xref: /linux/net/packet/af_packet.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		PACKET - implements raw packet sockets.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
12  *
13  * Fixes:
14  *		Alan Cox	:	verify_area() now used correctly
15  *		Alan Cox	:	new skbuff lists, look ma no backlogs!
16  *		Alan Cox	:	tidied skbuff lists.
17  *		Alan Cox	:	Now uses generic datagram routines I
18  *					added. Also fixed the peek/read crash
19  *					from all old Linux datagram code.
20  *		Alan Cox	:	Uses the improved datagram code.
21  *		Alan Cox	:	Added NULL's for socket options.
22  *		Alan Cox	:	Re-commented the code.
23  *		Alan Cox	:	Use new kernel side addressing
24  *		Rob Janssen	:	Correct MTU usage.
25  *		Dave Platt	:	Counter leaks caused by incorrect
26  *					interrupt locking and some slightly
27  *					dubious gcc output. Can you read
28  *					compiler: it said _VOLATILE_
29  *	Richard Kooijman	:	Timestamp fixes.
30  *		Alan Cox	:	New buffers. Use sk->mac.raw.
31  *		Alan Cox	:	sendmsg/recvmsg support.
32  *		Alan Cox	:	Protocol setting support
33  *	Alexey Kuznetsov	:	Untied from IPv4 stack.
34  *	Cyrus Durgin		:	Fixed kerneld for kmod.
35  *	Michal Ostrowski        :       Module initialization cleanup.
36  *         Ulises Alonso        :       Frame number limit removal and
37  *                                      packet_set_ring memory leak.
38  *		Eric Biederman	:	Allow for > 8 byte hardware addresses.
39  *					The convention is that longer addresses
40  *					will simply extend the hardware address
41  *					byte arrays at the end of sockaddr_ll
42  *					and packet_mreq.
43  *		Johann Baudy	:	Added TX RING.
44  *		Chetan Loke	:	Implemented TPACKET_V3 block abstraction
45  *					layer.
46  *					Copyright (C) 2011, <lokec@ccs.neu.edu>
47  */
48 
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 
51 #include <linux/ethtool.h>
52 #include <linux/filter.h>
53 #include <linux/types.h>
54 #include <linux/mm.h>
55 #include <linux/capability.h>
56 #include <linux/fcntl.h>
57 #include <linux/socket.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/if_packet.h>
62 #include <linux/wireless.h>
63 #include <linux/kernel.h>
64 #include <linux/kmod.h>
65 #include <linux/slab.h>
66 #include <linux/vmalloc.h>
67 #include <net/net_namespace.h>
68 #include <net/ip.h>
69 #include <net/protocol.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <linux/errno.h>
73 #include <linux/timer.h>
74 #include <linux/uaccess.h>
75 #include <asm/ioctls.h>
76 #include <asm/page.h>
77 #include <asm/cacheflush.h>
78 #include <asm/io.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
81 #include <linux/poll.h>
82 #include <linux/module.h>
83 #include <linux/init.h>
84 #include <linux/mutex.h>
85 #include <linux/if_vlan.h>
86 #include <linux/virtio_net.h>
87 #include <linux/errqueue.h>
88 #include <linux/net_tstamp.h>
89 #include <linux/percpu.h>
90 #ifdef CONFIG_INET
91 #include <net/inet_common.h>
92 #endif
93 #include <linux/bpf.h>
94 #include <net/compat.h>
95 #include <linux/netfilter_netdev.h>
96 
97 #include "internal.h"
98 
99 /*
100    Assumptions:
101    - If the device has no dev->header_ops->create, there is no LL header
102      visible above the device. In this case, its hard_header_len should be 0.
103      The device may prepend its own header internally. In this case, its
104      needed_headroom should be set to the space needed for it to add its
105      internal header.
106      For example, a WiFi driver pretending to be an Ethernet driver should
107      set its hard_header_len to be the Ethernet header length, and set its
108      needed_headroom to be (the real WiFi header length - the fake Ethernet
109      header length).
110    - packet socket receives packets with pulled ll header,
111      so that SOCK_RAW should push it back.
112 
113 On receive:
114 -----------
115 
116 Incoming, dev_has_header(dev) == true
117    mac_header -> ll header
118    data       -> data
119 
120 Outgoing, dev_has_header(dev) == true
121    mac_header -> ll header
122    data       -> ll header
123 
124 Incoming, dev_has_header(dev) == false
125    mac_header -> data
126      However drivers often make it point to the ll header.
127      This is incorrect because the ll header should be invisible to us.
128    data       -> data
129 
130 Outgoing, dev_has_header(dev) == false
131    mac_header -> data. ll header is invisible to us.
132    data       -> data
133 
134 Resume
135   If dev_has_header(dev) == false we are unable to restore the ll header,
136     because it is invisible to us.
137 
138 
139 On transmit:
140 ------------
141 
142 dev_has_header(dev) == true
143    mac_header -> ll header
144    data       -> ll header
145 
146 dev_has_header(dev) == false (ll header is invisible to us)
147    mac_header -> data
148    data       -> data
149 
150    We should set network_header on output to the correct position,
151    packet classifier depends on it.
152  */
153 
154 /* Private packet socket structures. */
155 
156 /* identical to struct packet_mreq except it has
157  * a longer address field.
158  */
159 struct packet_mreq_max {
160 	int		mr_ifindex;
161 	unsigned short	mr_type;
162 	unsigned short	mr_alen;
163 	unsigned char	mr_address[MAX_ADDR_LEN];
164 };
165 
166 union tpacket_uhdr {
167 	struct tpacket_hdr  *h1;
168 	struct tpacket2_hdr *h2;
169 	struct tpacket3_hdr *h3;
170 	void *raw;
171 };
172 
173 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
174 		int closing, int tx_ring);
175 
176 #define V3_ALIGNMENT	(8)
177 
178 #define BLK_HDR_LEN	(ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
179 
180 #define BLK_PLUS_PRIV(sz_of_priv) \
181 	(BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
182 
183 #define BLOCK_STATUS(x)	((x)->hdr.bh1.block_status)
184 #define BLOCK_NUM_PKTS(x)	((x)->hdr.bh1.num_pkts)
185 #define BLOCK_O2FP(x)		((x)->hdr.bh1.offset_to_first_pkt)
186 #define BLOCK_LEN(x)		((x)->hdr.bh1.blk_len)
187 #define BLOCK_SNUM(x)		((x)->hdr.bh1.seq_num)
188 #define BLOCK_O2PRIV(x)	((x)->offset_to_priv)
189 
190 struct packet_sock;
191 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
192 		       struct packet_type *pt, struct net_device *orig_dev);
193 
194 static void *packet_previous_frame(struct packet_sock *po,
195 		struct packet_ring_buffer *rb,
196 		int status);
197 static void packet_increment_head(struct packet_ring_buffer *buff);
198 static int prb_curr_blk_in_use(struct tpacket_block_desc *);
199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
200 			struct packet_sock *);
201 static void prb_retire_current_block(struct tpacket_kbdq_core *,
202 		struct packet_sock *, unsigned int status);
203 static int prb_queue_frozen(struct tpacket_kbdq_core *);
204 static void prb_open_block(struct tpacket_kbdq_core *,
205 		struct tpacket_block_desc *);
206 static enum hrtimer_restart prb_retire_rx_blk_timer_expired(struct hrtimer *);
207 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
208 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
209 		struct tpacket3_hdr *);
210 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
211 		struct tpacket3_hdr *);
212 static void packet_flush_mclist(struct sock *sk);
213 static u16 packet_pick_tx_queue(struct sk_buff *skb);
214 
215 struct packet_skb_cb {
216 	union {
217 		struct sockaddr_pkt pkt;
218 		union {
219 			/* Trick: alias skb original length with
220 			 * ll.sll_family and ll.protocol in order
221 			 * to save room.
222 			 */
223 			unsigned int origlen;
224 			struct sockaddr_ll ll;
225 		};
226 	} sa;
227 };
228 
229 #define vio_le() virtio_legacy_is_little_endian()
230 
231 #define PACKET_SKB_CB(__skb)	((struct packet_skb_cb *)((__skb)->cb))
232 
233 #define GET_PBDQC_FROM_RB(x)	((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
234 #define GET_PBLOCK_DESC(x, bid)	\
235 	((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
236 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x)	\
237 	((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
238 #define GET_NEXT_PRB_BLK_NUM(x) \
239 	(((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
240 	((x)->kactive_blk_num+1) : 0)
241 
242 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
243 static void __fanout_link(struct sock *sk, struct packet_sock *po);
244 
245 #ifdef CONFIG_NETFILTER_EGRESS
246 static noinline struct sk_buff *nf_hook_direct_egress(struct sk_buff *skb)
247 {
248 	struct sk_buff *next, *head = NULL, *tail;
249 	int rc;
250 
251 	rcu_read_lock();
252 	for (; skb != NULL; skb = next) {
253 		next = skb->next;
254 		skb_mark_not_on_list(skb);
255 
256 		if (!nf_hook_egress(skb, &rc, skb->dev))
257 			continue;
258 
259 		if (!head)
260 			head = skb;
261 		else
262 			tail->next = skb;
263 
264 		tail = skb;
265 	}
266 	rcu_read_unlock();
267 
268 	return head;
269 }
270 #endif
271 
272 static int packet_xmit(const struct packet_sock *po, struct sk_buff *skb)
273 {
274 	if (!packet_sock_flag(po, PACKET_SOCK_QDISC_BYPASS))
275 		return dev_queue_xmit(skb);
276 
277 #ifdef CONFIG_NETFILTER_EGRESS
278 	if (nf_hook_egress_active()) {
279 		skb = nf_hook_direct_egress(skb);
280 		if (!skb)
281 			return NET_XMIT_DROP;
282 	}
283 #endif
284 	return dev_direct_xmit(skb, packet_pick_tx_queue(skb));
285 }
286 
287 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
288 {
289 	struct net_device *dev;
290 
291 	rcu_read_lock();
292 	dev = rcu_dereference(po->cached_dev);
293 	dev_hold(dev);
294 	rcu_read_unlock();
295 
296 	return dev;
297 }
298 
299 static void packet_cached_dev_assign(struct packet_sock *po,
300 				     struct net_device *dev)
301 {
302 	rcu_assign_pointer(po->cached_dev, dev);
303 }
304 
305 static void packet_cached_dev_reset(struct packet_sock *po)
306 {
307 	RCU_INIT_POINTER(po->cached_dev, NULL);
308 }
309 
310 static u16 packet_pick_tx_queue(struct sk_buff *skb)
311 {
312 	struct net_device *dev = skb->dev;
313 	const struct net_device_ops *ops = dev->netdev_ops;
314 	int cpu = raw_smp_processor_id();
315 	u16 queue_index;
316 
317 #ifdef CONFIG_XPS
318 	skb->sender_cpu = cpu + 1;
319 #endif
320 	skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues);
321 	if (ops->ndo_select_queue) {
322 		queue_index = ops->ndo_select_queue(dev, skb, NULL);
323 		queue_index = netdev_cap_txqueue(dev, queue_index);
324 	} else {
325 		queue_index = netdev_pick_tx(dev, skb, NULL);
326 	}
327 
328 	return queue_index;
329 }
330 
331 /* __register_prot_hook must be invoked through register_prot_hook
332  * or from a context in which asynchronous accesses to the packet
333  * socket is not possible (packet_create()).
334  */
335 static void __register_prot_hook(struct sock *sk)
336 {
337 	struct packet_sock *po = pkt_sk(sk);
338 
339 	if (!packet_sock_flag(po, PACKET_SOCK_RUNNING)) {
340 		if (po->fanout)
341 			__fanout_link(sk, po);
342 		else
343 			dev_add_pack(&po->prot_hook);
344 
345 		sock_hold(sk);
346 		packet_sock_flag_set(po, PACKET_SOCK_RUNNING, 1);
347 	}
348 }
349 
350 static void register_prot_hook(struct sock *sk)
351 {
352 	lockdep_assert_held_once(&pkt_sk(sk)->bind_lock);
353 	__register_prot_hook(sk);
354 }
355 
356 /* If the sync parameter is true, we will temporarily drop
357  * the po->bind_lock and do a synchronize_net to make sure no
358  * asynchronous packet processing paths still refer to the elements
359  * of po->prot_hook.  If the sync parameter is false, it is the
360  * callers responsibility to take care of this.
361  */
362 static void __unregister_prot_hook(struct sock *sk, bool sync)
363 {
364 	struct packet_sock *po = pkt_sk(sk);
365 
366 	lockdep_assert_held_once(&po->bind_lock);
367 
368 	packet_sock_flag_set(po, PACKET_SOCK_RUNNING, 0);
369 
370 	if (po->fanout)
371 		__fanout_unlink(sk, po);
372 	else
373 		__dev_remove_pack(&po->prot_hook);
374 
375 	__sock_put(sk);
376 
377 	if (sync) {
378 		spin_unlock(&po->bind_lock);
379 		synchronize_net();
380 		spin_lock(&po->bind_lock);
381 	}
382 }
383 
384 static void unregister_prot_hook(struct sock *sk, bool sync)
385 {
386 	struct packet_sock *po = pkt_sk(sk);
387 
388 	if (packet_sock_flag(po, PACKET_SOCK_RUNNING))
389 		__unregister_prot_hook(sk, sync);
390 }
391 
392 static inline struct page * __pure pgv_to_page(void *addr)
393 {
394 	if (is_vmalloc_addr(addr))
395 		return vmalloc_to_page(addr);
396 	return virt_to_page(addr);
397 }
398 
399 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
400 {
401 	union tpacket_uhdr h;
402 
403 	/* WRITE_ONCE() are paired with READ_ONCE() in __packet_get_status */
404 
405 	h.raw = frame;
406 	switch (po->tp_version) {
407 	case TPACKET_V1:
408 		WRITE_ONCE(h.h1->tp_status, status);
409 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
410 		break;
411 	case TPACKET_V2:
412 		WRITE_ONCE(h.h2->tp_status, status);
413 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
414 		break;
415 	case TPACKET_V3:
416 		WRITE_ONCE(h.h3->tp_status, status);
417 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
418 		break;
419 	default:
420 		WARN(1, "TPACKET version not supported.\n");
421 		BUG();
422 	}
423 
424 	smp_wmb();
425 }
426 
427 static int __packet_get_status(const struct packet_sock *po, void *frame)
428 {
429 	union tpacket_uhdr h;
430 
431 	smp_rmb();
432 
433 	/* READ_ONCE() are paired with WRITE_ONCE() in __packet_set_status */
434 
435 	h.raw = frame;
436 	switch (po->tp_version) {
437 	case TPACKET_V1:
438 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
439 		return READ_ONCE(h.h1->tp_status);
440 	case TPACKET_V2:
441 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
442 		return READ_ONCE(h.h2->tp_status);
443 	case TPACKET_V3:
444 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
445 		return READ_ONCE(h.h3->tp_status);
446 	default:
447 		WARN(1, "TPACKET version not supported.\n");
448 		BUG();
449 		return 0;
450 	}
451 }
452 
453 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts,
454 				   unsigned int flags)
455 {
456 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
457 
458 	if (shhwtstamps &&
459 	    (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
460 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts))
461 		return TP_STATUS_TS_RAW_HARDWARE;
462 
463 	if ((flags & SOF_TIMESTAMPING_SOFTWARE) &&
464 	    ktime_to_timespec64_cond(skb_tstamp(skb), ts))
465 		return TP_STATUS_TS_SOFTWARE;
466 
467 	return 0;
468 }
469 
470 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
471 				    struct sk_buff *skb)
472 {
473 	union tpacket_uhdr h;
474 	struct timespec64 ts;
475 	__u32 ts_status;
476 
477 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, READ_ONCE(po->tp_tstamp))))
478 		return 0;
479 
480 	h.raw = frame;
481 	/*
482 	 * versions 1 through 3 overflow the timestamps in y2106, since they
483 	 * all store the seconds in a 32-bit unsigned integer.
484 	 * If we create a version 4, that should have a 64-bit timestamp,
485 	 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit
486 	 * nanoseconds.
487 	 */
488 	switch (po->tp_version) {
489 	case TPACKET_V1:
490 		h.h1->tp_sec = ts.tv_sec;
491 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
492 		break;
493 	case TPACKET_V2:
494 		h.h2->tp_sec = ts.tv_sec;
495 		h.h2->tp_nsec = ts.tv_nsec;
496 		break;
497 	case TPACKET_V3:
498 		h.h3->tp_sec = ts.tv_sec;
499 		h.h3->tp_nsec = ts.tv_nsec;
500 		break;
501 	default:
502 		WARN(1, "TPACKET version not supported.\n");
503 		BUG();
504 	}
505 
506 	/* one flush is safe, as both fields always lie on the same cacheline */
507 	flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
508 	smp_wmb();
509 
510 	return ts_status;
511 }
512 
513 static void *packet_lookup_frame(const struct packet_sock *po,
514 				 const struct packet_ring_buffer *rb,
515 				 unsigned int position,
516 				 int status)
517 {
518 	unsigned int pg_vec_pos, frame_offset;
519 	union tpacket_uhdr h;
520 
521 	pg_vec_pos = position / rb->frames_per_block;
522 	frame_offset = position % rb->frames_per_block;
523 
524 	h.raw = rb->pg_vec[pg_vec_pos].buffer +
525 		(frame_offset * rb->frame_size);
526 
527 	if (status != __packet_get_status(po, h.raw))
528 		return NULL;
529 
530 	return h.raw;
531 }
532 
533 static void *packet_current_frame(struct packet_sock *po,
534 		struct packet_ring_buffer *rb,
535 		int status)
536 {
537 	return packet_lookup_frame(po, rb, rb->head, status);
538 }
539 
540 static u16 vlan_get_tci(const struct sk_buff *skb, struct net_device *dev)
541 {
542 	struct vlan_hdr vhdr, *vh;
543 	unsigned int header_len;
544 
545 	if (!dev)
546 		return 0;
547 
548 	/* In the SOCK_DGRAM scenario, skb data starts at the network
549 	 * protocol, which is after the VLAN headers. The outer VLAN
550 	 * header is at the hard_header_len offset in non-variable
551 	 * length link layer headers. If it's a VLAN device, the
552 	 * min_header_len should be used to exclude the VLAN header
553 	 * size.
554 	 */
555 	if (dev->min_header_len == dev->hard_header_len)
556 		header_len = dev->hard_header_len;
557 	else if (is_vlan_dev(dev))
558 		header_len = dev->min_header_len;
559 	else
560 		return 0;
561 
562 	vh = skb_header_pointer(skb, skb_mac_offset(skb) + header_len,
563 				sizeof(vhdr), &vhdr);
564 	if (unlikely(!vh))
565 		return 0;
566 
567 	return ntohs(vh->h_vlan_TCI);
568 }
569 
570 static __be16 vlan_get_protocol_dgram(const struct sk_buff *skb)
571 {
572 	__be16 proto = skb->protocol;
573 
574 	if (unlikely(eth_type_vlan(proto)))
575 		proto = __vlan_get_protocol_offset(skb, proto,
576 						   skb_mac_offset(skb), NULL);
577 
578 	return proto;
579 }
580 
581 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
582 		struct sk_buff_head *rb_queue)
583 {
584 	struct tpacket_kbdq_core *pkc;
585 
586 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
587 	hrtimer_cancel(&pkc->retire_blk_timer);
588 }
589 
590 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
591 				int blk_size_in_bytes)
592 {
593 	struct net_device *dev;
594 	unsigned int mbits, div;
595 	struct ethtool_link_ksettings ecmd;
596 	int err;
597 
598 	rtnl_lock();
599 	dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
600 	if (unlikely(!dev)) {
601 		rtnl_unlock();
602 		return DEFAULT_PRB_RETIRE_TOV;
603 	}
604 	err = __ethtool_get_link_ksettings(dev, &ecmd);
605 	rtnl_unlock();
606 	if (err)
607 		return DEFAULT_PRB_RETIRE_TOV;
608 
609 	/* If the link speed is so slow you don't really
610 	 * need to worry about perf anyways
611 	 */
612 	if (ecmd.base.speed < SPEED_1000 ||
613 	    ecmd.base.speed == SPEED_UNKNOWN)
614 		return DEFAULT_PRB_RETIRE_TOV;
615 
616 	div = ecmd.base.speed / 1000;
617 	mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
618 
619 	if (div)
620 		mbits /= div;
621 
622 	if (div)
623 		return mbits + 1;
624 	return mbits;
625 }
626 
627 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
628 			union tpacket_req_u *req_u)
629 {
630 	p1->feature_req_word = req_u->req3.tp_feature_req_word;
631 }
632 
633 static void init_prb_bdqc(struct packet_sock *po,
634 			struct packet_ring_buffer *rb,
635 			struct pgv *pg_vec,
636 			union tpacket_req_u *req_u)
637 {
638 	struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
639 	struct tpacket_block_desc *pbd;
640 
641 	memset(p1, 0x0, sizeof(*p1));
642 
643 	p1->knxt_seq_num = 1;
644 	p1->pkbdq = pg_vec;
645 	pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
646 	p1->pkblk_start	= pg_vec[0].buffer;
647 	p1->kblk_size = req_u->req3.tp_block_size;
648 	p1->knum_blocks	= req_u->req3.tp_block_nr;
649 	p1->hdrlen = po->tp_hdrlen;
650 	p1->version = po->tp_version;
651 	po->stats.stats3.tp_freeze_q_cnt = 0;
652 	if (req_u->req3.tp_retire_blk_tov)
653 		p1->interval_ktime = ms_to_ktime(req_u->req3.tp_retire_blk_tov);
654 	else
655 		p1->interval_ktime = ms_to_ktime(prb_calc_retire_blk_tmo(po,
656 						 req_u->req3.tp_block_size));
657 	p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
658 	rwlock_init(&p1->blk_fill_in_prog_lock);
659 
660 	p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
661 	prb_init_ft_ops(p1, req_u);
662 	hrtimer_setup(&p1->retire_blk_timer, prb_retire_rx_blk_timer_expired,
663 		      CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
664 	hrtimer_start(&p1->retire_blk_timer, p1->interval_ktime,
665 		      HRTIMER_MODE_REL_SOFT);
666 	prb_open_block(p1, pbd);
667 }
668 
669 /*
670  * With a 1MB block-size, on a 1Gbps line, it will take
671  * i) ~8 ms to fill a block + ii) memcpy etc.
672  * In this cut we are not accounting for the memcpy time.
673  *
674  * Since the tmo granularity is in msecs, it is not too expensive
675  * to refresh the timer, lets say every '8' msecs.
676  * Either the user can set the 'tmo' or we can derive it based on
677  * a) line-speed and b) block-size.
678  * prb_calc_retire_blk_tmo() calculates the tmo.
679  */
680 static enum hrtimer_restart prb_retire_rx_blk_timer_expired(struct hrtimer *t)
681 {
682 	struct packet_sock *po =
683 		timer_container_of(po, t, rx_ring.prb_bdqc.retire_blk_timer);
684 	struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
685 	unsigned int frozen;
686 	struct tpacket_block_desc *pbd;
687 
688 	spin_lock(&po->sk.sk_receive_queue.lock);
689 
690 	frozen = prb_queue_frozen(pkc);
691 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
692 
693 	/* We only need to plug the race when the block is partially filled.
694 	 * tpacket_rcv:
695 	 *		lock(); increment BLOCK_NUM_PKTS; unlock()
696 	 *		copy_bits() is in progress ...
697 	 *		timer fires on other cpu:
698 	 *		we can't retire the current block because copy_bits
699 	 *		is in progress.
700 	 *
701 	 */
702 	if (BLOCK_NUM_PKTS(pbd)) {
703 		/* Waiting for skb_copy_bits to finish... */
704 		write_lock(&pkc->blk_fill_in_prog_lock);
705 		write_unlock(&pkc->blk_fill_in_prog_lock);
706 	}
707 
708 	if (!frozen) {
709 		if (BLOCK_NUM_PKTS(pbd)) {
710 			/* Not an empty block. Need retire the block. */
711 			prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
712 			prb_dispatch_next_block(pkc, po);
713 		}
714 	} else {
715 		/* Case 1. Queue was frozen because user-space was
716 		 * lagging behind.
717 		 */
718 		if (!prb_curr_blk_in_use(pbd)) {
719 			/* Case 2. queue was frozen,user-space caught up,
720 			 * now the link went idle && the timer fired.
721 			 * We don't have a block to close.So we open this
722 			 * block and restart the timer.
723 			 * opening a block thaws the queue,restarts timer
724 			 * Thawing/timer-refresh is a side effect.
725 			 */
726 			prb_open_block(pkc, pbd);
727 		}
728 	}
729 
730 	hrtimer_forward_now(&pkc->retire_blk_timer, pkc->interval_ktime);
731 	spin_unlock(&po->sk.sk_receive_queue.lock);
732 	return HRTIMER_RESTART;
733 }
734 
735 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
736 		struct tpacket_block_desc *pbd1, __u32 status)
737 {
738 	/* Flush everything minus the block header */
739 
740 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
741 	u8 *start, *end;
742 
743 	start = (u8 *)pbd1;
744 
745 	/* Skip the block header(we know header WILL fit in 4K) */
746 	start += PAGE_SIZE;
747 
748 	end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
749 	for (; start < end; start += PAGE_SIZE)
750 		flush_dcache_page(pgv_to_page(start));
751 
752 	smp_wmb();
753 #endif
754 
755 	/* Now update the block status. */
756 
757 	BLOCK_STATUS(pbd1) = status;
758 
759 	/* Flush the block header */
760 
761 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
762 	start = (u8 *)pbd1;
763 	flush_dcache_page(pgv_to_page(start));
764 
765 	smp_wmb();
766 #endif
767 }
768 
769 /*
770  * Side effect:
771  *
772  * 1) flush the block
773  * 2) Increment active_blk_num
774  *
775  * Note:We DONT refresh the timer on purpose.
776  *	Because almost always the next block will be opened.
777  */
778 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
779 		struct tpacket_block_desc *pbd1,
780 		struct packet_sock *po, unsigned int stat)
781 {
782 	__u32 status = TP_STATUS_USER | stat;
783 
784 	struct tpacket3_hdr *last_pkt;
785 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
786 	struct sock *sk = &po->sk;
787 
788 	if (atomic_read(&po->tp_drops))
789 		status |= TP_STATUS_LOSING;
790 
791 	last_pkt = (struct tpacket3_hdr *)pkc1->prev;
792 	last_pkt->tp_next_offset = 0;
793 
794 	/* Get the ts of the last pkt */
795 	if (BLOCK_NUM_PKTS(pbd1)) {
796 		h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
797 		h1->ts_last_pkt.ts_nsec	= last_pkt->tp_nsec;
798 	} else {
799 		/* Ok, we tmo'd - so get the current time.
800 		 *
801 		 * It shouldn't really happen as we don't close empty
802 		 * blocks. See prb_retire_rx_blk_timer_expired().
803 		 */
804 		struct timespec64 ts;
805 		ktime_get_real_ts64(&ts);
806 		h1->ts_last_pkt.ts_sec = ts.tv_sec;
807 		h1->ts_last_pkt.ts_nsec	= ts.tv_nsec;
808 	}
809 
810 	smp_wmb();
811 
812 	/* Flush the block */
813 	prb_flush_block(pkc1, pbd1, status);
814 
815 	sk->sk_data_ready(sk);
816 
817 	pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
818 }
819 
820 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
821 {
822 	pkc->reset_pending_on_curr_blk = 0;
823 }
824 
825 /*
826  * prb_open_block is called by tpacket_rcv or timer callback.
827  *
828  * Reasons why NOT update hrtimer in prb_open_block:
829  * 1) It will increase complexity to distinguish the two caller scenario.
830  * 2) hrtimer_cancel and hrtimer_start need to be called if you want to update
831  * TMO of an already enqueued hrtimer, leading to complex shutdown logic.
832  *
833  * One side effect of NOT update hrtimer when called by tpacket_rcv is that
834  * a newly opened block triggered by tpacket_rcv may be retired earlier than
835  * expected. On the other hand, if timeout is updated in prb_open_block, the
836  * frequent reception of network packets that leads to prb_open_block being
837  * called may cause hrtimer to be removed and enqueued repeatedly.
838  */
839 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
840 	struct tpacket_block_desc *pbd1)
841 {
842 	struct timespec64 ts;
843 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
844 
845 	smp_rmb();
846 
847 	/* We could have just memset this but we will lose the
848 	 * flexibility of making the priv area sticky
849 	 */
850 
851 	BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
852 	BLOCK_NUM_PKTS(pbd1) = 0;
853 	BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
854 
855 	ktime_get_real_ts64(&ts);
856 
857 	h1->ts_first_pkt.ts_sec = ts.tv_sec;
858 	h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
859 
860 	pkc1->pkblk_start = (char *)pbd1;
861 	pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
862 
863 	BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
864 	BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
865 
866 	pbd1->version = pkc1->version;
867 	pkc1->prev = pkc1->nxt_offset;
868 	pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
869 
870 	prb_thaw_queue(pkc1);
871 
872 	smp_wmb();
873 }
874 
875 /*
876  * Queue freeze logic:
877  * 1) Assume tp_block_nr = 8 blocks.
878  * 2) At time 't0', user opens Rx ring.
879  * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
880  * 4) user-space is either sleeping or processing block '0'.
881  * 5) tpacket_rcv is currently filling block '7', since there is no space left,
882  *    it will close block-7,loop around and try to fill block '0'.
883  *    call-flow:
884  *    __packet_lookup_frame_in_block
885  *      prb_retire_current_block()
886  *      prb_dispatch_next_block()
887  *        |->(BLOCK_STATUS == USER) evaluates to true
888  *    5.1) Since block-0 is currently in-use, we just freeze the queue.
889  * 6) Now there are two cases:
890  *    6.1) Link goes idle right after the queue is frozen.
891  *         But remember, the last open_block() refreshed the timer.
892  *         When this timer expires,it will refresh itself so that we can
893  *         re-open block-0 in near future.
894  *    6.2) Link is busy and keeps on receiving packets. This is a simple
895  *         case and __packet_lookup_frame_in_block will check if block-0
896  *         is free and can now be re-used.
897  */
898 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
899 				  struct packet_sock *po)
900 {
901 	pkc->reset_pending_on_curr_blk = 1;
902 	po->stats.stats3.tp_freeze_q_cnt++;
903 }
904 
905 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
906 
907 /*
908  * If the next block is free then we will dispatch it
909  * and return a good offset.
910  * Else, we will freeze the queue.
911  * So, caller must check the return value.
912  */
913 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
914 		struct packet_sock *po)
915 {
916 	struct tpacket_block_desc *pbd;
917 
918 	smp_rmb();
919 
920 	/* 1. Get current block num */
921 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
922 
923 	/* 2. If this block is currently in_use then freeze the queue */
924 	if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
925 		prb_freeze_queue(pkc, po);
926 		return NULL;
927 	}
928 
929 	/*
930 	 * 3.
931 	 * open this block and return the offset where the first packet
932 	 * needs to get stored.
933 	 */
934 	prb_open_block(pkc, pbd);
935 	return (void *)pkc->nxt_offset;
936 }
937 
938 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
939 		struct packet_sock *po, unsigned int status)
940 {
941 	struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
942 
943 	/* retire/close the current block */
944 	if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
945 		/*
946 		 * Plug the case where copy_bits() is in progress on
947 		 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
948 		 * have space to copy the pkt in the current block and
949 		 * called prb_retire_current_block()
950 		 *
951 		 * We don't need to worry about the TMO case because
952 		 * the timer-handler already handled this case.
953 		 */
954 		if (!(status & TP_STATUS_BLK_TMO)) {
955 			/* Waiting for skb_copy_bits to finish... */
956 			write_lock(&pkc->blk_fill_in_prog_lock);
957 			write_unlock(&pkc->blk_fill_in_prog_lock);
958 		}
959 		prb_close_block(pkc, pbd, po, status);
960 		return;
961 	}
962 }
963 
964 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd)
965 {
966 	return TP_STATUS_USER & BLOCK_STATUS(pbd);
967 }
968 
969 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
970 {
971 	return pkc->reset_pending_on_curr_blk;
972 }
973 
974 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
975 	__releases(&pkc->blk_fill_in_prog_lock)
976 {
977 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
978 
979 	read_unlock(&pkc->blk_fill_in_prog_lock);
980 }
981 
982 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
983 			struct tpacket3_hdr *ppd)
984 {
985 	ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
986 }
987 
988 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
989 			struct tpacket3_hdr *ppd)
990 {
991 	ppd->hv1.tp_rxhash = 0;
992 }
993 
994 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
995 			struct tpacket3_hdr *ppd)
996 {
997 	struct packet_sock *po = container_of(pkc, struct packet_sock, rx_ring.prb_bdqc);
998 
999 	if (skb_vlan_tag_present(pkc->skb)) {
1000 		ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
1001 		ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
1002 		ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
1003 	} else if (unlikely(po->sk.sk_type == SOCK_DGRAM && eth_type_vlan(pkc->skb->protocol))) {
1004 		ppd->hv1.tp_vlan_tci = vlan_get_tci(pkc->skb, pkc->skb->dev);
1005 		ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->protocol);
1006 		ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
1007 	} else {
1008 		ppd->hv1.tp_vlan_tci = 0;
1009 		ppd->hv1.tp_vlan_tpid = 0;
1010 		ppd->tp_status = TP_STATUS_AVAILABLE;
1011 	}
1012 }
1013 
1014 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1015 			struct tpacket3_hdr *ppd)
1016 {
1017 	ppd->hv1.tp_padding = 0;
1018 	prb_fill_vlan_info(pkc, ppd);
1019 
1020 	if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1021 		prb_fill_rxhash(pkc, ppd);
1022 	else
1023 		prb_clear_rxhash(pkc, ppd);
1024 }
1025 
1026 static void prb_fill_curr_block(char *curr,
1027 				struct tpacket_kbdq_core *pkc,
1028 				struct tpacket_block_desc *pbd,
1029 				unsigned int len)
1030 	__acquires(&pkc->blk_fill_in_prog_lock)
1031 {
1032 	struct tpacket3_hdr *ppd;
1033 
1034 	ppd  = (struct tpacket3_hdr *)curr;
1035 	ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1036 	pkc->prev = curr;
1037 	pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1038 	BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1039 	BLOCK_NUM_PKTS(pbd) += 1;
1040 	read_lock(&pkc->blk_fill_in_prog_lock);
1041 	prb_run_all_ft_ops(pkc, ppd);
1042 }
1043 
1044 /* Assumes caller has the sk->rx_queue.lock */
1045 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1046 					    struct sk_buff *skb,
1047 					    unsigned int len
1048 					    )
1049 {
1050 	struct tpacket_kbdq_core *pkc;
1051 	struct tpacket_block_desc *pbd;
1052 	char *curr, *end;
1053 
1054 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1055 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1056 
1057 	/* Queue is frozen when user space is lagging behind */
1058 	if (prb_queue_frozen(pkc)) {
1059 		/*
1060 		 * Check if that last block which caused the queue to freeze,
1061 		 * is still in_use by user-space.
1062 		 */
1063 		if (prb_curr_blk_in_use(pbd)) {
1064 			/* Can't record this packet */
1065 			return NULL;
1066 		} else {
1067 			/*
1068 			 * Ok, the block was released by user-space.
1069 			 * Now let's open that block.
1070 			 * opening a block also thaws the queue.
1071 			 * Thawing is a side effect.
1072 			 */
1073 			prb_open_block(pkc, pbd);
1074 		}
1075 	}
1076 
1077 	smp_mb();
1078 	curr = pkc->nxt_offset;
1079 	pkc->skb = skb;
1080 	end = (char *)pbd + pkc->kblk_size;
1081 
1082 	/* first try the current block */
1083 	if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1084 		prb_fill_curr_block(curr, pkc, pbd, len);
1085 		return (void *)curr;
1086 	}
1087 
1088 	/* Ok, close the current block */
1089 	prb_retire_current_block(pkc, po, 0);
1090 
1091 	/* Now, try to dispatch the next block */
1092 	curr = (char *)prb_dispatch_next_block(pkc, po);
1093 	if (curr) {
1094 		pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1095 		prb_fill_curr_block(curr, pkc, pbd, len);
1096 		return (void *)curr;
1097 	}
1098 
1099 	/*
1100 	 * No free blocks are available.user_space hasn't caught up yet.
1101 	 * Queue was just frozen and now this packet will get dropped.
1102 	 */
1103 	return NULL;
1104 }
1105 
1106 static void *packet_current_rx_frame(struct packet_sock *po,
1107 					    struct sk_buff *skb,
1108 					    int status, unsigned int len)
1109 {
1110 	char *curr = NULL;
1111 	switch (po->tp_version) {
1112 	case TPACKET_V1:
1113 	case TPACKET_V2:
1114 		curr = packet_lookup_frame(po, &po->rx_ring,
1115 					po->rx_ring.head, status);
1116 		return curr;
1117 	case TPACKET_V3:
1118 		return __packet_lookup_frame_in_block(po, skb, len);
1119 	default:
1120 		WARN(1, "TPACKET version not supported\n");
1121 		BUG();
1122 		return NULL;
1123 	}
1124 }
1125 
1126 static void *prb_lookup_block(const struct packet_sock *po,
1127 			      const struct packet_ring_buffer *rb,
1128 			      unsigned int idx,
1129 			      int status)
1130 {
1131 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
1132 	struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1133 
1134 	if (status != BLOCK_STATUS(pbd))
1135 		return NULL;
1136 	return pbd;
1137 }
1138 
1139 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1140 {
1141 	unsigned int prev;
1142 	if (rb->prb_bdqc.kactive_blk_num)
1143 		prev = rb->prb_bdqc.kactive_blk_num-1;
1144 	else
1145 		prev = rb->prb_bdqc.knum_blocks-1;
1146 	return prev;
1147 }
1148 
1149 /* Assumes caller has held the rx_queue.lock */
1150 static void *__prb_previous_block(struct packet_sock *po,
1151 					 struct packet_ring_buffer *rb,
1152 					 int status)
1153 {
1154 	unsigned int previous = prb_previous_blk_num(rb);
1155 	return prb_lookup_block(po, rb, previous, status);
1156 }
1157 
1158 static void *packet_previous_rx_frame(struct packet_sock *po,
1159 					     struct packet_ring_buffer *rb,
1160 					     int status)
1161 {
1162 	if (po->tp_version <= TPACKET_V2)
1163 		return packet_previous_frame(po, rb, status);
1164 
1165 	return __prb_previous_block(po, rb, status);
1166 }
1167 
1168 static void packet_increment_rx_head(struct packet_sock *po,
1169 					    struct packet_ring_buffer *rb)
1170 {
1171 	switch (po->tp_version) {
1172 	case TPACKET_V1:
1173 	case TPACKET_V2:
1174 		return packet_increment_head(rb);
1175 	case TPACKET_V3:
1176 	default:
1177 		WARN(1, "TPACKET version not supported.\n");
1178 		BUG();
1179 		return;
1180 	}
1181 }
1182 
1183 static void *packet_previous_frame(struct packet_sock *po,
1184 		struct packet_ring_buffer *rb,
1185 		int status)
1186 {
1187 	unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1188 	return packet_lookup_frame(po, rb, previous, status);
1189 }
1190 
1191 static void packet_increment_head(struct packet_ring_buffer *buff)
1192 {
1193 	buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1194 }
1195 
1196 static void packet_inc_pending(struct packet_ring_buffer *rb)
1197 {
1198 	this_cpu_inc(*rb->pending_refcnt);
1199 }
1200 
1201 static void packet_dec_pending(struct packet_ring_buffer *rb)
1202 {
1203 	this_cpu_dec(*rb->pending_refcnt);
1204 }
1205 
1206 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1207 {
1208 	unsigned int refcnt = 0;
1209 	int cpu;
1210 
1211 	/* We don't use pending refcount in rx_ring. */
1212 	if (rb->pending_refcnt == NULL)
1213 		return 0;
1214 
1215 	for_each_possible_cpu(cpu)
1216 		refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1217 
1218 	return refcnt;
1219 }
1220 
1221 static int packet_alloc_pending(struct packet_sock *po)
1222 {
1223 	po->rx_ring.pending_refcnt = NULL;
1224 
1225 	po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1226 	if (unlikely(po->tx_ring.pending_refcnt == NULL))
1227 		return -ENOBUFS;
1228 
1229 	return 0;
1230 }
1231 
1232 static void packet_free_pending(struct packet_sock *po)
1233 {
1234 	free_percpu(po->tx_ring.pending_refcnt);
1235 }
1236 
1237 #define ROOM_POW_OFF	2
1238 #define ROOM_NONE	0x0
1239 #define ROOM_LOW	0x1
1240 #define ROOM_NORMAL	0x2
1241 
1242 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off)
1243 {
1244 	int idx, len;
1245 
1246 	len = READ_ONCE(po->rx_ring.frame_max) + 1;
1247 	idx = READ_ONCE(po->rx_ring.head);
1248 	if (pow_off)
1249 		idx += len >> pow_off;
1250 	if (idx >= len)
1251 		idx -= len;
1252 	return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1253 }
1254 
1255 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off)
1256 {
1257 	int idx, len;
1258 
1259 	len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks);
1260 	idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num);
1261 	if (pow_off)
1262 		idx += len >> pow_off;
1263 	if (idx >= len)
1264 		idx -= len;
1265 	return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1266 }
1267 
1268 static int __packet_rcv_has_room(const struct packet_sock *po,
1269 				 const struct sk_buff *skb)
1270 {
1271 	const struct sock *sk = &po->sk;
1272 	int ret = ROOM_NONE;
1273 
1274 	if (po->prot_hook.func != tpacket_rcv) {
1275 		int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1276 		int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1277 				   - (skb ? skb->truesize : 0);
1278 
1279 		if (avail > (rcvbuf >> ROOM_POW_OFF))
1280 			return ROOM_NORMAL;
1281 		else if (avail > 0)
1282 			return ROOM_LOW;
1283 		else
1284 			return ROOM_NONE;
1285 	}
1286 
1287 	if (po->tp_version == TPACKET_V3) {
1288 		if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1289 			ret = ROOM_NORMAL;
1290 		else if (__tpacket_v3_has_room(po, 0))
1291 			ret = ROOM_LOW;
1292 	} else {
1293 		if (__tpacket_has_room(po, ROOM_POW_OFF))
1294 			ret = ROOM_NORMAL;
1295 		else if (__tpacket_has_room(po, 0))
1296 			ret = ROOM_LOW;
1297 	}
1298 
1299 	return ret;
1300 }
1301 
1302 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1303 {
1304 	bool pressure;
1305 	int ret;
1306 
1307 	ret = __packet_rcv_has_room(po, skb);
1308 	pressure = ret != ROOM_NORMAL;
1309 
1310 	if (packet_sock_flag(po, PACKET_SOCK_PRESSURE) != pressure)
1311 		packet_sock_flag_set(po, PACKET_SOCK_PRESSURE, pressure);
1312 
1313 	return ret;
1314 }
1315 
1316 static void packet_rcv_try_clear_pressure(struct packet_sock *po)
1317 {
1318 	if (packet_sock_flag(po, PACKET_SOCK_PRESSURE) &&
1319 	    __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
1320 		packet_sock_flag_set(po, PACKET_SOCK_PRESSURE, false);
1321 }
1322 
1323 static void packet_sock_destruct(struct sock *sk)
1324 {
1325 	skb_queue_purge(&sk->sk_error_queue);
1326 
1327 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1328 	WARN_ON(refcount_read(&sk->sk_wmem_alloc));
1329 
1330 	if (!sock_flag(sk, SOCK_DEAD)) {
1331 		pr_err("Attempt to release alive packet socket: %p\n", sk);
1332 		return;
1333 	}
1334 }
1335 
1336 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1337 {
1338 	u32 *history = po->rollover->history;
1339 	u32 victim, rxhash;
1340 	int i, count = 0;
1341 
1342 	rxhash = skb_get_hash(skb);
1343 	for (i = 0; i < ROLLOVER_HLEN; i++)
1344 		if (READ_ONCE(history[i]) == rxhash)
1345 			count++;
1346 
1347 	victim = get_random_u32_below(ROLLOVER_HLEN);
1348 
1349 	/* Avoid dirtying the cache line if possible */
1350 	if (READ_ONCE(history[victim]) != rxhash)
1351 		WRITE_ONCE(history[victim], rxhash);
1352 
1353 	return count > (ROLLOVER_HLEN >> 1);
1354 }
1355 
1356 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1357 				      struct sk_buff *skb,
1358 				      unsigned int num)
1359 {
1360 	return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1361 }
1362 
1363 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1364 				    struct sk_buff *skb,
1365 				    unsigned int num)
1366 {
1367 	unsigned int val = atomic_inc_return(&f->rr_cur);
1368 
1369 	return val % num;
1370 }
1371 
1372 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1373 				     struct sk_buff *skb,
1374 				     unsigned int num)
1375 {
1376 	return smp_processor_id() % num;
1377 }
1378 
1379 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1380 				     struct sk_buff *skb,
1381 				     unsigned int num)
1382 {
1383 	return get_random_u32_below(num);
1384 }
1385 
1386 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1387 					  struct sk_buff *skb,
1388 					  unsigned int idx, bool try_self,
1389 					  unsigned int num)
1390 {
1391 	struct packet_sock *po, *po_next, *po_skip = NULL;
1392 	unsigned int i, j, room = ROOM_NONE;
1393 
1394 	po = pkt_sk(rcu_dereference(f->arr[idx]));
1395 
1396 	if (try_self) {
1397 		room = packet_rcv_has_room(po, skb);
1398 		if (room == ROOM_NORMAL ||
1399 		    (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1400 			return idx;
1401 		po_skip = po;
1402 	}
1403 
1404 	i = j = min_t(int, po->rollover->sock, num - 1);
1405 	do {
1406 		po_next = pkt_sk(rcu_dereference(f->arr[i]));
1407 		if (po_next != po_skip &&
1408 		    !packet_sock_flag(po_next, PACKET_SOCK_PRESSURE) &&
1409 		    packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1410 			if (i != j)
1411 				po->rollover->sock = i;
1412 			atomic_long_inc(&po->rollover->num);
1413 			if (room == ROOM_LOW)
1414 				atomic_long_inc(&po->rollover->num_huge);
1415 			return i;
1416 		}
1417 
1418 		if (++i == num)
1419 			i = 0;
1420 	} while (i != j);
1421 
1422 	atomic_long_inc(&po->rollover->num_failed);
1423 	return idx;
1424 }
1425 
1426 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1427 				    struct sk_buff *skb,
1428 				    unsigned int num)
1429 {
1430 	return skb_get_queue_mapping(skb) % num;
1431 }
1432 
1433 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1434 				     struct sk_buff *skb,
1435 				     unsigned int num)
1436 {
1437 	struct bpf_prog *prog;
1438 	unsigned int ret = 0;
1439 
1440 	rcu_read_lock();
1441 	prog = rcu_dereference(f->bpf_prog);
1442 	if (prog)
1443 		ret = bpf_prog_run_clear_cb(prog, skb) % num;
1444 	rcu_read_unlock();
1445 
1446 	return ret;
1447 }
1448 
1449 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1450 {
1451 	return f->flags & (flag >> 8);
1452 }
1453 
1454 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1455 			     struct packet_type *pt, struct net_device *orig_dev)
1456 {
1457 	struct packet_fanout *f = pt->af_packet_priv;
1458 	unsigned int num = READ_ONCE(f->num_members);
1459 	struct net *net = read_pnet(&f->net);
1460 	struct packet_sock *po;
1461 	unsigned int idx;
1462 
1463 	if (!net_eq(dev_net(dev), net) || !num) {
1464 		kfree_skb(skb);
1465 		return 0;
1466 	}
1467 
1468 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1469 		skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1470 		if (!skb)
1471 			return 0;
1472 	}
1473 	switch (f->type) {
1474 	case PACKET_FANOUT_HASH:
1475 	default:
1476 		idx = fanout_demux_hash(f, skb, num);
1477 		break;
1478 	case PACKET_FANOUT_LB:
1479 		idx = fanout_demux_lb(f, skb, num);
1480 		break;
1481 	case PACKET_FANOUT_CPU:
1482 		idx = fanout_demux_cpu(f, skb, num);
1483 		break;
1484 	case PACKET_FANOUT_RND:
1485 		idx = fanout_demux_rnd(f, skb, num);
1486 		break;
1487 	case PACKET_FANOUT_QM:
1488 		idx = fanout_demux_qm(f, skb, num);
1489 		break;
1490 	case PACKET_FANOUT_ROLLOVER:
1491 		idx = fanout_demux_rollover(f, skb, 0, false, num);
1492 		break;
1493 	case PACKET_FANOUT_CBPF:
1494 	case PACKET_FANOUT_EBPF:
1495 		idx = fanout_demux_bpf(f, skb, num);
1496 		break;
1497 	}
1498 
1499 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1500 		idx = fanout_demux_rollover(f, skb, idx, true, num);
1501 
1502 	po = pkt_sk(rcu_dereference(f->arr[idx]));
1503 	return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1504 }
1505 
1506 DEFINE_MUTEX(fanout_mutex);
1507 EXPORT_SYMBOL_GPL(fanout_mutex);
1508 static LIST_HEAD(fanout_list);
1509 static u16 fanout_next_id;
1510 
1511 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1512 {
1513 	struct packet_fanout *f = po->fanout;
1514 
1515 	spin_lock(&f->lock);
1516 	rcu_assign_pointer(f->arr[f->num_members], sk);
1517 	smp_wmb();
1518 	f->num_members++;
1519 	if (f->num_members == 1)
1520 		dev_add_pack(&f->prot_hook);
1521 	spin_unlock(&f->lock);
1522 }
1523 
1524 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1525 {
1526 	struct packet_fanout *f = po->fanout;
1527 	int i;
1528 
1529 	spin_lock(&f->lock);
1530 	for (i = 0; i < f->num_members; i++) {
1531 		if (rcu_dereference_protected(f->arr[i],
1532 					      lockdep_is_held(&f->lock)) == sk)
1533 			break;
1534 	}
1535 	BUG_ON(i >= f->num_members);
1536 	rcu_assign_pointer(f->arr[i],
1537 			   rcu_dereference_protected(f->arr[f->num_members - 1],
1538 						     lockdep_is_held(&f->lock)));
1539 	f->num_members--;
1540 	if (f->num_members == 0)
1541 		__dev_remove_pack(&f->prot_hook);
1542 	spin_unlock(&f->lock);
1543 }
1544 
1545 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1546 {
1547 	if (sk->sk_family != PF_PACKET)
1548 		return false;
1549 
1550 	return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1551 }
1552 
1553 static void fanout_init_data(struct packet_fanout *f)
1554 {
1555 	switch (f->type) {
1556 	case PACKET_FANOUT_LB:
1557 		atomic_set(&f->rr_cur, 0);
1558 		break;
1559 	case PACKET_FANOUT_CBPF:
1560 	case PACKET_FANOUT_EBPF:
1561 		RCU_INIT_POINTER(f->bpf_prog, NULL);
1562 		break;
1563 	}
1564 }
1565 
1566 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1567 {
1568 	struct bpf_prog *old;
1569 
1570 	spin_lock(&f->lock);
1571 	old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1572 	rcu_assign_pointer(f->bpf_prog, new);
1573 	spin_unlock(&f->lock);
1574 
1575 	if (old) {
1576 		synchronize_net();
1577 		bpf_prog_destroy(old);
1578 	}
1579 }
1580 
1581 static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data,
1582 				unsigned int len)
1583 {
1584 	struct bpf_prog *new;
1585 	struct sock_fprog fprog;
1586 	int ret;
1587 
1588 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1589 		return -EPERM;
1590 
1591 	ret = copy_bpf_fprog_from_user(&fprog, data, len);
1592 	if (ret)
1593 		return ret;
1594 
1595 	ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1596 	if (ret)
1597 		return ret;
1598 
1599 	__fanout_set_data_bpf(po->fanout, new);
1600 	return 0;
1601 }
1602 
1603 static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data,
1604 				unsigned int len)
1605 {
1606 	struct bpf_prog *new;
1607 	u32 fd;
1608 
1609 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1610 		return -EPERM;
1611 	if (len != sizeof(fd))
1612 		return -EINVAL;
1613 	if (copy_from_sockptr(&fd, data, len))
1614 		return -EFAULT;
1615 
1616 	new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1617 	if (IS_ERR(new))
1618 		return PTR_ERR(new);
1619 
1620 	__fanout_set_data_bpf(po->fanout, new);
1621 	return 0;
1622 }
1623 
1624 static int fanout_set_data(struct packet_sock *po, sockptr_t data,
1625 			   unsigned int len)
1626 {
1627 	switch (po->fanout->type) {
1628 	case PACKET_FANOUT_CBPF:
1629 		return fanout_set_data_cbpf(po, data, len);
1630 	case PACKET_FANOUT_EBPF:
1631 		return fanout_set_data_ebpf(po, data, len);
1632 	default:
1633 		return -EINVAL;
1634 	}
1635 }
1636 
1637 static void fanout_release_data(struct packet_fanout *f)
1638 {
1639 	switch (f->type) {
1640 	case PACKET_FANOUT_CBPF:
1641 	case PACKET_FANOUT_EBPF:
1642 		__fanout_set_data_bpf(f, NULL);
1643 	}
1644 }
1645 
1646 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
1647 {
1648 	struct packet_fanout *f;
1649 
1650 	list_for_each_entry(f, &fanout_list, list) {
1651 		if (f->id == candidate_id &&
1652 		    read_pnet(&f->net) == sock_net(sk)) {
1653 			return false;
1654 		}
1655 	}
1656 	return true;
1657 }
1658 
1659 static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
1660 {
1661 	u16 id = fanout_next_id;
1662 
1663 	do {
1664 		if (__fanout_id_is_free(sk, id)) {
1665 			*new_id = id;
1666 			fanout_next_id = id + 1;
1667 			return true;
1668 		}
1669 
1670 		id++;
1671 	} while (id != fanout_next_id);
1672 
1673 	return false;
1674 }
1675 
1676 static int fanout_add(struct sock *sk, struct fanout_args *args)
1677 {
1678 	struct packet_rollover *rollover = NULL;
1679 	struct packet_sock *po = pkt_sk(sk);
1680 	u16 type_flags = args->type_flags;
1681 	struct packet_fanout *f, *match;
1682 	u8 type = type_flags & 0xff;
1683 	u8 flags = type_flags >> 8;
1684 	u16 id = args->id;
1685 	int err;
1686 
1687 	switch (type) {
1688 	case PACKET_FANOUT_ROLLOVER:
1689 		if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1690 			return -EINVAL;
1691 		break;
1692 	case PACKET_FANOUT_HASH:
1693 	case PACKET_FANOUT_LB:
1694 	case PACKET_FANOUT_CPU:
1695 	case PACKET_FANOUT_RND:
1696 	case PACKET_FANOUT_QM:
1697 	case PACKET_FANOUT_CBPF:
1698 	case PACKET_FANOUT_EBPF:
1699 		break;
1700 	default:
1701 		return -EINVAL;
1702 	}
1703 
1704 	mutex_lock(&fanout_mutex);
1705 
1706 	err = -EALREADY;
1707 	if (po->fanout)
1708 		goto out;
1709 
1710 	if (type == PACKET_FANOUT_ROLLOVER ||
1711 	    (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1712 		err = -ENOMEM;
1713 		rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1714 		if (!rollover)
1715 			goto out;
1716 		atomic_long_set(&rollover->num, 0);
1717 		atomic_long_set(&rollover->num_huge, 0);
1718 		atomic_long_set(&rollover->num_failed, 0);
1719 	}
1720 
1721 	if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
1722 		if (id != 0) {
1723 			err = -EINVAL;
1724 			goto out;
1725 		}
1726 		if (!fanout_find_new_id(sk, &id)) {
1727 			err = -ENOMEM;
1728 			goto out;
1729 		}
1730 		/* ephemeral flag for the first socket in the group: drop it */
1731 		flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
1732 	}
1733 
1734 	match = NULL;
1735 	list_for_each_entry(f, &fanout_list, list) {
1736 		if (f->id == id &&
1737 		    read_pnet(&f->net) == sock_net(sk)) {
1738 			match = f;
1739 			break;
1740 		}
1741 	}
1742 	err = -EINVAL;
1743 	if (match) {
1744 		if (match->flags != flags)
1745 			goto out;
1746 		if (args->max_num_members &&
1747 		    args->max_num_members != match->max_num_members)
1748 			goto out;
1749 	} else {
1750 		if (args->max_num_members > PACKET_FANOUT_MAX)
1751 			goto out;
1752 		if (!args->max_num_members)
1753 			/* legacy PACKET_FANOUT_MAX */
1754 			args->max_num_members = 256;
1755 		err = -ENOMEM;
1756 		match = kvzalloc(struct_size(match, arr, args->max_num_members),
1757 				 GFP_KERNEL);
1758 		if (!match)
1759 			goto out;
1760 		write_pnet(&match->net, sock_net(sk));
1761 		match->id = id;
1762 		match->type = type;
1763 		match->flags = flags;
1764 		INIT_LIST_HEAD(&match->list);
1765 		spin_lock_init(&match->lock);
1766 		refcount_set(&match->sk_ref, 0);
1767 		fanout_init_data(match);
1768 		match->prot_hook.type = po->prot_hook.type;
1769 		match->prot_hook.dev = po->prot_hook.dev;
1770 		match->prot_hook.func = packet_rcv_fanout;
1771 		match->prot_hook.af_packet_priv = match;
1772 		match->prot_hook.af_packet_net = read_pnet(&match->net);
1773 		match->prot_hook.id_match = match_fanout_group;
1774 		match->max_num_members = args->max_num_members;
1775 		match->prot_hook.ignore_outgoing = type_flags & PACKET_FANOUT_FLAG_IGNORE_OUTGOING;
1776 		list_add(&match->list, &fanout_list);
1777 	}
1778 	err = -EINVAL;
1779 
1780 	spin_lock(&po->bind_lock);
1781 	if (po->num &&
1782 	    match->type == type &&
1783 	    match->prot_hook.type == po->prot_hook.type &&
1784 	    match->prot_hook.dev == po->prot_hook.dev) {
1785 		err = -ENOSPC;
1786 		if (refcount_read(&match->sk_ref) < match->max_num_members) {
1787 			/* Paired with packet_setsockopt(PACKET_FANOUT_DATA) */
1788 			WRITE_ONCE(po->fanout, match);
1789 
1790 			po->rollover = rollover;
1791 			rollover = NULL;
1792 			refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1);
1793 			if (packet_sock_flag(po, PACKET_SOCK_RUNNING)) {
1794 				__dev_remove_pack(&po->prot_hook);
1795 				__fanout_link(sk, po);
1796 			}
1797 			err = 0;
1798 		}
1799 	}
1800 	spin_unlock(&po->bind_lock);
1801 
1802 	if (err && !refcount_read(&match->sk_ref)) {
1803 		list_del(&match->list);
1804 		kvfree(match);
1805 	}
1806 
1807 out:
1808 	kfree(rollover);
1809 	mutex_unlock(&fanout_mutex);
1810 	return err;
1811 }
1812 
1813 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1814  * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1815  * It is the responsibility of the caller to call fanout_release_data() and
1816  * free the returned packet_fanout (after synchronize_net())
1817  */
1818 static struct packet_fanout *fanout_release(struct sock *sk)
1819 {
1820 	struct packet_sock *po = pkt_sk(sk);
1821 	struct packet_fanout *f;
1822 
1823 	mutex_lock(&fanout_mutex);
1824 	f = po->fanout;
1825 	if (f) {
1826 		po->fanout = NULL;
1827 
1828 		if (refcount_dec_and_test(&f->sk_ref))
1829 			list_del(&f->list);
1830 		else
1831 			f = NULL;
1832 	}
1833 	mutex_unlock(&fanout_mutex);
1834 
1835 	return f;
1836 }
1837 
1838 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1839 					  struct sk_buff *skb)
1840 {
1841 	/* Earlier code assumed this would be a VLAN pkt, double-check
1842 	 * this now that we have the actual packet in hand. We can only
1843 	 * do this check on Ethernet devices.
1844 	 */
1845 	if (unlikely(dev->type != ARPHRD_ETHER))
1846 		return false;
1847 
1848 	skb_reset_mac_header(skb);
1849 	return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1850 }
1851 
1852 static const struct proto_ops packet_ops;
1853 
1854 static const struct proto_ops packet_ops_spkt;
1855 
1856 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1857 			   struct packet_type *pt, struct net_device *orig_dev)
1858 {
1859 	struct sock *sk;
1860 	struct sockaddr_pkt *spkt;
1861 
1862 	/*
1863 	 *	When we registered the protocol we saved the socket in the data
1864 	 *	field for just this event.
1865 	 */
1866 
1867 	sk = pt->af_packet_priv;
1868 
1869 	/*
1870 	 *	Yank back the headers [hope the device set this
1871 	 *	right or kerboom...]
1872 	 *
1873 	 *	Incoming packets have ll header pulled,
1874 	 *	push it back.
1875 	 *
1876 	 *	For outgoing ones skb->data == skb_mac_header(skb)
1877 	 *	so that this procedure is noop.
1878 	 */
1879 
1880 	if (skb->pkt_type == PACKET_LOOPBACK)
1881 		goto out;
1882 
1883 	if (!net_eq(dev_net(dev), sock_net(sk)))
1884 		goto out;
1885 
1886 	skb = skb_share_check(skb, GFP_ATOMIC);
1887 	if (skb == NULL)
1888 		goto oom;
1889 
1890 	/* drop any routing info */
1891 	skb_dst_drop(skb);
1892 
1893 	/* drop conntrack reference */
1894 	nf_reset_ct(skb);
1895 
1896 	spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1897 
1898 	skb_push(skb, skb->data - skb_mac_header(skb));
1899 
1900 	/*
1901 	 *	The SOCK_PACKET socket receives _all_ frames.
1902 	 */
1903 
1904 	spkt->spkt_family = dev->type;
1905 	strscpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1906 	spkt->spkt_protocol = skb->protocol;
1907 
1908 	/*
1909 	 *	Charge the memory to the socket. This is done specifically
1910 	 *	to prevent sockets using all the memory up.
1911 	 */
1912 
1913 	if (sock_queue_rcv_skb(sk, skb) == 0)
1914 		return 0;
1915 
1916 out:
1917 	kfree_skb(skb);
1918 oom:
1919 	return 0;
1920 }
1921 
1922 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock)
1923 {
1924 	int depth;
1925 
1926 	if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) &&
1927 	    sock->type == SOCK_RAW) {
1928 		skb_reset_mac_header(skb);
1929 		skb->protocol = dev_parse_header_protocol(skb);
1930 	}
1931 
1932 	/* Move network header to the right position for VLAN tagged packets */
1933 	if (likely(skb->dev->type == ARPHRD_ETHER) &&
1934 	    eth_type_vlan(skb->protocol) &&
1935 	    vlan_get_protocol_and_depth(skb, skb->protocol, &depth) != 0)
1936 		skb_set_network_header(skb, depth);
1937 
1938 	skb_probe_transport_header(skb);
1939 }
1940 
1941 /*
1942  *	Output a raw packet to a device layer. This bypasses all the other
1943  *	protocol layers and you must therefore supply it with a complete frame
1944  */
1945 
1946 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1947 			       size_t len)
1948 {
1949 	struct sock *sk = sock->sk;
1950 	DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1951 	struct sk_buff *skb = NULL;
1952 	struct net_device *dev;
1953 	struct sockcm_cookie sockc;
1954 	__be16 proto = 0;
1955 	int err;
1956 	int extra_len = 0;
1957 
1958 	/*
1959 	 *	Get and verify the address.
1960 	 */
1961 
1962 	if (saddr) {
1963 		if (msg->msg_namelen < sizeof(struct sockaddr))
1964 			return -EINVAL;
1965 		if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1966 			proto = saddr->spkt_protocol;
1967 	} else
1968 		return -ENOTCONN;	/* SOCK_PACKET must be sent giving an address */
1969 
1970 	/*
1971 	 *	Find the device first to size check it
1972 	 */
1973 
1974 	saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1975 retry:
1976 	rcu_read_lock();
1977 	dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1978 	err = -ENODEV;
1979 	if (dev == NULL)
1980 		goto out_unlock;
1981 
1982 	err = -ENETDOWN;
1983 	if (!(dev->flags & IFF_UP))
1984 		goto out_unlock;
1985 
1986 	/*
1987 	 * You may not queue a frame bigger than the mtu. This is the lowest level
1988 	 * raw protocol and you must do your own fragmentation at this level.
1989 	 */
1990 
1991 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1992 		if (!netif_supports_nofcs(dev)) {
1993 			err = -EPROTONOSUPPORT;
1994 			goto out_unlock;
1995 		}
1996 		extra_len = 4; /* We're doing our own CRC */
1997 	}
1998 
1999 	err = -EMSGSIZE;
2000 	if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
2001 		goto out_unlock;
2002 
2003 	if (!skb) {
2004 		size_t reserved = LL_RESERVED_SPACE(dev);
2005 		int tlen = dev->needed_tailroom;
2006 		unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
2007 
2008 		rcu_read_unlock();
2009 		skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
2010 		if (skb == NULL)
2011 			return -ENOBUFS;
2012 		/* FIXME: Save some space for broken drivers that write a hard
2013 		 * header at transmission time by themselves. PPP is the notable
2014 		 * one here. This should really be fixed at the driver level.
2015 		 */
2016 		skb_reserve(skb, reserved);
2017 		skb_reset_network_header(skb);
2018 
2019 		/* Try to align data part correctly */
2020 		if (hhlen) {
2021 			skb->data -= hhlen;
2022 			skb->tail -= hhlen;
2023 			if (len < hhlen)
2024 				skb_reset_network_header(skb);
2025 		}
2026 		err = memcpy_from_msg(skb_put(skb, len), msg, len);
2027 		if (err)
2028 			goto out_free;
2029 		goto retry;
2030 	}
2031 
2032 	if (!dev_validate_header(dev, skb->data, len) || !skb->len) {
2033 		err = -EINVAL;
2034 		goto out_unlock;
2035 	}
2036 	if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
2037 	    !packet_extra_vlan_len_allowed(dev, skb)) {
2038 		err = -EMSGSIZE;
2039 		goto out_unlock;
2040 	}
2041 
2042 	sockcm_init(&sockc, sk);
2043 	if (msg->msg_controllen) {
2044 		err = sock_cmsg_send(sk, msg, &sockc);
2045 		if (unlikely(err))
2046 			goto out_unlock;
2047 	}
2048 
2049 	skb->protocol = proto;
2050 	skb->dev = dev;
2051 	skb->priority = sockc.priority;
2052 	skb->mark = sockc.mark;
2053 	skb_set_delivery_type_by_clockid(skb, sockc.transmit_time, sk->sk_clockid);
2054 	skb_setup_tx_timestamp(skb, &sockc);
2055 
2056 	if (unlikely(extra_len == 4))
2057 		skb->no_fcs = 1;
2058 
2059 	packet_parse_headers(skb, sock);
2060 
2061 	dev_queue_xmit(skb);
2062 	rcu_read_unlock();
2063 	return len;
2064 
2065 out_unlock:
2066 	rcu_read_unlock();
2067 out_free:
2068 	kfree_skb(skb);
2069 	return err;
2070 }
2071 
2072 static unsigned int run_filter(struct sk_buff *skb,
2073 			       const struct sock *sk,
2074 			       unsigned int res)
2075 {
2076 	struct sk_filter *filter;
2077 
2078 	rcu_read_lock();
2079 	filter = rcu_dereference(sk->sk_filter);
2080 	if (filter != NULL)
2081 		res = bpf_prog_run_clear_cb(filter->prog, skb);
2082 	rcu_read_unlock();
2083 
2084 	return res;
2085 }
2086 
2087 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2088 			   size_t *len, int vnet_hdr_sz)
2089 {
2090 	struct virtio_net_hdr_mrg_rxbuf vnet_hdr = { .num_buffers = 0 };
2091 
2092 	if (*len < vnet_hdr_sz)
2093 		return -EINVAL;
2094 	*len -= vnet_hdr_sz;
2095 
2096 	if (virtio_net_hdr_from_skb(skb, (struct virtio_net_hdr *)&vnet_hdr, vio_le(), true, 0))
2097 		return -EINVAL;
2098 
2099 	return memcpy_to_msg(msg, (void *)&vnet_hdr, vnet_hdr_sz);
2100 }
2101 
2102 /*
2103  * This function makes lazy skb cloning in hope that most of packets
2104  * are discarded by BPF.
2105  *
2106  * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2107  * and skb->cb are mangled. It works because (and until) packets
2108  * falling here are owned by current CPU. Output packets are cloned
2109  * by dev_queue_xmit_nit(), input packets are processed by net_bh
2110  * sequentially, so that if we return skb to original state on exit,
2111  * we will not harm anyone.
2112  */
2113 
2114 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2115 		      struct packet_type *pt, struct net_device *orig_dev)
2116 {
2117 	enum skb_drop_reason drop_reason = SKB_CONSUMED;
2118 	struct sock *sk = NULL;
2119 	struct sockaddr_ll *sll;
2120 	struct packet_sock *po;
2121 	u8 *skb_head = skb->data;
2122 	int skb_len = skb->len;
2123 	unsigned int snaplen, res;
2124 
2125 	if (skb->pkt_type == PACKET_LOOPBACK)
2126 		goto drop;
2127 
2128 	sk = pt->af_packet_priv;
2129 	po = pkt_sk(sk);
2130 
2131 	if (!net_eq(dev_net(dev), sock_net(sk)))
2132 		goto drop;
2133 
2134 	skb->dev = dev;
2135 
2136 	if (dev_has_header(dev)) {
2137 		/* The device has an explicit notion of ll header,
2138 		 * exported to higher levels.
2139 		 *
2140 		 * Otherwise, the device hides details of its frame
2141 		 * structure, so that corresponding packet head is
2142 		 * never delivered to user.
2143 		 */
2144 		if (sk->sk_type != SOCK_DGRAM)
2145 			skb_push(skb, skb->data - skb_mac_header(skb));
2146 		else if (skb->pkt_type == PACKET_OUTGOING) {
2147 			/* Special case: outgoing packets have ll header at head */
2148 			skb_pull(skb, skb_network_offset(skb));
2149 		}
2150 	}
2151 
2152 	snaplen = skb_frags_readable(skb) ? skb->len : skb_headlen(skb);
2153 
2154 	res = run_filter(skb, sk, snaplen);
2155 	if (!res)
2156 		goto drop_n_restore;
2157 	if (snaplen > res)
2158 		snaplen = res;
2159 
2160 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2161 		goto drop_n_acct;
2162 
2163 	if (skb_shared(skb)) {
2164 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2165 		if (nskb == NULL)
2166 			goto drop_n_acct;
2167 
2168 		if (skb_head != skb->data) {
2169 			skb->data = skb_head;
2170 			skb->len = skb_len;
2171 		}
2172 		consume_skb(skb);
2173 		skb = nskb;
2174 	}
2175 
2176 	sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2177 
2178 	sll = &PACKET_SKB_CB(skb)->sa.ll;
2179 	sll->sll_hatype = dev->type;
2180 	sll->sll_pkttype = skb->pkt_type;
2181 	if (unlikely(packet_sock_flag(po, PACKET_SOCK_ORIGDEV)))
2182 		sll->sll_ifindex = orig_dev->ifindex;
2183 	else
2184 		sll->sll_ifindex = dev->ifindex;
2185 
2186 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2187 
2188 	/* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2189 	 * Use their space for storing the original skb length.
2190 	 */
2191 	PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2192 
2193 	if (pskb_trim(skb, snaplen))
2194 		goto drop_n_acct;
2195 
2196 	skb_set_owner_r(skb, sk);
2197 	skb->dev = NULL;
2198 	skb_dst_drop(skb);
2199 
2200 	/* drop conntrack reference */
2201 	nf_reset_ct(skb);
2202 
2203 	spin_lock(&sk->sk_receive_queue.lock);
2204 	po->stats.stats1.tp_packets++;
2205 	sock_skb_set_dropcount(sk, skb);
2206 	skb_clear_delivery_time(skb);
2207 	__skb_queue_tail(&sk->sk_receive_queue, skb);
2208 	spin_unlock(&sk->sk_receive_queue.lock);
2209 	sk->sk_data_ready(sk);
2210 	return 0;
2211 
2212 drop_n_acct:
2213 	atomic_inc(&po->tp_drops);
2214 	sk_drops_inc(sk);
2215 	drop_reason = SKB_DROP_REASON_PACKET_SOCK_ERROR;
2216 
2217 drop_n_restore:
2218 	if (skb_head != skb->data && skb_shared(skb)) {
2219 		skb->data = skb_head;
2220 		skb->len = skb_len;
2221 	}
2222 drop:
2223 	sk_skb_reason_drop(sk, skb, drop_reason);
2224 	return 0;
2225 }
2226 
2227 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2228 		       struct packet_type *pt, struct net_device *orig_dev)
2229 {
2230 	enum skb_drop_reason drop_reason = SKB_CONSUMED;
2231 	struct sock *sk = NULL;
2232 	struct packet_sock *po;
2233 	struct sockaddr_ll *sll;
2234 	union tpacket_uhdr h;
2235 	u8 *skb_head = skb->data;
2236 	int skb_len = skb->len;
2237 	unsigned int snaplen, res;
2238 	unsigned long status = TP_STATUS_USER;
2239 	unsigned short macoff, hdrlen;
2240 	unsigned int netoff;
2241 	struct sk_buff *copy_skb = NULL;
2242 	struct timespec64 ts;
2243 	__u32 ts_status;
2244 	unsigned int slot_id = 0;
2245 	int vnet_hdr_sz = 0;
2246 
2247 	/* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2248 	 * We may add members to them until current aligned size without forcing
2249 	 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2250 	 */
2251 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2252 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2253 
2254 	if (skb->pkt_type == PACKET_LOOPBACK)
2255 		goto drop;
2256 
2257 	sk = pt->af_packet_priv;
2258 	po = pkt_sk(sk);
2259 
2260 	if (!net_eq(dev_net(dev), sock_net(sk)))
2261 		goto drop;
2262 
2263 	if (dev_has_header(dev)) {
2264 		if (sk->sk_type != SOCK_DGRAM)
2265 			skb_push(skb, skb->data - skb_mac_header(skb));
2266 		else if (skb->pkt_type == PACKET_OUTGOING) {
2267 			/* Special case: outgoing packets have ll header at head */
2268 			skb_pull(skb, skb_network_offset(skb));
2269 		}
2270 	}
2271 
2272 	snaplen = skb_frags_readable(skb) ? skb->len : skb_headlen(skb);
2273 
2274 	res = run_filter(skb, sk, snaplen);
2275 	if (!res)
2276 		goto drop_n_restore;
2277 
2278 	/* If we are flooded, just give up */
2279 	if (__packet_rcv_has_room(po, skb) == ROOM_NONE) {
2280 		atomic_inc(&po->tp_drops);
2281 		goto drop_n_restore;
2282 	}
2283 
2284 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2285 		status |= TP_STATUS_CSUMNOTREADY;
2286 	else if (skb->pkt_type != PACKET_OUTGOING &&
2287 		 skb_csum_unnecessary(skb))
2288 		status |= TP_STATUS_CSUM_VALID;
2289 	if (skb_is_gso(skb) && skb_is_gso_tcp(skb))
2290 		status |= TP_STATUS_GSO_TCP;
2291 
2292 	if (snaplen > res)
2293 		snaplen = res;
2294 
2295 	if (sk->sk_type == SOCK_DGRAM) {
2296 		macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2297 				  po->tp_reserve;
2298 	} else {
2299 		unsigned int maclen = skb_network_offset(skb);
2300 		netoff = TPACKET_ALIGN(po->tp_hdrlen +
2301 				       (maclen < 16 ? 16 : maclen)) +
2302 				       po->tp_reserve;
2303 		vnet_hdr_sz = READ_ONCE(po->vnet_hdr_sz);
2304 		if (vnet_hdr_sz)
2305 			netoff += vnet_hdr_sz;
2306 		macoff = netoff - maclen;
2307 	}
2308 	if (netoff > USHRT_MAX) {
2309 		atomic_inc(&po->tp_drops);
2310 		goto drop_n_restore;
2311 	}
2312 	if (po->tp_version <= TPACKET_V2) {
2313 		if (macoff + snaplen > po->rx_ring.frame_size) {
2314 			if (READ_ONCE(po->copy_thresh) &&
2315 			    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2316 				if (skb_shared(skb)) {
2317 					copy_skb = skb_clone(skb, GFP_ATOMIC);
2318 				} else {
2319 					copy_skb = skb_get(skb);
2320 					skb_head = skb->data;
2321 				}
2322 				if (copy_skb) {
2323 					memset(&PACKET_SKB_CB(copy_skb)->sa.ll, 0,
2324 					       sizeof(PACKET_SKB_CB(copy_skb)->sa.ll));
2325 					skb_set_owner_r(copy_skb, sk);
2326 				}
2327 			}
2328 			snaplen = po->rx_ring.frame_size - macoff;
2329 			if ((int)snaplen < 0) {
2330 				snaplen = 0;
2331 				vnet_hdr_sz = 0;
2332 			}
2333 		}
2334 	} else if (unlikely(macoff + snaplen >
2335 			    GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2336 		u32 nval;
2337 
2338 		nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2339 		pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2340 			    snaplen, nval, macoff);
2341 		snaplen = nval;
2342 		if (unlikely((int)snaplen < 0)) {
2343 			snaplen = 0;
2344 			macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2345 			vnet_hdr_sz = 0;
2346 		}
2347 	}
2348 	spin_lock(&sk->sk_receive_queue.lock);
2349 	h.raw = packet_current_rx_frame(po, skb,
2350 					TP_STATUS_KERNEL, (macoff+snaplen));
2351 	if (!h.raw)
2352 		goto drop_n_account;
2353 
2354 	if (po->tp_version <= TPACKET_V2) {
2355 		slot_id = po->rx_ring.head;
2356 		if (test_bit(slot_id, po->rx_ring.rx_owner_map))
2357 			goto drop_n_account;
2358 		__set_bit(slot_id, po->rx_ring.rx_owner_map);
2359 	}
2360 
2361 	if (vnet_hdr_sz &&
2362 	    virtio_net_hdr_from_skb(skb, h.raw + macoff -
2363 				    sizeof(struct virtio_net_hdr),
2364 				    vio_le(), true, 0)) {
2365 		if (po->tp_version == TPACKET_V3)
2366 			prb_clear_blk_fill_status(&po->rx_ring);
2367 		goto drop_n_account;
2368 	}
2369 
2370 	if (po->tp_version <= TPACKET_V2) {
2371 		packet_increment_rx_head(po, &po->rx_ring);
2372 	/*
2373 	 * LOSING will be reported till you read the stats,
2374 	 * because it's COR - Clear On Read.
2375 	 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2376 	 * at packet level.
2377 	 */
2378 		if (atomic_read(&po->tp_drops))
2379 			status |= TP_STATUS_LOSING;
2380 	}
2381 
2382 	po->stats.stats1.tp_packets++;
2383 	if (copy_skb) {
2384 		status |= TP_STATUS_COPY;
2385 		skb_clear_delivery_time(copy_skb);
2386 		__skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2387 	}
2388 	spin_unlock(&sk->sk_receive_queue.lock);
2389 
2390 	skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2391 
2392 	/* Always timestamp; prefer an existing software timestamp taken
2393 	 * closer to the time of capture.
2394 	 */
2395 	ts_status = tpacket_get_timestamp(skb, &ts,
2396 					  READ_ONCE(po->tp_tstamp) |
2397 					  SOF_TIMESTAMPING_SOFTWARE);
2398 	if (!ts_status)
2399 		ktime_get_real_ts64(&ts);
2400 
2401 	status |= ts_status;
2402 
2403 	switch (po->tp_version) {
2404 	case TPACKET_V1:
2405 		h.h1->tp_len = skb->len;
2406 		h.h1->tp_snaplen = snaplen;
2407 		h.h1->tp_mac = macoff;
2408 		h.h1->tp_net = netoff;
2409 		h.h1->tp_sec = ts.tv_sec;
2410 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2411 		hdrlen = sizeof(*h.h1);
2412 		break;
2413 	case TPACKET_V2:
2414 		h.h2->tp_len = skb->len;
2415 		h.h2->tp_snaplen = snaplen;
2416 		h.h2->tp_mac = macoff;
2417 		h.h2->tp_net = netoff;
2418 		h.h2->tp_sec = ts.tv_sec;
2419 		h.h2->tp_nsec = ts.tv_nsec;
2420 		if (skb_vlan_tag_present(skb)) {
2421 			h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2422 			h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2423 			status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2424 		} else if (unlikely(sk->sk_type == SOCK_DGRAM && eth_type_vlan(skb->protocol))) {
2425 			h.h2->tp_vlan_tci = vlan_get_tci(skb, skb->dev);
2426 			h.h2->tp_vlan_tpid = ntohs(skb->protocol);
2427 			status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2428 		} else {
2429 			h.h2->tp_vlan_tci = 0;
2430 			h.h2->tp_vlan_tpid = 0;
2431 		}
2432 		memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2433 		hdrlen = sizeof(*h.h2);
2434 		break;
2435 	case TPACKET_V3:
2436 		/* tp_nxt_offset,vlan are already populated above.
2437 		 * So DONT clear those fields here
2438 		 */
2439 		h.h3->tp_status |= status;
2440 		h.h3->tp_len = skb->len;
2441 		h.h3->tp_snaplen = snaplen;
2442 		h.h3->tp_mac = macoff;
2443 		h.h3->tp_net = netoff;
2444 		h.h3->tp_sec  = ts.tv_sec;
2445 		h.h3->tp_nsec = ts.tv_nsec;
2446 		memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2447 		hdrlen = sizeof(*h.h3);
2448 		break;
2449 	default:
2450 		BUG();
2451 	}
2452 
2453 	sll = h.raw + TPACKET_ALIGN(hdrlen);
2454 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2455 	sll->sll_family = AF_PACKET;
2456 	sll->sll_hatype = dev->type;
2457 	sll->sll_protocol = (sk->sk_type == SOCK_DGRAM) ?
2458 		vlan_get_protocol_dgram(skb) : skb->protocol;
2459 	sll->sll_pkttype = skb->pkt_type;
2460 	if (unlikely(packet_sock_flag(po, PACKET_SOCK_ORIGDEV)))
2461 		sll->sll_ifindex = orig_dev->ifindex;
2462 	else
2463 		sll->sll_ifindex = dev->ifindex;
2464 
2465 	smp_mb();
2466 
2467 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2468 	if (po->tp_version <= TPACKET_V2) {
2469 		u8 *start, *end;
2470 
2471 		end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2472 					macoff + snaplen);
2473 
2474 		for (start = h.raw; start < end; start += PAGE_SIZE)
2475 			flush_dcache_page(pgv_to_page(start));
2476 	}
2477 	smp_wmb();
2478 #endif
2479 
2480 	if (po->tp_version <= TPACKET_V2) {
2481 		spin_lock(&sk->sk_receive_queue.lock);
2482 		__packet_set_status(po, h.raw, status);
2483 		__clear_bit(slot_id, po->rx_ring.rx_owner_map);
2484 		spin_unlock(&sk->sk_receive_queue.lock);
2485 		sk->sk_data_ready(sk);
2486 	} else if (po->tp_version == TPACKET_V3) {
2487 		prb_clear_blk_fill_status(&po->rx_ring);
2488 	}
2489 
2490 drop_n_restore:
2491 	if (skb_head != skb->data && skb_shared(skb)) {
2492 		skb->data = skb_head;
2493 		skb->len = skb_len;
2494 	}
2495 drop:
2496 	sk_skb_reason_drop(sk, skb, drop_reason);
2497 	return 0;
2498 
2499 drop_n_account:
2500 	spin_unlock(&sk->sk_receive_queue.lock);
2501 	atomic_inc(&po->tp_drops);
2502 	drop_reason = SKB_DROP_REASON_PACKET_SOCK_ERROR;
2503 
2504 	sk->sk_data_ready(sk);
2505 	sk_skb_reason_drop(sk, copy_skb, drop_reason);
2506 	goto drop_n_restore;
2507 }
2508 
2509 static void tpacket_destruct_skb(struct sk_buff *skb)
2510 {
2511 	struct packet_sock *po = pkt_sk(skb->sk);
2512 
2513 	if (likely(po->tx_ring.pg_vec)) {
2514 		void *ph;
2515 		__u32 ts;
2516 
2517 		ph = skb_zcopy_get_nouarg(skb);
2518 		packet_dec_pending(&po->tx_ring);
2519 
2520 		ts = __packet_set_timestamp(po, ph, skb);
2521 		__packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2522 
2523 		complete(&po->skb_completion);
2524 	}
2525 
2526 	sock_wfree(skb);
2527 }
2528 
2529 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2530 {
2531 	if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2532 	    (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2533 	     __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2534 	      __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2535 		vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2536 			 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2537 			__virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2538 
2539 	if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2540 		return -EINVAL;
2541 
2542 	return 0;
2543 }
2544 
2545 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2546 				 struct virtio_net_hdr *vnet_hdr, int vnet_hdr_sz)
2547 {
2548 	int ret;
2549 
2550 	if (*len < vnet_hdr_sz)
2551 		return -EINVAL;
2552 	*len -= vnet_hdr_sz;
2553 
2554 	if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2555 		return -EFAULT;
2556 
2557 	ret = __packet_snd_vnet_parse(vnet_hdr, *len);
2558 	if (ret)
2559 		return ret;
2560 
2561 	/* move iter to point to the start of mac header */
2562 	if (vnet_hdr_sz != sizeof(struct virtio_net_hdr))
2563 		iov_iter_advance(&msg->msg_iter, vnet_hdr_sz - sizeof(struct virtio_net_hdr));
2564 
2565 	return 0;
2566 }
2567 
2568 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2569 		void *frame, struct net_device *dev, void *data, int tp_len,
2570 		__be16 proto, unsigned char *addr, int hlen, int copylen,
2571 		const struct sockcm_cookie *sockc)
2572 {
2573 	union tpacket_uhdr ph;
2574 	int to_write, offset, len, nr_frags, len_max;
2575 	struct socket *sock = po->sk.sk_socket;
2576 	struct page *page;
2577 	int err;
2578 
2579 	ph.raw = frame;
2580 
2581 	skb->protocol = proto;
2582 	skb->dev = dev;
2583 	skb->priority = sockc->priority;
2584 	skb->mark = sockc->mark;
2585 	skb_set_delivery_type_by_clockid(skb, sockc->transmit_time, po->sk.sk_clockid);
2586 	skb_setup_tx_timestamp(skb, sockc);
2587 	skb_zcopy_set_nouarg(skb, ph.raw);
2588 
2589 	skb_reserve(skb, hlen);
2590 	skb_reset_network_header(skb);
2591 
2592 	to_write = tp_len;
2593 
2594 	if (sock->type == SOCK_DGRAM) {
2595 		err = dev_hard_header(skb, dev, ntohs(proto), addr,
2596 				NULL, tp_len);
2597 		if (unlikely(err < 0))
2598 			return -EINVAL;
2599 	} else if (copylen) {
2600 		int hdrlen = min_t(int, copylen, tp_len);
2601 
2602 		skb_push(skb, dev->hard_header_len);
2603 		skb_put(skb, copylen - dev->hard_header_len);
2604 		err = skb_store_bits(skb, 0, data, hdrlen);
2605 		if (unlikely(err))
2606 			return err;
2607 		if (!dev_validate_header(dev, skb->data, hdrlen))
2608 			return -EINVAL;
2609 
2610 		data += hdrlen;
2611 		to_write -= hdrlen;
2612 	}
2613 
2614 	offset = offset_in_page(data);
2615 	len_max = PAGE_SIZE - offset;
2616 	len = ((to_write > len_max) ? len_max : to_write);
2617 
2618 	skb->data_len = to_write;
2619 	skb->len += to_write;
2620 	skb->truesize += to_write;
2621 	refcount_add(to_write, &po->sk.sk_wmem_alloc);
2622 
2623 	while (likely(to_write)) {
2624 		nr_frags = skb_shinfo(skb)->nr_frags;
2625 
2626 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2627 			pr_err("Packet exceed the number of skb frags(%u)\n",
2628 			       (unsigned int)MAX_SKB_FRAGS);
2629 			return -EFAULT;
2630 		}
2631 
2632 		page = pgv_to_page(data);
2633 		data += len;
2634 		flush_dcache_page(page);
2635 		get_page(page);
2636 		skb_fill_page_desc(skb, nr_frags, page, offset, len);
2637 		to_write -= len;
2638 		offset = 0;
2639 		len_max = PAGE_SIZE;
2640 		len = ((to_write > len_max) ? len_max : to_write);
2641 	}
2642 
2643 	packet_parse_headers(skb, sock);
2644 
2645 	return tp_len;
2646 }
2647 
2648 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2649 				int size_max, void **data)
2650 {
2651 	union tpacket_uhdr ph;
2652 	int tp_len, off;
2653 
2654 	ph.raw = frame;
2655 
2656 	switch (po->tp_version) {
2657 	case TPACKET_V3:
2658 		if (ph.h3->tp_next_offset != 0) {
2659 			pr_warn_once("variable sized slot not supported");
2660 			return -EINVAL;
2661 		}
2662 		tp_len = ph.h3->tp_len;
2663 		break;
2664 	case TPACKET_V2:
2665 		tp_len = ph.h2->tp_len;
2666 		break;
2667 	default:
2668 		tp_len = ph.h1->tp_len;
2669 		break;
2670 	}
2671 	if (unlikely(tp_len > size_max)) {
2672 		pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2673 		return -EMSGSIZE;
2674 	}
2675 
2676 	if (unlikely(packet_sock_flag(po, PACKET_SOCK_TX_HAS_OFF))) {
2677 		int off_min, off_max;
2678 
2679 		off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2680 		off_max = po->tx_ring.frame_size - tp_len;
2681 		if (po->sk.sk_type == SOCK_DGRAM) {
2682 			switch (po->tp_version) {
2683 			case TPACKET_V3:
2684 				off = ph.h3->tp_net;
2685 				break;
2686 			case TPACKET_V2:
2687 				off = ph.h2->tp_net;
2688 				break;
2689 			default:
2690 				off = ph.h1->tp_net;
2691 				break;
2692 			}
2693 		} else {
2694 			switch (po->tp_version) {
2695 			case TPACKET_V3:
2696 				off = ph.h3->tp_mac;
2697 				break;
2698 			case TPACKET_V2:
2699 				off = ph.h2->tp_mac;
2700 				break;
2701 			default:
2702 				off = ph.h1->tp_mac;
2703 				break;
2704 			}
2705 		}
2706 		if (unlikely((off < off_min) || (off_max < off)))
2707 			return -EINVAL;
2708 	} else {
2709 		off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2710 	}
2711 
2712 	*data = frame + off;
2713 	return tp_len;
2714 }
2715 
2716 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2717 {
2718 	struct sk_buff *skb = NULL;
2719 	struct net_device *dev;
2720 	struct virtio_net_hdr *vnet_hdr = NULL;
2721 	struct sockcm_cookie sockc;
2722 	__be16 proto;
2723 	int err, reserve = 0;
2724 	void *ph;
2725 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2726 	bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2727 	int vnet_hdr_sz = READ_ONCE(po->vnet_hdr_sz);
2728 	unsigned char *addr = NULL;
2729 	int tp_len, size_max;
2730 	void *data;
2731 	int len_sum = 0;
2732 	int status = TP_STATUS_AVAILABLE;
2733 	int hlen, tlen, copylen = 0;
2734 	long timeo;
2735 
2736 	mutex_lock(&po->pg_vec_lock);
2737 
2738 	/* packet_sendmsg() check on tx_ring.pg_vec was lockless,
2739 	 * we need to confirm it under protection of pg_vec_lock.
2740 	 */
2741 	if (unlikely(!po->tx_ring.pg_vec)) {
2742 		err = -EBUSY;
2743 		goto out;
2744 	}
2745 	if (likely(saddr == NULL)) {
2746 		dev	= packet_cached_dev_get(po);
2747 		proto	= READ_ONCE(po->num);
2748 	} else {
2749 		err = -EINVAL;
2750 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2751 			goto out;
2752 		if (msg->msg_namelen < (saddr->sll_halen
2753 					+ offsetof(struct sockaddr_ll,
2754 						sll_addr)))
2755 			goto out;
2756 		proto	= saddr->sll_protocol;
2757 		dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2758 		if (po->sk.sk_socket->type == SOCK_DGRAM) {
2759 			if (dev && msg->msg_namelen < dev->addr_len +
2760 				   offsetof(struct sockaddr_ll, sll_addr))
2761 				goto out_put;
2762 			addr = saddr->sll_addr;
2763 		}
2764 	}
2765 
2766 	err = -ENXIO;
2767 	if (unlikely(dev == NULL))
2768 		goto out;
2769 	err = -ENETDOWN;
2770 	if (unlikely(!(dev->flags & IFF_UP)))
2771 		goto out_put;
2772 
2773 	sockcm_init(&sockc, &po->sk);
2774 	if (msg->msg_controllen) {
2775 		err = sock_cmsg_send(&po->sk, msg, &sockc);
2776 		if (unlikely(err))
2777 			goto out_put;
2778 	}
2779 
2780 	if (po->sk.sk_socket->type == SOCK_RAW)
2781 		reserve = dev->hard_header_len;
2782 	size_max = po->tx_ring.frame_size
2783 		- (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2784 
2785 	if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !vnet_hdr_sz)
2786 		size_max = dev->mtu + reserve + VLAN_HLEN;
2787 
2788 	timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT);
2789 	reinit_completion(&po->skb_completion);
2790 
2791 	do {
2792 		ph = packet_current_frame(po, &po->tx_ring,
2793 					  TP_STATUS_SEND_REQUEST);
2794 		if (unlikely(ph == NULL)) {
2795 			/* Note: packet_read_pending() might be slow if we
2796 			 * have to call it as it's per_cpu variable, but in
2797 			 * fast-path we don't have to call it, only when ph
2798 			 * is NULL, we need to check the pending_refcnt.
2799 			 */
2800 			if (need_wait && packet_read_pending(&po->tx_ring)) {
2801 				timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo);
2802 				if (timeo <= 0) {
2803 					err = !timeo ? -ETIMEDOUT : -ERESTARTSYS;
2804 					goto out_put;
2805 				}
2806 				/* check for additional frames */
2807 				continue;
2808 			} else
2809 				break;
2810 		}
2811 
2812 		skb = NULL;
2813 		tp_len = tpacket_parse_header(po, ph, size_max, &data);
2814 		if (tp_len < 0)
2815 			goto tpacket_error;
2816 
2817 		status = TP_STATUS_SEND_REQUEST;
2818 		hlen = LL_RESERVED_SPACE(dev);
2819 		tlen = dev->needed_tailroom;
2820 		if (vnet_hdr_sz) {
2821 			vnet_hdr = data;
2822 			data += vnet_hdr_sz;
2823 			tp_len -= vnet_hdr_sz;
2824 			if (tp_len < 0 ||
2825 			    __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2826 				tp_len = -EINVAL;
2827 				goto tpacket_error;
2828 			}
2829 			copylen = __virtio16_to_cpu(vio_le(),
2830 						    vnet_hdr->hdr_len);
2831 		}
2832 		copylen = max_t(int, copylen, dev->hard_header_len);
2833 		skb = sock_alloc_send_skb(&po->sk,
2834 				hlen + tlen + sizeof(struct sockaddr_ll) +
2835 				(copylen - dev->hard_header_len),
2836 				!need_wait, &err);
2837 
2838 		if (unlikely(skb == NULL)) {
2839 			/* we assume the socket was initially writeable ... */
2840 			if (likely(len_sum > 0))
2841 				err = len_sum;
2842 			goto out_status;
2843 		}
2844 		tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2845 					  addr, hlen, copylen, &sockc);
2846 		if (likely(tp_len >= 0) &&
2847 		    tp_len > dev->mtu + reserve &&
2848 		    !vnet_hdr_sz &&
2849 		    !packet_extra_vlan_len_allowed(dev, skb))
2850 			tp_len = -EMSGSIZE;
2851 
2852 		if (unlikely(tp_len < 0)) {
2853 tpacket_error:
2854 			if (packet_sock_flag(po, PACKET_SOCK_TP_LOSS)) {
2855 				__packet_set_status(po, ph,
2856 						TP_STATUS_AVAILABLE);
2857 				packet_increment_head(&po->tx_ring);
2858 				kfree_skb(skb);
2859 				continue;
2860 			} else {
2861 				status = TP_STATUS_WRONG_FORMAT;
2862 				err = tp_len;
2863 				goto out_status;
2864 			}
2865 		}
2866 
2867 		if (vnet_hdr_sz) {
2868 			if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) {
2869 				tp_len = -EINVAL;
2870 				goto tpacket_error;
2871 			}
2872 			virtio_net_hdr_set_proto(skb, vnet_hdr);
2873 		}
2874 
2875 		skb->destructor = tpacket_destruct_skb;
2876 		__packet_set_status(po, ph, TP_STATUS_SENDING);
2877 		packet_inc_pending(&po->tx_ring);
2878 
2879 		status = TP_STATUS_SEND_REQUEST;
2880 		err = packet_xmit(po, skb);
2881 		if (unlikely(err != 0)) {
2882 			if (err > 0)
2883 				err = net_xmit_errno(err);
2884 			if (err && __packet_get_status(po, ph) ==
2885 				   TP_STATUS_AVAILABLE) {
2886 				/* skb was destructed already */
2887 				skb = NULL;
2888 				goto out_status;
2889 			}
2890 			/*
2891 			 * skb was dropped but not destructed yet;
2892 			 * let's treat it like congestion or err < 0
2893 			 */
2894 			err = 0;
2895 		}
2896 		packet_increment_head(&po->tx_ring);
2897 		len_sum += tp_len;
2898 	} while (1);
2899 
2900 	err = len_sum;
2901 	goto out_put;
2902 
2903 out_status:
2904 	__packet_set_status(po, ph, status);
2905 	kfree_skb(skb);
2906 out_put:
2907 	dev_put(dev);
2908 out:
2909 	mutex_unlock(&po->pg_vec_lock);
2910 	return err;
2911 }
2912 
2913 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2914 				        size_t reserve, size_t len,
2915 				        size_t linear, int noblock,
2916 				        int *err)
2917 {
2918 	struct sk_buff *skb;
2919 
2920 	/* Under a page?  Don't bother with paged skb. */
2921 	if (prepad + len < PAGE_SIZE || !linear)
2922 		linear = len;
2923 
2924 	if (len - linear > MAX_SKB_FRAGS * (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER))
2925 		linear = len - MAX_SKB_FRAGS * (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER);
2926 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2927 				   err, PAGE_ALLOC_COSTLY_ORDER);
2928 	if (!skb)
2929 		return NULL;
2930 
2931 	skb_reserve(skb, reserve);
2932 	skb_put(skb, linear);
2933 	skb->data_len = len - linear;
2934 	skb->len += len - linear;
2935 
2936 	return skb;
2937 }
2938 
2939 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2940 {
2941 	struct sock *sk = sock->sk;
2942 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2943 	struct sk_buff *skb;
2944 	struct net_device *dev;
2945 	__be16 proto;
2946 	unsigned char *addr = NULL;
2947 	int err, reserve = 0;
2948 	struct sockcm_cookie sockc;
2949 	struct virtio_net_hdr vnet_hdr = { 0 };
2950 	int offset = 0;
2951 	struct packet_sock *po = pkt_sk(sk);
2952 	int vnet_hdr_sz = READ_ONCE(po->vnet_hdr_sz);
2953 	int hlen, tlen, linear;
2954 	int extra_len = 0;
2955 
2956 	/*
2957 	 *	Get and verify the address.
2958 	 */
2959 
2960 	if (likely(saddr == NULL)) {
2961 		dev	= packet_cached_dev_get(po);
2962 		proto	= READ_ONCE(po->num);
2963 	} else {
2964 		err = -EINVAL;
2965 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2966 			goto out;
2967 		if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2968 			goto out;
2969 		proto	= saddr->sll_protocol;
2970 		dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2971 		if (sock->type == SOCK_DGRAM) {
2972 			if (dev && msg->msg_namelen < dev->addr_len +
2973 				   offsetof(struct sockaddr_ll, sll_addr))
2974 				goto out_unlock;
2975 			addr = saddr->sll_addr;
2976 		}
2977 	}
2978 
2979 	err = -ENXIO;
2980 	if (unlikely(dev == NULL))
2981 		goto out_unlock;
2982 	err = -ENETDOWN;
2983 	if (unlikely(!(dev->flags & IFF_UP)))
2984 		goto out_unlock;
2985 
2986 	sockcm_init(&sockc, sk);
2987 	if (msg->msg_controllen) {
2988 		err = sock_cmsg_send(sk, msg, &sockc);
2989 		if (unlikely(err))
2990 			goto out_unlock;
2991 	}
2992 
2993 	if (sock->type == SOCK_RAW)
2994 		reserve = dev->hard_header_len;
2995 	if (vnet_hdr_sz) {
2996 		err = packet_snd_vnet_parse(msg, &len, &vnet_hdr, vnet_hdr_sz);
2997 		if (err)
2998 			goto out_unlock;
2999 	}
3000 
3001 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
3002 		if (!netif_supports_nofcs(dev)) {
3003 			err = -EPROTONOSUPPORT;
3004 			goto out_unlock;
3005 		}
3006 		extra_len = 4; /* We're doing our own CRC */
3007 	}
3008 
3009 	err = -EMSGSIZE;
3010 	if (!vnet_hdr.gso_type &&
3011 	    (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
3012 		goto out_unlock;
3013 
3014 	err = -ENOBUFS;
3015 	hlen = LL_RESERVED_SPACE(dev);
3016 	tlen = dev->needed_tailroom;
3017 	linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
3018 	linear = max(linear, min_t(int, len, dev->hard_header_len));
3019 	skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
3020 			       msg->msg_flags & MSG_DONTWAIT, &err);
3021 	if (skb == NULL)
3022 		goto out_unlock;
3023 
3024 	skb_reset_network_header(skb);
3025 
3026 	err = -EINVAL;
3027 	if (sock->type == SOCK_DGRAM) {
3028 		offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
3029 		if (unlikely(offset < 0))
3030 			goto out_free;
3031 	} else if (reserve) {
3032 		skb_reserve(skb, -reserve);
3033 		if (len < reserve + sizeof(struct ipv6hdr) &&
3034 		    dev->min_header_len != dev->hard_header_len)
3035 			skb_reset_network_header(skb);
3036 	}
3037 
3038 	/* Returns -EFAULT on error */
3039 	err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
3040 	if (err)
3041 		goto out_free;
3042 
3043 	if ((sock->type == SOCK_RAW &&
3044 	     !dev_validate_header(dev, skb->data, len)) || !skb->len) {
3045 		err = -EINVAL;
3046 		goto out_free;
3047 	}
3048 
3049 	skb_setup_tx_timestamp(skb, &sockc);
3050 
3051 	if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
3052 	    !packet_extra_vlan_len_allowed(dev, skb)) {
3053 		err = -EMSGSIZE;
3054 		goto out_free;
3055 	}
3056 
3057 	skb->protocol = proto;
3058 	skb->dev = dev;
3059 	skb->priority = sockc.priority;
3060 	skb->mark = sockc.mark;
3061 	skb_set_delivery_type_by_clockid(skb, sockc.transmit_time, sk->sk_clockid);
3062 
3063 	if (unlikely(extra_len == 4))
3064 		skb->no_fcs = 1;
3065 
3066 	packet_parse_headers(skb, sock);
3067 
3068 	if (vnet_hdr_sz) {
3069 		err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
3070 		if (err)
3071 			goto out_free;
3072 		len += vnet_hdr_sz;
3073 		virtio_net_hdr_set_proto(skb, &vnet_hdr);
3074 	}
3075 
3076 	err = packet_xmit(po, skb);
3077 
3078 	if (unlikely(err != 0)) {
3079 		if (err > 0)
3080 			err = net_xmit_errno(err);
3081 		if (err)
3082 			goto out_unlock;
3083 	}
3084 
3085 	dev_put(dev);
3086 
3087 	return len;
3088 
3089 out_free:
3090 	kfree_skb(skb);
3091 out_unlock:
3092 	dev_put(dev);
3093 out:
3094 	return err;
3095 }
3096 
3097 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
3098 {
3099 	struct sock *sk = sock->sk;
3100 	struct packet_sock *po = pkt_sk(sk);
3101 
3102 	/* Reading tx_ring.pg_vec without holding pg_vec_lock is racy.
3103 	 * tpacket_snd() will redo the check safely.
3104 	 */
3105 	if (data_race(po->tx_ring.pg_vec))
3106 		return tpacket_snd(po, msg);
3107 
3108 	return packet_snd(sock, msg, len);
3109 }
3110 
3111 /*
3112  *	Close a PACKET socket. This is fairly simple. We immediately go
3113  *	to 'closed' state and remove our protocol entry in the device list.
3114  */
3115 
3116 static int packet_release(struct socket *sock)
3117 {
3118 	struct sock *sk = sock->sk;
3119 	struct packet_sock *po;
3120 	struct packet_fanout *f;
3121 	struct net *net;
3122 	union tpacket_req_u req_u;
3123 
3124 	if (!sk)
3125 		return 0;
3126 
3127 	net = sock_net(sk);
3128 	po = pkt_sk(sk);
3129 
3130 	mutex_lock(&net->packet.sklist_lock);
3131 	sk_del_node_init_rcu(sk);
3132 	mutex_unlock(&net->packet.sklist_lock);
3133 
3134 	sock_prot_inuse_add(net, sk->sk_prot, -1);
3135 
3136 	spin_lock(&po->bind_lock);
3137 	unregister_prot_hook(sk, false);
3138 	packet_cached_dev_reset(po);
3139 
3140 	if (po->prot_hook.dev) {
3141 		netdev_put(po->prot_hook.dev, &po->prot_hook.dev_tracker);
3142 		po->prot_hook.dev = NULL;
3143 	}
3144 	spin_unlock(&po->bind_lock);
3145 
3146 	packet_flush_mclist(sk);
3147 
3148 	lock_sock(sk);
3149 	if (po->rx_ring.pg_vec) {
3150 		memset(&req_u, 0, sizeof(req_u));
3151 		packet_set_ring(sk, &req_u, 1, 0);
3152 	}
3153 
3154 	if (po->tx_ring.pg_vec) {
3155 		memset(&req_u, 0, sizeof(req_u));
3156 		packet_set_ring(sk, &req_u, 1, 1);
3157 	}
3158 	release_sock(sk);
3159 
3160 	f = fanout_release(sk);
3161 
3162 	synchronize_net();
3163 
3164 	kfree(po->rollover);
3165 	if (f) {
3166 		fanout_release_data(f);
3167 		kvfree(f);
3168 	}
3169 	/*
3170 	 *	Now the socket is dead. No more input will appear.
3171 	 */
3172 	sock_orphan(sk);
3173 	sock->sk = NULL;
3174 
3175 	/* Purge queues */
3176 
3177 	skb_queue_purge(&sk->sk_receive_queue);
3178 	packet_free_pending(po);
3179 
3180 	sock_put(sk);
3181 	return 0;
3182 }
3183 
3184 /*
3185  *	Attach a packet hook.
3186  */
3187 
3188 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3189 			  __be16 proto)
3190 {
3191 	struct packet_sock *po = pkt_sk(sk);
3192 	struct net_device *dev = NULL;
3193 	bool unlisted = false;
3194 	bool need_rehook;
3195 	int ret = 0;
3196 
3197 	lock_sock(sk);
3198 	spin_lock(&po->bind_lock);
3199 	if (!proto)
3200 		proto = po->num;
3201 
3202 	rcu_read_lock();
3203 
3204 	if (po->fanout) {
3205 		ret = -EINVAL;
3206 		goto out_unlock;
3207 	}
3208 
3209 	if (name) {
3210 		dev = dev_get_by_name_rcu(sock_net(sk), name);
3211 		if (!dev) {
3212 			ret = -ENODEV;
3213 			goto out_unlock;
3214 		}
3215 	} else if (ifindex) {
3216 		dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3217 		if (!dev) {
3218 			ret = -ENODEV;
3219 			goto out_unlock;
3220 		}
3221 	}
3222 
3223 	need_rehook = po->prot_hook.type != proto || po->prot_hook.dev != dev;
3224 
3225 	if (need_rehook) {
3226 		dev_hold(dev);
3227 		if (packet_sock_flag(po, PACKET_SOCK_RUNNING)) {
3228 			rcu_read_unlock();
3229 			/* prevents packet_notifier() from calling
3230 			 * register_prot_hook()
3231 			 */
3232 			WRITE_ONCE(po->num, 0);
3233 			__unregister_prot_hook(sk, true);
3234 			rcu_read_lock();
3235 			if (dev)
3236 				unlisted = !dev_get_by_index_rcu(sock_net(sk),
3237 								 dev->ifindex);
3238 		}
3239 
3240 		BUG_ON(packet_sock_flag(po, PACKET_SOCK_RUNNING));
3241 		WRITE_ONCE(po->num, proto);
3242 		po->prot_hook.type = proto;
3243 
3244 		netdev_put(po->prot_hook.dev, &po->prot_hook.dev_tracker);
3245 
3246 		if (unlikely(unlisted)) {
3247 			po->prot_hook.dev = NULL;
3248 			WRITE_ONCE(po->ifindex, -1);
3249 			packet_cached_dev_reset(po);
3250 		} else {
3251 			netdev_hold(dev, &po->prot_hook.dev_tracker,
3252 				    GFP_ATOMIC);
3253 			po->prot_hook.dev = dev;
3254 			WRITE_ONCE(po->ifindex, dev ? dev->ifindex : 0);
3255 			packet_cached_dev_assign(po, dev);
3256 		}
3257 		dev_put(dev);
3258 	}
3259 
3260 	if (proto == 0 || !need_rehook)
3261 		goto out_unlock;
3262 
3263 	if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3264 		register_prot_hook(sk);
3265 	} else {
3266 		sk->sk_err = ENETDOWN;
3267 		if (!sock_flag(sk, SOCK_DEAD))
3268 			sk_error_report(sk);
3269 	}
3270 
3271 out_unlock:
3272 	rcu_read_unlock();
3273 	spin_unlock(&po->bind_lock);
3274 	release_sock(sk);
3275 	return ret;
3276 }
3277 
3278 /*
3279  *	Bind a packet socket to a device
3280  */
3281 
3282 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3283 			    int addr_len)
3284 {
3285 	struct sock *sk = sock->sk;
3286 	char name[sizeof(uaddr->sa_data_min) + 1];
3287 
3288 	/*
3289 	 *	Check legality
3290 	 */
3291 
3292 	if (addr_len != sizeof(struct sockaddr))
3293 		return -EINVAL;
3294 	/* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3295 	 * zero-terminated.
3296 	 */
3297 	memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data_min));
3298 	name[sizeof(uaddr->sa_data_min)] = 0;
3299 
3300 	return packet_do_bind(sk, name, 0, 0);
3301 }
3302 
3303 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3304 {
3305 	struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3306 	struct sock *sk = sock->sk;
3307 
3308 	/*
3309 	 *	Check legality
3310 	 */
3311 
3312 	if (addr_len < sizeof(struct sockaddr_ll))
3313 		return -EINVAL;
3314 	if (sll->sll_family != AF_PACKET)
3315 		return -EINVAL;
3316 
3317 	return packet_do_bind(sk, NULL, sll->sll_ifindex, sll->sll_protocol);
3318 }
3319 
3320 static struct proto packet_proto = {
3321 	.name	  = "PACKET",
3322 	.owner	  = THIS_MODULE,
3323 	.obj_size = sizeof(struct packet_sock),
3324 };
3325 
3326 /*
3327  *	Create a packet of type SOCK_PACKET.
3328  */
3329 
3330 static int packet_create(struct net *net, struct socket *sock, int protocol,
3331 			 int kern)
3332 {
3333 	struct sock *sk;
3334 	struct packet_sock *po;
3335 	__be16 proto = (__force __be16)protocol; /* weird, but documented */
3336 	int err;
3337 
3338 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
3339 		return -EPERM;
3340 	if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3341 	    sock->type != SOCK_PACKET)
3342 		return -ESOCKTNOSUPPORT;
3343 
3344 	sock->state = SS_UNCONNECTED;
3345 
3346 	err = -ENOBUFS;
3347 	sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3348 	if (sk == NULL)
3349 		goto out;
3350 
3351 	sock->ops = &packet_ops;
3352 	if (sock->type == SOCK_PACKET)
3353 		sock->ops = &packet_ops_spkt;
3354 
3355 	po = pkt_sk(sk);
3356 	err = packet_alloc_pending(po);
3357 	if (err)
3358 		goto out_sk_free;
3359 
3360 	sock_init_data(sock, sk);
3361 
3362 	init_completion(&po->skb_completion);
3363 	sk->sk_family = PF_PACKET;
3364 	po->num = proto;
3365 
3366 	packet_cached_dev_reset(po);
3367 
3368 	sk->sk_destruct = packet_sock_destruct;
3369 
3370 	/*
3371 	 *	Attach a protocol block
3372 	 */
3373 
3374 	spin_lock_init(&po->bind_lock);
3375 	mutex_init(&po->pg_vec_lock);
3376 	po->rollover = NULL;
3377 	po->prot_hook.func = packet_rcv;
3378 
3379 	if (sock->type == SOCK_PACKET)
3380 		po->prot_hook.func = packet_rcv_spkt;
3381 
3382 	po->prot_hook.af_packet_priv = sk;
3383 	po->prot_hook.af_packet_net = sock_net(sk);
3384 
3385 	if (proto) {
3386 		po->prot_hook.type = proto;
3387 		__register_prot_hook(sk);
3388 	}
3389 
3390 	mutex_lock(&net->packet.sklist_lock);
3391 	sk_add_node_tail_rcu(sk, &net->packet.sklist);
3392 	mutex_unlock(&net->packet.sklist_lock);
3393 
3394 	sock_prot_inuse_add(net, &packet_proto, 1);
3395 
3396 	return 0;
3397 out_sk_free:
3398 	sk_free(sk);
3399 out:
3400 	return err;
3401 }
3402 
3403 /*
3404  *	Pull a packet from our receive queue and hand it to the user.
3405  *	If necessary we block.
3406  */
3407 
3408 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3409 			  int flags)
3410 {
3411 	struct sock *sk = sock->sk;
3412 	struct sk_buff *skb;
3413 	int copied, err;
3414 	int vnet_hdr_len = READ_ONCE(pkt_sk(sk)->vnet_hdr_sz);
3415 	unsigned int origlen = 0;
3416 
3417 	err = -EINVAL;
3418 	if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3419 		goto out;
3420 
3421 #if 0
3422 	/* What error should we return now? EUNATTACH? */
3423 	if (pkt_sk(sk)->ifindex < 0)
3424 		return -ENODEV;
3425 #endif
3426 
3427 	if (flags & MSG_ERRQUEUE) {
3428 		err = sock_recv_errqueue(sk, msg, len,
3429 					 SOL_PACKET, PACKET_TX_TIMESTAMP);
3430 		goto out;
3431 	}
3432 
3433 	/*
3434 	 *	Call the generic datagram receiver. This handles all sorts
3435 	 *	of horrible races and re-entrancy so we can forget about it
3436 	 *	in the protocol layers.
3437 	 *
3438 	 *	Now it will return ENETDOWN, if device have just gone down,
3439 	 *	but then it will block.
3440 	 */
3441 
3442 	skb = skb_recv_datagram(sk, flags, &err);
3443 
3444 	/*
3445 	 *	An error occurred so return it. Because skb_recv_datagram()
3446 	 *	handles the blocking we don't see and worry about blocking
3447 	 *	retries.
3448 	 */
3449 
3450 	if (skb == NULL)
3451 		goto out;
3452 
3453 	packet_rcv_try_clear_pressure(pkt_sk(sk));
3454 
3455 	if (vnet_hdr_len) {
3456 		err = packet_rcv_vnet(msg, skb, &len, vnet_hdr_len);
3457 		if (err)
3458 			goto out_free;
3459 	}
3460 
3461 	/* You lose any data beyond the buffer you gave. If it worries
3462 	 * a user program they can ask the device for its MTU
3463 	 * anyway.
3464 	 */
3465 	copied = skb->len;
3466 	if (copied > len) {
3467 		copied = len;
3468 		msg->msg_flags |= MSG_TRUNC;
3469 	}
3470 
3471 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3472 	if (err)
3473 		goto out_free;
3474 
3475 	if (sock->type != SOCK_PACKET) {
3476 		struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3477 
3478 		/* Original length was stored in sockaddr_ll fields */
3479 		origlen = PACKET_SKB_CB(skb)->sa.origlen;
3480 		sll->sll_family = AF_PACKET;
3481 		sll->sll_protocol = (sock->type == SOCK_DGRAM) ?
3482 			vlan_get_protocol_dgram(skb) : skb->protocol;
3483 	}
3484 
3485 	sock_recv_cmsgs(msg, sk, skb);
3486 
3487 	if (msg->msg_name) {
3488 		const size_t max_len = min(sizeof(skb->cb),
3489 					   sizeof(struct sockaddr_storage));
3490 		int copy_len;
3491 
3492 		/* If the address length field is there to be filled
3493 		 * in, we fill it in now.
3494 		 */
3495 		if (sock->type == SOCK_PACKET) {
3496 			__sockaddr_check_size(sizeof(struct sockaddr_pkt));
3497 			msg->msg_namelen = sizeof(struct sockaddr_pkt);
3498 			copy_len = msg->msg_namelen;
3499 		} else {
3500 			struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3501 
3502 			msg->msg_namelen = sll->sll_halen +
3503 				offsetof(struct sockaddr_ll, sll_addr);
3504 			copy_len = msg->msg_namelen;
3505 			if (msg->msg_namelen < sizeof(struct sockaddr_ll)) {
3506 				memset(msg->msg_name +
3507 				       offsetof(struct sockaddr_ll, sll_addr),
3508 				       0, sizeof(sll->sll_addr));
3509 				msg->msg_namelen = sizeof(struct sockaddr_ll);
3510 			}
3511 		}
3512 		if (WARN_ON_ONCE(copy_len > max_len)) {
3513 			copy_len = max_len;
3514 			msg->msg_namelen = copy_len;
3515 		}
3516 		memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len);
3517 	}
3518 
3519 	if (packet_sock_flag(pkt_sk(sk), PACKET_SOCK_AUXDATA)) {
3520 		struct tpacket_auxdata aux;
3521 
3522 		aux.tp_status = TP_STATUS_USER;
3523 		if (skb->ip_summed == CHECKSUM_PARTIAL)
3524 			aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3525 		else if (skb->pkt_type != PACKET_OUTGOING &&
3526 			 skb_csum_unnecessary(skb))
3527 			aux.tp_status |= TP_STATUS_CSUM_VALID;
3528 		if (skb_is_gso(skb) && skb_is_gso_tcp(skb))
3529 			aux.tp_status |= TP_STATUS_GSO_TCP;
3530 
3531 		aux.tp_len = origlen;
3532 		aux.tp_snaplen = skb->len;
3533 		aux.tp_mac = 0;
3534 		aux.tp_net = skb_network_offset(skb);
3535 		if (skb_vlan_tag_present(skb)) {
3536 			aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3537 			aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3538 			aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3539 		} else if (unlikely(sock->type == SOCK_DGRAM && eth_type_vlan(skb->protocol))) {
3540 			struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3541 			struct net_device *dev;
3542 
3543 			rcu_read_lock();
3544 			dev = dev_get_by_index_rcu(sock_net(sk), sll->sll_ifindex);
3545 			if (dev) {
3546 				aux.tp_vlan_tci = vlan_get_tci(skb, dev);
3547 				aux.tp_vlan_tpid = ntohs(skb->protocol);
3548 				aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3549 			} else {
3550 				aux.tp_vlan_tci = 0;
3551 				aux.tp_vlan_tpid = 0;
3552 			}
3553 			rcu_read_unlock();
3554 		} else {
3555 			aux.tp_vlan_tci = 0;
3556 			aux.tp_vlan_tpid = 0;
3557 		}
3558 		put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3559 	}
3560 
3561 	/*
3562 	 *	Free or return the buffer as appropriate. Again this
3563 	 *	hides all the races and re-entrancy issues from us.
3564 	 */
3565 	err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3566 
3567 out_free:
3568 	skb_free_datagram(sk, skb);
3569 out:
3570 	return err;
3571 }
3572 
3573 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3574 			       int peer)
3575 {
3576 	struct net_device *dev;
3577 	struct sock *sk	= sock->sk;
3578 
3579 	if (peer)
3580 		return -EOPNOTSUPP;
3581 
3582 	uaddr->sa_family = AF_PACKET;
3583 	memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data_min));
3584 	rcu_read_lock();
3585 	dev = dev_get_by_index_rcu(sock_net(sk), READ_ONCE(pkt_sk(sk)->ifindex));
3586 	if (dev)
3587 		strscpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data_min));
3588 	rcu_read_unlock();
3589 
3590 	return sizeof(*uaddr);
3591 }
3592 
3593 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3594 			  int peer)
3595 {
3596 	struct net_device *dev;
3597 	struct sock *sk = sock->sk;
3598 	struct packet_sock *po = pkt_sk(sk);
3599 	DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3600 	int ifindex;
3601 
3602 	if (peer)
3603 		return -EOPNOTSUPP;
3604 
3605 	ifindex = READ_ONCE(po->ifindex);
3606 	sll->sll_family = AF_PACKET;
3607 	sll->sll_ifindex = ifindex;
3608 	sll->sll_protocol = READ_ONCE(po->num);
3609 	sll->sll_pkttype = 0;
3610 	rcu_read_lock();
3611 	dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3612 	if (dev) {
3613 		sll->sll_hatype = dev->type;
3614 		sll->sll_halen = dev->addr_len;
3615 
3616 		/* Let __fortify_memcpy_chk() know the actual buffer size. */
3617 		memcpy(((struct sockaddr_storage *)sll)->__data +
3618 		       offsetof(struct sockaddr_ll, sll_addr) -
3619 		       offsetofend(struct sockaddr_ll, sll_family),
3620 		       dev->dev_addr, dev->addr_len);
3621 	} else {
3622 		sll->sll_hatype = 0;	/* Bad: we have no ARPHRD_UNSPEC */
3623 		sll->sll_halen = 0;
3624 	}
3625 	rcu_read_unlock();
3626 
3627 	return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3628 }
3629 
3630 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3631 			 int what)
3632 {
3633 	switch (i->type) {
3634 	case PACKET_MR_MULTICAST:
3635 		if (i->alen != dev->addr_len)
3636 			return -EINVAL;
3637 		if (what > 0)
3638 			return dev_mc_add(dev, i->addr);
3639 		else
3640 			return dev_mc_del(dev, i->addr);
3641 		break;
3642 	case PACKET_MR_PROMISC:
3643 		return dev_set_promiscuity(dev, what);
3644 	case PACKET_MR_ALLMULTI:
3645 		return dev_set_allmulti(dev, what);
3646 	case PACKET_MR_UNICAST:
3647 		if (i->alen != dev->addr_len)
3648 			return -EINVAL;
3649 		if (what > 0)
3650 			return dev_uc_add(dev, i->addr);
3651 		else
3652 			return dev_uc_del(dev, i->addr);
3653 		break;
3654 	default:
3655 		break;
3656 	}
3657 	return 0;
3658 }
3659 
3660 static void packet_dev_mclist_delete(struct net_device *dev,
3661 				     struct packet_mclist **mlp,
3662 				     struct list_head *list)
3663 {
3664 	struct packet_mclist *ml;
3665 
3666 	while ((ml = *mlp) != NULL) {
3667 		if (ml->ifindex == dev->ifindex) {
3668 			list_add(&ml->remove_list, list);
3669 			*mlp = ml->next;
3670 		} else
3671 			mlp = &ml->next;
3672 	}
3673 }
3674 
3675 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3676 {
3677 	struct packet_sock *po = pkt_sk(sk);
3678 	struct packet_mclist *ml, *i;
3679 	struct net_device *dev;
3680 	int err;
3681 
3682 	rtnl_lock();
3683 
3684 	err = -ENODEV;
3685 	dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3686 	if (!dev)
3687 		goto done;
3688 
3689 	err = -EINVAL;
3690 	if (mreq->mr_alen > dev->addr_len)
3691 		goto done;
3692 
3693 	err = -ENOBUFS;
3694 	i = kmalloc(sizeof(*i), GFP_KERNEL);
3695 	if (i == NULL)
3696 		goto done;
3697 
3698 	err = 0;
3699 	for (ml = po->mclist; ml; ml = ml->next) {
3700 		if (ml->ifindex == mreq->mr_ifindex &&
3701 		    ml->type == mreq->mr_type &&
3702 		    ml->alen == mreq->mr_alen &&
3703 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3704 			ml->count++;
3705 			/* Free the new element ... */
3706 			kfree(i);
3707 			goto done;
3708 		}
3709 	}
3710 
3711 	i->type = mreq->mr_type;
3712 	i->ifindex = mreq->mr_ifindex;
3713 	i->alen = mreq->mr_alen;
3714 	memcpy(i->addr, mreq->mr_address, i->alen);
3715 	memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3716 	i->count = 1;
3717 	INIT_LIST_HEAD(&i->remove_list);
3718 	i->next = po->mclist;
3719 	po->mclist = i;
3720 	err = packet_dev_mc(dev, i, 1);
3721 	if (err) {
3722 		po->mclist = i->next;
3723 		kfree(i);
3724 	}
3725 
3726 done:
3727 	rtnl_unlock();
3728 	return err;
3729 }
3730 
3731 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3732 {
3733 	struct packet_mclist *ml, **mlp;
3734 
3735 	rtnl_lock();
3736 
3737 	for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3738 		if (ml->ifindex == mreq->mr_ifindex &&
3739 		    ml->type == mreq->mr_type &&
3740 		    ml->alen == mreq->mr_alen &&
3741 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3742 			if (--ml->count == 0) {
3743 				struct net_device *dev;
3744 				*mlp = ml->next;
3745 				dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3746 				if (dev)
3747 					packet_dev_mc(dev, ml, -1);
3748 				kfree(ml);
3749 			}
3750 			break;
3751 		}
3752 	}
3753 	rtnl_unlock();
3754 	return 0;
3755 }
3756 
3757 static void packet_flush_mclist(struct sock *sk)
3758 {
3759 	struct packet_sock *po = pkt_sk(sk);
3760 	struct packet_mclist *ml;
3761 
3762 	if (!po->mclist)
3763 		return;
3764 
3765 	rtnl_lock();
3766 	while ((ml = po->mclist) != NULL) {
3767 		struct net_device *dev;
3768 
3769 		po->mclist = ml->next;
3770 		dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3771 		if (dev != NULL)
3772 			packet_dev_mc(dev, ml, -1);
3773 		kfree(ml);
3774 	}
3775 	rtnl_unlock();
3776 }
3777 
3778 static int
3779 packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval,
3780 		  unsigned int optlen)
3781 {
3782 	struct sock *sk = sock->sk;
3783 	struct packet_sock *po = pkt_sk(sk);
3784 	int ret;
3785 
3786 	if (level != SOL_PACKET)
3787 		return -ENOPROTOOPT;
3788 
3789 	switch (optname) {
3790 	case PACKET_ADD_MEMBERSHIP:
3791 	case PACKET_DROP_MEMBERSHIP:
3792 	{
3793 		struct packet_mreq_max mreq;
3794 		int len = optlen;
3795 		memset(&mreq, 0, sizeof(mreq));
3796 		if (len < sizeof(struct packet_mreq))
3797 			return -EINVAL;
3798 		if (len > sizeof(mreq))
3799 			len = sizeof(mreq);
3800 		if (copy_from_sockptr(&mreq, optval, len))
3801 			return -EFAULT;
3802 		if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3803 			return -EINVAL;
3804 		if (optname == PACKET_ADD_MEMBERSHIP)
3805 			ret = packet_mc_add(sk, &mreq);
3806 		else
3807 			ret = packet_mc_drop(sk, &mreq);
3808 		return ret;
3809 	}
3810 
3811 	case PACKET_RX_RING:
3812 	case PACKET_TX_RING:
3813 	{
3814 		union tpacket_req_u req_u;
3815 
3816 		ret = -EINVAL;
3817 		lock_sock(sk);
3818 		switch (po->tp_version) {
3819 		case TPACKET_V1:
3820 		case TPACKET_V2:
3821 			if (optlen < sizeof(req_u.req))
3822 				break;
3823 			ret = copy_from_sockptr(&req_u.req, optval,
3824 						sizeof(req_u.req)) ?
3825 						-EINVAL : 0;
3826 			break;
3827 		case TPACKET_V3:
3828 		default:
3829 			if (optlen < sizeof(req_u.req3))
3830 				break;
3831 			ret = copy_from_sockptr(&req_u.req3, optval,
3832 						sizeof(req_u.req3)) ?
3833 						-EINVAL : 0;
3834 			break;
3835 		}
3836 		if (!ret)
3837 			ret = packet_set_ring(sk, &req_u, 0,
3838 					      optname == PACKET_TX_RING);
3839 		release_sock(sk);
3840 		return ret;
3841 	}
3842 	case PACKET_COPY_THRESH:
3843 	{
3844 		int val;
3845 
3846 		if (optlen != sizeof(val))
3847 			return -EINVAL;
3848 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3849 			return -EFAULT;
3850 
3851 		WRITE_ONCE(pkt_sk(sk)->copy_thresh, val);
3852 		return 0;
3853 	}
3854 	case PACKET_VERSION:
3855 	{
3856 		int val;
3857 
3858 		if (optlen != sizeof(val))
3859 			return -EINVAL;
3860 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3861 			return -EFAULT;
3862 		switch (val) {
3863 		case TPACKET_V1:
3864 		case TPACKET_V2:
3865 		case TPACKET_V3:
3866 			break;
3867 		default:
3868 			return -EINVAL;
3869 		}
3870 		lock_sock(sk);
3871 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3872 			ret = -EBUSY;
3873 		} else {
3874 			po->tp_version = val;
3875 			ret = 0;
3876 		}
3877 		release_sock(sk);
3878 		return ret;
3879 	}
3880 	case PACKET_RESERVE:
3881 	{
3882 		unsigned int val;
3883 
3884 		if (optlen != sizeof(val))
3885 			return -EINVAL;
3886 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3887 			return -EFAULT;
3888 		if (val > INT_MAX)
3889 			return -EINVAL;
3890 		lock_sock(sk);
3891 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3892 			ret = -EBUSY;
3893 		} else {
3894 			po->tp_reserve = val;
3895 			ret = 0;
3896 		}
3897 		release_sock(sk);
3898 		return ret;
3899 	}
3900 	case PACKET_LOSS:
3901 	{
3902 		unsigned int val;
3903 
3904 		if (optlen != sizeof(val))
3905 			return -EINVAL;
3906 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3907 			return -EFAULT;
3908 
3909 		lock_sock(sk);
3910 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3911 			ret = -EBUSY;
3912 		} else {
3913 			packet_sock_flag_set(po, PACKET_SOCK_TP_LOSS, val);
3914 			ret = 0;
3915 		}
3916 		release_sock(sk);
3917 		return ret;
3918 	}
3919 	case PACKET_AUXDATA:
3920 	{
3921 		int val;
3922 
3923 		if (optlen < sizeof(val))
3924 			return -EINVAL;
3925 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3926 			return -EFAULT;
3927 
3928 		packet_sock_flag_set(po, PACKET_SOCK_AUXDATA, val);
3929 		return 0;
3930 	}
3931 	case PACKET_ORIGDEV:
3932 	{
3933 		int val;
3934 
3935 		if (optlen < sizeof(val))
3936 			return -EINVAL;
3937 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3938 			return -EFAULT;
3939 
3940 		packet_sock_flag_set(po, PACKET_SOCK_ORIGDEV, val);
3941 		return 0;
3942 	}
3943 	case PACKET_VNET_HDR:
3944 	case PACKET_VNET_HDR_SZ:
3945 	{
3946 		int val, hdr_len;
3947 
3948 		if (sock->type != SOCK_RAW)
3949 			return -EINVAL;
3950 		if (optlen < sizeof(val))
3951 			return -EINVAL;
3952 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3953 			return -EFAULT;
3954 
3955 		if (optname == PACKET_VNET_HDR_SZ) {
3956 			if (val && val != sizeof(struct virtio_net_hdr) &&
3957 			    val != sizeof(struct virtio_net_hdr_mrg_rxbuf))
3958 				return -EINVAL;
3959 			hdr_len = val;
3960 		} else {
3961 			hdr_len = val ? sizeof(struct virtio_net_hdr) : 0;
3962 		}
3963 		lock_sock(sk);
3964 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3965 			ret = -EBUSY;
3966 		} else {
3967 			WRITE_ONCE(po->vnet_hdr_sz, hdr_len);
3968 			ret = 0;
3969 		}
3970 		release_sock(sk);
3971 		return ret;
3972 	}
3973 	case PACKET_TIMESTAMP:
3974 	{
3975 		int val;
3976 
3977 		if (optlen != sizeof(val))
3978 			return -EINVAL;
3979 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3980 			return -EFAULT;
3981 
3982 		WRITE_ONCE(po->tp_tstamp, val);
3983 		return 0;
3984 	}
3985 	case PACKET_FANOUT:
3986 	{
3987 		struct fanout_args args = { 0 };
3988 
3989 		if (optlen != sizeof(int) && optlen != sizeof(args))
3990 			return -EINVAL;
3991 		if (copy_from_sockptr(&args, optval, optlen))
3992 			return -EFAULT;
3993 
3994 		return fanout_add(sk, &args);
3995 	}
3996 	case PACKET_FANOUT_DATA:
3997 	{
3998 		/* Paired with the WRITE_ONCE() in fanout_add() */
3999 		if (!READ_ONCE(po->fanout))
4000 			return -EINVAL;
4001 
4002 		return fanout_set_data(po, optval, optlen);
4003 	}
4004 	case PACKET_IGNORE_OUTGOING:
4005 	{
4006 		int val;
4007 
4008 		if (optlen != sizeof(val))
4009 			return -EINVAL;
4010 		if (copy_from_sockptr(&val, optval, sizeof(val)))
4011 			return -EFAULT;
4012 		if (val < 0 || val > 1)
4013 			return -EINVAL;
4014 
4015 		WRITE_ONCE(po->prot_hook.ignore_outgoing, !!val);
4016 		return 0;
4017 	}
4018 	case PACKET_TX_HAS_OFF:
4019 	{
4020 		unsigned int val;
4021 
4022 		if (optlen != sizeof(val))
4023 			return -EINVAL;
4024 		if (copy_from_sockptr(&val, optval, sizeof(val)))
4025 			return -EFAULT;
4026 
4027 		lock_sock(sk);
4028 		if (!po->rx_ring.pg_vec && !po->tx_ring.pg_vec)
4029 			packet_sock_flag_set(po, PACKET_SOCK_TX_HAS_OFF, val);
4030 
4031 		release_sock(sk);
4032 		return 0;
4033 	}
4034 	case PACKET_QDISC_BYPASS:
4035 	{
4036 		int val;
4037 
4038 		if (optlen != sizeof(val))
4039 			return -EINVAL;
4040 		if (copy_from_sockptr(&val, optval, sizeof(val)))
4041 			return -EFAULT;
4042 
4043 		packet_sock_flag_set(po, PACKET_SOCK_QDISC_BYPASS, val);
4044 		return 0;
4045 	}
4046 	default:
4047 		return -ENOPROTOOPT;
4048 	}
4049 }
4050 
4051 static int packet_getsockopt(struct socket *sock, int level, int optname,
4052 			     char __user *optval, int __user *optlen)
4053 {
4054 	int len;
4055 	int val, lv = sizeof(val);
4056 	struct sock *sk = sock->sk;
4057 	struct packet_sock *po = pkt_sk(sk);
4058 	void *data = &val;
4059 	union tpacket_stats_u st;
4060 	struct tpacket_rollover_stats rstats;
4061 	int drops;
4062 
4063 	if (level != SOL_PACKET)
4064 		return -ENOPROTOOPT;
4065 
4066 	if (get_user(len, optlen))
4067 		return -EFAULT;
4068 
4069 	if (len < 0)
4070 		return -EINVAL;
4071 
4072 	switch (optname) {
4073 	case PACKET_STATISTICS:
4074 		spin_lock_bh(&sk->sk_receive_queue.lock);
4075 		memcpy(&st, &po->stats, sizeof(st));
4076 		memset(&po->stats, 0, sizeof(po->stats));
4077 		spin_unlock_bh(&sk->sk_receive_queue.lock);
4078 		drops = atomic_xchg(&po->tp_drops, 0);
4079 
4080 		if (po->tp_version == TPACKET_V3) {
4081 			lv = sizeof(struct tpacket_stats_v3);
4082 			st.stats3.tp_drops = drops;
4083 			st.stats3.tp_packets += drops;
4084 			data = &st.stats3;
4085 		} else {
4086 			lv = sizeof(struct tpacket_stats);
4087 			st.stats1.tp_drops = drops;
4088 			st.stats1.tp_packets += drops;
4089 			data = &st.stats1;
4090 		}
4091 
4092 		break;
4093 	case PACKET_AUXDATA:
4094 		val = packet_sock_flag(po, PACKET_SOCK_AUXDATA);
4095 		break;
4096 	case PACKET_ORIGDEV:
4097 		val = packet_sock_flag(po, PACKET_SOCK_ORIGDEV);
4098 		break;
4099 	case PACKET_VNET_HDR:
4100 		val = !!READ_ONCE(po->vnet_hdr_sz);
4101 		break;
4102 	case PACKET_VNET_HDR_SZ:
4103 		val = READ_ONCE(po->vnet_hdr_sz);
4104 		break;
4105 	case PACKET_COPY_THRESH:
4106 		val = READ_ONCE(pkt_sk(sk)->copy_thresh);
4107 		break;
4108 	case PACKET_VERSION:
4109 		val = po->tp_version;
4110 		break;
4111 	case PACKET_HDRLEN:
4112 		if (len > sizeof(int))
4113 			len = sizeof(int);
4114 		if (len < sizeof(int))
4115 			return -EINVAL;
4116 		if (copy_from_user(&val, optval, len))
4117 			return -EFAULT;
4118 		switch (val) {
4119 		case TPACKET_V1:
4120 			val = sizeof(struct tpacket_hdr);
4121 			break;
4122 		case TPACKET_V2:
4123 			val = sizeof(struct tpacket2_hdr);
4124 			break;
4125 		case TPACKET_V3:
4126 			val = sizeof(struct tpacket3_hdr);
4127 			break;
4128 		default:
4129 			return -EINVAL;
4130 		}
4131 		break;
4132 	case PACKET_RESERVE:
4133 		val = po->tp_reserve;
4134 		break;
4135 	case PACKET_LOSS:
4136 		val = packet_sock_flag(po, PACKET_SOCK_TP_LOSS);
4137 		break;
4138 	case PACKET_TIMESTAMP:
4139 		val = READ_ONCE(po->tp_tstamp);
4140 		break;
4141 	case PACKET_FANOUT:
4142 		val = (po->fanout ?
4143 		       ((u32)po->fanout->id |
4144 			((u32)po->fanout->type << 16) |
4145 			((u32)po->fanout->flags << 24)) :
4146 		       0);
4147 		break;
4148 	case PACKET_IGNORE_OUTGOING:
4149 		val = READ_ONCE(po->prot_hook.ignore_outgoing);
4150 		break;
4151 	case PACKET_ROLLOVER_STATS:
4152 		if (!po->rollover)
4153 			return -EINVAL;
4154 		rstats.tp_all = atomic_long_read(&po->rollover->num);
4155 		rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
4156 		rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
4157 		data = &rstats;
4158 		lv = sizeof(rstats);
4159 		break;
4160 	case PACKET_TX_HAS_OFF:
4161 		val = packet_sock_flag(po, PACKET_SOCK_TX_HAS_OFF);
4162 		break;
4163 	case PACKET_QDISC_BYPASS:
4164 		val = packet_sock_flag(po, PACKET_SOCK_QDISC_BYPASS);
4165 		break;
4166 	default:
4167 		return -ENOPROTOOPT;
4168 	}
4169 
4170 	if (len > lv)
4171 		len = lv;
4172 	if (put_user(len, optlen))
4173 		return -EFAULT;
4174 	if (copy_to_user(optval, data, len))
4175 		return -EFAULT;
4176 	return 0;
4177 }
4178 
4179 static int packet_notifier(struct notifier_block *this,
4180 			   unsigned long msg, void *ptr)
4181 {
4182 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4183 	struct net *net = dev_net(dev);
4184 	struct packet_mclist *ml, *tmp;
4185 	LIST_HEAD(mclist);
4186 	struct sock *sk;
4187 
4188 	rcu_read_lock();
4189 	sk_for_each_rcu(sk, &net->packet.sklist) {
4190 		struct packet_sock *po = pkt_sk(sk);
4191 
4192 		switch (msg) {
4193 		case NETDEV_UNREGISTER:
4194 			if (po->mclist)
4195 				packet_dev_mclist_delete(dev, &po->mclist,
4196 							 &mclist);
4197 			fallthrough;
4198 
4199 		case NETDEV_DOWN:
4200 			if (dev->ifindex == po->ifindex) {
4201 				spin_lock(&po->bind_lock);
4202 				if (packet_sock_flag(po, PACKET_SOCK_RUNNING)) {
4203 					__unregister_prot_hook(sk, false);
4204 					sk->sk_err = ENETDOWN;
4205 					if (!sock_flag(sk, SOCK_DEAD))
4206 						sk_error_report(sk);
4207 				}
4208 				if (msg == NETDEV_UNREGISTER) {
4209 					packet_cached_dev_reset(po);
4210 					WRITE_ONCE(po->ifindex, -1);
4211 					netdev_put(po->prot_hook.dev,
4212 						   &po->prot_hook.dev_tracker);
4213 					po->prot_hook.dev = NULL;
4214 				}
4215 				spin_unlock(&po->bind_lock);
4216 			}
4217 			break;
4218 		case NETDEV_UP:
4219 			if (dev->ifindex == po->ifindex) {
4220 				spin_lock(&po->bind_lock);
4221 				if (po->num)
4222 					register_prot_hook(sk);
4223 				spin_unlock(&po->bind_lock);
4224 			}
4225 			break;
4226 		}
4227 	}
4228 	rcu_read_unlock();
4229 
4230 	/* packet_dev_mc might grab instance locks so can't run under rcu */
4231 	list_for_each_entry_safe(ml, tmp, &mclist, remove_list) {
4232 		packet_dev_mc(dev, ml, -1);
4233 		kfree(ml);
4234 	}
4235 
4236 	return NOTIFY_DONE;
4237 }
4238 
4239 
4240 static int packet_ioctl(struct socket *sock, unsigned int cmd,
4241 			unsigned long arg)
4242 {
4243 	struct sock *sk = sock->sk;
4244 
4245 	switch (cmd) {
4246 	case SIOCOUTQ:
4247 	{
4248 		int amount = sk_wmem_alloc_get(sk);
4249 
4250 		return put_user(amount, (int __user *)arg);
4251 	}
4252 	case SIOCINQ:
4253 	{
4254 		struct sk_buff *skb;
4255 		int amount = 0;
4256 
4257 		spin_lock_bh(&sk->sk_receive_queue.lock);
4258 		skb = skb_peek(&sk->sk_receive_queue);
4259 		if (skb)
4260 			amount = skb->len;
4261 		spin_unlock_bh(&sk->sk_receive_queue.lock);
4262 		return put_user(amount, (int __user *)arg);
4263 	}
4264 #ifdef CONFIG_INET
4265 	case SIOCADDRT:
4266 	case SIOCDELRT:
4267 	case SIOCDARP:
4268 	case SIOCGARP:
4269 	case SIOCSARP:
4270 	case SIOCGIFADDR:
4271 	case SIOCSIFADDR:
4272 	case SIOCGIFBRDADDR:
4273 	case SIOCSIFBRDADDR:
4274 	case SIOCGIFNETMASK:
4275 	case SIOCSIFNETMASK:
4276 	case SIOCGIFDSTADDR:
4277 	case SIOCSIFDSTADDR:
4278 	case SIOCSIFFLAGS:
4279 		return inet_dgram_ops.ioctl(sock, cmd, arg);
4280 #endif
4281 
4282 	default:
4283 		return -ENOIOCTLCMD;
4284 	}
4285 	return 0;
4286 }
4287 
4288 static __poll_t packet_poll(struct file *file, struct socket *sock,
4289 				poll_table *wait)
4290 {
4291 	struct sock *sk = sock->sk;
4292 	struct packet_sock *po = pkt_sk(sk);
4293 	__poll_t mask = datagram_poll(file, sock, wait);
4294 
4295 	spin_lock_bh(&sk->sk_receive_queue.lock);
4296 	if (po->rx_ring.pg_vec) {
4297 		if (!packet_previous_rx_frame(po, &po->rx_ring,
4298 			TP_STATUS_KERNEL))
4299 			mask |= EPOLLIN | EPOLLRDNORM;
4300 	}
4301 	packet_rcv_try_clear_pressure(po);
4302 	spin_unlock_bh(&sk->sk_receive_queue.lock);
4303 	spin_lock_bh(&sk->sk_write_queue.lock);
4304 	if (po->tx_ring.pg_vec) {
4305 		if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4306 			mask |= EPOLLOUT | EPOLLWRNORM;
4307 	}
4308 	spin_unlock_bh(&sk->sk_write_queue.lock);
4309 	return mask;
4310 }
4311 
4312 
4313 /* Dirty? Well, I still did not learn better way to account
4314  * for user mmaps.
4315  */
4316 
4317 static void packet_mm_open(struct vm_area_struct *vma)
4318 {
4319 	struct file *file = vma->vm_file;
4320 	struct socket *sock = file->private_data;
4321 	struct sock *sk = sock->sk;
4322 
4323 	if (sk)
4324 		atomic_long_inc(&pkt_sk(sk)->mapped);
4325 }
4326 
4327 static void packet_mm_close(struct vm_area_struct *vma)
4328 {
4329 	struct file *file = vma->vm_file;
4330 	struct socket *sock = file->private_data;
4331 	struct sock *sk = sock->sk;
4332 
4333 	if (sk)
4334 		atomic_long_dec(&pkt_sk(sk)->mapped);
4335 }
4336 
4337 static const struct vm_operations_struct packet_mmap_ops = {
4338 	.open	=	packet_mm_open,
4339 	.close	=	packet_mm_close,
4340 };
4341 
4342 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4343 			unsigned int len)
4344 {
4345 	int i;
4346 
4347 	for (i = 0; i < len; i++) {
4348 		if (likely(pg_vec[i].buffer)) {
4349 			if (is_vmalloc_addr(pg_vec[i].buffer))
4350 				vfree(pg_vec[i].buffer);
4351 			else
4352 				free_pages((unsigned long)pg_vec[i].buffer,
4353 					   order);
4354 			pg_vec[i].buffer = NULL;
4355 		}
4356 	}
4357 	kfree(pg_vec);
4358 }
4359 
4360 static char *alloc_one_pg_vec_page(unsigned long order)
4361 {
4362 	char *buffer;
4363 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4364 			  __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4365 
4366 	buffer = (char *) __get_free_pages(gfp_flags, order);
4367 	if (buffer)
4368 		return buffer;
4369 
4370 	/* __get_free_pages failed, fall back to vmalloc */
4371 	buffer = vzalloc(array_size((1 << order), PAGE_SIZE));
4372 	if (buffer)
4373 		return buffer;
4374 
4375 	/* vmalloc failed, lets dig into swap here */
4376 	gfp_flags &= ~__GFP_NORETRY;
4377 	buffer = (char *) __get_free_pages(gfp_flags, order);
4378 	if (buffer)
4379 		return buffer;
4380 
4381 	/* complete and utter failure */
4382 	return NULL;
4383 }
4384 
4385 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4386 {
4387 	unsigned int block_nr = req->tp_block_nr;
4388 	struct pgv *pg_vec;
4389 	int i;
4390 
4391 	pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN);
4392 	if (unlikely(!pg_vec))
4393 		goto out;
4394 
4395 	for (i = 0; i < block_nr; i++) {
4396 		pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4397 		if (unlikely(!pg_vec[i].buffer))
4398 			goto out_free_pgvec;
4399 	}
4400 
4401 out:
4402 	return pg_vec;
4403 
4404 out_free_pgvec:
4405 	free_pg_vec(pg_vec, order, block_nr);
4406 	pg_vec = NULL;
4407 	goto out;
4408 }
4409 
4410 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4411 		int closing, int tx_ring)
4412 {
4413 	struct pgv *pg_vec = NULL;
4414 	struct packet_sock *po = pkt_sk(sk);
4415 	unsigned long *rx_owner_map = NULL;
4416 	int was_running, order = 0;
4417 	struct packet_ring_buffer *rb;
4418 	struct sk_buff_head *rb_queue;
4419 	__be16 num;
4420 	int err;
4421 	/* Added to avoid minimal code churn */
4422 	struct tpacket_req *req = &req_u->req;
4423 
4424 	rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4425 	rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4426 
4427 	err = -EBUSY;
4428 	if (!closing) {
4429 		if (atomic_long_read(&po->mapped))
4430 			goto out;
4431 		if (packet_read_pending(rb))
4432 			goto out;
4433 	}
4434 
4435 	if (req->tp_block_nr) {
4436 		unsigned int min_frame_size;
4437 
4438 		/* Sanity tests and some calculations */
4439 		err = -EBUSY;
4440 		if (unlikely(rb->pg_vec))
4441 			goto out;
4442 
4443 		switch (po->tp_version) {
4444 		case TPACKET_V1:
4445 			po->tp_hdrlen = TPACKET_HDRLEN;
4446 			break;
4447 		case TPACKET_V2:
4448 			po->tp_hdrlen = TPACKET2_HDRLEN;
4449 			break;
4450 		case TPACKET_V3:
4451 			po->tp_hdrlen = TPACKET3_HDRLEN;
4452 			break;
4453 		}
4454 
4455 		err = -EINVAL;
4456 		if (unlikely((int)req->tp_block_size <= 0))
4457 			goto out;
4458 		if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4459 			goto out;
4460 		min_frame_size = po->tp_hdrlen + po->tp_reserve;
4461 		if (po->tp_version >= TPACKET_V3 &&
4462 		    req->tp_block_size <
4463 		    BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size)
4464 			goto out;
4465 		if (unlikely(req->tp_frame_size < min_frame_size))
4466 			goto out;
4467 		if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4468 			goto out;
4469 
4470 		rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4471 		if (unlikely(rb->frames_per_block == 0))
4472 			goto out;
4473 		if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr))
4474 			goto out;
4475 		if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4476 					req->tp_frame_nr))
4477 			goto out;
4478 
4479 		err = -ENOMEM;
4480 		order = get_order(req->tp_block_size);
4481 		pg_vec = alloc_pg_vec(req, order);
4482 		if (unlikely(!pg_vec))
4483 			goto out;
4484 		switch (po->tp_version) {
4485 		case TPACKET_V3:
4486 			/* Block transmit is not supported yet */
4487 			if (!tx_ring) {
4488 				init_prb_bdqc(po, rb, pg_vec, req_u);
4489 			} else {
4490 				struct tpacket_req3 *req3 = &req_u->req3;
4491 
4492 				if (req3->tp_retire_blk_tov ||
4493 				    req3->tp_sizeof_priv ||
4494 				    req3->tp_feature_req_word) {
4495 					err = -EINVAL;
4496 					goto out_free_pg_vec;
4497 				}
4498 			}
4499 			break;
4500 		default:
4501 			if (!tx_ring) {
4502 				rx_owner_map = bitmap_alloc(req->tp_frame_nr,
4503 					GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO);
4504 				if (!rx_owner_map)
4505 					goto out_free_pg_vec;
4506 			}
4507 			break;
4508 		}
4509 	}
4510 	/* Done */
4511 	else {
4512 		err = -EINVAL;
4513 		if (unlikely(req->tp_frame_nr))
4514 			goto out;
4515 	}
4516 
4517 
4518 	/* Detach socket from network */
4519 	spin_lock(&po->bind_lock);
4520 	was_running = packet_sock_flag(po, PACKET_SOCK_RUNNING);
4521 	num = po->num;
4522 	WRITE_ONCE(po->num, 0);
4523 	if (was_running)
4524 		__unregister_prot_hook(sk, false);
4525 
4526 	spin_unlock(&po->bind_lock);
4527 
4528 	synchronize_net();
4529 
4530 	err = -EBUSY;
4531 	mutex_lock(&po->pg_vec_lock);
4532 	if (closing || atomic_long_read(&po->mapped) == 0) {
4533 		err = 0;
4534 		spin_lock_bh(&rb_queue->lock);
4535 		swap(rb->pg_vec, pg_vec);
4536 		if (po->tp_version <= TPACKET_V2)
4537 			swap(rb->rx_owner_map, rx_owner_map);
4538 		rb->frame_max = (req->tp_frame_nr - 1);
4539 		rb->head = 0;
4540 		rb->frame_size = req->tp_frame_size;
4541 		spin_unlock_bh(&rb_queue->lock);
4542 
4543 		swap(rb->pg_vec_order, order);
4544 		swap(rb->pg_vec_len, req->tp_block_nr);
4545 
4546 		rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4547 		po->prot_hook.func = (po->rx_ring.pg_vec) ?
4548 						tpacket_rcv : packet_rcv;
4549 		skb_queue_purge(rb_queue);
4550 		if (atomic_long_read(&po->mapped))
4551 			pr_err("packet_mmap: vma is busy: %ld\n",
4552 			       atomic_long_read(&po->mapped));
4553 	}
4554 	mutex_unlock(&po->pg_vec_lock);
4555 
4556 	spin_lock(&po->bind_lock);
4557 	WRITE_ONCE(po->num, num);
4558 	if (was_running)
4559 		register_prot_hook(sk);
4560 
4561 	spin_unlock(&po->bind_lock);
4562 	if (pg_vec && (po->tp_version > TPACKET_V2)) {
4563 		/* Because we don't support block-based V3 on tx-ring */
4564 		if (!tx_ring)
4565 			prb_shutdown_retire_blk_timer(po, rb_queue);
4566 	}
4567 
4568 out_free_pg_vec:
4569 	if (pg_vec) {
4570 		bitmap_free(rx_owner_map);
4571 		free_pg_vec(pg_vec, order, req->tp_block_nr);
4572 	}
4573 out:
4574 	return err;
4575 }
4576 
4577 static int packet_mmap(struct file *file, struct socket *sock,
4578 		struct vm_area_struct *vma)
4579 {
4580 	struct sock *sk = sock->sk;
4581 	struct packet_sock *po = pkt_sk(sk);
4582 	unsigned long size, expected_size;
4583 	struct packet_ring_buffer *rb;
4584 	unsigned long start;
4585 	int err = -EINVAL;
4586 	int i;
4587 
4588 	if (vma->vm_pgoff)
4589 		return -EINVAL;
4590 
4591 	mutex_lock(&po->pg_vec_lock);
4592 
4593 	expected_size = 0;
4594 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4595 		if (rb->pg_vec) {
4596 			expected_size += rb->pg_vec_len
4597 						* rb->pg_vec_pages
4598 						* PAGE_SIZE;
4599 		}
4600 	}
4601 
4602 	if (expected_size == 0)
4603 		goto out;
4604 
4605 	size = vma->vm_end - vma->vm_start;
4606 	if (size != expected_size)
4607 		goto out;
4608 
4609 	start = vma->vm_start;
4610 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4611 		if (rb->pg_vec == NULL)
4612 			continue;
4613 
4614 		for (i = 0; i < rb->pg_vec_len; i++) {
4615 			struct page *page;
4616 			void *kaddr = rb->pg_vec[i].buffer;
4617 			int pg_num;
4618 
4619 			for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4620 				page = pgv_to_page(kaddr);
4621 				err = vm_insert_page(vma, start, page);
4622 				if (unlikely(err))
4623 					goto out;
4624 				start += PAGE_SIZE;
4625 				kaddr += PAGE_SIZE;
4626 			}
4627 		}
4628 	}
4629 
4630 	atomic_long_inc(&po->mapped);
4631 	vma->vm_ops = &packet_mmap_ops;
4632 	err = 0;
4633 
4634 out:
4635 	mutex_unlock(&po->pg_vec_lock);
4636 	return err;
4637 }
4638 
4639 static const struct proto_ops packet_ops_spkt = {
4640 	.family =	PF_PACKET,
4641 	.owner =	THIS_MODULE,
4642 	.release =	packet_release,
4643 	.bind =		packet_bind_spkt,
4644 	.connect =	sock_no_connect,
4645 	.socketpair =	sock_no_socketpair,
4646 	.accept =	sock_no_accept,
4647 	.getname =	packet_getname_spkt,
4648 	.poll =		datagram_poll,
4649 	.ioctl =	packet_ioctl,
4650 	.gettstamp =	sock_gettstamp,
4651 	.listen =	sock_no_listen,
4652 	.shutdown =	sock_no_shutdown,
4653 	.sendmsg =	packet_sendmsg_spkt,
4654 	.recvmsg =	packet_recvmsg,
4655 	.mmap =		sock_no_mmap,
4656 };
4657 
4658 static const struct proto_ops packet_ops = {
4659 	.family =	PF_PACKET,
4660 	.owner =	THIS_MODULE,
4661 	.release =	packet_release,
4662 	.bind =		packet_bind,
4663 	.connect =	sock_no_connect,
4664 	.socketpair =	sock_no_socketpair,
4665 	.accept =	sock_no_accept,
4666 	.getname =	packet_getname,
4667 	.poll =		packet_poll,
4668 	.ioctl =	packet_ioctl,
4669 	.gettstamp =	sock_gettstamp,
4670 	.listen =	sock_no_listen,
4671 	.shutdown =	sock_no_shutdown,
4672 	.setsockopt =	packet_setsockopt,
4673 	.getsockopt =	packet_getsockopt,
4674 	.sendmsg =	packet_sendmsg,
4675 	.recvmsg =	packet_recvmsg,
4676 	.mmap =		packet_mmap,
4677 };
4678 
4679 static const struct net_proto_family packet_family_ops = {
4680 	.family =	PF_PACKET,
4681 	.create =	packet_create,
4682 	.owner	=	THIS_MODULE,
4683 };
4684 
4685 static struct notifier_block packet_netdev_notifier = {
4686 	.notifier_call =	packet_notifier,
4687 };
4688 
4689 #ifdef CONFIG_PROC_FS
4690 
4691 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4692 	__acquires(RCU)
4693 {
4694 	struct net *net = seq_file_net(seq);
4695 
4696 	rcu_read_lock();
4697 	return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4698 }
4699 
4700 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4701 {
4702 	struct net *net = seq_file_net(seq);
4703 	return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4704 }
4705 
4706 static void packet_seq_stop(struct seq_file *seq, void *v)
4707 	__releases(RCU)
4708 {
4709 	rcu_read_unlock();
4710 }
4711 
4712 static int packet_seq_show(struct seq_file *seq, void *v)
4713 {
4714 	if (v == SEQ_START_TOKEN)
4715 		seq_printf(seq,
4716 			   "%*sRefCnt Type Proto  Iface R Rmem   User   Inode\n",
4717 			   IS_ENABLED(CONFIG_64BIT) ? -17 : -9, "sk");
4718 	else {
4719 		struct sock *s = sk_entry(v);
4720 		const struct packet_sock *po = pkt_sk(s);
4721 
4722 		seq_printf(seq,
4723 			   "%pK %-6d %-4d %04x   %-5d %1d %-6u %-6u %-6lu\n",
4724 			   s,
4725 			   refcount_read(&s->sk_refcnt),
4726 			   s->sk_type,
4727 			   ntohs(READ_ONCE(po->num)),
4728 			   READ_ONCE(po->ifindex),
4729 			   packet_sock_flag(po, PACKET_SOCK_RUNNING),
4730 			   atomic_read(&s->sk_rmem_alloc),
4731 			   from_kuid_munged(seq_user_ns(seq), sk_uid(s)),
4732 			   sock_i_ino(s));
4733 	}
4734 
4735 	return 0;
4736 }
4737 
4738 static const struct seq_operations packet_seq_ops = {
4739 	.start	= packet_seq_start,
4740 	.next	= packet_seq_next,
4741 	.stop	= packet_seq_stop,
4742 	.show	= packet_seq_show,
4743 };
4744 #endif
4745 
4746 static int __net_init packet_net_init(struct net *net)
4747 {
4748 	mutex_init(&net->packet.sklist_lock);
4749 	INIT_HLIST_HEAD(&net->packet.sklist);
4750 
4751 #ifdef CONFIG_PROC_FS
4752 	if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops,
4753 			sizeof(struct seq_net_private)))
4754 		return -ENOMEM;
4755 #endif /* CONFIG_PROC_FS */
4756 
4757 	return 0;
4758 }
4759 
4760 static void __net_exit packet_net_exit(struct net *net)
4761 {
4762 	remove_proc_entry("packet", net->proc_net);
4763 	WARN_ON_ONCE(!hlist_empty(&net->packet.sklist));
4764 }
4765 
4766 static struct pernet_operations packet_net_ops = {
4767 	.init = packet_net_init,
4768 	.exit = packet_net_exit,
4769 };
4770 
4771 
4772 static void __exit packet_exit(void)
4773 {
4774 	sock_unregister(PF_PACKET);
4775 	proto_unregister(&packet_proto);
4776 	unregister_netdevice_notifier(&packet_netdev_notifier);
4777 	unregister_pernet_subsys(&packet_net_ops);
4778 }
4779 
4780 static int __init packet_init(void)
4781 {
4782 	int rc;
4783 
4784 	rc = register_pernet_subsys(&packet_net_ops);
4785 	if (rc)
4786 		goto out;
4787 	rc = register_netdevice_notifier(&packet_netdev_notifier);
4788 	if (rc)
4789 		goto out_pernet;
4790 	rc = proto_register(&packet_proto, 0);
4791 	if (rc)
4792 		goto out_notifier;
4793 	rc = sock_register(&packet_family_ops);
4794 	if (rc)
4795 		goto out_proto;
4796 
4797 	return 0;
4798 
4799 out_proto:
4800 	proto_unregister(&packet_proto);
4801 out_notifier:
4802 	unregister_netdevice_notifier(&packet_netdev_notifier);
4803 out_pernet:
4804 	unregister_pernet_subsys(&packet_net_ops);
4805 out:
4806 	return rc;
4807 }
4808 
4809 module_init(packet_init);
4810 module_exit(packet_exit);
4811 MODULE_DESCRIPTION("Packet socket support (AF_PACKET)");
4812 MODULE_LICENSE("GPL");
4813 MODULE_ALIAS_NETPROTO(PF_PACKET);
4814