc_free_memory() - arc_sys_free / 2;
3897 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters);
3898 if (aw == NULL) {
3899 arc_need_free = MAX(-remaining, 0);
3900 } else {
3901 arc_need_free =
3902 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count));
3903 }
3904 }
3905
3906 static uint64_t
arc_evict_state_impl(multilist_t * ml,int idx,arc_buf_hdr_t * marker,uint64_t spa,uint64_t bytes,boolean_t * more)3907 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3908 uint64_t spa, uint64_t bytes, boolean_t *more)
3909 {
3910 multilist_sublist_t *mls;
3911 uint64_t bytes_evicted = 0, real_evicted = 0;
3912 arc_buf_hdr_t *hdr;
3913 kmutex_t *hash_lock;
3914 uint_t evict_count = zfs_arc_evict_batch_limit;
3915
3916 ASSERT3P(marker, !=, NULL);
3917
3918 mls = multilist_sublist_lock_idx(ml, idx);
3919
3920 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL);
3921 hdr = multilist_sublist_prev(mls, marker)) {
3922 if ((evict_count == 0) || (bytes_evicted >= bytes))
3923 break;
3924
3925 /*
3926 * To keep our iteration location, move the marker
3927 * forward. Since we're not holding hdr's hash lock, we
3928 * must be very careful and not remove 'hdr' from the
3929 * sublist. Otherwise, other consumers might mistake the
3930 * 'hdr' as not being on a sublist when they call the
3931 * multilist_link_active() function (they all rely on
3932 * the hash lock protecting concurrent insertions and
3933 * removals). multilist_sublist_move_forward() was
3934 * specifically implemented to ensure this is the case
3935 * (only 'marker' will be removed and re-inserted).
3936 */
3937 multilist_sublist_move_forward(mls, marker);
3938
3939 /*
3940 * The only case where the b_spa field should ever be
3941 * zero, is the marker headers inserted by
3942 * arc_evict_state(). It's possible for multiple threads
3943 * to be calling arc_evict_state() concurrently (e.g.
3944 * dsl_pool_close() and zio_inject_fault()), so we must
3945 * skip any markers we see from these other threads.
3946 */
3947 if (hdr->b_spa == 0)
3948 continue;
3949
3950 /* we're only interested in evicting buffers of a certain spa */
3951 if (spa != 0 && hdr->b_spa != spa) {
3952 ARCSTAT_BUMP(arcstat_evict_skip);
3953 continue;
3954 }
3955
3956 hash_lock = HDR_LOCK(hdr);
3957
3958 /*
3959 * We aren't calling this function from any code path
3960 * that would already be holding a hash lock, so we're
3961 * asserting on this assumption to be defensive in case
3962 * this ever changes. Without this check, it would be
3963 * possible to incorrectly increment arcstat_mutex_miss
3964 * below (e.g. if the code changed such that we called
3965 * this function with a hash lock held).
3966 */
3967 ASSERT(!MUTEX_HELD(hash_lock));
3968
3969 if (mutex_tryenter(hash_lock)) {
3970 uint64_t revicted;
3971 uint64_t evicted = arc_evict_hdr(hdr, &revicted);
3972 mutex_exit(hash_lock);
3973
3974 bytes_evicted += evicted;
3975 real_evicted += revicted;
3976
3977 /*
3978 * If evicted is zero, arc_evict_hdr() must have
3979 * decided to skip this header, don't increment
3980 * evict_count in this case.
3981 */
3982 if (evicted != 0)
3983 evict_count--;
3984
3985 } else {
3986 ARCSTAT_BUMP(arcstat_mutex_miss);
3987 }
3988 }
3989
3990 multilist_sublist_unlock(mls);
3991
3992 /* Indicate if another iteration may be productive. */
3993 if (more)
3994 *more = (hdr != NULL);
3995
3996 /*
3997 * Increment the count of evicted bytes, and wake up any threads that
3998 * are waiting for the count to reach this value. Since the list is
3999 * ordered by ascending aew_count, we pop off the beginning of the
4000 * list until we reach the end, or a waiter that's past the current
4001 * "count". Doing this outside the loop reduces the number of times
4002 * we need to acquire the global arc_evict_lock.
4003 *
4004 * Only wake when there's sufficient free memory in the system
4005 * (specifically, arc_sys_free/2, which by default is a bit more than
4006 * 1/64th of RAM). See the comments in arc_wait_for_eviction().
4007 */
4008 mutex_enter(&arc_evict_lock);
4009 arc_evict_count += real_evicted;
4010
4011 if (arc_free_memory() > arc_sys_free / 2) {
4012 arc_evict_waiter_t *aw;
4013 while ((aw = list_head(&arc_evict_waiters)) != NULL &&
4014 aw->aew_count <= arc_evict_count) {
4015 list_remove(&arc_evict_waiters, aw);
4016 cv_signal(&aw->aew_cv);
4017 }
4018 }
4019 arc_set_need_free();
4020 mutex_exit(&arc_evict_lock);
4021
4022 return (bytes_evicted);
4023 }
4024
4025 static arc_buf_hdr_t *
arc_state_alloc_marker(void)4026 arc_state_alloc_marker(void)
4027 {
4028 arc_buf_hdr_t *marker = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4029
4030 /*
4031 * A b_spa of 0 is used to indicate that this header is
4032 * a marker. This fact is used in arc_evict_state_impl().
4033 */
4034 marker->b_spa = 0;
4035
4036 return (marker);
4037 }
4038
4039 static void
arc_state_free_marker(arc_buf_hdr_t * marker)4040 arc_state_free_marker(arc_buf_hdr_t *marker)
4041 {
4042 kmem_cache_free(hdr_full_cache, marker);
4043 }
4044
4045 /*
4046 * Allocate an array of buffer headers used as placeholders during arc state
4047 * eviction.
4048 */
4049 static arc_buf_hdr_t **
arc_state_alloc_markers(int count)4050 arc_state_alloc_markers(int count)
4051 {
4052 arc_buf_hdr_t **markers;
4053
4054 markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP);
4055 for (int i = 0; i < count; i++)
4056 markers[i] = arc_state_alloc_marker();
4057 return (markers);
4058 }
4059
4060 static void
arc_state_free_markers(arc_buf_hdr_t ** markers,int count)4061 arc_state_free_markers(arc_buf_hdr_t **markers, int count)
4062 {
4063 for (int i = 0; i < count; i++)
4064 arc_state_free_marker(markers[i]);
4065 kmem_free(markers, sizeof (*markers) * count);
4066 }
4067
4068 typedef struct evict_arg {
4069 taskq_ent_t eva_tqent;
4070 multilist_t *eva_ml;
4071 arc_buf_hdr_t *eva_marker;
4072 int eva_idx;
4073 uint64_t eva_spa;
4074 uint64_t eva_bytes;
4075 uint64_t eva_evicted;
4076 } evict_arg_t;
4077
4078 static void
arc_evict_task(void * arg)4079 arc_evict_task(void *arg)
4080 {
4081 evict_arg_t *eva = arg;
4082 uint64_t total_evicted = 0;
4083 boolean_t more;
4084 uint_t batches = zfs_arc_evict_batches_limit;
4085
4086 /* Process multiple batches to amortize taskq dispatch overhead. */
4087 do {
4088 total_evicted += arc_evict_state_impl(eva->eva_ml,
4089 eva->eva_idx, eva->eva_marker, eva->eva_spa,
4090 eva->eva_bytes - total_evicted, &more);
4091 } while (total_evicted < eva->eva_bytes && --batches > 0 && more);
4092
4093 eva->eva_evicted = total_evicted;
4094 }
4095
4096 static void
arc_evict_thread_init(void)4097 arc_evict_thread_init(void)
4098 {
4099 if (zfs_arc_evict_threads == 0) {
4100 /*
4101 * Compute number of threads we want to use for eviction.
4102 *
4103 * Normally, it's log2(ncpus) + ncpus/32, which gets us to the
4104 * default max of 16 threads at ~256 CPUs.
4105 *
4106 * However, that formula goes to two threads at 4 CPUs, which
4107 * is still rather to low to be really useful, so we just go
4108 * with 1 thread at fewer than 6 cores.
4109 */
4110 if (max_ncpus < 6)
4111 zfs_arc_evict_threads = 1;
4112 else
4113 zfs_arc_evict_threads =
4114 (highbit64(max_ncpus) - 1) + max_ncpus / 32;
4115 } else if (zfs_arc_evict_threads > max_ncpus)
4116 zfs_arc_evict_threads = max_ncpus;
4117
4118 if (zfs_arc_evict_threads > 1) {
4119 arc_evict_taskq = taskq_create("arc_evict",
4120 zfs_arc_evict_threads, defclsyspri, 0, INT_MAX,
4121 TASKQ_PREPOPULATE);
4122 arc_evict_arg = kmem_zalloc(
4123 sizeof (evict_arg_t) * zfs_arc_evict_threads, KM_SLEEP);
4124 }
4125 }
4126
4127 /*
4128 * The minimum number of bytes we can evict at once is a block size.
4129 * So, SPA_MAXBLOCKSIZE is a reasonable minimal value per an eviction task.
4130 * We use this value to compute a scaling factor for the eviction tasks.
4131 */
4132 #define MIN_EVICT_SIZE (SPA_MAXBLOCKSIZE)
4133
4134 /*
4135 * Evict buffers from the given arc state, until we've removed the
4136 * specified number of bytes. Move the removed buffers to the
4137 * appropriate evict state.
4138 *
4139 * This function makes a "best effort". It skips over any buffers
4140 * it can't get a hash_lock on, and so, may not catch all candidates.
4141 * It may also return without evicting as much space as requested.
4142 *
4143 * If bytes is specified using the special value ARC_EVICT_ALL, this
4144 * will evict all available (i.e. unlocked and evictable) buffers from
4145 * the given arc state; which is used by arc_flush().
4146 */
4147 static uint64_t
arc_evict_state(arc_state_t * state,arc_buf_contents_t type,uint64_t spa,uint64_t bytes)4148 arc_evict_state(arc_state_t *state, arc_buf_contents_t type, uint64_t spa,
4149 uint64_t bytes)
4150 {
4151 uint64_t total_evicted = 0;
4152 multilist_t *ml = &state->arcs_list[type];
4153 int num_sublists;
4154 arc_buf_hdr_t **markers;
4155 evict_arg_t *eva = NULL;
4156
4157 num_sublists = multilist_get_num_sublists(ml);
4158
4159 boolean_t use_evcttq = zfs_arc_evict_threads > 1;
4160
4161 /*
4162 * If we've tried to evict from each sublist, made some
4163 * progress, but still have not hit the target number of bytes
4164 * to evict, we want to keep trying. The markers allow us to
4165 * pick up where we left off for each individual sublist, rather
4166 * than starting from the tail each time.
4167 */
4168 if (zthr_iscurthread(arc_evict_zthr)) {
4169 markers = arc_state_evict_markers;
4170 ASSERT3S(num_sublists, <=, arc_state_evict_marker_count);
4171 } else {
4172 markers = arc_state_alloc_markers(num_sublists);
4173 }
4174 for (int i = 0; i < num_sublists; i++) {
4175 multilist_sublist_t *mls;
4176
4177 mls = multilist_sublist_lock_idx(ml, i);
4178 multilist_sublist_insert_tail(mls, markers[i]);
4179 multilist_sublist_unlock(mls);
4180 }
4181
4182 if (use_evcttq) {
4183 if (zthr_iscurthread(arc_evict_zthr))
4184 eva = arc_evict_arg;
4185 else
4186 eva = kmem_alloc(sizeof (evict_arg_t) *
4187 zfs_arc_evict_threads, KM_NOSLEEP);
4188 if (eva) {
4189 for (int i = 0; i < zfs_arc_evict_threads; i++) {
4190 taskq_init_ent(&eva[i].eva_tqent);
4191 eva[i].eva_ml = ml;
4192 eva[i].eva_spa = spa;
4193 }
4194 } else {
4195 /*
4196 * Fall back to the regular single evict if it is not
4197 * possible to allocate memory for the taskq entries.
4198 */
4199 use_evcttq = B_FALSE;
4200 }
4201 }
4202
4203 /*
4204 * Start eviction using a randomly selected sublist, this is to try and
4205 * evenly balance eviction across all sublists. Always starting at the
4206 * same sublist (e.g. index 0) would cause evictions to favor certain
4207 * sublists over others.
4208 */
4209 uint64_t scan_evicted = 0;
4210 int sublists_left = num_sublists;
4211 int sublist_idx = multilist_get_random_index(ml);
4212
4213 /*
4214 * While we haven't hit our target number of bytes to evict, or
4215 * we're evicting all available buffers.
4216 */
4217 while (total_evicted < bytes) {
4218 uint64_t evict = MIN_EVICT_SIZE;
4219 uint_t ntasks = zfs_arc_evict_threads;
4220
4221 if (use_evcttq) {
4222 if (sublists_left < ntasks)
4223 ntasks = sublists_left;
4224
4225 if (ntasks < 2)
4226 use_evcttq = B_FALSE;
4227 }
4228
4229 if (use_evcttq) {
4230 uint64_t left = bytes - total_evicted;
4231
4232 if (bytes == ARC_EVICT_ALL) {
4233 evict = bytes;
4234 } else if (left >= ntasks * MIN_EVICT_SIZE) {
4235 evict = DIV_ROUND_UP(left, ntasks);
4236 } else {
4237 ntasks = left / MIN_EVICT_SIZE;
4238 if (ntasks < 2)
4239 use_evcttq = B_FALSE;
4240 else
4241 evict = DIV_ROUND_UP(left, ntasks);
4242 }
4243 }
4244
4245 for (int i = 0; sublists_left > 0; i++, sublist_idx++,
4246 sublists_left--) {
4247 uint64_t bytes_evicted;
4248
4249 /* we've reached the end, wrap to the beginning */
4250 if (sublist_idx >= num_sublists)
4251 sublist_idx = 0;
4252
4253 if (use_evcttq) {
4254 if (i == ntasks)
4255 break;
4256
4257 eva[i].eva_marker = markers[sublist_idx];
4258 eva[i].eva_idx = sublist_idx;
4259 eva[i].eva_bytes = evict;
4260
4261 taskq_dispatch_ent(arc_evict_taskq,
4262 arc_evict_task, &eva[i], 0,
4263 &eva[i].eva_tqent);
4264
4265 continue;
4266 }
4267
4268 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4269 markers[sublist_idx], spa, bytes - total_evicted,
4270 NULL);
4271
4272 scan_evicted += bytes_evicted;
4273 total_evicted += bytes_evicted;
4274
4275 if (total_evicted < bytes)
4276 kpreempt(KPREEMPT_SYNC);
4277 else
4278 break;
4279 }
4280
4281 if (use_evcttq) {
4282 taskq_wait(arc_evict_taskq);
4283
4284 for (int i = 0; i < ntasks; i++) {
4285 scan_evicted += eva[i].eva_evicted;
4286 total_evicted += eva[i].eva_evicted;
4287 }
4288 }
4289
4290 /*
4291 * If we scanned all sublists and didn't evict anything, we
4292 * have no reason to believe we'll evict more during another
4293 * scan, so break the loop.
4294 */
4295 if (scan_evicted == 0 && sublists_left == 0) {
4296 /* This isn't possible, let's make that obvious */
4297 ASSERT3S(bytes, !=, 0);
4298
4299 /*
4300 * When bytes is ARC_EVICT_ALL, the only way to
4301 * break the loop is when scan_evicted is zero.
4302 * In that case, we actually have evicted enough,
4303 * so we don't want to increment the kstat.
4304 */
4305 if (bytes != ARC_EVICT_ALL) {
4306 ASSERT3S(total_evicted, <, bytes);
4307 ARCSTAT_BUMP(arcstat_evict_not_enough);
4308 }
4309
4310 break;
4311 }
4312
4313 /*
4314 * If we scanned all sublists but still have more to do,
4315 * reset the counts so we can go around again.
4316 */
4317 if (sublists_left == 0) {
4318 sublists_left = num_sublists;
4319 sublist_idx = multilist_get_random_index(ml);
4320 scan_evicted = 0;
4321
4322 /*
4323 * Since we're about to reconsider all sublists,
4324 * re-enable use of the evict threads if available.
4325 */
4326 use_evcttq = (zfs_arc_evict_threads > 1 && eva != NULL);
4327 }
4328 }
4329
4330 if (eva != NULL && eva != arc_evict_arg)
4331 kmem_free(eva, sizeof (evict_arg_t) * zfs_arc_evict_threads);
4332
4333 for (int i = 0; i < num_sublists; i++) {
4334 multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
4335 multilist_sublist_remove(mls, markers[i]);
4336 multilist_sublist_unlock(mls);
4337 }
4338
4339 if (markers != arc_state_evict_markers)
4340 arc_state_free_markers(markers, num_sublists);
4341
4342 return (total_evicted);
4343 }
4344
4345 /*
4346 * Flush all "evictable" data of the given type from the arc state
4347 * specified. This will not evict any "active" buffers (i.e. referenced).
4348 *
4349 * When 'retry' is set to B_FALSE, the function will make a single pass
4350 * over the state and evict any buffers that it can. Since it doesn't
4351 * continually retry the eviction, it might end up leaving some buffers
4352 * in the ARC due to lock misses.
4353 *
4354 * When 'retry' is set to B_TRUE, the function will continually retry the
4355 * eviction until *all* evictable buffers have been removed from the
4356 * state. As a result, if concurrent insertions into the state are
4357 * allowed (e.g. if the ARC isn't shutting down), this function might
4358 * wind up in an infinite loop, continually trying to evict buffers.
4359 */
4360 static uint64_t
arc_flush_state(arc_state_t * state,uint64_t spa,arc_buf_contents_t type,boolean_t retry)4361 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4362 boolean_t retry)
4363 {
4364 uint64_t evicted = 0;
4365
4366 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4367 evicted += arc_evict_state(state, type, spa, ARC_EVICT_ALL);
4368
4369 if (!retry)
4370 break;
4371 }
4372
4373 return (evicted);
4374 }
4375
4376 /*
4377 * Evict the specified number of bytes from the state specified. This
4378 * function prevents us from trying to evict more from a state's list
4379 * than is "evictable", and to skip evicting altogether when passed a
4380 * negative value for "bytes". In contrast, arc_evict_state() will
4381 * evict everything it can, when passed a negative value for "bytes".
4382 */
4383 static uint64_t
arc_evict_impl(arc_state_t * state,arc_buf_contents_t type,int64_t bytes)4384 arc_evict_impl(arc_state_t *state, arc_buf_contents_t type, int64_t bytes)
4385 {
4386 uint64_t delta;
4387
4388 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4389 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4390 bytes);
4391 return (arc_evict_state(state, type, 0, delta));
4392 }
4393
4394 return (0);
4395 }
4396
4397 /*
4398 * Adjust specified fraction, taking into account initial ghost state(s) size,
4399 * ghost hit bytes towards increasing the fraction, ghost hit bytes towards
4400 * decreasing it, plus a balance factor, controlling the decrease rate, used
4401 * to balance metadata vs data.
4402 */
4403 static uint64_t
arc_evict_adj(uint64_t frac,uint64_t total,uint64_t up,uint64_t down,uint_t balance)4404 arc_evict_adj(uint64_t frac, uint64_t total, uint64_t up, uint64_t down,
4405 uint_t balance)
4406 {
4407 if (total < 32 || up + down == 0)
4408 return (frac);
4409
4410 /*
4411 * We should not have more ghost hits than ghost size, but they may
4412 * get close. To avoid overflows below up/down should not be bigger
4413 * than 1/5 of total. But to limit maximum adjustment speed restrict
4414 * it some more.
4415 */
4416 if (up + down >= total / 16) {
4417 uint64_t scale = (up + down) / (total / 32);
4418 up /= scale;
4419 down /= scale;
4420 }
4421
4422 /* Get maximal dynamic range by choosing optimal shifts. */
4423 int s = highbit64(total);
4424 s = MIN(64 - s, 32);
4425
4426 ASSERT3U(frac, <=, 1ULL << 32);
4427 uint64_t ofrac = (1ULL << 32) - frac;
4428
4429 if (frac >= 4 * ofrac)
4430 up /= frac / (2 * ofrac + 1);
4431 up = (up << s) / (total >> (32 - s));
4432 if (ofrac >= 4 * frac)
4433 down /= ofrac / (2 * frac + 1);
4434 down = (down << s) / (total >> (32 - s));
4435 down = down * 100 / balance;
4436
4437 ASSERT3U(up, <=, (1ULL << 32) - frac);
4438 ASSERT3U(down, <=, frac);
4439 return (frac + up - down);
4440 }
4441
4442 /*
4443 * Calculate (x * multiplier / divisor) without unnecesary overflows.
4444 */
4445 static uint64_t
arc_mf(uint64_t x,uint64_t multiplier,uint64_t divisor)4446 arc_mf(uint64_t x, uint64_t multiplier, uint64_t divisor)
4447 {
4448 uint64_t q = (x / divisor);
4449 uint64_t r = (x % divisor);
4450
4451 return ((q * multiplier) + ((r * multiplier) / divisor));
4452 }
4453
4454 /*
4455 * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
4456 */
4457 static uint64_t
arc_evict(void)4458 arc_evict(void)
4459 {
4460 uint64_t bytes, total_evicted = 0;
4461 int64_t e, mrud, mrum, mfud, mfum, w;
4462 static uint64_t ogrd, ogrm, ogfd, ogfm;
4463 static uint64_t gsrd, gsrm, gsfd, gsfm;
4464 uint64_t ngrd, ngrm, ngfd, ngfm;
4465
4466 /* Get current size of ARC states we can evict from. */
4467 mrud = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_DATA]) +
4468 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]);
4469 mrum = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) +
4470 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
4471 mfud = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
4472 mfum = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
4473 uint64_t d = mrud + mfud;
4474 uint64_t m = mrum + mfum;
4475 uint64_t t = d + m;
4476
4477 /* Get ARC ghost hits since last eviction. */
4478 ngrd = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
4479 uint64_t grd = ngrd - ogrd;
4480 ogrd = ngrd;
4481 ngrm = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
4482 uint64_t grm = ngrm - ogrm;
4483 ogrm = ngrm;
4484 ngfd = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
4485 uint64_t gfd = ngfd - ogfd;
4486 ogfd = ngfd;
4487 ngfm = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
4488 uint64_t gfm = ngfm - ogfm;
4489 ogfm = ngfm;
4490
4491 /* Adjust ARC states balance based on ghost hits. */
4492 arc_meta = arc_evict_adj(arc_meta, gsrd + gsrm + gsfd + gsfm,
4493 grm + gfm, grd + gfd, zfs_arc_meta_balance);
4494 arc_pd = arc_evict_adj(arc_pd, gsrd + gsfd, grd, gfd, 100);
4495 arc_pm = arc_evict_adj(arc_pm, gsrm + gsfm, grm, gfm, 100);
4496
4497 uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4498 uint64_t ac = arc_c;
4499 int64_t wt = t - (asize - ac);
4500
4501 /*
4502 * Try to reduce pinned dnodes if more than 3/4 of wanted metadata
4503 * target is not evictable or if they go over arc_dnode_limit.
4504 */
4505 int64_t prune = 0;
4506 int64_t dn = aggsum_value(&arc_sums.arcstat_dnode_size);
4507 int64_t nem = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA])
4508 + zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA])
4509 - zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA])
4510 - zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
4511 w = wt * (int64_t)(arc_meta >> 16) >> 16;
4512 if (nem > w * 3 / 4) {
4513 prune = dn / sizeof (dnode_t) *
4514 zfs_arc_dnode_reduce_percent / 100;
4515 if (nem < w && w > 4)
4516 prune = arc_mf(prune, nem - w * 3 / 4, w / 4);
4517 }
4518 if (dn > arc_dnode_limit) {
4519 prune = MAX(prune, (dn - arc_dnode_limit) / sizeof (dnode_t) *
4520 zfs_arc_dnode_reduce_percent / 100);
4521 }
4522 if (prune > 0)
4523 arc_prune_async(prune);
4524
4525 /* Evict MRU metadata. */
4526 w = wt * (int64_t)(arc_meta * arc_pm >> 48) >> 16;
4527 e = MIN((int64_t)(asize - ac), (int64_t)(mrum - w));
4528 bytes = arc_evict_impl(arc_mru, ARC_BUFC_METADATA, e);
4529 total_evicted += bytes;
4530 mrum -= bytes;
4531 asize -= bytes;
4532
4533 /* Evict MFU metadata. */
4534 w = wt * (int64_t)(arc_meta >> 16) >> 16;
4535 e = MIN((int64_t)(asize - ac), (int64_t)(m - bytes - w));
4536 bytes = arc_evict_impl(arc_mfu, ARC_BUFC_METADATA, e);
4537 total_evicted += bytes;
4538 mfum -= bytes;
4539 asize -= bytes;
4540
4541 /* Evict MRU data. */
4542 wt -= m - total_evicted;
4543 w = wt * (int64_t)(arc_pd >> 16) >> 16;
4544 e = MIN((int64_t)(asize - ac), (int64_t)(mrud - w));
4545 bytes = arc_evict_impl(arc_mru, ARC_BUFC_DATA, e);
4546 total_evicted += bytes;
4547 mrud -= bytes;
4548 asize -= bytes;
4549
4550 /* Evict MFU data. */
4551 e = asize - ac;
4552 bytes = arc_evict_impl(arc_mfu, ARC_BUFC_DATA, e);
4553 mfud -= bytes;
4554 total_evicted += bytes;
4555
4556 /*
4557 * Evict ghost lists
4558 *
4559 * Size of each state's ghost list represents how much that state
4560 * may grow by shrinking the other states. Would it need to shrink
4561 * other states to zero (that is unlikely), its ghost size would be
4562 * equal to sum of other three state sizes. But excessive ghost
4563 * size may result in false ghost hits (too far back), that may
4564 * never result in real cache hits if several states are competing.
4565 * So choose some arbitraty point of 1/2 of other state sizes.
4566 */
4567 gsrd = (mrum + mfud + mfum) / 2;
4568 e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]) -
4569 gsrd;
4570 (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_DATA, e);
4571
4572 gsrm = (mrud + mfud + mfum) / 2;
4573 e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]) -
4574 gsrm;
4575 (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_METADATA, e);
4576
4577 gsfd = (mrud + mrum + mfum) / 2;
4578 e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]) -
4579 gsfd;
4580 (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_DATA, e);
4581
4582 gsfm = (mrud + mrum + mfud) / 2;
4583 e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]) -
4584 gsfm;
4585 (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_METADATA, e);
4586
4587 return (total_evicted);
4588 }
4589
4590 static void
arc_flush_impl(uint64_t guid,boolean_t retry)4591 arc_flush_impl(uint64_t guid, boolean_t retry)
4592 {
4593 ASSERT(!retry || guid == 0);
4594
4595 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4596 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4597
4598 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4599 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4600
4601 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4602 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4603
4604 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4605 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4606
4607 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_DATA, retry);
4608 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_METADATA, retry);
4609 }
4610
4611 void
arc_flush(spa_t * spa,boolean_t retry)4612 arc_flush(spa_t *spa, boolean_t retry)
4613 {
4614 /*
4615 * If retry is B_TRUE, a spa must not be specified since we have
4616 * no good way to determine if all of a spa's buffers have been
4617 * evicted from an arc state.
4618 */
4619 ASSERT(!retry || spa == NULL);
4620
4621 arc_flush_impl(spa != NULL ? spa_load_guid(spa) : 0, retry);
4622 }
4623
4624 static arc_async_flush_t *
arc_async_flush_add(uint64_t spa_guid,uint_t level)4625 arc_async_flush_add(uint64_t spa_guid, uint_t level)
4626 {
4627 arc_async_flush_t *af = kmem_alloc(sizeof (*af), KM_SLEEP);
4628 af->af_spa_guid = spa_guid;
4629 af->af_cache_level = level;
4630 taskq_init_ent(&af->af_tqent);
4631 list_link_init(&af->af_node);
4632
4633 mutex_enter(&arc_async_flush_lock);
4634 list_insert_tail(&arc_async_flush_list, af);
4635 mutex_exit(&arc_async_flush_lock);
4636
4637 return (af);
4638 }
4639
4640 static void
arc_async_flush_remove(uint64_t spa_guid,uint_t level)4641 arc_async_flush_remove(uint64_t spa_guid, uint_t level)
4642 {
4643 mutex_enter(&arc_async_flush_lock);
4644 for (arc_async_flush_t *af = list_head(&arc_async_flush_list);
4645 af != NULL; af = list_next(&arc_async_flush_list, af)) {
4646 if (af->af_spa_guid == spa_guid &&
4647 af->af_cache_level == level) {
4648 list_remove(&arc_async_flush_list, af);
4649 kmem_free(af, sizeof (*af));
4650 break;
4651 }
4652 }
4653 mutex_exit(&arc_async_flush_lock);
4654 }
4655
4656 static void
arc_flush_task(void * arg)4657 arc_flush_task(void *arg)
4658 {
4659 arc_async_flush_t *af = arg;
4660 hrtime_t start_time = gethrtime();
4661 uint64_t spa_guid = af->af_spa_guid;
4662
4663 arc_flush_impl(spa_guid, B_FALSE);
4664 arc_async_flush_remove(spa_guid, af->af_cache_level);
4665
4666 uint64_t elapsed = NSEC2MSEC(gethrtime() - start_time);
4667 if (elapsed > 0) {
4668 zfs_dbgmsg("spa %llu arc flushed in %llu ms",
4669 (u_longlong_t)spa_guid, (u_longlong_t)elapsed);
4670 }
4671 }
4672
4673 /*
4674 * ARC buffers use the spa's load guid and can continue to exist after
4675 * the spa_t is gone (exported). The blocks are orphaned since each
4676 * spa import has a different load guid.
4677 *
4678 * It's OK if the spa is re-imported while this asynchronous flush is
4679 * still in progress. The new spa_load_guid will be different.
4680 *
4681 * Also, arc_fini will wait for any arc_flush_task to finish.
4682 */
4683 void
arc_flush_async(spa_t * spa)4684 arc_flush_async(spa_t *spa)
4685 {
4686 uint64_t spa_guid = spa_load_guid(spa);
4687 arc_async_flush_t *af = arc_async_flush_add(spa_guid, 1);
4688
4689 taskq_dispatch_ent(arc_flush_taskq, arc_flush_task,
4690 af, TQ_SLEEP, &af->af_tqent);
4691 }
4692
4693 /*
4694 * Check if a guid is still in-use as part of an async teardown task
4695 */
4696 boolean_t
arc_async_flush_guid_inuse(uint64_t spa_guid)4697 arc_async_flush_guid_inuse(uint64_t spa_guid)
4698 {
4699 mutex_enter(&arc_async_flush_lock);
4700 for (arc_async_flush_t *af = list_head(&arc_async_flush_list);
4701 af != NULL; af = list_next(&arc_async_flush_list, af)) {
4702 if (af->af_spa_guid == spa_guid) {
4703 mutex_exit(&arc_async_flush_lock);
4704 return (B_TRUE);
4705 }
4706 }
4707 mutex_exit(&arc_async_flush_lock);
4708 return (B_FALSE);
4709 }
4710
4711 uint64_t
arc_reduce_target_size(uint64_t to_free)4712 arc_reduce_target_size(uint64_t to_free)
4713 {
4714 /*
4715 * Get the actual arc size. Even if we don't need it, this updates
4716 * the aggsum lower bound estimate for arc_is_overflowing().
4717 */
4718 uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4719
4720 /*
4721 * All callers want the ARC to actually evict (at least) this much
4722 * memory. Therefore we reduce from the lower of the current size and
4723 * the target size. This way, even if arc_c is much higher than
4724 * arc_size (as can be the case after many calls to arc_freed(), we will
4725 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4726 * will evict.
4727 */
4728 uint64_t c = arc_c;
4729 if (c > arc_c_min) {
4730 c = MIN(c, MAX(asize, arc_c_min));
4731 to_free = MIN(to_free, c - arc_c_min);
4732 arc_c = c - to_free;
4733 } else {
4734 to_free = 0;
4735 }
4736
4737 /*
4738 * Since dbuf cache size is a fraction of target ARC size, we should
4739 * notify dbuf about the reduction, which might be significant,
4740 * especially if current ARC size was much smaller than the target.
4741 */
4742 dbuf_cache_reduce_target_size();
4743
4744 /*
4745 * Whether or not we reduced the target size, request eviction if the
4746 * current size is over it now, since caller obviously wants some RAM.
4747 */
4748 if (asize > arc_c) {
4749 /* See comment in arc_evict_cb_check() on why lock+flag */
4750 mutex_enter(&arc_evict_lock);
4751 arc_evict_needed = B_TRUE;
4752 mutex_exit(&arc_evict_lock);
4753 zthr_wakeup(arc_evict_zthr);
4754 }
4755
4756 return (to_free);
4757 }
4758
4759 /*
4760 * Determine if the system is under memory pressure and is asking
4761 * to reclaim memory. A return value of B_TRUE indicates that the system
4762 * is under memory pressure and that the arc should adjust accordingly.
4763 */
4764 boolean_t
arc_reclaim_needed(void)4765 arc_reclaim_needed(void)
4766 {
4767 return (arc_available_memory() < 0);
4768 }
4769
4770 void
arc_kmem_reap_soon(void)4771 arc_kmem_reap_soon(void)
4772 {
4773 size_t i;
4774 kmem_cache_t *prev_cache = NULL;
4775 kmem_cache_t *prev_data_cache = NULL;
4776
4777 #ifdef _KERNEL
4778 #if defined(_ILP32)
4779 /*
4780 * Reclaim unused memory from all kmem caches.
4781 */
4782 kmem_reap();
4783 #endif
4784 #endif
4785
4786 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4787 #if defined(_ILP32)
4788 /* reach upper limit of cache size on 32-bit */
4789 if (zio_buf_cache[i] == NULL)
4790 break;
4791 #endif
4792 if (zio_buf_cache[i] != prev_cache) {
4793 prev_cache = zio_buf_cache[i];
4794 kmem_cache_reap_now(zio_buf_cache[i]);
4795 }
4796 if (zio_data_buf_cache[i] != prev_data_cache) {
4797 prev_data_cache = zio_data_buf_cache[i];
4798 kmem_cache_reap_now(zio_data_buf_cache[i]);
4799 }
4800 }
4801 kmem_cache_reap_now(buf_cache);
4802 kmem_cache_reap_now(hdr_full_cache);
4803 kmem_cache_reap_now(hdr_l2only_cache);
4804 kmem_cache_reap_now(zfs_btree_leaf_cache);
4805 abd_cache_reap_now();
4806 }
4807
4808 static boolean_t
arc_evict_cb_check(void * arg,zthr_t * zthr)4809 arc_evict_cb_check(void *arg, zthr_t *zthr)
4810 {
4811 (void) arg, (void) zthr;
4812
4813 #ifdef ZFS_DEBUG
4814 /*
4815 * This is necessary in order to keep the kstat information
4816 * up to date for tools that display kstat data such as the
4817 * mdb ::arc dcmd and the Linux crash utility. These tools
4818 * typically do not call kstat's update function, but simply
4819 * dump out stats from the most recent update. Without
4820 * this call, these commands may show stale stats for the
4821 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4822 * with this call, the data might be out of date if the
4823 * evict thread hasn't been woken recently; but that should
4824 * suffice. The arc_state_t structures can be queried
4825 * directly if more accurate information is needed.
4826 */
4827 if (arc_ksp != NULL)
4828 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4829 #endif
4830
4831 /*
4832 * We have to rely on arc_wait_for_eviction() to tell us when to
4833 * evict, rather than checking if we are overflowing here, so that we
4834 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4835 * If we have become "not overflowing" since arc_wait_for_eviction()
4836 * checked, we need to wake it up. We could broadcast the CV here,
4837 * but arc_wait_for_eviction() may have not yet gone to sleep. We
4838 * would need to use a mutex to ensure that this function doesn't
4839 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4840 * the arc_evict_lock). However, the lock ordering of such a lock
4841 * would necessarily be incorrect with respect to the zthr_lock,
4842 * which is held before this function is called, and is held by
4843 * arc_wait_for_eviction() when it calls zthr_wakeup().
4844 */
4845 if (arc_evict_needed)
4846 return (B_TRUE);
4847
4848 /*
4849 * If we have buffers in uncached state, evict them periodically.
4850 */
4851 return ((zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_DATA]) +
4852 zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]) &&
4853 ddi_get_lbolt() - arc_last_uncached_flush > arc_min_prefetch / 2));
4854 }
4855
4856 /*
4857 * Keep arc_size under arc_c by running arc_evict which evicts data
4858 * from the ARC.
4859 */
4860 static void
arc_evict_cb(void * arg,zthr_t * zthr)4861 arc_evict_cb(void *arg, zthr_t *zthr)
4862 {
4863 (void) arg;
4864
4865 uint64_t evicted = 0;
4866 fstrans_cookie_t cookie = spl_fstrans_mark();
4867
4868 /* Always try to evict from uncached state. */
4869 arc_last_uncached_flush = ddi_get_lbolt();
4870 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_DATA, B_FALSE);
4871 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_METADATA, B_FALSE);
4872
4873 /* Evict from other states only if told to. */
4874 if (arc_evict_needed)
4875 evicted += arc_evict();
4876
4877 /*
4878 * If evicted is zero, we couldn't evict anything
4879 * via arc_evict(). This could be due to hash lock
4880 * collisions, but more likely due to the majority of
4881 * arc buffers being unevictable. Therefore, even if
4882 * arc_size is above arc_c, another pass is unlikely to
4883 * be helpful and could potentially cause us to enter an
4884 * infinite loop. Additionally, zthr_iscancelled() is
4885 * checked here so that if the arc is shutting down, the
4886 * broadcast will wake any remaining arc evict waiters.
4887 *
4888 * Note we cancel using zthr instead of arc_evict_zthr
4889 * because the latter may not yet be initializd when the
4890 * callback is first invoked.
4891 */
4892 mutex_enter(&arc_evict_lock);
4893 arc_evict_needed = !zthr_iscancelled(zthr) &&
4894 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0;
4895 if (!arc_evict_needed) {
4896 /*
4897 * We're either no longer overflowing, or we
4898 * can't evict anything more, so we should wake
4899 * arc_get_data_impl() sooner.
4900 */
4901 arc_evict_waiter_t *aw;
4902 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) {
4903 cv_signal(&aw->aew_cv);
4904 }
4905 arc_set_need_free();
4906 }
4907 mutex_exit(&arc_evict_lock);
4908 spl_fstrans_unmark(cookie);
4909 }
4910
4911 static boolean_t
arc_reap_cb_check(void * arg,zthr_t * zthr)4912 arc_reap_cb_check(void *arg, zthr_t *zthr)
4913 {
4914 (void) arg, (void) zthr;
4915
4916 int64_t free_memory = arc_available_memory();
4917 static int reap_cb_check_counter = 0;
4918
4919 /*
4920 * If a kmem reap is already active, don't schedule more. We must
4921 * check for this because kmem_cache_reap_soon() won't actually
4922 * block on the cache being reaped (this is to prevent callers from
4923 * becoming implicitly blocked by a system-wide kmem reap -- which,
4924 * on a system with many, many full magazines, can take minutes).
4925 */
4926 if (!kmem_cache_reap_active() && free_memory < 0) {
4927
4928 arc_no_grow = B_TRUE;
4929 arc_warm = B_TRUE;
4930 /*
4931 * Wait at least zfs_grow_retry (default 5) seconds
4932 * before considering growing.
4933 */
4934 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4935 return (B_TRUE);
4936 } else if (free_memory < arc_c >> arc_no_grow_shift) {
4937 arc_no_grow = B_TRUE;
4938 } else if (gethrtime() >= arc_growtime) {
4939 arc_no_grow = B_FALSE;
4940 }
4941
4942 /*
4943 * Called unconditionally every 60 seconds to reclaim unused
4944 * zstd compression and decompression context. This is done
4945 * here to avoid the need for an independent thread.
4946 */
4947 if (!((reap_cb_check_counter++) % 60))
4948 zfs_zstd_cache_reap_now();
4949
4950 return (B_FALSE);
4951 }
4952
4953 /*
4954 * Keep enough free memory in the system by reaping the ARC's kmem
4955 * caches. To cause more slabs to be reapable, we may reduce the
4956 * target size of the cache (arc_c), causing the arc_evict_cb()
4957 * to free more buffers.
4958 */
4959 static void
arc_reap_cb(void * arg,zthr_t * zthr)4960 arc_reap_cb(void *arg, zthr_t *zthr)
4961 {
4962 int64_t can_free, free_memory, to_free;
4963
4964 (void) arg, (void) zthr;
4965 fstrans_cookie_t cookie = spl_fstrans_mark();
4966
4967 /*
4968 * Kick off asynchronous kmem_reap()'s of all our caches.
4969 */
4970 arc_kmem_reap_soon();
4971
4972 /*
4973 * Wait at least arc_kmem_cache_reap_retry_ms between
4974 * arc_kmem_reap_soon() calls. Without this check it is possible to
4975 * end up in a situation where we spend lots of time reaping
4976 * caches, while we're near arc_c_min. Waiting here also gives the
4977 * subsequent free memory check a chance of finding that the
4978 * asynchronous reap has already freed enough memory, and we don't
4979 * need to call arc_reduce_target_size().
4980 */
4981 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4982
4983 /*
4984 * Reduce the target size as needed to maintain the amount of free
4985 * memory in the system at a fraction of the arc_size (1/128th by
4986 * default). If oversubscribed (free_memory < 0) then reduce the
4987 * target arc_size by the deficit amount plus the fractional
4988 * amount. If free memory is positive but less than the fractional
4989 * amount, reduce by what is needed to hit the fractional amount.
4990 */
4991 free_memory = arc_available_memory();
4992 can_free = arc_c - arc_c_min;
4993 to_free = (MAX(can_free, 0) >> arc_shrink_shift) - free_memory;
4994 if (to_free > 0)
4995 arc_reduce_target_size(to_free);
4996 spl_fstrans_unmark(cookie);
4997 }
4998
4999 #ifdef _KERNEL
5000 /*
5001 * Determine the amount of memory eligible for eviction contained in the
5002 * ARC. All clean data reported by the ghost lists can always be safely
5003 * evicted. Due to arc_c_min, the same does not hold for all clean data
5004 * contained by the regular mru and mfu lists.
5005 *
5006 * In the case of the regular mru and mfu lists, we need to report as
5007 * much clean data as possible, such that evicting that same reported
5008 * data will not bring arc_size below arc_c_min. Thus, in certain
5009 * circumstances, the total amount of clean data in the mru and mfu
5010 * lists might not actually be evictable.
5011 *
5012 * The following two distinct cases are accounted for:
5013 *
5014 * 1. The sum of the amount of dirty data contained by both the mru and
5015 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5016 * is greater than or equal to arc_c_min.
5017 * (i.e. amount of dirty data >= arc_c_min)
5018 *
5019 * This is the easy case; all clean data contained by the mru and mfu
5020 * lists is evictable. Evicting all clean data can only drop arc_size
5021 * to the amount of dirty data, which is greater than arc_c_min.
5022 *
5023 * 2. The sum of the amount of dirty data contained by both the mru and
5024 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5025 * is less than arc_c_min.
5026 * (i.e. arc_c_min > amount of dirty data)
5027 *
5028 * 2.1. arc_size is greater than or equal arc_c_min.
5029 * (i.e. arc_size >= arc_c_min > amount of dirty data)
5030 *
5031 * In this case, not all clean data from the regular mru and mfu
5032 * lists is actually evictable; we must leave enough clean data
5033 * to keep arc_size above arc_c_min. Thus, the maximum amount of
5034 * evictable data from the two lists combined, is exactly the
5035 * difference between arc_size and arc_c_min.
5036 *
5037 * 2.2. arc_size is less than arc_c_min
5038 * (i.e. arc_c_min > arc_size > amount of dirty data)
5039 *
5040 * In this case, none of the data contained in the mru and mfu
5041 * lists is evictable, even if it's clean. Since arc_size is
5042 * already below arc_c_min, evicting any more would only
5043 * increase this negative difference.
5044 */
5045
5046 #endif /* _KERNEL */
5047
5048 /*
5049 * Adapt arc info given the number of bytes we are trying to add and
5050 * the state that we are coming from. This function is only called
5051 * when we are adding new content to the cache.
5052 */
5053 static void
arc_adapt(uint64_t bytes)5054 arc_adapt(uint64_t bytes)
5055 {
5056 /*
5057 * Wake reap thread if we do not have any available memory
5058 */
5059 if (arc_reclaim_needed()) {
5060 zthr_wakeup(arc_reap_zthr);
5061 return;
5062 }
5063
5064 if (arc_no_grow)
5065 return;
5066
5067 if (arc_c >= arc_c_max)
5068 return;
5069
5070 /*
5071 * If we're within (2 * maxblocksize) bytes of the target
5072 * cache size, increment the target cache size
5073 */
5074 if (aggsum_upper_bound(&arc_sums.arcstat_size) +
5075 2 * SPA_MAXBLOCKSIZE >= arc_c) {
5076 uint64_t dc = MAX(bytes, SPA_OLD_MAXBLOCKSIZE);
5077 if (atomic_add_64_nv(&arc_c, dc) > arc_c_max)
5078 arc_c = arc_c_max;
5079 }
5080 }
5081
5082 /*
5083 * Check if ARC current size has grown past our upper thresholds.
5084 */
5085 static arc_ovf_level_t
arc_is_overflowing(boolean_t lax,boolean_t use_reserve)5086 arc_is_overflowing(boolean_t lax, boolean_t use_reserve)
5087 {
5088 /*
5089 * We just compare the lower bound here for performance reasons. Our
5090 * primary goals are to make sure that the arc never grows without
5091 * bound, and that it can reach its maximum size. This check
5092 * accomplishes both goals. The maximum amount we could run over by is
5093 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
5094 * in the ARC. In practice, that's in the tens of MB, which is low
5095 * enough to be safe.
5096 */
5097 int64_t arc_over = aggsum_lower_bound(&arc_sums.arcstat_size) - arc_c -
5098 zfs_max_recordsize;
5099 int64_t dn_over = aggsum_lower_bound(&arc_sums.arcstat_dnode_size) -
5100 arc_dnode_limit;
5101
5102 /* Always allow at least one block of overflow. */
5103 if (arc_over < 0 && dn_over <= 0)
5104 return (ARC_OVF_NONE);
5105
5106 /* If we are under memory pressure, report severe overflow. */
5107 if (!lax)
5108 return (ARC_OVF_SEVERE);
5109
5110 /* We are not under pressure, so be more or less relaxed. */
5111 int64_t overflow = (arc_c >> zfs_arc_overflow_shift) / 2;
5112 if (use_reserve)
5113 overflow *= 3;
5114 return (arc_over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE);
5115 }
5116
5117 static abd_t *
arc_get_data_abd(arc_buf_hdr_t * hdr,uint64_t size,const void * tag,int alloc_flags)5118 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
5119 int alloc_flags)
5120 {
5121 arc_buf_contents_t type = arc_buf_type(hdr);
5122
5123 arc_get_data_impl(hdr, size, tag, alloc_flags);
5124 if (alloc_flags & ARC_HDR_ALLOC_LINEAR)
5125 return (abd_alloc_linear(size, type == ARC_BUFC_METADATA));
5126 else
5127 return (abd_alloc(size, type == ARC_BUFC_METADATA));
5128 }
5129
5130 static void *
arc_get_data_buf(arc_buf_hdr_t * hdr,uint64_t size,const void * tag)5131 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
5132 {
5133 arc_buf_contents_t type = arc_buf_type(hdr);
5134
5135 arc_get_data_impl(hdr, size, tag, 0);
5136 if (type == ARC_BUFC_METADATA) {
5137 return (zio_buf_alloc(size));
5138 } else {
5139 ASSERT(type == ARC_BUFC_DATA);
5140 return (zio_data_buf_alloc(size));
5141 }
5142 }
5143
5144 /*
5145 * Wait for the specified amount of data (in bytes) to be evicted from the
5146 * ARC, and for there to be sufficient free memory in the system.
5147 * The lax argument specifies that caller does not have a specific reason
5148 * to wait, not aware of any memory pressure. Low memory handlers though
5149 * should set it to B_FALSE to wait for all required evictions to complete.
5150 * The use_reserve argument allows some callers to wait less than others
5151 * to not block critical code paths, possibly blocking other resources.
5152 */
5153 void
arc_wait_for_eviction(uint64_t amount,boolean_t lax,boolean_t use_reserve)5154 arc_wait_for_eviction(uint64_t amount, boolean_t lax, boolean_t use_reserve)
5155 {
5156 switch (arc_is_overflowing(lax, use_reserve)) {
5157 case ARC_OVF_NONE:
5158 return;
5159 case ARC_OVF_SOME:
5160 /*
5161 * This is a bit racy without taking arc_evict_lock, but the
5162 * worst that can happen is we either call zthr_wakeup() extra
5163 * time due to race with other thread here, or the set flag
5164 * get cleared by arc_evict_cb(), which is unlikely due to
5165 * big hysteresis, but also not important since at this level
5166 * of overflow the eviction is purely advisory. Same time
5167 * taking the global lock here every time without waiting for
5168 * the actual eviction creates a significant lock contention.
5169 */
5170 if (!arc_evict_needed) {
5171 arc_evict_needed = B_TRUE;
5172 zthr_wakeup(arc_evict_zthr);
5173 }
5174 return;
5175 case ARC_OVF_SEVERE:
5176 default:
5177 {
5178 arc_evict_waiter_t aw;
5179 list_link_init(&aw.aew_node);
5180 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL);
5181
5182 uint64_t last_count = 0;
5183 mutex_enter(&arc_evict_lock);
5184 arc_evict_waiter_t *last;
5185 if ((last = list_tail(&arc_evict_waiters)) != NULL) {
5186 last_count = last->aew_count;
5187 } else if (!arc_evict_needed) {
5188 arc_evict_needed = B_TRUE;
5189 zthr_wakeup(arc_evict_zthr);
5190 }
5191 /*
5192 * Note, the last waiter's count may be less than
5193 * arc_evict_count if we are low on memory in which
5194 * case arc_evict_state_impl() may have deferred
5195 * wakeups (but still incremented arc_evict_count).
5196 */
5197 aw.aew_count = MAX(last_count, arc_evict_count) + amount;
5198
5199 list_insert_tail(&arc_evict_waiters, &aw);
5200
5201 arc_set_need_free();
5202
5203 DTRACE_PROBE3(arc__wait__for__eviction,
5204 uint64_t, amount,
5205 uint64_t, arc_evict_count,
5206 uint64_t, aw.aew_count);
5207
5208 /*
5209 * We will be woken up either when arc_evict_count reaches
5210 * aew_count, or when the ARC is no longer overflowing and
5211 * eviction completes.
5212 * In case of "false" wakeup, we will still be on the list.
5213 */
5214 do {
5215 cv_wait(&aw.aew_cv, &arc_evict_lock);
5216 } while (list_link_active(&aw.aew_node));
5217 mutex_exit(&arc_evict_lock);
5218
5219 cv_destroy(&aw.aew_cv);
5220 }
5221 }
5222 }
5223
5224 /*
5225 * Allocate a block and return it to the caller. If we are hitting the
5226 * hard limit for the cache size, we must sleep, waiting for the eviction
5227 * thread to catch up. If we're past the target size but below the hard
5228 * limit, we'll only signal the reclaim thread and continue on.
5229 */
5230 static void
arc_get_data_impl(arc_buf_hdr_t * hdr,uint64_t size,const void * tag,int alloc_flags)5231 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
5232 int alloc_flags)
5233 {
5234 arc_adapt(size);
5235
5236 /*
5237 * If arc_size is currently overflowing, we must be adding data
5238 * faster than we are evicting. To ensure we don't compound the
5239 * problem by adding more data and forcing arc_size to grow even
5240 * further past it's target size, we wait for the eviction thread to
5241 * make some progress. We also wait for there to be sufficient free
5242 * memory in the system, as measured by arc_free_memory().
5243 *
5244 * Specifically, we wait for zfs_arc_eviction_pct percent of the
5245 * requested size to be evicted. This should be more than 100%, to
5246 * ensure that that progress is also made towards getting arc_size
5247 * under arc_c. See the comment above zfs_arc_eviction_pct.
5248 */
5249 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100,
5250 B_TRUE, alloc_flags & ARC_HDR_USE_RESERVE);
5251
5252 arc_buf_contents_t type = arc_buf_type(hdr);
5253 if (type == ARC_BUFC_METADATA) {
5254 arc_space_consume(size, ARC_SPACE_META);
5255 } else {
5256 arc_space_consume(size, ARC_SPACE_DATA);
5257 }
5258
5259 /*
5260 * Update the state size. Note that ghost states have a
5261 * "ghost size" and so don't need to be updated.
5262 */
5263 arc_state_t *state = hdr->b_l1hdr.b_state;
5264 if (!GHOST_STATE(state)) {
5265
5266 (void) zfs_refcount_add_many(&state->arcs_size[type], size,
5267 tag);
5268
5269 /*
5270 * If this is reached via arc_read, the link is
5271 * protected by the hash lock. If reached via
5272 * arc_buf_alloc, the header should not be accessed by
5273 * any other thread. And, if reached via arc_read_done,
5274 * the hash lock will protect it if it's found in the
5275 * hash table; otherwise no other thread should be
5276 * trying to [add|remove]_reference it.
5277 */
5278 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5279 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5280 (void) zfs_refcount_add_many(&state->arcs_esize[type],
5281 size, tag);
5282 }
5283 }
5284 }
5285
5286 static void
arc_free_data_abd(arc_buf_hdr_t * hdr,abd_t * abd,uint64_t size,const void * tag)5287 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size,
5288 const void *tag)
5289 {
5290 arc_free_data_impl(hdr, size, tag);
5291 abd_free(abd);
5292 }
5293
5294 static void
arc_free_data_buf(arc_buf_hdr_t * hdr,void * buf,uint64_t size,const void * tag)5295 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, const void *tag)
5296 {
5297 arc_buf_contents_t type = arc_buf_type(hdr);
5298
5299 arc_free_data_impl(hdr, size, tag);
5300 if (type == ARC_BUFC_METADATA) {
5301 zio_buf_free(buf, size);
5302 } else {
5303 ASSERT(type == ARC_BUFC_DATA);
5304 zio_data_buf_free(buf, size);
5305 }
5306 }
5307
5308 /*
5309 * Free the arc data buffer.
5310 */
5311 static void
arc_free_data_impl(arc_buf_hdr_t * hdr,uint64_t size,const void * tag)5312 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
5313 {
5314 arc_state_t *state = hdr->b_l1hdr.b_state;
5315 arc_buf_contents_t type = arc_buf_type(hdr);
5316
5317 /* protected by hash lock, if in the hash table */
5318 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5319 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5320 ASSERT(state != arc_anon && state != arc_l2c_only);
5321
5322 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
5323 size, tag);
5324 }
5325 (void) zfs_refcount_remove_many(&state->arcs_size[type], size, tag);
5326
5327 VERIFY3U(hdr->b_type, ==, type);
5328 if (type == ARC_BUFC_METADATA) {
5329 arc_space_return(size, ARC_SPACE_META);
5330 } else {
5331 ASSERT(type == ARC_BUFC_DATA);
5332 arc_space_return(size, ARC_SPACE_DATA);
5333 }
5334 }
5335
5336 /*
5337 * This routine is called whenever a buffer is accessed.
5338 */
5339 static void
arc_access(arc_buf_hdr_t * hdr,arc_flags_t arc_flags,boolean_t hit)5340 arc_access(arc_buf_hdr_t *hdr, arc_flags_t arc_flags, boolean_t hit)
5341 {
5342 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
5343 ASSERT(HDR_HAS_L1HDR(hdr));
5344
5345 /*
5346 * Update buffer prefetch status.
5347 */
5348 boolean_t was_prefetch = HDR_PREFETCH(hdr);
5349 boolean_t now_prefetch = arc_flags & ARC_FLAG_PREFETCH;
5350 if (was_prefetch != now_prefetch) {
5351 if (was_prefetch) {
5352 ARCSTAT_CONDSTAT(hit, demand_hit, demand_iohit,
5353 HDR_PRESCIENT_PREFETCH(hdr), prescient, predictive,
5354 prefetch);
5355 }
5356 if (HDR_HAS_L2HDR(hdr))
5357 l2arc_hdr_arcstats_decrement_state(hdr);
5358 if (was_prefetch) {
5359 arc_hdr_clear_flags(hdr,
5360 ARC_FLAG_PREFETCH | ARC_FLAG_PRESCIENT_PREFETCH);
5361 } else {
5362 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5363 }
5364 if (HDR_HAS_L2HDR(hdr))
5365 l2arc_hdr_arcstats_increment_state(hdr);
5366 }
5367 if (now_prefetch) {
5368 if (arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5369 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5370 ARCSTAT_BUMP(arcstat_prescient_prefetch);
5371 } else {
5372 ARCSTAT_BUMP(arcstat_predictive_prefetch);
5373 }
5374 }
5375 if (arc_flags & ARC_FLAG_L2CACHE)
5376 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5377
5378 clock_t now = ddi_get_lbolt();
5379 if (hdr->b_l1hdr.b_state == arc_anon) {
5380 arc_state_t *new_state;
5381 /*
5382 * This buffer is not in the cache, and does not appear in
5383 * our "ghost" lists. Add it to the MRU or uncached state.
5384 */
5385 ASSERT0(hdr->b_l1hdr.b_arc_access);
5386 hdr->b_l1hdr.b_arc_access = now;
5387 if (HDR_UNCACHED(hdr)) {
5388 new_state = arc_uncached;
5389 DTRACE_PROBE1(new_state__uncached, arc_buf_hdr_t *,
5390 hdr);
5391 } else {
5392 new_state = arc_mru;
5393 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5394 }
5395 arc_change_state(new_state, hdr);
5396 } else if (hdr->b_l1hdr.b_state == arc_mru) {
5397 /*
5398 * This buffer has been accessed once recently and either
5399 * its read is still in progress or it is in the cache.
5400 */
5401 if (HDR_IO_IN_PROGRESS(hdr)) {
5402 hdr->b_l1hdr.b_arc_access = now;
5403 return;
5404 }
5405 hdr->b_l1hdr.b_mru_hits++;
5406 ARCSTAT_BUMP(arcstat_mru_hits);
5407
5408 /*
5409 * If the previous access was a prefetch, then it already
5410 * handled possible promotion, so nothing more to do for now.
5411 */
5412 if (was_prefetch) {
5413 hdr->b_l1hdr.b_arc_access = now;
5414 return;
5415 }
5416
5417 /*
5418 * If more than ARC_MINTIME have passed from the previous
5419 * hit, promote the buffer to the MFU state.
5420 */
5421 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5422 ARC_MINTIME)) {
5423 hdr->b_l1hdr.b_arc_access = now;
5424 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5425 arc_change_state(arc_mfu, hdr);
5426 }
5427 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5428 arc_state_t *new_state;
5429 /*
5430 * This buffer has been accessed once recently, but was
5431 * evicted from the cache. Would we have bigger MRU, it
5432 * would be an MRU hit, so handle it the same way, except
5433 * we don't need to check the previous access time.
5434 */
5435 hdr->b_l1hdr.b_mru_ghost_hits++;
5436 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5437 hdr->b_l1hdr.b_arc_access = now;
5438 wmsum_add(&arc_mru_ghost->arcs_hits[arc_buf_type(hdr)],
5439 arc_hdr_size(hdr));
5440 if (was_prefetch) {
5441 new_state = arc_mru;
5442 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5443 } else {
5444 new_state = arc_mfu;
5445 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5446 }
5447 arc_change_state(new_state, hdr);
5448 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
5449 /*
5450 * This buffer has been accessed more than once and either
5451 * still in the cache or being restored from one of ghosts.
5452 */
5453 if (!HDR_IO_IN_PROGRESS(hdr)) {
5454 hdr->b_l1hdr.b_mfu_hits++;
5455 ARCSTAT_BUMP(arcstat_mfu_hits);
5456 }
5457 hdr->b_l1hdr.b_arc_access = now;
5458 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5459 /*
5460 * This buffer has been accessed more than once recently, but
5461 * has been evicted from the cache. Would we have bigger MFU
5462 * it would stay in cache, so move it back to MFU state.
5463 */
5464 hdr->b_l1hdr.b_mfu_ghost_hits++;
5465 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5466 hdr->b_l1hdr.b_arc_access = now;
5467 wmsum_add(&arc_mfu_ghost->arcs_hits[arc_buf_type(hdr)],
5468 arc_hdr_size(hdr));
5469 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5470 arc_change_state(arc_mfu, hdr);
5471 } else if (hdr->b_l1hdr.b_state == arc_uncached) {
5472 /*
5473 * This buffer is uncacheable, but we got a hit. Probably
5474 * a demand read after prefetch. Nothing more to do here.
5475 */
5476 if (!HDR_IO_IN_PROGRESS(hdr))
5477 ARCSTAT_BUMP(arcstat_uncached_hits);
5478 hdr->b_l1hdr.b_arc_access = now;
5479 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5480 /*
5481 * This buffer is on the 2nd Level ARC and was not accessed
5482 * for a long time, so treat it as new and put into MRU.
5483 */
5484 hdr->b_l1hdr.b_arc_access = now;
5485 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5486 arc_change_state(arc_mru, hdr);
5487 } else {
5488 cmn_err(CE_PANIC, "invalid arc state 0x%p",
5489 hdr->b_l1hdr.b_state);
5490 }
5491 }
5492
5493 /*
5494 * This routine is called by dbuf_hold() to update the arc_access() state
5495 * which otherwise would be skipped for entries in the dbuf cache.
5496 */
5497 void
arc_buf_access(arc_buf_t * buf)5498 arc_buf_access(arc_buf_t *buf)
5499 {
5500 arc_buf_hdr_t *hdr = buf->b_hdr;
5501
5502 /*
5503 * Avoid taking the hash_lock when possible as an optimization.
5504 * The header must be checked again under the hash_lock in order
5505 * to handle the case where it is concurrently being released.
5506 */
5507 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr))
5508 return;
5509
5510 kmutex_t *hash_lock = HDR_LOCK(hdr);
5511 mutex_enter(hash_lock);
5512
5513 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5514 mutex_exit(hash_lock);
5515 ARCSTAT_BUMP(arcstat_access_skip);
5516 return;
5517 }
5518
5519 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5520 hdr->b_l1hdr.b_state == arc_mfu ||
5521 hdr->b_l1hdr.b_state == arc_uncached);
5522
5523 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5524 arc_access(hdr, 0, B_TRUE);
5525 mutex_exit(hash_lock);
5526
5527 ARCSTAT_BUMP(arcstat_hits);
5528 ARCSTAT_CONDSTAT(B_TRUE /* demand */, demand, prefetch,
5529 !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5530 }
5531
5532 /* a generic arc_read_done_func_t which you can use */
5533 void
arc_bcopy_func(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * arg)5534 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5535 arc_buf_t *buf, void *arg)
5536 {
5537 (void) zio, (void) zb, (void) bp;
5538
5539 if (buf == NULL)
5540 return;
5541
5542 memcpy(arg, buf->b_data, arc_buf_size(buf));
5543 arc_buf_destroy(buf, arg);
5544 }
5545
5546 /* a generic arc_read_done_func_t */
5547 void
arc_getbuf_func(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * arg)5548 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5549 arc_buf_t *buf, void *arg)
5550 {
5551 (void) zb, (void) bp;
5552 arc_buf_t **bufp = arg;
5553
5554 if (buf == NULL) {
5555 ASSERT(zio == NULL || zio->io_error != 0);
5556 *bufp = NULL;
5557 } else {
5558 ASSERT(zio == NULL || zio->io_error == 0);
5559 *bufp = buf;
5560 ASSERT(buf->b_data != NULL);
5561 }
5562 }
5563
5564 static void
arc_hdr_verify(arc_buf_hdr_t * hdr,blkptr_t * bp)5565 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5566 {
5567 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5568 ASSERT0(HDR_GET_PSIZE(hdr));
5569 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5570 } else {
5571 if (HDR_COMPRESSION_ENABLED(hdr)) {
5572 ASSERT3U(arc_hdr_get_compress(hdr), ==,
5573 BP_GET_COMPRESS(bp));
5574 }
5575 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5576 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5577 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5578 }
5579 }
5580
5581 static void
arc_read_done(zio_t * zio)5582 arc_read_done(zio_t *zio)
5583 {
5584 blkptr_t *bp = zio->io_bp;
5585 arc_buf_hdr_t *hdr = zio->io_private;
5586 kmutex_t *hash_lock = NULL;
5587 arc_callback_t *callback_list;
5588 arc_callback_t *acb;
5589
5590 /*
5591 * The hdr was inserted into hash-table and removed from lists
5592 * prior to starting I/O. We should find this header, since
5593 * it's in the hash table, and it should be legit since it's
5594 * not possible to evict it during the I/O. The only possible
5595 * reason for it not to be found is if we were freed during the
5596 * read.
5597 */
5598 if (HDR_IN_HASH_TABLE(hdr)) {
5599 arc_buf_hdr_t *found;
5600
5601 ASSERT3U(hdr->b_birth, ==, BP_GET_PHYSICAL_BIRTH(zio->io_bp));
5602 ASSERT3U(hdr->b_dva.dva_word[0], ==,
5603 BP_IDENTITY(zio->io_bp)->dva_word[0]);
5604 ASSERT3U(hdr->b_dva.dva_word[1], ==,
5605 BP_IDENTITY(zio->io_bp)->dva_word[1]);
5606
5607 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
5608
5609 ASSERT((found == hdr &&
5610 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5611 (found == hdr && HDR_L2_READING(hdr)));
5612 ASSERT3P(hash_lock, !=, NULL);
5613 }
5614
5615 if (BP_IS_PROTECTED(bp)) {
5616 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5617 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5618 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5619 hdr->b_crypt_hdr.b_iv);
5620
5621 if (zio->io_error == 0) {
5622 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5623 void *tmpbuf;
5624
5625 tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5626 sizeof (zil_chain_t));
5627 zio_crypt_decode_mac_zil(tmpbuf,
5628 hdr->b_crypt_hdr.b_mac);
5629 abd_return_buf(zio->io_abd, tmpbuf,
5630 sizeof (zil_chain_t));
5631 } else {
5632 zio_crypt_decode_mac_bp(bp,
5633 hdr->b_crypt_hdr.b_mac);
5634 }
5635 }
5636 }
5637
5638 if (zio->io_error == 0) {
5639 /* byteswap if necessary */
5640 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5641 if (BP_GET_LEVEL(zio->io_bp) > 0) {
5642 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5643 } else {
5644 hdr->b_l1hdr.b_byteswap =
5645 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5646 }
5647 } else {
5648 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5649 }
5650 if (!HDR_L2_READING(hdr)) {
5651 hdr->b_complevel = zio->io_prop.zp_complevel;
5652 }
5653 }
5654
5655 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5656 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5657 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5658
5659 callback_list = hdr->b_l1hdr.b_acb;
5660 ASSERT3P(callback_list, !=, NULL);
5661 hdr->b_l1hdr.b_acb = NULL;
5662
5663 /*
5664 * If a read request has a callback (i.e. acb_done is not NULL), then we
5665 * make a buf containing the data according to the parameters which were
5666 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5667 * aren't needlessly decompressing the data multiple times.
5668 */
5669 int callback_cnt = 0;
5670 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5671
5672 /* We need the last one to call below in original order. */
5673 callback_list = acb;
5674
5675 if (!acb->acb_done || acb->acb_nobuf)
5676 continue;
5677
5678 callback_cnt++;
5679
5680 if (zio->io_error != 0)
5681 continue;
5682
5683 int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5684 &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5685 acb->acb_compressed, acb->acb_noauth, B_TRUE,
5686 &acb->acb_buf);
5687
5688 /*
5689 * Assert non-speculative zios didn't fail because an
5690 * encryption key wasn't loaded
5691 */
5692 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5693 error != EACCES);
5694
5695 /*
5696 * If we failed to decrypt, report an error now (as the zio
5697 * layer would have done if it had done the transforms).
5698 */
5699 if (error == ECKSUM) {
5700 ASSERT(BP_IS_PROTECTED(bp));
5701 error = SET_ERROR(EIO);
5702 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5703 spa_log_error(zio->io_spa, &acb->acb_zb,
5704 BP_GET_PHYSICAL_BIRTH(zio->io_bp));
5705 (void) zfs_ereport_post(
5706 FM_EREPORT_ZFS_AUTHENTICATION,
5707 zio->io_spa, NULL, &acb->acb_zb, zio, 0);
5708 }
5709 }
5710
5711 if (error != 0) {
5712 /*
5713 * Decompression or decryption failed. Set
5714 * io_error so that when we call acb_done
5715 * (below), we will indicate that the read
5716 * failed. Note that in the unusual case
5717 * where one callback is compressed and another
5718 * uncompressed, we will mark all of them
5719 * as failed, even though the uncompressed
5720 * one can't actually fail. In this case,
5721 * the hdr will not be anonymous, because
5722 * if there are multiple callbacks, it's
5723 * because multiple threads found the same
5724 * arc buf in the hash table.
5725 */
5726 zio->io_error = error;
5727 }
5728 }
5729
5730 /*
5731 * If there are multiple callbacks, we must have the hash lock,
5732 * because the only way for multiple threads to find this hdr is
5733 * in the hash table. This ensures that if there are multiple
5734 * callbacks, the hdr is not anonymous. If it were anonymous,
5735 * we couldn't use arc_buf_destroy() in the error case below.
5736 */
5737 ASSERT(callback_cnt < 2 || hash_lock != NULL);
5738
5739 if (zio->io_error == 0) {
5740 arc_hdr_verify(hdr, zio->io_bp);
5741 } else {
5742 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5743 if (hdr->b_l1hdr.b_state != arc_anon)
5744 arc_change_state(arc_anon, hdr);
5745 if (HDR_IN_HASH_TABLE(hdr))
5746 buf_hash_remove(hdr);
5747 }
5748
5749 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5750 (void) remove_reference(hdr, hdr);
5751
5752 if (hash_lock != NULL)
5753 mutex_exit(hash_lock);
5754
5755 /* execute each callback and free its structure */
5756 while ((acb = callback_list) != NULL) {
5757 if (acb->acb_done != NULL) {
5758 if (zio->io_error != 0 && acb->acb_buf != NULL) {
5759 /*
5760 * If arc_buf_alloc_impl() fails during
5761 * decompression, the buf will still be
5762 * allocated, and needs to be freed here.
5763 */
5764 arc_buf_destroy(acb->acb_buf,
5765 acb->acb_private);
5766 acb->acb_buf = NULL;
5767 }
5768 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5769 acb->acb_buf, acb->acb_private);
5770 }
5771
5772 if (acb->acb_zio_dummy != NULL) {
5773 acb->acb_zio_dummy->io_error = zio->io_error;
5774 zio_nowait(acb->acb_zio_dummy);
5775 }
5776
5777 callback_list = acb->acb_prev;
5778 if (acb->acb_wait) {
5779 mutex_enter(&acb->acb_wait_lock);
5780 acb->acb_wait_error = zio->io_error;
5781 acb->acb_wait = B_FALSE;
5782 cv_signal(&acb->acb_wait_cv);
5783 mutex_exit(&acb->acb_wait_lock);
5784 /* acb will be freed by the waiting thread. */
5785 } else {
5786 kmem_free(acb, sizeof (arc_callback_t));
5787 }
5788 }
5789 }
5790
5791 /*
5792 * Lookup the block at the specified DVA (in bp), and return the manner in
5793 * which the block is cached. A zero return indicates not cached.
5794 */
5795 int
arc_cached(spa_t * spa,const blkptr_t * bp)5796 arc_cached(spa_t *spa, const blkptr_t *bp)
5797 {
5798 arc_buf_hdr_t *hdr = NULL;
5799 kmutex_t *hash_lock = NULL;
5800 uint64_t guid = spa_load_guid(spa);
5801 int flags = 0;
5802
5803 if (BP_IS_EMBEDDED(bp))
5804 return (ARC_CACHED_EMBEDDED);
5805
5806 hdr = buf_hash_find(guid, bp, &hash_lock);
5807 if (hdr == NULL)
5808 return (0);
5809
5810 if (HDR_HAS_L1HDR(hdr)) {
5811 arc_state_t *state = hdr->b_l1hdr.b_state;
5812 /*
5813 * We switch to ensure that any future arc_state_type_t
5814 * changes are handled. This is just a shift to promote
5815 * more compile-time checking.
5816 */
5817 switch (state->arcs_state) {
5818 case ARC_STATE_ANON:
5819 break;
5820 case ARC_STATE_MRU:
5821 flags |= ARC_CACHED_IN_MRU | ARC_CACHED_IN_L1;
5822 break;
5823 case ARC_STATE_MFU:
5824 flags |= ARC_CACHED_IN_MFU | ARC_CACHED_IN_L1;
5825 break;
5826 case ARC_STATE_UNCACHED:
5827 /* The header is still in L1, probably not for long */
5828 flags |= ARC_CACHED_IN_L1;
5829 break;
5830 default:
5831 break;
5832 }
5833 }
5834 if (HDR_HAS_L2HDR(hdr))
5835 flags |= ARC_CACHED_IN_L2;
5836
5837 mutex_exit(hash_lock);
5838
5839 return (flags);
5840 }
5841
5842 /*
5843 * "Read" the block at the specified DVA (in bp) via the
5844 * cache. If the block is found in the cache, invoke the provided
5845 * callback immediately and return. Note that the `zio' parameter
5846 * in the callback will be NULL in this case, since no IO was
5847 * required. If the block is not in the cache pass the read request
5848 * on to the spa with a substitute callback function, so that the
5849 * requested block will be added to the cache.
5850 *
5851 * If a read request arrives for a block that has a read in-progress,
5852 * either wait for the in-progress read to complete (and return the
5853 * results); or, if this is a read with a "done" func, add a record
5854 * to the read to invoke the "done" func when the read completes,
5855 * and return; or just return.
5856 *
5857 * arc_read_done() will invoke all the requested "done" functions
5858 * for readers of this block.
5859 */
5860 int
arc_read(zio_t * pio,spa_t * spa,const blkptr_t * bp,arc_read_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,arc_flags_t * arc_flags,const zbookmark_phys_t * zb)5861 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5862 arc_read_done_func_t *done, void *private, zio_priority_t priority,
5863 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5864 {
5865 arc_buf_hdr_t *hdr = NULL;
5866 kmutex_t *hash_lock = NULL;
5867 zio_t *rzio;
5868 uint64_t guid = spa_load_guid(spa);
5869 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5870 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5871 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5872 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5873 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5874 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
5875 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF;
5876 arc_buf_t *buf = NULL;
5877 int rc = 0;
5878 boolean_t bp_validation = B_FALSE;
5879
5880 ASSERT(!embedded_bp ||
5881 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5882 ASSERT(!BP_IS_HOLE(bp));
5883 ASSERT(!BP_IS_REDACTED(bp));
5884
5885 /*
5886 * Normally SPL_FSTRANS will already be set since kernel threads which
5887 * expect to call the DMU interfaces will set it when created. System
5888 * calls are similarly handled by setting/cleaning the bit in the
5889 * registered callback (module/os/.../zfs/zpl_*).
5890 *
5891 * External consumers such as Lustre which call the exported DMU
5892 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock
5893 * on the hash_lock always set and clear the bit.
5894 */
5895 fstrans_cookie_t cookie = spl_fstrans_mark();
5896 top:
5897 if (!embedded_bp) {
5898 /*
5899 * Embedded BP's have no DVA and require no I/O to "read".
5900 * Create an anonymous arc buf to back it.
5901 */
5902 hdr = buf_hash_find(guid, bp, &hash_lock);
5903 }
5904
5905 /*
5906 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5907 * we maintain encrypted data separately from compressed / uncompressed
5908 * data. If the user is requesting raw encrypted data and we don't have
5909 * that in the header we will read from disk to guarantee that we can
5910 * get it even if the encryption keys aren't loaded.
5911 */
5912 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5913 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5914 boolean_t is_data = !HDR_ISTYPE_METADATA(hdr);
5915
5916 /*
5917 * Verify the block pointer contents are reasonable. This
5918 * should always be the case since the blkptr is protected by
5919 * a checksum.
5920 */
5921 if (zfs_blkptr_verify(spa, bp, BLK_CONFIG_SKIP,
5922 BLK_VERIFY_LOG)) {
5923 mutex_exit(hash_lock);
5924 rc = SET_ERROR(ECKSUM);
5925 goto done;
5926 }
5927
5928 if (HDR_IO_IN_PROGRESS(hdr)) {
5929 if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5930 mutex_exit(hash_lock);
5931 ARCSTAT_BUMP(arcstat_cached_only_in_progress);
5932 rc = SET_ERROR(ENOENT);
5933 goto done;
5934 }
5935
5936 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5937 ASSERT3P(head_zio, !=, NULL);
5938 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5939 priority == ZIO_PRIORITY_SYNC_READ) {
5940 /*
5941 * This is a sync read that needs to wait for
5942 * an in-flight async read. Request that the
5943 * zio have its priority upgraded.
5944 */
5945 zio_change_priority(head_zio, priority);
5946 DTRACE_PROBE1(arc__async__upgrade__sync,
5947 arc_buf_hdr_t *, hdr);
5948 ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5949 }
5950
5951 DTRACE_PROBE1(arc__iohit, arc_buf_hdr_t *, hdr);
5952 arc_access(hdr, *arc_flags, B_FALSE);
5953
5954 /*
5955 * If there are multiple threads reading the same block
5956 * and that block is not yet in the ARC, then only one
5957 * thread will do the physical I/O and all other
5958 * threads will wait until that I/O completes.
5959 * Synchronous reads use the acb_wait_cv whereas nowait
5960 * reads register a callback. Both are signalled/called
5961 * in arc_read_done.
5962 *
5963 * Errors of the physical I/O may need to be propagated.
5964 * Synchronous read errors are returned here from
5965 * arc_read_done via acb_wait_error. Nowait reads
5966 * attach the acb_zio_dummy zio to pio and
5967 * arc_read_done propagates the physical I/O's io_error
5968 * to acb_zio_dummy, and thereby to pio.
5969 */
5970 arc_callback_t *acb = NULL;
5971 if (done || pio || *arc_flags & ARC_FLAG_WAIT) {
5972 acb = kmem_zalloc(sizeof (arc_callback_t),
5973 KM_SLEEP);
5974 acb->acb_done = done;
5975 acb->acb_private = private;
5976 acb->acb_compressed = compressed_read;
5977 acb->acb_encrypted = encrypted_read;
5978 acb->acb_noauth = noauth_read;
5979 acb->acb_nobuf = no_buf;
5980 if (*arc_flags & ARC_FLAG_WAIT) {
5981 acb->acb_wait = B_TRUE;
5982 mutex_init(&acb->acb_wait_lock, NULL,
5983 MUTEX_DEFAULT, NULL);
5984 cv_init(&acb->acb_wait_cv, NULL,
5985 CV_DEFAULT, NULL);
5986 }
5987 acb->acb_zb = *zb;
5988 if (pio != NULL) {
5989 acb->acb_zio_dummy = zio_null(pio,
5990 spa, NULL, NULL, NULL, zio_flags);
5991 }
5992 acb->acb_zio_head = head_zio;
5993 acb->acb_next = hdr->b_l1hdr.b_acb;
5994 hdr->b_l1hdr.b_acb->acb_prev = acb;
5995 hdr->b_l1hdr.b_acb = acb;
5996 }
5997 mutex_exit(hash_lock);
5998
5999 ARCSTAT_BUMP(arcstat_iohits);
6000 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
6001 demand, prefetch, is_data, data, metadata, iohits);
6002
6003 if (*arc_flags & ARC_FLAG_WAIT) {
6004 mutex_enter(&acb->acb_wait_lock);
6005 while (acb->acb_wait) {
6006 cv_wait(&acb->acb_wait_cv,
6007 &acb->acb_wait_lock);
6008 }
6009 rc = acb->acb_wait_error;
6010 mutex_exit(&acb->acb_wait_lock);
6011 mutex_destroy(&acb->acb_wait_lock);
6012 cv_destroy(&acb->acb_wait_cv);
6013 kmem_free(acb, sizeof (arc_callback_t));
6014 }
6015 goto out;
6016 }
6017
6018 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
6019 hdr->b_l1hdr.b_state == arc_mfu ||
6020 hdr->b_l1hdr.b_state == arc_uncached);
6021
6022 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
6023 arc_access(hdr, *arc_flags, B_TRUE);
6024
6025 if (done && !no_buf) {
6026 ASSERT(!embedded_bp || !BP_IS_HOLE(bp));
6027
6028 /* Get a buf with the desired data in it. */
6029 rc = arc_buf_alloc_impl(hdr, spa, zb, private,
6030 encrypted_read, compressed_read, noauth_read,
6031 B_TRUE, &buf);
6032 if (rc == ECKSUM) {
6033 /*
6034 * Convert authentication and decryption errors
6035 * to EIO (and generate an ereport if needed)
6036 * before leaving the ARC.
6037 */
6038 rc = SET_ERROR(EIO);
6039 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
6040 spa_log_error(spa, zb, hdr->b_birth);
6041 (void) zfs_ereport_post(
6042 FM_EREPORT_ZFS_AUTHENTICATION,
6043 spa, NULL, zb, NULL, 0);
6044 }
6045 }
6046 if (rc != 0) {
6047 arc_buf_destroy_impl(buf);
6048 buf = NULL;
6049 (void) remove_reference(hdr, private);
6050 }
6051
6052 /* assert any errors weren't due to unloaded keys */
6053 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
6054 rc != EACCES);
6055 }
6056 mutex_exit(hash_lock);
6057 ARCSTAT_BUMP(arcstat_hits);
6058 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
6059 demand, prefetch, is_data, data, metadata, hits);
6060 *arc_flags |= ARC_FLAG_CACHED;
6061 goto done;
6062 } else {
6063 uint64_t lsize = BP_GET_LSIZE(bp);
6064 uint64_t psize = BP_GET_PSIZE(bp);
6065 arc_callback_t *acb;
6066 vdev_t *vd = NULL;
6067 uint64_t addr = 0;
6068 boolean_t devw = B_FALSE;
6069 uint64_t size;
6070 abd_t *hdr_abd;
6071 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
6072 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
6073 int config_lock;
6074 int error;
6075
6076 if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
6077 if (hash_lock != NULL)
6078 mutex_exit(hash_lock);
6079 rc = SET_ERROR(ENOENT);
6080 goto done;
6081 }
6082
6083 if (zio_flags & ZIO_FLAG_CONFIG_WRITER) {
6084 config_lock = BLK_CONFIG_HELD;
6085 } else if (hash_lock != NULL) {
6086 /*
6087 * Prevent lock order reversal
6088 */
6089 config_lock = BLK_CONFIG_NEEDED_TRY;
6090 } else {
6091 config_lock = BLK_CONFIG_NEEDED;
6092 }
6093
6094 /*
6095 * Verify the block pointer contents are reasonable. This
6096 * should always be the case since the blkptr is protected by
6097 * a checksum.
6098 */
6099 if (!bp_validation && (error = zfs_blkptr_verify(spa, bp,
6100 config_lock, BLK_VERIFY_LOG))) {
6101 if (hash_lock != NULL)
6102 mutex_exit(hash_lock);
6103 if (error == EBUSY && !zfs_blkptr_verify(spa, bp,
6104 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
6105 bp_validation = B_TRUE;
6106 goto top;
6107 }
6108 rc = SET_ERROR(ECKSUM);
6109 goto done;
6110 }
6111
6112 if (hdr == NULL) {
6113 /*
6114 * This block is not in the cache or it has
6115 * embedded data.
6116 */
6117 arc_buf_hdr_t *exists = NULL;
6118 hdr = arc_hdr_alloc(guid, psize, lsize,
6119 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type);
6120
6121 if (!embedded_bp) {
6122 hdr->b_dva = *BP_IDENTITY(bp);
6123 hdr->b_birth = BP_GET_PHYSICAL_BIRTH(bp);
6124 exists = buf_hash_insert(hdr, &hash_lock);
6125 }
6126 if (exists != NULL) {
6127 /* somebody beat us to the hash insert */
6128 mutex_exit(hash_lock);
6129 buf_discard_identity(hdr);
6130 arc_hdr_destroy(hdr);
6131 goto top; /* restart the IO request */
6132 }
6133 } else {
6134 /*
6135 * This block is in the ghost cache or encrypted data
6136 * was requested and we didn't have it. If it was
6137 * L2-only (and thus didn't have an L1 hdr),
6138 * we realloc the header to add an L1 hdr.
6139 */
6140 if (!HDR_HAS_L1HDR(hdr)) {
6141 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
6142 hdr_full_cache);
6143 }
6144
6145 if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
6146 ASSERT0P(hdr->b_l1hdr.b_pabd);
6147 ASSERT(!HDR_HAS_RABD(hdr));
6148 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6149 ASSERT0(zfs_refcount_count(
6150 &hdr->b_l1hdr.b_refcnt));
6151 ASSERT0P(hdr->b_l1hdr.b_buf);
6152 #ifdef ZFS_DEBUG
6153 ASSERT0P(hdr->b_l1hdr.b_freeze_cksum);
6154 #endif
6155 } else if (HDR_IO_IN_PROGRESS(hdr)) {
6156 /*
6157 * If this header already had an IO in progress
6158 * and we are performing another IO to fetch
6159 * encrypted data we must wait until the first
6160 * IO completes so as not to confuse
6161 * arc_read_done(). This should be very rare
6162 * and so the performance impact shouldn't
6163 * matter.
6164 */
6165 arc_callback_t *acb = kmem_zalloc(
6166 sizeof (arc_callback_t), KM_SLEEP);
6167 acb->acb_wait = B_TRUE;
6168 mutex_init(&acb->acb_wait_lock, NULL,
6169 MUTEX_DEFAULT, NULL);
6170 cv_init(&acb->acb_wait_cv, NULL, CV_DEFAULT,
6171 NULL);
6172 acb->acb_zio_head =
6173 hdr->b_l1hdr.b_acb->acb_zio_head;
6174 acb->acb_next = hdr->b_l1hdr.b_acb;
6175 hdr->b_l1hdr.b_acb->acb_prev = acb;
6176 hdr->b_l1hdr.b_acb = acb;
6177 mutex_exit(hash_lock);
6178 mutex_enter(&acb->acb_wait_lock);
6179 while (acb->acb_wait) {
6180 cv_wait(&acb->acb_wait_cv,
6181 &acb->acb_wait_lock);
6182 }
6183 mutex_exit(&acb->acb_wait_lock);
6184 mutex_destroy(&acb->acb_wait_lock);
6185 cv_destroy(&acb->acb_wait_cv);
6186 kmem_free(acb, sizeof (arc_callback_t));
6187 goto top;
6188 }
6189 }
6190 if (*arc_flags & ARC_FLAG_UNCACHED) {
6191 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
6192 if (!encrypted_read)
6193 alloc_flags |= ARC_HDR_ALLOC_LINEAR;
6194 }
6195
6196 /*
6197 * Take additional reference for IO_IN_PROGRESS. It stops
6198 * arc_access() from putting this header without any buffers
6199 * and so other references but obviously nonevictable onto
6200 * the evictable list of MRU or MFU state.
6201 */
6202 add_reference(hdr, hdr);
6203 if (!embedded_bp)
6204 arc_access(hdr, *arc_flags, B_FALSE);
6205 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6206 arc_hdr_alloc_abd(hdr, alloc_flags);
6207 if (encrypted_read) {
6208 ASSERT(HDR_HAS_RABD(hdr));
6209 size = HDR_GET_PSIZE(hdr);
6210 hdr_abd = hdr->b_crypt_hdr.b_rabd;
6211 zio_flags |= ZIO_FLAG_RAW;
6212 } else {
6213 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6214 size = arc_hdr_size(hdr);
6215 hdr_abd = hdr->b_l1hdr.b_pabd;
6216
6217 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
6218 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6219 }
6220
6221 /*
6222 * For authenticated bp's, we do not ask the ZIO layer
6223 * to authenticate them since this will cause the entire
6224 * IO to fail if the key isn't loaded. Instead, we
6225 * defer authentication until arc_buf_fill(), which will
6226 * verify the data when the key is available.
6227 */
6228 if (BP_IS_AUTHENTICATED(bp))
6229 zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
6230 }
6231
6232 if (BP_IS_AUTHENTICATED(bp))
6233 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6234 if (BP_GET_LEVEL(bp) > 0)
6235 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
6236 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
6237
6238 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
6239 acb->acb_done = done;
6240 acb->acb_private = private;
6241 acb->acb_compressed = compressed_read;
6242 acb->acb_encrypted = encrypted_read;
6243 acb->acb_noauth = noauth_read;
6244 acb->acb_nobuf = no_buf;
6245 acb->acb_zb = *zb;
6246
6247 ASSERT0P(hdr->b_l1hdr.b_acb);
6248 hdr->b_l1hdr.b_acb = acb;
6249
6250 if (HDR_HAS_L2HDR(hdr) &&
6251 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6252 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6253 addr = hdr->b_l2hdr.b_daddr;
6254 /*
6255 * Lock out L2ARC device removal.
6256 */
6257 if (vdev_is_dead(vd) ||
6258 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6259 vd = NULL;
6260 }
6261
6262 /*
6263 * We count both async reads and scrub IOs as asynchronous so
6264 * that both can be upgraded in the event of a cache hit while
6265 * the read IO is still in-flight.
6266 */
6267 if (priority == ZIO_PRIORITY_ASYNC_READ ||
6268 priority == ZIO_PRIORITY_SCRUB)
6269 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6270 else
6271 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6272
6273 /*
6274 * At this point, we have a level 1 cache miss or a blkptr
6275 * with embedded data. Try again in L2ARC if possible.
6276 */
6277 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6278
6279 /*
6280 * Skip ARC stat bump for block pointers with embedded
6281 * data. The data are read from the blkptr itself via
6282 * decode_embedded_bp_compressed().
6283 */
6284 if (!embedded_bp) {
6285 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
6286 blkptr_t *, bp, uint64_t, lsize,
6287 zbookmark_phys_t *, zb);
6288 ARCSTAT_BUMP(arcstat_misses);
6289 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
6290 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
6291 metadata, misses);
6292 zfs_racct_read(spa, size, 1,
6293 (*arc_flags & ARC_FLAG_UNCACHED) ?
6294 DMU_UNCACHEDIO : 0);
6295 }
6296
6297 /* Check if the spa even has l2 configured */
6298 const boolean_t spa_has_l2 = l2arc_ndev != 0 &&
6299 spa->spa_l2cache.sav_count > 0;
6300
6301 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) {
6302 /*
6303 * Read from the L2ARC if the following are true:
6304 * 1. The L2ARC vdev was previously cached.
6305 * 2. This buffer still has L2ARC metadata.
6306 * 3. This buffer isn't currently writing to the L2ARC.
6307 * 4. The L2ARC entry wasn't evicted, which may
6308 * also have invalidated the vdev.
6309 */
6310 if (HDR_HAS_L2HDR(hdr) &&
6311 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) {
6312 l2arc_read_callback_t *cb;
6313 abd_t *abd;
6314 uint64_t asize;
6315
6316 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6317 ARCSTAT_BUMP(arcstat_l2_hits);
6318 hdr->b_l2hdr.b_hits++;
6319
6320 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
6321 KM_SLEEP);
6322 cb->l2rcb_hdr = hdr;
6323 cb->l2rcb_bp = *bp;
6324 cb->l2rcb_zb = *zb;
6325 cb->l2rcb_flags = zio_flags;
6326
6327 /*
6328 * When Compressed ARC is disabled, but the
6329 * L2ARC block is compressed, arc_hdr_size()
6330 * will have returned LSIZE rather than PSIZE.
6331 */
6332 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
6333 !HDR_COMPRESSION_ENABLED(hdr) &&
6334 HDR_GET_PSIZE(hdr) != 0) {
6335 size = HDR_GET_PSIZE(hdr);
6336 }
6337
6338 asize = vdev_psize_to_asize(vd, size);
6339 if (asize != size) {
6340 abd = abd_alloc_for_io(asize,
6341 HDR_ISTYPE_METADATA(hdr));
6342 cb->l2rcb_abd = abd;
6343 } else {
6344 abd = hdr_abd;
6345 }
6346
6347 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6348 addr + asize <= vd->vdev_psize -
6349 VDEV_LABEL_END_SIZE);
6350
6351 /*
6352 * l2arc read. The SCL_L2ARC lock will be
6353 * released by l2arc_read_done().
6354 * Issue a null zio if the underlying buffer
6355 * was squashed to zero size by compression.
6356 */
6357 ASSERT3U(arc_hdr_get_compress(hdr), !=,
6358 ZIO_COMPRESS_EMPTY);
6359 rzio = zio_read_phys(pio, vd, addr,
6360 asize, abd,
6361 ZIO_CHECKSUM_OFF,
6362 l2arc_read_done, cb, priority,
6363 zio_flags | ZIO_FLAG_CANFAIL |
6364 ZIO_FLAG_DONT_PROPAGATE |
6365 ZIO_FLAG_DONT_RETRY, B_FALSE);
6366 acb->acb_zio_head = rzio;
6367
6368 if (hash_lock != NULL)
6369 mutex_exit(hash_lock);
6370
6371 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6372 zio_t *, rzio);
6373 ARCSTAT_INCR(arcstat_l2_read_bytes,
6374 HDR_GET_PSIZE(hdr));
6375
6376 if (*arc_flags & ARC_FLAG_NOWAIT) {
6377 zio_nowait(rzio);
6378 goto out;
6379 }
6380
6381 ASSERT(*arc_flags & ARC_FLAG_WAIT);
6382 if (zio_wait(rzio) == 0)
6383 goto out;
6384
6385 /* l2arc read error; goto zio_read() */
6386 if (hash_lock != NULL)
6387 mutex_enter(hash_lock);
6388 } else {
6389 DTRACE_PROBE1(l2arc__miss,
6390 arc_buf_hdr_t *, hdr);
6391 ARCSTAT_BUMP(arcstat_l2_misses);
6392 if (HDR_L2_WRITING(hdr))
6393 ARCSTAT_BUMP(arcstat_l2_rw_clash);
6394 spa_config_exit(spa, SCL_L2ARC, vd);
6395 }
6396 } else {
6397 if (vd != NULL)
6398 spa_config_exit(spa, SCL_L2ARC, vd);
6399
6400 /*
6401 * Only a spa with l2 should contribute to l2
6402 * miss stats. (Including the case of having a
6403 * faulted cache device - that's also a miss.)
6404 */
6405 if (spa_has_l2) {
6406 /*
6407 * Skip ARC stat bump for block pointers with
6408 * embedded data. The data are read from the
6409 * blkptr itself via
6410 * decode_embedded_bp_compressed().
6411 */
6412 if (!embedded_bp) {
6413 DTRACE_PROBE1(l2arc__miss,
6414 arc_buf_hdr_t *, hdr);
6415 ARCSTAT_BUMP(arcstat_l2_misses);
6416 }
6417 }
6418 }
6419
6420 rzio = zio_read(pio, spa, bp, hdr_abd, size,
6421 arc_read_done, hdr, priority, zio_flags, zb);
6422 acb->acb_zio_head = rzio;
6423
6424 if (hash_lock != NULL)
6425 mutex_exit(hash_lock);
6426
6427 if (*arc_flags & ARC_FLAG_WAIT) {
6428 rc = zio_wait(rzio);
6429 goto out;
6430 }
6431
6432 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6433 zio_nowait(rzio);
6434 }
6435
6436 out:
6437 /* embedded bps don't actually go to disk */
6438 if (!embedded_bp)
6439 spa_read_history_add(spa, zb, *arc_flags);
6440 spl_fstrans_unmark(cookie);
6441 return (rc);
6442
6443 done:
6444 if (done)
6445 done(NULL, zb, bp, buf, private);
6446 if (pio && rc != 0) {
6447 zio_t *zio = zio_null(pio, spa, NULL, NULL, NULL, zio_flags);
6448 zio->io_error = rc;
6449 zio_nowait(zio);
6450 }
6451 goto out;
6452 }
6453
6454 arc_prune_t *
arc_add_prune_callback(arc_prune_func_t * func,void * private)6455 arc_add_prune_callback(arc_prune_func_t *func, void *private)
6456 {
6457 arc_prune_t *p;
6458
6459 p = kmem_alloc(sizeof (*p), KM_SLEEP);
6460 p->p_pfunc = func;
6461 p->p_private = private;
6462 list_link_init(&p->p_node);
6463 zfs_refcount_create(&p->p_refcnt);
6464
6465 mutex_enter(&arc_prune_mtx);
6466 zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
6467 list_insert_head(&arc_prune_list, p);
6468 mutex_exit(&arc_prune_mtx);
6469
6470 return (p);
6471 }
6472
6473 void
arc_remove_prune_callback(arc_prune_t * p)6474 arc_remove_prune_callback(arc_prune_t *p)
6475 {
6476 boolean_t wait = B_FALSE;
6477 mutex_enter(&arc_prune_mtx);
6478 list_remove(&arc_prune_list, p);
6479 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6480 wait = B_TRUE;
6481 mutex_exit(&arc_prune_mtx);
6482
6483 /* wait for arc_prune_task to finish */
6484 if (wait)
6485 taskq_wait_outstanding(arc_prune_taskq, 0);
6486 ASSERT0(zfs_refcount_count(&p->p_refcnt));
6487 zfs_refcount_destroy(&p->p_refcnt);
6488 kmem_free(p, sizeof (*p));
6489 }
6490
6491 /*
6492 * Helper function for arc_prune_async() it is responsible for safely
6493 * handling the execution of a registered arc_prune_func_t.
6494 */
6495 static void
arc_prune_task(void * ptr)6496 arc_prune_task(void *ptr)
6497 {
6498 arc_prune_t *ap = (arc_prune_t *)ptr;
6499 arc_prune_func_t *func = ap->p_pfunc;
6500
6501 if (func != NULL)
6502 func(ap->p_adjust, ap->p_private);
6503
6504 (void) zfs_refcount_remove(&ap->p_refcnt, func);
6505 }
6506
6507 /*
6508 * Notify registered consumers they must drop holds on a portion of the ARC
6509 * buffers they reference. This provides a mechanism to ensure the ARC can
6510 * honor the metadata limit and reclaim otherwise pinned ARC buffers.
6511 *
6512 * This operation is performed asynchronously so it may be safely called
6513 * in the context of the arc_reclaim_thread(). A reference is taken here
6514 * for each registered arc_prune_t and the arc_prune_task() is responsible
6515 * for releasing it once the registered arc_prune_func_t has completed.
6516 */
6517 static void
arc_prune_async(uint64_t adjust)6518 arc_prune_async(uint64_t adjust)
6519 {
6520 arc_prune_t *ap;
6521
6522 mutex_enter(&arc_prune_mtx);
6523 for (ap = list_head(&arc_prune_list); ap != NULL;
6524 ap = list_next(&arc_prune_list, ap)) {
6525
6526 if (zfs_refcount_count(&ap->p_refcnt) >= 2)
6527 continue;
6528
6529 zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc);
6530 ap->p_adjust = adjust;
6531 if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
6532 ap, TQ_SLEEP) == TASKQID_INVALID) {
6533 (void) zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc);
6534 continue;
6535 }
6536 ARCSTAT_BUMP(arcstat_prune);
6537 }
6538 mutex_exit(&arc_prune_mtx);
6539 }
6540
6541 /*
6542 * Notify the arc that a block was freed, and thus will never be used again.
6543 */
6544 void
arc_freed(spa_t * spa,const blkptr_t * bp)6545 arc_freed(spa_t *spa, const blkptr_t *bp)
6546 {
6547 arc_buf_hdr_t *hdr;
6548 kmutex_t *hash_lock;
6549 uint64_t guid = spa_load_guid(spa);
6550
6551 ASSERT(!BP_IS_EMBEDDED(bp));
6552
6553 hdr = buf_hash_find(guid, bp, &hash_lock);
6554 if (hdr == NULL)
6555 return;
6556
6557 /*
6558 * We might be trying to free a block that is still doing I/O
6559 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed,
6560 * dmu_sync-ed block). A block may also have a reference if it is
6561 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6562 * have written the new block to its final resting place on disk but
6563 * without the dedup flag set. This would have left the hdr in the MRU
6564 * state and discoverable. When the txg finally syncs it detects that
6565 * the block was overridden in open context and issues an override I/O.
6566 * Since this is a dedup block, the override I/O will determine if the
6567 * block is already in the DDT. If so, then it will replace the io_bp
6568 * with the bp from the DDT and allow the I/O to finish. When the I/O
6569 * reaches the done callback, dbuf_write_override_done, it will
6570 * check to see if the io_bp and io_bp_override are identical.
6571 * If they are not, then it indicates that the bp was replaced with
6572 * the bp in the DDT and the override bp is freed. This allows
6573 * us to arrive here with a reference on a block that is being
6574 * freed. So if we have an I/O in progress, or a reference to
6575 * this hdr, then we don't destroy the hdr.
6576 */
6577 if (!HDR_HAS_L1HDR(hdr) ||
6578 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6579 arc_change_state(arc_anon, hdr);
6580 arc_hdr_destroy(hdr);
6581 mutex_exit(hash_lock);
6582 } else {
6583 mutex_exit(hash_lock);
6584 }
6585
6586 }
6587
6588 /*
6589 * Release this buffer from the cache, making it an anonymous buffer. This
6590 * must be done after a read and prior to modifying the buffer contents.
6591 * If the buffer has more than one reference, we must make
6592 * a new hdr for the buffer.
6593 */
6594 void
arc_release(arc_buf_t * buf,const void * tag)6595 arc_release(arc_buf_t *buf, const void *tag)
6596 {
6597 arc_buf_hdr_t *hdr = buf->b_hdr;
6598
6599 /*
6600 * It would be nice to assert that if its DMU metadata (level >
6601 * 0 || it's the dnode file), then it must be syncing context.
6602 * But we don't know that information at this level.
6603 */
6604
6605 ASSERT(HDR_HAS_L1HDR(hdr));
6606
6607 /*
6608 * We don't grab the hash lock prior to this check, because if
6609 * the buffer's header is in the arc_anon state, it won't be
6610 * linked into the hash table.
6611 */
6612 if (hdr->b_l1hdr.b_state == arc_anon) {
6613 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6614 ASSERT(!HDR_IN_HASH_TABLE(hdr));
6615 ASSERT(!HDR_HAS_L2HDR(hdr));
6616
6617 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6618 ASSERT(ARC_BUF_LAST(buf));
6619 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6620 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6621
6622 hdr->b_l1hdr.b_arc_access = 0;
6623
6624 /*
6625 * If the buf is being overridden then it may already
6626 * have a hdr that is not empty.
6627 */
6628 buf_discard_identity(hdr);
6629 arc_buf_thaw(buf);
6630
6631 return;
6632 }
6633
6634 kmutex_t *hash_lock = HDR_LOCK(hdr);
6635 mutex_enter(hash_lock);
6636
6637 /*
6638 * This assignment is only valid as long as the hash_lock is
6639 * held, we must be careful not to reference state or the
6640 * b_state field after dropping the lock.
6641 */
6642 arc_state_t *state = hdr->b_l1hdr.b_state;
6643 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6644 ASSERT3P(state, !=, arc_anon);
6645 ASSERT3P(state, !=, arc_l2c_only);
6646
6647 /* this buffer is not on any list */
6648 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6649
6650 /*
6651 * Do we have more than one buf?
6652 */
6653 if (hdr->b_l1hdr.b_buf != buf || !ARC_BUF_LAST(buf)) {
6654 arc_buf_hdr_t *nhdr;
6655 uint64_t spa = hdr->b_spa;
6656 uint64_t psize = HDR_GET_PSIZE(hdr);
6657 uint64_t lsize = HDR_GET_LSIZE(hdr);
6658 boolean_t protected = HDR_PROTECTED(hdr);
6659 enum zio_compress compress = arc_hdr_get_compress(hdr);
6660 arc_buf_contents_t type = arc_buf_type(hdr);
6661
6662 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
6663 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6664 ASSERT(ARC_BUF_LAST(buf));
6665 }
6666
6667 /*
6668 * Pull the buffer off of this hdr and find the last buffer
6669 * in the hdr's buffer list.
6670 */
6671 VERIFY3S(remove_reference(hdr, tag), >, 0);
6672 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6673 ASSERT3P(lastbuf, !=, NULL);
6674
6675 /*
6676 * If the current arc_buf_t and the hdr are sharing their data
6677 * buffer, then we must stop sharing that block.
6678 */
6679 if (ARC_BUF_SHARED(buf)) {
6680 ASSERT(!arc_buf_is_shared(lastbuf));
6681
6682 /*
6683 * First, sever the block sharing relationship between
6684 * buf and the arc_buf_hdr_t.
6685 */
6686 arc_unshare_buf(hdr, buf);
6687
6688 /*
6689 * Now we need to recreate the hdr's b_pabd. Since we
6690 * have lastbuf handy, we try to share with it, but if
6691 * we can't then we allocate a new b_pabd and copy the
6692 * data from buf into it.
6693 */
6694 if (arc_can_share(hdr, lastbuf)) {
6695 arc_share_buf(hdr, lastbuf);
6696 } else {
6697 arc_hdr_alloc_abd(hdr, 0);
6698 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6699 buf->b_data, psize);
6700 }
6701 } else if (HDR_SHARED_DATA(hdr)) {
6702 /*
6703 * Uncompressed shared buffers are always at the end
6704 * of the list. Compressed buffers don't have the
6705 * same requirements. This makes it hard to
6706 * simply assert that the lastbuf is shared so
6707 * we rely on the hdr's compression flags to determine
6708 * if we have a compressed, shared buffer.
6709 */
6710 ASSERT(arc_buf_is_shared(lastbuf) ||
6711 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6712 ASSERT(!arc_buf_is_shared(buf));
6713 }
6714
6715 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6716
6717 (void) zfs_refcount_remove_many(&state->arcs_size[type],
6718 arc_buf_size(buf), buf);
6719
6720 arc_cksum_verify(buf);
6721 arc_buf_unwatch(buf);
6722
6723 /* if this is the last uncompressed buf free the checksum */
6724 if (!arc_hdr_has_uncompressed_buf(hdr))
6725 arc_cksum_free(hdr);
6726
6727 mutex_exit(hash_lock);
6728
6729 nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6730 compress, hdr->b_complevel, type);
6731 ASSERT0P(nhdr->b_l1hdr.b_buf);
6732 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6733 VERIFY3U(nhdr->b_type, ==, type);
6734 ASSERT(!HDR_SHARED_DATA(nhdr));
6735
6736 nhdr->b_l1hdr.b_buf = buf;
6737 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6738 buf->b_hdr = nhdr;
6739
6740 (void) zfs_refcount_add_many(&arc_anon->arcs_size[type],
6741 arc_buf_size(buf), buf);
6742 } else {
6743 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6744 /* protected by hash lock, or hdr is on arc_anon */
6745 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6746 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6747
6748 if (HDR_HAS_L2HDR(hdr)) {
6749 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6750 /* Recheck to prevent race with l2arc_evict(). */
6751 if (HDR_HAS_L2HDR(hdr))
6752 arc_hdr_l2hdr_destroy(hdr);
6753 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6754 }
6755
6756 hdr->b_l1hdr.b_mru_hits = 0;
6757 hdr->b_l1hdr.b_mru_ghost_hits = 0;
6758 hdr->b_l1hdr.b_mfu_hits = 0;
6759 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6760 arc_change_state(arc_anon, hdr);
6761 hdr->b_l1hdr.b_arc_access = 0;
6762
6763 mutex_exit(hash_lock);
6764 buf_discard_identity(hdr);
6765 arc_buf_thaw(buf);
6766 }
6767 }
6768
6769 int
arc_released(arc_buf_t * buf)6770 arc_released(arc_buf_t *buf)
6771 {
6772 return (buf->b_data != NULL &&
6773 buf->b_hdr->b_l1hdr.b_state == arc_anon);
6774 }
6775
6776 #ifdef ZFS_DEBUG
6777 int
arc_referenced(arc_buf_t * buf)6778 arc_referenced(arc_buf_t *buf)
6779 {
6780 return (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6781 }
6782 #endif
6783
6784 static void
arc_write_ready(zio_t * zio)6785 arc_write_ready(zio_t *zio)
6786 {
6787 arc_write_callback_t *callback = zio->io_private;
6788 arc_buf_t *buf = callback->awcb_buf;
6789 arc_buf_hdr_t *hdr = buf->b_hdr;
6790 blkptr_t *bp = zio->io_bp;
6791 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6792 fstrans_cookie_t cookie = spl_fstrans_mark();
6793
6794 ASSERT(HDR_HAS_L1HDR(hdr));
6795 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6796 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6797
6798 /*
6799 * If we're reexecuting this zio because the pool suspended, then
6800 * cleanup any state that was previously set the first time the
6801 * callback was invoked.
6802 */
6803 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6804 arc_cksum_free(hdr);
6805 arc_buf_unwatch(buf);
6806 if (hdr->b_l1hdr.b_pabd != NULL) {
6807 if (ARC_BUF_SHARED(buf)) {
6808 arc_unshare_buf(hdr, buf);
6809 } else {
6810 ASSERT(!arc_buf_is_shared(buf));
6811 arc_hdr_free_abd(hdr, B_FALSE);
6812 }
6813 }
6814
6815 if (HDR_HAS_RABD(hdr))
6816 arc_hdr_free_abd(hdr, B_TRUE);
6817 }
6818 ASSERT0P(hdr->b_l1hdr.b_pabd);
6819 ASSERT(!HDR_HAS_RABD(hdr));
6820 ASSERT(!HDR_SHARED_DATA(hdr));
6821 ASSERT(!arc_buf_is_shared(buf));
6822
6823 callback->awcb_ready(zio, buf, callback->awcb_private);
6824
6825 if (HDR_IO_IN_PROGRESS(hdr)) {
6826 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6827 } else {
6828 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6829 add_reference(hdr, hdr); /* For IO_IN_PROGRESS. */
6830 }
6831
6832 if (BP_IS_PROTECTED(bp)) {
6833 /* ZIL blocks are written through zio_rewrite */
6834 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6835
6836 if (BP_SHOULD_BYTESWAP(bp)) {
6837 if (BP_GET_LEVEL(bp) > 0) {
6838 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6839 } else {
6840 hdr->b_l1hdr.b_byteswap =
6841 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6842 }
6843 } else {
6844 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6845 }
6846
6847 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
6848 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6849 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6850 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6851 hdr->b_crypt_hdr.b_iv);
6852 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6853 } else {
6854 arc_hdr_clear_flags(hdr, ARC_FLAG_PROTECTED);
6855 }
6856
6857 /*
6858 * If this block was written for raw encryption but the zio layer
6859 * ended up only authenticating it, adjust the buffer flags now.
6860 */
6861 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6862 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6863 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6864 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6865 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6866 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6867 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6868 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6869 }
6870
6871 /* this must be done after the buffer flags are adjusted */
6872 arc_cksum_compute(buf);
6873
6874 enum zio_compress compress;
6875 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6876 compress = ZIO_COMPRESS_OFF;
6877 } else {
6878 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6879 compress = BP_GET_COMPRESS(bp);
6880 }
6881 HDR_SET_PSIZE(hdr, psize);
6882 arc_hdr_set_compress(hdr, compress);
6883 hdr->b_complevel = zio->io_prop.zp_complevel;
6884
6885 if (zio->io_error != 0 || psize == 0)
6886 goto out;
6887
6888 /*
6889 * Fill the hdr with data. If the buffer is encrypted we have no choice
6890 * but to copy the data into b_radb. If the hdr is compressed, the data
6891 * we want is available from the zio, otherwise we can take it from
6892 * the buf.
6893 *
6894 * We might be able to share the buf's data with the hdr here. However,
6895 * doing so would cause the ARC to be full of linear ABDs if we write a
6896 * lot of shareable data. As a compromise, we check whether scattered
6897 * ABDs are allowed, and assume that if they are then the user wants
6898 * the ARC to be primarily filled with them regardless of the data being
6899 * written. Therefore, if they're allowed then we allocate one and copy
6900 * the data into it; otherwise, we share the data directly if we can.
6901 */
6902 if (ARC_BUF_ENCRYPTED(buf)) {
6903 ASSERT3U(psize, >, 0);
6904 ASSERT(ARC_BUF_COMPRESSED(buf));
6905 arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6906 ARC_HDR_USE_RESERVE);
6907 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6908 } else if (!(HDR_UNCACHED(hdr) ||
6909 abd_size_alloc_linear(arc_buf_size(buf))) ||
6910 !arc_can_share(hdr, buf)) {
6911 /*
6912 * Ideally, we would always copy the io_abd into b_pabd, but the
6913 * user may have disabled compressed ARC, thus we must check the
6914 * hdr's compression setting rather than the io_bp's.
6915 */
6916 if (BP_IS_ENCRYPTED(bp)) {
6917 ASSERT3U(psize, >, 0);
6918 arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6919 ARC_HDR_USE_RESERVE);
6920 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6921 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6922 !ARC_BUF_COMPRESSED(buf)) {
6923 ASSERT3U(psize, >, 0);
6924 arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6925 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6926 } else {
6927 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6928 arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6929 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6930 arc_buf_size(buf));
6931 }
6932 } else {
6933 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6934 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6935 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6936 ASSERT(ARC_BUF_LAST(buf));
6937
6938 arc_share_buf(hdr, buf);
6939 }
6940
6941 out:
6942 arc_hdr_verify(hdr, bp);
6943 spl_fstrans_unmark(cookie);
6944 }
6945
6946 static void
arc_write_children_ready(zio_t * zio)6947 arc_write_children_ready(zio_t *zio)
6948 {
6949 arc_write_callback_t *callback = zio->io_private;
6950 arc_buf_t *buf = callback->awcb_buf;
6951
6952 callback->awcb_children_ready(zio, buf, callback->awcb_private);
6953 }
6954
6955 static void
arc_write_done(zio_t * zio)6956 arc_write_done(zio_t *zio)
6957 {
6958 arc_write_callback_t *callback = zio->io_private;
6959 arc_buf_t *buf = callback->awcb_buf;
6960 arc_buf_hdr_t *hdr = buf->b_hdr;
6961
6962 ASSERT0P(hdr->b_l1hdr.b_acb);
6963
6964 if (zio->io_error == 0) {
6965 arc_hdr_verify(hdr, zio->io_bp);
6966
6967 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6968 buf_discard_identity(hdr);
6969 } else {
6970 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6971 hdr->b_birth = BP_GET_PHYSICAL_BIRTH(zio->io_bp);
6972 }
6973 } else {
6974 ASSERT(HDR_EMPTY(hdr));
6975 }
6976
6977 /*
6978 * If the block to be written was all-zero or compressed enough to be
6979 * embedded in the BP, no write was performed so there will be no
6980 * dva/birth/checksum. The buffer must therefore remain anonymous
6981 * (and uncached).
6982 */
6983 if (!HDR_EMPTY(hdr)) {
6984 arc_buf_hdr_t *exists;
6985 kmutex_t *hash_lock;
6986
6987 ASSERT0(zio->io_error);
6988
6989 arc_cksum_verify(buf);
6990
6991 exists = buf_hash_insert(hdr, &hash_lock);
6992 if (exists != NULL) {
6993 /*
6994 * This can only happen if we overwrite for
6995 * sync-to-convergence, because we remove
6996 * buffers from the hash table when we arc_free().
6997 */
6998 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6999 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
7000 panic("bad overwrite, hdr=%p exists=%p",
7001 (void *)hdr, (void *)exists);
7002 ASSERT(zfs_refcount_is_zero(
7003 &exists->b_l1hdr.b_refcnt));
7004 arc_change_state(arc_anon, exists);
7005 arc_hdr_destroy(exists);
7006 mutex_exit(hash_lock);
7007 exists = buf_hash_insert(hdr, &hash_lock);
7008 ASSERT0P(exists);
7009 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
7010 /* nopwrite */
7011 ASSERT(zio->io_prop.zp_nopwrite);
7012 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
7013 panic("bad nopwrite, hdr=%p exists=%p",
7014 (void *)hdr, (void *)exists);
7015 } else {
7016 /* Dedup */
7017 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
7018 ASSERT(ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
7019 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
7020 ASSERT(BP_GET_DEDUP(zio->io_bp));
7021 ASSERT0(BP_GET_LEVEL(zio->io_bp));
7022 }
7023 }
7024 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
7025 VERIFY3S(remove_reference(hdr, hdr), >, 0);
7026 /* if it's not anon, we are doing a scrub */
7027 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
7028 arc_access(hdr, 0, B_FALSE);
7029 mutex_exit(hash_lock);
7030 } else {
7031 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
7032 VERIFY3S(remove_reference(hdr, hdr), >, 0);
7033 }
7034
7035 callback->awcb_done(zio, buf, callback->awcb_private);
7036
7037 abd_free(zio->io_abd);
7038 kmem_free(callback, sizeof (arc_write_callback_t));
7039 }
7040
7041 zio_t *
arc_write(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,arc_buf_t * buf,boolean_t uncached,boolean_t l2arc,const zio_prop_t * zp,arc_write_done_func_t * ready,arc_write_done_func_t * children_ready,arc_write_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,const zbookmark_phys_t * zb)7042 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
7043 blkptr_t *bp, arc_buf_t *buf, boolean_t uncached, boolean_t l2arc,
7044 const zio_prop_t *zp, arc_write_done_func_t *ready,
7045 arc_write_done_func_t *children_ready, arc_write_done_func_t *done,
7046 void *private, zio_priority_t priority, int zio_flags,
7047 const zbookmark_phys_t *zb)
7048 {
7049 arc_buf_hdr_t *hdr = buf->b_hdr;
7050 arc_write_callback_t *callback;
7051 zio_t *zio;
7052 zio_prop_t localprop = *zp;
7053
7054 ASSERT3P(ready, !=, NULL);
7055 ASSERT3P(done, !=, NULL);
7056 ASSERT(!HDR_IO_ERROR(hdr));
7057 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
7058 ASSERT0P(hdr->b_l1hdr.b_acb);
7059 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
7060 if (uncached)
7061 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
7062 else if (l2arc)
7063 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
7064
7065 if (ARC_BUF_ENCRYPTED(buf)) {
7066 ASSERT(ARC_BUF_COMPRESSED(buf));
7067 localprop.zp_encrypt = B_TRUE;
7068 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7069 localprop.zp_complevel = hdr->b_complevel;
7070 localprop.zp_byteorder =
7071 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
7072 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
7073 memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt,
7074 ZIO_DATA_SALT_LEN);
7075 memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv,
7076 ZIO_DATA_IV_LEN);
7077 memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac,
7078 ZIO_DATA_MAC_LEN);
7079 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
7080 localprop.zp_nopwrite = B_FALSE;
7081 localprop.zp_copies =
7082 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
7083 localprop.zp_gang_copies =
7084 MIN(localprop.zp_gang_copies, SPA_DVAS_PER_BP - 1);
7085 }
7086 zio_flags |= ZIO_FLAG_RAW;
7087 } else if (ARC_BUF_COMPRESSED(buf)) {
7088 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
7089 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7090 localprop.zp_complevel = hdr->b_complevel;
7091 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
7092 }
7093 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
7094 callback->awcb_ready = ready;
7095 callback->awcb_children_ready = children_ready;
7096 callback->awcb_done = done;
7097 callback->awcb_private = private;
7098 callback->awcb_buf = buf;
7099
7100 /*
7101 * The hdr's b_pabd is now stale, free it now. A new data block
7102 * will be allocated when the zio pipeline calls arc_write_ready().
7103 */
7104 if (hdr->b_l1hdr.b_pabd != NULL) {
7105 /*
7106 * If the buf is currently sharing the data block with
7107 * the hdr then we need to break that relationship here.
7108 * The hdr will remain with a NULL data pointer and the
7109 * buf will take sole ownership of the block.
7110 */
7111 if (ARC_BUF_SHARED(buf)) {
7112 arc_unshare_buf(hdr, buf);
7113 } else {
7114 ASSERT(!arc_buf_is_shared(buf));
7115 arc_hdr_free_abd(hdr, B_FALSE);
7116 }
7117 VERIFY3P(buf->b_data, !=, NULL);
7118 }
7119
7120 if (HDR_HAS_RABD(hdr))
7121 arc_hdr_free_abd(hdr, B_TRUE);
7122
7123 if (!(zio_flags & ZIO_FLAG_RAW))
7124 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
7125
7126 ASSERT(!arc_buf_is_shared(buf));
7127 ASSERT0P(hdr->b_l1hdr.b_pabd);
7128
7129 zio = zio_write(pio, spa, txg, bp,
7130 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
7131 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
7132 (children_ready != NULL) ? arc_write_children_ready : NULL,
7133 arc_write_done, callback, priority, zio_flags, zb);
7134
7135 return (zio);
7136 }
7137
7138 void
arc_tempreserve_clear(uint64_t reserve)7139 arc_tempreserve_clear(uint64_t reserve)
7140 {
7141 atomic_add_64(&arc_tempreserve, -reserve);
7142 ASSERT((int64_t)arc_tempreserve >= 0);
7143 }
7144
7145 int
arc_tempreserve_space(spa_t * spa,uint64_t reserve,uint64_t txg)7146 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
7147 {
7148 int error;
7149 uint64_t anon_size;
7150
7151 if (!arc_no_grow &&
7152 reserve > arc_c/4 &&
7153 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
7154 arc_c = MIN(arc_c_max, reserve * 4);
7155
7156 /*
7157 * Throttle when the calculated memory footprint for the TXG
7158 * exceeds the target ARC size.
7159 */
7160 if (reserve > arc_c) {
7161 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
7162 return (SET_ERROR(ERESTART));
7163 }
7164
7165 /*
7166 * Don't count loaned bufs as in flight dirty data to prevent long
7167 * network delays from blocking transactions that are ready to be
7168 * assigned to a txg.
7169 */
7170
7171 /* assert that it has not wrapped around */
7172 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
7173
7174 anon_size = MAX((int64_t)
7175 (zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]) +
7176 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]) -
7177 arc_loaned_bytes), 0);
7178
7179 /*
7180 * Writes will, almost always, require additional memory allocations
7181 * in order to compress/encrypt/etc the data. We therefore need to
7182 * make sure that there is sufficient available memory for this.
7183 */
7184 error = arc_memory_throttle(spa, reserve, txg);
7185 if (error != 0)
7186 return (error);
7187
7188 /*
7189 * Throttle writes when the amount of dirty data in the cache
7190 * gets too large. We try to keep the cache less than half full
7191 * of dirty blocks so that our sync times don't grow too large.
7192 *
7193 * In the case of one pool being built on another pool, we want
7194 * to make sure we don't end up throttling the lower (backing)
7195 * pool when the upper pool is the majority contributor to dirty
7196 * data. To insure we make forward progress during throttling, we
7197 * also check the current pool's net dirty data and only throttle
7198 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
7199 * data in the cache.
7200 *
7201 * Note: if two requests come in concurrently, we might let them
7202 * both succeed, when one of them should fail. Not a huge deal.
7203 */
7204 uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
7205 uint64_t spa_dirty_anon = spa_dirty_data(spa);
7206 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max;
7207 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 &&
7208 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 &&
7209 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
7210 #ifdef ZFS_DEBUG
7211 uint64_t meta_esize = zfs_refcount_count(
7212 &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7213 uint64_t data_esize =
7214 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7215 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7216 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
7217 (u_longlong_t)arc_tempreserve >> 10,
7218 (u_longlong_t)meta_esize >> 10,
7219 (u_longlong_t)data_esize >> 10,
7220 (u_longlong_t)reserve >> 10,
7221 (u_longlong_t)rarc_c >> 10);
7222 #endif
7223 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
7224 return (SET_ERROR(ERESTART));
7225 }
7226 atomic_add_64(&arc_tempreserve, reserve);
7227 return (0);
7228 }
7229
7230 static void
arc_kstat_update_state(arc_state_t * state,kstat_named_t * size,kstat_named_t * data,kstat_named_t * metadata,kstat_named_t * evict_data,kstat_named_t * evict_metadata)7231 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
7232 kstat_named_t *data, kstat_named_t *metadata,
7233 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
7234 {
7235 data->value.ui64 =
7236 zfs_refcount_count(&state->arcs_size[ARC_BUFC_DATA]);
7237 metadata->value.ui64 =
7238 zfs_refcount_count(&state->arcs_size[ARC_BUFC_METADATA]);
7239 size->value.ui64 = data->value.ui64 + metadata->value.ui64;
7240 evict_data->value.ui64 =
7241 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
7242 evict_metadata->value.ui64 =
7243 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
7244 }
7245
7246 static int
arc_kstat_update(kstat_t * ksp,int rw)7247 arc_kstat_update(kstat_t *ksp, int rw)
7248 {
7249 arc_stats_t *as = ksp->ks_data;
7250
7251 if (rw == KSTAT_WRITE)
7252 return (SET_ERROR(EACCES));
7253
7254 as->arcstat_hits.value.ui64 =
7255 wmsum_value(&arc_sums.arcstat_hits);
7256 as->arcstat_iohits.value.ui64 =
7257 wmsum_value(&arc_sums.arcstat_iohits);
7258 as->arcstat_misses.value.ui64 =
7259 wmsum_value(&arc_sums.arcstat_misses);
7260 as->arcstat_demand_data_hits.value.ui64 =
7261 wmsum_value(&arc_sums.arcstat_demand_data_hits);
7262 as->arcstat_demand_data_iohits.value.ui64 =
7263 wmsum_value(&arc_sums.arcstat_demand_data_iohits);
7264 as->arcstat_demand_data_misses.value.ui64 =
7265 wmsum_value(&arc_sums.arcstat_demand_data_misses);
7266 as->arcstat_demand_metadata_hits.value.ui64 =
7267 wmsum_value(&arc_sums.arcstat_demand_metadata_hits);
7268 as->arcstat_demand_metadata_iohits.value.ui64 =
7269 wmsum_value(&arc_sums.arcstat_demand_metadata_iohits);
7270 as->arcstat_demand_metadata_misses.value.ui64 =
7271 wmsum_value(&arc_sums.arcstat_demand_metadata_misses);
7272 as->arcstat_prefetch_data_hits.value.ui64 =
7273 wmsum_value(&arc_sums.arcstat_prefetch_data_hits);
7274 as->arcstat_prefetch_data_iohits.value.ui64 =
7275 wmsum_value(&arc_sums.arcstat_prefetch_data_iohits);
7276 as->arcstat_prefetch_data_misses.value.ui64 =
7277 wmsum_value(&arc_sums.arcstat_prefetch_data_misses);
7278 as->arcstat_prefetch_metadata_hits.value.ui64 =
7279 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits);
7280 as->arcstat_prefetch_metadata_iohits.value.ui64 =
7281 wmsum_value(&arc_sums.arcstat_prefetch_metadata_iohits);
7282 as->arcstat_prefetch_metadata_misses.value.ui64 =
7283 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses);
7284 as->arcstat_mru_hits.value.ui64 =
7285 wmsum_value(&arc_sums.arcstat_mru_hits);
7286 as->arcstat_mru_ghost_hits.value.ui64 =
7287 wmsum_value(&arc_sums.arcstat_mru_ghost_hits);
7288 as->arcstat_mfu_hits.value.ui64 =
7289 wmsum_value(&arc_sums.arcstat_mfu_hits);
7290 as->arcstat_mfu_ghost_hits.value.ui64 =
7291 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits);
7292 as->arcstat_uncached_hits.value.ui64 =
7293 wmsum_value(&arc_sums.arcstat_uncached_hits);
7294 as->arcstat_deleted.value.ui64 =
7295 wmsum_value(&arc_sums.arcstat_deleted);
7296 as->arcstat_mutex_miss.value.ui64 =
7297 wmsum_value(&arc_sums.arcstat_mutex_miss);
7298 as->arcstat_access_skip.value.ui64 =
7299 wmsum_value(&arc_sums.arcstat_access_skip);
7300 as->arcstat_evict_skip.value.ui64 =
7301 wmsum_value(&arc_sums.arcstat_evict_skip);
7302 as->arcstat_evict_not_enough.value.ui64 =
7303 wmsum_value(&arc_sums.arcstat_evict_not_enough);
7304 as->arcstat_evict_l2_cached.value.ui64 =
7305 wmsum_value(&arc_sums.arcstat_evict_l2_cached);
7306 as->arcstat_evict_l2_eligible.value.ui64 =
7307 wmsum_value(&arc_sums.arcstat_evict_l2_eligible);
7308 as->arcstat_evict_l2_eligible_mfu.value.ui64 =
7309 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu);
7310 as->arcstat_evict_l2_eligible_mru.value.ui64 =
7311 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru);
7312 as->arcstat_evict_l2_ineligible.value.ui64 =
7313 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible);
7314 as->arcstat_evict_l2_skip.value.ui64 =
7315 wmsum_value(&arc_sums.arcstat_evict_l2_skip);
7316 as->arcstat_hash_elements.value.ui64 =
7317 as->arcstat_hash_elements_max.value.ui64 =
7318 wmsum_value(&arc_sums.arcstat_hash_elements);
7319 as->arcstat_hash_collisions.value.ui64 =
7320 wmsum_value(&arc_sums.arcstat_hash_collisions);
7321 as->arcstat_hash_chains.value.ui64 =
7322 wmsum_value(&arc_sums.arcstat_hash_chains);
7323 as->arcstat_size.value.ui64 =
7324 aggsum_value(&arc_sums.arcstat_size);
7325 as->arcstat_compressed_size.value.ui64 =
7326 wmsum_value(&arc_sums.arcstat_compressed_size);
7327 as->arcstat_uncompressed_size.value.ui64 =
7328 wmsum_value(&arc_sums.arcstat_uncompressed_size);
7329 as->arcstat_overhead_size.value.ui64 =
7330 wmsum_value(&arc_sums.arcstat_overhead_size);
7331 as->arcstat_hdr_size.value.ui64 =
7332 wmsum_value(&arc_sums.arcstat_hdr_size);
7333 as->arcstat_data_size.value.ui64 =
7334 wmsum_value(&arc_sums.arcstat_data_size);
7335 as->arcstat_metadata_size.value.ui64 =
7336 wmsum_value(&arc_sums.arcstat_metadata_size);
7337 as->arcstat_dbuf_size.value.ui64 =
7338 wmsum_value(&arc_sums.arcstat_dbuf_size);
7339 #if defined(COMPAT_FREEBSD11)
7340 as->arcstat_other_size.value.ui64 =
7341 wmsum_value(&arc_sums.arcstat_bonus_size) +
7342 aggsum_value(&arc_sums.arcstat_dnode_size) +
7343 wmsum_value(&arc_sums.arcstat_dbuf_size);
7344 #endif
7345
7346 arc_kstat_update_state(arc_anon,
7347 &as->arcstat_anon_size,
7348 &as->arcstat_anon_data,
7349 &as->arcstat_anon_metadata,
7350 &as->arcstat_anon_evictable_data,
7351 &as->arcstat_anon_evictable_metadata);
7352 arc_kstat_update_state(arc_mru,
7353 &as->arcstat_mru_size,
7354 &as->arcstat_mru_data,
7355 &as->arcstat_mru_metadata,
7356 &as->arcstat_mru_evictable_data,
7357 &as->arcstat_mru_evictable_metadata);
7358 arc_kstat_update_state(arc_mru_ghost,
7359 &as->arcstat_mru_ghost_size,
7360 &as->arcstat_mru_ghost_data,
7361 &as->arcstat_mru_ghost_metadata,
7362 &as->arcstat_mru_ghost_evictable_data,
7363 &as->arcstat_mru_ghost_evictable_metadata);
7364 arc_kstat_update_state(arc_mfu,
7365 &as->arcstat_mfu_size,
7366 &as->arcstat_mfu_data,
7367 &as->arcstat_mfu_metadata,
7368 &as->arcstat_mfu_evictable_data,
7369 &as->arcstat_mfu_evictable_metadata);
7370 arc_kstat_update_state(arc_mfu_ghost,
7371 &as->arcstat_mfu_ghost_size,
7372 &as->arcstat_mfu_ghost_data,
7373 &as->arcstat_mfu_ghost_metadata,
7374 &as->arcstat_mfu_ghost_evictable_data,
7375 &as->arcstat_mfu_ghost_evictable_metadata);
7376 arc_kstat_update_state(arc_uncached,
7377 &as->arcstat_uncached_size,
7378 &as->arcstat_uncached_data,
7379 &as->arcstat_uncached_metadata,
7380 &as->arcstat_uncached_evictable_data,
7381 &as->arcstat_uncached_evictable_metadata);
7382
7383 as->arcstat_dnode_size.value.ui64 =
7384 aggsum_value(&arc_sums.arcstat_dnode_size);
7385 as->arcstat_bonus_size.value.ui64 =
7386 wmsum_value(&arc_sums.arcstat_bonus_size);
7387 as->arcstat_l2_hits.value.ui64 =
7388 wmsum_value(&arc_sums.arcstat_l2_hits);
7389 as->arcstat_l2_misses.value.ui64 =
7390 wmsum_value(&arc_sums.arcstat_l2_misses);
7391 as->arcstat_l2_prefetch_asize.value.ui64 =
7392 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize);
7393 as->arcstat_l2_mru_asize.value.ui64 =
7394 wmsum_value(&arc_sums.arcstat_l2_mru_asize);
7395 as->arcstat_l2_mfu_asize.value.ui64 =
7396 wmsum_value(&arc_sums.arcstat_l2_mfu_asize);
7397 as->arcstat_l2_bufc_data_asize.value.ui64 =
7398 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize);
7399 as->arcstat_l2_bufc_metadata_asize.value.ui64 =
7400 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize);
7401 as->arcstat_l2_feeds.value.ui64 =
7402 wmsum_value(&arc_sums.arcstat_l2_feeds);
7403 as->arcstat_l2_rw_clash.value.ui64 =
7404 wmsum_value(&arc_sums.arcstat_l2_rw_clash);
7405 as->arcstat_l2_read_bytes.value.ui64 =
7406 wmsum_value(&arc_sums.arcstat_l2_read_bytes);
7407 as->arcstat_l2_write_bytes.value.ui64 =
7408 wmsum_value(&arc_sums.arcstat_l2_write_bytes);
7409 as->arcstat_l2_writes_sent.value.ui64 =
7410 wmsum_value(&arc_sums.arcstat_l2_writes_sent);
7411 as->arcstat_l2_writes_done.value.ui64 =
7412 wmsum_value(&arc_sums.arcstat_l2_writes_done);
7413 as->arcstat_l2_writes_error.value.ui64 =
7414 wmsum_value(&arc_sums.arcstat_l2_writes_error);
7415 as->arcstat_l2_writes_lock_retry.value.ui64 =
7416 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry);
7417 as->arcstat_l2_evict_lock_retry.value.ui64 =
7418 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry);
7419 as->arcstat_l2_evict_reading.value.ui64 =
7420 wmsum_value(&arc_sums.arcstat_l2_evict_reading);
7421 as->arcstat_l2_evict_l1cached.value.ui64 =
7422 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached);
7423 as->arcstat_l2_free_on_write.value.ui64 =
7424 wmsum_value(&arc_sums.arcstat_l2_free_on_write);
7425 as->arcstat_l2_abort_lowmem.value.ui64 =
7426 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem);
7427 as->arcstat_l2_cksum_bad.value.ui64 =
7428 wmsum_value(&arc_sums.arcstat_l2_cksum_bad);
7429 as->arcstat_l2_io_error.value.ui64 =
7430 wmsum_value(&arc_sums.arcstat_l2_io_error);
7431 as->arcstat_l2_lsize.value.ui64 =
7432 wmsum_value(&arc_sums.arcstat_l2_lsize);
7433 as->arcstat_l2_psize.value.ui64 =
7434 wmsum_value(&arc_sums.arcstat_l2_psize);
7435 as->arcstat_l2_hdr_size.value.ui64 =
7436 aggsum_value(&arc_sums.arcstat_l2_hdr_size);
7437 as->arcstat_l2_log_blk_writes.value.ui64 =
7438 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes);
7439 as->arcstat_l2_log_blk_asize.value.ui64 =
7440 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize);
7441 as->arcstat_l2_log_blk_count.value.ui64 =
7442 wmsum_value(&arc_sums.arcstat_l2_log_blk_count);
7443 as->arcstat_l2_rebuild_success.value.ui64 =
7444 wmsum_value(&arc_sums.arcstat_l2_rebuild_success);
7445 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 =
7446 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7447 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 =
7448 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7449 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 =
7450 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7451 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 =
7452 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7453 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 =
7454 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7455 as->arcstat_l2_rebuild_size.value.ui64 =
7456 wmsum_value(&arc_sums.arcstat_l2_rebuild_size);
7457 as->arcstat_l2_rebuild_asize.value.ui64 =
7458 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize);
7459 as->arcstat_l2_rebuild_bufs.value.ui64 =
7460 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs);
7461 as->arcstat_l2_rebuild_bufs_precached.value.ui64 =
7462 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7463 as->arcstat_l2_rebuild_log_blks.value.ui64 =
7464 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks);
7465 as->arcstat_memory_throttle_count.value.ui64 =
7466 wmsum_value(&arc_sums.arcstat_memory_throttle_count);
7467 as->arcstat_memory_direct_count.value.ui64 =
7468 wmsum_value(&arc_sums.arcstat_memory_direct_count);
7469 as->arcstat_memory_indirect_count.value.ui64 =
7470 wmsum_value(&arc_sums.arcstat_memory_indirect_count);
7471
7472 as->arcstat_memory_all_bytes.value.ui64 =
7473 arc_all_memory();
7474 as->arcstat_memory_free_bytes.value.ui64 =
7475 arc_free_memory();
7476 as->arcstat_memory_available_bytes.value.i64 =
7477 arc_available_memory();
7478
7479 as->arcstat_prune.value.ui64 =
7480 wmsum_value(&arc_sums.arcstat_prune);
7481 as->arcstat_meta_used.value.ui64 =
7482 wmsum_value(&arc_sums.arcstat_meta_used);
7483 as->arcstat_async_upgrade_sync.value.ui64 =
7484 wmsum_value(&arc_sums.arcstat_async_upgrade_sync);
7485 as->arcstat_predictive_prefetch.value.ui64 =
7486 wmsum_value(&arc_sums.arcstat_predictive_prefetch);
7487 as->arcstat_demand_hit_predictive_prefetch.value.ui64 =
7488 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7489 as->arcstat_demand_iohit_predictive_prefetch.value.ui64 =
7490 wmsum_value(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7491 as->arcstat_prescient_prefetch.value.ui64 =
7492 wmsum_value(&arc_sums.arcstat_prescient_prefetch);
7493 as->arcstat_demand_hit_prescient_prefetch.value.ui64 =
7494 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7495 as->arcstat_demand_iohit_prescient_prefetch.value.ui64 =
7496 wmsum_value(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7497 as->arcstat_raw_size.value.ui64 =
7498 wmsum_value(&arc_sums.arcstat_raw_size);
7499 as->arcstat_cached_only_in_progress.value.ui64 =
7500 wmsum_value(&arc_sums.arcstat_cached_only_in_progress);
7501 as->arcstat_abd_chunk_waste_size.value.ui64 =
7502 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size);
7503
7504 return (0);
7505 }
7506
7507 /*
7508 * This function *must* return indices evenly distributed between all
7509 * sublists of the multilist. This is needed due to how the ARC eviction
7510 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7511 * distributed between all sublists and uses this assumption when
7512 * deciding which sublist to evict from and how much to evict from it.
7513 */
7514 static unsigned int
arc_state_multilist_index_func(multilist_t * ml,void * obj)7515 arc_state_multilist_index_func(multilist_t *ml, void *obj)
7516 {
7517 arc_buf_hdr_t *hdr = obj;
7518
7519 /*
7520 * We rely on b_dva to generate evenly distributed index
7521 * numbers using buf_hash below. So, as an added precaution,
7522 * let's make sure we never add empty buffers to the arc lists.
7523 */
7524 ASSERT(!HDR_EMPTY(hdr));
7525
7526 /*
7527 * The assumption here, is the hash value for a given
7528 * arc_buf_hdr_t will remain constant throughout its lifetime
7529 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7530 * Thus, we don't need to store the header's sublist index
7531 * on insertion, as this index can be recalculated on removal.
7532 *
7533 * Also, the low order bits of the hash value are thought to be
7534 * distributed evenly. Otherwise, in the case that the multilist
7535 * has a power of two number of sublists, each sublists' usage
7536 * would not be evenly distributed. In this context full 64bit
7537 * division would be a waste of time, so limit it to 32 bits.
7538 */
7539 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7540 multilist_get_num_sublists(ml));
7541 }
7542
7543 static unsigned int
arc_state_l2c_multilist_index_func(multilist_t * ml,void * obj)7544 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj)
7545 {
7546 panic("Header %p insert into arc_l2c_only %p", obj, ml);
7547 }
7548
7549 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \
7550 if ((do_warn) && (tuning) && ((tuning) != (value))) { \
7551 cmn_err(CE_WARN, \
7552 "ignoring tunable %s (using %llu instead)", \
7553 (#tuning), (u_longlong_t)(value)); \
7554 } \
7555 } while (0)
7556
7557 /*
7558 * Called during module initialization and periodically thereafter to
7559 * apply reasonable changes to the exposed performance tunings. Can also be
7560 * called explicitly by param_set_arc_*() functions when ARC tunables are
7561 * updated manually. Non-zero zfs_* values which differ from the currently set
7562 * values will be applied.
7563 */
7564 void
arc_tuning_update(boolean_t verbose)7565 arc_tuning_update(boolean_t verbose)
7566 {
7567 uint64_t allmem = arc_all_memory();
7568
7569 /* Valid range: 32M - <arc_c_max> */
7570 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7571 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7572 (zfs_arc_min <= arc_c_max)) {
7573 arc_c_min = zfs_arc_min;
7574 arc_c = MAX(arc_c, arc_c_min);
7575 }
7576 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose);
7577
7578 /* Valid range: 64M - <all physical memory> */
7579 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7580 (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) &&
7581 (zfs_arc_max > arc_c_min)) {
7582 arc_c_max = zfs_arc_max;
7583 arc_c = MIN(arc_c, arc_c_max);
7584 if (arc_dnode_limit > arc_c_max)
7585 arc_dnode_limit = arc_c_max;
7586 }
7587 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose);
7588
7589 /* Valid range: 0 - <all physical memory> */
7590 arc_dnode_limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7591 MIN(zfs_arc_dnode_limit_percent, 100) * arc_c_max / 100;
7592 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_limit, verbose);
7593
7594 /* Valid range: 1 - N */
7595 if (zfs_arc_grow_retry)
7596 arc_grow_retry = zfs_arc_grow_retry;
7597
7598 /* Valid range: 1 - N */
7599 if (zfs_arc_shrink_shift) {
7600 arc_shrink_shift = zfs_arc_shrink_shift;
7601 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7602 }
7603
7604 /* Valid range: 1 - N ms */
7605 if (zfs_arc_min_prefetch_ms)
7606 arc_min_prefetch = MSEC_TO_TICK(zfs_arc_min_prefetch_ms);
7607
7608 /* Valid range: 1 - N ms */
7609 if (zfs_arc_min_prescient_prefetch_ms) {
7610 arc_min_prescient_prefetch =
7611 MSEC_TO_TICK(zfs_arc_min_prescient_prefetch_ms);
7612 }
7613
7614 /* Valid range: 0 - 100 */
7615 if (zfs_arc_lotsfree_percent <= 100)
7616 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7617 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent,
7618 verbose);
7619
7620 /* Valid range: 0 - <all physical memory> */
7621 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
7622 arc_sys_free = MIN(zfs_arc_sys_free, allmem);
7623 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose);
7624 }
7625
7626 static void
arc_state_multilist_init(multilist_t * ml,multilist_sublist_index_func_t * index_func,int * maxcountp)7627 arc_state_multilist_init(multilist_t *ml,
7628 multilist_sublist_index_func_t *index_func, int *maxcountp)
7629 {
7630 multilist_create(ml, sizeof (arc_buf_hdr_t),
7631 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func);
7632 *maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml));
7633 }
7634
7635 static void
arc_state_init(void)7636 arc_state_init(void)
7637 {
7638 int num_sublists = 0;
7639
7640 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA],
7641 arc_state_multilist_index_func, &num_sublists);
7642 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA],
7643 arc_state_multilist_index_func, &num_sublists);
7644 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
7645 arc_state_multilist_index_func, &num_sublists);
7646 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
7647 arc_state_multilist_index_func, &num_sublists);
7648 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
7649 arc_state_multilist_index_func, &num_sublists);
7650 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA],
7651 arc_state_multilist_index_func, &num_sublists);
7652 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
7653 arc_state_multilist_index_func, &num_sublists);
7654 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
7655 arc_state_multilist_index_func, &num_sublists);
7656 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_METADATA],
7657 arc_state_multilist_index_func, &num_sublists);
7658 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_DATA],
7659 arc_state_multilist_index_func, &num_sublists);
7660
7661 /*
7662 * L2 headers should never be on the L2 state list since they don't
7663 * have L1 headers allocated. Special index function asserts that.
7664 */
7665 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
7666 arc_state_l2c_multilist_index_func, &num_sublists);
7667 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
7668 arc_state_l2c_multilist_index_func, &num_sublists);
7669
7670 /*
7671 * Keep track of the number of markers needed to reclaim buffers from
7672 * any ARC state. The markers will be pre-allocated so as to minimize
7673 * the number of memory allocations performed by the eviction thread.
7674 */
7675 arc_state_evict_marker_count = num_sublists;
7676
7677 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7678 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7679 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7680 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7681 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7682 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7683 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7684 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7685 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7686 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7687 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7688 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7689 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7690 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7691
7692 zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7693 zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7694 zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7695 zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7696 zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7697 zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7698 zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7699 zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7700 zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7701 zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7702 zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7703 zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7704 zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7705 zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7706
7707 wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7708 wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7709 wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7710 wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7711
7712 wmsum_init(&arc_sums.arcstat_hits, 0);
7713 wmsum_init(&arc_sums.arcstat_iohits, 0);
7714 wmsum_init(&arc_sums.arcstat_misses, 0);
7715 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0);
7716 wmsum_init(&arc_sums.arcstat_demand_data_iohits, 0);
7717 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0);
7718 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0);
7719 wmsum_init(&arc_sums.arcstat_demand_metadata_iohits, 0);
7720 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0);
7721 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0);
7722 wmsum_init(&arc_sums.arcstat_prefetch_data_iohits, 0);
7723 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0);
7724 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0);
7725 wmsum_init(&arc_sums.arcstat_prefetch_metadata_iohits, 0);
7726 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0);
7727 wmsum_init(&arc_sums.arcstat_mru_hits, 0);
7728 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0);
7729 wmsum_init(&arc_sums.arcstat_mfu_hits, 0);
7730 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0);
7731 wmsum_init(&arc_sums.arcstat_uncached_hits, 0);
7732 wmsum_init(&arc_sums.arcstat_deleted, 0);
7733 wmsum_init(&arc_sums.arcstat_mutex_miss, 0);
7734 wmsum_init(&arc_sums.arcstat_access_skip, 0);
7735 wmsum_init(&arc_sums.arcstat_evict_skip, 0);
7736 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0);
7737 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0);
7738 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0);
7739 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0);
7740 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0);
7741 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0);
7742 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0);
7743 wmsum_init(&arc_sums.arcstat_hash_elements, 0);
7744 wmsum_init(&arc_sums.arcstat_hash_collisions, 0);
7745 wmsum_init(&arc_sums.arcstat_hash_chains, 0);
7746 aggsum_init(&arc_sums.arcstat_size, 0);
7747 wmsum_init(&arc_sums.arcstat_compressed_size, 0);
7748 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0);
7749 wmsum_init(&arc_sums.arcstat_overhead_size, 0);
7750 wmsum_init(&arc_sums.arcstat_hdr_size, 0);
7751 wmsum_init(&arc_sums.arcstat_data_size, 0);
7752 wmsum_init(&arc_sums.arcstat_metadata_size, 0);
7753 wmsum_init(&arc_sums.arcstat_dbuf_size, 0);
7754 aggsum_init(&arc_sums.arcstat_dnode_size, 0);
7755 wmsum_init(&arc_sums.arcstat_bonus_size, 0);
7756 wmsum_init(&arc_sums.arcstat_l2_hits, 0);
7757 wmsum_init(&arc_sums.arcstat_l2_misses, 0);
7758 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0);
7759 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0);
7760 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0);
7761 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0);
7762 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0);
7763 wmsum_init(&arc_sums.arcstat_l2_feeds, 0);
7764 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0);
7765 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0);
7766 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0);
7767 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0);
7768 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0);
7769 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0);
7770 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0);
7771 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0);
7772 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0);
7773 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0);
7774 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0);
7775 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0);
7776 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0);
7777 wmsum_init(&arc_sums.arcstat_l2_io_error, 0);
7778 wmsum_init(&arc_sums.arcstat_l2_lsize, 0);
7779 wmsum_init(&arc_sums.arcstat_l2_psize, 0);
7780 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0);
7781 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0);
7782 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0);
7783 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0);
7784 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0);
7785 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0);
7786 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0);
7787 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0);
7788 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0);
7789 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0);
7790 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0);
7791 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0);
7792 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0);
7793 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0);
7794 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0);
7795 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0);
7796 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0);
7797 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0);
7798 wmsum_init(&arc_sums.arcstat_prune, 0);
7799 wmsum_init(&arc_sums.arcstat_meta_used, 0);
7800 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0);
7801 wmsum_init(&arc_sums.arcstat_predictive_prefetch, 0);
7802 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0);
7803 wmsum_init(&arc_sums.arcstat_demand_iohit_predictive_prefetch, 0);
7804 wmsum_init(&arc_sums.arcstat_prescient_prefetch, 0);
7805 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0);
7806 wmsum_init(&arc_sums.arcstat_demand_iohit_prescient_prefetch, 0);
7807 wmsum_init(&arc_sums.arcstat_raw_size, 0);
7808 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0);
7809 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0);
7810
7811 arc_anon->arcs_state = ARC_STATE_ANON;
7812 arc_mru->arcs_state = ARC_STATE_MRU;
7813 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7814 arc_mfu->arcs_state = ARC_STATE_MFU;
7815 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7816 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7817 arc_uncached->arcs_state = ARC_STATE_UNCACHED;
7818 }
7819
7820 static void
arc_state_fini(void)7821 arc_state_fini(void)
7822 {
7823 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7824 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7825 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7826 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7827 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7828 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7829 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7830 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7831 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7832 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7833 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7834 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7835 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7836 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7837
7838 zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7839 zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7840 zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7841 zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7842 zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7843 zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7844 zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7845 zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7846 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7847 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7848 zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7849 zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7850 zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7851 zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7852
7853 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
7854 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7855 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7856 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7857 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
7858 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7859 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
7860 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7861 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7862 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7863 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_METADATA]);
7864 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_DATA]);
7865
7866 wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
7867 wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
7868 wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
7869 wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
7870
7871 wmsum_fini(&arc_sums.arcstat_hits);
7872 wmsum_fini(&arc_sums.arcstat_iohits);
7873 wmsum_fini(&arc_sums.arcstat_misses);
7874 wmsum_fini(&arc_sums.arcstat_demand_data_hits);
7875 wmsum_fini(&arc_sums.arcstat_demand_data_iohits);
7876 wmsum_fini(&arc_sums.arcstat_demand_data_misses);
7877 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits);
7878 wmsum_fini(&arc_sums.arcstat_demand_metadata_iohits);
7879 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses);
7880 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits);
7881 wmsum_fini(&arc_sums.arcstat_prefetch_data_iohits);
7882 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses);
7883 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits);
7884 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_iohits);
7885 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses);
7886 wmsum_fini(&arc_sums.arcstat_mru_hits);
7887 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits);
7888 wmsum_fini(&arc_sums.arcstat_mfu_hits);
7889 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits);
7890 wmsum_fini(&arc_sums.arcstat_uncached_hits);
7891 wmsum_fini(&arc_sums.arcstat_deleted);
7892 wmsum_fini(&arc_sums.arcstat_mutex_miss);
7893 wmsum_fini(&arc_sums.arcstat_access_skip);
7894 wmsum_fini(&arc_sums.arcstat_evict_skip);
7895 wmsum_fini(&arc_sums.arcstat_evict_not_enough);
7896 wmsum_fini(&arc_sums.arcstat_evict_l2_cached);
7897 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible);
7898 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu);
7899 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru);
7900 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible);
7901 wmsum_fini(&arc_sums.arcstat_evict_l2_skip);
7902 wmsum_fini(&arc_sums.arcstat_hash_elements);
7903 wmsum_fini(&arc_sums.arcstat_hash_collisions);
7904 wmsum_fini(&arc_sums.arcstat_hash_chains);
7905 aggsum_fini(&arc_sums.arcstat_size);
7906 wmsum_fini(&arc_sums.arcstat_compressed_size);
7907 wmsum_fini(&arc_sums.arcstat_uncompressed_size);
7908 wmsum_fini(&arc_sums.arcstat_overhead_size);
7909 wmsum_fini(&arc_sums.arcstat_hdr_size);
7910 wmsum_fini(&arc_sums.arcstat_data_size);
7911 wmsum_fini(&arc_sums.arcstat_metadata_size);
7912 wmsum_fini(&arc_sums.arcstat_dbuf_size);
7913 aggsum_fini(&arc_sums.arcstat_dnode_size);
7914 wmsum_fini(&arc_sums.arcstat_bonus_size);
7915 wmsum_fini(&arc_sums.arcstat_l2_hits);
7916 wmsum_fini(&arc_sums.arcstat_l2_misses);
7917 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize);
7918 wmsum_fini(&arc_sums.arcstat_l2_mru_asize);
7919 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize);
7920 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize);
7921 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize);
7922 wmsum_fini(&arc_sums.arcstat_l2_feeds);
7923 wmsum_fini(&arc_sums.arcstat_l2_rw_clash);
7924 wmsum_fini(&arc_sums.arcstat_l2_read_bytes);
7925 wmsum_fini(&arc_sums.arcstat_l2_write_bytes);
7926 wmsum_fini(&arc_sums.arcstat_l2_writes_sent);
7927 wmsum_fini(&arc_sums.arcstat_l2_writes_done);
7928 wmsum_fini(&arc_sums.arcstat_l2_writes_error);
7929 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry);
7930 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry);
7931 wmsum_fini(&arc_sums.arcstat_l2_evict_reading);
7932 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached);
7933 wmsum_fini(&arc_sums.arcstat_l2_free_on_write);
7934 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem);
7935 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad);
7936 wmsum_fini(&arc_sums.arcstat_l2_io_error);
7937 wmsum_fini(&arc_sums.arcstat_l2_lsize);
7938 wmsum_fini(&arc_sums.arcstat_l2_psize);
7939 aggsum_fini(&arc_sums.arcstat_l2_hdr_size);
7940 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes);
7941 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize);
7942 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count);
7943 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success);
7944 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7945 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7946 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7947 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7948 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7949 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size);
7950 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize);
7951 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs);
7952 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7953 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks);
7954 wmsum_fini(&arc_sums.arcstat_memory_throttle_count);
7955 wmsum_fini(&arc_sums.arcstat_memory_direct_count);
7956 wmsum_fini(&arc_sums.arcstat_memory_indirect_count);
7957 wmsum_fini(&arc_sums.arcstat_prune);
7958 wmsum_fini(&arc_sums.arcstat_meta_used);
7959 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync);
7960 wmsum_fini(&arc_sums.arcstat_predictive_prefetch);
7961 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7962 wmsum_fini(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7963 wmsum_fini(&arc_sums.arcstat_prescient_prefetch);
7964 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7965 wmsum_fini(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7966 wmsum_fini(&arc_sums.arcstat_raw_size);
7967 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress);
7968 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size);
7969 }
7970
7971 uint64_t
arc_target_bytes(void)7972 arc_target_bytes(void)
7973 {
7974 return (arc_c);
7975 }
7976
7977 void
arc_set_limits(uint64_t allmem)7978 arc_set_limits(uint64_t allmem)
7979 {
7980 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7981 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7982
7983 /* How to set default max varies by platform. */
7984 arc_c_max = arc_default_max(arc_c_min, allmem);
7985 }
7986
7987 void
arc_init(void)7988 arc_init(void)
7989 {
7990 uint64_t percent, allmem = arc_all_memory();
7991 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL);
7992 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t),
7993 offsetof(arc_evict_waiter_t, aew_node));
7994
7995 arc_min_prefetch = MSEC_TO_TICK(1000);
7996 arc_min_prescient_prefetch = MSEC_TO_TICK(6000);
7997
7998 #if defined(_KERNEL)
7999 arc_lowmem_init();
8000 #endif
8001
8002 arc_set_limits(allmem);
8003
8004 #ifdef _KERNEL
8005 /*
8006 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
8007 * environment before the module was loaded, don't block setting the
8008 * maximum because it is less than arc_c_min, instead, reset arc_c_min
8009 * to a lower value.
8010 * zfs_arc_min will be handled by arc_tuning_update().
8011 */
8012 if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX &&
8013 zfs_arc_max < allmem) {
8014 arc_c_max = zfs_arc_max;
8015 if (arc_c_min >= arc_c_max) {
8016 arc_c_min = MAX(zfs_arc_max / 2,
8017 2ULL << SPA_MAXBLOCKSHIFT);
8018 }
8019 }
8020 #else
8021 /*
8022 * In userland, there's only the memory pressure that we artificially
8023 * create (see arc_available_memory()). Don't let arc_c get too
8024 * small, because it can cause transactions to be larger than
8025 * arc_c, causing arc_tempreserve_space() to fail.
8026 */
8027 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
8028 #endif
8029
8030 arc_c = arc_c_min;
8031 /*
8032 * 32-bit fixed point fractions of metadata from total ARC size,
8033 * MRU data from all data and MRU metadata from all metadata.
8034 */
8035 arc_meta = (1ULL << 32) / 4; /* Metadata is 25% of arc_c. */
8036 arc_pd = (1ULL << 32) / 2; /* Data MRU is 50% of data. */
8037 arc_pm = (1ULL << 32) / 2; /* Metadata MRU is 50% of metadata. */
8038
8039 percent = MIN(zfs_arc_dnode_limit_percent, 100);
8040 arc_dnode_limit = arc_c_max * percent / 100;
8041
8042 /* Apply user specified tunings */
8043 arc_tuning_update(B_TRUE);
8044
8045 /* if kmem_flags are set, lets try to use less memory */
8046 if (kmem_debugging())
8047 arc_c = arc_c / 2;
8048 if (arc_c < arc_c_min)
8049 arc_c = arc_c_min;
8050
8051 arc_register_hotplug();
8052
8053 arc_state_init();
8054
8055 buf_init();
8056
8057 list_create(&arc_prune_list, sizeof (arc_prune_t),
8058 offsetof(arc_prune_t, p_node));
8059 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
8060
8061 arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads,
8062 defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
8063
8064 arc_evict_thread_init();
8065
8066 list_create(&arc_async_flush_list, sizeof (arc_async_flush_t),
8067 offsetof(arc_async_flush_t, af_node));
8068 mutex_init(&arc_async_flush_lock, NULL, MUTEX_DEFAULT, NULL);
8069 arc_flush_taskq = taskq_create("arc_flush", MIN(boot_ncpus, 4),
8070 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
8071
8072 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
8073 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
8074
8075 if (arc_ksp != NULL) {
8076 arc_ksp->ks_data = &arc_stats;
8077 arc_ksp->ks_update = arc_kstat_update;
8078 kstat_install(arc_ksp);
8079 }
8080
8081 arc_state_evict_markers =
8082 arc_state_alloc_markers(arc_state_evict_marker_count);
8083 arc_evict_zthr = zthr_create_timer("arc_evict",
8084 arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1), defclsyspri);
8085 arc_reap_zthr = zthr_create_timer("arc_reap",
8086 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri);
8087
8088 arc_warm = B_FALSE;
8089
8090 /*
8091 * Calculate maximum amount of dirty data per pool.
8092 *
8093 * If it has been set by a module parameter, take that.
8094 * Otherwise, use a percentage of physical memory defined by
8095 * zfs_dirty_data_max_percent (default 10%) with a cap at
8096 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
8097 */
8098 #ifdef __LP64__
8099 if (zfs_dirty_data_max_max == 0)
8100 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
8101 allmem * zfs_dirty_data_max_max_percent / 100);
8102 #else
8103 if (zfs_dirty_data_max_max == 0)
8104 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
8105 allmem * zfs_dirty_data_max_max_percent / 100);
8106 #endif
8107
8108 if (zfs_dirty_data_max == 0) {
8109 zfs_dirty_data_max = allmem *
8110 zfs_dirty_data_max_percent / 100;
8111 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
8112 zfs_dirty_data_max_max);
8113 }
8114
8115 if (zfs_wrlog_data_max == 0) {
8116
8117 /*
8118 * dp_wrlog_total is reduced for each txg at the end of
8119 * spa_sync(). However, dp_dirty_total is reduced every time
8120 * a block is written out. Thus under normal operation,
8121 * dp_wrlog_total could grow 2 times as big as
8122 * zfs_dirty_data_max.
8123 */
8124 zfs_wrlog_data_max = zfs_dirty_data_max * 2;
8125 }
8126 }
8127
8128 void
arc_fini(void)8129 arc_fini(void)
8130 {
8131 arc_prune_t *p;
8132
8133 #ifdef _KERNEL
8134 arc_lowmem_fini();
8135 #endif /* _KERNEL */
8136
8137 /* Wait for any background flushes */
8138 taskq_wait(arc_flush_taskq);
8139 taskq_destroy(arc_flush_taskq);
8140
8141 /* Use B_TRUE to ensure *all* buffers are evicted */
8142 arc_flush(NULL, B_TRUE);
8143
8144 if (arc_ksp != NULL) {
8145 kstat_delete(arc_ksp);
8146 arc_ksp = NULL;
8147 }
8148
8149 taskq_wait(arc_prune_taskq);
8150 taskq_destroy(arc_prune_taskq);
8151
8152 list_destroy(&arc_async_flush_list);
8153 mutex_destroy(&arc_async_flush_lock);
8154
8155 mutex_enter(&arc_prune_mtx);
8156 while ((p = list_remove_head(&arc_prune_list)) != NULL) {
8157 (void) zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
8158 zfs_refcount_destroy(&p->p_refcnt);
8159 kmem_free(p, sizeof (*p));
8160 }
8161 mutex_exit(&arc_prune_mtx);
8162
8163 list_destroy(&arc_prune_list);
8164 mutex_destroy(&arc_prune_mtx);
8165
8166 if (arc_evict_taskq != NULL)
8167 taskq_wait(arc_evict_taskq);
8168
8169 (void) zthr_cancel(arc_evict_zthr);
8170 (void) zthr_cancel(arc_reap_zthr);
8171 arc_state_free_markers(arc_state_evict_markers,
8172 arc_state_evict_marker_count);
8173
8174 if (arc_evict_taskq != NULL) {
8175 taskq_destroy(arc_evict_taskq);
8176 kmem_free(arc_evict_arg,
8177 sizeof (evict_arg_t) * zfs_arc_evict_threads);
8178 }
8179
8180 mutex_destroy(&arc_evict_lock);
8181 list_destroy(&arc_evict_waiters);
8182
8183 /*
8184 * Free any buffers that were tagged for destruction. This needs
8185 * to occur before arc_state_fini() runs and destroys the aggsum
8186 * values which are updated when freeing scatter ABDs.
8187 */
8188 l2arc_do_free_on_write();
8189
8190 /*
8191 * buf_fini() must proceed arc_state_fini() because buf_fin() may
8192 * trigger the release of kmem magazines, which can callback to
8193 * arc_space_return() which accesses aggsums freed in act_state_fini().
8194 */
8195 buf_fini();
8196 arc_state_fini();
8197
8198 arc_unregister_hotplug();
8199
8200 /*
8201 * We destroy the zthrs after all the ARC state has been
8202 * torn down to avoid the case of them receiving any
8203 * wakeup() signals after they are destroyed.
8204 */
8205 zthr_destroy(arc_evict_zthr);
8206 zthr_destroy(arc_reap_zthr);
8207
8208 ASSERT0(arc_loaned_bytes);
8209 }
8210
8211 /*
8212 * Level 2 ARC
8213 *
8214 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
8215 * It uses dedicated storage devices to hold cached data, which are populated
8216 * using large infrequent writes. The main role of this cache is to boost
8217 * the performance of random read workloads. The intended L2ARC devices
8218 * include short-stroked disks, solid state disks, and other media with
8219 * substantially faster read latency than disk.
8220 *
8221 * +-----------------------+
8222 * | ARC |
8223 * +-----------------------+
8224 * | ^ ^
8225 * | | |
8226 * l2arc_feed_thread() arc_read()
8227 * | | |
8228 * | l2arc read |
8229 * V | |
8230 * +---------------+ |
8231 * | L2ARC | |
8232 * +---------------+ |
8233 * | ^ |
8234 * l2arc_write() | |
8235 * | | |
8236 * V | |
8237 * +-------+ +-------+
8238 * | vdev | | vdev |
8239 * | cache | | cache |
8240 * +-------+ +-------+
8241 * +=========+ .-----.
8242 * : L2ARC : |-_____-|
8243 * : devices : | Disks |
8244 * +=========+ `-_____-'
8245 *
8246 * Read requests are satisfied from the following sources, in order:
8247 *
8248 * 1) ARC
8249 * 2) vdev cache of L2ARC devices
8250 * 3) L2ARC devices
8251 * 4) vdev cache of disks
8252 * 5) disks
8253 *
8254 * Some L2ARC device types exhibit extremely slow write performance.
8255 * To accommodate for this there are some significant differences between
8256 * the L2ARC and traditional cache design:
8257 *
8258 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
8259 * the ARC behave as usual, freeing buffers and placing headers on ghost
8260 * lists. The ARC does not send buffers to the L2ARC during eviction as
8261 * this would add inflated write latencies for all ARC memory pressure.
8262 *
8263 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
8264 * It does this by periodically scanning buffers from the eviction-end of
8265 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
8266 * not already there. It scans until a headroom of buffers is satisfied,
8267 * which itself is a buffer for ARC eviction. If a compressible buffer is
8268 * found during scanning and selected for writing to an L2ARC device, we
8269 * temporarily boost scanning headroom during the next scan cycle to make
8270 * sure we adapt to compression effects (which might significantly reduce
8271 * the data volume we write to L2ARC). The thread that does this is
8272 * l2arc_feed_thread(), illustrated below; example sizes are included to
8273 * provide a better sense of ratio than this diagram:
8274 *
8275 * head --> tail
8276 * +---------------------+----------+
8277 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
8278 * +---------------------+----------+ | o L2ARC eligible
8279 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
8280 * +---------------------+----------+ |
8281 * 15.9 Gbytes ^ 32 Mbytes |
8282 * headroom |
8283 * l2arc_feed_thread()
8284 * |
8285 * l2arc write hand <--[oooo]--'
8286 * | 8 Mbyte
8287 * | write max
8288 * V
8289 * +==============================+
8290 * L2ARC dev |####|#|###|###| |####| ... |
8291 * +==============================+
8292 * 32 Gbytes
8293 *
8294 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
8295 * evicted, then the L2ARC has cached a buffer much sooner than it probably
8296 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
8297 * safe to say that this is an uncommon case, since buffers at the end of
8298 * the ARC lists have moved there due to inactivity.
8299 *
8300 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
8301 * then the L2ARC simply misses copying some buffers. This serves as a
8302 * pressure valve to prevent heavy read workloads from both stalling the ARC
8303 * with waits and clogging the L2ARC with writes. This also helps prevent
8304 * the potential for the L2ARC to churn if it attempts to cache content too
8305 * quickly, such as during backups of the entire pool.
8306 *
8307 * 5. After system boot and before the ARC has filled main memory, there are
8308 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
8309 * lists can remain mostly static. Instead of searching from tail of these
8310 * lists as pictured, the l2arc_feed_thread() will search from the list heads
8311 * for eligible buffers, greatly increasing its chance of finding them.
8312 *
8313 * The L2ARC device write speed is also boosted during this time so that
8314 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
8315 * there are no L2ARC reads, and no fear of degrading read performance
8316 * through increased writes.
8317 *
8318 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
8319 * the vdev queue can aggregate them into larger and fewer writes. Each
8320 * device is written to in a rotor fashion, sweeping writes through
8321 * available space then repeating.
8322 *
8323 * 7. The L2ARC does not store dirty content. It never needs to flush
8324 * write buffers back to disk based storage.
8325 *
8326 * 8. If an ARC buffer is written (and dirtied) which also exists in the
8327 * L2ARC, the now stale L2ARC buffer is immediately dropped.
8328 *
8329 * The performance of the L2ARC can be tweaked by a number of tunables, which
8330 * may be necessary for different workloads:
8331 *
8332 * l2arc_write_max max write bytes per interval
8333 * l2arc_write_boost extra write bytes during device warmup
8334 * l2arc_noprefetch skip caching prefetched buffers
8335 * l2arc_headroom number of max device writes to precache
8336 * l2arc_headroom_boost when we find compressed buffers during ARC
8337 * scanning, we multiply headroom by this
8338 * percentage factor for the next scan cycle,
8339 * since more compressed buffers are likely to
8340 * be present
8341 * l2arc_feed_secs seconds between L2ARC writing
8342 *
8343 * Tunables may be removed or added as future performance improvements are
8344 * integrated, and also may become zpool properties.
8345 *
8346 * There are three key functions that control how the L2ARC warms up:
8347 *
8348 * l2arc_write_eligible() check if a buffer is eligible to cache
8349 * l2arc_write_size() calculate how much to write
8350 * l2arc_write_interval() calculate sleep delay between writes
8351 *
8352 * These three functions determine what to write, how much, and how quickly
8353 * to send writes.
8354 *
8355 * L2ARC persistence:
8356 *
8357 * When writing buffers to L2ARC, we periodically add some metadata to
8358 * make sure we can pick them up after reboot, thus dramatically reducing
8359 * the impact that any downtime has on the performance of storage systems
8360 * with large caches.
8361 *
8362 * The implementation works fairly simply by integrating the following two
8363 * modifications:
8364 *
8365 * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
8366 * which is an additional piece of metadata which describes what's been
8367 * written. This allows us to rebuild the arc_buf_hdr_t structures of the
8368 * main ARC buffers. There are 2 linked-lists of log blocks headed by
8369 * dh_start_lbps[2]. We alternate which chain we append to, so they are
8370 * time-wise and offset-wise interleaved, but that is an optimization rather
8371 * than for correctness. The log block also includes a pointer to the
8372 * previous block in its chain.
8373 *
8374 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
8375 * for our header bookkeeping purposes. This contains a device header,
8376 * which contains our top-level reference structures. We update it each
8377 * time we write a new log block, so that we're able to locate it in the
8378 * L2ARC device. If this write results in an inconsistent device header
8379 * (e.g. due to power failure), we detect this by verifying the header's
8380 * checksum and simply fail to reconstruct the L2ARC after reboot.
8381 *
8382 * Implementation diagram:
8383 *
8384 * +=== L2ARC device (not to scale) ======================================+
8385 * | ___two newest log block pointers__.__________ |
8386 * | / \dh_start_lbps[1] |
8387 * | / \ \dh_start_lbps[0]|
8388 * |.___/__. V V |
8389 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
8390 * || hdr| ^ /^ /^ / / |
8391 * |+------+ ...--\-------/ \-----/--\------/ / |
8392 * | \--------------/ \--------------/ |
8393 * +======================================================================+
8394 *
8395 * As can be seen on the diagram, rather than using a simple linked list,
8396 * we use a pair of linked lists with alternating elements. This is a
8397 * performance enhancement due to the fact that we only find out the
8398 * address of the next log block access once the current block has been
8399 * completely read in. Obviously, this hurts performance, because we'd be
8400 * keeping the device's I/O queue at only a 1 operation deep, thus
8401 * incurring a large amount of I/O round-trip latency. Having two lists
8402 * allows us to fetch two log blocks ahead of where we are currently
8403 * rebuilding L2ARC buffers.
8404 *
8405 * On-device data structures:
8406 *
8407 * L2ARC device header: l2arc_dev_hdr_phys_t
8408 * L2ARC log block: l2arc_log_blk_phys_t
8409 *
8410 * L2ARC reconstruction:
8411 *
8412 * When writing data, we simply write in the standard rotary fashion,
8413 * evicting buffers as we go and simply writing new data over them (writing
8414 * a new log block every now and then). This obviously means that once we
8415 * loop around the end of the device, we will start cutting into an already
8416 * committed log block (and its referenced data buffers), like so:
8417 *
8418 * current write head__ __old tail
8419 * \ /
8420 * V V
8421 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |-->
8422 * ^ ^^^^^^^^^___________________________________
8423 * | \
8424 * <<nextwrite>> may overwrite this blk and/or its bufs --'
8425 *
8426 * When importing the pool, we detect this situation and use it to stop
8427 * our scanning process (see l2arc_rebuild).
8428 *
8429 * There is one significant caveat to consider when rebuilding ARC contents
8430 * from an L2ARC device: what about invalidated buffers? Given the above
8431 * construction, we cannot update blocks which we've already written to amend
8432 * them to remove buffers which were invalidated. Thus, during reconstruction,
8433 * we might be populating the cache with buffers for data that's not on the
8434 * main pool anymore, or may have been overwritten!
8435 *
8436 * As it turns out, this isn't a problem. Every arc_read request includes
8437 * both the DVA and, crucially, the birth TXG of the BP the caller is
8438 * looking for. So even if the cache were populated by completely rotten
8439 * blocks for data that had been long deleted and/or overwritten, we'll
8440 * never actually return bad data from the cache, since the DVA with the
8441 * birth TXG uniquely identify a block in space and time - once created,
8442 * a block is immutable on disk. The worst thing we have done is wasted
8443 * some time and memory at l2arc rebuild to reconstruct outdated ARC
8444 * entries that will get dropped from the l2arc as it is being updated
8445 * with new blocks.
8446 *
8447 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8448 * hand are not restored. This is done by saving the offset (in bytes)
8449 * l2arc_evict() has evicted to in the L2ARC device header and taking it
8450 * into account when restoring buffers.
8451 */
8452
8453 static boolean_t
l2arc_write_eligible(uint64_t spa_guid,arc_buf_hdr_t * hdr)8454 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
8455 {
8456 /*
8457 * A buffer is *not* eligible for the L2ARC if it:
8458 * 1. belongs to a different spa.
8459 * 2. is already cached on the L2ARC.
8460 * 3. has an I/O in progress (it may be an incomplete read).
8461 * 4. is flagged not eligible (zfs property).
8462 */
8463 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
8464 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
8465 return (B_FALSE);
8466
8467 return (B_TRUE);
8468 }
8469
8470 static uint64_t
l2arc_write_size(l2arc_dev_t * dev)8471 l2arc_write_size(l2arc_dev_t *dev)
8472 {
8473 uint64_t size;
8474
8475 /*
8476 * Make sure our globals have meaningful values in case the user
8477 * altered them.
8478 */
8479 size = l2arc_write_max;
8480 if (size == 0) {
8481 cmn_err(CE_NOTE, "l2arc_write_max must be greater than zero, "
8482 "resetting it to the default (%d)", L2ARC_WRITE_SIZE);
8483 size = l2arc_write_max = L2ARC_WRITE_SIZE;
8484 }
8485
8486 if (arc_warm == B_FALSE)
8487 size += l2arc_write_boost;
8488
8489 /* We need to add in the worst case scenario of log block overhead. */
8490 size += l2arc_log_blk_overhead(size, dev);
8491 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) {
8492 /*
8493 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
8494 * times the writesize, whichever is greater.
8495 */
8496 size += MAX(64 * 1024 * 1024,
8497 (size * l2arc_trim_ahead) / 100);
8498 }
8499
8500 /*
8501 * Make sure the write size does not exceed the size of the cache
8502 * device. This is important in l2arc_evict(), otherwise infinite
8503 * iteration can occur.
8504 */
8505 size = MIN(size, (dev->l2ad_end - dev->l2ad_start) / 4);
8506
8507 size = P2ROUNDUP(size, 1ULL << dev->l2ad_vdev->vdev_ashift);
8508
8509 return (size);
8510
8511 }
8512
8513 static clock_t
l2arc_write_interval(clock_t began,uint64_t wanted,uint64_t wrote)8514 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
8515 {
8516 clock_t interval, next, now;
8517
8518 /*
8519 * If the ARC lists are busy, increase our write rate; if the
8520 * lists are stale, idle back. This is achieved by checking
8521 * how much we previously wrote - if it was more than half of
8522 * what we wanted, schedule the next write much sooner.
8523 */
8524 if (l2arc_feed_again && wrote > (wanted / 2))
8525 interval = (hz * l2arc_feed_min_ms) / 1000;
8526 else
8527 interval = hz * l2arc_feed_secs;
8528
8529 now = ddi_get_lbolt();
8530 next = MAX(now, MIN(now + interval, began + interval));
8531
8532 return (next);
8533 }
8534
8535 static boolean_t
l2arc_dev_invalid(const l2arc_dev_t * dev)8536 l2arc_dev_invalid(const l2arc_dev_t *dev)
8537 {
8538 /*
8539 * We want to skip devices that are being rebuilt, trimmed,
8540 * removed, or belong to a spa that is being exported.
8541 */
8542 return (dev->l2ad_vdev == NULL || vdev_is_dead(dev->l2ad_vdev) ||
8543 dev->l2ad_rebuild || dev->l2ad_trim_all ||
8544 dev->l2ad_spa == NULL || dev->l2ad_spa->spa_is_exporting);
8545 }
8546
8547 /*
8548 * Cycle through L2ARC devices. This is how L2ARC load balances.
8549 * If a device is returned, this also returns holding the spa config lock.
8550 */
8551 static l2arc_dev_t *
l2arc_dev_get_next(void)8552 l2arc_dev_get_next(void)
8553 {
8554 l2arc_dev_t *first, *next = NULL;
8555
8556 /*
8557 * Lock out the removal of spas (spa_namespace_lock), then removal
8558 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
8559 * both locks will be dropped and a spa config lock held instead.
8560 */
8561 spa_namespace_enter(FTAG);
8562 mutex_enter(&l2arc_dev_mtx);
8563
8564 /* if there are no vdevs, there is nothing to do */
8565 if (l2arc_ndev == 0)
8566 goto out;
8567
8568 first = NULL;
8569 next = l2arc_dev_last;
8570 do {
8571 /* loop around the list looking for a non-faulted vdev */
8572 if (next == NULL) {
8573 next = list_head(l2arc_dev_list);
8574 } else {
8575 next = list_next(l2arc_dev_list, next);
8576 if (next == NULL)
8577 next = list_head(l2arc_dev_list);
8578 }
8579
8580 /* if we have come back to the start, bail out */
8581 if (first == NULL)
8582 first = next;
8583 else if (next == first)
8584 break;
8585
8586 ASSERT3P(next, !=, NULL);
8587 } while (l2arc_dev_invalid(next));
8588
8589 /* if we were unable to find any usable vdevs, return NULL */
8590 if (l2arc_dev_invalid(next))
8591 next = NULL;
8592
8593 l2arc_dev_last = next;
8594
8595 out:
8596 mutex_exit(&l2arc_dev_mtx);
8597
8598 /*
8599 * Grab the config lock to prevent the 'next' device from being
8600 * removed while we are writing to it.
8601 */
8602 if (next != NULL)
8603 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
8604 spa_namespace_exit(FTAG);
8605
8606 return (next);
8607 }
8608
8609 /*
8610 * Free buffers that were tagged for destruction.
8611 */
8612 static void
l2arc_do_free_on_write(void)8613 l2arc_do_free_on_write(void)
8614 {
8615 l2arc_data_free_t *df;
8616
8617 mutex_enter(&l2arc_free_on_write_mtx);
8618 while ((df = list_remove_head(l2arc_free_on_write)) != NULL) {
8619 ASSERT3P(df->l2df_abd, !=, NULL);
8620 abd_free(df->l2df_abd);
8621 kmem_free(df, sizeof (l2arc_data_free_t));
8622 }
8623 mutex_exit(&l2arc_free_on_write_mtx);
8624 }
8625
8626 /*
8627 * A write to a cache device has completed. Update all headers to allow
8628 * reads from these buffers to begin.
8629 */
8630 static void
l2arc_write_done(zio_t * zio)8631 l2arc_write_done(zio_t *zio)
8632 {
8633 l2arc_write_callback_t *cb;
8634 l2arc_lb_abd_buf_t *abd_buf;
8635 l2arc_lb_ptr_buf_t *lb_ptr_buf;
8636 l2arc_dev_t *dev;
8637 l2arc_dev_hdr_phys_t *l2dhdr;
8638 list_t *buflist;
8639 arc_buf_hdr_t *head, *hdr, *hdr_prev;
8640 kmutex_t *hash_lock;
8641 int64_t bytes_dropped = 0;
8642
8643 cb = zio->io_private;
8644 ASSERT3P(cb, !=, NULL);
8645 dev = cb->l2wcb_dev;
8646 l2dhdr = dev->l2ad_dev_hdr;
8647 ASSERT3P(dev, !=, NULL);
8648 head = cb->l2wcb_head;
8649 ASSERT3P(head, !=, NULL);
8650 buflist = &dev->l2ad_buflist;
8651 ASSERT3P(buflist, !=, NULL);
8652 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
8653 l2arc_write_callback_t *, cb);
8654
8655 /*
8656 * All writes completed, or an error was hit.
8657 */
8658 top:
8659 mutex_enter(&dev->l2ad_mtx);
8660 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
8661 hdr_prev = list_prev(buflist, hdr);
8662
8663 hash_lock = HDR_LOCK(hdr);
8664
8665 /*
8666 * We cannot use mutex_enter or else we can deadlock
8667 * with l2arc_write_buffers (due to swapping the order
8668 * the hash lock and l2ad_mtx are taken).
8669 */
8670 if (!mutex_tryenter(hash_lock)) {
8671 /*
8672 * Missed the hash lock. We must retry so we
8673 * don't leave the ARC_FLAG_L2_WRITING bit set.
8674 */
8675 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
8676
8677 /*
8678 * We don't want to rescan the headers we've
8679 * already marked as having been written out, so
8680 * we reinsert the head node so we can pick up
8681 * where we left off.
8682 */
8683 list_remove(buflist, head);
8684 list_insert_after(buflist, hdr, head);
8685
8686 mutex_exit(&dev->l2ad_mtx);
8687
8688 /*
8689 * We wait for the hash lock to become available
8690 * to try and prevent busy waiting, and increase
8691 * the chance we'll be able to acquire the lock
8692 * the next time around.
8693 */
8694 mutex_enter(hash_lock);
8695 mutex_exit(hash_lock);
8696 goto top;
8697 }
8698
8699 /*
8700 * We could not have been moved into the arc_l2c_only
8701 * state while in-flight due to our ARC_FLAG_L2_WRITING
8702 * bit being set. Let's just ensure that's being enforced.
8703 */
8704 ASSERT(HDR_HAS_L1HDR(hdr));
8705
8706 /*
8707 * Skipped - drop L2ARC entry and mark the header as no
8708 * longer L2 eligibile.
8709 */
8710 if (zio->io_error != 0) {
8711 /*
8712 * Error - drop L2ARC entry.
8713 */
8714 list_remove(buflist, hdr);
8715 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
8716
8717 uint64_t psize = HDR_GET_PSIZE(hdr);
8718 l2arc_hdr_arcstats_decrement(hdr);
8719
8720 ASSERT(dev->l2ad_vdev != NULL);
8721
8722 bytes_dropped +=
8723 vdev_psize_to_asize(dev->l2ad_vdev, psize);
8724 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
8725 arc_hdr_size(hdr), hdr);
8726 }
8727
8728 /*
8729 * Allow ARC to begin reads and ghost list evictions to
8730 * this L2ARC entry.
8731 */
8732 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
8733
8734 mutex_exit(hash_lock);
8735 }
8736
8737 /*
8738 * Free the allocated abd buffers for writing the log blocks.
8739 * If the zio failed reclaim the allocated space and remove the
8740 * pointers to these log blocks from the log block pointer list
8741 * of the L2ARC device.
8742 */
8743 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
8744 abd_free(abd_buf->abd);
8745 zio_buf_free(abd_buf, sizeof (*abd_buf));
8746 if (zio->io_error != 0) {
8747 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
8748 /*
8749 * L2BLK_GET_PSIZE returns aligned size for log
8750 * blocks.
8751 */
8752 uint64_t asize =
8753 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
8754 bytes_dropped += asize;
8755 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8756 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8757 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8758 lb_ptr_buf);
8759 (void) zfs_refcount_remove(&dev->l2ad_lb_count,
8760 lb_ptr_buf);
8761 kmem_free(lb_ptr_buf->lb_ptr,
8762 sizeof (l2arc_log_blkptr_t));
8763 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8764 }
8765 }
8766 list_destroy(&cb->l2wcb_abd_list);
8767
8768 if (zio->io_error != 0) {
8769 ARCSTAT_BUMP(arcstat_l2_writes_error);
8770
8771 /*
8772 * Restore the lbps array in the header to its previous state.
8773 * If the list of log block pointers is empty, zero out the
8774 * log block pointers in the device header.
8775 */
8776 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
8777 for (int i = 0; i < 2; i++) {
8778 if (lb_ptr_buf == NULL) {
8779 /*
8780 * If the list is empty zero out the device
8781 * header. Otherwise zero out the second log
8782 * block pointer in the header.
8783 */
8784 if (i == 0) {
8785 memset(l2dhdr, 0,
8786 dev->l2ad_dev_hdr_asize);
8787 } else {
8788 memset(&l2dhdr->dh_start_lbps[i], 0,
8789 sizeof (l2arc_log_blkptr_t));
8790 }
8791 break;
8792 }
8793 memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr,
8794 sizeof (l2arc_log_blkptr_t));
8795 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
8796 lb_ptr_buf);
8797 }
8798 }
8799
8800 ARCSTAT_BUMP(arcstat_l2_writes_done);
8801 list_remove(buflist, head);
8802 ASSERT(!HDR_HAS_L1HDR(head));
8803 kmem_cache_free(hdr_l2only_cache, head);
8804 mutex_exit(&dev->l2ad_mtx);
8805
8806 ASSERT(dev->l2ad_vdev != NULL);
8807 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8808
8809 l2arc_do_free_on_write();
8810
8811 kmem_free(cb, sizeof (l2arc_write_callback_t));
8812 }
8813
8814 static int
l2arc_untransform(zio_t * zio,l2arc_read_callback_t * cb)8815 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8816 {
8817 int ret;
8818 spa_t *spa = zio->io_spa;
8819 arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8820 blkptr_t *bp = zio->io_bp;
8821 uint8_t salt[ZIO_DATA_SALT_LEN];
8822 uint8_t iv[ZIO_DATA_IV_LEN];
8823 uint8_t mac[ZIO_DATA_MAC_LEN];
8824 boolean_t no_crypt = B_FALSE;
8825
8826 /*
8827 * ZIL data is never be written to the L2ARC, so we don't need
8828 * special handling for its unique MAC storage.
8829 */
8830 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8831 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
8832 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8833
8834 /*
8835 * If the data was encrypted, decrypt it now. Note that
8836 * we must check the bp here and not the hdr, since the
8837 * hdr does not have its encryption parameters updated
8838 * until arc_read_done().
8839 */
8840 if (BP_IS_ENCRYPTED(bp)) {
8841 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8842 ARC_HDR_USE_RESERVE);
8843
8844 zio_crypt_decode_params_bp(bp, salt, iv);
8845 zio_crypt_decode_mac_bp(bp, mac);
8846
8847 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8848 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8849 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8850 hdr->b_l1hdr.b_pabd, &no_crypt);
8851 if (ret != 0) {
8852 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8853 goto error;
8854 }
8855
8856 /*
8857 * If we actually performed decryption, replace b_pabd
8858 * with the decrypted data. Otherwise we can just throw
8859 * our decryption buffer away.
8860 */
8861 if (!no_crypt) {
8862 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8863 arc_hdr_size(hdr), hdr);
8864 hdr->b_l1hdr.b_pabd = eabd;
8865 zio->io_abd = eabd;
8866 } else {
8867 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8868 }
8869 }
8870
8871 /*
8872 * If the L2ARC block was compressed, but ARC compression
8873 * is disabled we decompress the data into a new buffer and
8874 * replace the existing data.
8875 */
8876 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8877 !HDR_COMPRESSION_ENABLED(hdr)) {
8878 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8879 ARC_HDR_USE_RESERVE);
8880
8881 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8882 hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr),
8883 HDR_GET_LSIZE(hdr), &hdr->b_complevel);
8884 if (ret != 0) {
8885 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8886 goto error;
8887 }
8888
8889 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8890 arc_hdr_size(hdr), hdr);
8891 hdr->b_l1hdr.b_pabd = cabd;
8892 zio->io_abd = cabd;
8893 zio->io_size = HDR_GET_LSIZE(hdr);
8894 }
8895
8896 return (0);
8897
8898 error:
8899 return (ret);
8900 }
8901
8902
8903 /*
8904 * A read to a cache device completed. Validate buffer contents before
8905 * handing over to the regular ARC routines.
8906 */
8907 static void
l2arc_read_done(zio_t * zio)8908 l2arc_read_done(zio_t *zio)
8909 {
8910 int tfm_error = 0;
8911 l2arc_read_callback_t *cb = zio->io_private;
8912 arc_buf_hdr_t *hdr;
8913 kmutex_t *hash_lock;
8914 boolean_t valid_cksum;
8915 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8916 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
8917
8918 ASSERT3P(zio->io_vd, !=, NULL);
8919 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8920
8921 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8922
8923 ASSERT3P(cb, !=, NULL);
8924 hdr = cb->l2rcb_hdr;
8925 ASSERT3P(hdr, !=, NULL);
8926
8927 hash_lock = HDR_LOCK(hdr);
8928 mutex_enter(hash_lock);
8929 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8930
8931 /*
8932 * If the data was read into a temporary buffer,
8933 * move it and free the buffer.
8934 */
8935 if (cb->l2rcb_abd != NULL) {
8936 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8937 if (zio->io_error == 0) {
8938 if (using_rdata) {
8939 abd_copy(hdr->b_crypt_hdr.b_rabd,
8940 cb->l2rcb_abd, arc_hdr_size(hdr));
8941 } else {
8942 abd_copy(hdr->b_l1hdr.b_pabd,
8943 cb->l2rcb_abd, arc_hdr_size(hdr));
8944 }
8945 }
8946
8947 /*
8948 * The following must be done regardless of whether
8949 * there was an error:
8950 * - free the temporary buffer
8951 * - point zio to the real ARC buffer
8952 * - set zio size accordingly
8953 * These are required because zio is either re-used for
8954 * an I/O of the block in the case of the error
8955 * or the zio is passed to arc_read_done() and it
8956 * needs real data.
8957 */
8958 abd_free(cb->l2rcb_abd);
8959 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8960
8961 if (using_rdata) {
8962 ASSERT(HDR_HAS_RABD(hdr));
8963 zio->io_abd = zio->io_orig_abd =
8964 hdr->b_crypt_hdr.b_rabd;
8965 } else {
8966 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8967 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8968 }
8969 }
8970
8971 ASSERT3P(zio->io_abd, !=, NULL);
8972
8973 /*
8974 * Check this survived the L2ARC journey.
8975 */
8976 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8977 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8978 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
8979 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
8980 zio->io_prop.zp_complevel = hdr->b_complevel;
8981
8982 valid_cksum = arc_cksum_is_equal(hdr, zio);
8983
8984 /*
8985 * b_rabd will always match the data as it exists on disk if it is
8986 * being used. Therefore if we are reading into b_rabd we do not
8987 * attempt to untransform the data.
8988 */
8989 if (valid_cksum && !using_rdata)
8990 tfm_error = l2arc_untransform(zio, cb);
8991
8992 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8993 !HDR_L2_EVICTED(hdr)) {
8994 mutex_exit(hash_lock);
8995 zio->io_private = hdr;
8996 arc_read_done(zio);
8997 } else {
8998 /*
8999 * Buffer didn't survive caching. Increment stats and
9000 * reissue to the original storage device.
9001 */
9002 if (zio->io_error != 0) {
9003 ARCSTAT_BUMP(arcstat_l2_io_error);
9004 } else {
9005 zio->io_error = SET_ERROR(EIO);
9006 }
9007 if (!valid_cksum || tfm_error != 0)
9008 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
9009
9010 /*
9011 * If there's no waiter, issue an async i/o to the primary
9012 * storage now. If there *is* a waiter, the caller must
9013 * issue the i/o in a context where it's OK to block.
9014 */
9015 if (zio->io_waiter == NULL) {
9016 zio_t *pio = zio_unique_parent(zio);
9017 void *abd = (using_rdata) ?
9018 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
9019
9020 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
9021
9022 zio = zio_read(pio, zio->io_spa, zio->io_bp,
9023 abd, zio->io_size, arc_read_done,
9024 hdr, zio->io_priority, cb->l2rcb_flags,
9025 &cb->l2rcb_zb);
9026
9027 /*
9028 * Original ZIO will be freed, so we need to update
9029 * ARC header with the new ZIO pointer to be used
9030 * by zio_change_priority() in arc_read().
9031 */
9032 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
9033 acb != NULL; acb = acb->acb_next)
9034 acb->acb_zio_head = zio;
9035
9036 mutex_exit(hash_lock);
9037 zio_nowait(zio);
9038 } else {
9039 mutex_exit(hash_lock);
9040 }
9041 }
9042
9043 kmem_free(cb, sizeof (l2arc_read_callback_t));
9044 }
9045
9046 /*
9047 * This is the list priority from which the L2ARC will search for pages to
9048 * cache. This is used within loops (0..3) to cycle through lists in the
9049 * desired order. This order can have a significant effect on cache
9050 * performance.
9051 *
9052 * Currently the metadata lists are hit first, MFU then MRU, followed by
9053 * the data lists. This function returns a locked list, and also returns
9054 * the lock pointer.
9055 */
9056 static multilist_sublist_t *
l2arc_sublist_lock(int list_num)9057 l2arc_sublist_lock(int list_num)
9058 {
9059 multilist_t *ml = NULL;
9060 unsigned int idx;
9061
9062 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
9063
9064 switch (list_num) {
9065 case 0:
9066 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
9067 break;
9068 case 1:
9069 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
9070 break;
9071 case 2:
9072 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
9073 break;
9074 case 3:
9075 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
9076 break;
9077 default:
9078 return (NULL);
9079 }
9080
9081 /*
9082 * Return a randomly-selected sublist. This is acceptable
9083 * because the caller feeds only a little bit of data for each
9084 * call (8MB). Subsequent calls will result in different
9085 * sublists being selected.
9086 */
9087 idx = multilist_get_random_index(ml);
9088 return (multilist_sublist_lock_idx(ml, idx));
9089 }
9090
9091 /*
9092 * Calculates the maximum overhead of L2ARC metadata log blocks for a given
9093 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
9094 * overhead in processing to make sure there is enough headroom available
9095 * when writing buffers.
9096 */
9097 static inline uint64_t
l2arc_log_blk_overhead(uint64_t write_sz,l2arc_dev_t * dev)9098 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
9099 {
9100 if (dev->l2ad_log_entries == 0) {
9101 return (0);
9102 } else {
9103 ASSERT(dev->l2ad_vdev != NULL);
9104
9105 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
9106
9107 uint64_t log_blocks = (log_entries +
9108 dev->l2ad_log_entries - 1) /
9109 dev->l2ad_log_entries;
9110
9111 return (vdev_psize_to_asize(dev->l2ad_vdev,
9112 sizeof (l2arc_log_blk_phys_t)) * log_blocks);
9113 }
9114 }
9115
9116 /*
9117 * Evict buffers from the device write hand to the distance specified in
9118 * bytes. This distance may span populated buffers, it may span nothing.
9119 * This is clearing a region on the L2ARC device ready for writing.
9120 * If the 'all' boolean is set, every buffer is evicted.
9121 */
9122 static void
l2arc_evict(l2arc_dev_t * dev,uint64_t distance,boolean_t all)9123 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
9124 {
9125 list_t *buflist;
9126 arc_buf_hdr_t *hdr, *hdr_prev;
9127 kmutex_t *hash_lock;
9128 uint64_t taddr;
9129 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
9130 vdev_t *vd = dev->l2ad_vdev;
9131 boolean_t rerun;
9132
9133 ASSERT(vd != NULL || all);
9134 ASSERT(dev->l2ad_spa != NULL || all);
9135
9136 buflist = &dev->l2ad_buflist;
9137
9138 top:
9139 rerun = B_FALSE;
9140 if (dev->l2ad_hand + distance > dev->l2ad_end) {
9141 /*
9142 * When there is no space to accommodate upcoming writes,
9143 * evict to the end. Then bump the write and evict hands
9144 * to the start and iterate. This iteration does not
9145 * happen indefinitely as we make sure in
9146 * l2arc_write_size() that when the write hand is reset,
9147 * the write size does not exceed the end of the device.
9148 */
9149 rerun = B_TRUE;
9150 taddr = dev->l2ad_end;
9151 } else {
9152 taddr = dev->l2ad_hand + distance;
9153 }
9154 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
9155 uint64_t, taddr, boolean_t, all);
9156
9157 if (!all) {
9158 /*
9159 * This check has to be placed after deciding whether to
9160 * iterate (rerun).
9161 */
9162 if (dev->l2ad_first) {
9163 /*
9164 * This is the first sweep through the device. There is
9165 * nothing to evict. We have already trimmed the
9166 * whole device.
9167 */
9168 goto out;
9169 } else {
9170 /*
9171 * Trim the space to be evicted.
9172 */
9173 if (vd->vdev_has_trim && dev->l2ad_evict < taddr &&
9174 l2arc_trim_ahead > 0) {
9175 /*
9176 * We have to drop the spa_config lock because
9177 * vdev_trim_range() will acquire it.
9178 * l2ad_evict already accounts for the label
9179 * size. To prevent vdev_trim_ranges() from
9180 * adding it again, we subtract it from
9181 * l2ad_evict.
9182 */
9183 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev);
9184 vdev_trim_simple(vd,
9185 dev->l2ad_evict - VDEV_LABEL_START_SIZE,
9186 taddr - dev->l2ad_evict);
9187 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev,
9188 RW_READER);
9189 }
9190
9191 /*
9192 * When rebuilding L2ARC we retrieve the evict hand
9193 * from the header of the device. Of note, l2arc_evict()
9194 * does not actually delete buffers from the cache
9195 * device, but trimming may do so depending on the
9196 * hardware implementation. Thus keeping track of the
9197 * evict hand is useful.
9198 */
9199 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
9200 }
9201 }
9202
9203 retry:
9204 mutex_enter(&dev->l2ad_mtx);
9205 /*
9206 * We have to account for evicted log blocks. Run vdev_space_update()
9207 * on log blocks whose offset (in bytes) is before the evicted offset
9208 * (in bytes) by searching in the list of pointers to log blocks
9209 * present in the L2ARC device.
9210 */
9211 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
9212 lb_ptr_buf = lb_ptr_buf_prev) {
9213
9214 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
9215
9216 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
9217 uint64_t asize = L2BLK_GET_PSIZE(
9218 (lb_ptr_buf->lb_ptr)->lbp_prop);
9219
9220 /*
9221 * We don't worry about log blocks left behind (ie
9222 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
9223 * will never write more than l2arc_evict() evicts.
9224 */
9225 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
9226 break;
9227 } else {
9228 if (vd != NULL)
9229 vdev_space_update(vd, -asize, 0, 0);
9230 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
9231 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
9232 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
9233 lb_ptr_buf);
9234 (void) zfs_refcount_remove(&dev->l2ad_lb_count,
9235 lb_ptr_buf);
9236 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
9237 kmem_free(lb_ptr_buf->lb_ptr,
9238 sizeof (l2arc_log_blkptr_t));
9239 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
9240 }
9241 }
9242
9243 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
9244 hdr_prev = list_prev(buflist, hdr);
9245
9246 ASSERT(!HDR_EMPTY(hdr));
9247 hash_lock = HDR_LOCK(hdr);
9248
9249 /*
9250 * We cannot use mutex_enter or else we can deadlock
9251 * with l2arc_write_buffers (due to swapping the order
9252 * the hash lock and l2ad_mtx are taken).
9253 */
9254 if (!mutex_tryenter(hash_lock)) {
9255 /*
9256 * Missed the hash lock. Retry.
9257 */
9258 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
9259 mutex_exit(&dev->l2ad_mtx);
9260 mutex_enter(hash_lock);
9261 mutex_exit(hash_lock);
9262 goto retry;
9263 }
9264
9265 /*
9266 * A header can't be on this list if it doesn't have L2 header.
9267 */
9268 ASSERT(HDR_HAS_L2HDR(hdr));
9269
9270 /* Ensure this header has finished being written. */
9271 ASSERT(!HDR_L2_WRITING(hdr));
9272 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
9273
9274 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
9275 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
9276 /*
9277 * We've evicted to the target address,
9278 * or the end of the device.
9279 */
9280 mutex_exit(hash_lock);
9281 break;
9282 }
9283
9284 if (!HDR_HAS_L1HDR(hdr)) {
9285 ASSERT(!HDR_L2_READING(hdr));
9286 /*
9287 * This doesn't exist in the ARC. Destroy.
9288 * arc_hdr_destroy() will call list_remove()
9289 * and decrement arcstat_l2_lsize.
9290 */
9291 arc_change_state(arc_anon, hdr);
9292 arc_hdr_destroy(hdr);
9293 } else {
9294 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
9295 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
9296 /*
9297 * Invalidate issued or about to be issued
9298 * reads, since we may be about to write
9299 * over this location.
9300 */
9301 if (HDR_L2_READING(hdr)) {
9302 ARCSTAT_BUMP(arcstat_l2_evict_reading);
9303 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
9304 }
9305
9306 arc_hdr_l2hdr_destroy(hdr);
9307 }
9308 mutex_exit(hash_lock);
9309 }
9310 mutex_exit(&dev->l2ad_mtx);
9311
9312 out:
9313 /*
9314 * We need to check if we evict all buffers, otherwise we may iterate
9315 * unnecessarily.
9316 */
9317 if (!all && rerun) {
9318 /*
9319 * Bump device hand to the device start if it is approaching the
9320 * end. l2arc_evict() has already evicted ahead for this case.
9321 */
9322 dev->l2ad_hand = dev->l2ad_start;
9323 dev->l2ad_evict = dev->l2ad_start;
9324 dev->l2ad_first = B_FALSE;
9325 goto top;
9326 }
9327
9328 if (!all) {
9329 /*
9330 * In case of cache device removal (all) the following
9331 * assertions may be violated without functional consequences
9332 * as the device is about to be removed.
9333 */
9334 ASSERT3U(dev->l2ad_hand + distance, <=, dev->l2ad_end);
9335 if (!dev->l2ad_first)
9336 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9337 }
9338 }
9339
9340 /*
9341 * Handle any abd transforms that might be required for writing to the L2ARC.
9342 * If successful, this function will always return an abd with the data
9343 * transformed as it is on disk in a new abd of asize bytes.
9344 */
9345 static int
l2arc_apply_transforms(spa_t * spa,arc_buf_hdr_t * hdr,uint64_t asize,abd_t ** abd_out)9346 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
9347 abd_t **abd_out)
9348 {
9349 int ret;
9350 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
9351 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
9352 uint64_t psize = HDR_GET_PSIZE(hdr);
9353 uint64_t size = arc_hdr_size(hdr);
9354 boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
9355 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
9356 dsl_crypto_key_t *dck = NULL;
9357 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
9358 boolean_t no_crypt = B_FALSE;
9359
9360 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
9361 !HDR_COMPRESSION_ENABLED(hdr)) ||
9362 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
9363 ASSERT3U(psize, <=, asize);
9364
9365 /*
9366 * If this data simply needs its own buffer, we simply allocate it
9367 * and copy the data. This may be done to eliminate a dependency on a
9368 * shared buffer or to reallocate the buffer to match asize.
9369 */
9370 if (HDR_HAS_RABD(hdr)) {
9371 ASSERT3U(asize, >, psize);
9372 to_write = abd_alloc_for_io(asize, ismd);
9373 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
9374 abd_zero_off(to_write, psize, asize - psize);
9375 goto out;
9376 }
9377
9378 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
9379 !HDR_ENCRYPTED(hdr)) {
9380 ASSERT3U(size, ==, psize);
9381 to_write = abd_alloc_for_io(asize, ismd);
9382 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
9383 if (asize > size)
9384 abd_zero_off(to_write, size, asize - size);
9385 goto out;
9386 }
9387
9388 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
9389 cabd = abd_alloc_for_io(MAX(size, asize), ismd);
9390 uint64_t csize = zio_compress_data(compress, to_write, &cabd,
9391 size, MIN(size, psize), hdr->b_complevel);
9392 if (csize >= size || csize > psize) {
9393 /*
9394 * We can't re-compress the block into the original
9395 * psize. Even if it fits into asize, it does not
9396 * matter, since checksum will never match on read.
9397 */
9398 abd_free(cabd);
9399 return (SET_ERROR(EIO));
9400 }
9401 if (asize > csize)
9402 abd_zero_off(cabd, csize, asize - csize);
9403 to_write = cabd;
9404 }
9405
9406 if (HDR_ENCRYPTED(hdr)) {
9407 eabd = abd_alloc_for_io(asize, ismd);
9408
9409 /*
9410 * If the dataset was disowned before the buffer
9411 * made it to this point, the key to re-encrypt
9412 * it won't be available. In this case we simply
9413 * won't write the buffer to the L2ARC.
9414 */
9415 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
9416 FTAG, &dck);
9417 if (ret != 0)
9418 goto error;
9419
9420 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
9421 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
9422 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
9423 &no_crypt);
9424 if (ret != 0)
9425 goto error;
9426
9427 if (no_crypt)
9428 abd_copy(eabd, to_write, psize);
9429
9430 if (psize != asize)
9431 abd_zero_off(eabd, psize, asize - psize);
9432
9433 /* assert that the MAC we got here matches the one we saved */
9434 ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
9435 spa_keystore_dsl_key_rele(spa, dck, FTAG);
9436
9437 if (to_write == cabd)
9438 abd_free(cabd);
9439
9440 to_write = eabd;
9441 }
9442
9443 out:
9444 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
9445 *abd_out = to_write;
9446 return (0);
9447
9448 error:
9449 if (dck != NULL)
9450 spa_keystore_dsl_key_rele(spa, dck, FTAG);
9451 if (cabd != NULL)
9452 abd_free(cabd);
9453 if (eabd != NULL)
9454 abd_free(eabd);
9455
9456 *abd_out = NULL;
9457 return (ret);
9458 }
9459
9460 static void
l2arc_blk_fetch_done(zio_t * zio)9461 l2arc_blk_fetch_done(zio_t *zio)
9462 {
9463 l2arc_read_callback_t *cb;
9464
9465 cb = zio->io_private;
9466 if (cb->l2rcb_abd != NULL)
9467 abd_free(cb->l2rcb_abd);
9468 kmem_free(cb, sizeof (l2arc_read_callback_t));
9469 }
9470
9471 /*
9472 * Find and write ARC buffers to the L2ARC device.
9473 *
9474 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
9475 * for reading until they have completed writing.
9476 * The headroom_boost is an in-out parameter used to maintain headroom boost
9477 * state between calls to this function.
9478 *
9479 * Returns the number of bytes actually written (which may be smaller than
9480 * the delta by which the device hand has changed due to alignment and the
9481 * writing of log blocks).
9482 */
9483 static uint64_t
l2arc_write_buffers(spa_t * spa,l2arc_dev_t * dev,uint64_t target_sz)9484 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
9485 {
9486 arc_buf_hdr_t *hdr, *head, *marker;
9487 uint64_t write_asize, write_psize, headroom;
9488 boolean_t full, from_head = !arc_warm;
9489 l2arc_write_callback_t *cb = NULL;
9490 zio_t *pio, *wzio;
9491 uint64_t guid = spa_load_guid(spa);
9492 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9493
9494 ASSERT3P(dev->l2ad_vdev, !=, NULL);
9495
9496 pio = NULL;
9497 write_asize = write_psize = 0;
9498 full = B_FALSE;
9499 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
9500 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
9501 marker = arc_state_alloc_marker();
9502
9503 /*
9504 * Copy buffers for L2ARC writing.
9505 */
9506 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) {
9507 /*
9508 * pass == 0: MFU meta
9509 * pass == 1: MRU meta
9510 * pass == 2: MFU data
9511 * pass == 3: MRU data
9512 */
9513 if (l2arc_mfuonly == 1) {
9514 if (pass == 1 || pass == 3)
9515 continue;
9516 } else if (l2arc_mfuonly > 1) {
9517 if (pass == 3)
9518 continue;
9519 }
9520
9521 uint64_t passed_sz = 0;
9522 headroom = target_sz * l2arc_headroom;
9523 if (zfs_compressed_arc_enabled)
9524 headroom = (headroom * l2arc_headroom_boost) / 100;
9525
9526 /*
9527 * Until the ARC is warm and starts to evict, read from the
9528 * head of the ARC lists rather than the tail.
9529 */
9530 multilist_sublist_t *mls = l2arc_sublist_lock(pass);
9531 ASSERT3P(mls, !=, NULL);
9532 if (from_head)
9533 hdr = multilist_sublist_head(mls);
9534 else
9535 hdr = multilist_sublist_tail(mls);
9536
9537 while (hdr != NULL) {
9538 kmutex_t *hash_lock;
9539 abd_t *to_write = NULL;
9540
9541 hash_lock = HDR_LOCK(hdr);
9542 if (!mutex_tryenter(hash_lock)) {
9543 skip:
9544 /* Skip this buffer rather than waiting. */
9545 if (from_head)
9546 hdr = multilist_sublist_next(mls, hdr);
9547 else
9548 hdr = multilist_sublist_prev(mls, hdr);
9549 continue;
9550 }
9551
9552 passed_sz += HDR_GET_LSIZE(hdr);
9553 if (l2arc_headroom != 0 && passed_sz > headroom) {
9554 /*
9555 * Searched too far.
9556 */
9557 mutex_exit(hash_lock);
9558 break;
9559 }
9560
9561 if (!l2arc_write_eligible(guid, hdr)) {
9562 mutex_exit(hash_lock);
9563 goto skip;
9564 }
9565
9566 ASSERT(HDR_HAS_L1HDR(hdr));
9567 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
9568 ASSERT3U(arc_hdr_size(hdr), >, 0);
9569 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
9570 HDR_HAS_RABD(hdr));
9571 uint64_t psize = HDR_GET_PSIZE(hdr);
9572 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
9573 psize);
9574
9575 /*
9576 * If the allocated size of this buffer plus the max
9577 * size for the pending log block exceeds the evicted
9578 * target size, terminate writing buffers for this run.
9579 */
9580 if (write_asize + asize +
9581 sizeof (l2arc_log_blk_phys_t) > target_sz) {
9582 full = B_TRUE;
9583 mutex_exit(hash_lock);
9584 break;
9585 }
9586
9587 /*
9588 * We should not sleep with sublist lock held or it
9589 * may block ARC eviction. Insert a marker to save
9590 * the position and drop the lock.
9591 */
9592 if (from_head) {
9593 multilist_sublist_insert_after(mls, hdr,
9594 marker);
9595 } else {
9596 multilist_sublist_insert_before(mls, hdr,
9597 marker);
9598 }
9599 multilist_sublist_unlock(mls);
9600
9601 /*
9602 * If this header has b_rabd, we can use this since it
9603 * must always match the data exactly as it exists on
9604 * disk. Otherwise, the L2ARC can normally use the
9605 * hdr's data, but if we're sharing data between the
9606 * hdr and one of its bufs, L2ARC needs its own copy of
9607 * the data so that the ZIO below can't race with the
9608 * buf consumer. To ensure that this copy will be
9609 * available for the lifetime of the ZIO and be cleaned
9610 * up afterwards, we add it to the l2arc_free_on_write
9611 * queue. If we need to apply any transforms to the
9612 * data (compression, encryption) we will also need the
9613 * extra buffer.
9614 */
9615 if (HDR_HAS_RABD(hdr) && psize == asize) {
9616 to_write = hdr->b_crypt_hdr.b_rabd;
9617 } else if ((HDR_COMPRESSION_ENABLED(hdr) ||
9618 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
9619 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
9620 psize == asize) {
9621 to_write = hdr->b_l1hdr.b_pabd;
9622 } else {
9623 int ret;
9624 arc_buf_contents_t type = arc_buf_type(hdr);
9625
9626 ret = l2arc_apply_transforms(spa, hdr, asize,
9627 &to_write);
9628 if (ret != 0) {
9629 arc_hdr_clear_flags(hdr,
9630 ARC_FLAG_L2CACHE);
9631 mutex_exit(hash_lock);
9632 goto next;
9633 }
9634
9635 l2arc_free_abd_on_write(to_write, asize, type);
9636 }
9637
9638 hdr->b_l2hdr.b_dev = dev;
9639 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
9640 hdr->b_l2hdr.b_hits = 0;
9641 hdr->b_l2hdr.b_arcs_state =
9642 hdr->b_l1hdr.b_state->arcs_state;
9643 /* l2arc_hdr_arcstats_update() expects a valid asize */
9644 HDR_SET_L2SIZE(hdr, asize);
9645 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR |
9646 ARC_FLAG_L2_WRITING);
9647
9648 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
9649 arc_hdr_size(hdr), hdr);
9650 l2arc_hdr_arcstats_increment(hdr);
9651 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9652
9653 mutex_enter(&dev->l2ad_mtx);
9654 if (pio == NULL) {
9655 /*
9656 * Insert a dummy header on the buflist so
9657 * l2arc_write_done() can find where the
9658 * write buffers begin without searching.
9659 */
9660 list_insert_head(&dev->l2ad_buflist, head);
9661 }
9662 list_insert_head(&dev->l2ad_buflist, hdr);
9663 mutex_exit(&dev->l2ad_mtx);
9664
9665 boolean_t commit = l2arc_log_blk_insert(dev, hdr);
9666 mutex_exit(hash_lock);
9667
9668 if (pio == NULL) {
9669 cb = kmem_alloc(
9670 sizeof (l2arc_write_callback_t), KM_SLEEP);
9671 cb->l2wcb_dev = dev;
9672 cb->l2wcb_head = head;
9673 list_create(&cb->l2wcb_abd_list,
9674 sizeof (l2arc_lb_abd_buf_t),
9675 offsetof(l2arc_lb_abd_buf_t, node));
9676 pio = zio_root(spa, l2arc_write_done, cb,
9677 ZIO_FLAG_CANFAIL);
9678 }
9679
9680 wzio = zio_write_phys(pio, dev->l2ad_vdev,
9681 dev->l2ad_hand, asize, to_write,
9682 ZIO_CHECKSUM_OFF, NULL, hdr,
9683 ZIO_PRIORITY_ASYNC_WRITE,
9684 ZIO_FLAG_CANFAIL, B_FALSE);
9685
9686 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
9687 zio_t *, wzio);
9688 zio_nowait(wzio);
9689
9690 write_psize += psize;
9691 write_asize += asize;
9692 dev->l2ad_hand += asize;
9693
9694 if (commit) {
9695 /* l2ad_hand will be adjusted inside. */
9696 write_asize +=
9697 l2arc_log_blk_commit(dev, pio, cb);
9698 }
9699
9700 next:
9701 multilist_sublist_lock(mls);
9702 if (from_head)
9703 hdr = multilist_sublist_next(mls, marker);
9704 else
9705 hdr = multilist_sublist_prev(mls, marker);
9706 multilist_sublist_remove(mls, marker);
9707 }
9708
9709 multilist_sublist_unlock(mls);
9710
9711 if (full == B_TRUE)
9712 break;
9713 }
9714
9715 arc_state_free_marker(marker);
9716
9717 /* No buffers selected for writing? */
9718 if (pio == NULL) {
9719 ASSERT0(write_psize);
9720 ASSERT(!HDR_HAS_L1HDR(head));
9721 kmem_cache_free(hdr_l2only_cache, head);
9722
9723 /*
9724 * Although we did not write any buffers l2ad_evict may
9725 * have advanced.
9726 */
9727 if (dev->l2ad_evict != l2dhdr->dh_evict)
9728 l2arc_dev_hdr_update(dev);
9729
9730 return (0);
9731 }
9732
9733 if (!dev->l2ad_first)
9734 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9735
9736 ASSERT3U(write_asize, <=, target_sz);
9737 ARCSTAT_BUMP(arcstat_l2_writes_sent);
9738 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
9739
9740 dev->l2ad_writing = B_TRUE;
9741 (void) zio_wait(pio);
9742 dev->l2ad_writing = B_FALSE;
9743
9744 /*
9745 * Update the device header after the zio completes as
9746 * l2arc_write_done() may have updated the memory holding the log block
9747 * pointers in the device header.
9748 */
9749 l2arc_dev_hdr_update(dev);
9750
9751 return (write_asize);
9752 }
9753
9754 static boolean_t
l2arc_hdr_limit_reached(void)9755 l2arc_hdr_limit_reached(void)
9756 {
9757 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size);
9758
9759 return (arc_reclaim_needed() ||
9760 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
9761 }
9762
9763 /*
9764 * This thread feeds the L2ARC at regular intervals. This is the beating
9765 * heart of the L2ARC.
9766 */
9767 static __attribute__((noreturn)) void
l2arc_feed_thread(void * unused)9768 l2arc_feed_thread(void *unused)
9769 {
9770 (void) unused;
9771 callb_cpr_t cpr;
9772 l2arc_dev_t *dev;
9773 spa_t *spa;
9774 uint64_t size, wrote;
9775 clock_t begin, next = ddi_get_lbolt();
9776 fstrans_cookie_t cookie;
9777
9778 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
9779
9780 mutex_enter(&l2arc_feed_thr_lock);
9781
9782 cookie = spl_fstrans_mark();
9783 while (l2arc_thread_exit == 0) {
9784 CALLB_CPR_SAFE_BEGIN(&cpr);
9785 (void) cv_timedwait_idle(&l2arc_feed_thr_cv,
9786 &l2arc_feed_thr_lock, next);
9787 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
9788 next = ddi_get_lbolt() + hz;
9789
9790 /*
9791 * Quick check for L2ARC devices.
9792 */
9793 mutex_enter(&l2arc_dev_mtx);
9794 if (l2arc_ndev == 0) {
9795 mutex_exit(&l2arc_dev_mtx);
9796 continue;
9797 }
9798 mutex_exit(&l2arc_dev_mtx);
9799 begin = ddi_get_lbolt();
9800
9801 /*
9802 * This selects the next l2arc device to write to, and in
9803 * doing so the next spa to feed from: dev->l2ad_spa. This
9804 * will return NULL if there are now no l2arc devices or if
9805 * they are all faulted.
9806 *
9807 * If a device is returned, its spa's config lock is also
9808 * held to prevent device removal. l2arc_dev_get_next()
9809 * will grab and release l2arc_dev_mtx.
9810 */
9811 if ((dev = l2arc_dev_get_next()) == NULL)
9812 continue;
9813
9814 spa = dev->l2ad_spa;
9815 ASSERT3P(spa, !=, NULL);
9816
9817 /*
9818 * If the pool is read-only then force the feed thread to
9819 * sleep a little longer.
9820 */
9821 if (!spa_writeable(spa)) {
9822 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
9823 spa_config_exit(spa, SCL_L2ARC, dev);
9824 continue;
9825 }
9826
9827 /*
9828 * Avoid contributing to memory pressure.
9829 */
9830 if (l2arc_hdr_limit_reached()) {
9831 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
9832 spa_config_exit(spa, SCL_L2ARC, dev);
9833 continue;
9834 }
9835
9836 ARCSTAT_BUMP(arcstat_l2_feeds);
9837
9838 size = l2arc_write_size(dev);
9839
9840 /*
9841 * Evict L2ARC buffers that will be overwritten.
9842 */
9843 l2arc_evict(dev, size, B_FALSE);
9844
9845 /*
9846 * Write ARC buffers.
9847 */
9848 wrote = l2arc_write_buffers(spa, dev, size);
9849
9850 /*
9851 * Calculate interval between writes.
9852 */
9853 next = l2arc_write_interval(begin, size, wrote);
9854 spa_config_exit(spa, SCL_L2ARC, dev);
9855 }
9856 spl_fstrans_unmark(cookie);
9857
9858 l2arc_thread_exit = 0;
9859 cv_broadcast(&l2arc_feed_thr_cv);
9860 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
9861 thread_exit();
9862 }
9863
9864 boolean_t
l2arc_vdev_present(vdev_t * vd)9865 l2arc_vdev_present(vdev_t *vd)
9866 {
9867 return (l2arc_vdev_get(vd) != NULL);
9868 }
9869
9870 /*
9871 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9872 * the vdev_t isn't an L2ARC device.
9873 */
9874 l2arc_dev_t *
l2arc_vdev_get(vdev_t * vd)9875 l2arc_vdev_get(vdev_t *vd)
9876 {
9877 l2arc_dev_t *dev;
9878
9879 mutex_enter(&l2arc_dev_mtx);
9880 for (dev = list_head(l2arc_dev_list); dev != NULL;
9881 dev = list_next(l2arc_dev_list, dev)) {
9882 if (dev->l2ad_vdev == vd)
9883 break;
9884 }
9885 mutex_exit(&l2arc_dev_mtx);
9886
9887 return (dev);
9888 }
9889
9890 static void
l2arc_rebuild_dev(l2arc_dev_t * dev,boolean_t reopen)9891 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen)
9892 {
9893 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9894 uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9895 spa_t *spa = dev->l2ad_spa;
9896
9897 /*
9898 * After a l2arc_remove_vdev(), the spa_t will no longer be valid
9899 */
9900 if (spa == NULL)
9901 return;
9902
9903 /*
9904 * The L2ARC has to hold at least the payload of one log block for
9905 * them to be restored (persistent L2ARC). The payload of a log block
9906 * depends on the amount of its log entries. We always write log blocks
9907 * with 1022 entries. How many of them are committed or restored depends
9908 * on the size of the L2ARC device. Thus the maximum payload of
9909 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9910 * is less than that, we reduce the amount of committed and restored
9911 * log entries per block so as to enable persistence.
9912 */
9913 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
9914 dev->l2ad_log_entries = 0;
9915 } else {
9916 dev->l2ad_log_entries = MIN((dev->l2ad_end -
9917 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
9918 L2ARC_LOG_BLK_MAX_ENTRIES);
9919 }
9920
9921 /*
9922 * Read the device header, if an error is returned do not rebuild L2ARC.
9923 */
9924 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
9925 /*
9926 * If we are onlining a cache device (vdev_reopen) that was
9927 * still present (l2arc_vdev_present()) and rebuild is enabled,
9928 * we should evict all ARC buffers and pointers to log blocks
9929 * and reclaim their space before restoring its contents to
9930 * L2ARC.
9931 */
9932 if (reopen) {
9933 if (!l2arc_rebuild_enabled) {
9934 return;
9935 } else {
9936 l2arc_evict(dev, 0, B_TRUE);
9937 /* start a new log block */
9938 dev->l2ad_log_ent_idx = 0;
9939 dev->l2ad_log_blk_payload_asize = 0;
9940 dev->l2ad_log_blk_payload_start = 0;
9941 }
9942 }
9943 /*
9944 * Just mark the device as pending for a rebuild. We won't
9945 * be starting a rebuild in line here as it would block pool
9946 * import. Instead spa_load_impl will hand that off to an
9947 * async task which will call l2arc_spa_rebuild_start.
9948 */
9949 dev->l2ad_rebuild = B_TRUE;
9950 } else if (spa_writeable(spa)) {
9951 /*
9952 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9953 * otherwise create a new header. We zero out the memory holding
9954 * the header to reset dh_start_lbps. If we TRIM the whole
9955 * device the new header will be written by
9956 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9957 * trim_state in the header too. When reading the header, if
9958 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9959 * we opt to TRIM the whole device again.
9960 */
9961 if (l2arc_trim_ahead > 0) {
9962 dev->l2ad_trim_all = B_TRUE;
9963 } else {
9964 memset(l2dhdr, 0, l2dhdr_asize);
9965 l2arc_dev_hdr_update(dev);
9966 }
9967 }
9968 }
9969
9970 /*
9971 * Add a vdev for use by the L2ARC. By this point the spa has already
9972 * validated the vdev and opened it.
9973 */
9974 void
l2arc_add_vdev(spa_t * spa,vdev_t * vd)9975 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
9976 {
9977 l2arc_dev_t *adddev;
9978 uint64_t l2dhdr_asize;
9979
9980 ASSERT(!l2arc_vdev_present(vd));
9981
9982 /*
9983 * Create a new l2arc device entry.
9984 */
9985 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
9986 adddev->l2ad_spa = spa;
9987 adddev->l2ad_vdev = vd;
9988 /* leave extra size for an l2arc device header */
9989 l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
9990 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
9991 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
9992 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
9993 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
9994 adddev->l2ad_hand = adddev->l2ad_start;
9995 adddev->l2ad_evict = adddev->l2ad_start;
9996 adddev->l2ad_first = B_TRUE;
9997 adddev->l2ad_writing = B_FALSE;
9998 adddev->l2ad_trim_all = B_FALSE;
9999 list_link_init(&adddev->l2ad_node);
10000 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
10001
10002 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
10003 /*
10004 * This is a list of all ARC buffers that are still valid on the
10005 * device.
10006 */
10007 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
10008 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
10009
10010 /*
10011 * This is a list of pointers to log blocks that are still present
10012 * on the device.
10013 */
10014 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
10015 offsetof(l2arc_lb_ptr_buf_t, node));
10016
10017 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
10018 zfs_refcount_create(&adddev->l2ad_alloc);
10019 zfs_refcount_create(&adddev->l2ad_lb_asize);
10020 zfs_refcount_create(&adddev->l2ad_lb_count);
10021
10022 /*
10023 * Decide if dev is eligible for L2ARC rebuild or whole device
10024 * trimming. This has to happen before the device is added in the
10025 * cache device list and l2arc_dev_mtx is released. Otherwise
10026 * l2arc_feed_thread() might already start writing on the
10027 * device.
10028 */
10029 l2arc_rebuild_dev(adddev, B_FALSE);
10030
10031 /*
10032 * Add device to global list
10033 */
10034 mutex_enter(&l2arc_dev_mtx);
10035 list_insert_head(l2arc_dev_list, adddev);
10036 atomic_inc_64(&l2arc_ndev);
10037 mutex_exit(&l2arc_dev_mtx);
10038 }
10039
10040 /*
10041 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
10042 * in case of onlining a cache device.
10043 */
10044 void
l2arc_rebuild_vdev(vdev_t * vd,boolean_t reopen)10045 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
10046 {
10047 l2arc_dev_t *dev = NULL;
10048
10049 dev = l2arc_vdev_get(vd);
10050 ASSERT3P(dev, !=, NULL);
10051
10052 /*
10053 * In contrast to l2arc_add_vdev() we do not have to worry about
10054 * l2arc_feed_thread() invalidating previous content when onlining a
10055 * cache device. The device parameters (l2ad*) are not cleared when
10056 * offlining the device and writing new buffers will not invalidate
10057 * all previous content. In worst case only buffers that have not had
10058 * their log block written to the device will be lost.
10059 * When onlining the cache device (ie offline->online without exporting
10060 * the pool in between) this happens:
10061 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
10062 * | |
10063 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE
10064 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
10065 * is set to B_TRUE we might write additional buffers to the device.
10066 */
10067 l2arc_rebuild_dev(dev, reopen);
10068 }
10069
10070 typedef struct {
10071 l2arc_dev_t *rva_l2arc_dev;
10072 uint64_t rva_spa_gid;
10073 uint64_t rva_vdev_gid;
10074 boolean_t rva_async;
10075
10076 } remove_vdev_args_t;
10077
10078 static void
l2arc_device_teardown(void * arg)10079 l2arc_device_teardown(void *arg)
10080 {
10081 remove_vdev_args_t *rva = arg;
10082 l2arc_dev_t *remdev = rva->rva_l2arc_dev;
10083 hrtime_t start_time = gethrtime();
10084
10085 /*
10086 * Clear all buflists and ARC references. L2ARC device flush.
10087 */
10088 l2arc_evict(remdev, 0, B_TRUE);
10089 list_destroy(&remdev->l2ad_buflist);
10090 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
10091 list_destroy(&remdev->l2ad_lbptr_list);
10092 mutex_destroy(&remdev->l2ad_mtx);
10093 zfs_refcount_destroy(&remdev->l2ad_alloc);
10094 zfs_refcount_destroy(&remdev->l2ad_lb_asize);
10095 zfs_refcount_destroy(&remdev->l2ad_lb_count);
10096 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
10097 vmem_free(remdev, sizeof (l2arc_dev_t));
10098
10099 uint64_t elapsed = NSEC2MSEC(gethrtime() - start_time);
10100 if (elapsed > 0) {
10101 zfs_dbgmsg("spa %llu, vdev %llu removed in %llu ms",
10102 (u_longlong_t)rva->rva_spa_gid,
10103 (u_longlong_t)rva->rva_vdev_gid,
10104 (u_longlong_t)elapsed);
10105 }
10106
10107 if (rva->rva_async)
10108 arc_async_flush_remove(rva->rva_spa_gid, 2);
10109 kmem_free(rva, sizeof (remove_vdev_args_t));
10110 }
10111
10112 /*
10113 * Remove a vdev from the L2ARC.
10114 */
10115 void
l2arc_remove_vdev(vdev_t * vd)10116 l2arc_remove_vdev(vdev_t *vd)
10117 {
10118 spa_t *spa = vd->vdev_spa;
10119 boolean_t asynchronous = spa->spa_state == POOL_STATE_EXPORTED ||
10120 spa->spa_state == POOL_STATE_DESTROYED;
10121
10122 /*
10123 * Find the device by vdev
10124 */
10125 l2arc_dev_t *remdev = l2arc_vdev_get(vd);
10126 ASSERT3P(remdev, !=, NULL);
10127
10128 /*
10129 * Save info for final teardown
10130 */
10131 remove_vdev_args_t *rva = kmem_alloc(sizeof (remove_vdev_args_t),
10132 KM_SLEEP);
10133 rva->rva_l2arc_dev = remdev;
10134 rva->rva_spa_gid = spa_load_guid(spa);
10135 rva->rva_vdev_gid = remdev->l2ad_vdev->vdev_guid;
10136
10137 /*
10138 * Cancel any ongoing or scheduled rebuild.
10139 */
10140 mutex_enter(&l2arc_rebuild_thr_lock);
10141 remdev->l2ad_rebuild_cancel = B_TRUE;
10142 if (remdev->l2ad_rebuild_began == B_TRUE) {
10143 while (remdev->l2ad_rebuild == B_TRUE)
10144 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
10145 }
10146 mutex_exit(&l2arc_rebuild_thr_lock);
10147 rva->rva_async = asynchronous;
10148
10149 /*
10150 * Remove device from global list
10151 */
10152 ASSERT(spa_config_held(spa, SCL_L2ARC, RW_WRITER) & SCL_L2ARC);
10153 mutex_enter(&l2arc_dev_mtx);
10154 list_remove(l2arc_dev_list, remdev);
10155 l2arc_dev_last = NULL; /* may have been invalidated */
10156 atomic_dec_64(&l2arc_ndev);
10157
10158 /* During a pool export spa & vdev will no longer be valid */
10159 if (asynchronous) {
10160 remdev->l2ad_spa = NULL;
10161 remdev->l2ad_vdev = NULL;
10162 }
10163 mutex_exit(&l2arc_dev_mtx);
10164
10165 if (!asynchronous) {
10166 l2arc_device_teardown(rva);
10167 return;
10168 }
10169
10170 arc_async_flush_t *af = arc_async_flush_add(rva->rva_spa_gid, 2);
10171
10172 taskq_dispatch_ent(arc_flush_taskq, l2arc_device_teardown, rva,
10173 TQ_SLEEP, &af->af_tqent);
10174 }
10175
10176 void
l2arc_init(void)10177 l2arc_init(void)
10178 {
10179 l2arc_thread_exit = 0;
10180 l2arc_ndev = 0;
10181
10182 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
10183 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
10184 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
10185 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
10186 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
10187 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
10188
10189 l2arc_dev_list = &L2ARC_dev_list;
10190 l2arc_free_on_write = &L2ARC_free_on_write;
10191 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
10192 offsetof(l2arc_dev_t, l2ad_node));
10193 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
10194 offsetof(l2arc_data_free_t, l2df_list_node));
10195 }
10196
10197 void
l2arc_fini(void)10198 l2arc_fini(void)
10199 {
10200 mutex_destroy(&l2arc_feed_thr_lock);
10201 cv_destroy(&l2arc_feed_thr_cv);
10202 mutex_destroy(&l2arc_rebuild_thr_lock);
10203 cv_destroy(&l2arc_rebuild_thr_cv);
10204 mutex_destroy(&l2arc_dev_mtx);
10205 mutex_destroy(&l2arc_free_on_write_mtx);
10206
10207 list_destroy(l2arc_dev_list);
10208 list_destroy(l2arc_free_on_write);
10209 }
10210
10211 void
l2arc_start(void)10212 l2arc_start(void)
10213 {
10214 if (!(spa_mode_global & SPA_MODE_WRITE))
10215 return;
10216
10217 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
10218 TS_RUN, defclsyspri);
10219 }
10220
10221 void
l2arc_stop(void)10222 l2arc_stop(void)
10223 {
10224 if (!(spa_mode_global & SPA_MODE_WRITE))
10225 return;
10226
10227 mutex_enter(&l2arc_feed_thr_lock);
10228 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
10229 l2arc_thread_exit = 1;
10230 while (l2arc_thread_exit != 0)
10231 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
10232 mutex_exit(&l2arc_feed_thr_lock);
10233 }
10234
10235 /*
10236 * Punches out rebuild threads for the L2ARC devices in a spa. This should
10237 * be called after pool import from the spa async thread, since starting
10238 * these threads directly from spa_import() will make them part of the
10239 * "zpool import" context and delay process exit (and thus pool import).
10240 */
10241 void
l2arc_spa_rebuild_start(spa_t * spa)10242 l2arc_spa_rebuild_start(spa_t *spa)
10243 {
10244 ASSERT(spa_namespace_held());
10245
10246 /*
10247 * Locate the spa's l2arc devices and kick off rebuild threads.
10248 */
10249 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10250 l2arc_dev_t *dev =
10251 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10252 if (dev == NULL) {
10253 /* Don't attempt a rebuild if the vdev is UNAVAIL */
10254 continue;
10255 }
10256 mutex_enter(&l2arc_rebuild_thr_lock);
10257 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
10258 dev->l2ad_rebuild_began = B_TRUE;
10259 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread,
10260 dev, 0, &p0, TS_RUN, minclsyspri);
10261 }
10262 mutex_exit(&l2arc_rebuild_thr_lock);
10263 }
10264 }
10265
10266 void
l2arc_spa_rebuild_stop(spa_t * spa)10267 l2arc_spa_rebuild_stop(spa_t *spa)
10268 {
10269 ASSERT(spa_namespace_held() ||
10270 spa->spa_export_thread == curthread);
10271
10272 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10273 l2arc_dev_t *dev =
10274 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10275 if (dev == NULL)
10276 continue;
10277 mutex_enter(&l2arc_rebuild_thr_lock);
10278 dev->l2ad_rebuild_cancel = B_TRUE;
10279 mutex_exit(&l2arc_rebuild_thr_lock);
10280 }
10281 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10282 l2arc_dev_t *dev =
10283 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10284 if (dev == NULL)
10285 continue;
10286 mutex_enter(&l2arc_rebuild_thr_lock);
10287 if (dev->l2ad_rebuild_began == B_TRUE) {
10288 while (dev->l2ad_rebuild == B_TRUE) {
10289 cv_wait(&l2arc_rebuild_thr_cv,
10290 &l2arc_rebuild_thr_lock);
10291 }
10292 }
10293 mutex_exit(&l2arc_rebuild_thr_lock);
10294 }
10295 }
10296
10297 /*
10298 * Main entry point for L2ARC rebuilding.
10299 */
10300 static __attribute__((noreturn)) void
l2arc_dev_rebuild_thread(void * arg)10301 l2arc_dev_rebuild_thread(void *arg)
10302 {
10303 l2arc_dev_t *dev = arg;
10304
10305 VERIFY(dev->l2ad_rebuild);
10306 (void) l2arc_rebuild(dev);
10307 mutex_enter(&l2arc_rebuild_thr_lock);
10308 dev->l2ad_rebuild_began = B_FALSE;
10309 dev->l2ad_rebuild = B_FALSE;
10310 cv_signal(&l2arc_rebuild_thr_cv);
10311 mutex_exit(&l2arc_rebuild_thr_lock);
10312
10313 thread_exit();
10314 }
10315
10316 /*
10317 * This function implements the actual L2ARC metadata rebuild. It:
10318 * starts reading the log block chain and restores each block's contents
10319 * to memory (reconstructing arc_buf_hdr_t's).
10320 *
10321 * Operation stops under any of the following conditions:
10322 *
10323 * 1) We reach the end of the log block chain.
10324 * 2) We encounter *any* error condition (cksum errors, io errors)
10325 */
10326 static int
l2arc_rebuild(l2arc_dev_t * dev)10327 l2arc_rebuild(l2arc_dev_t *dev)
10328 {
10329 vdev_t *vd = dev->l2ad_vdev;
10330 spa_t *spa = vd->vdev_spa;
10331 int err = 0;
10332 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10333 l2arc_log_blk_phys_t *this_lb, *next_lb;
10334 zio_t *this_io = NULL, *next_io = NULL;
10335 l2arc_log_blkptr_t lbps[2];
10336 l2arc_lb_ptr_buf_t *lb_ptr_buf;
10337 boolean_t lock_held;
10338
10339 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP);
10340 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP);
10341
10342 /*
10343 * We prevent device removal while issuing reads to the device,
10344 * then during the rebuilding phases we drop this lock again so
10345 * that a spa_unload or device remove can be initiated - this is
10346 * safe, because the spa will signal us to stop before removing
10347 * our device and wait for us to stop.
10348 */
10349 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
10350 lock_held = B_TRUE;
10351
10352 /*
10353 * Retrieve the persistent L2ARC device state.
10354 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10355 */
10356 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
10357 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
10358 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
10359 dev->l2ad_start);
10360 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
10361
10362 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time;
10363 vd->vdev_trim_state = l2dhdr->dh_trim_state;
10364
10365 /*
10366 * In case the zfs module parameter l2arc_rebuild_enabled is false
10367 * we do not start the rebuild process.
10368 */
10369 if (!l2arc_rebuild_enabled)
10370 goto out;
10371
10372 /* Prepare the rebuild process */
10373 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
10374
10375 /* Start the rebuild process */
10376 for (;;) {
10377 if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
10378 break;
10379
10380 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
10381 this_lb, next_lb, this_io, &next_io)) != 0)
10382 goto out;
10383
10384 /*
10385 * Our memory pressure valve. If the system is running low
10386 * on memory, rather than swamping memory with new ARC buf
10387 * hdrs, we opt not to rebuild the L2ARC. At this point,
10388 * however, we have already set up our L2ARC dev to chain in
10389 * new metadata log blocks, so the user may choose to offline/
10390 * online the L2ARC dev at a later time (or re-import the pool)
10391 * to reconstruct it (when there's less memory pressure).
10392 */
10393 if (l2arc_hdr_limit_reached()) {
10394 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
10395 cmn_err(CE_NOTE, "System running low on memory, "
10396 "aborting L2ARC rebuild.");
10397 err = SET_ERROR(ENOMEM);
10398 goto out;
10399 }
10400
10401 spa_config_exit(spa, SCL_L2ARC, vd);
10402 lock_held = B_FALSE;
10403
10404 /*
10405 * Now that we know that the next_lb checks out alright, we
10406 * can start reconstruction from this log block.
10407 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10408 */
10409 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
10410 l2arc_log_blk_restore(dev, this_lb, asize);
10411
10412 /*
10413 * log block restored, include its pointer in the list of
10414 * pointers to log blocks present in the L2ARC device.
10415 */
10416 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10417 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
10418 KM_SLEEP);
10419 memcpy(lb_ptr_buf->lb_ptr, &lbps[0],
10420 sizeof (l2arc_log_blkptr_t));
10421 mutex_enter(&dev->l2ad_mtx);
10422 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
10423 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10424 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10425 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10426 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10427 mutex_exit(&dev->l2ad_mtx);
10428 vdev_space_update(vd, asize, 0, 0);
10429
10430 /*
10431 * Protection against loops of log blocks:
10432 *
10433 * l2ad_hand l2ad_evict
10434 * V V
10435 * l2ad_start |=======================================| l2ad_end
10436 * -----|||----|||---|||----|||
10437 * (3) (2) (1) (0)
10438 * ---|||---|||----|||---|||
10439 * (7) (6) (5) (4)
10440 *
10441 * In this situation the pointer of log block (4) passes
10442 * l2arc_log_blkptr_valid() but the log block should not be
10443 * restored as it is overwritten by the payload of log block
10444 * (0). Only log blocks (0)-(3) should be restored. We check
10445 * whether l2ad_evict lies in between the payload starting
10446 * offset of the next log block (lbps[1].lbp_payload_start)
10447 * and the payload starting offset of the present log block
10448 * (lbps[0].lbp_payload_start). If true and this isn't the
10449 * first pass, we are looping from the beginning and we should
10450 * stop.
10451 */
10452 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
10453 lbps[0].lbp_payload_start, dev->l2ad_evict) &&
10454 !dev->l2ad_first)
10455 goto out;
10456
10457 kpreempt(KPREEMPT_SYNC);
10458 for (;;) {
10459 mutex_enter(&l2arc_rebuild_thr_lock);
10460 if (dev->l2ad_rebuild_cancel) {
10461 mutex_exit(&l2arc_rebuild_thr_lock);
10462 err = SET_ERROR(ECANCELED);
10463 goto out;
10464 }
10465 mutex_exit(&l2arc_rebuild_thr_lock);
10466 if (spa_config_tryenter(spa, SCL_L2ARC, vd,
10467 RW_READER)) {
10468 lock_held = B_TRUE;
10469 break;
10470 }
10471 /*
10472 * L2ARC config lock held by somebody in writer,
10473 * possibly due to them trying to remove us. They'll
10474 * likely to want us to shut down, so after a little
10475 * delay, we check l2ad_rebuild_cancel and retry
10476 * the lock again.
10477 */
10478 delay(1);
10479 }
10480
10481 /*
10482 * Continue with the next log block.
10483 */
10484 lbps[0] = lbps[1];
10485 lbps[1] = this_lb->lb_prev_lbp;
10486 PTR_SWAP(this_lb, next_lb);
10487 this_io = next_io;
10488 next_io = NULL;
10489 }
10490
10491 if (this_io != NULL)
10492 l2arc_log_blk_fetch_abort(this_io);
10493 out:
10494 if (next_io != NULL)
10495 l2arc_log_blk_fetch_abort(next_io);
10496 vmem_free(this_lb, sizeof (*this_lb));
10497 vmem_free(next_lb, sizeof (*next_lb));
10498
10499 if (err == ECANCELED) {
10500 /*
10501 * In case the rebuild was canceled do not log to spa history
10502 * log as the pool may be in the process of being removed.
10503 */
10504 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
10505 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10506 return (err);
10507 } else if (!l2arc_rebuild_enabled) {
10508 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10509 "disabled");
10510 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
10511 ARCSTAT_BUMP(arcstat_l2_rebuild_success);
10512 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10513 "successful, restored %llu blocks",
10514 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10515 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
10516 /*
10517 * No error but also nothing restored, meaning the lbps array
10518 * in the device header points to invalid/non-present log
10519 * blocks. Reset the header.
10520 */
10521 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10522 "no valid log blocks");
10523 memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize);
10524 l2arc_dev_hdr_update(dev);
10525 } else if (err != 0) {
10526 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10527 "aborted, restored %llu blocks",
10528 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10529 }
10530
10531 if (lock_held)
10532 spa_config_exit(spa, SCL_L2ARC, vd);
10533
10534 return (err);
10535 }
10536
10537 /*
10538 * Attempts to read the device header on the provided L2ARC device and writes
10539 * it to `hdr'. On success, this function returns 0, otherwise the appropriate
10540 * error code is returned.
10541 */
10542 static int
l2arc_dev_hdr_read(l2arc_dev_t * dev)10543 l2arc_dev_hdr_read(l2arc_dev_t *dev)
10544 {
10545 int err;
10546 uint64_t guid;
10547 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10548 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10549 abd_t *abd;
10550
10551 guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10552
10553 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10554
10555 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
10556 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
10557 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
10558 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
10559 ZIO_FLAG_SPECULATIVE, B_FALSE));
10560
10561 abd_free(abd);
10562
10563 if (err != 0) {
10564 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
10565 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
10566 "vdev guid: %llu", err,
10567 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10568 return (err);
10569 }
10570
10571 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
10572 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
10573
10574 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
10575 l2dhdr->dh_spa_guid != guid ||
10576 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
10577 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
10578 l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
10579 l2dhdr->dh_end != dev->l2ad_end ||
10580 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
10581 l2dhdr->dh_evict) ||
10582 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE &&
10583 l2arc_trim_ahead > 0)) {
10584 /*
10585 * Attempt to rebuild a device containing no actual dev hdr
10586 * or containing a header from some other pool or from another
10587 * version of persistent L2ARC.
10588 */
10589 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
10590 return (SET_ERROR(ENOTSUP));
10591 }
10592
10593 return (0);
10594 }
10595
10596 /*
10597 * Reads L2ARC log blocks from storage and validates their contents.
10598 *
10599 * This function implements a simple fetcher to make sure that while
10600 * we're processing one buffer the L2ARC is already fetching the next
10601 * one in the chain.
10602 *
10603 * The arguments this_lp and next_lp point to the current and next log block
10604 * address in the block chain. Similarly, this_lb and next_lb hold the
10605 * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10606 *
10607 * The `this_io' and `next_io' arguments are used for block fetching.
10608 * When issuing the first blk IO during rebuild, you should pass NULL for
10609 * `this_io'. This function will then issue a sync IO to read the block and
10610 * also issue an async IO to fetch the next block in the block chain. The
10611 * fetched IO is returned in `next_io'. On subsequent calls to this
10612 * function, pass the value returned in `next_io' from the previous call
10613 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10614 * Prior to the call, you should initialize your `next_io' pointer to be
10615 * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10616 *
10617 * On success, this function returns 0, otherwise it returns an appropriate
10618 * error code. On error the fetching IO is aborted and cleared before
10619 * returning from this function. Therefore, if we return `success', the
10620 * caller can assume that we have taken care of cleanup of fetch IOs.
10621 */
10622 static int
l2arc_log_blk_read(l2arc_dev_t * dev,const l2arc_log_blkptr_t * this_lbp,const l2arc_log_blkptr_t * next_lbp,l2arc_log_blk_phys_t * this_lb,l2arc_log_blk_phys_t * next_lb,zio_t * this_io,zio_t ** next_io)10623 l2arc_log_blk_read(l2arc_dev_t *dev,
10624 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
10625 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
10626 zio_t *this_io, zio_t **next_io)
10627 {
10628 int err = 0;
10629 zio_cksum_t cksum;
10630 uint64_t asize;
10631
10632 ASSERT(this_lbp != NULL && next_lbp != NULL);
10633 ASSERT(this_lb != NULL && next_lb != NULL);
10634 ASSERT(next_io != NULL && *next_io == NULL);
10635 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
10636
10637 /*
10638 * Check to see if we have issued the IO for this log block in a
10639 * previous run. If not, this is the first call, so issue it now.
10640 */
10641 if (this_io == NULL) {
10642 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
10643 this_lb);
10644 }
10645
10646 /*
10647 * Peek to see if we can start issuing the next IO immediately.
10648 */
10649 if (l2arc_log_blkptr_valid(dev, next_lbp)) {
10650 /*
10651 * Start issuing IO for the next log block early - this
10652 * should help keep the L2ARC device busy while we
10653 * decompress and restore this log block.
10654 */
10655 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
10656 next_lb);
10657 }
10658
10659 /* Wait for the IO to read this log block to complete */
10660 if ((err = zio_wait(this_io)) != 0) {
10661 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
10662 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
10663 "offset: %llu, vdev guid: %llu", err,
10664 (u_longlong_t)this_lbp->lbp_daddr,
10665 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10666 goto cleanup;
10667 }
10668
10669 /*
10670 * Make sure the buffer checks out.
10671 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10672 */
10673 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
10674 fletcher_4_native(this_lb, asize, NULL, &cksum);
10675 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
10676 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
10677 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10678 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
10679 (u_longlong_t)this_lbp->lbp_daddr,
10680 (u_longlong_t)dev->l2ad_vdev->vdev_guid,
10681 (u_longlong_t)dev->l2ad_hand,
10682 (u_longlong_t)dev->l2ad_evict);
10683 err = SET_ERROR(ECKSUM);
10684 goto cleanup;
10685 }
10686
10687 /* Now we can take our time decoding this buffer */
10688 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
10689 case ZIO_COMPRESS_OFF:
10690 break;
10691 case ZIO_COMPRESS_LZ4: {
10692 abd_t *abd = abd_alloc_linear(asize, B_TRUE);
10693 abd_copy_from_buf_off(abd, this_lb, 0, asize);
10694 abd_t dabd;
10695 abd_get_from_buf_struct(&dabd, this_lb, sizeof (*this_lb));
10696 err = zio_decompress_data(
10697 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
10698 abd, &dabd, asize, sizeof (*this_lb), NULL);
10699 abd_free(&dabd);
10700 abd_free(abd);
10701 if (err != 0) {
10702 err = SET_ERROR(EINVAL);
10703 goto cleanup;
10704 }
10705 break;
10706 }
10707 default:
10708 err = SET_ERROR(EINVAL);
10709 goto cleanup;
10710 }
10711 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
10712 byteswap_uint64_array(this_lb, sizeof (*this_lb));
10713 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
10714 err = SET_ERROR(EINVAL);
10715 goto cleanup;
10716 }
10717 cleanup:
10718 /* Abort an in-flight fetch I/O in case of error */
10719 if (err != 0 && *next_io != NULL) {
10720 l2arc_log_blk_fetch_abort(*next_io);
10721 *next_io = NULL;
10722 }
10723 return (err);
10724 }
10725
10726 /*
10727 * Restores the payload of a log block to ARC. This creates empty ARC hdr
10728 * entries which only contain an l2arc hdr, essentially restoring the
10729 * buffers to their L2ARC evicted state. This function also updates space
10730 * usage on the L2ARC vdev to make sure it tracks restored buffers.
10731 */
10732 static void
l2arc_log_blk_restore(l2arc_dev_t * dev,const l2arc_log_blk_phys_t * lb,uint64_t lb_asize)10733 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
10734 uint64_t lb_asize)
10735 {
10736 uint64_t size = 0, asize = 0;
10737 uint64_t log_entries = dev->l2ad_log_entries;
10738
10739 /*
10740 * Usually arc_adapt() is called only for data, not headers, but
10741 * since we may allocate significant amount of memory here, let ARC
10742 * grow its arc_c.
10743 */
10744 arc_adapt(log_entries * HDR_L2ONLY_SIZE);
10745
10746 for (int i = log_entries - 1; i >= 0; i--) {
10747 /*
10748 * Restore goes in the reverse temporal direction to preserve
10749 * correct temporal ordering of buffers in the l2ad_buflist.
10750 * l2arc_hdr_restore also does a list_insert_tail instead of
10751 * list_insert_head on the l2ad_buflist:
10752 *
10753 * LIST l2ad_buflist LIST
10754 * HEAD <------ (time) ------ TAIL
10755 * direction +-----+-----+-----+-----+-----+ direction
10756 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10757 * fill +-----+-----+-----+-----+-----+
10758 * ^ ^
10759 * | |
10760 * | |
10761 * l2arc_feed_thread l2arc_rebuild
10762 * will place new bufs here restores bufs here
10763 *
10764 * During l2arc_rebuild() the device is not used by
10765 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10766 */
10767 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
10768 asize += vdev_psize_to_asize(dev->l2ad_vdev,
10769 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
10770 l2arc_hdr_restore(&lb->lb_entries[i], dev);
10771 }
10772
10773 /*
10774 * Record rebuild stats:
10775 * size Logical size of restored buffers in the L2ARC
10776 * asize Aligned size of restored buffers in the L2ARC
10777 */
10778 ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
10779 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
10780 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
10781 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
10782 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
10783 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
10784 }
10785
10786 /*
10787 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10788 * into a state indicating that it has been evicted to L2ARC.
10789 */
10790 static void
l2arc_hdr_restore(const l2arc_log_ent_phys_t * le,l2arc_dev_t * dev)10791 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
10792 {
10793 arc_buf_hdr_t *hdr, *exists;
10794 kmutex_t *hash_lock;
10795 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop);
10796 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
10797 L2BLK_GET_PSIZE((le)->le_prop));
10798
10799 /*
10800 * Do all the allocation before grabbing any locks, this lets us
10801 * sleep if memory is full and we don't have to deal with failed
10802 * allocations.
10803 */
10804 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
10805 dev, le->le_dva, le->le_daddr,
10806 L2BLK_GET_PSIZE((le)->le_prop), asize, le->le_birth,
10807 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel,
10808 L2BLK_GET_PROTECTED((le)->le_prop),
10809 L2BLK_GET_PREFETCH((le)->le_prop),
10810 L2BLK_GET_STATE((le)->le_prop));
10811
10812 /*
10813 * vdev_space_update() has to be called before arc_hdr_destroy() to
10814 * avoid underflow since the latter also calls vdev_space_update().
10815 */
10816 l2arc_hdr_arcstats_increment(hdr);
10817 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10818
10819 mutex_enter(&dev->l2ad_mtx);
10820 list_insert_tail(&dev->l2ad_buflist, hdr);
10821 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
10822 mutex_exit(&dev->l2ad_mtx);
10823
10824 exists = buf_hash_insert(hdr, &hash_lock);
10825 if (exists) {
10826 /* Buffer was already cached, no need to restore it. */
10827 arc_hdr_destroy(hdr);
10828 /*
10829 * If the buffer is already cached, check whether it has
10830 * L2ARC metadata. If not, enter them and update the flag.
10831 * This is important is case of onlining a cache device, since
10832 * we previously evicted all L2ARC metadata from ARC.
10833 */
10834 if (!HDR_HAS_L2HDR(exists)) {
10835 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
10836 exists->b_l2hdr.b_dev = dev;
10837 exists->b_l2hdr.b_daddr = le->le_daddr;
10838 exists->b_l2hdr.b_arcs_state =
10839 L2BLK_GET_STATE((le)->le_prop);
10840 /* l2arc_hdr_arcstats_update() expects a valid asize */
10841 HDR_SET_L2SIZE(exists, asize);
10842 mutex_enter(&dev->l2ad_mtx);
10843 list_insert_tail(&dev->l2ad_buflist, exists);
10844 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
10845 arc_hdr_size(exists), exists);
10846 mutex_exit(&dev->l2ad_mtx);
10847 l2arc_hdr_arcstats_increment(exists);
10848 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10849 }
10850 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
10851 }
10852
10853 mutex_exit(hash_lock);
10854 }
10855
10856 /*
10857 * Starts an asynchronous read IO to read a log block. This is used in log
10858 * block reconstruction to start reading the next block before we are done
10859 * decoding and reconstructing the current block, to keep the l2arc device
10860 * nice and hot with read IO to process.
10861 * The returned zio will contain a newly allocated memory buffers for the IO
10862 * data which should then be freed by the caller once the zio is no longer
10863 * needed (i.e. due to it having completed). If you wish to abort this
10864 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10865 * care of disposing of the allocated buffers correctly.
10866 */
10867 static zio_t *
l2arc_log_blk_fetch(vdev_t * vd,const l2arc_log_blkptr_t * lbp,l2arc_log_blk_phys_t * lb)10868 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
10869 l2arc_log_blk_phys_t *lb)
10870 {
10871 uint32_t asize;
10872 zio_t *pio;
10873 l2arc_read_callback_t *cb;
10874
10875 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10876 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10877 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
10878
10879 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
10880 cb->l2rcb_abd = abd_get_from_buf(lb, asize);
10881 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
10882 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY);
10883 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
10884 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10885 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL |
10886 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
10887
10888 return (pio);
10889 }
10890
10891 /*
10892 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10893 * buffers allocated for it.
10894 */
10895 static void
l2arc_log_blk_fetch_abort(zio_t * zio)10896 l2arc_log_blk_fetch_abort(zio_t *zio)
10897 {
10898 (void) zio_wait(zio);
10899 }
10900
10901 /*
10902 * Creates a zio to update the device header on an l2arc device.
10903 */
10904 void
l2arc_dev_hdr_update(l2arc_dev_t * dev)10905 l2arc_dev_hdr_update(l2arc_dev_t *dev)
10906 {
10907 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10908 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10909 abd_t *abd;
10910 int err;
10911
10912 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
10913
10914 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
10915 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
10916 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10917 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
10918 l2dhdr->dh_log_entries = dev->l2ad_log_entries;
10919 l2dhdr->dh_evict = dev->l2ad_evict;
10920 l2dhdr->dh_start = dev->l2ad_start;
10921 l2dhdr->dh_end = dev->l2ad_end;
10922 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
10923 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
10924 l2dhdr->dh_flags = 0;
10925 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time;
10926 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state;
10927 if (dev->l2ad_first)
10928 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
10929
10930 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10931
10932 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
10933 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
10934 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
10935
10936 abd_free(abd);
10937
10938 if (err != 0) {
10939 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10940 "vdev guid: %llu", err,
10941 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10942 }
10943 }
10944
10945 /*
10946 * Commits a log block to the L2ARC device. This routine is invoked from
10947 * l2arc_write_buffers when the log block fills up.
10948 * This function allocates some memory to temporarily hold the serialized
10949 * buffer to be written. This is then released in l2arc_write_done.
10950 */
10951 static uint64_t
l2arc_log_blk_commit(l2arc_dev_t * dev,zio_t * pio,l2arc_write_callback_t * cb)10952 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
10953 {
10954 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
10955 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10956 uint64_t psize, asize;
10957 zio_t *wzio;
10958 l2arc_lb_abd_buf_t *abd_buf;
10959 abd_t *abd = NULL;
10960 l2arc_lb_ptr_buf_t *lb_ptr_buf;
10961
10962 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
10963
10964 abd_buf = zio_buf_alloc(sizeof (*abd_buf));
10965 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
10966 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10967 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
10968
10969 /* link the buffer into the block chain */
10970 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
10971 lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
10972
10973 /*
10974 * l2arc_log_blk_commit() may be called multiple times during a single
10975 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10976 * so we can free them in l2arc_write_done() later on.
10977 */
10978 list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
10979
10980 /* try to compress the buffer, at least one sector to save */
10981 psize = zio_compress_data(ZIO_COMPRESS_LZ4,
10982 abd_buf->abd, &abd, sizeof (*lb),
10983 zio_get_compression_max_size(ZIO_COMPRESS_LZ4,
10984 dev->l2ad_vdev->vdev_ashift,
10985 dev->l2ad_vdev->vdev_ashift, sizeof (*lb)), 0);
10986
10987 /* a log block is never entirely zero */
10988 ASSERT(psize != 0);
10989 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
10990 ASSERT(asize <= sizeof (*lb));
10991
10992 /*
10993 * Update the start log block pointer in the device header to point
10994 * to the log block we're about to write.
10995 */
10996 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
10997 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
10998 l2dhdr->dh_start_lbps[0].lbp_payload_asize =
10999 dev->l2ad_log_blk_payload_asize;
11000 l2dhdr->dh_start_lbps[0].lbp_payload_start =
11001 dev->l2ad_log_blk_payload_start;
11002 L2BLK_SET_LSIZE(
11003 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
11004 L2BLK_SET_PSIZE(
11005 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
11006 L2BLK_SET_CHECKSUM(
11007 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
11008 ZIO_CHECKSUM_FLETCHER_4);
11009 if (asize < sizeof (*lb)) {
11010 /* compression succeeded */
11011 abd_zero_off(abd, psize, asize - psize);
11012 L2BLK_SET_COMPRESS(
11013 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
11014 ZIO_COMPRESS_LZ4);
11015 } else {
11016 /* compression failed */
11017 abd_copy_from_buf_off(abd, lb, 0, sizeof (*lb));
11018 L2BLK_SET_COMPRESS(
11019 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
11020 ZIO_COMPRESS_OFF);
11021 }
11022
11023 /* checksum what we're about to write */
11024 abd_fletcher_4_native(abd, asize, NULL,
11025 &l2dhdr->dh_start_lbps[0].lbp_cksum);
11026
11027 abd_free(abd_buf->abd);
11028
11029 /* perform the write itself */
11030 abd_buf->abd = abd;
11031 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
11032 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
11033 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
11034 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
11035 (void) zio_nowait(wzio);
11036
11037 dev->l2ad_hand += asize;
11038 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
11039
11040 /*
11041 * Include the committed log block's pointer in the list of pointers
11042 * to log blocks present in the L2ARC device.
11043 */
11044 memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0],
11045 sizeof (l2arc_log_blkptr_t));
11046 mutex_enter(&dev->l2ad_mtx);
11047 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
11048 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
11049 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
11050 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
11051 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
11052 mutex_exit(&dev->l2ad_mtx);
11053
11054 /* bump the kstats */
11055 ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
11056 ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
11057 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
11058 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
11059 dev->l2ad_log_blk_payload_asize / asize);
11060
11061 /* start a new log block */
11062 dev->l2ad_log_ent_idx = 0;
11063 dev->l2ad_log_blk_payload_asize = 0;
11064 dev->l2ad_log_blk_payload_start = 0;
11065
11066 return (asize);
11067 }
11068
11069 /*
11070 * Validates an L2ARC log block address to make sure that it can be read
11071 * from the provided L2ARC device.
11072 */
11073 boolean_t
l2arc_log_blkptr_valid(l2arc_dev_t * dev,const l2arc_log_blkptr_t * lbp)11074 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
11075 {
11076 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
11077 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
11078 uint64_t end = lbp->lbp_daddr + asize - 1;
11079 uint64_t start = lbp->lbp_payload_start;
11080 boolean_t evicted = B_FALSE;
11081
11082 /*
11083 * A log block is valid if all of the following conditions are true:
11084 * - it fits entirely (including its payload) between l2ad_start and
11085 * l2ad_end
11086 * - it has a valid size
11087 * - neither the log block itself nor part of its payload was evicted
11088 * by l2arc_evict():
11089 *
11090 * l2ad_hand l2ad_evict
11091 * | | lbp_daddr
11092 * | start | | end
11093 * | | | | |
11094 * V V V V V
11095 * l2ad_start ============================================ l2ad_end
11096 * --------------------------||||
11097 * ^ ^
11098 * | log block
11099 * payload
11100 */
11101
11102 evicted =
11103 l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
11104 l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
11105 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
11106 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
11107
11108 return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
11109 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
11110 (!evicted || dev->l2ad_first));
11111 }
11112
11113 /*
11114 * Inserts ARC buffer header `hdr' into the current L2ARC log block on
11115 * the device. The buffer being inserted must be present in L2ARC.
11116 * Returns B_TRUE if the L2ARC log block is full and needs to be committed
11117 * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
11118 */
11119 static boolean_t
l2arc_log_blk_insert(l2arc_dev_t * dev,const arc_buf_hdr_t * hdr)11120 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
11121 {
11122 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
11123 l2arc_log_ent_phys_t *le;
11124
11125 if (dev->l2ad_log_entries == 0)
11126 return (B_FALSE);
11127
11128 int index = dev->l2ad_log_ent_idx++;
11129
11130 ASSERT3S(index, <, dev->l2ad_log_entries);
11131 ASSERT(HDR_HAS_L2HDR(hdr));
11132
11133 le = &lb->lb_entries[index];
11134 memset(le, 0, sizeof (*le));
11135 le->le_dva = hdr->b_dva;
11136 le->le_birth = hdr->b_birth;
11137 le->le_daddr = hdr->b_l2hdr.b_daddr;
11138 if (index == 0)
11139 dev->l2ad_log_blk_payload_start = le->le_daddr;
11140 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
11141 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
11142 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
11143 le->le_complevel = hdr->b_complevel;
11144 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
11145 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
11146 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
11147 L2BLK_SET_STATE((le)->le_prop, hdr->b_l2hdr.b_arcs_state);
11148
11149 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
11150 HDR_GET_PSIZE(hdr));
11151
11152 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
11153 }
11154
11155 /*
11156 * Checks whether a given L2ARC device address sits in a time-sequential
11157 * range. The trick here is that the L2ARC is a rotary buffer, so we can't
11158 * just do a range comparison, we need to handle the situation in which the
11159 * range wraps around the end of the L2ARC device. Arguments:
11160 * bottom -- Lower end of the range to check (written to earlier).
11161 * top -- Upper end of the range to check (written to later).
11162 * check -- The address for which we want to determine if it sits in
11163 * between the top and bottom.
11164 *
11165 * The 3-way conditional below represents the following cases:
11166 *
11167 * bottom < top : Sequentially ordered case:
11168 * <check>--------+-------------------+
11169 * | (overlap here?) |
11170 * L2ARC dev V V
11171 * |---------------<bottom>============<top>--------------|
11172 *
11173 * bottom > top: Looped-around case:
11174 * <check>--------+------------------+
11175 * | (overlap here?) |
11176 * L2ARC dev V V
11177 * |===============<top>---------------<bottom>===========|
11178 * ^ ^
11179 * | (or here?) |
11180 * +---------------+---------<check>
11181 *
11182 * top == bottom : Just a single address comparison.
11183 */
11184 boolean_t
l2arc_range_check_overlap(uint64_t bottom,uint64_t top,uint64_t check)11185 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
11186 {
11187 if (bottom < top)
11188 return (bottom <= check && check <= top);
11189 else if (bottom > top)
11190 return (check <= top || bottom <= check);
11191 else
11192 return (check == top);
11193 }
11194
11195 EXPORT_SYMBOL(arc_buf_size);
11196 EXPORT_SYMBOL(arc_write);
11197 EXPORT_SYMBOL(arc_read);
11198 EXPORT_SYMBOL(arc_buf_info);
11199 EXPORT_SYMBOL(arc_getbuf_func);
11200 EXPORT_SYMBOL(arc_add_prune_callback);
11201 EXPORT_SYMBOL(arc_remove_prune_callback);
11202
11203 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min,
11204 spl_param_get_u64, ZMOD_RW, "Minimum ARC size in bytes");
11205
11206 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max,
11207 spl_param_get_u64, ZMOD_RW, "Maximum ARC size in bytes");
11208
11209 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_balance, UINT, ZMOD_RW,
11210 "Balance between metadata and data on ghost hits.");
11211
11212 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int,
11213 param_get_uint, ZMOD_RW, "Seconds before growing ARC size");
11214
11215 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int,
11216 param_get_uint, ZMOD_RW, "log2(fraction of ARC to reclaim)");
11217
11218 #ifdef _KERNEL
11219 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW,
11220 "Percent of pagecache to reclaim ARC to");
11221 #endif
11222
11223 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, UINT, ZMOD_RD,
11224 "Target average block size");
11225
11226 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW,
11227 "Disable compressed ARC buffers");
11228
11229 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int,
11230 param_get_uint, ZMOD_RW, "Min life of prefetch block in ms");
11231
11232 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms,
11233 param_set_arc_int, param_get_uint, ZMOD_RW,
11234 "Min life of prescient prefetched block in ms");
11235
11236 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, U64, ZMOD_RW,
11237 "Max write bytes per interval");
11238
11239 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, U64, ZMOD_RW,
11240 "Extra write bytes during device warmup");
11241
11242 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, U64, ZMOD_RW,
11243 "Number of max device writes to precache");
11244
11245 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, U64, ZMOD_RW,
11246 "Compressed l2arc_headroom multiplier");
11247
11248 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, U64, ZMOD_RW,
11249 "TRIM ahead L2ARC write size multiplier");
11250
11251 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, U64, ZMOD_RW,
11252 "Seconds between L2ARC writing");
11253
11254 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, U64, ZMOD_RW,
11255 "Min feed interval in milliseconds");
11256
11257 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW,
11258 "Skip caching prefetched buffers");
11259
11260 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW,
11261 "Turbo L2ARC warmup");
11262
11263 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW,
11264 "No reads during writes");
11265
11266 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, UINT, ZMOD_RW,
11267 "Percent of ARC size allowed for L2ARC-only headers");
11268
11269 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW,
11270 "Rebuild the L2ARC when importing a pool");
11271
11272 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, U64, ZMOD_RW,
11273 "Min size in bytes to write rebuild log blocks in L2ARC");
11274
11275 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW,
11276 "Cache only MFU data from ARC into L2ARC");
11277
11278 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW,
11279 "Exclude dbufs on special vdevs from being cached to L2ARC if set.");
11280
11281 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int,
11282 param_get_uint, ZMOD_RW, "System free memory I/O throttle in bytes");
11283
11284 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_u64,
11285 spl_param_get_u64, ZMOD_RW, "System free memory target size in bytes");
11286
11287 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_u64,
11288 spl_param_get_u64, ZMOD_RW, "Minimum bytes of dnodes in ARC");
11289
11290 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent,
11291 param_set_arc_int, param_get_uint, ZMOD_RW,
11292 "Percent of ARC meta buffers for dnodes");
11293
11294 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, UINT, ZMOD_RW,
11295 "Percentage of excess dnodes to try to unpin");
11296
11297 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, UINT, ZMOD_RW,
11298 "When full, ARC allocation waits for eviction of this % of alloc size");
11299
11300 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, UINT, ZMOD_RW,
11301 "The number of headers to evict per sublist before moving to the next");
11302
11303 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batches_limit, UINT, ZMOD_RW,
11304 "The number of batches to run per parallel eviction task");
11305
11306 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW,
11307 "Number of arc_prune threads");
11308
11309 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_threads, UINT, ZMOD_RD,
11310 "Number of threads to use for ARC eviction.");
11311